Skip to main content

Advertisement

Log in

Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-Cis-lycopene and singlet oxygen

  • Published:
Molecules and Cells

Abstract

In field conditions, the zebra2 (z2) mutant in rice (Oryza sativa) produces leaves with transverse pale-green/yellow stripes. It was recently reported that ZEBRA2 encodes carotenoid isomerase (CRTISO) and that low levels of lutein, an essential carotenoid for non-photochemical quenching, cause leaf variegation in z2 mutants. However, we found that the z2 mutant phenotype was completely suppressed by growth under continuous light (CL; permissive) conditions, with concentrations of chlorophyll, carotenoids and chloroplast proteins at normal levels in z2 mutants under CL. In addition, three types of reactive oxygen species (ROS; superoxide [O2 ], hydrogen peroxide [H2O2], and singlet oxygen [1O2]) accumulated to high levels in z2 mutants grown under short-day conditions (SD; alternate 10-h light/14-h dark; restrictive), but do not accumulate under CL conditions. However, the levels of lutein and zeaxanthin in z2 leaves were much lower than normal in both permissive CL and restrictive SD growth conditions, indicating that deficiency of these two carotenoids is not responsible for the leaf variegation phenotype. We found that the CRTISO substrate tetra-Cis-lycopene accumulated during the dark periods under SD, but not under CL conditions. Its accumulation was also positively correlated with 1O2 levels generated during the light period, which consequently altered the expression of 1O2-responsive and cell death-related genes in the variegated z2 leaves. Taking these results together, we propose that the z2 leaf variegation can be largely attributed to photoperiodic accumulation of tetra-cis-lycopene and generation of excessive 1O2 under natural day-night conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque, R.J., Hayashi, T., Cho, W.G., Kleinman, M.E., Dridi, S., Takeda, A., Baffi, J.Z., Yamada, K., Kaneko, H., Green, M.G., et al. (2009). Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat. Med. 15, 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  • Amir, H., Karas, M., Giat, J., Danilenko, M., Levy, R., Yermiahu, T., Levy, J., and Sharoni, Y. (1999). Lycopene and 1,25-dihydroxyvitamin D3 cooperate in the inhibition of cell cycle progression and induction of differentiation in HL-60 leukemic cells. Nutr. Cancer 33, 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Chai, C., Fang, J., Liu, Y., Tong, H., Gong, Y., Wang, Y., Liu, M., Wang, Y., Qian, Q., Cheng, Z., et al. (2011). ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Mol. Biol. 75, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Li, F., and Wurtzel, E.T. (2010). Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol. 153, 66–79.

    Article  PubMed  CAS  Google Scholar 

  • Cornish, K., and Zeevaart, J.A. (1988). Phenotypic expression of wild-type tomato and three wilty mutants in relation to abscisic acid accumulation in roots and leaflets of reciprocal grafts. Plant Physiol. 87, 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Dall’Osto, L., Fiore, A., Cazzaniga, S., Giuliano, G., and Bassi, R. (2007). Different roles of a- and b-branch xanthophylls in photosystem assembly and photoprotection. J. Biol. Chem. 282, 35056–35068.

    Article  PubMed  Google Scholar 

  • Danon, A., Miersch, O., Felix, G., Camp, R.G.L., and Apel, K. (2004). Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J. 41, 68–80.

    Article  Google Scholar 

  • DellaPenna, D., and Pogson, B.J. (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57, 711–738.

    Article  PubMed  CAS  Google Scholar 

  • Di Mascio, P., Kaiser, S., and Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274, 532–538.

    Article  PubMed  Google Scholar 

  • Dong, H., Deng, Y., Mu, J., Lu, Q., Wang, Y., Xu, Y., Chu, C., Chong, K., Lu, C., and Zuo, J. (2007). The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Res. 17, 458–470.

    PubMed  CAS  Google Scholar 

  • Fang, J., Chai, C., Qian, Q., Li, C., Tang, J., Sun, L., Huang, Z., Guo, X., Sun, C., Liu, M., et al. (2008). Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J. 54, 177–189.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, P.D., and Bramley, P.M. (2004). The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, P.D., Pinto, M.E., Holloway, D.E., and Bramley, P.M. (2000). Technical advance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24, 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Giuliano, G., Bartley, G.E., and Scolnik, P.A. (1993). Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5, 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, A.R., Bhaya, D., Apt, K.E., and Kehoe, D.M. (1995). Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu. Rev. Genet. 29, 231–288.

    Article  PubMed  CAS  Google Scholar 

  • Hadley, C.W., Miller, E.C., Schwartz, S.J., and Clinton, S.K. (2002). Tomatoes, lycopene, and prostate cancer: progress and promise. Exp. Biol. Med. 227, 869–880.

    CAS  Google Scholar 

  • Harjes, C.E., Rocheford, T.R., Bai, L., Brutnell, T.P., Kandianis, C.B., Sowinski, S.G., Stapleton, A.E., Vallabhaneni, R., Williams, M., Wurtzel, E.T., et al. (2008). Natural genetic variation in lyco-pene epsilon cyclase tapped for maize biofortification. Science 319, 330–333.

    Article  PubMed  CAS  Google Scholar 

  • Hirashima, M., Tanaka, R., and Tanaka, A. (2009). Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol. 50, 719–729.

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner, S., and Kräutler, B. (2011). Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807, 977–988.

    Article  PubMed  Google Scholar 

  • Isaacson, T., Ronen, G., Zamir, D., and Hirschberg, J. (2002). Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of b-carotene and xanthophylls in plants. Plant Cell 14, 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, N., and Omura, T. (1977). Linkage studies in rice (Oryza sativa L.). On some mutants derived from chronic gamma irradiation. J. Fac. Agr. Kyushu Univ. 21, 117–127.

    Google Scholar 

  • Jahns, P., and Holzwarth, A.R. (2011). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta doi:10.1016/j.bbabio.2011. 04.012.

  • Jain, M., Nijhawan, A., Tyagi, A.K., and Khurana, J.P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345, 646–651.

    Article  PubMed  CAS  Google Scholar 

  • Jakus, J., and Farkas, O. (2005). Photosensitizers and antioxidants: a way to new drugs? Photochem. Photobiol. Sci. 4, 694–698.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H., Chen, Y., Li, M., Xu, X., and Wu, G. (2011). Overexpression of SGR results in oxidative stress and lesion-mimic cell death in rice seedlings. J. Integr. Plant Biol. 53, 375–387.

    Article  PubMed  CAS  Google Scholar 

  • Khandal, D., Samol, I., Buhr, F., Pollmann, S., Schmidt, H., Clemens, S., Reinbothe, S., and Reinbothe, C. (2009). Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley. Proc. Natl. Acad. Sci. USA 106, 13112–13117.

    Article  PubMed  CAS  Google Scholar 

  • Kim, C., Meskauskiene, R., Apel, K., and Laloi, C. (2008). No single way to understand singlet oxygen signalling in plants. EMBO Rep. 9, 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Kropat, J., von Gromoff, E.D., Muller, F.W., and Beck, C.F. (1995). Heat shock and light activation of a Chlamydomonas HSP70 gene are mediated by independent regulatory pathways. Mol. Gen. Genet. 248, 727–734.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Murillo, C., and Wurtzel, E.T. (2007). Maize Y9 encodes a product essential for 15-cis-zeta-carotene isomerization. Plant Physiol. 144, 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Ahn, T.K., Avenson, T.J., Ballottari, M., Cruz, J.A., Kramer, D.M., Bassi, R., Fleming, G.R., Keasling, J.D., and Niyogi, K.K. (2009). Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21, 1798–1812.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Pandeya, D., Nath, K., Zulfugarov, I.S., Yoo, S.C., Zhang, H., Yoo, J.H., Cho, S.H., Koh, H.J., Kim, D.S., et al. (2010). ZEBRANECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J. 62, 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, F.W. (1987). Karl Freudenberg, Burckhardt Helferich, Hermann O.L. Fischer: a centennial tribute. Carbohydr. Res. 164, 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S., and Li, L. (2008). Carotenoid metabolism: Biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50, 778–785.

    Article  PubMed  CAS  Google Scholar 

  • Melnikova, V., Bezdetnaya, L., Belitchenko, I., Potapenko, A., Merlin, J.L., and Guillemin, F. (1999). Meta-tetra(hydroxyphenyl) chlorin-sensitized photodynamic damage of cultured tumor and normal cells in the presence of high concentrations of atocopherol. Cancer Lett. 139, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene, R., Nater, M., Goslings, D., Kessler, F., op den Camp, R., and Apel, K. (2001). FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 12826–12831.

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki, N., Tanaka, R., Tanaka, A., Masuda, T., and Nagatani, A. (2008). The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 105, 15184–15189.

    Article  PubMed  CAS  Google Scholar 

  • Moulin, M., McCormac, A.C., Terry, M.J., and Smith, A.G. (2008). Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc. Natl. Acad. Sci. USA 105, 15178–15183.

    Article  PubMed  CAS  Google Scholar 

  • Muller, P., Li, X.P., and Niyogi, K.K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566.

    CAS  Google Scholar 

  • Norris, S.R., Barrette, T.R., and DellaPenna, D. (1995). Genetic dissection of carotenoid synthesis in Arabidopsis defines plasto quinone as an essential component of phytoene desaturation. Plant Cell 7, 2139–2149.

    Article  PubMed  CAS  Google Scholar 

  • op den Camp, R.G., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15, 2320–2332.

    Article  Google Scholar 

  • Park, H., Kreunen, S.S., Cuttriss, A.J., DellaPenna, D., and Pogson, B.J. (2002). Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14, 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Pogson, B., McDonald, K.A., Truong, M., Britton, G., and DellaPenna, D. (1996). Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8, 1627–1639.

    Article  PubMed  CAS  Google Scholar 

  • Pogson, B.J., Niyogi, K.K., Bjorkman, O., and DellaPenna, D. (1998). Altered xanthophyll compositions adversely affect chloro-phyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Natl. Acad. Sci. USA 95, 13324–13329.

    Article  PubMed  CAS  Google Scholar 

  • Pruzinska, A., Anders, I., Aubry, S., Schenk, N., Tapernoux-Luthi, E., Muller, T., Krautler, B., and Hortensteiner, S. (2007). In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19, 369–387.

    Article  PubMed  CAS  Google Scholar 

  • Qin, G., Gu, H., Ma, L., Peng, Y., Deng, X.W., Chen, Z., and Qu, L.-J. (2007). Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chl-orophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 17, 471–482.

    Article  PubMed  CAS  Google Scholar 

  • Reinsberg, D., Ottmann, K., Booth, P.J., and Paulsen, H. (2001). Effects of chlorophyll a, chlorophyll b, and xanthophylls on the in vitro assembly kinetics of the major light-harvesting chlorophyll a/b complex, LHCIIb. J. Mol. Biol. 308, 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Rock, C.L. (1997). Carotenoids: biology and treatment. Pharmacol. Ther. 75, 185–197.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, W., and Sies, H. (2003). Antioxidant activity of carotenoids. Mol. Aspects Med. 24, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, W., Junghans, A., de Boer, B., Driomina, E.S., Briviba, K., and Sies, H. (1998). Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett. 427, 305–308.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, R., and Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher plants. Annu. Rev. Plant Biol. 58, 321–346.

    Article  PubMed  CAS  Google Scholar 

  • Telfer, A. (2002). What is b-carotene doing in the photosystem II reaction centre? Philos. Trans. R Soc. Lond B Biol. Sci. 357, 1431–1439.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Wursch, M., Laloi, C., Nater, M., Hideg, E., et al. (2004). The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306, 1183–1185.

    Article  PubMed  CAS  Google Scholar 

  • Wei, J., Xu, M., Zhang, D., and Mi, H. (2010). The role of carotenoid isomerase in maintenance of photosynthetic oxygen evolution in rice plant. Acta Biochim. Biophys. Sin. (Shanghai) 42, 457–463.

    Article  CAS  Google Scholar 

  • Wi, S.J., Jang, S.J., and Park, K.Y. (2010). Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol. Cells 30, 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Zapata, M., Rodriguez, F., and Garrido, J.L. (2000). Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C-8 column and pyridinecontaining mobile phases. Mar. Ecol-Prog. Ser. 195, 29–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Chon Paek.

About this article

Cite this article

Han, SH., Sakuraba, Y., Koh, HJ. et al. Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-Cis-lycopene and singlet oxygen. Mol Cells 33, 87–97 (2012). https://doi.org/10.1007/s10059-012-2218-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-2218-0

Keywords

Navigation