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Abstract— Accurate tracking control of nonminimum phase 

systems relies on the calculation of the ideal internal dynamics 

(IID). Traditional IID calculation methods fail when applied to 

nonminimum phase nonhyperbolic systems (systems with 

nonhyperbolic zero dynamics). Recently, we propose the 

optimal bounded inversion method for IID calculation, which 

obtains IID by solving a trajectory optimization problem. In this 

paper, we extend our previous result and show that optimal 

bounded inversion can also deal with nonminimum phase 

nonhyperbolic systems. More than that, it is also possible to 

achieve different control goals by setting different cost functions. 

Particularly, three cases are investigated in this paper. The first 

uses minimal initial value deviation as the cost function, 

resulting in “T-IID” which can achieve accurate output tracking. 

The second applies minimal terminal value as the cost function, 

resulting in “S-IID” which leads to a final rest for the system. 

The last combines “T-IID” and “S-IID” to achieve a compound 

goal. The effectiveness is verified through Matlab simulations of 

a two-cart inverted-pendulum system. 

I. INTRODUCTION 

A system is nonminimum phase if it has unstable zeros 
(linear system) or unstable zero dynamics (nonlinear system) 
[1]. Output tracking of nonminimum phase systems is a 
challenging problem since traditional inversion-based 
methods will lead to unbounded input. To solve this problem, 
the concept of ideal internal dynamics (IID) was proposed in 
[2], which is a bounded solution of the internal states driven by 
the output reference. IID can be directly transformed into the 
reference state and feedforward input, which can be used to 
achieve accurate tracking for nonminimum phase systems. 

To date, several methods have been developed to calculate 
the IID, which can be divided into three categories. One is the 
output regulation method [3,4], which obtains the reference 
trajectory for the state and input by solving a regulation 
equation. The second IID calculation method is stable system 
center [5,6], which builds an estimator to get the IID. However, 
in both methods, the output reference is assumed to be 
generated by a known exosystem, which restricts their 
applications to more general output references. Another 
method called stable inversion [7,8] builds a more general 
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framework to calculate IID, which can be applied to arbitrary 
output references. The key idea is based on a simple 
observation: backward integration of a purely unstable system 
converges to a bounded solution. Therefore, by decomposing 
the stable/unstable part of the zero dynamics, a Picard-like 
iteration can be applied to find a bounded solution [7,8]. 
Following [7,8], there have been a continued interest in 
improving the computation efficiency of the stable inversion 
method [9~12] and extending this method to discrete systems 
[13]. One problem of stable inversion is its noncausality: it 
requires to know all the future information of the output 
reference. To alleviate this, a preview-based method [14,15] 
was proposed, which only requires to know the output 
reference in a finite future time horizon. 

However, the existing IID calculation methods have some 
limitations when applied to nonminimum phase 
nonhyperbolic systems. First, stable system center and stable 
inversion methods both fail in this case. By modifying the 
internal dynamics [16], approximate stable inversion can be 
achieved, where the resulted IID is approximate to the original 
system. Second, although some methods like output regulation 
[17] and a spline-based method [18] can solve accurate IID for 
linear systems, they can only get approximate solutions for 
nonlinear systems. Therefore, the accurate calculation of IID 
for nonminimum phase nonhyperbolic systems, especially 
nonlinear systems, still remains an open problem. 

To sum up, IID calculation is difficult for nonlinear 
nonminimum phase systems, and is much more challenging 
for nonlinear nonminimum phase nonhyperbolic systems. It is 
of great significance to develop an algorithm that is easy to 
implement, high-precision, and widely applicable to all kinds 
of nonminimum phase systems. Recently, we propose the 
optimal bounded inversion method [20] for IID calculation, 
which transforms IID calculation into a trajectory 
optimization problem and solves it through the powerful 
MATLAB software GPOPS-II. In this paper, we explore to 
apply this method to nonminimum phase nonhyperbolic 
systems. To achieve different control goals, two well-designed 
optimization cost functions are proposed. One is to minimize 
the initial value deviation of the internal states, which results 
in “T-IID” that is able to achieve accurate tracking as much as 
possible. The other is to minimize the final value of the 
internal states, which leads to “S-IID” that reduces the final 
motion of the internal states as much as possible. These two 
options can be used independently or can be combined to 
realize different goals. The effectiveness is verified through 
Matlab simulations of a two-cart inverted-pendulum system. 

The main contribution of this paper is the extension of the 
optimal bounded inversion method to nonminimum phase 
nonhyperbolic systems with multiple control goals. Through 
this paper and our previous paper [20], it verifies that optimal 
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bounded inversion is capable of IID calculation to different 
kinds of nonminimum phase systems. Meanwhile, optimal 
bounded inversion gives us some flexibility in IID calculation 
to achieve different control goals. Besides, it takes advantage 
of the GPOPS-II software, which guarantees high accuracy 
and is also very easy to implement. These features make it 
outperform other methods. 

The rest of this paper is organized as follows. Section II 
introduces the concept of IID. Section III shows how to use 
optimal bounded inversion for IID calculation. Section IV 
presents the results of numerical simulations and Section V 
concludes this paper. 

II. THE CONCEPT OF IID 

Consider a nonlinear nonminimum phase system, denote 

 1 2, ,...,
T

mu u uu as the input vector,  1 2, ,...,
T

my y yy  as 

the output vector with the relative degree  1 2, ,..., mr r r , and η  

as the internal state vector. The system dynamics are given as 
follows: 

 
     1 1 (External Dynamics),
r

= +y F x G x u  (1) 

    2 2 (Internal Dynamics), η F x G x u  (2) 

where        1 2

1 2, m

T
r r r r

my y y 
 

，...,y represent the high-order 

derivatives of  the output (the order depends on when the 

input appears) .  ,
T

=x ξ η  is the state vector, in which 

   1 1 1

1 1 1, ,..., ,..., , ,..., m

T
r r

m m my y y y y y
  

 
ξ  represents the external 

state vector. Define        1 2, ,...,
T

r r r mrt y t y t y t   y  as 

the output reference. Then the output tracking problem is to 

let y  track ry . Define 
rx  as the state reference and 

ru  as 

the input reference, which satisfy 

 

     

   

1 1

2 2

,

,

r

r r r r

r r r r

 

 

y F x G x u

η F x G x u
 (3) 

where 
 

 ,
T

r r rx ξ η  with r
ξ  being the external state 

reference and rη  being the internal state reference. Then we 

can achieve accurate output tracking by using the following 
linear tracking controller: 

   ,r r  u u K x x  (4) 

where ru  
is the feedforward input and  rK x x

 

is a 

feedback of state error with K  is a gain matrix. Actually, (4) 
is widely used in output regulation [3] as well as stable 

inversion [7,8]. It can be interpreted as: the feedforward ru  

provides the needed control input for precision output 

tracking, while the feedback  rK x x

 

generates a 

correction input when the system states deviate from the state 
reference and thus keeps the system stable.  

The external state reference trajectory can be directly 

derived by     1 11

1 1 1, ,..., ,..., , ,..., m

T
rr

r r r r mr mr mry y y y y y
 

 
ξ . 

However, the internal state reference trajectory rη  is not easy 

to attain. 

Solving ru  from the first equation in (3) gives 

      
1

1 1 .
r

r r r r


  
 

u G x y F x  (5) 

Substituting  (5) into (3) gives: 

          
1

2 2 1 1 .
r

r r r r r r


   
 

η F x G x G x y F x  (6) 

which are the zero dynamics corresponding to the regulated 

output r e y y . 

For simplicity, denote the right hand side in (6) as 

 ,r rφ η  , then the zero dynamics driven by the output 

reference can be written as 

  , .r r rη φ η   (7) 

Since the system is nonminimum phase, the zero dynamics 
(7) is unstable, which means direct integration of the zero 
dynamics will give an unbounded solution. To achieve 
accurate output tracking and guarantee stability of the internal 
dynamicsat the same time, we need to find a bounded solution 
(that is, the IID) for the unstable zero dynamics and then 
stabilize the internal states to the IID. Therefore, IID builds a 
bridge between output tracking and internal dynamics 
stabilization as shown in Fig. 1. 

External states Internal states

Given 

reference

Output tracking of 

nonminimum phase systems

Ideal internal 

dynamics (IID)
 

Figure 1.  Relationship between output tracking and internal dynamics 

stabilization. 

Once the IID rη  is obtained, then  ,
T

r r rx ξ η  is known 

and ru  can be obtained from (5) so that ,r rx u  can be applied 

to the tracking controller (4) to achieve accurate output 
tracking. To sum up, the output tracking problem of a 
nonminimum phase system can be reduced to finding a 

bounded solution (that is, the IID rη ) for the zero dynamics (7) 

which is driven by the output reference.   

In the literature, IID usually means a bounded solution in 

infinite time interval, that is,  ,t   . However, in the 

real situation, a tracking control task is always executed in 
finite time. Correspondingly, we can define finite-time IID as 
the internal state trajectory within a given boundary  

min max η η η  for a finite time interval 
0[ , ]ft t t . 

For illustration, consider the following nonminimum 
phase system 

1975

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on January 07,2022 at 05:34:07 UTC from IEEE Xplore.  Restrictions apply. 



  

 

,

,

.

u

y



  





 



 (8) 

Assume the reference trajectory is sinry t . Then the 

internal dynamics driven by the output reference is 

 sin .t    (9) 

Fig. 2 shows a bunch of solutions which satisfy (9). It can 
be seen that most of the solutions diverge quickly and will go 
to infinity as t  . However, there is a bounded solution 

1 1
cos sin

2 2
t t     for  0,t  , which is the IID. 

What’s more, if we limit the time interval in  0,20t  and 

the state boundary to  5,5   , then we can find numerous 

solutions within this region, which are the finite-time IID.  In 
the later sections, we will focus on the calculation of the 
finite-time IID, and if not specifically stated, we refer to 
“finite-time IID” when we say “IID”. 

 
Figure 2.  Solutions for (9). 

III. THE OPTIMAL BOUNDED INVERSION METHOD 

As shown in the previous section, IID is a bounded 
solution concerning time for the internal states when the 
outputs move along the given reference trajectories. In other 
words, IID is a bounded solution for the differential equation 
of the internal dynamics when the outputs are constrained in 
the reference trajectories, which is depicted in Fig. 3.  

Internal dynamics Bounded solution

 One-to-many mapping

IID
Output 

reference

( )r t 

Time 

interval

( , )r   

( )r

r

t

  

y y

0[ , ]ft t t

 
Figure 3.  The IID calculation problem. 

If we only consider state boundary in IID calculation, it is 
a one-to-many mapping from the output reference to IID. Still 

use (9) for illustration, Fig. 4 shows the r ry   mapping for 

two output references. It can be seen that an output reference 
leads to a group of IID. 

 
Figure 4.  One-to-many mapping from output reference to IID. 

In order to restrict the output reference-IID relationship to 
a one-to-one mapping, an additional condition is required. In 
the stable inversion method [7, 8], a boundary condition is 
inserted which transforms IID calculation into a bounded 
value problem. The idea is shown in Fig. 5. It divides the zero 

dynamics into two parts, including an unstable part u  and a 

stable part s . Then the initial value for s  and the terminal 

value for u  are selected as specified bounded values ( 0( )s t
 

can be obtained from the initial state values while ( )u ft  is 

usually set to zero).   

Internal dynamics
Bounded value 

problem

 One-to-one mapping

IID
Output 

reference

Boundary 

condition

Time 

interval

0 0( ) , ( )s u f ft t    

( , )r   

( )r t 

( )r

r

t

  

y y

0[ , ]ft t t

 
Figure 5.  IID calculation by stable inversion. 

When using stable inversion to (9), it leads to the 
one-to-one IID as shown in Fig. 6.  

 
Figure 6.  One-to-one mapping from output reference to IID by stable 

inversion. 
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For nonminimum phase nonhyperbolic systems, the 
linearized zero dynamics are nonhyperbolic, meaning the 
existence of eigenvalues with zero real part. In this case, the 
zero dynamics cannot be simply divided into stable/unstable 
part, which disables the use of stable inversion method. 
However, the optimal bounded inversion method we 
proposed in [20] can be applied in this case. Unlike stable 
inversion, optimal bounded inversion does not require system 
decomposition. Instead, it calculates IID through trajectory 
optimization.  

The idea of optimal bounded inversion is shown in Fig. 7, 
where state constraints are added to keep the internal states in 
the desired boundary, and a cost function is designed to 
achieve specific control goals as well as to ensure the 
one-to-one mapping property.  

 

Internal dynamics
Trajectory optimization

problem

 One-to-one mapping

IID
Output 

reference

State 

constraints

Cost 

function
Time 

interval

0[ , ]ft t t min max( )t    min ( )J 

( , )r   

( )r

r

t

  

y y

( )r t 

 
Figure 7.  IID calculation by optimal bounded inversion. 

Optimal bounded inversion gives us some flexibility in 
designing the cost function. Different cost functions will 
result in different IID. For (9), when using minimal terminal 
absolute value as the cost function, it leads to the same results 
as obtained by stable inversion. If we select minimal terminal 
absolute change rate as the cost function, it leads to a different 
IID as shown in Fig. 8. 

 
Figure 8.  One-to-one mapping from output reference to IID by optimal 

bounded inversion. 

Following is a formal description of the optimal bounded 
inversion method. Consider the zero dynamics (7), suppose 

the desired boundary for the internal state is   min max,r η η η . 

We construct the following trajectory optimization problem 
to calculate the IID. 

Optimal bounded inversion problem: Giving an output 

reference trajectory 
r

y  in 
0[ , ]ft t t  ( 0t  is the start time and 

ft  is the end time, and r
y  can be transformed into the 

external state reference 
rξ ), determine a trajectory  r tη  

which satisfies: 1) the zero dynamics constraint 

 ,r r rη φ η  ; 2) the state constraint min maxr η η η ; and 3) 

minimizes a cost function J . 

The cost function determines the final solution of the IID, 
which is important to the control performance. Here we give 
two candidates for the cost function. 

(1) Minimal initial value deviation 

    0 0 .rJ t t η η  (10) 

This cost function represents the initial value deviation 
between the internal states and the IID. Minimizing it can 
reduce the initial tracking error and thus improve the tracking 
accuracy. For convenience, we call the resulted IID “T-IID”, 
where the letter “T” represents tracking. 

(2) Minimal final motion 

     ,r f r f fJ t t t  φ η  (11) 

This cost function represents the magnitude of the final 
change rate for the internal states. Minimizing it can suppress 
the motion of the internal states in the end as much as possible. 
The resulted IID is very suitable when the system is expected 
to stop tracking and come to a final rest. Therefore, we call it 
“S-IID”, where “S” means stopping. 

The optimal bounded inversion problem defined above is 
a standard trajectory optimization problem, which can be 
conveniently solved by using the software GPOPS-II [19]. 
The resulted T-IID and S-IID can be used for different 
purposes and can also be combined to achieve a compound 
goal. For example, T-IID can be used at the beginning of a 
tracking task to ensure accurate tracking while S-IID can be 
used when the tracking task is finished, and the system is 
expected to come to a final rest. 

IV. NUMERICAL SIMULATIONS 

In this section, the optimal bounded inversion method is 
applied to a two-cart inverted-pendulum system [16,17], 
which is a benchmark system with nonhyperbolic zero 
dynamics. The system is shown in Fig. 9.  



k

Mass,  M  Mass,  M  

2x

1x

m

l

Force, u

 
Figure 9.  Two-cart inverted-pendulum system. 

Following [17], the dynamic equations of the system are 
written as follow:  
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 

 

 
 

 

1 1

2

1 12

2 1

2 2

2 1 2

2

2

1 2 1

1

,

1
sin

sin

cos sin ,

,

= ,

,

1
sin cos

sin

cos sin cos cos ,

,

x v

v u ml bv
M m

mg k x x

x v

k
v x x

M

M m g u
M m l

bv ml k x x

y x

 


 

 

  


    



  

   







  


    



(12) 

where 1x  is the position and 1v  is the velocity of the left cart, 

2x  is the position and 2v  is the velocity of the right cart. ,   

are the pendulum angle and angular rate.  The parameters are: 

M  is the mass of the cart, l  is the length of the pendulum, 

m  is the mass of the ball on the pendulum, g  is the 

gravitational acceleration, k   is the spring constant, and b  is 

the viscous friction coefficient. In this system, the applied 
force u  is the input, and we select the position of the left cart 

1x  as the output. 

From (5), the input reference is obtained as 

 
 

2 2

1

1 2 1

sin sin

cos sin .

r r r r r

r r r r r

u M m v ml

bv mg k x x

  

 

    

   
 (13) 

and the zero dynamics are 

 

 

 
 

 

2 2

2 1 2

2

2

1 2 1

,

= ,

,

1
sin cos

sin

cos sin cos cos .

r r

r r r

r r

r r r r

r

r r r r r r r

x v

k
v x x

M

M m g u
M m l

bv ml k x x

 

  


    







  


    

(14) 

In the simulation, the model parameters are as follows: 

1.378kgM  , 0.051kgm  , 0.325ml  , 29.8m/sg  , 

10 N/sk  , and 12.98kg/sb  . The tracking controller is 

given by (4) with  4.82,15.9, 4.41, 1.71,35.9,6.32  K  

and  1 1 2 2, , , , ,
T

x v x v  x . The output reference is given as 

follows: 

 

 

 

5

5

0.0004 5

0.0004 21

0, 5

1 , 5 13

1 , 13 21

0, 21.

t

r
t

if t

e if t
y

e if t

if t

 

 



  

 
   




 (15) 

Then 1 1 1, ,r r r r r rx y v y v y    can be obtained from (15). 

And the IID is obtained by using the optimal bounded 
inversion method. To guarantee boundedness, the boundaries 

of the internal states are all chosen as [ 2,2] .  The initial 

state is  0  0x  and the time interval is 0~30s.  

To verify the proposed method, three cases are considered 
in the simulation. Case 1: Tracking control with T-IID; Case 2: 
Tracking control with S-IID; and Case 3: Tracking control 
with a compound IID. 

For Case 1 and Case 2, the resulted T-IID and S-IID are 
depicted in Fig. 10. It can be seen that the initial values of the 
T-IID are both zero, which are the same as the real initial 

conditions, but 2rx  has an oscillation in the end. As for S-IID, 

it can be seen that both states come to a full stop in the end but 

r  has a big initial mismatch. Fig. 11 shows the simulation 

results when using T-IID in the tracking controller. It can be 
observed that the output achieves accurate tracking 
throughout the process. However, the internal states oscillate 
in the end which is undesired. Fig. 12 shows the simulation 
results when using S-IID in the tracking controller. It can be 
seen that the output has a tracking error at the beginning due 
to the initial mismatch, but the internal states are finally 
stabilized to zero. 

   
Figure 10.  T-IID and S-IID. 

   
Figure 11.  Simulation results with T-IID. 

   
Figure 12.  Simulation results with S-IID. 

For case 3, it is assumed that the control task is divided 
into two parts by t = 14s, where precision tracking is expected 
in the first half and a final rest is expected in the second half. 
In this case, a compound IID can be used, where T-IID is 

applied to   0,14t   to guarantee precision tracking and 

S-IID is applied to  14,30t  to achieve a final rest. The 

simulation results are shown in Fig. 13 and Fig. 14. From Fig. 
13, it can be seen that the output tracks very well with the 
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reference before t = 14s and then has a small deviation, finally 
stopping at the desired value. From Fig. 14, it can be observed 

that the IID 2 ,r rx   have a small step change at t = 14s which 

is due to the transition from T-IID to S-IID. This strategy 
guarantees that the internal states come to a final rest. To sum 
up, the compound IID can achieve accurate tracking at the 
desired time interval as well as stabilizes the internal states to 
a final rest status. 

 
Figure 13.  Output curve with compound IID. 

 
Figure 14.  Internal state curve with compound IID. 

V. CONCLUSION 

Optimal bounded inversion is investigated in this paper to 

calculate the ideal internal dynamics (IID) for nonminimum 

phase nonhyperbolic systems and thus achieve precision 

output tracking. Optimal bounded inversion calculates IID 

from the perspective of trajectory optimization, making it 

possible to deal with nonhyperbolic zero dynamics. Two 

different optimization goals are defined which lead to two 

kinds of IID that can be used for different purposes. The 

two-cart inverted-pendulum example verify that the proposed 

method is suitable for systems with nonhyperbolic zero 

dynamics. Therefore, optimal bounded inversion gives a 

general solution for IID calculation and output tracking of 

different kinds of nonminimum phase systems, which is easy 

to implement, high-precision, and widely applicable.  
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