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Abstract. The model expansion (MX) search problem consists of find-
ing models of a given theory T that expand a given finite interpretation.
Model expansion in classical first-order logic (FO) has been proposed as
the basis for an Answer Set Programming-like declarative programming
framework for solving NP problems. In this paper, we present idp, a sys-
tem for solving MX problems that integrates technology from ASP and
SAT. Its strength lies both in its rich input language and its efficiency.
idp is the first model expansion system that can handle full FO, but its
language extends FO with many other primitives such as inductive def-
initions, aggregates, quantifiers with numerical constraints, order-sorted
types, arithmetic, partial functions, etc. We show that this allows for
a natural, compact representation of many interesting search problems.
Despite the generality of its language, our experiments show that the idp
system belongs to the most efficient ASP and MX systems.

1 Introduction

In [10], Marek and Truszczyński presented the idea to base declarative prob-
lem solving frameworks on computing solutions of a computational problem as
models of a logic theory. In the last decade, several such frameworks have been
developed. The first and arguably most popular among these is Answer Set Pro-
gramming (ASP) [10, 17]. In ASP, the theories are normal logic programs, and
the models are computed according to the stable model semantics. The ASP
paradigm is supported by the existence of several efficient ASP solvers, each
of them consisting of two components. The first component, called grounder,
transforms the given logic program into a propositional one with the same sta-
ble models. The second component, called model generator, then computes the
models of the propositional program.

Two more recent framework proposals use classical first-order logic (FO)
as underlying logic [5, 16]. The main reason for this choice is the simplicity,
expressivity and well-understood knowledge representation methodology of FO.
Also, by staying close to classical logic, it is possible to directly use (extensions
of) SAT solvers as model generators for a solver.

The first of these FO based proposals, presented in [5], concerns computing
Herbrand models of clausal function-free FO theories, extended with cardinality
aggregates and Horn rules. The other one introduces model expansion (MX)



for (extensions of) full FO as declarative problem solving paradigm [16]. The
MX search problem for a logic L, denoted MX(L), is the problem of finding the
models of an L-theory T that expand a given finite interpretation I of part of T ’s
vocabulary. Currently, there are two existing MX solvers for FO: MXG [15] and
idp. The former is being developed at Simon Fraser University and can handle
function free FO, extended with a restricted form of inductive definitions and
aggregates. In this paper, we present the latter system.

The idp system is an MX solver for a rich extension of full FO. More con-
cretely, the input language of idp extends FO with an order-sorted type system,
inductive definitions, partial functions, arithmetic, existential quantifiers with
numerical bounds and aggregates such as cardinality, minimum, maximum and
sum. Though in principle none of these extensions increase the class of problems
that can be represented in MX(FO) [16], they do often considerably simplify
the modelling task and may increase the class of problems that can be solved
in practice. For instance, reachability in the context of a finite domain can be
expressed in FO, but not in a natural manner. On the other hand, it can easily
be expressed using an inductive definition, and experiments (as, e.g., the ones
in [11]) indicate that solvers able to natively handle such definitions are currently
more efficient than pure SAT solvers on problems involving reachability.

The goal of this paper is to give a gentle introduction to the idp system. In the
next section, we describe the different language constructs of the input language
and illustrate their use. In Section 3, we briefly describe the two components
of the system: the grounder GidL and the extended SAT solver MiniSat(ID).
Section 4 demonstrates the idp methodology and the combined use of several
language constructs in one integrated example. Finally, in Section 5, we present
some experiments comparing different model generation and model expansion
systems of FO and ASP.

2 Specification Language

In this section, we present the specification language of the idp system. We
discuss the different language constructs that have been added to FO in idp and
illustrate their use.

We assume familiarity with many-sorted first-order logic (FO) (see, e.g., [7]).
Here we will use the standard notations for logical connectives. For an overview
of the ASCII notation of the connectives in idp’s concrete language, we refer to
the manual of the system [21]. In this paper (as well as in idp), variables start
with a lowercase letter while predicate, constant and function symbols start with
an uppercase letter. Sets and tuples of variables are denoted in bold by x, y, . . . ,
and tuples of terms by t. We use ϕ[x] to indicate that x are the free variables
of the formula ϕ.

For an interpretation I (also called a structure), the value of a term t in
I is denoted by tI , the truth value of a formula ϕ in I by ϕI . By I[x/d] we
denote the interpretation that assigns the domain elements d to the variables x



and corresponds to I on all other symbols. The restriction of a structure I over
vocabulary Σ to a subvocabulary σ ⊆ Σ is denoted by I|σ.

The first two extensions of FO in the idp language are the quantifiers with
a cardinality constraint: ∃=n and ∃<n. The meaning of formulas ∃=nx ϕ and
∃<nx ϕ is respectively that “there exist exactly n”, respectively and “ strictly
less than n” objects x satisfying ϕ. They will be frequently used in the examples
below.

2.1 Model Expansion

The idp system solves the computational task of model expansion for FO and
its extensions as presented here. We first formally define this task:

Definition 1. Let L be a logic and T an L-theory over a vocabulary Σ, and
let σ ⊂ Σ. Then the model expansion problem for logic L with input 〈T, σ〉,
denoted MX〈T,σ〉, is the problem of computing for an input σ-interpretation I, a
Σ-model M of T such that M |σ = I. M is called a T -expansion of I.

The vocabulary σ is called the input vocabulary, Σ \ σ the expansion vocabulary
and I the input structure.

Mitchell and Ternovska [16] proved that model expansion for FO captures
NP, in the following sense:

– for any T and σ, the decision problem of MX〈T,σ〉, i.e., the problem of de-
ciding whether an σ-structure has a T -expansion, is in NP;

– vice versa, for any NP decision problem X on the class of finite σ-structures,
there is a theory T in a vocabulary that extends σ such that a finite σ-
structure I belongs to X iff T has a model expanding I. In the latter case,
we say that MX〈T,σ〉 expresses X.

Observe that if σ = Σ, then MX〈T,σ〉 reduces to model checking, while if
σ = ∅, the problem is that of deciding the existence of a model of T with a given
finite size. We illustrate MX for FO in the following examples.

Example 1 (Graph colouring). The graph colouring problem takes as input a
graph and a set of colours, which we represent here by σ = (sorts: {V tx,Colour},
vocabulary: {Edge(V tx, V tx)}). A solution is any function from vertices to
colours that maps neighbouring vertices to different colours. We represent this
function by the function symbol Colouring(V tx) : Colour. The IDP theory that
models this problem consists of one formula:

∀v1∀v2 Edge(v1, v2) ⊃ Colouring(v1) 6= Colouring(v2).

Example 2 (SAT). We now encode the SAT problem for CNF formulas, thus
demonstrating that every problem in NP can be reduced to an MX problem in
polynomial time. The input vocabulary of our encoding is

σ = (sorts: {Atom,Clause},
vocabulary: {PosIn(Atom,Clause), NegIn(Atom,Clause)}),



where the two sorts represent respectively the atoms and clauses of the given
formula, and the two predicate symbols represent the positive, respectively neg-
ative occurrences of atoms in clauses. We search an assignment represented by
the unary predicate A(Atom), such that

∀c ∃a (PosIn(a, c) ∧A(a)) ∨ (NegIn(a, c) ∧ ¬A(a)),

i.e., each clause contains a true literal.
Interestingly, the grounding produced by the grounder of the idp system (see

Section 3.1) is exactly the CNF formula represented by the input interpretation.

2.2 Inductive Definitions

A first extension of FO is the logic FO(ID) [3, 4], which extends FO with induc-
tive definitions. Inductive definitions have many applications in real problems,
e.g., in problems involving reachability. In the context of finite structures, induc-
tive definitions can in principle be encoded in FO (e.g., by encoding the fixpoint
construction) but the process is tedious and leads to large theories.

A definition ∆ is a finite set of rules of the form

∀x (P (t)← ϕ[y]),

where P is a predicate symbol, ϕ an FO formula, y ⊆ x and t a tuple of terms
such that its free variables are among x. P (t) is called the head of the rule,
ϕ[y] the body. The connective ← is called definitional implication and is to be
distinguished from material implication ⊃. The aim of a definition is to define
its set of defined predicates in terms of other symbols, called the open symbols of
∆. The defined predicates are those that appear in the head of a rule. Formally,
a structure satisfies a definition ∆ if its interpretation of the defined symbols is
given by the well-founded model [20] of ∆ computed in terms of the interpretation
of the open symbols. As argued in, e.g., [4], the well-founded semantics is used
because it correctly formalizes the semantics of all common types of inductive
definitions in mathematics.

Example 3 (Transitive closure). Definition ∆1 defines relation T to be the tran-
sitive closure of relation R.

∆1 =
{
T (x, y)← R(x, y),
T (x, y)← ∃z (T (x, z) ∧ T (z, y))

}
An FO(ID) theory T is a finite set of FO sentences and definitions. Thus, an

FO(ID) theory has the appearance of an FO theory augmented with a collection
of logic programs. This entails that FO(ID)’s definitions cannot only be used to
represent mathematical concepts, but also for common sense knowledge such as
(local forms of) CWA, inheritance, exceptions, defaults, causality, etc..

Example 4 (Transitive opening). A transitive opening of a binary relation T is
a minimal relation R with transitive closure T . We express the problem to find



a transitive opening as an MX(FO(ID)) problem with input vocabulary σ =
(sorts: {V tx}, vocabulary: {T (V tx, V tx)}). The requirement that the expansion
predicate R’s transitive closure is T is expressed by ∆1 in Example 3. In logic,
minimality of a relation is normally expressed by a second order axiom which
cannot be expressed in idp. However, in this case we can express the minimality
of R as follows. We introduce a predicate TE(V tx, V tx, V tx, V tx) such that, for
each u and v, the binary relation TE(·, ·, u, v) denotes the transitive closure of
R \ {(u, v)}.

∆2 =
{
TE(x, y, u, v)← R(x, y) ∧ ¬(x = u ∧ y = v)
TE(x, y, u, v)← ∀z (TE(x, z, u, v) ∧ TE(z, y, u, v))

}
The minimality of R is then expressed by the formula

Ψ = ∀x, y (R(x, y) ⊃ ¬TE(x, y, x, y)).

It expresses that each (x, y) ∈ R necessarily belongs to R, i.e., (x, y) does not
belong to the transitive closure of R\{(x, y)} nor to any of its subrelations. It is
easy to prove that the MX(FO(ID)) problem MX〈{∆1,∆2,Ψ},σ〉 correctly models
the transitive opening problem, i.e. that the expansion models M of an input
interpretation I have a one to one correspondence to transitive openings of T I .

2.3 Partial Functions

In standard FO, function symbols represent total functions. Many real appli-
cations contain functions that are partial on the whole domain, yet total on a
well-known subset of the universe. Examples are spouse for married people, the
arithmetic functions ÷ and mod, etc.

In general, arbitrary use of partial function symbols creates an ambiguity
problem. E.g., consider the formula P (F (t))), where F is a partial function
symbol. This formula can be interpreted in two different ways, as illustrated by
the following non-ambiguous rewritings of it:

∃y (F (t) = y ∧ P (y)) (1)
∀y (F (t) = y ⊃ P (y)) (2)

Here, the atoms F (t) = y should be interpreted as GF (t, y), where GF denotes
the graph of F . When F is total, both rewritings are equivalent, but this is not
the case when F is partial. Indeed, for an interpretation I such that tI is not in
the domain of F I , I 6|= (1), but I |= (2).

In idp we interpret positive occurrences of atoms P (F (t))) by (2) and neg-
ative occurrences by (1). This leads to a cautious interpretation of sentences
with such statements, i.e., an interpretation that minimizes the truth value of a
sentence. Our observation is that this cautious interpretation is usually the in-
tended one. In cases where it is not, one can easily achieve the correct behaviour
by explicitly rewriting the occurrence in the desired non-ambiguous form (1) or
(2).



Example 5. Assuming that Spouse is a partial function, the formal meaning of
the formula ∀x (Male(x) ⊃ Female(Spouse(x)) is

∀x (Male(x) ⊃ ∀y(Spouse(x) = y ⊃ Female(y)).

This means that the spouse of a male is female, provided that this spouse ex-
ists. If we had opted for (1), the meaning would be that any male has a fe-
male spouse. The sentence with a negative occurrence of a partial function,
∀x (Male(Spouse(x)) ⊃ Female(x)), means that a person is female if she has a
male spouse. If we had opted for (2), the meaning would have been: if all spouses
of a person are male, then (s)he is female. Since the condition is satisfied for a
person without spouse, such person is claimed to be female.

2.4 Subsorts

The input language for idp extends many-sorted FO to order-sorted FO. More
precisely, it allows sorts to be a direct subsort of at most one other sort. The
corresponding hierarchy of sorts must be a collection of trees. The roots of the
trees are base sorts. A function that has at least one argument position of a
non-base sort is treated as a partial function.

2.5 Arithmetic

In idp, every vocabulary contains a sort int and the arithmetic functions +, −, ·,
÷, abs(·) and mod. In every structure over such a vocabulary, int is interpreted
by the integers Z = {0, 1,−1, 2,−2, . . .}, + by addition on Z, − by subtraction,
· by multiplication, ÷ by integer division, abs by the absolute value and mod
by the remainder. Note that ÷ and mod are partial functions on Z with domain
Z \ {0}. Terms of the form t1 + t2, t1 · t2, etc, are of sort int.

To ensure finite grounding, the use of int is restricted in idp. In the input
and expansion vocabulary declaration, a sort can be declared to be a subsort of
int and a variable may have sort int. On the other hand, predicate or function
declarations with sort (. . . , int, . . .) are not allowed. Each integer variable x in
a formula should belong to some finite subtype of int or, it should occur in a
subformula ∀x (ϕ ⊃ . . .), respectively ∃x (ϕ∧ . . .) where ϕ is a formula that puts
a finite bound on the value of x. I.e., there exists a finite interval [n,m] such
that M [x/d] 6|= ϕ for any model M of the theory and domain element d 6∈ [n,m].
We call ϕ a bound for x. One can specify a bound ϕ for variable x also in other,
equivalent forms, as in ∀x (. . . ∨ ¬ϕ ∨ . . .) or ∃x (. . . ∧ ϕ ∧ . . .). The bounds
allowed in idp have a very simple form. E.g., an atom P (. . . , x, . . .) is a bound
and also formulas of the form t1 ≤ x ≤ t2, at least if t1 can be bounded from
below and t2 from above; i.e., the idp grounder should be able to find integers
n1, n2 ∈ Z such that n1 ≤ tM1 and tM2 ≤ n2 in each expansion M .

Example 6 (N -queens). The N -queens problem consists in positioning N chess
queens on a N × N chessboard in such a way that no two queens attack each
other, i.e. are on the same row, column, or diagonal.



This encoding uses input vocabulary σ = (sorts: {int Row, int Column},
vocabulary: ∅). For the problem instance with parameter N , the domain of both
sorts will both be {1, . . . , N}. The solution is represented by the function symbol
Q(Row) : Column, satisfying:

∀c ∃=1r Q(r) = c, (3)

∀r1, r2, c1, c2
(
Q(r1) = c1 ∧Q(r2) = c2 ∧ r2 > r1

)
⊃(

r2 − r1 6= abs(c2 − c1)
)
.

(4)

Note the use of the quantifier ∃=1 in the first axiom.

2.6 Aggregates

Aggregates are functions that have a set as argument. idp supports the ag-
gregates: cardinality, sum, product, minimum and maximum. Concretely, the
following terms have sort int and free variables z: card{y | ϕ[y, z]}, sum{x,y |
ϕ[x,y, z]}, prod{x,y | ϕ[x,y, z]},min{x,y | ϕ[x,y, z]} andmax{x,y | ϕ[x,y, z]}.
The variables z are free in the aggregate term, while x and y are local to the
term. The sort of x must be a subsort of int. Given an interpretation I, these
terms are interpreted by

– (card{y | ϕ[y, z]})I[z/dz ] is the number of tuples of domain elements d such
that I[y/dy, z/dz] |= ϕ;

– (sum{x,y | ϕ[x,y, z]})I[z/dz ] =
∑
I[x/dx,y/dy,z/dz ]|=ϕ dx;

– (prod{x,y | ϕ[x,y, z]})I[z/dz ] =
∏
I[x/dx,y/dy,z/dz ]|=ϕ dx;

– (min{x,y | ϕ[x,y, z]})I[z/dz ] = min{dx | I[x/dx,y/dy, z/dz] |= ϕ} ;
– (max{x,y | ϕ[x,y, z]})I[z/dz ] = max{dx | I[x/dx,y/dy, z/dz] |= ϕ} ;

Aggregates can be used everywhere in sentences or rule bodies where a term with
a subsort of int can occur. The semantics for definitions containing recursion
involving aggregates is the one presented in [18].

Example 7 (Frequent itemset mining). We illustrate the well-known machine
learning problem of frequent itemset mining in the context of a warehouse do-
main. The warehouse has a number of items on offer; customers purchase sets
of such items. The problem consists in determining sets of items that are of-
ten bought together. The search for frequent item sets can be represented as a
model expansion problem with input vocabulary σ = (sorts: {Item,Purchase},
vocabulary: {Bought(Purchase, Item)}), where Bought represents which items
were bought at which purchases. We are interested in itemsets with a frequency
higher than some value represented by an integer constant Frequency. The ex-
pansion predicate ItemSet(Item) represents a frequent itemset if it satisfies the
formula:

card{t | ∀i ItemSet(i) ⊃ Bought(t, i)} ≥ Frequency.

Thus, model expansion applied on this axiom computes frequent itemsets.



Example 8 (Company control). A well-known example of recursion over aggre-
gates in ASP is that in company control problem: a company A controls a com-
pany B if the sum of shares of B that are in A’s control exceeds 50. In idp, we
model this problem using input vocabulary σ = (sorts: {Share, Company}, vo-
cabulary: {Owns(Company,Company) : Share}) and the expansion predicate
Controls(Company,Company). Solutions must satisfy the recursive definition:{

Controls(x, y)← sum{s, z |(x = z ∨ Controls(x, z))
∧Owns(z, y) = s ∧ Share(s)} > 50

}
.

3 System Architecture

The idp system consists of two systems: a grounder and a propositional model
generator.

3.1 Grounder

The idp grounder is GidL [22]. Its task is to transform a given MX problem with
a given input structure to a propositional theory, the models of which correspond
to the expansion models.

GidL’s algorithms have been described in [23, 22]. The grounding has two
main phases : the first phase applies a form of approximate reasoning, based on
the structure of the theory and on the input vocabulary, to compute bounds on
the values of variables of all subformulas of the theory. This phase is independent
of the input interpretation. These bounds are used in a second phase to produce
a smaller grounding.

Despite the richness of the input language described in Section 2, GidL ranks
among the top performing grounding systems, both regarding time to produce
the grounding, and size of the grounding. Cfr. [22] for a thorough experimental
evaluation of the grounder.

The output language of GidL is extended CNF (ECNF), an extension of
CNF with propositional definitions and propositional aggregate expressions.

3.2 Solver

There are two propositional solvers for the idp system: MidL [12, 13] and the
more recent MiniSat(ID) [14]. The former supports CNF with propositional
definitions, the latter supports full ECNF. We focus on the latter.

The system is built as an extension of the SAT solver MiniSat [6]. Its al-
gorithms are geared towards a seamless integration with the unit propagation
and clause learning algorithms present in a DPLL-based SAT solver such as
MiniSat. On pure CNF instances, MiniSat(ID) has the same performance as
MiniSat (which has consistently ranked among the top SAT solvers in the past
few SAT competitions); on ECNF instances, MiniSat(ID) ranks among the
best systems with comparable capabilities, cfr. [14] for a thorough experimental
evaluation.



(a) Instance (b) Solution

Line = {l1, l2, l3, l4, l5, l6}
Row = {0..3}
Col= {0..3}

Num = {0..3}
Nb = {l1 7→ 3, l2 7→ 1, l3 7→ 0,

l4 7→ 2, l5 7→ 2, l6 7→ 2}
Start = {(l1, 0, 3, Down), (l2, 0, 1, Down),

(l3, 0, 0, Down), (l4, 0, 0, Right),
(l5, 2, 0, Right), (l6, 3, 2, Up)}

(c) Input structure

Fig. 1: Example of the mirror puzzle problem.

4 Example Application

In this and other papers [11, 21], a number of applications of idp have been
demonstrated, including standard constraint problems such as k-colourability,
N -queens, Hamiltonian circuits, planning problems such as the block’s world
and sokoban, as well as diagnosis and scheduling problems. One of the main
assets of the idp system is its rich input language: all of these problems can be
encoded in a compact, natural way, without introducing syntactic workarounds.
To illustrate this, we here discuss a moderately complex problem that involves a
combination of different idp primitives: function symbols, inductive definitions
and aggregate expressions. A mirror puzzle problem1 consists of a grid with
some integer values along its sides, such as in Figure 1a. The problem is to fill
the grid with persons and diagonally positioned mirrors, in such a way that when
“looking” into the grid from a location with value n, one can “see” exactly n
persons. In Figure 1b, a solution is given. In this solution, looking right from
position (2, 0) (with n = 2), we see subsequently positions (2, 0), (2, 1), —upward
deflection— (1, 1), and —left deflection— (1, 0). This path contains indeed 2
persons.

The sorts we distinguish in this domain are Row and Col, Object (either
person, upward mirror, or downward mirror), Direction (up, down, left, right),
numbers (of persons) and Line. A line represents a visual path along one the
given values; its start position and direction are given. Problem instances are
given through the function Nb(Line) : Num, specifying the value associated
to a given line, and Start(Line,Row,Col,Dir), specifying where and in what
direction a given line starts. The instance in Figure 1a can thus be specified by
the input structure given in Figure 1c.

Our theory uses auxiliary predicates. Turn(d, o, d′) means that an object o
deflects direction d into d′ (e.g., Turn(Up,Upmirror,Right)). NextR(r, r′, d)
means that the next row of row r in direction d is r′ (e.g., NextR(0, 0, left),
NextR(0, 1, Down), . . . ). NextC is the analogous relation for columns. Each of
these predicates has a straightforward definition. Another auxiliary predicate is

1 http://www.stetson.edu/~efriedma/mirror



Pass(Line,Row,Col,Direction). Pass(l, r, c, d) holds if the visual path starting
in l, reaches position (r, c) from direction d. This predicate is defined inductively
as follows: 

Pass(l, r, c, d)←Start(l, r, c, d),
Pass(l, r, c, d)←Pass(l, r′, c′, d′)

∧ Turn(d′, Contains(r′, c′), d)
∧NextR(r, r′, d)
∧NextC(c, c′, d)

 (5)

Note that if a visual path passes more than once in the same position, it will
reach this position from different directions. Otherwise, the path would be cyclic;
such paths cannot exist in this problem.

With these definitions in place, the problem consists in finding a function
Contains(Row,Col) : Object satisfying (6):

∀l card{r, c, d | Pass(l, r, c, d) ∧ Contains(r, c) = Person} = Nb(l) (6)

5 Experimental validation

In this section we compare the performance of idp system to that of systems
with similar expressivity. The main purpose of this comparison is to show that
idp has a reasonable performance compared to state of the art systems—its
rich and convenient specification language is its main asset. Our results show
that idp is a worthy competitor—and has one of the most constant and robust
performances—despite this rich language.

Comparing performances is a difficult task: many systems have a different
input language. In our experiment, we have tried as much as possible to use the
modelling used by the authors of the different systems. We obtained these from
the “Modelling-Grounding-Solving” section of the ASP competition [9], from
the Asparagus website and from the systems’ authors’ websites. All of them can
be found on the website http://www.cs.kuleuven.be/~dtai/krr/software.
html. We have chosen a range of different problems, featuring different kinds of
expressions: the k-Colouring encoding employs only FO statements in idp; the
Hamiltonian cycle encoding employs also an inductive definition (the MXG solver
cannot handle inductive definitions, and uses an FO encoding based on a total
order of vertices); the Magic series encoding uses a cardinality expression; the
Social golfer encoding uses the cardinality aggregate; and the Blocked N -queens
problem can be modelled easily in pure FO, but has also beautiful solutions
using the “there exists a unique”-quantifier (∃=1) and cardinality statements.

Results are given in Table 1. They are run on a C2D 3GHz processor with
2GB memory, and a timeout of 10 minutes (for the grounding+solving time). The
solvers used are: “Clasp”: Lparse 1.0.17 [19] + Clasp 1.0.5 [8], “DLV”: DLV Oct
11 2007 [2], “MXG”: mxg 0.16 + mxc (sr-08) [15], “aspps”: psgrnd 7-Jul-2005 +
aspps 2003.06.04 [5], “idp”: GidL 1.5.0 + MiniSat(ID) 1.3b. It appears that
the idp system has the best performance on at least three aggregated measures:



number of unsolved instances, number of instances solved in less then 10 seconds,
and total time (where timeout counts for exactly 600s).

6 Conclusion

We presented the idp system for solving model expansion problems in the context
of a very rich extension of classical logic. We described its input language and
illustrated with several examples how the language allows a natural and very
compact encoding of many search problems. Despite its rich input language, our
experiments showed that idp performs well compared to other MX and ASP
solvers.
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5. Deborah East and Miroslaw Truszczyński. Predicate-calculus-based logics for mod-
eling and solving search problems. ACM Trans. Comput. Log., 7(1):38–83, 2006.
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