
Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Science

Department of Computer Science

Negotiation at the short and mid term level

supported by analysis of nurse rostering

problems

Stefaan HASPESLAGH

Dissertation presented in partial

fulfillment of the requirements for

the degree of Doctor

in Science

September 2012

Negotiation at the short and mid term level sup-

ported by analysis of nurse rostering problems

Stefaan HASPESLAGH

Jury:
Prof. dr. P. Igodt, chair
Prof. dr. P. De Causmaecker, supervisor
Prof. dr. ir. T. Holvoet
Prof. dr. D. De Schreye
Prof. dr. ir. G. Vanden Berghe
Prof. dr. M.-A. Guerry

(Vrije Universiteit Brussel)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Science

September 2012

© Katholieke Universiteit Leuven – Faculty of Science
Etienne Sabbelaan 53, B-8500 Kortrijk (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2012/10.705/74
ISBN 978-90-8649-557-3

Acknowledgements

For obtaining a PhD, a self-interested agent is required to complete a set of
tasks. The agent is unable to complete its tasks without negotiating and
cooperating with other agents in its environment. I would like to thank the
people who have made it possible for the agent to successfully complete its
tasks.

First of all, I would like to thank my promotor, prof. Patrick De Causmaecker.
His experience in many different research domains, his guidelines, the numerous
discussions providing new insights and his continuous support during my PhD
were indispensable for the realisation of this work.

I would like to thank prof. Paul Igodt for introducing me to my promotor and
giving me the chance to start a PhD studentship at KU Leuven KULAK.

I would like to thank prof. Greet Vanden Berghe, an expert in the field of
nurse rostering, who was always willing to discuss my work. Her opinion and
remarks improved the quality of this research project.

The members of my examination committee, prof. Igodt (chair), prof. De
Schreye, prof. Holvoet, prof. Vanden Berghe and prof. Guerry, reviewed this
work from many different angles. Their remarks and suggestions considerably
improved the quality of this manuscript.

Finally, I would like to thank my family, especially my parents, Christel and
Jef, who have always encouraged me during my education and in life, and my
wife, Caroline, for their never-ending support. And last but not least I would
like to thank my son, Siebe, for being the most important person in my life.
Whenever things were not going as supposed, his smile is the source of my
perseverance to reach my goals.

i

Abstract

The nurse rostering problem is an NP-hard combinatorial optimisation problem
for the assignment of shifts to nurses. The rosters need to comply to an
extensive set of constraints stemming from legal concerns, organisational
concerns and personal preferences of the nurses. In most cases, the rostering is
performed at the level of one ward in a hospital.

There is a wide set of different models for nurse rostering problems. The
problems differ from country to country, from hospital to hospital and even
wards within the same hospital may have different models. To improve the
transferability of solution methods, designed for the different models, common
and standardised formulations are necessary. We show how numberings,
designed for a fast evaluation of nurse rostering problem solutions can be used
to generate a formal, unambiguous representation of nurse rostering problem
instances. The use of numberings allows for an efficient translation of instances
to other problem domains. We give a proof of concept in the form of translation
schemes to Satisfiability Problems and Mixed Integer Programs. The schemes
can be used for the fast development of prototype solvers for new problems, or
variations of known ones for which no specific solver is available.

As is commonly known, there is a gap between the nurse rostering problem
models developed for research purposes and those used in practice. We
organised the “First International Nurse Rostering Competition 2010”. The
main objectives of the competition were to generate new approaches to the
associated problem by attracting researchers from different areas of research,
to reduce the gap between research and practice in this important area
of operations research and to further stimulate debate within the widening
rostering research community.

Wards operate within a larger whole. At the individual level of a ward, (sudden)
nurse shortages may arise. As a solution, wards in a hospital can cooperate
to resolve shortages and to increase their level of efficiency. This kind of

iii

iv ABSTRACT

interoperability is naturally modelled using agents. The autonomous agents are
responsible for the optimisation of their rosters and communicate in order to
tackle the aforementioned issues. In this thesis, we apply a number of state-of-
the-art negotiation protocols and compare computation times, solution quality
and communication times (network load) of the aforementioned approaches.
We compare with a centralised approach.

The above stated problems are at the short term level of personnel management.
The problems at the different personnel management levels, short, mid and long
term, are interconnected and information from lower level problems should
serve as input for the higher level decision problems. In this thesis we consider
the mid term level problem of dividing workload (shifts) and personnel (nurses)
among the different wards in a hospital. We model this problem as a multi-
issue multi-agent negotiation problem with workload and personnel as issues.
Information on the short term level problem is aggregated into operational
performance level curves and serves as input for this negotiation problem.
We study the problem in both an environment with complete and incomplete
information. For the incomplete information setting, we design a negotiation
protocol and study theoretical and qualitative properties of the protocol such
as Pareto optimality, solution quality, convergence,

In the first part of the thesis, we elaborate on the nurse rostering problem
under study. Besides an informal problem description, we present a formal
representation using numberings and we elaborate on a mathematical model.
We show how the use of numberings allows for an automated translation into
Satisfiability Problems and Mixed Integer Programs. Next, we present the
“First International Nurse Rostering Competition 2010”. We elaborate on the
organisation of the competition, its spirit and its rules, and we discuss the
results. Negotiation is the main subject of the second part of the thesis. We
study the application of five state-of-the-art negotiation protocols to the short
term level problem of resolving nurse shortages and increasing the efficiency
levels of wards in a hospital. Next, we perform an in-depth study of short term
nurse rostering problem instances, leading to the introduction of the operational
performance platforms of a ward. Finally, we present and discuss the multi-
issue multi-agent negotiation protocol we developed for the division of workload
and personnel among the wards in a hospital.

Beknopte samenvatting

Het personeelsplanningsprobleem in een ziekenhuis voor het opstellen van
uurroosters voor verpleegkundig personeel is een NP-hard combinatorisch opti-
malisatieprobleem. Essentieel bestaat het probleem erin om het verpleegkundig
personeel toe te wijzen aan tijdsloten, shifts genoemd. De uurroosters moeten
voldoen aan een uitgebreide verzameling beperkingen. Beperkingen komen
voort uit wettelijke voorschriften, uit specifieke belangen van het ziekenhuis en
uit de persoonlijke voorkeuren van het personeel. Meestal wordt per afdeling
van het ziekenhuis een uurrooster opgesteld.

Er is een grote diversiteit aan modellen voor personeelsplanning in een
ziekenhuis. De modellen verschillen van land tot land, van hospitaal tot
hospitaal en zelfs binnen hetzelfde hospitaal hanteren niet alle afdelingen het-
zelfde model. Een oplossingsmethode is meestal ontworpen voor één specifiek
model. Het is niet vanzelfsprekend om de oplossingsmethoden op verschillende
modellen toe te passen. Een gemeenschappelijke, standaard voorstelling van
personeelsplanningsproblemen is nodig om de overdraagbaarheid van methodes
te faciliteren. We gebruiken nummeringen, ontworpen om efficiënt de kwaliteit
van uurroosters te controleren, om problemen op een formele, eenduidige
manier voor te stellen. Deze werkwijze laat toe om de problemen automatisch
en efficiënt te vertalen naar andere probleemdomeinen. Concreet stellen we
vertaalschema’s op naar “Satisfiability” problemen (SAT) en “Mixed Integer”
programma’s (MIP). Dit laat ons toe om snel een prototype oplossingsmethode
te ontwikkelen voor nieuwe problemen of voor varianten van gekende problemen
waarvoor nog geen specifieke oplossingsmethode bestaat.

Zoals algemeen bekend, is er een kloof tussen de modellen gebruikt voor
onderzoeksdoeleinden en modellen die in de praktijk toepasbaar zijn. De
organisatie van de “First International Nurse Rostering Competitie 2010” is een
poging om nieuwe oplossingsmethoden in het domein van personeelsplanning
te vinden, om onderzoekers uit andere domeinen aan te sporen onderzoek te
verrichten in dit domein en om de hierboven vernoemde kloof te verkleinen.

v

vi BEKNOPTE SAMENVATTING

Afdelingen in een ziekenhuis zijn operationeel in een groter geheel. Op het
niveau van een individuele afdeling kunnen er plotselinge personeelstekorten
optreden. Als mogelijke oplossing kunnen afdelingen samenwerken om
tekorten weg te werken en om een hoger efficiëntie-niveau na te streven.
Dergelijke samenwerkingsverbanden worden vaak gemodelleerd met agenten.
De autonome agenten in een systeem zijn elk verantwoordelijk voor het
opstellen van hun eigen uurroosters. De agenten communiceren om de hiervoor
opgesomde problemen aan te pakken. In deze thesis passen we een aantal
“state-of-the-art” onderhandelingstechnieken toe. We bestuderen rekentijd,
oplossingskwaliteit en communicatietijd. We vergelijken de technieken met een
centrale oplossingsmethode.

De bovengenoemde problemen bevinden zich op het korte termijn niveau van
personeelsplanning. We onderscheiden problemen op korte, middellange en
lange termijn. De problemen zijn met elkaar verbonden en informatie moet
uitgewisseld worden tussen de verschillende niveaus. In deze thesis bestuderen
we het middellange termijn probleem om werklast (shifts) en personeel te
verdelen onder de verschillende afdelingen in een ziekenhuis. We beschouwen dit
probleem als een “multi-issue multi-agent” onderhandelingsprobleem. De shifts
en het personeel vormen het onderwerp van de onderhandeling. Informatie van
het korte termijn niveau wordt samengevat in curves die het operationeel perfor-
mantieniveau van een afdeling voorstellen. We bestuderen onderhandeling voor
zowel omgevingen waar informatie verborgen gehouden wordt voor anderen als
voor omgevingen waar alle informatie gedeeld is tussen de verschillende partijen.
Voor het eerste geval ontwerpen we een onderhandelingsprotocol en bestuderen
we zowel theoretische als kwalitatieve eigenschappen van het protocol, zoals
Pareto-optimaliteit, oplossingskwaliteit, convergentie,

In het eerste deel van de thesis bespreken we uitvoerig het model van het
beschouwde personeelsplanningsprobleem. Naast een informele omschrijving
van het probleem presenteren we een formele voorstelling gebaseerd op numme-
ringen en stellen we een mathematisch model op. We stellen vertaalschema’s
naar SAT en MIP op. We beschrijven de organisatie en de resultaten van
de “First International Nurse Rostering Competition 2010”. Onderhandeling
is het onderwerp van het tweede thesisdeel. We passen vijf “state-of-the-art”
onderhandelingstechnieken toe die toelaten personeelstekorten aan te pakken
en het efficiëntie-niveau van afdelingen te verhogen. Vervolgens leidt een
uitvoerige studie van korte termijn personeelsproblemen tot het opstellen van
curves om het operationeel performantieniveau van afdelingen voor te stellen.
Tenslotte presenteren en evalueren we een onderhandelingsprotocol voor het
“multi-issue multi-agent” onderhandelingsprobleem dat bestaat uit het verdelen
van werklast en personeel tussen de afdelingen in een ziekenhuis.

Contents

Abstract iii

Contents vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Objective . 1

1.2 Contributions . 3

1.3 Structure of the Thesis . 6

2 Literature 7

2.1 The Nurse Rostering Problem 7

2.2 Negotiation . 9

2.2.1 Multi-attribute versus multi-issue: definition and classi-
fication . 13

2.2.2 Classification by level of interdependency 15

2.2.3 Classification by protocol category 17

2.2.4 Categorisation by Information situation and Mediator type 18

vii

viii CONTENTS

2.2.5 Categorisation by Time 21

3 Formal models for nurse rostering problems 23

3.1 Description . 24

3.2 Formal representation of nurse rostering problems using number-
ings . 26

3.2.1 Description of constraints using numberings 29

3.3 Mathematical model . 34

3.4 Conclusion . 41

4 Automated translation of nurse rostering problem instances to SAT
and MIP models 45

4.1 Formal definitions of generic constraints 47

4.2 Translation of generic constraints to SAT 47

4.2.1 Preprocessing . 47

4.2.2 Translation of ’consecutive’ and ’between’ constraints . . 51

4.2.3 Translation of counting constraints 52

4.3 Translation of generic constraints to MIP 58

4.3.1 Translation of consecutive constraints 59

4.3.2 Translation of ’between’ constraints 59

4.3.3 Translation of counting constraints 60

4.4 Experiment . 61

4.5 Conclusion . 63

5 The First International Nurse Rostering Competition 2010 65

5.1 Introduction . 65

5.2 Competition rules . 66

5.3 Benchmarking . 67

CONTENTS ix

5.4 Problem description, competition instances and evaluation of
solutions . 68

5.5 Solution Ranking . 69

5.5.1 Preliminary Round . 69

5.5.2 Final . 71

5.6 Competition Tracks and Results 71

5.6.1 Sprint track . 72

5.6.2 Middle Distance track 73

5.6.3 Long Distance track . 74

5.6.4 Lessons learned . 75

5.7 Conclusion . 77

6 Negotiation protocols for short term nurse rostering 79

6.1 Framework for negotiation . 81

6.1.1 Constructing local rosters and evaluation of offers 81

6.1.2 Subject of negotiation 82

6.2 Negotiation protocols . 83

6.2.1 Contract Net Protocol 84

6.2.2 Extended Contract Net Protocol 84

6.2.3 Simultaneous Ascending Auction 84

6.2.4 Limited Vickrey Auction 84

6.2.5 Ascending Proxy Auction 85

6.3 Experiments and results . 85

6.3.1 Speed . 86

6.3.2 Quality . 86

6.3.3 Network load . 88

6.3.4 Comparison with centralised approach 88

6.4 Conclusion . 90

x CONTENTS

7 Pareto optimal negotiation through algorithm analysis 93

7.1 Negotiation model . 94

7.2 Determining the operational performance levels of a ward . . . 95

7.3 Indifference curves and negotiation in a complete information
setting . 101

7.4 Negotiation with incomplete information 104

7.5 Theoretical analysis and experimental evaluation 108

7.5.1 Theoretical analysis . 109

7.5.2 Experimental evaluation 110

7.6 Conclusion . 112

8 Conclusions and Future Work 117

8.1 Conclusions . 117

8.2 Future Research . 121

8.2.1 Modelling and representation of rostering problems . . . 122

8.2.2 Translation schemes to other problems domains 122

8.2.3 Short term negotiation 123

8.2.4 Mid term, multi-issue negotiation 124

8.2.5 Integration of dependent decision problems 124

A Changes to the numbering evaluation method 127

B Formal description of constraints using numberings 129

B.1 Maximum number of assignments 129

B.2 Minimum number of assignments 129

B.3 Maximum and minimum number of consecutive working days . 130

B.4 Maximum and minimum number of consecutive free days . . . 130

B.5 Maximum number of consecutive working weekends 130

CONTENTS xi

B.6 Complete weekends . 131

B.7 Identical complete weekends . 131

B.8 Single assignment per day . 132

B.9 Two free days after a night shift 132

B.10 Requested day on/off . 133

B.11 Requested shift on/off . 133

B.12 Alternative skill . 133

B.13 Unwanted patterns . 134

C Rewriting non monotonous numberings 137

D Competition Rules 139

E XML and text dataformat 143

E.0.1 Output format . 150

E.1 Example of an XML Instance File 151

E.2 Example of a Text Instance File 152

E.3 Example of a XML Solution File 154

E.4 Example of a Text Solution file 155

Bibliography 157

List of publications 167

List of Figures

1.1 Overview of contributions . 5

2.1 Taxonomy for automated multi-issue negotiation 14

2.2 Protocol categories . 18

6.1 Comparison of protocols on total computation time 87

6.2 Comparison of protocols on penalty 88

6.3 Ranking of protocols . 89

6.4 Comparison based on number of transmitted messages (a) and
the amount of transmitted data (b) 89

6.5 Comparison with a central solution method) 90

7.1 Increasing availability of nurses 97

7.2 Increasing workload . 97

7.3 Conversion of a penalty curve to a utility curve 99

7.4 Utility curve . 99

7.5 Indifference curves . 100

7.6 Indifference and positioning curve utility level 1 102

7.7 Indifference and positioning curves utility level 0,9 103

7.8 Intersection of positioning curve with utility curve 104

xiii

xiv LIST OF FIGURES

7.9 Direction check . 107

7.10 Position check . 107

7.11 Sample run of the protocol . 108

7.12 Speed of convergence: number of rounds 111

7.13 Gap percentage for the number of nurses 112

7.14 Gap percentage for the number of shifts 113

7.15 Success rate . 114

List of Tables

2.1 Categorisation of multi-issue contributions by attribute structure 16

2.2 Categorisation on level of interdependency of issues 17

2.3 Categorisation by protocol category 19

2.4 Categorisation by Information situation and Mediator type . . 20

2.5 Categorisation by Time . 21

3.1 Example of counters . 29

3.2 Numbering for total number of assignments 30

3.3 Numbering for the number of consecutive working days 30

3.4 Multiple numberings for unwanted pattern L − E − L 30

3.5 Example numberings for the constraints of the model 32

3.6 Mapping between numberings and constraints 33

4.1 Formal definition of eight generic constraints 48

4.2 Preprocessing . 50

4.3 Preprocessing for ’between’ constraints 51

4.4 Conversion of sprint instances to SAT 62

4.5 Conversion of medium instances to SAT 62

4.6 Conversion of long instances to SAT 63

xv

xvi LIST OF TABLES

5.1 Example of results (the matrix X) 70

5.2 Example of solution ranks (the matrix R) plus the average rank 70

5.3 Competitor ranking for the Sprint Track 73

5.4 Summary of results; the number of best solutions for the Sprint
Track . 73

5.5 Competitor ranking for the Middle Distance Track 74

5.6 Summary of results; the number of best solutions for the Medium
Track . 74

5.7 Competitor ranking for the Long Distance Track 75

5.8 Summary of results; the number of best solutions for the Long
Track . 75

7.1 Size of one experiment: number of instances to determine
operational performance levels of a ward. 96

7.2 Runtime and memory usage . 96

7.3 Fitting data . 101

B.1 Maximum number of assignments 129

B.2 Number of consecutive working days 130

B.3 Number of consecutive working weekends 131

B.4 Complete weekends . 131

B.5 Identical complete weekends . 132

B.6 Single assignment per day numbering 132

B.7 Two free days after a night shift 132

B.8 Day off requests . 133

B.9 Shift off requests . 133

B.10 Alternative skill - Employee cannot work shift type L 134

B.11 W − F − F − F − F . 134

B.12 N − F − F : No night shift before a free weekend 135

LIST OF TABLES xvii

B.13 F − W − W − W − W . 135

B.14 F − W − W : Working on Friday if working a weekend 135

B.15 L − E − L . 136

C.1 Rewriting non monotonous numberings 138

Chapter 1

Introduction

1.1 Objective

Worldwide, personnel shortages arise in the health care sector (Vandeurzen,
2010). Due to a higher life expectancy, health needs are increasing and
becoming more complex. At the same time, a rising number of ageing health
care workers sets on to retire, putting even more stress on the personnel
requirements. Because the operation of the health care system highly influences
social welfare, governments are willing to ease social regulations for jobs in
the health care sector. Health care organisations are willing to pay higher
wages than average and are offering an increased flexibility towards the work
schedules to suit the living and family situation of their employees. With these
long-term measures for addressing the imminent staff shortages, students are
encouraged to consider a career in health care and current health care providers
are encouraged to remain active for a longer period of time. In addition, more
instantly actions are required to deploy current health care personnel more
efficiently. The focus of this thesis is situated in the context of the latter
problem, more specifically for the employment of nurses in a hospital.

De Causmaecker and Vanden Berghe (2012) distinguish three levels in personnel
management in hospitals: short term, mid term and long term. The authors
stress there is still a gap between research at the different levels. At the long
term level, strategic options are decided such as the existence of a ward or the
discontinuation of an activity. The main decisions to be taken at the mid term
level are tactical such as tuning the allocation of staff to expected performance
and productivity. Short term decision making starts from a given staffing

1

2 INTRODUCTION

and demand to produce feasible rosters that meet both the demand and the
constraints of the individual working rosters. The decision making problems
at these three levels are interconnected. Information needs to be fed to higher
levels. Only part of the information is relevant. Not all details at a lower level
are of practical use at a higher level.

The short term level problem, called nurse rostering problem, is essentially the
problem of assigning shifts to nurses, mostly situated at the level of one ward.
It is a problem of practical relevance, known to be a difficult combinatorial
optimisation problem that in most cases is NP-hard (Karp, 1972; Osogami and
Imai, 2000). In reality, the rostering is mostly performed manually by a head
nurse, who is responsible for the good operation of the ward. Rosters must
respect legal regulations, need to meet the demand and have to satisfy as much
as possible nurses’ personal preferences. Those preferences reflect the flexibility
mentioned above. From experience, head nurses know what quality rosters are,
i.e. rosters acceptable for nurses. The construction of the rosters is a time
consuming task. The last decades, the nurse rostering problem received ample
attention in literature with a vast set of models and algorithms (Burke et al.,
2004; De Causmaecker and Vanden Berghe, 2011). Many contributions focus
on particular, often simplified problems, defined by local hospitals in different
countries. Problem definitions even differ from ward to ward within the same
hospital (Dias et al., 2003). The solution methods presented are often only
suited for those specific problems. Hence, transferring solution methods from
one particular problems is hard and sometimes impossible.

Schaerf and Di Gaspero (2007) identify analogous problems within the field of
timetabling research. Because authors describe their specific problems and ad
hoc algorithms to tackle the problems, readers are left alone to judge the quality
of contributions. Two important research qualities that often lack attention are
measurability (comparability) and reproducibility. Several measures have been
proposed that can be taken to improve contributions within timetabling (and
rostering) research. Some of these include designing common formulations,
providing benchmarks and solution validators, organising online competitions
to further stimulate research and to attract researchers from other fields,
defining the data format (to represent publicly available instances), . . . One
aim of this thesis is to contribute in this area and to give an onset to further
close the gap between research and practice (McCollum, 2007).

A second aim of this thesis is to study negotiation within the context of nurse
rostering. Suddenly personnel shortages may occur. Nurses can become ill
or the staffing at a ward may abruptly be reduced due to the unexpected
resignation of nurses. Some hospitals try to tackle this problem by introducing
a ’mobile equipe’, a pool of floating nurses to replace the absent nurses. In
hospitals without a mobile equipe, agency nurses may be hired or rerostering

CONTRIBUTIONS 3

takes place. In the latter case, a ward tries to build a new roster with minimal
changes with respect to the original roster. Nurses do not want their entire
roster to be disturbed because of the absence of a colleague, as this would
harm the promised flexibility of their rosters. If none of the aforementioned
possibilities offer a solution, wards call in the help of other wards and try to
exchange personnel to cover the problematic shifts. In this thesis we study a
negotiation based approach for handling such shortages. The same method,
exchanging personnel, is also applicable on a larger scheduling horizon, not
only in case of absenteeism, to increase the level of efficiency of the wards in a
hospital.

Wards of a hospital function within larger wholes. The number and types
of wards a hospital houses is decided at the long term level. Wards often
specialise in specific medical disciplines or patient populations. The wards
need to agree on the allocation of nurses (of which the staffing is managed by
the long term level) ensuring the good operation of their tasks. By experience,
head nurses have built a good view on the amount of work that needs to be
done to ensure the good care of their patients and the good operation of their
ward. This information is key input for the allocation problem at the mid term
level. In this thesis we collect this type of information by an in depth study of
a state-of-the-art nurse rostering algorithm at the short term level. The mid
term level problem is regarded as a negotiation problem. We model the wards
as self interested agents negotiating distribution of personnel and workload.
Essentially, the negotiation problem is a multi-issue multi-agent negotiation
problem with the personnel and the workload as issues. Approaching the
problem through negotiation will allow individual wards to hide part of their
internals. However, this will not turn out to be an essential element.

1.2 Contributions

As mentioned in the previous section, the purpose of this research project is
twofold. A first focus is on closing the gap between the nurse rostering problem
models developed for research purposes and those used in practice. A consci-
entious modelling of the problems is essential. Because of the proliferation of
different models, a common, formal and standardised formulation of rostering
problems is indispensable and facilitates the comparison of models and solution
methods. More concretely, researchers are required to provide structured
formulations of the problem under study in a language such as XML, a clear
and unambiguous description of the evaluation function and implementations
of this evaluation function in the form of online and offline evaluators. As
mentioned before, the organisation of a competition, taking the aforementioned

4 INTRODUCTION

considerations into account, is an ideal way for and contributed substantially
in achieving the goal of closing the gap between research and practice. As an
additional advantage of the proposed modelling methodology, nurse rostering
problem instances can be automatically converted into problems of different
problem domains.

In the second part of the thesis, the focus is on negotiation techniques for
short term and mid term nurse rostering problems. Early experiments for
the short term negotiation problem on well known benchmark instances found
in literature (Brucker et al., 2010), exposed some problems when using those
benchmarks within the context of negotiation. As a result of the research in the
first part of the thesis, a new set of benchmark instances based on the original
model is developed, appropriate for studying negotiation in the context of nurse
rostering.

Concretely, the main contributions of this thesis are:

• the introduction of a new benchmark set of nurse rostering problem
instances based on a set of real world constraints. The set serves as a
test bed to perform a formal comparison of the performance of various
algorithms. The instances are described using numberings as defined by
(Burke et al., 2001). The numberings allow for a formal and unambiguous
representation of nurse rostering problem constraints and instances.

• the organisation of the First International Nurse Rostering Compe-
tition 2010 (INRC2010). The above mentioned benchmark set was the
subject of INRC2010. Similar to ITC2002 and ITC2007 (McCollum et al.,
2009), two timetabling competitions, the main objectives of INRC2010
were to generate new approaches to the associated problem by attracting
researchers from different areas of research, to reduce the gap between
research and practice in this important area of operations research and to
further stimulate debate within the widening rostering (and timetabling)
research community.

• the design of translation schemes for automatically expressing nurse
rostering problem instances as Satisfiability Problem (SAT) and as
Mixed Integer Programs (MIP). The first schema was used for
hardness analysis of nurse rostering problems (Bilgin et al., 2009) to
calculate SAT features for predicting the value of the objective function
and the calculation time. The latter schema was used to study the
difficulty level of the instances used for INRC2010. As we will show,
the use of numberings for representing instances allows for compact and
efficient translation schemes.

CONTRIBUTIONS 5

• a study of state-of-the-art negotiation protocols for automated
personnel exchange between the wards in a hospital. We implemented
and compared a Contract Net Protocol approach (Smith, 1980), an
extension to the Contract Net Protocol (Aknine et al., 2004), a
Simultaneous Ascending Auction (Milgrom, 2000), a Vickrey Auction
(Vickrey, 1961) and an Ascending Proxy Auction (Ausubel and Milgrom,
2004). In particular, we studied the speed, quality and network load of
the aforementioned approaches. We also perform a comparison of the
protocols with a central approach.

• the introduction of operational performance levels as a means
to aggregate relevant information of short term level nurse rostering
problems for use at the mid term level of personnel management. These
operational performance levels are used to narrow the gap between short
and mid term nurse rostering.

• the design of a Pareto optimal multi-agent multi-issue negotiation
protocol. The protocol is applied for the division of personnel (nurses)
and workload (shifts) among wards in a hospital. We consider both
situations where all information is publicly known in the hospital and
when wards hide details of their operation towards the other wards in the
hospital.

In summary, Figure 1.1 positions the above contributions respectively at the
short term and the mid term level of personnel management in hospitals. The
figure also highlights the contributions for which negotiation techniques are
proposed as solution methods.

SAT MIP
INRC

2010

Negotiation:

exchange of

personnel

Multi-issue

multi-agent

negotiation

Operational

performance

levels

Short term nurse rostering Mid term nurse rostering

Negotiation

Figure 1.1: Overview of contributions

6 INTRODUCTION

1.3 Structure of the Thesis

The structure of the thesis is as follows:

• The problem domain background is sketched by discussing literature on
the modelling of nurse rostering problems, on state-of-the art negotiation
protocols for the allocation of tasks and resources in a multi-agent setting
and on multi-issue multi-agent negotiation protocols in Chapter 2.

• Chapter 3 presents the data model of the nurse rostering problem
considered within this dissertation. We give a formal and unambiguous
representation of the constraints using numberings (Burke et al., 2001).

• In Chapter 4, we present the translation schemes for automatically
converting nurse rostering problem instances to Satisfiability Problems
and Mixed Integer Programs.

• The "First International Nurse Rostering Competition 2010", its organi-
sation and its results, is the subject of Chapter 5.

• We study the application of five state-of-the-art negotiation protocols for
short term nurse rostering problems in Chapter 6.

• Chapter 7 elaborates on the mid term nurse rostering problem of dividing
workload (shifts) and personnel (nurses) among the wards in a hospital.

• Conclusions and directions for further research are given in Chapter 8.

Chapter 2

Literature

2.1 The Nurse Rostering Problem

’Nurse rostering’ is the generally used term for staff scheduling in hospitals.
For an overview of an extensive set of models and algorithms we refer to the
following surveys (Burke et al., 2004; De Causmaecker and Vanden Berghe,
2011; Burke et al., 2008). Many models (and data sets) are drawn from local
hospitals and hence many algorithms are tailored specifically for solving those
models. As Ernst et al. (2004) conclude for staff scheduling in general, there
is a need for common and more generic problem formulations. This statement
is further supported by Schaerf and Di Gaspero (2007). As stated in the
introduction, to improve contributions within the timetabling and rostering
research area these authors propose measures to tackle the following problems:

• common formulations: The advantage of using common formulations
is twofold. It increases the interchangeability of approaches between
different problems. It also allows to test an algorithm designed for
a particular problem, on several publicly available benchmark sets.
Problem formulations must be described clearly and exhaustively.

• data format: Using ad hoc, text-only data formats increases the chance
for parsing errors and data format misinterpretations. Researchers need
to put effort into the development of error-prone parsers. Using a
structured format, such as XML, increases the flexibility, extensibility
and maintainability of the data format. Often, well-tested parsers are
publicly available. In order to maximise accessibility to a wide audience

7

8 LITERATURE

of researchers, benchmark sets should be available in both a text-only and
a structured data format. Best practice is to provide conversion tools to
translate ’text-only instances’ to ’structures instances’ and vice versa.

• comparison of methods: It is hard to fairly compare different algorithms.
Next to specifying what instances are used, authors need to report on the
features (value of the objective function, success rate, speed, . . .) used for
the comparison and on the hardware on which the experiments have been
performed. Special attention needs to be paid to stochastic algorithms.
To handle the randomness, a proper statistical evaluation is essential.

• result validation: Due to bugs in the code or misunderstandings in
the problem formulation, claimed results may turn out to be wrong.
Solution validators need to be provided allowing researchers to confirm
the correctness of obtained results.

We give an overview of nurse rostering related contributions, implementing
measures to some of the aforementioned problems.

Petrovic and Vanden Berghe (2012) propose seven criteria for the comparison of
different approaches: expressive power, flexibility, algorithmic power, learning
capabilities, maintenance, rescheduling capacities and parameter tuning. As
an example, a case-based reasoning and meta-heuristic approach are compared
against those criteria.

Brucker et al. (2010) provide a benchmark set of 11 problem instances collected
from small departments at real hospitals and simplified. The instances are
available in an XML format along with best found results for each instance.
Researchers validate their solutions using the publicly available evaluator. The
authors provide a graphical user interface, a parser and some examples of
solvers. Researchers incorporate their solution methods within the framework,
possibly reducing development time. A drawback is the system dependency, as
the offered tools are only available on a Windows platform.

Vanhoucke and Maenhout (2009) implemented an instance generator for the
nurse scheduling problem. A number of complexity indicators are introduced.
Using the generator and the complexity indicators, an extensive set of artificial
instances, called NSPLib, has been created which, due to its size, allows
for proper statistical analysis and comparison of solutions techniques. The
instances are available in a proprietary text-only data format.

An attempt towards a generic model, allowing to define a broad variety of
problems, is made by Bilgin et al. (2012). The authors claim the proposed
model to have an increased ability to reflect extra soft constraints in different
hospitals, sectors and countries. The authors present a set of real world inspired

NEGOTIATION 9

benchmarks. With each instance, a number of different scenarios are associated,
reflecting issues that real life wards need to deal with. Examples of such
scenarios are overload of work and unexpected absence of nurses.

The problem of unexpected absences of nurses was identified by Warner (1976).
A branch-and-bound algorithm assigns nurses from a pool of “floating” nurses
from different wards when shortages arise.

Weil et al. (1995) suggest a Constraint Programming based approach. Feasible
rosters are generated successively. No optimisation takes place, leaving the
decision on the quality of the proposed rosters to the user of the system (e.g.
a head nurse).

Moz and Vaz Pato (2003) identify the nurse rerostering problem at a hospital
in Lisbon. For handling shortages, the schedules of the other nurses are
altered. The changes to the rosters should be minimal and, analogously
to the original nurse rostering problem, may not be in conflict with legal,
organisational and contractual regulations. The problem is formulated as
an integer multi commodity flow problem with additional constraints. The
authors applied a heuristic to solve the problem and solved an integer linear
programming formulation of the model using CPLEX. In follow-up papers, a
genetic algorithm approach (Moz and Vaz Pato, 2007) and a utopic Pareto
genetic heuristic (Vaz Pato and Moz, 2008) are applied to the same problem.

Maenhout and Vanhoucke (2011) tackle the rerostering problem using an
evolutionary approach. A benchmark dataset for the rerostering problem is
introduced. The set is based on the artificial instances of NSPLib. Similarly
to NSPLib, a set of schedule disruption characteristics is used to generate the
rerostering problem instances.

Bard and Purnomo (2006) consider both altering the schedules of a subset of
nurses and hiring ’traveling nurses’, identified as the nurse addition problem,
as a solution for shortages. They studied the problem for hospitals in the
UK and Great Britain where the schedules of nurses are fixed by contract and
therefore difficult to change. A column generation method is proposed for the
’alternation problem’. A branch and price algorithm is applied to the nurse
addition problem.

2.2 Negotiation

Software systems involving multiple, often distributed parties are frequently
conceptualised and implemented using a multi-agent system (Wooldridge,
2009). An agent is a computer system capable of performing autonomous

10 LITERATURE

actions in an environment in order to meet certain objectives. In certain
environments, agents need to interact in order to reach their goals. Agents
interact with each other in a negotiation. Negotiation is an umbrella term for
methods and techniques that allow agents to communicate in order to reach
mutually beneficial agreements (Kraus, 2001; Raiffa, 1982).

According to Rosenschein and Zlotkin (1994) a negotiation model consists of
the following four components:

• the negotiation protocol: The protocol is the specification of the ’rules
of encounter’ between the negotiating agents. Which deals can be made
and which sequence of actions/offers is valid?

• the negotiation strategies: How does an agent decide which action to take
next? Possible actions are for example making a bid or conceding. The
outcome of the negotiation protocol is strongly influenced by the specific
strategies chosen by the agents.

• the information state of the agents: This component describes the infor-
mation opponents have about each other. Typically, the classification is
made between complete and incomplete information (Von Neumann and
Morgenstern, 1944; Jennings et al., 2001; Marsa-Maestre et al., 2008).

• the negotiation equilibrium: The outcome of a negotiation process should
be stable. No agent should have the incentive to deviate from agreed
strategies.

Automated negotiation (Jennings et al., 2001) is an important research area
with contributions from fields like economics, game theory, computer science
and artificial intelligence. In many applications agents need to reach agreements
on the allocation of tasks (Cowling et al., 2003) or the division of resources
among themselves (Lau et al., 2007; Hutzschenreuter et al., 2009). In general,
the subjects of the negotiation are called issues. Agents typically describe their
preference over issues through a utility function. During negotiation, the agents
use these utility functions to evaluate bids on the issues and to identify proper
counter proposals in case a bid is unsatisfiable.

Negotiation protocols are designed for managing either a single issue or multiple
issues. The literature involving single issue negotiation is exhaustive. We
restrict the discussion to a few contributions relevant to this thesis.

Smith (1980) designed the well known Contract Net Protocol (CNP). A set of
manager agents negotiate a contract with a number of contractor agents that
are able to perform a set of tasks.

NEGOTIATION 11

Aknine et al. (2004) developed an extension to the CNP to circumvent some
limitations. As multiple managers can concurrently negotiate with multiple
contractors, the total length of the negotiation processes when applying the
CNP in its original form may become excessive. When negotiating in parallel,
agents decommit contracts already agreed on, when better offers are received.
This decommission makes managers to re-embark some negotiation processes
to find new contractors for their tasks. Finally, the original CNP does not
account for the fact that agents may fail during the negotiation process. The
most important extensions are to incorporate multiple stages in the negotiation
process and the introduction of a deadline for the reception of proposals by the
manager.

Auctions are another type of negotiation protocols, frequently applied for the
distribution of task or allocation of resources. For example, the well known
Vickrey auction (Vickrey, 1961) for single items, by design, enforces buyers to
bid their true valuations of an item. The Vickrey-Clarke-Groves mechanism
(Clarke, 1971; Groves, 1973) is a generalisation for multiple or divisible goods.
In an auction with M goods, buyers make offers for one out of 2M − 1 possible
packages.

The Simultaneous Ascending Auction, introduced to sell licenses for bands of
radio spectrum in the United Stated, was studied by Milgrom (2000). In this
type of auction, buyers bid on multiple objects simultaneously. The highest
bid of a round is the minimal value of acceptable bids in the consecutive round.
The auction stops if no new bids have been received. Items are assigned to
the highest bidder. With a so called ’activity rule’, putting lower bounds on
bids, pressure is created on bidders to participate actively during the auction,
therefore increasing the pace of the auction. Because of the accelerated pace,
more information becomes available to the bidders as the auction continues.

In an Ascending Proxy Auction (Ausubel and Milgrom, 2004), in contrast to
the previous auction, bids are not made for all items simultaneously, but for a
limited number of items, bundles in a package. After each round, provisionally
winners are announced. A bidder that was not announced as winner in a
previous round is allowed to make a new bid. This new bid may either be a
raised bid for the same package for which a bid was made in the previous round,
or a bid for an alternative package. After each round, the seller determines the
combination of non overlapping packages maximising its revenue. The auction
stops after a predetermined number of rounds or if an alternative stopping
criterion is met.

The previous auctioning techniques are closely related to mechanism theory
based systems (Jackson, 2001). The main focus of mechanism theory/design is
the development of interactive systems that satisfy certain objectives assuming

12 LITERATURE

that participants will act strategically and may still keep information private.
Examples of such objectives are forcing agents to reveal true valuations on items,
discouraging agents to lie or cheat when negotiating, . . . For example, Zlotkin
and Rosenschein (1996) study the resilience against lying and cheating for
automated negotiation in task oriented domains. Wellman et al. (2001) study
the application of ascending auction, package (combinatorial) auctions and
the generalised Vickrey auction for theoretical distributed scheduling problems.
The focus is on theoretical aspects such as the existence of equilibrium prices
and the quality of equilibrium solutions. Unfortunately, most of those type
of approaches are unable to cope with the complexities that arise when facing
’real world’ inspired problems.

In the remainder of this section, we focus on negotiation involving multiple
issues. Negotiation in a multi-issue setting may be more complex when
compared to single issue negotiation (Lai and Sycara, 2009).

First, the utility functions of the agents depend on all the issues. According to
Raiffa (1982), when negotiating multiple issues, it is not the case anymore that
one agent gets less utility when an other agent receives more issue. Both can
get more by making trade-offs on issues or by conceding on the expected utility
level. By making trade-offs, agents try to generate win-win situations in which
they are mutually better off. However, this complicates the negotiation because
identifying appropriate offers is usually non-trivial. Numerous combinations of
issues may exist yielding an agent equal amounts of utility. It may be impossible
to compute all of those combinations and therefore hard to find the optimal
one.

The level of interdependency of issues has an immediate impact on the
complexity of the utility function. Issues may be seen as independent. In
this case, issues can still be interrelated, acquiring one issue does not constrain
how the other issues are acquired. More complexity arises when issues are
interdependent. We distinguish two categories. First, issues can be weakly
interdependent. The interdependency creates opportunities for making trade-
offs between issues, which may facilitate finding a suitable counter offer that
maximizes the utility of the opponent. In this case, if an agent receives the
full amount of all the issues, it also gains maximum utility. Second, issues
can be strongly interrelated. In this case, fixing the amount of one issue
puts limits on the amounts of the remaining issues that an agent is willing to
acquire. Generally, a higher level of interdependency makes generating offers
and counter offers computationally more difficult.

By conceding, agents lower their expected utility level in order to make reaching
agreements feasible or to speed up the negotiation process. In many cases,
it is straightforward to see that agents are unable to reach an agreement at

NEGOTIATION 13

their maximum utility level. Concession strategies allow agents to determine
the utility level(s) where agreement is possible. Also, in many applications,
the utility of agents decreases with time and deadlines may exist after which
reaching an agreement is useless (Fatima et al., 2006).

A second reason for higher complexity in multi-issue negotiation is incomplete-
ness of information. Agents may not have a complete view on the valuation
of the issues of their adversaries or the information may be variable over time.
This lack of information further complicates the calculation of proposals, again
making it impossible to find all possible trade-offs. Therefore the negotiation
process may result in a suboptimal outcome.

Third and also following from the first two, Pareto optimality is harder to
achieve. In a rational environment, there should not be ’wasted utility’. When
a non Pareto optimal outcome has been achieved, this means another agent can
possibly improve its utility without harming any of its adversaries. This also
means that one of the agents possibly conceded too much. Often a mediating
approach is used for helping the agents achieving Pareto optimality.

Lai et al. (2004) provide an overview of multi-issue negotiation contributions
until 2004. The authors discuss approaches in the field of Economics and
AI. In the field of Economics two branches are reviewed: non-cooperative
and cooperative multi-attribute negotiation. Within AI the approaches are
categorised according to negotiation framework, trade-off mechanism and
searching method. Lai and Sycara (2009) mainly focus on incomplete
information, Pareto optimality and tractability. Marsa-Maestre et al. (2011)
discuss the literature on the complexity of the preference spaces.

We extend the taxonomy for automated negotiation, proposed by Buttner
(2006), to enable the categorisation of multi-issue negotiation contributions and
we classify them accordingly. Figure 2.1 shows the extensions to the taxonomy
in bold. Sections 2.2.1 to 2.2.5 discuss the various components of the taxonomy.
For each element, relevant literature is highlighted.

2.2.1 Multi-attribute versus multi-issue: definition and classi-
fication

As An et al. (2011) point out, there are two different definitions of a negotiation
issue in the literature.

A first definition of an issue is a resource (good, product, task to perform, . . .).
For example, in a supply chain, a manufacturer typically has to acquire multiple
resources from possibly multiple suppliers. In a second definition, an issue is

14 LITERATURE

Figure 2.1: Taxonomy for automated multi-issue negotiation

considered an attribute of a resource. In many contributions, such issues are
called attributes, to distinguish them from the first type of issues. According to
Fatima et al. (2004), this type of negotiation settings can be regarded as multi-
issue negotiation problems of the first type. The only limitation is that issues
have to be negotiated simultaneously because they are associated with only
one good, product or resource. For example, when buying a car, one typically
discusses numerous possible options among which price, colour, engine and
type of wheels.

These two meanings and the terms ’issue’ and ’attribute’ are used interchange-
ably in literature. As mentioned before, within the current contribution, the
term issue designates subjects of negotiation. These subjects can be resources
for manufacturing products or completing tasks. Goods in an auction or
eCommerce setting (Guttman et al., 1998) may also be subjects. The former
subjects are examples of tangible issues. Intangible properties of a subject such
as the delivery time of a product or the price and amount of a resource under
negotiation should also be considered issues within automated negotiation.

Equally important are local decision making parameters, often stemming from
local optimisation problems. Those parameters, called attributes, influence
the valuation of the negotiation issues. For example in Duan et al. (2011)
the authors consider a negotiation setting with a supplier and a manufacturer.
The agents negotiate the delivery schedule of issues such as timing, quantities

NEGOTIATION 15

and price for various components and products. Thus, the local combinatorial
optimisation problems of both need to be matched. The authors look at
concessions in the attribute space, defined by the local optimisation problem,
rather than concessions on the negotiation issues itself.

At the negotiation level, we distinguish single and multi-issue negotiation. Also,
we can distinguish problems where local parameters influence the negotiation
and problems where the local level does not play part in the negotiation. The
former situation can be regarded as multi-attribute negotiation. Multiple
attributes enable searching for trade-offs and making concessions in the
attribute space. The latter setting can be regarded as single attribute
negotiation. Except for conceding to a lower utility level, no more options
exist at the local level to facilitate the negotiation.

Consequently, the literature can be classified according to four categories:

1. single-issue, single-attribute (SI,SA)

2. single-issue, multi-attribute (SI,MA)

3. multi-issue, single-attribute (MI,SA)

4. multi-issue, multi-attribute (MI,MA)

Table 2.1 shows an overview of relevant literature of the last decade, specifically
on negotiation protocols, within the field of multi-issue negotiation. The
first category (SI,SA) is not within the scope of this thesis and remains
undiscussed. Most contributions fit into the third category, (MI,SA). We did
not find contributions for (SI,MA). In our opinion, most techniques in (MI,SA)
are applicable to (SI,MA). The previously mentioned mix-up between the
terms issue and attribute supports this statement. One contribution handles
a (MI,MA) negotiation problem. Note that Duan et al. (2011) is found in
both (MI,MA) and (MI,SA). The authors design two algorithms, one for each
category.

2.2.2 Classification by level of interdependency

As mentioned before, the level of interdependency directly influences the
complexity of the negotiation. The higher the level of interdependency,
the higher the complexity. We distinguish between independent (often
interrelated), weakly and strongly interdependent issues in order of raising

16 LITERATURE

Attribute type Contributions
Single-attribute Faratin et al. (2002)

Luo et al. (2003)
Fatima et al. (2004)
Lau et al. (2004)
Fatima et al. (2006)
Jonker et al. (2007)
Ito et al. (2008)
Ragone et al. (2008)
Fatima et al. (2009)
Lopez-Carmona et al. (2010)
Lai and Sycara (2009)
Wu et al. (2009)
Lopez-Carmona et al. (2011)
Marsa-Maestre et al. (2011)
Duan et al. (2011)

Multi-attribute Duan et al. (2011)

Table 2.1: Categorisation of multi-issue contributions by attribute structure

complexity. Table 2.2 summarises the classification of literature within these
three categories.

In (An et al., 2011), the authors explicitly state independent but interrelated
issues are considered. In fact, the total utility for an agent is calculated as the
sum of the utility the agent receives for the resources separately. Analogously,
Fatima et al. (2004, 2006); Jonker et al. (2007); Lau et al. (2004); Ragone et al.
(2008) regard the issues independent but interrelated. Faratin et al. (2002)
discuss interrelated issues. The valuation on the issues is a weighted sum
of the valuation of each issue separately. The weights represent the relative
importance of an agent on the issues.

Wu et al. (2009) study two weakly interdependent issues. They introduce
indifference curves representing the combination of utility of equal importance
for an agent. Also, at a certain utility level, an indifference curve shows the
minimal amount an agent wants for one issue if the amount of the other
issue is fixed. However, the agent is still satisfied when gaining more than
this minimal amount. Within (Lai and Sycara, 2009), the issues are also
weakly interdependent. The authors allow non-linear utility functions but
impose important restrictions on the utility function. Concerning the level
of interdependency, especially the limitation to strict convexity of the utility
function is important: “for any solution x, the set of solutions preferred over x
by an agent is strictly convex”. Thus, fixing all issues but one, the utility of the

NEGOTIATION 17

agent is either monotonically increasing or decreasing when raising or lowering
the value of the remaining issue.

Duan et al. (2011) omit the restriction to strictly convex utility functions.
The above monotonicity is no longer present. Therefore these authors study
negotiation for strongly interdependent issues. Ito et al. (2008), Lopez-
Carmona et al. (2011), Lopez-Carmona et al. (2010) and Marsa-Maestre et al.
(2011) do not put restrictions on the utility functions and therefore also consider
strongly interdependent issues.

Interdependency Contributions
independent An et al. (2011)

Fatima et al. (2004)
Faratin et al. (2002)
Jonker et al. (2007)
Lau et al. (2004)
Ragone et al. (2008)

weakly interdependent Lai and Sycara (2009)
Wu et al. (2009)

strongly interdependent Duan et al. (2011)
Ito et al. (2008)
Lopez-Carmona et al. (2011)
Lopez-Carmona et al. (2010)
Marsa-Maestre et al. (2011)

Table 2.2: Categorisation on level of interdependency of issues

2.2.3 Classification by protocol category

We distinguish three different types of protocol category: bilateral, one-sided
and double-sided multilateral negotiation. As an example, Figure 2.2 shows
the different possibilities within the context of buyers and sellers. In a bilateral
negotiation setting, negotiation is restricted to two negotiation parties. For
example, one buyer and one seller are negotiating on selling issues. One-sided
multilateral negotiation means either one buyer and multiple sellers or many
buyers and one seller are negotiating. Double-sided multilateral negotiation is
characterised by many buyers negotiating with many sellers.

In general, the more parties involved, the more complex the negotiation. In the
buyers and sellers example above, this gives raise to a significant increase in the
number of possible offers. Also making trade-offs becomes harder as the number
of opponents (and their utility function in a complete information environment)

18 LITERATURE

sellerbuyer

seller

Bilateral

One-sided multilateral

sellerbuyer

seller

sellerbuyer

buyer

buyer

seller

Double-sided multilateral

seller

seller

buyer

buyer

buyer

Figure 2.2: Protocol categories

to be taken into account increases. The structure of the negotiation between
the parties further influences the complexity. A seller that has no opponent for
his buyers to negotiate with, is better off than when multiple sellers offer the
same product and vice versa.

Thus, bilateral negotiation is the protocol category with the lowest complexity,
followed by one-sided multilateral negotiation. The double-sided multilateral
protocol category resembles the highest complexity.

Table 2.3 shows the categorisation of literature by protocol category.

2.2.4 Categorisation by Information situation and Mediator
type

In an environment with complete information, where the utility functions of
the agents are common knowledge, it is possible to calculate the Pareto optimal
frontier. However, in multi-issue negotiation, the calculation of the frontier may
become intractable because of the increased complexity of the utility function
and the mass of information to be taken into account.

NEGOTIATION 19

Protocol category Contributions
Bilateral Marsa-Maestre et al. (2011)

Ragone et al. (2008)
Luo et al. (2003)
Lopez-Carmona et al. (2011)
Lau et al. (2004)
Jonker et al. (2007)
Faratin et al. (2002)
Fatima et al. (2006)
Fatima et al. (2004)
Duan et al. (2011)
Lai and Sycara (2009)

One-sided multilateral An et al. (2011)
Lopez-Carmona et al. (2010)
Ito et al. (2008)

Double-sided multilateral Wu et al. (2009)

Table 2.3: Categorisation by protocol category

Information may also be incomplete. Information may evolve over time or it
may be impossible to collect all information beforehand. In an environment
with self-interested agents, information is typically kept private. Agents do
not willingly share their preferences with adversaries. The information may
be misused and thus may lead to inferior solutions. In such a negotiation
setting, agents try to minimise the amount of exchanged information in order
to prevent opponents from learning their utility functions. As a consequence,
it is impossible to calculate the Pareto optimal frontier and therefore more
complicated to reach a Pareto optimal outcome (Klein et al., 2003). Frequently,
a ’trusted’ mediating party is added to the negotiation setting, helping the
negotiators to find Pareto optimal solutions. In this way, agents are able to
reveal more of their internal information without the risk of exposing themselves
to their opponents.

From the information above, it is clear that calculating proper trade-offs
in multi-issue negotiation is a non-trivial problem. The difficulty level of
generating proposals and finding Pareto optimal solutions is related to the
amount and nature of the information agents put at the disposal of their
opponents and the mediator when present.

A first category is when only offers and counter-offers are exchanged. In this
category, the least information is exposed. Generating trade-offs and obtaining
Pareto optimality can be very hard within this category. Instead of proposing
only one counter-offer, agents can submit a set of trade-offs that are of equal

20 LITERATURE

importance or have a minimum utility. In this second category, opponents
are able to choose the counter-offer from the set that maximises their own
utility. This can speed up the negotiation process and improve the optimality
of the outcome. Third, agents can choose to exchange regions within their
preference space instead of explicitly making bids. For example, in (Marsa-
Maestre et al., 2011) agents first recursively negotiate on overlapping regions of
shrinking size within their preference space until agreement is found. Finally, a
fourth category represents negotiation settings with complete information. For
each category mentioned, agents may choose to also send along their valuations
on the proposed offer.

Table 2.4 shows the categorisation of literature according to the aforementioned
criteria and to the presence of a mediator within the negotiation setting. Some
contributions discuss multiple “Information situations”.

Information

Contribution b
id

s

se
t

of
b
id

s

re
gi

on

co
m

p
le

te

va
lu

at
io

n

m
ed

ia
to

r

Fatima et al. (2004) •
Lopez-Carmona et al. (2011) •
Marsa-Maestre et al. (2011) •
Lai and Sycara (2009) • •
An et al. (2011) • •
Fatima et al. (2006) • •
Duan et al. (2011) • • •
Jonker et al. (2007) •
Ragone et al. (2008) • • •
Luo et al. (2003) • •
Lopez-Carmona et al. (2010) • • •
Ito et al. (2008) • • •
Lau et al. (2004) •
Faratin et al. (2002) •
Wu et al. (2009) •

Table 2.4: Categorisation by Information situation and Mediator type

NEGOTIATION 21

2.2.5 Categorisation by Time

Time may be taken into account in two ways. An agent can introduce
a deadline, the latest moment to reach an agreement in the negotiation
process. If the deadline has passed and no agreement has been reached, the
negotiation ends without success. Alternatively, the utility an agent receives
may decrease over time. This does not mean that contributions on protocols
where concession takes place automatically deal with time dependent utility
functions. Conceding may take place when no agreement at a certain utility
level is possible or the moment of conceding may be time dependent, i.e. the
agents concede when no agreement has been reached after a certain amount of
time. The categorisation of literature by “Time” is shown in Table 2.5.

d
ea

d
li
n
es

ti
m

e
d
ep

en
d
en

t
u
ti

li
ty

An et al. (2011) •
Duan et al. (2011) • •
Marsa-Maestre et al. (2011) •
Lai and Sycara (2009) • •
Fatima et al. (2006) •
Lopez-Carmona et al. (2011) •
Lopez-Carmona et al. (2010) •
Ito et al. (2008) •
Lau et al. (2004) • •
Fatima et al. (2004) •

Table 2.5: Categorisation by Time

Chapter 3

Formal models for nurse
rostering problems

The nurse rostering problem involves constructing a roster for nurses in a
ward of a hospital taking several constraints into account. The constraints
stem from organisational requirements, legal regulations and personal requests
from nurses. We define shift types as the time frames during which a ward
wants a nurse with a specific skill to work1. A shift is a particular shift
type on a specific day for which a ward requests a nurse. A solution to a
nurse rostering problem instance is an assignment of shifts to nurses. We
consider two levels of constraints: hard and soft constraints. A feasible solution
satisfies all hard constraints. The quality of a solution is measured in soft
constraint violations. By putting weights, the relative importance of the
constraints is set. The instances we consider within this thesis can be classified
as AS2I|V NO|P according to the categorisation proposed by De Causmaecker
and Vanden Berghe (2011):

• A: the nurse rostering under study consideres constraints related to
minimum and maximum availibity of nurses.

• S: we consider constraints handling sequences: i.e series of a maximum
or a minimum number of working shifts.

• 2: we consider two skill types

1In this thesis, we relate the required skill to the shift type. If for the same time frame
different skills are required, different shift types are introduced.

23

24 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

• I: the problem under study considered individual skill definitions

• V: the coverage constraints are variable over time

• N: the number of shifts is variable

• O: shift types can overlap

• P: goal is to minimise the number of (personnel and coverage) constraints
violations

We discuss the model of the nurse rostering problem that is the subject of
this thesis. In Section 3.1 we give an informal description of the constraints
considered. Section 3.2 gives a formal definition of the constraints by using
numberings (Burke et al., 2001). Finally, Section 3.3 elaborates on an exact
description of the problem using a mathematical model.

3.1 Description

A nurse rostering problem consists of the following:

• a planning horizon: The number of consecutive days during which the
nurses need to be assigned. The planning horizon can be of arbitrary
size.

• shift types: Each day is divided in a number of (possibly overlapping)
shift types. A shift type represents a time frame for which a nurse with
a certain skill set is required. Common shift types are for example early,
late, day and night shift types.

• skills: some shift types need to be covered by nurses with specific skills.
A nurse can have multiple skills. Having a certain skill type enables a
nurse to work shifts that require this skill type.

• nurse pool: A set of nurses. Each nurse works following a contract
describing their working regulations. Nurses have certain skills and have
personal requests (not) to work certain days/shifts.

We consider the following constraints:

• Contract related constraints:

DESCRIPTION 25

– The maximum and minimum number of shifts that can be assigned
to a nurse during the scheduling period.

– The maximum and minimum number of consecutive days on which
a shift can be assigned to a nurse.

– The maximum and minimum number of consecutive days on which
a nurse does not have a shift assigned.

– The maximum of consecutive working weekends.

– Whether a nurse works complete weekends (i.e., every day of the
weekend).

– Whether a nurse needs to work the same shift type on all days of a
working weekend.

– Alternative skill - whether or not nurses are entitled to work shift
types for which they do not have the required skills.

– Unwanted shift patterns - a sequence of consecutive assignments not
wanted by a nurse: e.g., the employee should not work an early shift
after a night shift. A more in detail description of unwanted shift
patterns is given below.

• Requests: A nurse can request (not) to work a particular shift on a certain
day, or even the complete day.

• Hard constraints:

– Single assignment per day: Nurses should work at most 1 shift type
per day.

– Coverage constraints. These are the personnel requirements. For
each shift type on each day, the number of required nurses is specified.
The coverage constraints are often referred to as demand.

Unwanted shift patterns

An unwanted pattern is a sequence of assignments that a nurse does not want
to work. We distinguish between patterns that are unwanted on specific days
(e.g. a nurse does not want to work a night shift before a free weekend, a nurse
wants to work on Friday before a working weekend, . . .) and patterns that are
unwanted throughout the entire planning period (e.g. a nurse should not work
a late shift before an early shift,).

A pattern consists of a number of pattern entries X: [X]1... n. A pattern entry
X can be one of the following:

26 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

• ST: a specific shift type

• W: any shift type on a day

• F: free (no shift type) on a day

A pattern entry X can occur on any day in the scheduling period or on a
specific day. We introduce the following pattern types:

1. {W, ST } − [F]2...n: Before a series of free days, it is prohibited to work
any or a specific shift type. E.g. an employee may not work a night shift
before a free weekend.

2. F − [W, ST]2...n: No free day can occur before working any of a number
of consecutive days or shift types. E.g. if an employee works a shift in a
weekend, the employee should also work on Friday.

3. [ST]2...n: Unwanted shift type successions. E.g. Late-Early-Late, Night-
Early, . . .

3.2 Formal representation of nurse rostering prob-
lems using numberings

The numbering method in (Burke et al., 2001) was originally designed for
the efficient evaluation of constraint violations for nurse rostering problems.
The numberings also serve as a formal representation of constraints. After we
elaborate on the definition of numberings, we give an example numbering for
each constraint mentioned in Section 3.1.

Numberings

We start with some elementary notation.

Definition 1. A time unit is an elementary interval of time in which a nurse
can be assigned a shift.

In our case, shift types determine those intervals. So, each shift type has a
corresponding time unit. In the case of the nurse rostering problems considered
within this thesis, the number of time units equaled the number of shift types
times the number of days in the planning period. Thus, supposing we have a

FORMAL REPRESENTATION OF NURSE ROSTERING PROBLEMS USING NUMBERINGS 27

planning horizon of D days and for each day there are Sh shift types, we have
a set T of D ∗ Sh time units. A solution to a nurse rostering problem is then
an assignment of nurses to shifts on specific time units.

Numberings on the time units are defined as follows:

Definition 2. A numbering Ni is a mapping of the set of time units onto
a set of numbers extended with the symbol U i.e. Ni : T → {−M, −M +
1, . . . , 0, 1, . . . , M − 1, M, U} where i = 1, . . . , I and I is the total number of
numberings. M is a positive integer and U (undefined) is a symbol introduced
to represent the time units that are not mapped onto a number.

The mapping does not need to be into or onto, nor does it need to preserve
sequence.

An event is a time unit for which a nurse has a shift type assigned. The idea
of the evaluation method (Burke et al., 2001) is to go trough the set of events
for which the time units do not have U (undefined) as value. We call these the
’numbered events’. More formally:

Definition 3. A personal schedule Sp for person p is a mapping Sp : T →
{working, free}.

Definition 4. For a given personal schedule Sp an event is a time unit e for
which Sp(e) = working.

Denote by TSp
the set of all time units for which Sp maps to working. TSp

is
thus the set of time units induced by Sp, or in other words: the set of time
units for which nurse p is assigned to work. Denote by TNi

the set of time units
for which the numbering Ni is defined.

Definition 5. The event set TSp,Ni
:= TSp

∩TNi
is the set of time units induced

by the schedule Sp, for which the numbering Ni is defined (6= U).

Definition 6. Two events ej and ej+1 are consecutive with respect to
numbering Ni if Ni(ej+1) − Ni(ej) = 1

We can now express the following four groups of constraints:

• total number of assignments (total): for a numbering Ni, this constraint
type limits the number of events e for which Ni(e) 6= U .

• total number of assignments of a certain type (perType): for a numbering
Ni, this constraint type limits the number of events corresponding to a
specific number j (Ni(e) = j).

28 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

• consecutive assignments (consecutiveness): for a numbering Ni, this
constraint limits the length a a sequence of consecutive events in TSp,Ni

.

• gaps between consecutive sequences of assignments (between): for a
numbering Ni this constraint type limits the maximum gap (e.g. free
time) between two non-consecutive events ej and ej+1 (the gap equals
Ni(ej+1) − Ni(ej)).

For each constraint type, a maximum and minimum bound can be set,
resulting in eight constraint types: max_total, min_total, max_consecutive,
min_consecutive, max_between, min_between, max_pert and min_pert.
Four counting variables are introduced:

• total: This counter represents the total number of events for the
numbering.

• consecutive: This counter represents the number of consecutive events.
If an interruption in a sequence is found, the counter is reset to 0.

• pert: This counter keeps track of the number of events per value in the
numbering.

• last: This variable keeps track of the number of the last evaluated event.

With each numbering Ni a set of four of the above counters is associated.

An example is given in Table 3.1. A simple numbering Ni is given for a
scheduling period of one week. There is only one shift type. The value of
each counter after each event is given. By comparing the value of the counter
with the values of the constraints, violations are detected. Per constraint type,
a ’cost’-variable can be set, representing the weight of the constraint in the
objective function. E.g. if max_total < total there is a violation with amount
cost_max_total.(total − max_total). In the example, for max_total = 2 and
cost_max_total = 3, a penalty of 6 is raised.

We introduce two additional variables prev_nr and future_nr, denoting
how constraints should be evaluated at the borders of the scheduling period.
prev_nr is the number of the last evaluated event from the previous
scheduling period. The number of the first event after the planning horizon
is future_nr. The original evaluation method (Burke et al., 2001) required
detailed information on the assignments in the previous planning period as
input. An initialisation algorithm initialised the counters based on this
information. As we do not consider history and future in this thesis2, we

2We only want to denote how to evaluate the constraints at the borders of the planning
horizon.

FORMAL REPRESENTATION OF NURSE ROSTERING PROBLEMS USING NUMBERINGS 29

Mo Tu We Th Fr Sa Su
Ni 1 2 3 4 5 6 7
Events * * * *
last U 1 2 3 3 3 3
total 1 2 3 3 3 3 4
consecutive 1 2 3 3 3 3 1
pert[1] 1 1 1 1 1 1 1
pert[2] 0 1 1 1 1 1 1
pert[3] 0 0 1 1 1 1 1
pert[4] 0 0 0 0 0 0 0
pert[5] 0 0 0 0 0 0 0
pert[6] 0 0 0 0 0 0 0
pert[7] 0 0 0 0 0 0 1

Table 3.1: Example of counters

simplified the initialisation and the final evaluation algorithm for taking the
two additional variables into account. Appendix A shows the changes to the
original algorithms.

3.2.1 Description of constraints using numberings

The numberings defined in Section 3.2 can also be used for a formal description
of the constraints presented in Section 3.1. We discuss in more detail an
example numbering for some constraints (for a planning horizon of 1 week
and 2 shift types: early (E) and late (L)) and show that some constraints need
multiple numberings. Finally, for an example nurse rostering problem instance,
we give numberings for all the constraints.

Example of numbering for ’Maximum and minimum number of assignments’

The time units have arbitrary numbers assigned. The variable max_total is
set to the maximum number of assignments. The variable min_total is set to
the minimum number of assignments. last_nr and future_nr are Undefined.
An example numbering is given in Table 3.2.

30 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

Mon Tue Wed Thu Fri Sat Sun

Shift E L E L E L E L E L E L E L
Numbering 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.2: Numbering for total number of assignments

Example of numbering for ’Maximum and minimum number of consecutive
working days’

Each time unit on the same day has the same number. Consecutive days
have consecutive numbers. Max_consecutive is set to the maximum number of
consecutive working days. Min_consecutive is set to the minimum number of
consecutive working days. last_nr and future_nr are Undefined. An example
numbering is given in Table 3.3.

Mon Tue Wed Thu Fri Sat Sun

Shift E L E L E L E L E L E L E L
Numbering 0 0 1 1 2 2 3 3 4 4 5 5 6 6

Table 3.3: Numbering for the number of consecutive working days

Constraints with Multiple Numberings

Some constraints cannot be expressed using only one numbering. Mostly
constraints that do not occur on fixed days, need multiple numberings. The
number of numberings needed is equal to the length of the pattern. For
example (see Table 3.4) consider the unwanted pattern, L-E-L, of length 3
and a scheduling period of 7 days. Since the pattern can start on any day, we
need 3 numberings to achieve this.

Mon Tue Wed Thu Fri Sat Sun

E L E L E L E L E L E L E L
N1 U 0 1 U U 2 U 4 5 U U 6 U U
N2 U U U 0 1 U U 2 U 4 5 U U 6
N3 U U U U U 0 1 U U 2 U U U U

Table 3.4: Multiple numberings for unwanted pattern L − E − L

FORMAL REPRESENTATION OF NURSE ROSTERING PROBLEMS USING NUMBERINGS 31

Example

We give a sample numbering for each constraint described in Section 3.1
in Table 3.5. More formal definitions of the numberings can be found in
Appendix B. We consider a planning horizon of two weeks. There are three
shift types: an early (E), late (L) and night (N) shift type. A weekend consists
of three days: Friday, Saturday and Sunday. Table 3.6 shows the mapping
between a numbering and the constraints it can represent. As stated before,
note that one particular numbering can represent multiple constraints and that
some constraints require multiple numberings.

32 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

D
a

y
T

h
u

F
r
i

S
a

t
S

u
n

M
o

n
T

u
e

W
e

d

D
a

t
e

0
1

/
0

7
0

2
/

0
7

0
3

/
0

7
0

4
/

0
7

0
5

/
0

7
0

6
/

0
7

0
7

/
0

7

S
T

E
L

N
E

L
N

E
L

N
E

L
N

E
L

N
E

L
N

E
L

N

N
1

0
0

0
1

1
1

2
2

2
3

3
3

4
4

4
5

5
5

6
6

6

N
2

U
U

U
0

0
0

0
0

0
0

0
0

U
U

U
U

U
U

U
U

U

N
3

U
U

U
0

0
0

1
1

1
2

2
2

U
U

U
U

U
U

U
U

U

N
4

U
U

U
0

1
2

0
1

2
0

1
2

U
U

U
U

U
U

U
U

U

N
5

0
U

U
0

U
U

0
U

U
0

U
U

0
U

U
0

U
U

0
U

U

N
6

U
U

0
1

U
3

4
U

6
7

U
9

1
0

U
1

2
1

3
U

1
5

1
6

U
1

8

N
7

U
U

0
1

1
1

1
1

1
1

1
1

U
U

U
U

U
U

U
U

U

N
8

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U

N
9

3
3

3
4

4
4

4
4

4
4

4
4

U
U

U
U

U
U

U
U

U

N
1

0
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

N
1

1
U

U
0

1
1

U
1

1
U

U
U

3
4

4
U

4
4

U
U

U
6

N
1

2
U

U
U

U
U

0
1

1
U

1
1

U
U

U
3

4
4

U
4

4
U

N
1

3
U

U
U

U
U

U
U

U
0

1
1

U
1

1
U

U
U

3
4

4
U

N
1

4
0

0
0

U
U

U
U

U
U

U
U

U
1

1
1

U
U

U
U

U
U

N
1

5
U

U
U

0
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

D
a

t
e

0
8

/
0

7
0

9
/

0
7

1
0

/
0

7
1

1
/

0
7

1
2

/
0

7
1

3
/

0
7

1
4

/
0

7

N
1

7
7

7
8

8
8

9
9

9
1

0
1

0
1

0
1

1
1

1
1

1
1

2
1

2
1

2
1

3
1

3
1

3

N
2

U
U

U
1

1
1

1
1

1
1

1
1

U
U

U
U

U
U

U
U

U

N
3

U
U

U
4

4
4

5
5

5
6

6
6

U
U

U
U

U
U

U
U

U

N
4

U
U

U
3

4
5

3
4

5
3

4
5

U
U

U
U

U
U

U
U

U

N
5

0
U

U
0

U
U

0
U

U
0

U
U

0
U

U
0

U
U

0
U

U

N
6

1
9

U
2

1
2

2
U

2
4

2
5

U
2

7
2

8
U

3
0

3
1

U
3

3
3

4
U

3
6

3
7

U
U

N
7

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U

N
8

U
U

0
1

1
1

1
1

1
1

1
1

U
U

U
U

U
U

U
U

U

N
9

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U

N
1

0
3

3
3

4
4

4
4

4
4

4
4

4
U

U
U

U
U

U
U

U
U

N
1

1
7

7
U

7
7

U
U

U
9

1
0

1
0

U
1

0
1

0
U

U
U

U
U

U
U

N
1

2
U

U
6

7
7

U
7

7
U

U
U

9
1

0
1

0
U

1
0

1
0

U
U

U
U

N
1

3
4

4
U

U
U

6
7

7
U

7
7

U
U

U
9

1
0

1
0

U
1

0
1

0
U

N
1

4
U

U
U

U
U

U
2

2
2

U
U

U
U

U
U

U
U

U
U

U
U

N
1

5
U

U
U

U
U

U
U

1
U

U
U

2
U

U
3

U
U

U
U

U
U

Table 3.5: Example numberings for the constraints of the model

FORMAL REPRESENTATION OF NURSE ROSTERING PROBLEMS USING NUMBERINGS 33

N
u

m
b

er
in

g
C

o
n

st
ra

in
ts

C
o
n

st
ra

in
t

T
y

p
e

V
a
lu

e

N
1

M
a
x

im
u

m
n

u
m

b
er

o
f

a
ss

ig
n

m
en

ts
m
a
x
_
t
o
t
a
l

m
a
x

im
u

m
n

u
m

b
er

o
f

sh
if

ts
th

e
em

p
lo

y
ee

ca
n

w
o
rk

d
u

ri
n

g
th

e
p

la
n

n
in

g
h

o
ri

zo
n

M
in

im
u

m
n

u
m

b
er

o
f

a
ss

ig
n

m
en

ts
m
i
n
_
t
o
t
a
l

m
in

im
u

m
n

u
m

b
er

o
f

sh
if

ts
th

e
em

p
lo

y
ee

ca
n

w
o
rk

d
u

ri
n

g
th

e
p

la
n

n
in

g
h

o
ri

zo
n

M
a
x

im
u

m
n

u
m

b
er

o
f

co
n

se
cu

ti
v
e

w
o
rk

in
g

d
a
y

s
m
a
x
_
c
o
n
s
e
c
u
t
i
v
e

m
a
x

im
u

m
n

u
m

b
er

o
f

co
n

se
cu

ti
v
e

d
a
y

s
o
n

w
h

ic
h

a
n

u
rs

e
ca

n
b

e
a
ss

ig
n

ed
a

sh
if

t
M

in
im

u
m

n
u

m
b

er
o
f

co
n

se
cu

ti
v
e

w
o
rk

in
g

d
a
y

s
m
i
n
_
c
o
n
s
e
c
u
t
i
v
e

m
in

im
u

m
n

u
m

b
er

o
f

co
n

se
cu

ti
v
e

d
a
y

s
o
n

w
h

ic
h

a
n

u
rs

e
ca

n
b

e
a
ss

ig
n

ed
a

sh
if

t
M

a
x

im
u

m
n

u
m

b
er

o
f

co
n

se
cu

ti
v
e

fr
ee

d
a
y

s
m
a
x
_
b
e
t
w
e
e
n

m
a
x

im
u

m
g
a
p

b
et

w
ee

n
tw

o
n

o
n

-c
o
n

se
cu

ti
v
e

sh
if

ts

M
in

im
u

m
n

u
m

b
er

o
f

co
n

se
cu

ti
v
e

fr
ee

d
a
y

s
m
i
n
_
b
e
t
w
e
e
n

m
in

im
u

m
g
a
p

b
et

w
ee

n
tw

o
n

o
n

-c
o
n

se
cu

ti
v
e

sh
if

ts

S
in

g
le

a
ss

ig
n

m
en

t
p

er
d

a
y

m
a
x
_
p
e
r
t

1
fo

r
ea

ch
v
a
lu

e
in

th
e

n
u

m
b

er
in

g
N

2
M

a
x

im
u

m
n

u
m

b
er

o
f

co
n

se
cu

ti
v
e

w
o
rk

in
g

w
ee

k
en

d
s

m
a
x
_
t
o
t
a
l

m
a
x

im
u

m
n

u
m

b
er

o
f

w
ee

k
en

d
s

a
n

u
rs

e
ca

n
w

o
rk

d
u

ri
n

g
th

e
p

la
n

n
in

g
h

o
ri

zo
n

N
3

C
o
m

p
le

te
w

ee
k
en

d
s

m
i
n
_
c
o
n
s
e
c
u
t
i
v
e

th
e

n
u

m
b

er
o
f

d
a
y

s
in

a
w

ee
k
en

d
N

4
Id

en
ti

ca
l

co
m

p
le

te
w

ee
k
en

d
s

m
i
n
_
p
e
r
t

th
e

n
u

m
b

er
o
f

d
a
y

s
in

a
w

ee
k
en

d
fo

r
ea

ch
v
a
lu

e
in

th
e

n
u

m
b

er
in

g
N

5
A

lt
er

n
a
ti

v
e

sk
il

l
m
a
x
_
p
e
r
t

0
fo

r
ea

ch
v
a
lu

e
o
f

th
e

n
u

m
b

er
in

g
N

6
U

n
w

a
n

te
d

p
a
tt

er
n

ty
p

e
3
:

N
-E

m
a
x
_
c
o
n
s
e
c
u
t
i
v
e

th
e

n
u

m
b

er
o
f

sh
if

t
ty

p
es

in
th

e
p

a
tt

er
n

-
1

N
7
,N

8
U

n
w

a
n

te
d

p
a
tt

er
n

ty
p

e
1

m
i
n
_
c
o
n
s
e
c
u
t
i
v
e

2
;

f
u
t
u
r
e
_
n
r

is
a
ss

ig
n

ed
2

N
9
,

N
1

0
U

n
w

a
n

te
d

p
a
tt

er
n

ty
p

e
2

m
a
x
_
b
e
t
w
e
e
n

2
;

l
a
s
t
_
n
r

is
a
ss

ig
n

ed
0

N
1

1
,

N
1

2
,

N
1

3
T

w
o

fr
ee

d
a
y

s
a
ft

er
a

n
ig

h
t

sh
if

t
m
a
x
_
c
o
n
s
e
c
u
t
i
v
e

1
N

1
4

R
eq

u
es

te
d

d
a
y

o
ff

m
a
x
_
p
e
r
t

0
fo

r
ea

ch
v
a
lu

e
in

th
e

n
u

m
b

er
in

g
N

1
5

R
eq

u
es

te
d

sh
if

t
o
ff

m
a
x
_
p
e
r
t

0
fo

r
ea

ch
v
a
lu

e
in

th
e

n
u

m
b

er
in

g

Table 3.6: Mapping between numberings and constraints

34 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

3.3 Mathematical model

We present an exact description of the nurse rostering problem constraints
presented in Section 3.1. The objective is to minimize the following sum (3.1)
subject to the linear expressions in equations (3.2 - 3.33).

minimize{ V (T max) + V (T min) + V (CW max) + V (CW min)+
V (CF max) + V (CF min) + V (CWW max) + V (CWW min)+
V (CW) + V (CIW) + V (Doff) + V (Soff) + V (Don)+
V (Son) + V (SK) + V (PAT cons) + V (PAT free)}

(3.1)

Let N be the set of nurses, D the set of days in the scheduling period, W the set
of all weekends in the scheduling period, and S the set of shift types. Equation
(3.2) defines the binary decision variables xn,d,s. These state whether nurse n
is working shift type s on day d. A set of auxiliary variables pn,d is defined in
expression (3.3). These variables indicate whether nurse n is working any shift
type on day d. A similar set of auxiliary variables qn,w is defined in expression
(3.4). These indicate whether nurse n is working any shift during weekend w.
A weekend w is defined by its first day dw,1 and its length k (which is equal for
all weekends in the planning horizon)3.

∀n ∈ N, ∀d ∈ D, ∀s ∈ S : xn,d,s =

{

1 if nurse n works shift type s on day d
0 otherwise

(3.2)

∀n ∈ N, ∀d ∈ D : −|S|pn,d +
∑

s∈S

xn,d,s ≤ 0 and −pn,d +
∑

s∈S

xn,d,s ≥ 0 (3.3)

∀n ∈ N, ∀w ∈ W : −kqn,w +
k−1
∑

i=0

pn,dw,1+i
≤ 0 and −qn,w +

k−1
∑

i=0

pn,dw,1+i
≥ 0

(3.4)

3for example: a weekend w of k = 2 days consists of the consecutive days dw,1 and dw,2.

MATHEMATICAL MODEL 35

The two hard constraints (single assignment per day and the coverage
constraints) are enforced by expressions (3.5) and (3.6). Equation (3.5) defines
the coverage requirement constraints. These constraints Cd,s state the exact
number of nurses required to work shift type s on day d. Inequality (3.6) defines
the single assignment per day constraint. It states that nurses should work at
most one shift type per day.

∀d ∈ D, ∀s ∈ S :
∑

n∈N

xn,d,s = Cd,s (3.5)

∀n ∈ N, ∀d ∈ D :
∑

s∈S

xn,d,s ≤ 1 (3.6)

The soft constraints in the problem are described below. Each nurse n has
a weight W C

n associated with each constraint type C. When violated, the
constraints contribute to the objective function proportionally to the degree
of violation, multiplied by the individual weight assigned by the nurse to the
constraint which causes the violation. The objective function is represented in
equation (3.1). The goal is to minimize a sum of weighted constraint violations,
which are defined by the expressions (3.7 - 3.33).

Constraints T max
n and T min

n on the total workload of nurses limit respectively
the maximum and minimum number of shifts assigned per nurse n. The total
number of weighted constraint violations V (T max) and V (T min) are counted
in equations (3.7) and (3.8).

V (T max) =
∑

n∈N

W T max

n max{(
∑

d∈D

∑

s∈S

xn,d,s) − T max
n , 0} (3.7)

V (T min) =
∑

n∈N

W T min

n max{T min
n − (

∑

d∈D

∑

s∈S

xn,d,s), 0} (3.8)

The constraints CW max
n and CW min

n limit the maximum and minimum number
of consecutive working days for each nurse n. The total number of weighted
constraint violations V (CW max) and V (CW min) are counted in equations (3.9)
and (3.10), subject to the inequalities in expressions (3.12) and (3.14). For
d > 0, the auxiliary variables tn,d,0 in inequalities (3.12) indicate whether
nurse n works on day d while he or she is free on day d − 1. The auxiliary

36 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

variables tn,d,i in inequalities (3.14) indicate whether there is a consecutive row
of working days (of length i) for nurse n since day d.

V (CW max) =
∑

n∈N

W CW max

n

|D|−1−CW max
n

∑

d=0

max{(

CW max
n
∑

i=0

tn,d,i) − CW max
n , 0}

(3.9)

V (CW min) =
∑

n∈N

W CW min

n

∑

d∈D

(CW min
n tn,d,0 −

CW min
n −1
∑

i=0

tn,d,i) (3.10)

tn,d,0 = pn,d for d = 0 (3.11)

0 ≤ tn,d,0 ≤ 1 − pn,d−1 and pn,d − pn,d−1 ≤ tn,d,0 ≤ pn,d for d > 0 (3.12)

0 ≤ tn,d,i ≤ pn,d and tn,d,i ≤ tn,d,i−1 for i > 0 (3.13)

tn,d,i = 0 for d /∈ D (3.14)

Similarly, the constraints CF max
n and CF min

n limit the maximum and minimum
number of consecutive free days for each nurse n. The total number of weighted
constraint violations V (CF max) and V (CF min) are counted in equations (3.15)
and (3.16), subject to the inequalities in (3.18) and (3.20). For d > 0, the
auxiliary variables tn,d,0 in the inequalities (3.18) indicate whether nurse n
works on day d − 1 while he or she is free on day d. The auxiliary variables
tn,d,i in the inequalities (3.20) indicate whether there is a consecutive row of
free days (of length i) for nurse n since day d.

V (CF max) =
∑

n∈N

W CF max

n

|D|−1−CF max
n

∑

d=0

max{(

CF max
n
∑

i=0

tn,d,i) − CF max
n , 0}

(3.15)

MATHEMATICAL MODEL 37

V (CF min) =
∑

n∈N

W CF min

n

|D|−CF min
n

∑

d=0

(CF min
n tn,d,0 −

CF min
n −1
∑

i=0

tn,d,i) (3.16)

tn,d,0 = 1 − pn,d for d = 0 (3.17)

0 ≤ tn,d,0 ≤ pn,d−1 and pn,d−1 − pn,d ≤ tn,d,0 ≤ 1 − pn,d for d > 0 (3.18)

0 ≤ tn,d,i ≤ 1 − pn,d and tn,d,i ≤ tn,d,i−1 for i > 0 (3.19)

tn,d,i = 0 for d /∈ D (3.20)

Consecutiveness constraint CWW max
n limits the maximum number of consec-

utive working weekends per nurse n. The total number of weighted constraint
violations V (CWW max) is counted in equation (3.21).

V (CWW max) =

∑

n∈N

W CW W max

n

|W |−CW W max
n

∑

w=0

max{

CW W max
n

∑

i=0

qn,w+i −CWW max
n , 0}

(3.21)

The complete weekend constraints CWn ∈ {1, 0} specify whether or not nurse
n should work either all days or no days at all during a weekend4. The total
number of weighted constraint violations V (CW) is defined in equation (3.22).

V (CW) =
∑

n∈N

W CW
n

∑

w∈W

CWn(kqn,w −

k−1
∑

i=0

pn,dw,1+i
) (3.22)

Similarly, the complete identical weekend constraints CIWn ∈ {1, 0} specify
whether or not nurse n should work the same shift type on all days in a
(complete) weekend5. The total number of weighted constraint violations

4CWn = 1 if nurse n needs to work complete weekends, CWn = 0 if she or he can work
an arbitrary number of days in a weekend.

5CIWn = 1 if nurse n should work identical days during a weekend, CIWn = 0 if he or
she can work different shift types during the days of a weekend.

38 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

V (CIW) is defined in equation (3.23), subject to the inequalities in (3.24). The
auxiliary variables tn,w,s in the inequalities in (3.24) indicate whether nurse n
is working shift type s during weekend w.

V (CIW) =
∑

n∈N

W CIW
n

∑

w∈W

∑

s∈S

CIWn(tn,w,sk −
k−1
∑

i=0

xn,d+i,s) (3.23)

−tn,w,sk +
k−1
∑

i=0

xn,dw,1+i,s ≤ 0 and − tn,w,s +
k−1
∑

i=0

xn,dw,1+i,s ≥ 0 (3.24)

Nurses can request to be free or to work on specific days or to have certain
shifts assigned on a specific day. Let Doff be the set of requests reqoff

n,d denoting
nurse n does not want to work on day d and Don be the set of requests reqon

n,d

denoting nurse n prefers to work on day d. Let Soff be the set of requests
reqoff

n,d,s denoting nurse n does not want to work shift type s on day d and Son

be the set of requests reqon
n,d,s denoting nurse n wants to work shift type s on

day d. The total number of weighted constraint violations V (Doff), V (Don),
V (Soff) and V (Son) are counted in equations (3.25), (3.26), (3.27) and (3.28)
respectively.

V (Doff) =
∑

reqoff

n,d
∈Doff

W Doff

n

∑

s∈S

xn,d,s (3.25)

V (Don) =
∑

reqon
n,d

∈Don

W Don

n (1 − min{1, (
∑

s∈S

xn,d,s)}) (3.26)

V (Soff) =
∑

reqoff

n,d,s
∈Soff

W Soff

n xn,d,s (3.27)

V (Son) =
∑

reqon
n,d,s

∈Son

W Son

n (1 − xn,d,s) (3.28)

The alternative skill constraint SKalt ∈ {0, 1} is common to all nurses. It
specifies whether or not nurses can be assigned shift types for which they do
not have all the required skills6. The weighted number of constraint violations

6SKalt = 0 if nurses are allowed to work shift types for which they do not have all the
required skills, SKalt = 1 otherwise.

MATHEMATICAL MODEL 39

V (SK) is defined in equation (3.29), subject to the inequalities in (3.30) and
(3.31). SK is the set of skills sk that are present in the problem, SKs is the
set of skills nurses are requried to have when they are assigned a shift of type
s and SKn is the set of skills of nurse n. The auxiliary variables rn,s in (3.31)
denote whether nurse n has the required skills to work shift s. The variables
bn,sk denote whether nurse n has skill sk.7 Hence, the variables tn,d,s in the
inequality (3.30) equal 1 if and only if nurse n works shift type s on day d,
while not having all the required skills.

V (SK) = SKalt.W SK
∑

n∈N

∑

d∈D

∑

s∈S

tn,d,s (3.29)

tn,d,s ≥ xn,d,s − rn,s (3.30)

−rn,s|SKs|+
∑

sk∈SKs

bn,sk ≥ 0 and −rn,s −|SKs|+1+
∑

sk∈SKs

bn,sk ≥ 0 (3.31)

We distinguished three unwanted pattern types. The first pattern type avoids
nurse to work a specific or any shift on a day before a series of free days. Each
nurse has a set PATwork

n of patterns pat that are unwanted. Each pattern pat
consists of a starting day sd (i.e. the day on which a shift has to be assigned)
and a certain length l. The second pattern type avoids nurses to have a free
day before working one of the successive days. Similarly, each nurse has a set
PATfree

n . The starting day sd now denotes the day that should be free. The last
pattern type is a series of consecutive shifts (starting on any day) that should
be avoided. Again, each nurse has a set PATcons

n with patterns pat denoting an
unwanted sequence of shift types si and a certain length, l. The total number
of weighted violations V (PATwork), V (PATfree) and V (PATcons) are counted
in equations (3.34) and (3.33) respectively.

V (PATwork) =
∑

n∈N

W PATwork

n

∑

pat∈PATwork
n

pn,sdmax{1− l−
l
∑

i=1

(1−pn,sd+i), 0}

(3.32)

7bn,sk = 1 if sk ∈ SKn and bn,sk = 0 otherwise.

40 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

V (PATfree) =
∑

n∈N

W PATfree

n

∑

pat∈PAT
free
n

(1−pn,sd)max{(
l
∑

i=1

pn,sd+i)− l+1, 0}

(3.33)

V (PATcons) =
∑

d∈D

∑

n∈N

W PATcons

n

∑

pat∈PATcons
n

max{

l
∑

i=1

(xn,d+i,si
)−l+1, 0} (3.34)

CONCLUSION 41

3.4 Conclusion

We gave a detailed description of the nurse rostering problem that is the subject
of this thesis. We emphasised the need for a clear, formal and unambiguous
representation of the problem under study. If no such description is given,
problems may arise. As the model in this thesis is based on the nurse rostering
problem considered by Brucker et al. (2010), we highlight a problem that may
arise because the authors only gave an informal description of the studied nurse
rostering problem (and the associated constraints). For some constraints, an
evaluation for one particular simplified sample instance is given. The set of
constraints is listed in a table and the violation measurement factor for each
constraint is given. The description of some constraints is ambiguous. For
example, the violation measurement factor for the constraint “An early shift
after a day shift should be avoided” is “Number of early shifts after day shifts”.
It is unclear what the precise amount of violation is when an early shift is
detected after a day shift. Is it the number of early shifts that follow that day
shift? Or is it the number of occurrences of an early shift after a day shift? No
formal specification on the evaluation of instances is given, leaving the reader
to figure out the details of the objective function.

Good practice requires providing solution evaluators for benchmarking in-
stances for validation of research results. Evaluators may not be suitable
for incorporating into solution methods. The evaluator may be too slow or
implemented in a different programming language. Some methods benefit from
delta evaluation of the objective function. For example, some local search
neighbourhoods only partially influence the objective function. Hence, only
those parts need to be reevaluated. Despite the availability of an evaluator,
researchers are still required to build own implementations. This is hard in
case only informal descriptions are given. At best, the objective function is
defined by a mathematical representation. But even then, ambiguities may
arise, leading to misinterpretations and faulty implementations.

For instance, as Smet et al. (2012a) point out, some constraints can be
interpreted differently at the borders of the scheduling period. The authors
provide a detailed informal description of a rich generic model, extending the
model provided by Bilgin et al. (2012), fitting the component where possible
in the categorisation of De Causmaecker and Vanden Berghe (2011). Although
the authors emphasize the need for a consistent evaluation procedure capable of
handling problems arising when considering the previous and future planning
horizon, a detailed unambiguous description of the evaluation of the constraint
is not provided. For example, if a series of 5 consecutive assignments is
required and only 3 consecutive shifts are detected, what is the size of violation?
Although one can argue the violation naturally has size 2, this information

42 FORMAL MODELS FOR NURSE ROSTERING PROBLEMS

should be provided formally to avoid misinterpretations and ambiguities.

The aforementioned contributions all introduce a benchmark set based on the
proposed models. The models are available for downloading from some specific
websites. Unfortunately, the instances are often provided on personal websites
of the researchers who developed the benchmark sets. Problematic about
this way of publicly offering benchmark sets is the perishableness of certain
websites. For example, the benchmark sets of Brucker et al. (2010) and Bilgin
et al. (2012) are, at the time of writing, not available anymore at the website
specified within the paper. Special attention should be paid so that data is not
made available on transient websites such as personal pages of researchers and
temporary project websites.

To overcome the above listed problems, besides an informal description of the
nurse rostering problem (and its constraints) under study, we formally defined
each constraint by using numberings and by a mathematical formulation.
Both representation methods clearly and unambiguously provide details on
the evaluation of solutions to problem instances.

The use of numberings allows the use of the efficient evaluation procedure
of (Burke et al., 2001). The evaluation method does not need to be altered
to incorporate new constraints. It is sufficient to formulate a numbering
for the new constraints. It is not in all cases obvious and sometimes even
impossible to find a suitable numbering. For example, fairness constraints such
as balancing the number of constraints violations between the nurses cannot
be expressed using numberings. Currently the roster of one nurse can raise
the majority of constraint violations while the other nurses’ roster have low
costs assigned. Expressing some constraints using numberings may lead to an
unnatural evaluation of the constraints. One example we encountered is the
constraint requiring nurses to work complete weekends (see Appendix B for
more details on the constraint). A natural cost associated with this constraint
is the number of non working days in a working weekend. For example consider
a weekend consisings of three days (Friday-Saturday-Sunday). If a nurse works
on Friday and Sunday and is free on Saturday, naturally a violation of size 1 is
detected. However, expressing the constraints using numberings raises a cost
of 4.

The use of numberings allows for an automated translation of nurse rostering
problem instances into other problem domains. Chapter 4 demonstrates the
translation to satifiability and mixed integer problems. As we will show, and
analogously to the evaluation mechanism, introducing new constraints does not
require altering the translation schemes.

CONCLUSION 43

As we do not consider the previous and planning period, it was sufficient to
introduce the variables last_nr and future_nr denoting how to evaluate the
constraints at the borders of the planning period. The method should be
extended to take history and future into account. Special attention needs to
be paid to consistency. Using the method presented in this thesis for history
and future may lead to an inconsistent evaluation of the rosters. Constraint
violations at the borders can be counted double, once as a violation with respect
to future and once with respect to history.

Chapter 4

Automated translation of
nurse rostering problem
instances to SAT and MIP
models

In this chapter we present schemes for automatically translating nurse rostering
problem instances, that can be expressed using the numberings discussed
in Chapter 3, into satisfiability problem instances (SAT) and mixed integer
programs (MIP).

A Satisfiability (SAT) problem consists of deciding whether a given Boolean
formula in conjunctive normal form has an assignment that ’makes the formula
true’. Cook (1971) showed that the problem is NP-complete. A formula consist
of literals, i.e. variables or their negation. For example, x is a positive literal
and ¬x is a negative literal. Literals can be combined using ∨ and ∧. A
formula is in Conjunctive Normal Form (CNF) if it is a conjunction of one or
more conjuncts, which are all disjunctions of literals, e.g. (x1 ∨ x2) ∧ (x3 ∨ x4).
A formula is often referred to as a clause.

The SAT-translation scheme was designed for a hardness study of nurse
rostering problem instances (Bilgin et al., 2009). Some algorithms perform well
on some specific instances while those same algorithms perform worse on others.
Leyton-Brown et al. (2006) present an experimental approach for predicting the
run time of algorithms designed to solve the winner determination problem for

45

46 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

combinatorial auctions. The previous strategy was applied to the more abstract
problem of propositional satisfiability (Nudelman et al., 2004) introducing a
set of 91 features for the runtime prediction of several algorithms that prove
whether a certain problem instance is satisfiable or not. This work has led to the
construction of SATzilla, a port-folio solver for SAT problems (Xu et al., 2008).
This portfolio was very successful, winning several tracks of different SAT
competitions1. The aforementioned SAT-features set is, combined with hand
crafted features representing expert knowledge, used to predict the runtime of
a certain algorithm and the value of the objective function obtained by the
algorithm.

A second potential of the SAT translation scheme is applying SAT (or
MaxSAT) solvers to nurse rostering problem instances. As a first attempt,
Acharyya (2008) translated a simple nurse rostering problem with a small set
of constraints into SAT and applied GSAT to solve it. The approach is limited
to small instances as the number of clauses needed to represent an instance
increases rapidly with the size of the instance. It is thus important to develop
efficient encodings of the constraints.

Modeling optimisation problems involving constraints on sequences of decision
variables to MIP (and SAT) can be very complex (Côté et al., 2011). Special
attention is paid to the translation of counting constraints into SAT clauses.
We present an efficient translation procedure generating O(n2) clauses and
O(nlogn) variables. Bailleux and Boufkhad (2003) developed a translation
scheme with similar complexity. Sinz (2005) provides a O(n.k) and Asín et al.
(2009) a O(nlog2(k)) scheme to translate the constraint x1 + . . . + xn ≤ k.
All contributions however, only provide a one way translation, preserving arc
consistency. As we do not solely focus on solving nurse rostering problems
using SAT, a two way translation is required.

Cadoli and Schaerf (2005) present the automated translation of problem
specifications expressed in NP-SEC into SAT. NP-SEC is a logic based language
capable of expressing all problems belonging to complexity class NP. The
authors tested the system on a few classical problems such as graph colouring
and job-shop scheduling, NP-complete problems with a rather simple problem
definition. The authors highlight the benefits of an automated approach.
Although the performance of SAT solvers on the generated instances is often
inferior to manual encodings, the authors stem that the system is a valuable
tool for developing fast prototypes for new problems, or variations of known
ones for which no specific solver is available.

1More information about these competitions can be found at
http://www.satcompetition.org

http://www.satcompetition.org

FORMAL DEFINITIONS OF GENERIC CONSTRAINTS 47

4.1 Formal definitions of generic constraints

In this study, we only consider monotonically ascending (Definition 7)
numberings. As shown in Appendix C, this does not limit the expression of
the constraints of our model as introduced in Chapter 3.

Definition 7. A numbering Ni is monotonically ascending if, for every two
time units ja and jb for which Ni is defined (6= U), ja < jb ⇒ Ni(ja) ≤ Ni(jb).

The constraints on the numberings can be expressed using event sets. An
important concept in the expression of constraints is the notion of event
sequences, in particular sequences that increase at a steady pace.

Definition 8. The event set E of a numbering Ni and a personal schedule Sp

is the set TSp,Ni
.

With every event e ∈ E, a unique number (∈ Ni) is associated. We refer to
Section 3.2 for detailed information on the definition of Sp and TSp,Ni

.

Definition 9. An event sequence r is any sequence of events ej from E, (j =
0 . . . m), conserving the order of the time units corresponding to the events.

Definition 10. A sequence r is contiguously ascending if ∀j ∈ {1, . . . , m} :
ej − ej−1 = 1.

We can now give formal definitions for the constraints in Table 4.1. The
constraints presented in Section 3.1 can all be represented by one of these
eight constraint types.

4.2 Translation of generic constraints to SAT

We present a scheme to translate each of the eight generic constraints from
Table 4.1 to CNF SAT clauses. A preprocessing step is performed before the
translation of the constraint types.

4.2.1 Preprocessing

We introduce boolean decision variables vp,j indicating whether nurse p is
working on time unit j. Since the expression of the sequence constraints is

48 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

Type Constraint Value Definition
consecutiveness max_consecutive maxc There is no contiguously

ascending event sequence
of length maxc + 1

consecutiveness min_consecutive minc There is no contiguously
ascending event sequence
of length l: minc > l ≥
1, which is not part of
another ascending event
sequence of length at least
minc.

between max_between maxb For any two consecutive
events ej and ej+1,
Ni(ej+1)−Ni(ej) ≤ maxb

between min_between minb For any two consecutive
events ej and ej+1,
Ni(ej+1) − Ni(ej) ≤
1 or Ni(ej+1) − Ni(ej) ≥
minb

total max_total maxt The event set E contains
at most maxt events

total min_total mint The event set E contains
at least mint events

perType(k) max_perType(k) maxpt The event set E contains
at most maxpt events cor-
rensponding to a number
k

perType(k) min_perType(k) minpt If the event set E contains
an event corresponding to
a number k, then it con-
tains at least minpt events
corresponding to k

Table 4.1: Formal definition of eight generic constraints

basically the same for all employees, we denote vp,j as vj , in order to simplify
the notation.

For some numberings, consecutive time units are assigned the same number,
e.g. numbering N1 in Table 4.2 does not distinguish between different shifts on
the same day. Hence it is natural to introduce a variable ti indicating for each

TRANSLATION OF GENERIC CONSTRAINTS TO SAT 49

sequence of consecutive time units with equal numbers whether an employee is
working on a time unit within that sequence. Generally, for such a sequence of
time units starting at k and ending at l:

ti ⇔
l
∨

j=k

vj

In cnf, each variable definition translates into the following clauses:

¬ti ∨ (
l
∨

j=k

vj) and
l
∧

j=k

(ti ∨ ¬vj)

This results in 2 + l − k clauses. For n numbers in the numbering we generate
at most ⌈n/2⌉ variables and at most 1 + ⌈n/2⌉ clauses. The preprocessing step
thus results in O(n) variables and O(n) clauses. An example can be found in
Table 4.2.

Preprocessing for between constraints

Translating ’between’ constraints requires a slightly different preprocessing step.
Where a numbering is interrupted, one or more implicit variables with value
’False’ should be placed. An example is given in Table 4.3, both variables t3 ≡
False and t4 ≡ False. Without the implicit variables, some event sequences
would lack. Suppose we want a gap of at most 1 between two consecutive
events and an event occurs for t2 (v3 = True or v4 = True) and t5 (v5 = True
or v6 = True). Between the two events, there is a gap of 2. By omitting the
implicit variables, the two event sequences detecting the violation would be
missing.

50 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

D
ay

M
o

T
u

W
e

T
h

F
r

S
a

S
u

S
h
if

t
ty

p
e

E
L

E
L

E
L

E
L

E
L

E
L

E
L

T
im

e
u
n
it

1
2

3
4

5
6

7
8

9
10

11
12

13
14

V
ar

ia
b
le

v 1
v 2

v 3
v 4

v 5
v 6

v 7
v 8

v 9
v 1

0
v 1

1
v 1

2
v 1

3
v 1

4

N
u
m

b
er

in
g

N
1

1
1

2
2

3
3

4
4

5
5

6
6

7
7

P
re

p
ro

ce
ss

in
g

t 1
t 2

t 3
t 4

t 5
t 6

t 7

N
u
m

b
er

in
g

N
2

1
1

1
U

U
2

3
3

3
U

U
4

4
4

P
re

p
ro

ce
ss

in
g

t 1
-

t 2
t 3

-
t 4

D
ay

M
o

T
u

W
e

T
h

F
r

S
a

S
u

S
h
if

t
ty

p
e

E
L

E
L

E
L

E
L

E
L

E
L

E
L

T
im

e
u
n
it

15
16

17
18

19
20

21
22

23
24

25
26

27
28

V
ar

ia
b
le

v 1
5

v 1
6

v 1
7

v 1
8

v 1
9

v 2
0

v 2
1

v 2
2

v 2
3

v 2
4

v 2
5

v 2
6

v 2
7

v 2
8

N
u
m

b
er

in
g

N
1

8
8

9
9

10
10

11
11

12
12

13
13

14
14

P
re

p
ro

ce
ss

in
g

t 8
t 9

t 1
0

t 1
1

t 1
2

t 1
3

t 1
4

N
u
m

b
er

in
g

N
2

5
5

5
6

6
6

6
U

U
U

8
8

8
8

P
re

p
ro

ce
ss

in
g

t 5
t 6

−
t 7

Table 4.2: Preprocessing

TRANSLATION OF GENERIC CONSTRAINTS TO SAT 51

Time unit 1 2 3 4 - - 5 6 7 8

Numbering 1 1 2 2 - - 5 5 6 6

Variable v1 v2 v3 v4 - - v5 v6 v7 v8

Preprocessing t1 t2 t3 t4 t5 t6

Table 4.3: Preprocessing for ’between’ constraints

4.2.2 Translation of ’consecutive’ and ’between’ constraints

Maximum number of consecutive events and free time units between two
events.

As stated in Table 4.1 there should not be a contiguously ascending event
sequence of length maxc + 1. For every contiguously ascending sequence cas
(casi is the index in the original sequence of the ith variable within cas) we have
the following clauses:

¬

(

maxc
∧

i=0

tcasi

)

, in cnf:
maxc
∨

i=0

(¬tcasi
)

Analogously, for a maximum gap between two events, we obtain:

¬

(

maxb
∧

i=0

¬tcasi

)

, in cnf:
maxb
∨

i=0

(tcasi
)

In general, translating the constraints for a monotonically ascending numbering
with n numbers generates at most (n − maxc), respectively (n − maxb) clauses
and no extra variables.

Minimum number of consecutive events and free time units between two
events

Following Table 4.1, there should not be a contiguously ascending event
sequence of length l (minc > l > 1) which is not part of another contiguously
ascending event sequence of length at least minc. This implies that in any

52 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

consecutive sequence of variables ti of length l (minc + 1 ≥ l ≥ 3) the
middle variables cannot be true without one of the border variables. For every
contiguously ascending sequence cas of length l (3 ≤ l ≤ minc + 1) this results
in the following clauses:

¬

(

¬tcas0
∧ ¬tcasl−1

∧

(

l−2
∧

i=1

tcasi
)

))

, in cnf: tcas0
∨ tcasl−1

∨

(

l−2
∨

i=1

¬tcasi

)

Analogously, for a minimum gap between two events, we obtain:

¬

(

tcas0
∧ tcasl−1

∧

(

l−2
∧

i=1

¬tcasi
)

))

, in cnf: ¬tcas0
∨ ¬tcasl−1

∨

(

l−2
∨

i=1

tcasi

)

In general, translating the constraints for a monotonically ascending numbering
consisting of n numbers, generates at most (n − minc) clauses and no extra
variables.

4.2.3 Translation of counting constraints

We developed an efficient general procedure for translating counting constraints
into CNF clauses. First we elaborate on the procedure in general. Then we
show how to translate total and pert constraint types using this procedure.

General procedure

This procedure uses an iterative process of introducing variables and clauses.
We start by some elementary definitions.

Definition 11. V is the set of variables vi for which we want to count the
number of variables that are assigned true.

Definition 12. Uα,β is the set of indices (of time units) k between α and β
for which vk in V is assigned true.

Definition 13. Fα,β is the set of indices (of time units) k between α and β
for which vk in V is assigned false.

TRANSLATION OF GENERIC CONSTRAINTS TO SAT 53

We then introduce the variables ui, respectively fi, denoting whether there are
at least i elements in the set U1,n, respectively F1,n, with n the number of
elements in V :

ui ⇔ |U1,n| ≥ i for i ∈ {1, . . . , n} (4.1)

fi ⇔ |F1,n| ≥ i for i ∈ {1, . . . , n} (4.2)

More generally, we introduce the variables ux,y,z (fx,y,z) denoting whether there
are at least z events in the set Ux,y (Fx,y):

ux,y,z ⇔ |Ux,y| ≥ z (4.3)

fx,y,z ⇔ |Fx,y| ≥ z (4.4)

In the remainder of this section, we only consider equivalence (4.3). As ui =
u1,n,i, for representing equivalence (4.1), we show we only need to translate:

u1,n,i ⇒ |U1,n| ≥ i (4.5)

By contradiction, the other direction of the equivalence

|U1,n| ≥ i ⇒ u1,n,i (4.6)

is equivalent with

¬u1,n,i ⇒ ¬(|U1,n| ≥ i) (4.7)

If no i variables may be assigned true, at least n − i + 1 variables should be
assigned false:

¬ui ⇔ (|U1,n| < i) ⇔ (|F1,n| ≥ n − i + 1) ⇔ fn−i+1 (4.8)

54 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

Using (4.8), implication (4.7) becomes:

fn−i+1 ⇒ |F1,n| ≥ n − i + 1 (4.9)

This can be translated in the same way as we translate (4.5).

Translation of u1,n,i ⇒ |U1,n| ≥ i

First we prove the equivalence of u1,n,i and (u1, n
2 ,k ∨ u n

2 +1,n,l) for k + l = i + 1.

Lemma 1. u1,n,i ⇒ (u1, n
2 ,k ∨ u n

2 +1,n,l) for k + l = i + 1

In words, when U1,n contains at least i elements, then U1, n
2

contains at least
k elements or U n

2 +1,n contains at least l elements. We will prove this by
contradiction.

Proof. Let k0 be the number of elements in U1, n
2

and l0 the number of elements
U n

2 +1,n, then i0 = k0 + l0 is the number of elements in U1,n.
Suppose that the right part of the implication does not hold, then we have
k0 < k and l0 < l

(k0 < k) and (l0 < l)
⇔ (k0 ≤ k − 1) and (l0 ≤ l − 1)
⇒ (k0 + l0) ≤ (k + l − 1 − 1)
⇔ i0 ≤ (i − 1)
⇔ i0 < i

which is per definition ¬u1,n,i and thus contradicts the left part of the
implication.

Using the above lemma we can split up the event sets and rewrite the definition
of u1,n,i as:

u1,n,i ⇒ (u1, n
2 ,k∨u n

2 +1,n,l) for all k ≥ 0, l ≥ 0 s.t. k+l = i+1, i ∈ {1, . . . , n}

This is equivalent to:

u1,n,i ⇒
∧

k,l

(u1, n
2 ,k∨u n

2 +1,n,l) for all k ≥ 0, l ≥ 0 s.t. k+l = i+1, i ∈ {1, . . . , n}

TRANSLATION OF GENERIC CONSTRAINTS TO SAT 55

This implication is then formulated as a CNF formula:

∧

k,l

(¬u1,n,i ∨ u1, n
2 ,k ∨ u n

2 +1,n,l) for all k ≥ 0, l ≥ 0 s.t. k + l = i

Given the limitations we can find (i + 2) pairs of values for k and l. Hence we
need a total of (i + 2) clauses to represent this implication as a cnf formula.
This procedure essentially expresses the variable u1,n,i in terms of lower level
variables u1, n

2 ,k and u n
2 +1,n,l. We need 2(i+2) lower level variables to represent

the clauses. We must note here that we do not always need all of these lower
level variables, indeed the variables u1, n

2 ,z and u n
2 +1,n,z with z > (n

2 + 1) will
trivially be false, since there can not be more than (n

2 + 1) indices in the sets
U1, n

2
or U n

2 +1,n. In general, a variable ux,y,z with z > (y −x+1) will always be
trivially false. This brings the actual number of lower level to at most 2(n

2 +1).

Generally, we need min((n + 2), 2(i + 2)) lower level variables. In the worst
case, when i equals n, this is (n + 2).

Whereas the original definition of ui used sets of size n, we are now left with
sets of size n

2 . We repeat this recursively until the sets are of size 1. The
variables ux,x,0 and ux,x,1 then correspond to ¬vx and vx respectively.

The ‘left’ variables u1, n
2 ,k with different k will in their turn all use the same

lower level variables u1, n
4 ,k′ and u n

4 +1, n
2 ,l′ . This is similar for the ‘right’

variables. The second iteration will thus introduce 2.(n/2 + 2) lower level
variables. The total process will ultimately introduce the following number of
lower level variables:

n + 2 + 2(n/2 + 2) + 4(n/4 + 2) + . . . + 2k−1(n/2k−1 + 2) for 2k = n
= n + 2 + n + 4 + n + 8 + . . . + n + 2n

which equals

(n + n + · · · + n) + (2.20 + 2.21 + 2.22 + · · · + 2.2k−1)
with twice k = log2n terms

= nlog2n + Σk
i=1(2i)

= nlog2n + 2n − 2
= O(nlogn + n)
= O(nlogn)

The first iteration introduces (i+2) lower level clauses. In the worst case i equals
n, thus (n + 2) clauses are introduced. To count the total number of clauses,
we first look at an example. When n = 7, the variable u1,7,7 is expressed using
the variables (u1,3,0, u1,3,1, u1,3,2, u1,3,3) and (u4,7,0, u4,7,1, u4,7,2, u4,7,3, u4,7,4).

56 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

The second iteration will introduce (i + 2) clauses for each of these variables
(i ∈ {0, . . . , n

2 }), so in total (3 + 4 + 5 + 6) + (3 + 4 + 5 + 6 + 7). In a formula,
the set of k and l variables will produce the following number of clauses

⌊n/2⌋
∑

i=0

(i + 1) +
⌈n/2⌉
∑

i=0

(i + 1)

which is O(n2).

Translation of total and perType constraints

For an employee p and numbering Nx, the total constraints impose restrictions
on the minimum and maximum number of decision variables vp,j (for which
Nx is defined) that can be assigned true in a given personal schedule Sp.
Definition 11 to 13 can be rewritten:

Definition 14. V is the set of variables vp,i for which the given numbering Nx

is defined.

For the following we assume that set V contains n elements.

Definition 15. Uα,β is the set of indices (of time units) k between α and β
for which vk in V is assigned true in a given personal schedule Sp.

Definition 16. Fα,β is the set of indices (of time units) k between α and β
for which vk in V is assigned false in a given personal schedule Sp.

TRANSLATION OF GENERIC CONSTRAINTS TO SAT 57

More formally:

V = {vp,i|i ∈ TNx
}

Uα,β = {k|vp,k ∧ k ∈ TNx
∧ (α ≤ k ≤ β)}

Fα,β = {k|¬vp,k ∧ k ∈ TNx
∧ (α ≤ k ≤ β)}

A min_total = mint constraint can be translated to SAT by using the general
procedure from the previous section to express:

umint
⇔ |U1,n| ≥ mint

A max_total = maxt constraint means at least n − maxt variables should be
assigned false. Analogously, this can be expressed by translating

fn−maxt
⇔ |F1,n| ≥ n − maxt

The translation of pertType constraints is similar. The only difference is that
the set of variables V is limited to those corresponding to a specific value j.

V = {vp,i|i ∈ TNx
∧ Nx(i) = j}

58 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

4.3 Translation of generic constraints to MIP

We translate the nurse rostering problem consisting of the entire constraint set
of Table 4.1 into a mixed integer program. The constraints follow the same
structure as the constraints in the mathematical description in Section 3.3
but now with an individual numbering as starting point instead of the nurse
rostering problem instance. Let P be the set of nurses and T the set of time
units in the scheduling period. We introduce binary decision variables vp,t

denoting whether nurse p is assigned a shift on time unit t.

∀p ∈ P, ∀t ∈ T : vp,t =

{

1 if nurse p works a shift on time unit t
0 otherwise

(4.10)

Analogously to the preprocessing step in the SAT translation scheme in Section
4.2.1, we introduce auxiliary variables tp,i indicating for each sequence of
consecutive time units with equal numbers whether an employee p is working on
a time unit within that sequence. Generally, for an employee p and a sequence
i starting at k and ending at l:

−(l − k + 1)tp,i +
l
∑

j=k

vp,j ≤ 0 and −tp,i +
l
∑

j=k

vp,j ≥ 0 (4.11)

In the following sections, to simplify the notation, we denote vp,t resp. tp,j as
vt and tj .

Let C be the set of all constraints. Each c ∈ C is of one of the eight generic
constraint types. Each constraint c has a weight W c associated. When violated,
a constraint contributes to the objective function proportionally to the degree
of violation, multiplied by the individual weight of the constraint. The goal is
to minimize a sum of weighted constraint violations:

minimize{
∑

c∈C

W c.V (c)} (4.12)

In the following section we show how to count constraint violations for each of
the eight constraint types defined in Section 4.1.

TRANSLATION OF GENERIC CONSTRAINTS TO MIP 59

4.3.1 Translation of consecutive constraints

Maximum number of consecutive events

Let CASmaxc be the set of all contiguously ascending event sequences of length
maxc + 1. Consider a contiguously ascending event sequence cas ∈ CASmaxc .
Every such sequence contains indices casi of the time units on which an event
occurs. The constraint violations are calculated as follows:

V (maxc) =
∑

cas∈CASmaxc

max{(
maxc
∑

j=0

tcasj
) − maxc, 0} (4.13)

Minimum number of consecutive events

To express this constraint type, we introduce the concept of a ’maximally
contiguously ascending event sequence’. Consider tk, respectively tl, as the
time unit associated with the first, respectively last event of the sequence
r = {e0, . . . , em−1}.

Definition 17. A sequence r is maximally contiguously ascending if no event
ei with number ni on time unit ti exists with ei = e0 − 1 and ti < tk or with
ei = em−1 + 1 and ti > tl

For every maximally contiguously ascending event sequence r of length m:

V (minc) =
m−1
∑

j=0

(minc.uj,0 −

minc
∑

k=1

uj,k) (4.14)

with

0 ≤ uj,0 ≤ trj
and trj+1

− trj
≤ uj,0 ≤ trj+1

and
0 ≤ uj,k ≤ trk+1

and uj,k ≤ uj,k−1

4.3.2 Translation of ’between’ constraints

Maximum gap between events

Let CASmaxb be the set of all contiguously ascending event sequences of length
maxb + 1. Consider a contiguously ascending event sequence cas ∈ CASmaxb .

60 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

Every such sequence contains indices casi of the time units on which an event
occurs. The constraint violations are calculated as follows:

V (maxb) =
∑

cas∈CASmaxb

max{(
maxb
∑

j=0

(1 − tcasj
)) − maxc, 0} (4.15)

Minimum gap between events

For every maximally contiguously ascending event sequence r of length m:

V (minc) =
m−1
∑

j=0

(minb.uj,0 −

minb
∑

k=1

uj,k) (4.16)

with

0 ≤ uj,0 ≤ trj
and trj

− trj+1
≤ uj,0 ≤ trj+1

and
0 ≤ uj,k ≤ 1 − trk+1

and uj,k ≤ uj,k−1

4.3.3 Translation of counting constraints

Maximum and minimum number of events

Let J be the set of indices of time units for which a numbering Ni is defined:

J = {t ∈ T |Ni(t) 6= U} (4.17)

The constraint violations of a ’counting’ constraint can be calculated as follows:

V (maxt) = max{
∑

j∈J

vj − maxt, 0} (4.18)

V (mint) = max{mint −
∑

j∈J

vj , 0} (4.19)

EXPERIMENT 61

Note that we are using variables vj instead of variables tj as opposed to the
previously discussed constraint types. The specific value of the numbering
plays no role in the evaluation of counting constraints. Only the fact that
a numbering is defined determines when a time unit needs to be taken into
account.

Maximum and minimum number of events per type

The main difference with the previous constraint type is that, for evaluating
this constraint, the specific value of a numbering does play a role. We still use
the variables vj . The limits are set on the number of events ’having the same
number n’. Let Jn be the set of indices of time units for which a numbering Ni

has value n:

Jn = {t ∈ T |Ni(t) = n} (4.20)

For a numbering Ni, the constraint violations are calculated as follows:

V (maxpt) =
∑

n∈Ni

max{
∑

j∈Jn

vj − maxpt, 0} (4.21)

V (minpt) =
∑

n∈Ni

max{minpt −
∑

j∈Jn

vj , 0} (4.22)

4.4 Experiment

We translated the instances of the “First International Nurse Rostering
Competition 2010” (Chapter 5) to SAT using the above presented translation
scheme. The competition instances come in three categories:

• sprint: 10 employees, allowed to run for 10 seconds

• medium: 30 employees, allowed to run for 10 minutes

• long: 50 employees, allowed to run for 10 hours

62 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

Instance Time (msec) Nb. vars. Nb. clauses
s
p

r
in

t

early01 2535 79741 489530
early02 1509 79681 488554
early03 1534 79705 488676
early04 1528 79521 486730
early05 1775 79681 488540
early06 1605 79613 487070
early07 1514 79621 487744
early08 1429 79485 484898
early09 1624 79681 488588
early10 1502 79673 488064
late01 2243 82103 491873
late02 625 58666 301847
late03 1835 82119 491969
late04 1487 82119 491994
late05 1509 81995 491300
late06 1442 78185 481400
late07 1400 78241 481438
late08 1372 78092 480933
late09 1525 78288 481423
late10 1417 78293 481998

hidden01 1363 58365 300892
hidden02 648 58357 300716
hidden03 1687 82202 493117
hidden04 1471 79530 486105
hidden05 1499 82180 491778
hidden06 621 58458 301207
hidden07 650 58471 301121
hidden08 1957 82287 493468
hidden09 1710 79639 486547
hidden10 1542 82291 492229

Table 4.4: Conversion of sprint instances to SAT

Instance Time (msec) Nb. vars. Nb. clauses

m
e

d
iu

m

early01 4974 264895 1743766
early02 4274 265375 1752231
early03 4040 265375 1751949
early04 3641 264627 1742319
early05 4083 265453 1756798
late01 2749 265917 1706898
late02 2624 265669 1702051
late03 2475 256481 1689016
late04 3318 264969 1705168
late05 5439 388455 2450568

hidden01 7088 340822 2445764
hidden02 5176 340982 2447166
hidden03 5332 340570 2445260
hidden04 5426 340982 2447116
hidden05 5254 339926 2443396

Table 4.5: Conversion of medium instances to SAT

As expected, all instances turned out to be unsatisfiable. At least two
conflicting constraints remain and a zero cost cannot be obtained. In Tables 4.4
to 4.6, we show for each instance the time needed to convert the instance and the
dimensions, number of variables and number of clauses, of the corresponding
SAT problem. As expected, the running time increases as the problem size
increases. The difference in calculation time within one category can be
explained by the number of counting constraints present within an instance
as the counting constraints types (total and pert) are the most time consuming
constraints to convert.

CONCLUSION 63

Instance Time (msec) Nb. vars. Nb. clauses
lo

n
g

early01 19876 560821 4347683
early02 19096 562089 4370894
early03 19003 562159 4374424
early04 19147 560885 4364509
early05 18875 561151 4358326
late01 7640 594764 4518776
late02 7899 594764 4518984
late03 7575 594796 4518984
late04 7643 594796 4519072
late05 7644 592472 4506166

hidden01 12413 595598 4519059
hidden02 8008 595598 4519059
hidden03 7715 596428 4514030
hidden04 7786 594934 4515035
hidden05 7863 592108 4513510

Table 4.6: Conversion of long instances to SAT

4.5 Conclusion

The main contribution of this chapter is automated translation of nurse
rostering problem instances into SAT problems and MIP instances. To
support automated translation, a formal description of nurse rostering problem
instances is required. We utilised numberings (Burke et al., 2001) for
clearly and unambiguously describing instances. We defined eight generic
constraint types allowing representation of a large number of real world inspired
constraints found in literature. For each constraint type, we presented efficient
translation schemes to SAT and MIP.

The preprocessing step for both the SAT and MIP translation introduces
O(n) variables and clauses. The SAT translation of the consecutiveness and
between constraints generates O(n) clauses. The SAT translation of counting
constraints generates O(n2) clauses and O(nlogn) variables. Summarized, all
constraints that can be expressed as monotonic ascending numberings can be
translated to SAT and MIP.

The automated translation allows for a fast and error safe representation of
nurse rostering problem instances as SAT and MIP models. The translation
of the instances of the “First International Nurse Rostering Competition 2010”
(Chapter 5) to SAT took at most 20 seconds. The translation of the smaller
competition instances is performed in less than 2 seconds. This removes the
need for a manual translation which would be very time consuming while
complete equivalence between the original and the translated model may be
hard to attain.

This approach allows studying problems from an alternative point of view. As
stated in the introduction, the SAT translation scheme was successfully used to
study the hardness of nurse rostering problem instances in (Bilgin et al., 2009).
Aim of a hardness study is to identify a set of problem features to be used for
predicting the behaviour of some algorithm for a specific performance indicator

64 AUTOMATED TRANSLATION OF NURSE ROSTERING PROBLEM INSTANCES TO SAT AND MIP
MODELS

on a particular instance. The SAT translation scheme allowed the use of a set
of well known SAT features (Nudelman et al., 2004) to successfully predict
the solution quality obtained by the winner algorithm of the nurse rostering
competition on a large set of randomised competition instances. Although
the aims of the algorithms for which the SAT feature set was developed is very
different from the aims of algorithms within the field of nurse rostering research
(satisfiability versus optimality), the relevance of SAT features for the hardness
analysis of nurse rostering problem instances was demonstrated.

As an extension, the SAT translation scheme can be adapted to produce
MAXSAT instances thereby ’incorporating information on the objective
function’. The extended scheme could be used to apply MAXSAT solvers to
nurse rostering problem instances. The MIP translation scheme could provide
lower boundaries for problem instances. Glass and Knight (2010) use a manual
approach to identify lower bounds for some of the smaller instances found in
Brucker et al. (2010) via an MIP model. An automated approach may be
suitable for larger instances. Furthermore, the MIP translation scheme allows
the development of a modeling tool to express nurse rostering problems as MIP
models.

Chapter 5

The First International Nurse
Rostering Competition 2010

5.1 Introduction

The First International Nurse Rostering Competition (INRC2010) aimed at
developing interest in the general area of rostering and timetabling, while
providing researchers with models of the problems faced incorporating a
significant number of real world constraints. The idea of organising a nurse
rostering competition derives from the interest aroused by the two timetabling
competitions, ITC2002 and ITC2007 (McCollum et al., 2009). Most of the rules
of INRC2010 are imported from ITC2007, with some adjustments obtained
from the lessons learnt.

Similarly to ITC2002 and ITC2007, the main objective of INRC2010 was to
generate new approaches to the associated problem by attracting researchers
from different areas of research. As with many cases in the past, significant
advancements have been made in research areas by attracting multi-disciplinary
approaches and comparing them on a common ground.

The second objective was to reduce the gap between research and practice
within this important area of operations research. Although for the sake of the
competitive element, we did not include all aspects of all ‘real-world’ problems
but aimed to introduce significant depth and complexity.

The third objective of INRC2010 was to further stimulate debate within the
widening rostering and timetabling research community.

65

66 THE FIRST INTERNATIONAL NURSE ROSTERING COMPETITION 2010

The competition was composed of three tracks; named after the Olympic
disciplines. As the features of the algorithm are often tuned to the
available running time, the three tracks represented different challenges to the
participants:

Sprint: Required a solution in a few seconds, typical for interactive use.

Middle Distance: Required the solution in a few minutes and simulated the
practical situation in which the problem has to be solved a few times
during a solving session. During a solving session, a nurse responsible for
the rosters typically studies the effect of several possible assignments of
shifts to nurses in order to find a good quality roster.

Long Distance: Granted the solver many hours of running time and simulated
overnight solving.

This chapter describes the INRC2010, the format, and the results. In
Section 5.2 we list the competitions rules, whereas in Section 5.3 we describe the
benchmarking procedure. Section 5.4 gives details on the competition instances
and the evaluation of instances. A description of how the solutions were ranked
is given in Section 5.5. Results for the different tracks are given in Section 5.6.
In the end, Section 5.7 contains a short discussion and the conclusions.

The research reported on in this chapter appeared in an adapted version as
S. Haspeslagh, P. De Causmaecker, A. Schaerf and M. Stølevik, The first
international nurse rostering competition 2010, Annals of Operations Research,
2012, online first.

5.2 Competition rules

To ensure a fair competition, a number of rules were given. A full listing of
these rules can be found in Appendix D. We give a summary of the rules below.

The competition obviously included a set of instances upon which the solvers
of the participants have been evaluated. For each track, a difference set of
instances has been designed: smaller instances have been used for the Sprint
Track, whereas the larger ones have been included in the Long Distance Track.

Following the same scheme experimented (successfully) for ITC2007, each of
the three sets has been partitioned again into three subsets, called early, late,
and hidden instances. The early instances have been released at the official
start on the competition (March 1, 2010). The late instances have been made

BENCHMARKING 67

public on May 15, 2010, roughly one month before the deadline set to June 20,
2010.

For all early and late instances, the participants were asked to submit their
best solutions, according to the formulation provided in Section 5.4 and within
the given time frame.

The hidden instances have been keep secret till the final adjudication, but
have been used by the organizers to evaluate the participants’ algorithms
(Section 5.5).

The time granted to the solver was set using a benchmarking tool made
available from the competition website (Section 5.3). The programs were
allowed to run on a single processor PC only. Participants could code their
solvers using any programming language; similarly to ITC2007 the use of third
party software was allowed only under the following conditions: it should be
free software, it’s behaviour should be (reasonably well) documented and it
should run under a commonly-used operating system (Unix/Linux, Windows,
or Mac OS).

The input data of the solver was supplied through an instance file in the
described format (Sect. 5.4) and the solution had to be delivered by means
of a solution file in its predefined format.

The same version of the algorithm had to be used for all instances. This means
that the solver could analyse the instance features and set the parameters
accordingly, but it could not “recognise” the particular instance and use a
parameter setting previously computed for that specific instance.

The algorithm could be either deterministic or stochastic. In both cases,
participants had to be prepared to show that these results were reproducible
in the given time frame. In particular, the participants that used a stochastic
algorithm should have coded their program in such a way that the exact run
that produced each solution submitted could be repeated simply. In other
words, they could try several runs with different seeds to find the best solution
to submit. As full repeatability was required, for stochastic algorithms, the
random seed was required and entered as a command line parameter.

5.3 Benchmarking

The aim of providing a benchmarking tool was to eliminate the bias introduced
by the differences in computational power of the participants’ computers. The
benchmark program tells each participant how long he/she could run his/her

68 THE FIRST INTERNATIONAL NURSE ROSTERING COMPETITION 2010

solver on each instance on his/her computer. It is designed to test how fast the
participants’ machines are at doing the sort of operations similar to those that
are involved in the solution of rostering problems.

Only software running on a single processor was accepted for the competition.
Consequently, the benchmark code was only suitable for them. It was not
suitable for multi-core machines or clusters, which could still be used but
running the software (and the benchmark) separately on a single core/node.

On a relatively modern PC the benchmark program granted the participant
approximately 10 seconds for the Sprint Track, 10 minutes for the Middle
Distance Track, and 10 hours for the Long Distance Track.

The benchmark used was the C version of the publicly available popular “The
Fhourstones Benchmark 3.1.”1 We modified the source code by hard-coding all
input data (calibrated for our purposes), and writing the corresponding output.
The benchmark was compiled with GNU C/C++ compiler under Ubuntu Linux,
Windows XP (using cygwin) and Mac OS. The modified source code is available
on request.

It is clear that it is not possible to provide a benchmark that is perfectly
equitable across many platforms and algorithms. In any case, the programs of
the finalists were run on our machine, thus creating a level playing field for the
final round.

5.4 Problem description, competition instances

and evaluation of solutions

The nurse rostering problem considered within this competition is described in
Section 3.1. Next to this informal description, competitors were provided with
a formal description using numberings (Section 3.2 and Appendix B).

The instances were generated from scratch. They incorporate a large set of
real world constraints, of which many are commonly found in literature (Burke
et al., 2004). The scheduling period is four weeks for each instance. The Sprint
instances are limited to one skill. For the other tracks, two different skills
are used. The Sprint instances count four different shift types, the Medium
instances four or five and the Late instances five. Further, the instances
per track mainly differ in the number of available nurses. For the Sprint
instances ten nurses are available, for the medium instances 30 and for the long
instances 51. The demand was generated accordingly. We tried solving the

1http://homepages.cwi.nl/~tromp/c4/fhour.html)

http://homepages.cwi.nl/~tromp/c4/fhour.html

SOLUTION RANKING 69

instances using CPLEX (using the mixed integer program translation scheme
of Section 4.3). We allowed CPLEX to run for a multiple of the allowed runtime
to ensure that solving the instances sets a real challenge.

We developed both an XML and text-only data format for representing the
competition instances and solutions to the instances. Detailed information
on the structure of both data formats can be found in Appendix E. A small
example instance and a solution are also provided, in both XML and text. We
provided conversion tools to translate ’text-only’ instances and solutions to
’structured’ ones and vice versa.

We implemented both an offline and online version of an extended evaluation
procedure (Appendix A) based on the numbering method developed by Burke
et al. (2001). Competitors were required to submit their solutions on the
competition instances through the online evaluator. The value of the objective
function, as reported by the online evaluator, was the official value that was
taken into account when evaluating the results of competitors. This way, we
aimed to avoid any dispute on the exact results obtained by competitors due
to, for example, misinterpretations or faulty implementations of the objective
function. Moreover, the use of numberings for a clear and unambiguous
representation of the objective function, allowed competitors to securely and
error-free build fully equivalent proprietary evaluators.

5.5 Solution Ranking

The competition was run in two steps: a preliminary round and a final. We
first describe the preliminary round, in which the finalists were selected, and
afterwards we describe how the final was run.

5.5.1 Preliminary Round

The preliminary round considered the solutions of the algorithms for early and
late instances. Its aim was to select the finalists, that is the participants that
entered into the final.

The selection criterion was based on solution ranks, similar to the one used
for ITC2007 and described in (McCollum et al., 2009, Section 5). We report
it here for the sake of selfcontainedness. Differently to ITC2007, no hard
constraint violation is allowed, so the ranking is solely based on the number of
soft constraint violations.

70 THE FIRST INTERNATIONAL NURSE ROSTERING COMPETITION 2010

The selection worked as follows: Let m be the total number of early and late
instances and k be the number of participants that produced a feasible solution
for all m instances. Let Xij be the result supplied (and verified) by participant
i for instance j. Each Xij is the value of the objective function s – the total
penalty of breaking the soft constraints.

The matrix X of results is transformed into a matrix of rank R assigning to
each Xij a value Rij from 1 to k. That is, for instance j the supplied X1j ,
X2j , . . . ,Xkj are compared with each other and the rank 1 is assigned to the
smallest observed value, the rank 2 to the second smallest, and so on to the
rank k, which is assigned to the largest value for instance i. Ranks are assigned
for all the instances. We use average ranks in case of ties.

Table 5.1 is an example with m = 6 instances and k = 7 participants. The
corresponding ranks are shown in Table 5.2, with the mean average rank in the
last column.

Instance 1 2 3 4 5 6
Solver 1 34 35 42 32 10 12
Solver 2 32 24 44 33 13 15
Solver 3 33 36 30 12 10 17
Solver 4 36 32 46 32 12 13
Solver 5 37 30 43 29 9 4
Solver 6 68 29 41 55 10 5
Solver 7 36 30 43 58 10 4

Table 5.1: Example of results (the matrix X)

Instance 1 2 3 4 5 6 Avg.
Solver 1 3 6 3 3.5 3.5 4 3.83
Solver 2 1 1 6 5 7 6 4.33
Solver 3 2 7 1 1 3.5 7 3.58
Solver 4 4.5 5 7 3.5 6 5 5.17
Solver 5 6 3.5 4.5 2 1 1.5 3.08
Solver 6 7 2 2 6 3.5 3 3.92
Solver 7 4.5 3.5 4.5 7 3.5 1.5 4.08

Table 5.2: Example of solution ranks (the matrix R) plus the average rank

For each solver we computed the mean of the ranks. The finalists of the
competition were the five solvers with the lowest mean ranks. In case of a
tie for entering the last position in the finals, all the solvers with equal mean
would have been included in the final (in this case the finalists would have been
with more than five).

COMPETITION TRACKS AND RESULTS 71

In the example, the finalists would have been solvers 1, 3, 5, 6, and 7. We
checked the runs of the finalist with the submitted seed to make sure that
the submitted runs were repeatable within the granted time according to the
benchmarking tool.

5.5.2 Final

For the final, the same evaluation process was repeated for the five finalists
with the following differences:

1. The solvers were run by us, the organisers, on our machines, with the
support of the finalist for compiling and running their solvers.

2. All instances, including hidden ones, were used for ranking.

3. For each instance, we ran a set of independent replications with seeds
chosen at random. For each instance, we computed the ranks on the pool
of all replications, and averaged them on all instances.

4. The number of replications used was set to 10 for sprint and medium
track and 4 for the long track (because of the long computing time).

The winner was the participant with the lowest mean rank. In case of a tie,
which did not happen, one further replication at a time would have been added
for all instances until a single winner would have been found.

Note that the process described above was possible because all finalists used
stochastic solvers. In case of a deterministic solver, we would have used the
single value produced by the solver as the score of all replicates. Furthermore,
in case of a tie between two deterministic solvers, we would have added one
extra instance at a time, instead of running one more replicate on the given
instances.

5.6 Competition Tracks and Results

As already mentioned, the competition was composed of three tracks; called
after the Olympic disciplines, 1. Sprint, 2. Middle Distance, and 3. Long
Distance. The tracks differed from each other based on the maximum running
times and on the size of the instances, whereas the problem formulation was
the same throughout the competition. These tracks represent distinct problem
settings in practice.

72 THE FIRST INTERNATIONAL NURSE ROSTERING COMPETITION 2010

Overall, there were 15 participants. Not all participants contributed to all
tracks. Various techniques were applied. A significant number of competitors
implemented metaheuristic-based algorithms such as tabu search, simulated
annealing, genetic and evolutionary algorithms. Some competitors designed
hybrid solvers, combining for example a genetic algorithm with tabu search or
a branch and price algorithm with variable depth search. Other competitors
modeled the nurse rostering problem as a constraint optimisation problem, a
multilevel assignment problem or answer set programming and other applied
state-of-the-art solvers. Some competitors proposed multiple phase approaches.
One competitor designed a hyperheuristic-based solver. In the following
sections we discuss the results and the solvers of the finalists. For a full list of
competitors, we refer to the competition website (INRC2010).

5.6.1 Sprint track

The Sprint track required a solution within a time frame of about ten seconds,
which is typical for interactive use. The 30 instances of this track consisted of
ten nurses. The planning horizon was 28 days. Table 5.3 shows the ranking of
the finalists for this track.

The winning team - C. Valouxis et al. - produced a best result for 23 out
of the 30 instances. Their method partitions the original problem into sub-
problems of computationally manageable size. The sub-problems are solved
using Mathematical Programming. They implemented a two phase strategy.
The first phase assigns nurses to working days. In the second phase, nurses
assigned to a day are scheduled to one of the required shifts on that day.

K. Nonobe and the team of E.K. Burke and T. Curtois both produced 20
best results. K. Nonobe reformulated the problem instances as a Constraint
Optimisation Problem (COP). A powerful, general-purpose COP solver is used.
The main advantage of this approach is that not much time has to be spent for
developing and implementing algorithms.

E.K. Burke and T. Curtois converted the problem instances to their staff
rostering problem formulation and used an ejection chain-based variable depth
search algorithm as the solution method.

Zhipeng L. and Jin-Kao Hao produced 12 best results. They implemented an
algorithm that switches between a local search procedure - starting from a
randomly generated feasible solution - and an elite solution restart mechanism.

The team consisting of B. Bilgin et al. produced six best results. Their method
is based on a hyper-heuristic approach combined with a greedy shuffle heuristic.

COMPETITION TRACKS AND RESULTS 73

For 80 % of the time, a state-of-the-art hyper heuristic is applied. The greedy
shuffle heuristic consumes the remaining time.

A complete list of best results and abstracts of all competitors describing
their techniques and approaches can be found at the competition web-
site (INRC2010). A summary with the results for this track is in Table 5.4.
The fact that Burke et al. lost on the hidden instances must be traced back to
a technical problem in their implementation of the model and does not allow
concluding on their method. Their dominance on early and late instances seems
to indicate that their sophisticated and mature solver actually outperforms the
new developments of the other competitors. Nonobe et al. and Valouxis et al.
are seen to be competitive. Worthwhile to mention here is that, on the hidden
instances, Valouxis et al. is exclusively best on three, Nonobe et al. on two
and Bilgin et al. on one instance.

Competitor Rank
C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, E. Housos 2,08
K. Nonobe 2,45
Zhipeng L. and Jin-Kao Hao 3,10
E.K. Burke and T. Curtois 3,30
B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg,
G. Vanden Berghe, T. Wauters

4,07

Table 5.3: Competitor ranking for the Sprint Track

Competitor Early (10) Late (10) Hidden (10) Total (30)
Valouxis et al. 10 7 6 23
Nonobe 10 4 6 20
Burke et al. 10 10 0 20
Zhipeng et al. 9 3 0 12
Bilgin et al. 4 0 2 12

Table 5.4: Summary of results; the number of best solutions for the Sprint
Track

5.6.2 Middle Distance track

The Middle Distance track required a solution in a few minutes and mimicked
the practical situation in which the problem has to be solved a few times in
a solving session. The 15 instances of this track consisted of 31 nurses. The
planning horizon was 28 days. Table 5.5 shows the ranking of the finalists for
this track.

74 THE FIRST INTERNATIONAL NURSE ROSTERING COMPETITION 2010

The winning team - C. Valouxis et al. - produced a best results for eight of the
fifteen instances using the same method as for the Sprint Track.

Runners up, E.K. Burke and T. Curtois, obtained ten best results. They
implemented a branch and price algorithm. The pricing problem is solved
using the same ejection chain method as implemented for the Sprint track.

K. Nonobe found three best results using the COP approach described above.
For one instance, Zhipeng L. and Jin-Kao Hao, found a best result.

Table 5.6 displays similar results for the middle distance track as for the sprint
track. Again Burke et al. suffer from the implementation problem. Valouxis
et al. and Nonobe are seen to dominate the game.

Competitor Rank
C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, E. Housos 1,77
E.K. Burke and T. Curtois 2,27
K. Nonobe 2,30
Zhipeng L. and Jin-Kao Hao 3,67
B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, G. Vanden
Berghe, T. Wauters

5,00

Table 5.5: Competitor ranking for the Middle Distance Track

Competitor Early (5) Late (5) Hidden (5) Total (15)
Burke et al. 5 5 0 10
Valouxis et al. 5 0 3 8
Nonobe 2 0 2 4
Zhipeng et al. 1 0 0 1
Bilgin et al. 0 0 0 0

Table 5.6: Summary of results; the number of best solutions for the Medium
Track

5.6.3 Long Distance track

The Long Distance track granted the solver about ten hours of running time
and simulated overnight solving. The fifteen instances of this track consisted
of 50 nurses. The planning horizon was 28 days.

Table 5.7 shows the ranking of the finalists for this track. The winning team
of C. Valouxis et al. and the team of E.K. Burke and T. Curtois found a best

COMPETITION TRACKS AND RESULTS 75

result for ten of the fifteen instances. Both teams used the same methods as
for the Middle Distance track.

B. Bilgin et al. obtained a best result for five instances using their hyper-
heuristic approach. The COP-method of K. Nonobe found four best results.

D. Rizzato et al. model the problem as a Multilevel Assignment Problem
and implemented a two phase algorithm consisting of a construction and an
improvement phase. Similar remarks hold as for the other tracks, but Valouxis
et al. have taken the lead.

Table 5.8 shows that Rizato et al. (who took over from Zhipeng et al. in the top
five) did not produce any best results but realized a good overall performance.
Most competitors reported having a hard time to use the full ten hours of
running time. The algorithms seem to arrive at their final results after 60 to
120 minutes and are not able to improve afterwards.

Competitor Rank
C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, E. Housos 1,93
E.K. Burke and T. Curtois 2,27
B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, G. Vanden
Berghe, T. Wauters

2,60

K. Nonobe 3,73
D. Rizzato, A. Constantino, E. Luiz de Melo, D. Landa-Silva, W.
Romeo

4,47

Table 5.7: Competitor ranking for the Long Distance Track

Competitor Early (5) Late (5) Hidden (5) Total (15)
Burke et al. 5 5 0 10
Valouxis et al. 5 1 4 10
Nonobe 4 0 0 4
Bilgin et al. 4 0 1 5
Rizzato et al. 0 0 0 0

Table 5.8: Summary of results; the number of best solutions for the Long Track

5.6.4 Lessons learned

The results of the competition may not allow drawing final conclusions but do
contain important hints.

76 THE FIRST INTERNATIONAL NURSE ROSTERING COMPETITION 2010

• Dedication helps. The solver of Burke et al., using an ejection chain
based variable depth search, was developed for their staff rostering
problem to which the competition problems could be mapped. This solver
performed best on the early and late instances for all tracks. The method
seems to be well fit for these problems.

• Hybridization and decomposition is effective. The all track winner
of Valouxis et al. is a heuristic in combination with mathematical
programming. It decomposes the problem in manageable bits which can
be solved to optimality. It is furthermore a two stage approach.

• Modeling power is important. The COP solver used by Nonobe et
al. allows the developer to concentrate on the model which in the nurse
rostering problem case is particularly complicated. The fact that they
ended up so high, especially in the sprint and middle distance tracks,
demonstrates the power of their solver and modeling technique. The
same can be said about the approach of Rizzato et al. who used a multi-
level assignment problem solver and managed to end up fifth in the long
distance track.

• Local search and restart. The approach followed by Zhipeng en al.
combining a local search method and an intelligent restart mechanism,
entered the top five in the two shorter tracks. This is an interesting
demonstration of how these goal function driven methods allow to tackle
hard to model and difficult optimisation problems in an acceptable way.
It looks as if, given more time for refinement, the method has the potential
to produce top solutions.

• Hyperheuristics work. The results of Bilgin et al. illustrate the
potential of hyperheuristic approaches. They seem to climb up in the
ranking when more time is given. This may indicate that the layered
approach with a high level algorithm steering low level heuristics is not
very reactive. However, it can be used in situations where sufficient time
is given to learn about the behaviour of the low level heuristics on a
particular problem instance.

• Time is not used proportionally. The long distance track allowed
solvers to take ten hours. No one was able to improve after two hours.
This could mean that at some point a plateau is reached which requires
extensive search to find further improvements or that the algorithms
simply reached their limits in the kind of complexity they were able to
grasp: the algorithm might be stuck at some local optimum and fails
to escape it. An observation supporting the latter is that the results
obtained are not uniform.

CONCLUSION 77

5.7 Conclusion

We presented the results and detailed information about the First International
Nurse Rostering Competition 2010 (INRC2010). The competition rules and set-
up have been discussed. The Nurse Rostering Problem instances considered
in the competition have been illustrated. The results are presented and the
evaluation procedure has been described.

It should be noted that the first goal of the competition, to generate new
approaches, ideas and insights to the problem, has been achieved. For example,
there are contributions from the Constraint Programming community with
some techniques that have a high emphasis on modelling the problem. We
observed that indeed, modelling is an important issue within this area of
research. In particular, worse behaviour in the hidden instances and eventually
a resulting worsening of the final ranking could be traced back to a quite
trivial modelling error. Accurate modelling is essential in a complex problem
domain as nurse rostering. The hidden instances protect against modelling
errors as well as against the so-called Mongolian Horde approach (Schaerf and
Di Gaspero, 2007): “run as many trials as you can with no time limit and
report only the best of all of them”.

Furthermore, we can conclude that we faced similar problems as the organisers
of ITC2007 McCollum et al. (2009) did. We also found it hard to provide an
unambiguous problem formulation. Therefore, following the directions given
by Schaerf and Di Gaspero (2007), beside a natural language description, we
used numberings to clearly describe the problem constraints and objectives. We
provided solution validators to help detect ambiguities and to help competitors
to correctly model the problem. A second problem was that submissions slightly
differed with respect to the required command-line arguments. It was quite
time consuming to adjust our evaluation procedure to reproduce the results and
to run the algorithms on the hidden instances. A clear and precise description
of the required interface would have allowed more automation for the evaluation
of the submissions.

Particularly hard in the organisation was coming up with an appropriate set
of problem instances. We detected a problem with the Early instances as they
appeared to be easily solvable. Therefore we translated the instances to Mixed
Integer Programs and tried to solve them with CPLEX. As expected, CPLEX
was able to solve the instances to optimality within the required time frame. For
the late and hidden instances, we considered an instance a challenge if CPLEX
failed to solve the instance within a multiple of the allowed runtime for solving
the instance. This highlights the need for complexity measures in this domain.
All problem instances and currently best found results can be found on the

78 THE FIRST INTERNATIONAL NURSE ROSTERING COMPETITION 2010

competition website (INRC2010). It is our belief that similar benchmark sets
can help to improve and to stimulate further research and debate within and
beyond the rostering and timetabling community.

Chapter 6

Negotiation protocols for
short term nurse rostering

The purpose of this chapter is to study the possibilities of a distributed
approach in the case of nurse rostering problems. We envisage a system
consisting of units (wards) with a large degree of autonomy and highly detailed
local decision making. The independence of these units is limited by the sharing
of resources and by the opportunities or obligations for inter unit assistance.
This assistance may increase the efficiency of one unit while only slightly
hampering the performance of another one. On the long term, the performance
of the larger system should benefit. So, in its simplest form, we must consider
two levels of decision making which we label local and global. The local system
takes the highest level of detail into account. We are especially interested in
the case where the local decision problem is of a combinatorial complexity.
Various local details are aggregated and translated into variables that can be
handled at the global level, which, at the same time, introduce supplementary
requirements, constraints and preferences. The decision problem at this global
level may be of a combinatorial complexity as well.

A system consisting of autonomous units naturally leads to an agent based
model. Such models have been intensively studied over the last decade, e.g.
by Valckenaers et al. (2006). Rather recently the link with optimisation has
obtained some attention. Shen et al. (2006) give an updated review in the
field of intelligent manufacturing. We think that the optimising behaviour of
an agent based system should be studied as close to the real world problems
as possible. We study the behaviour of a system of negotiating agents for a
distributed nurse rostering problem. We select several negotiation protocols for

79

80 NEGOTIATION PROTOCOLS FOR SHORT TERM NURSE ROSTERING

the global problem and an optimisation algorithm from literature (Burke et al.,
2008) for the local problem. Our ultimate aim is to demonstrate the feasibility
of such an approach.

At the level of an individual ward, the criteria are those that have been analysed
in Chapter 3. At the hospital level other criteria are to be considered. Here,
the manager wants to guard the fairness of the work load distribution, wants
to raise certain quality levels, wants to minimize the personnel cost, wants to
decide where resource shortages are allowable at peak moments . . .

As an example of a local problem that may be resolved at the global level,
we consider the cases of sudden staff shortages due to absence or unexpected
overload. These may be hard to deal with at the local level where a longer
term schedule should not be disturbed too drastically, while chances are higher
that a peer ward accidentally has some spare capacity at or about this specific
moment in time.

For solving shortages, Moz and Vaz Pato (2003) try altering the schedules of
other nurses. The changes to the rosters should be minimal and, analogously
to the original nurse rostering problem, may not be in conflict with legal,
organisational and contractual regulations. The problem is called the nurse
rerostering problem and is studied at a hospital in Lisbon. The problem
is formulated as an integer multi commodity flow problem with additional
constraints. The authors applied a heuristic to solve the problem and solved an
integer linear programming formulation of the model using CPLEX. In follow-
up papers, a genetic algorithm approach (Moz and Vaz Pato, 2007) and a
utopic Pareto genetic heuristic (Vaz Pato and Moz, 2008) are applied to the
same problem.

Maenhout and Vanhoucke (2011) tackle the rerostering problem using an
evolutionary approach. A benchmark dataset for the rerostering problem is
introduced. The set is based on the artificial instances of NSPLib. Similarly
as for NSPLib, a set of schedule disruption characteristics is used to generate
the rerostering problem instances.

Bard and Purnomo (2006) consider both altering the schedules of a subset of
nurses and hiring ’traveling nurses’, identified as the nurse addition problem,
as a solution for shortages. They studied the problem for hospitals in the
UK and Great Britain where the schedules of nurses are fixed by contract and
therefore difficult to change. A column generation method is proposed for the
’alternation problem’. A branch and price algorithm is applied to the nurse
addition problem.

Section 6.1 elaborates on the framework for negotiation: we discuss the local
nurse rostering problem at a ward, a solution method for that problem and we

FRAMEWORK FOR NEGOTIATION 81

identify the subjects of the negotiation. In Section 6.2 we describe some details
on the five negotiation protocols we consider within this chapter. Section 6.3
describes experiments and results. A conclusion is given in Section 6.4.

This Chapter is a summary of the following two papers:

• S. Haspeslagh, P. De Causmaecker and G. Vanden Berghe , Distributed
Decision Making in Hospital Wide Nurse Rostering Problems, in Pro-
ceedings of the 3th Multidisciplinary International Scheduling Conference:
Theory & Applications, Paris, France, 2007

• R. Lagatie, S. Haspeslagh and P. De Causmaecker, Negotiation protocols
in Distributed Nurse Rostering, in Proceedings of the 21st Benelux
Conference on Artificial Intelligence, Eindhoven, the Netherlands, 2009

6.1 Framework for negotiation

We consider a hospital with n wards. Each ward is responsible for its personnel
rosters. When shortages arise, when the quality of rosters drops below a certain
quality level or when the good operation of its tasks is jeopardised, wards start
a negotiation process to increase their level of efficiency by exchanging nurses.
The wards are modelled as agents. The agents are self-interested, each agents
want to optimise its rosters, but collaborative, agents agree on slightly worsened
rosters if the global cost at the level of the hospital is reduced. The agents have
the following tasks:

• Constructing the rosters of its ward

• Identifying local problems such as personnel shortages

• Negotiating with other agents for outsourcing problematic shifts

We first discuss the algorithm used to construct the local working rosters that
are the starting points of the negotiation process (Section 6.1.1). The same
algorithm will be used to determine the value of proposals during negotiation.
Next, in Section 6.1.2, we elaborate on the method used to identify the shifts
that are the subjects of negotiation.

6.1.1 Constructing local rosters and evaluation of offers

For the construction of the local rosters, we implemented a simplified version
of the algorithm proposed by Burke et al. (2008). We chose this algorithm

82 NEGOTIATION PROTOCOLS FOR SHORT TERM NURSE ROSTERING

because, at the time of experimenting, it was a state-of-the-art algorithm
performing well on the targeted benchmark instances. The algorithm consists
of three phases. First, a feasible roster is constructed. The algorithm starts
by a heuristic ordering of the shifts. Idea is to assign ’difficult’ shifts first
to nurses for which the assignment results in the largest improvement or the
smallest worsening. For more information on the heuristic ordering we refer to
the original paper (Burke et al., 2008). As a result of this first phase, a roster
is constructed where every shift is assigned to a nurse having the required skills
for that shift type. When any shift is left unassigned, the roster is infeasible
and there is a shortage of (qualified) staff.

The second phase of the algorithm aims at improving the quality of the roster
using a Variable Neighbourhood Search (VNS) algorithm. Two commonly used
neighbourhoods are considered, defined by the following moves:

1. Assign a shift to a different nurse.

2. Swap the assignments of two shifts between the originally assigned nurses.

The first neighbourhood is explored until no improving moves are found1. Then,
the second neighbourhood is searched for an improving move. If a move is
found, the first neighbourhood is examined again after applying the move. As
the second neighbourhood is small, it is searched exhaustively. The algorithm
stops when no improving move has been found in either neighbourhood. After a
successful move, the algorithm attempts to assign any of the unassigned shifts.

The third phase, omitted in our implementation, unassigns all shifts of a
fixed number of nurses with the worst personnel rosters. These shifts are
then reassigned using the above described VNS. This “schedule disruption and
repair” phase aims at escaping local optimal solutions. Instead of this phase,
in our setting, a negotiation for exchanging these shifts is initiated.

6.1.2 Subject of negotiation

After the initial rosters have been constructed, the wards have to determine a
set of ’problematic shifts’ that will be the subject of negotiation. We consider
two possibilities. As stated in the previous section, it may be impossible
to assign each shift to a nurse during the heuristic ordering initial roster
construction phase. Wards negotiate hoping to acquire extra personnel to

1For large problems, this neighbourhood may become too large to be searched exhaustively.
In this case, a time limit should be set. The instances used for the experiments do not require
a time limit.

NEGOTIATION PROTOCOLS 83

cover these unassigned shifts. Secondly, the levels of efficiency of the wards may
increase by assigning shifts that are ’hard to schedule’ for a ward to external
nurses. Penalties are often raised because of a particular sequence of shifts that
have been assigned. Ideally, we would like to negotiate about the shifts that,
when removed from those sequence, result in resolving the constraint violations
caused by that shift. However, this relation between individual shifts within
a specific sequence and the penalties raised because of the occurrence of those
shifts within that sequence is still hard to identify. Furthermore, removing
a shift from one sequence may result in new violations in other sequences.
Therefore, we limit the search for suitable shifts to searching the shift that,
when unassigned, introduces the best overall improvement. When found, the
shift is unassigned and added to the list of negotiable shifts. The search is
repeated until such a shift cannot be found. The number of unassigned shifts
is limited to a percentage of the total number of shifts. Experiments showed
that a value of 10 percent suits best in our test cases.

6.2 Negotiation protocols

We apply five different negotiation protocols to the above stated negotiation
problem. In each of the proposed protocols, agents make bids to acquire extra
shifts. An agent uses the same algorithm as for the construction of the initial
rosters to estimate the cost or gain of adding an extra shift. In case the
addition of a shift raises a cost, a bid for that shift is only accepted if the
global penalty (the sum of the penalty of the individual rosters of the wards)
is reduced. Dependent on the negotiation protocol under consideration, two
bidding approaches are studied. Some protocols require the ability to raise
bids. For those protocols, a monetary system, similar to the one proposed in
(Di Gaspero et al., 2004) is designed. Each ward receives an ’amount of money’
to bid on certain shifts. Initially, this amount equals the ward’s own penalty
value. This way, each ward has enough money for solving its problems. The
starting bid for each shift is zero and the incrementation step size is one. A bid
is only raised by a ward if the new bid is lower than a maximum determined
beforehand. For protocols that do not rely on increasing bids, the bid simply
equals the difference in penalty.

We give a brief description of each protocol discussing relevant design decisions
specific for this negotiation setting.

84 NEGOTIATION PROTOCOLS FOR SHORT TERM NURSE ROSTERING

6.2.1 Contract Net Protocol

The Contract Net Protocol (CNP), designed by Smith (1980), starts by sending
a call for bid message to each ward for an unassigned shift. Each ward is allowed
to reply with a bid. After all bids have been received, the highest bidder is
assigned the shift. This is repeated for each unassigned shift until none is
left. To improve the quality of the outcome, we first order the shifts using the
heuristic ordering algorithm described above.

6.2.2 Extended Contract Net Protocol

Aknine et al. (2004) designed the Extended Contract Net Protocol (ECNP) to
overcome some limitations of the original CNP. For example, the use of CNP
in a multi-agent setting may cause lengthy negotiation processes, especially
for applications where contractors are forced to sequence their negotiations.
To resolve this problem, temporary bidding and temporary accepting bids is
introduced. Multiple negotiations run in parallel, reducing the length of the
negotiation process. Using this protocol, bidders can more easily study the
impact of bidding for a specific combination of shifts. Because bids are made
on a temporary basis, bidders can easily withdraw offers to cover some specific
shift, when more appropriate calls for bids are received or when the previous
bid resembles to be incompatible with future ones.

6.2.3 Simultaneous Ascending Auction

The Simultaneous Ascending Auction (SAA) is a multi-round auction protocol
(Milgrom, 2000). The nurses send bids for all tasks at the same time. After
each round, the nurses are informed of the highest bids received for each task.
The minimum bid for a task is the maximum bid for the task in the previous
round. If no (improved) bids are received for any task, the auction stops and
the tasks are assigned to the highest bidding nurses.

6.2.4 Limited Vickrey Auction

We implemented a variant of the Generalised Vickrey Auction (Clarke, 1971;
Groves, 1973) called Limited Vickrey Auction (LVA). In such auctions, with M
goods, bidders make offers for one (or more) of the 2M − 12 possible packages.
Although this protocol is optimal, it is very inefficient and may even become

2We do not take empty packages into account.

EXPERIMENTS AND RESULTS 85

computationally intractable for a large number of goods. For example, consider
a small nurse rostering problem consisting of a planning horizon of 4 weeks, 4
shift types. The demand is 4 nurses per shift type per day. This results in a
total of 448 shifts. Suppose 10% of the shifts are hard to schedule and therefore
problematic. This results in at least 244 possible packages. Therefore, instead
of bidding for all combinations of shifts, we bid for packages consisting of all
or some of the 10 shifts raising the largest penalties. When computation time
is of less importance, this number may be increased.

6.2.5 Ascending Proxy Auction

In an Ascending Proxy Auction (APA), a combinatorial auction designed by
Ausubel and Milgrom (2004), nurses do not bid on all shifts simultaneously,
but on a limited number of shifts, bundled in a package. After each round,
provisional winners are announced. The packages are constructed incrementally
during the negotiation process. A nurse starts bidding for a package consisting
of a single shift. If the package is accepted, the nurse adds another shift to
the package. After each round, the auctioneer (e.g. the hospital manager in
this case) is responsible for determining the combination of non-overlapping
packages maximising its revenue. This problem is known as the winner
determination problem (Cramton et al., 2006) and is known to be NP-hard. We
implemented a simple algorithm to tackle this problem: if an overlap between
two packages is found, the package resulting in the lowest improvement from
the global point of view is omitted. The auction stops when all unassigned
shifts belong to a package.

6.3 Experiments and results

We perform a qualitative analysis of the aforementioned negotiation protocols.
We compare the protocols on the following criteria:

• Speed: we measure the CPU time, the time effectively used by the cpu(s)
when running the protocol.

• Quality: the quality for a ward is expressed by the penalty associated
with its roster. The global cost is defined by the sum of the penalties of
the individual rosters.

• Network load: we measure the number and size of messages transmitted
over the network.

86 NEGOTIATION PROTOCOLS FOR SHORT TERM NURSE ROSTERING

We also compare the negotiation protocols with a centralised approach. The
experiments are performed on variations of the BCV-A.12.1, BCV-1.8.1 and
BCV-5.4.1 benchmarks of Brucker et al. (2010). The original benchmarks
instances were not suitable for testing the negotiation protocols because the
planning horizon is non overlapping. Therefore, the planning horizons are
shifted so that they fully overlap. We study negotiation between 3 agents, each
representing a ward responsible for solving one of the benchmark instances,
and a server. For most protocols, the server mainly offers administrative
functionality such as keeping track of the wards present in the hospital. For
the combinatorial APA, the server is responsible to solve the underlying winner
determination problem. Each agent and the server is running on a separate
computer (no virtualisation) hosting a Linux operating system. We run the
negotiation protocols for 15 different starting rosters.

6.3.1 Speed

Figure 6.1 shows the comparison of the protocols on total computation time.
The LVA is the slowest protocol, taking about 10 minutes. Cause is the
naive method for searching the optimal combination of packages. The CNP is
reasonably fast. The shifts are allocated immediately within one round. The
ENCP consists of multiple rounds in which the best bidders often change after
considering provisional winners. All bids have to be confirmed, resulting in
extra rounds and more computation time. The ENCP is therefore slower. For
large problems, the SAA appears to be the fastest approach. The bidders bid
on all items simultaneously, so less rounds are needed to find an acceptable
solution.

6.3.2 Quality

The aim is to use negotiation to improve the quality of the individual rosters.
In other words, we would like to lower the total sum of the penalties of the
individual rosters. Figure 6.2 shows the penalties obtained after negotiation.
The dotted line shows the penalty of the original rosters (t.i. the penalty after
running the local VNS algorithm). Most protocols sometimes return an inferior
solution compared to the original solution. Shifts, unassigned from a certain
nurse, are sometimes very specific (e.g. due to the specific skills required to
cover the shift) and no better nurse may be found to cover the shift. If such a
shift is selected for negotiation, the overall quality will be very hard to improve
and negotiation often will result in a higher penalty.

EXPERIMENTS AND RESULTS 87

Figure 6.1: Comparison of protocols on total computation time

The lowest penalty value obtained is about 2550. If we zoom in on this part
of the graph, we see that in most cases three protocols obtain similar results:
the CNP, the ECNP and the SAA. In all cases the ECNP either finds the best
solution or one that differs little from the best.

Remarkably, the CNP does not perform much worse than the other, more
complex approaches. As expected though, the ECNP obtains better results
than the CNP in most cases and where the CNP fails (i.e. for roster 4), the
ECNP still manages to find excellent solutions.

Looking at the combinatorial auctions, we see that the LVA often improves the
local rosters and outperforms the APA auction, yet both do not perform as
well as the SAA auction. For the LVA, this can be explained by the limited
number of shifts (10) eligible for negotiation. If this value is increased, better
solutions are found. However, this affects the total negotiation time which is
already quite high (see Figure 6.1).

For half of the rosters, the APA results in (slightly) worse rosters. This is
mainly because of the way the packages are constructed, it is possible that
a suboptimal package is accepted, and because of the suboptimal method for
solving the winner determination problem.

Figure 6.3 shows the ranking of the protocols. The ENCP offers the best

88 NEGOTIATION PROTOCOLS FOR SHORT TERM NURSE ROSTERING

Figure 6.2: Comparison of protocols on penalty

solution in 60% of the cases and in more than 90% either the best or second
best solution.

6.3.3 Network load

The negotiation protocols are implemented on a distributed system. It
is therefore important to consider the communication time of the different
protocols. Figure 6.4 (a) shows the number of messages sent between all
participants and the server. The most notable difference to the CPU time
(Section 6.3.1) is that of the ECNP. Although the total cpu time used by the
ECNP is low, a large amount of messages is sent. So, seemingly faster than
the APA, the wall clock time of the ECNP is presumably longer. The SAA
needs not only the least computation time, the number of messages sent is also
minimal. The size of the messages sent however, is larger (Figure 6.4 (b)).

6.3.4 Comparison with centralised approach

Figure 6.5 shows the comparison of the negotiation protocols with a centralised
approach using two criteria, computation time and penalty. As expected,

EXPERIMENTS AND RESULTS 89

Figure 6.3: Ranking of protocols

Figure 6.4: Comparison based on number of transmitted messages (a) and the
amount of transmitted data (b)

solving smaller rosters in parallel results in a performance boost. The
computational overhead caused by the negotiation protocols is, except for the

90 NEGOTIATION PROTOCOLS FOR SHORT TERM NURSE ROSTERING

LVA, minimal. After negotiation, the global penalty is lowered significantly.
On average, the rosters obtained by applying the ECNP after a local rostering
algorithm are better than ’central’ rosters. Solely based on quality, the ECNP
is better than the other presented approaches.

Figure 6.5: Comparison with a central solution method)

6.4 Conclusion

The aim of this research was to prove the feasibility of applying negotiation in
the context or nurse rostering problems in the broader context of a hospital.
By negotiation, the overall computational time is kept within acceptable
boundaries while still preserving satisfactory quality levels at the wards’
rosters. Most of the presented negotiation protocols, except for LVA, add
little computational overhead. The quality of the solutions after negotiation
is comparable to the quality of the solutions obtained by a central approach
while the performance is significantly improved. Of the presented negotiation
protocols, contracting offers the best results. If speed is an issue, the Contract
Net Protocol is often sufficient. When better quality is required, the Extented
Contract Net Protocol is a better candidate. On average, the ECNP obtains
even better results than the heuristic central solution method.

CONCLUSION 91

We found combinatorial auctions either very inefficient, as the results of
the Limited Vickrey Auction show, or very complex as, for example, the
incorporation of the Ascending Proxy Auction was not straightforward due
to underlying complex (decision) problems such as the winner determination
problem of finding the best combination of non-overlapping packages. The
naive algorithm we implemented is likely a major cause of the inferiority of
the approach. We cannot draw general conclusions on the applicability and
performance of combinatorial auction, but reports from literature show that
sequential, single item auctions are much easier and in many cases perform
faster and give better results than combinatorial auctions (Koenig et al., 2006;
Wellman et al., 2003, 2001)

Solving personnel shortages has been put forward as an example problem for
which negotiation can provide a solution. In such a setting, the problematic
shifts subject to negotiation are those shifts for which the proposed staff is
suddenly unavailable. By negotiation, a ward tries to outsource the shifts to
the other wards in a hospital.

We spent some time to construct suitable benchmark instances for testing
the negotiation protocols. Most benchmark instances available at the time
of this research were defined in isolated planning horizons and do not support
experiments in a negotiation setting.

In the current setting, agents are allowed to make extensive changes to the
rosters of the nurses. In a realistic setting, nurses do not like major changes
of their rosters, especially in case of last minutes changes caused by sudden
personnel shortages. Similar to the nurse rerostering problem (Moz and Vaz
Pato, 2003) only minimal changes should be made to the rosters.

In further research, the results of the negotiation setting should be compared
with other methods for resolving shortages such as the nurse rerostering
problem. Therefore, the negotiation techniques can possibly be applied to the
nurse rerostering benchmark instances of Maenhout and Vanhoucke (2011). In
a first phase, the suitability of the instances for negotiation should be studied.
The model of the underlying nurse rostering problem of the benchmarks is
different from the model targeted in this research. The currently used local
heuristic algorithm must be changed in order to make it suitable to solve
problems of the benchmark model. Futhermore, as the setting is completely
different, proper criteria for comparison have to be identified. One possible
criterion is the number of actual changes made to the rosters to resolve
shortages. The fewer changes are needed, the better the performance of the
approach. In the worst case, when the proposed benchmark set is found to be
unsuitable, the disruption characteristics, used to construct the benchmark set,
can be used to design a new benchmark set supporting negotiation.

92 NEGOTIATION PROTOCOLS FOR SHORT TERM NURSE ROSTERING

In order to apply the presented techniques in real world settings, an adaptation
and extension of the nurse rostering model is essential. The current (and
the rerostering) model do not take the willingness of nurses to work in other
wards into account. Not all nurses are eager to frequently change their working
environment, while others do not want to be permanently assigned to one ward.
Similar to Smet et al. (2012b), who study fairness objectives for the division of
workload among nurses at the level of one ward, we should incorporate fairness
measures when distributing (individual) shifts among the wards in a hospital.
It should not always be the same ward that needs to cover additional shifts.
The sole objective considered at the global level is to improve the global solution
quality. In a realistic setting, the manager wants to raise certain quality levels,
wants to minimize the personnel cost, wants to decide where resource shortages
are allowable at peak moments . . .

Chapter 7

Pareto optimal negotiation
through algorithm analysis

This chapter presents an effort to narrow down the gap between short term
level nurse rostering and the mid term level problem of distributing nurses
and shifts between wards in a hospital. We treat this problem as a multi-
agent multi-issue negotiation problem. We develop a negotiation protocol for
handling such problems. Details of the short term level problem are input for
the negotiation process.

We propose curves of constant utility to represent the operational performance
of a ward. These ’operational performance level curves’ are the input for
the decision making process presented in this contribution. The levels of
performance are determined by a nurse rostering algorithm at the short term
level. The operational performance level curves hide the details of the short
term problem that are irrelevant for the decision making process at the mid
term level. Because nurse rostering algorithms take minutes if not hours
of computing time to produce reliable results, we decide to use an offline
approach. We use a large number of aggregated utility curves for each ward.
The borderlines of the platforms can be thought of as the points where utility
goes below a certain threshold. In our examples, the instability of the rosters
tends to grow near these borderlines. We hypothesise that this is a general
characteristic useful in delineating the platforms.

We model the wards as self interested agents negotiating distribution of
personnel and workload. Approaching the problem through negotiation will
allow individual wards to hide part of their internals. However, this will not

93

94 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

turn out to be an essential element. In cases where such hiding is not allowed,
the negotiation protocol boils down to determining intersection points of curves
of constant utility.

In Section 7.1 we position the above described negotiation problem in the field
of multi-issue negotiation. Section 7.2 introduces indifference curves as a means
to represent operational performance levels of a ward. We show how an in depth
analysis of those indifference curves leads to solving the negotiation problem in
hospitals were information hiding is not allowed in Section 7.3. A negotiation
protocol for use in hospitals where information is kept private between the
wards is proposed in Section 7.4. An evaluation of the protocol can be found
in Section 7.5. Finally, Section 7.6 concludes.

This work has been submitted as S. Haspeslagh and P. De Causmaecker,
Bridging the gap between short term and mid term nurse rostering through
a negotiation protocol, Journal of Scheduling

7.1 Negotiation model

We use the taxonomy introduced in Section 2.2 to position the current
contribution within the multi-issue negotiation research domain.

We consider a hospital with n nurses, w wards and s shifts to be covered.
Each ward needs to solve a nurse rostering problem. Through negotiation the
wards distribute the n nurses and s shifts among themselves while ensuring an
acceptable operational level. Wards try to perform their tasks at minimum cost,
given by a penalty function taking personal rules and preferences into account.
The exact definition of the penalty function is the same as in Chapter 3. We
refer to this penalty function as ’the objective function’. We use the terms
’penalty function’ and ’objective function’ interchangeably.

The number of nurses to be acquired and the number of shifts to be covered
by a ward are the issues within the negotiation setting. Each ward wi has
a preferred workload si of shifts to cover and staff ni of nurses. Each ward
can operate within some boundaries. For a certain number of shifts to cover, a
ward has a minimum and a maximum number of employees it wishes to acquire.
Having either too many or too few employees results in an unworkable situation.
The same holds from the point of view of employing a certain amount of nurses
with respect to the number of shifts a ward is willing to cover. Those limits
determine the operational platform of a ward.

From the above, it is clear that the issues considered within the current
negotiation setting are strongly interrelated. The preferences of the nurses

DETERMINING THE OPERATIONAL PERFORMANCE LEVELS OF A WARD 95

and the local constraints are possible attributes in the negotiation setting.

In many hospitals, it is customary that information about the internal operation
of the ward, e.g. details of the local nurse rostering problem such as preferences
and the associated penalty function, is kept private. Moreover, this information
is evolving over time, for example due to sudden illness of nurses.

Because we decided for an offline approach, i.e no rerostering takes place during
negotiation, the negotiation problem considered belongs to protocol category
(MI,SA) and the utility functions of the wards are invariant over time.

Summarised, we study a negotiation problem with strongly interrelated issues,
where self-interested agents need to agree on the distribution of resources
(employees) and tasks (shifts) among themselves. The protocol category is
double-sided multilateral. We study both a setting with complete information
and with private information. In the latter case, no mediator is present.

7.2 Determining the operational performance lev-
els of a ward

The performance platform of a ward is determined by its capability to handle
a certain amount of work (the demand) given a certain number of personnel.
This capability depends on the details of the shift structure and of the personnel
rostering constraints. The efficiency is expressed through the objective function.
When determining the operational platform, the exact details of the demand
and the personnel constraints are not relevant. What is of interest is an
expected performance and stability against small disruptions.

In this section, we determine these quantities by studying the objective function
values resulting from the solution of a large number of rostering problems. By
plotting the value of the expected penalty function against the workload and
the number of personnel, we obtain a graphical representation of the expected
ward performance. As we will show, this allows us to determine the operational
platforms as well as indifference curves to be used in negotiation.

Our instance distribution is based on the instances of the First International
Nurse Rostering Competition 2010 (see Chapter 5). Within this sample
problem setting, all employees are uniform, e.g. they are working following
the same contractual regulations. A contract contains information on the
constraints to be taken into account when building rosters. Contracts may
differ per ward. For each instance, we varied the number of personnel available
and the workload. The demand is distributed uniformly per day per shift type,

96 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

with an offset for the weekend days. The range of the demand is calculated as
follows. Within this sample setting, on every day, we require at least 1 person
for every shift type. Taking the offset for the weekend into account this results
in the minimum demand:

min. demand = (#weeks).(#shift types).(7 + 5.offset)

The maximum demand is determined by the number of available personnel in
the ward. For every nurse, we add the maximum number of shifts that may
be assigned to that nurse. The maximum demand is a multiplication of that
number. Table 7.1 summarizes dimensions of the experiment to determine the
operational level of a ward employing between 15 and 50 nurses. The planning
horizon is 4 weeks and there are 4 shift types. The offset for the weekends
demand is 2.

Nb. employees 15 20 25 30 35 40 45 50
Min. demand 264 264 264 264 264 264 264 264
Max. demand 348 488 600 740 852 988 1108 1228
Nb. instances 9 26 40 58 71 86 97 107

Table 7.1: Size of one experiment: number of instances to determine operational
performance levels of a ward.

We solved the generated instances using the winning algorithm of the nurse
rostering competition (Valouxis et al., 2012). Each instance was allowed a
running time of 450 sec. The instances are publicly available at our website.1.

The experiments have been run on the KU Leuven-UHasselt cluster2. We
limited the runtime on the cluster to 3 hours. Thus, depending on the size of
the experiment, we allocated a specific number of Xeon 5560 2.8 Ghz CPUS
with 10GB of RAM. Table 7.2 shows the total runtime and memory usage.

Nb. of Nb. of Nb. of Total Total
nurses instances nodes time memory
15-50 494 4 19:19:52 47GB
15-50 515 18 17:27:49 48GB

Table 7.2: Runtime and memory usage

Figures 7.1 and 7.2 show the value of the objective function plotted
against increasing workload and increasing availability of nurses in a typical
experiment.

1http://www.kuleuven-kortrijk.be/codes/
2https://vscentrum.be/

http://www.kuleuven-kortrijk.be/codes/
https://vscentrum.be/

DETERMINING THE OPERATIONAL PERFORMANCE LEVELS OF A WARD 97

Feasible region

P
e

n
a

lt
y

Number of available nurses

Figure 7.1: Increasing availability of nurses

Feasible region

P
e

n
a

lt
y

Number of �hifts to cover

Figure 7.2: Increasing workload

We can clearly identify the regions of acceptable penalty for a ward. Near the
borders of these feasible regions, the curves seem to show increasing instability.
This instability makes it hard for wards outside their feasible region to decide
whether a specific combination of demand and personnel is acceptable or not.

98 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

The diminishing number of data point over 500 shifts, seen in Figure 7.2, is
also a cause of instability. Many instances in that region are unsolvable by the
nurse rostering algorithm. For both demand and availability of nurses, within
the feasible region, the penalty function displays a concave tendency.

To automatically detect the borders of the feasible region, we applied DBScan
(Ester et al., 1996), a density based clustering algorithm. For DBScan, a cluster
is defined by density reachability: a point q is directly density reachable from
a point p if the distance between p and q is smaller than a distance ǫ. A point
q is density reachable if there is a sequence of points p = pi, . . . , pn = q, where
each pi+1 is directly density reachable from pi. Two points p and q are density
connected if there is a point o such that both p and q are density reachable from
o. A cluster is then a set of points that are all mutually density connected.

We apply this procedure to the border detection problem. Instability arises
where the difference in penalty between a point and its neighbours is becoming
too large. Points are within the feasible region if they are mutually density
connected for a well chosen distance ǫ.

We used the DBScan implementation of the Weka Data Mining Software Suite
(Hall et al., 2009). An advantage of Weka is that the algorithms it provides
can be easily used within Java programs. The algorithm takes two parameters,
the minimum number of points (minPoints) required to form a cluster and the
distance ǫ. These values were experimentally determined. We ran the DBScan
algorithm for different values of ǫ and minPoints. For the resulting clusters, we
tried fitting the data points to a second degree polynomial. We studied the R2

values of the resulting fits and obtained the best results when ǫ is set to 0.03
and minPoints to 4.

The penalty curves obtained are converted to utility curves as follows
(Figure 7.3). A wards’ utility (and thus performance level) is at the highest
level if the penalty of its roster is as low as possible. The utility is at the lowest
level when the penalty of its roster is at the highest level, thus at the borders
of the feasible region. A point (sx, px) is converted with the following formula:

ux =
px − pmax1

pmin − pmax1

if smin ≤ sx < spmin

ux =
px − pmax2

pmin − pmax2

if spmin ≤ sx ≤ smax2

The resulting utility curve is shown in Figure 7.4. For each possible number
of employees, we obtain such a utility curve. Using those utility curves, we
can identify all combinations of a number of nurses and a certain workload

DETERMINING THE OPERATIONAL PERFORMANCE LEVELS OF A WARD 99

Figure 7.3: Conversion of a penalty curve to a utility curve

�✁✂✄☎✆ ✝✞ ✟✠✡✞☛✟ ☛✝ ☞✝✌☎✆

✍
✎
✏✑
✏✎
✒

✓✔✕ ✖✕✕ ✖✔✕ ✗✕✕ ✗✔✕ ✘✕✕ ✘✔✕ ✙✕✕✕ ✙✕✔✕ ✙✙✕✕ ✙✙✔✕

✚✕✛✜

✕

✕✛✜

✕✛✢

✕✛✓

✕✛✗

✙

✙✛✜

Figure 7.4: Utility curve

100 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

for which a ward operates at a certain performance level. So, for each
performance level we can construct an indifference curve. A ward does not
have a clear preference for points on that curve because for each combination
of a workload and employee count on that curve the ward obtains the same
level of utility. The concave utility function in Figure 7.4 shows that for utility
level 1 only one indifference curve exists. The lower utility levels all produce
two indifference curves. In fact, multiple indifference curves exist because we
omit the restriction to monotonous utility functions as in (Wu et al., 2009) and
therefore have to deal with strongly interrelated issues. An example of a set
of indifference curves is shown in Figure 7.5. For the y-axis we use the scale
1/Demand.

Figure 7.5: Indifference curves

The curves take the shape of power curves with an equation of the form axb +c.
Table 7.3 contains the fitting data for the indifference curves of Figure 7.5. The
R2 values indicate that as the utility level decreases, the quality of the fit also
decreases. This supports our hypothesis that near the borders of the feasible
region more and more instability arises.

INDIFFERENCE CURVES AND NEGOTIATION IN A COMPLETE INFORMATION SETTING 101

Utility level a b c (.10−4) R2

1 0, 0422 −0, 8178 −0, 2645 0, 9961

Upper 0,8 0, 0422 −0, 8433 −0, 1034 0, 9959
Upper 0,6 0, 0656 −0, 9294 0, 7400 0, 9944
Upper 0,4 0, 0584 −0, 9140 0, 8700 0, 9905
Upper 0,2 0, 0539 −0, 9083 0, 3890 0, 9848
Upper 0 0, 0491 −0, 9167 0, 1605 0, 9601

Lower 0,8 0, 1208 −0, 9724 −0, 3034 0, 9944
Lower 0,6 0, 1240 −0, 9725 −0, 1671 0, 9918
Lower 0,4 0, 1273 −0, 9636 −0, 2865 0, 9904
Lower 0,2 0, 1398 −0, 9663 −0, 3587 0, 9867
Lower 0 0, 1746 −0, 9601 −0, 8203 0, 9674

Table 7.3: Fitting data

7.3 Indifference curves and negotiation in a com-

plete information setting

In this section we discuss the negotiation problem presented in Section 7.1 in
an environment where all information is commonly known by the wards. The
objective of the wards is to be as close as possible to their optimal operational
performance level. Using the utility curves identified in Section 7.2 the wards
can measure the goodness of possible outcomes of the negotiation process and
can thus determine the performance level they will be able to operate at by
accepting a certain deal. We refer to the set of all possible outcomes as the
solution space of the negotiation setting. Recall that the indifference curves,
constructed in Section 7.2 aggregate all possible combinations of issues for
which a certain performance level can be reached.

In this section we perform a more in depth analysis of those indifference curves.
We show that in an environment with complete information, the negotiation
process boils down to finding intersections with indifference curves.

Without loss of generality and for clarity we consider negotiations in a hospital
consisting of two wards. In the sample setting, we consider a hospital that has
65 nurses available with a set of 1025 shifts that need to be covered.

In Figure 7.6 an indifference curve for utility level 1 is shown. As stated
in Section 7.2 there exists only one curve for that level. The vertical solid
line represents the maximum number of nurses available in the hospital. The
horizontal solid line represents the total number of shifts to be worked in the

102 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

hospital (demand). Within the feasible region of the ward, in a realistic setting,
the indifference curve cannot intersect any of those two lines.

If the curve intersects the vertical line within the feasible region, the ward
should be able to cover all the work of the hospital when all the nurses are
assigned to the ward. If the curve intersects the horizontal line within the
feasible region then the ward would be able to cover all shifts even when not
all of the nurses are assigned to the ward.

The intersection point in of the indifference curve with the vertical line
highlights that the ward cannot cover all the shifts even when he employs
all the nurses. The intersection point is with the horizontal line shows the
number of nurses that is required when the ward would have to take care of all
shifts.

�✁

Figure 7.6: Indifference and positioning curve utility level 1

Furthermore, the information contained by the indifference curve combined
with the information of the horizontal and vertical solid lines reveals important
information on what offers the other ward in the negotiation setting must
be able to accept. Concretely, for every point the ward may choose on its
indifference curve, we can calculate the number of remaining shifts that need
to be covered by the nurses that are left to be employed by the other ward.
That way, a new curve arises. The curve positions the other ward within the

INDIFFERENCE CURVES AND NEGOTIATION IN A COMPLETE INFORMATION SETTING 103

solution space. We refer to this curve as the ’positioning curve’. The curve
’starts’ in the intersection point an of the horizontal and the vertical solid lines.
If the ward is not assigned any nurse, then the other ward needs to cover all
shifts and has all nurses available. The more nurses the ward employs, the more
shifts it is able to cover. The other ward thus has fewer and fewer employees
available to cover a decreasing number of shifts. Note that the positioning
curve always lays below the indifference curve because the indifference curve
always intersects the vertical solid line in a point higher than point an and the
positioning curve starts in an. Furthermore, both curves cannot intersect.

Analogously, in Figure 7.7, we show similar results for lower utility levels.
Below level 1 there exist two indifference curves per utility level. Each
indifference curve induces a positioning curve. The upper positioning curve
always corresponds with the lower indifference curve and vice versa.

�✁

Figure 7.7: Indifference and positioning curves utility level 0,9

A ward will only accept offers laying on or between the two indifference curves.
Outside that region the ward is not able to work at the required operational
performance level. Furthermore, a solution to the negotiation process exists
when the positioning curve intersects an indifference curve of the other ward
on that level or if the positioning curve lays between the two indifference curves.
A sample situation where a solution exists is shown in Figure 7.8.

104 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

�✁

Figure 7.8: Intersection of positioning curve with utility curve

7.4 Negotiation with incomplete information

This Section elaborates on a negotiation setting where information is kept
private. Agents do not know the indifference curves of their opponents and
thus are unable to calculate the ’positioning curves’. The protocol discussed
within this section is an alternating offer protocol (Rubinstein, 1982), based on
the Pareto optimal orthogonal bidding protocol developed by Wu et al. (2009).
The authors of the latter paper introduce the reference point indicating which
number of issues is left for the agent whose turn it is to make the next counter-
offer. By making offers as close as possible to this reference point (the bid is the
orthogonal projection of the reference point on the agent’s indifference curve)
agents try to move their proposals towards each other to reach an agreement.

Initial experiments exposed some problems when applying the orthogonal
search strategy in its original form to the negotiation problem tackled in

NEGOTIATION WITH INCOMPLETE INFORMATION 105

the current contribution. The convergence of the search method is very slow
due to the shape of the indifference curves as presented in Section 7.2. The
protocol above is developed for negotiation settings where issues are weakly
interdependent, thus with only one indifference curve per utility level. In the
current negotiation setting, two indifference curves per level exist (except for
utility level 1). We present measures to circumvent these two problems.

In each round of the orthogonal search strategy of Wu et al. (2009), a step is
taken from the reference point towards the indifference curve of the bidding
agent. The step size and direction is determined by the orthogonal projection.
In our protocol, a direction is chosen and consecutive steps are taken in the same
direction. The step size is determined by the Fibonacci sequence, analogous to
a Fibonacci search algorithm (Ferguson, 1960; Knuth, 1998). Thus, the step
size is increasing within consecutive rounds of the protocol. The advantage of
using Fibonacci-steps is fast convergence of the search. The protocol described
below determines the direction and the size of each step to iteratively improve
the approximation of the intersection point.

We start the description of our protocol with some definitions. W is the set of
wards negotiating to distribute two issues, nurses (N) and (S) shifts, among
themselves. A bid in round k is a tuple (ni,k, si,k) with ni,k the number of
nurses ward wi wants to acquire for covering si,k shifts. The reference point
(rnj,k, rsj,k) for an agent j is defined by:

rnj,k = |N | −
∑

t∈{1..|W |}\{j}

(nt,k)

rsj,k =
1

1
|S| − 1

∑

t∈{1..|W |}\{j}
(st,k)

Note that each reference point always lies on a positioning curve and that the
reference point can be calculated by each agent.

For both issues, a tolerance level is set, ǫn and ǫs respectively for the number
of nurses and the number of shifts. Both tolerance levels are used for the stop
criterion and, ǫn is also used to determine the step size within each round of
the negotiation process. The step size in round k is given by: ǫn.F ib(k), with
Fib(k) denoting the kth Fibonacci number. For each agent j, fj keeps track of
the index of the last Fibonacci number used. The indifference curve of agent j
is represented by a function cj such that for each bid, cj(nj,k) = sj,k.

For the sake of simplicity, we further describe the protocol for two agents. The
agent initiating the negotiation is chosen randomly. Without loss of generality,
we refer to this agent as w1. Agent w1 randomly selects one of his indifference

106 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

curves and randomly generates an offer on that curve. Agent w2 calculates
the reference point. The direction of the first bid of agent w2 is determined by
orthogonal projection of the reference point on the closest of the two indifference
curves. The distance is measured by the Euclidean distance. From the second
round on, the direction of bidding for both agents is determined by the position
of the newly calculated reference point with respect to the bid made by the
agent in the previous round. For agent wj and round k, the next bid nj,k is
calculated as follows:

direction(j, k) = sign(rnj,k − nj,k−1)

nj,k = rnj,k + direction(j, k).F ib(fj).ǫn

In each round, two checks are necessary for the successful operation of the
protocol. First, an agent can detect that the negotiation is going into the
wrong direction. Convergence in a direction can only occur if the distance
between the reference point and the indifference curve in consecutive rounds is
decreasing:

d1 = d((rnj,k, rsj,k), (rnj,k, c(rnj,k)))

d2 = d((rnj,k−1, rsj,k−1), (rnj,k−1, c(rnj,k−1)))

change direction if (d1 < d2)

See Figure 7.9 for an illustration. Once both directions on an indifference curve
have been explored, no agreement is possible on the current curve and the agent
needs to make a bid on his other indifference curve.

Second, because of the increasing step size, an agent can cross a possible
intersection point. An intersection point has been crossed when the position of
the reference point with respect to the indifference curve has changed:

sign(rnj,k − cj(rnj,k)) 6= sign(rnj,k−1 − cj(rnj,k−1))

This situation is shown in Figure 7.10. Whenever an intersection point has been
crossed, the direction of search is inverted and the step size is reset (fj = 1).
Several direction changes of this type might be necessary. The search oscillates
around the intersection point until the required tolerance levels ǫe and ǫs are
met. Thus, a direction change caused by this check does not count as a direction
check as mentioned in the first check. Note that for a successful working of the
protocol, the second check has to be performed first.

NEGOTIATION WITH INCOMPLETE INFORMATION 107

Figure 7.9: Direction check

Figure 7.10: Position check

The search continues until all indifference curves in all directions have been
considered without success or when the following stop criterion is met:

rnj,k − nj,k ≤ ǫn and rsj,k − sj,k ≤ ǫs

A sample run of the algorithm is shown in Figure 7.11. If no agreement is
found on a certain utility level, the agents concede to a lower utility level.
Various concession strategies are possible. Wu et al. (2009) consider four
different strategies. We list the three strategies of interest within the light
of this contribution:

• fixed amount of utility: the agents concede a fixed amount au of utility.

108 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

Figure 7.11: Sample run of the protocol

• fraction of utility: the agents concede a fixed fraction fu ≤ 1 of the
current utility level.

• fraction of difference: the agents concede a fixed fraction fd ≤ 1 of the
difference between the current utility level and the utility that he would
get by bidding the last reference point.

The concession strategy and the corresponding parameter setting (au, fd and
fr) directly influence Pareto optimality, the difference between the solution
found and a Pareto optimal solution. Generally, small conceding steps lead to
better solutions regarding Pareto optimality. In our setting, the Pareto optimal
solution is the intersection point introduced in Section 7.3.

7.5 Theoretical analysis and experimental evalua-

tion

In this section we evaluate the negotiation protocol of Section 7.4 from two
points of view. In Section 7.5.1 we elaborate on a more theoretical analysis of
the protocol, based on the criteria highlighted by Fatima et al. (2004). The

THEORETICAL ANALYSIS AND EXPERIMENTAL EVALUATION 109

theoretical analysis mainly discusses properties of the solution. In Section 7.5.2,
we experimentally perform a qualitative and performance analysis. The latter
analysis focuses mainly on properties of the method used to search for the
solution.

7.5.1 Theoretical analysis

According to Fatima et al. (2004), there are four main criteria for evaluating
the outcome of a negotiation protocol:

• uniqueness: is the solution of the negotiation protocol unique? It the
solution is unique, it can be determined unequivocally.

• efficiency: an agreement is efficient when Pareto optimality is achieved.

• symmetry: a negotiation protocol is symmetric if it does not treat the
players differently on the basis of inappropriate criteria. For example, the
outcome of the negotiating process should be independent of the agent
starting the negotiation.

• distribution: is the outcome fair or is one agent favoured more than the
others by the negotiation protocol?

Per pair of indifference curve and positioning curve, theoretically, at most two
intersection points exist. As one positioning curve can intersect with at most
two possible indifference curves and because there are at most two positioning
curves, this results in at most eight possible intersection points. All those
intersection points are equally valued by both agents. Thus, independently
on which intersection point has been found, the negotiation protocol will
always result in an outcome yielding the same amount of utility. Possibly,
not all intersection points lay in the feasible region of the agents. In every
experiment (Section 7.5.2), only one intersection point out of the theoretical
possible eight lays within the feasible region. The negotiation protocol under
study is efficient. Under the same assumptions of (Wu et al., 2009), Pareto
optimality is achieved if the conceding step is small enough. The outcome
of the protocol is independent of the starting agent. Regardless from which
agent’s perspective the analysis of the indifference curves start, both agents
consider the same intersection points. Therefore, the proposed negotiation
protocol satisfies symmetry. Distribution: as both agents concede the same
amount of utility per round, no agent is favoured more than the other agent.

110 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

7.5.2 Experimental evaluation

We consider a set of hospitals with the numbers of nurses ranging between 55
and 65, with a step size of 2. The number of shifts to cover ranges between 900
and 1100, with step size 25. The utility levels we consider range from 0 to 1,
with step size 0.1. For each combination of the above parameters, we perform
50 repeats to take into account the randomness of the starting agent and the
initial bid. This results in a total number of 29.700 experiments. We discuss
the following properties of the negotiation process:

• Speed of convergence: number of rounds needed to reach agreement or
to detect infeasibility at a certain utility level.

• Quality of agreement: what is the distance between the theoretical
intersection point and the solution found by the negotiation protocol?

• Success rate: when a theoretical intersection point exists, does the
negotiation protocol find an agreement?

Speed of convergence

Figure 7.12 shows the results of the experiments on the speed of convergence.
The use of a step size varying according to the Fibonacci sequence results in fast
convergence, in at most 40 rounds. The number of rounds decreases if en, the
nurse tolerance, increases. The smaller en, the fewer the effect of es, the shift
tolerance. For en = 1, es has almost no effect. For en = 0.1 and es = 0.01 the
following holds: the smaller es, the less rounds necessary to reach agreement.
For a setting where no convergence can be reached, e.g. when no intersection
point exists, only 8 rounds are necessary: 2 per direction for two indifference
curves.

Quality of agreement

The quality of a solution is determined by the difference between the solution of
the negotiation process and the corresponding intersection point. The quality
is directly influenced by the settings of the tolerance levels. Figure 7.13 shows
the difference in terms of percentage with respect to en. Analogously, the
difference in terms of percentage with respect to es is shown in Figure 7.14.
We only discuss the results in Figure 7.13. The results in Figure 7.14 can be
discussed analogously. For an increased tolerance en, for example en = 1, the
least quality is attained. Also, for this tolerance level, the influence of es is

THEORETICAL ANALYSIS AND EXPERIMENTAL EVALUATION 111

Figure 7.12: Speed of convergence: number of rounds

minimal. For an average nurse tolerance level, like en = 0.1, the quality of the
solution is best for an average shift tolerance level (es = 2). For en = 0.01, the
most strict nurse tolerance level, the quality increases when es decreases.

Success rate

Figure 7.15 shows the results for the success rate. Recall that within the
negotiation protocol, steps of increasing size are taken, starting from en and
according the Fibonacci sequence. For a low tolerance level, en = 1, this
increases the fail rate of the protocol because the protocol may keep on ’crossing’
the intersection point due to a too large step size. The success rate increases
when en decreases. For a certain nurse tolerance level en, the success rate
decreases as es decreases.

112 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

Figure 7.13: Gap percentage for the number of nurses

7.6 Conclusion

This contribution is an attempt to bridge the gap between short term and
mid term level nurse rostering. An in depth study of an extensive set of
nurse rostering problem instances, solved with a state-of-the-art nurse rostering
algorithm resulted in the identification of operational platforms on which wards
are able to guarantee good operation. Therefore, we identified feasible regions
where wards are able to operate at acceptable penalty. We showed that
instability grows near the borders of those regions. We successfully designed
a method for the automated detection of these borders. The resulting penalty
curves were translated to utility curves, which in turn gave rise to indifference
curves. Those indifference curves in fact represent the operational performance
levels of a ward. Hiding the irrelevant details of the short term level nurse

CONCLUSION 113

Figure 7.14: Gap percentage for the number of shifts

rostering problem, the indifference curves are input to the mid term problem
of distributing nurses and shifts to cover between the wards of a hospital.

This problem was modelled as a multi-agent negotiation problem with strongly
interdependent issues. In hospitals where all information on the indifference
curves is common knowledge, we showed that the negotiation problem
essentially is solved by determining intersection points of curves of constant
utility. For hospitals with information hiding, we proposed a negotiation
protocol for searching those intersection points. A proprietary protocol has
been designed because either the proposed protocols for interdependent issues
in literature put too many restrictions on the utility curves (e.g. linear
additivity) or the proposed solutions methods are too complex to apply for
this type of strongly interdependent issues. We designed a negotiation protocol
exploiting certain properties of the resulting shape of the indifference curves.

114 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

Figure 7.15: Success rate

As shown, the protocol is able to detect in an early stage that searching the
indifference curve for an intersection point in a particular direction will fail.
The application of a variable step size according to the Fibonacci series, as
only two directions are possible and as there are only two indifference curves
to explore, we were able to design an efficient negotiation protocol.

We showed the protocol satisfies important theoretical properties. In the
experiments, at most one intersection point per utility level is found (uniqueness
of solution), the protocol obtains Pareto optimal solutions (efficiency), the
result is independent of the starting agent (symmetry) and no agent is favoured
in the negotiation process (distribution).

CONCLUSION 115

Next, a qualitative analysis has been performed. The influencing parameters
are the nurse and shift tolerance levels. For the lowest tolerance levels, at
most 40 iterations are necessary to reach conversion. In a setting when no
convergence can be reached, the protocol is able to detect in only 8 iterations
that no intersection point exists. The experiments show best quality results
are obtained when the tolerance levels are balanced: a low (high) tolerance
level for one issue requires a low (high) tolerance level for the other issues, for
an average nurse tolerance an average shift tolerance level and vice versa suits
best. For low tolerance levels, the lowest success rate is achieved. This result
is due to the “Fibonacci step size”. For low tolerance levels, the algorithm may
keep “crossing” the intersection point.

We studied the problem for two agents. In a multi-agent setting with complete
information, the adjustments are straightforward. The same concepts of the
two agent setting can be applied. Main difference is that the “positioning curve”
has to intersect with the indifference curves of all the other agents. The changes
to the protocol for the incomplete information case is not trivial. The reference
point, used to position the bids of the other agents and to determine a suitable
counter offer, remains the same. The original convergence checks are not valid
any more. An agent cannot detect whether the protocol converges based solely
on the “direction check”. The original idea was that if the distance between
the reference point and the indifference curve is increasing, no intersection
point when bidding in that direction. As the reference point is based on the
aggregation of the bids of all opponents, the direction of movement of the
reference point offers no information on convergence; it is not because a bid of
one agent increases the distance between the reference point and the indifference
curve, that a counteroffer of another agent cannot decrease that distance.
More advanced convergence checks need to be developed in order to apply
the negotiation protocol in a setting with more than two agents. One possible
alternative is to start bilateral negotiations between every pair of agents, using
the original protocol. If an agreement is found in every bilateral negotiation,
an outcome for the multi-agent problem is found3. For n wards, The number of
pairs is

(

n
2

)

= n(n−1)
2 . According to the experiments, the complexity in terms

of number of iterations to find a solution is about 40n(n−1)
2 , which is O(n2).

Although the results of the nurse rostering algorithm, necessary for the
construction of the indifference curves, are obtained in less than 3 hours, the
naive approach we used is rather resource consuming and computationally
intensive. One possible solution is to predict the value of the objective function
using hardness analysis of nurse rostering problems (Bilgin et al., 2009). The
computational process itself can be made more effective by concentrating on

3Hereby we assume at most one intersection point per pair of positioning curve and
indifference curves exists.

116 PARETO OPTIMAL NEGOTIATION THROUGH ALGORITHM ANALYSIS

the search for the points where instability comes in, effectively compromising
between accuracy and computational efficiency. Also, in a real world hospital,
the simulation step may be omitted, because information on the rosters from
the past (e.g. the last 6 months) can be used as input to calculate the
operational performance platforms. In this case, it is required that the hospital
already uses some software for constructing the rosters (whether automated or
not) and information on the valuation of the rosters is present, preferably in
the form of an objective function.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

One aim of this thesis was to further close the gap between research and practice
in (nurse) rostering research and to further stimulate and support research
within this research area by following directions (for proper research) given
by Schaerf and Di Gaspero (2007). An important keystone in this ambition was
the organisation of “The First International Nurse Rostering Competition 2010”.
The model for the instances that were subject of the competition consisted
of a set of constraints derived from ’real world’ nurse rostering problems.
New approaches, ideas and insights were gained. The lessons learnt from
the competition (Section 5.6.4) contain important hints for researchers and
practitioners when designing solvers for rostering problems. We were able to
attract competitors from different areas of research. The contributions from the
Constraint Programming (CP) community highlight once more the importance
of accurately modelling of the problems under study. One competitor, not from
the CP community, was performing excellent on the Early and Late instances
but the algorithm failed on the Hidden instances due to a faulty assumption
on the planning horizon. The competitor assumed the weekend days to be
fixed at certain time units, because the planning period of the Early and Late
instances started on the same day. This resulted in an incorrect modelling of
the constraints related to weekends. We acknowledge that adding instances
with different planning horizons to the set of Early and Late instances could
have avoided making the wrong assumption. Notwithstanding, the competitor
was the only one with the mistaken assumption.

117

118 CONCLUSIONS AND FUTURE WORK

To avoid misinterpretations and ambiguities as much as possible, we developed
an exact description of the constraints and their evaluation based on
numberings. We were able to express all constraints targeted by the
competition with numberings. While a numbering provides an unambiguous
representation of the constraints, quite a few competitors encountered problems
with interpreting the numberings. Apparently, interpreting the numbers
requires an extensive knowledge of (all details) of the evaluation procedure
(Burke et al. (2001)). This raises the question for a more semantic definition
of numberings. As an alternative, in this thesis, a mathematical description
of the constraints is given. In any case, expressing the constraints in more
than one “language” may help to reach a larger number of researchers. We
believe it is good practice to provide a complete and formal description for
any rostering problem along the above lines. We acknowledge this may seem
irrelevant or may be infeasible due to for example space limitations. If not put
in the contribution itself, we believe the information should still be available in
for instance some technical report or easily accessible at some (non transient)
website together with the instances on which experiments have been performed.

An implementation of the evaluation method, based on numberings and
developed by Burke et al. (2001), is offered in both an online and offline
version. Using the evaluators, researchers can thoroughly test proprietary
implementations of the objective function. Both a structured XML and a text-
only data format for instances and solutions to the instances was developed.
We hope to reach a larger group of researchers by providing the instances in
two data formates. Some researchers are not eager to use an XML format.
One reason may be that acquiring the required skills to handle the XML
format would simply take too much time. Tools for automated conversion
between both formats are available. An automated conversion between the two
formats is essential to ensure complete equivalence of the XML and the TEXT
representation of the instances. The competition instances and the conversion
and evaluation tools are available at the competition website (INRC2010). We
keep track of best results, either found during the competition or afterwards.

Particularly hard in the organisation of the competition was to come up with
an appropriate set of instances. The problems encountered with the Early
instances of the competition highlights the need for complexity measures in
this domain. Although the instances of the competition consisted of real-world
constraints, the instances are artificial and only cover nurse rostering problem
instances of one particular type. For example, nurse rostering problems in
hospitals where cyclic rosters are required are not addressed in the competition.
A next competition should incorporate at least a track with industrial rosters,
collected from different departments, different hospitals and even different
countries. In general, a wider variety of problem types creates a new challenge

CONCLUSIONS 119

for competing algorithms: to cover and to perform as good as possible on an
as large as possible set of different nurse rostering problems.

The use of numberings as a formal representation allowed for the design of
efficient schemes for the automated translation of nurse rostering instances
into problems in different research domains such as SAT and MIP. The use of
such schemes for exchanging problems between different domains ensures full
compatibility of the instances. It allows to study the problems from a different
point of view. The SAT translation was successfully used for a hardness study
of nurse rostering problem instances (Bilgin et al., 2009). The MIP translation
scheme allowed us to assess the complexity of the competition instances.

In the second part of the thesis we demonstrated the application of five state-
of-the art negotiation algorithms within the context of nurse rostering. We
modelled the wards in the hospital as self-interested agents, responsible for
their rosters. Objective was to improve the global efficiency in the hospital.
This can be seen as a goal at the managerial level of the hospital.

We studied the computation time, the communication time and the quality of
the outcome of the negotiation protocol and compared it with a centralised
approach. Most of the presented negotiation protocols, except for LVA, add
little computational overhead. The quality of the solutions after negotiation
is comparable to the quality of the solutions obtained by a central approach
while the performance is significantly improved. Of the presented negotiation
protocols, contracting offers the best results. If speed is an issue, the
Contract Net Protocol is often sufficient. When better quality is required,
the Extented Contract Net Protocol is a better candidate. On average,
the ECNP obtains even better results than the heuristic central solution
method. In general, negotiation significantly reduces computation time while
still preserving satisfiable solution quality. We found combinatorial auctions
either very inefficient, as the results of the Limited Vickrey Auction show, or
very complex as, for example, the incorporation of the Ascending Proxy Auction
was not straightforward due to underlying complex (decision) problems such
as the winner determination problem of finding the best combination of non-
overlapping packages. The naive algorithm we implemented is likely a major
cause of the inferiority of the approach. We cannot draw general conclusions
on the applicability and performance of combinatorial auctions, but reports
from literature show that sequential, single item auctions are much easier, in
many cases perform faster and give better results than combinatorial auctions
(Koenig et al., 2006; Wellman et al., 2003, 2001)

The presented negotiation techniques can be applied for scheduling a mobile
equipe in a hospital. A mobile equipe is a pool of floating nurses, not belonging
to a particular ward of the hospital. If a shortage arises in a ward, the ward

120 CONCLUSIONS AND FUTURE WORK

can call in the help of a floating nurse instead of rearranging its rosters. The
application of a mobile equipe is studied in 26 hospitals (Gobert et al., 2009).
The rostering policies of the wards needs adjustments to support a mobile
equipe. Questions arise such as what wards may call on help from the mobile
equipe and in what case? For how long (in terms of consecutive days or shifts)
may a ward use the services of a particular nurse of the pool? It should be
avoided that certain nurses are always assigned to the same department. In this
case, the dynamic character of the mobile equipe is lost and fewer shortages
may be resolved due to a lack of free floating nurses. Nurses from the mobile
equipe should only be resolved for shortages of a few shifts. Longer absences
of nurses may be better solved by hiring agency nurses. The study in the 26
hospitals resulted in a set of guidelines to adjust roster policies to support the
deployment of a mobile equipe. To apply negotiation, the model of the nurse
rostering problem under study has to be altered taking those guidelines into
account. The mobile equipe can then be modelled as a “virtual” ward. The
manager of that virtual ward is responsible for the quality of the rosters of the
floating nurses. In case of shortage, the wards in the hospital negotiate with
the virtual ward to acquire floating nurses.

Finally, we gave an onset to close the gap between different levels of personnel
management, more specifically between the mid and short term level of nurse
rostering problems. We designed operational performance level curves as a
means to feed short term level information to the mid term level problem of
distribution of workload and personnel. We treated this problem as a multi-
issue multi-negotiation problem. The curves can be seen as a way of controlling
the complexity of the mid term level decision problem while still taking a
vast set of attributes of the short term decision problem into account. More
particularly, the curves hide attributes, of which the details are irrelevant to
the mid term level, such as personal preferences (day off requests, . . .) and
small variations in demand between different days in the planning horizon
(e.g. less demand in weekends) influencing the utility function of wards. This
reduction of complexity allowed us to design a negotiation protocol that does
not have to take into account the difficulties associated with methods designed
for negotiation with highly rugged utility functions while not putting too many
restrictions on the utility functions. We evaluated the protocol against four
key criteria, uniqueness of outcome, efficiency, symmetry and distribution,
as put forward by Fatima et al. (2004). In the experiments, at most one
intersection point per utility level is found (uniqueness of solution), the protocol
obtains Pareto optimal solutions (efficiency), the result is independent of the
starting agent (symmetry) and no agent is favoured in the negotiation process
(distribution). Next, a qualitative analysis has been performed. The influencing
parameters are the nurse and shift tolerance levels. For the lowest tolerance
levels, at most 40 iterations are necessary to reach convergence. In a setting

FUTURE RESEARCH 121

when no convergence can be reached, the protocol is able to detect in only
8 iterations that no intersection point exists. The experiments show best
quality results are obtained when the tolerance levels are balanced: a low (high)
tolerance level for one issue requires a low (high) tolerance level for the other
issues, for an average nurse tolerance an average shift tolerance level and vice
versa suits best. For low tolerance levels, the lowest success rate is achieved.
This result is due to the “Fibonacci step size”. For low tolerance levels, the
algorithm may keep “crossing” the intersection point.

The protocol was designed for use in an environment with incomplete
information. In hospitals with complete information, e.g. where the
operational performance level curves are common knowledge, we showed that
the negotiation problem boils down to finding intersection points between the
operational performance level curves and the positioning curves derived from
those curves.

In this research the introduced operational performance level curves were
addressed for automating by negotiation the distribution of personnel and
workload between wards in a hospital. The curves can also serve as a tool
for a proper workload measurement in wards. As (Myny et al., 2010) point
out, constructing quality rosters starts with a proper workload measurement.
Several parameters are proposed for workload measurement in a hospital.
The operational performance levels curves should take those parameters into
account. Using the improved operational performance level curves, more
objective decisions can be taken when distributing workload and personnel
between the wards. In reality, the decisions are often made based on the
subjective view the various parties at the negotiation table have on the problem
under discussion.

8.2 Future Research

Some issues were not addressed in the research project. We give an overview
per contribution of this dissertation of some of the challenging problems
still left. We more specifically suggest research directions for the modelling
and representation of rostering problems in Section 8.2.1. Section 8.2.2
elaborates on research opportunities for using the SAT (and MIP) translation
schemes in combination with SAT (resp. MIP) solvers. We discuss and
propose improvements of and extensions to the model for the short term
negotiation problem of exchanging work, along with suggestions to improve the
performance of the applied negotiation techniques in Section 8.2.3. Section 8.2.4
lists possible research lines for the negotiation protocol designed to tackle

122 CONCLUSIONS AND FUTURE WORK

a workload and personnel division problem and proposes solutions to the
computational expensive data collection process for constructing operational
performance level curves of wards. Finally, Section 8.2.5 elaborates on the
integration of dependent decision problems either at the same level or at
different levels of personnel management, for example in a hospital.

8.2.1 Modelling and representation of rostering problems

In Chapter 3, we used numberings as a formal representation of the constraints
considered within this dissertation. As contributions by Burke et al. (2004)
and De Causmaecker and Vanden Berghe (2011) show, the constraints (and
models) found in literature are numerous and diverse in nature. It is clear that
not all constraints can be represented using numberings. More constraints need
to be added to our model and possibly the numbering methodology needs to
be extended in order to add constraints that currently cannot be represented.
For example, fairness constraints such as balancing the number of constraints
violations between the nurses cannot be expressed using numberings. Currently
the roster of one nurse can raise the majority of constraint violations while the
other nurses’ roster have low costs assigned.

8.2.2 Translation schemes to other problems domains

Chapter 4 presents translation schemes to SAT. As already mentioned, we
translated the nurse rostering problem, which is an optimisation problem, to a
satisfiability problem. Information on the objective function is lost. A natural
extension is to translate the instances to MAX-SAT. In a first effort, MAX-
SAT solvers (Argelich and Manyà, 2006) can be applied to study the solution
quality obtained by those solvers. Another research direction is to design
hybrid solvers. Current efforts first try to solve a partial problem with an
exact solver (Burke and Curtois, 2011; Valouxis et al., 2012). The obtained
solution is then optimised using for example a metaheuristic. One interesting
research challenge is to study the opposite. SAT solvers are able to search the
entire solution space. A metaheuristic search method only explores the solution
space partially. In a sense, metaheuristics are designed for trying to escape
local optima in the solution space, e.g. a metaheuristic is used to incorporate
diversification in the search process. By adding extra constraints, based on the
solutions obtained by a metaheuristic search method, we can force the (MAX)-
SAT solvers not to explore those parts of the solution space covered by the
metaheuristic search and therefore try to intensify diversification. The same
ideas can be applied to the combination of a MIP solver and a metaheuristic.

FUTURE RESEARCH 123

8.2.3 Short term negotiation

In Chapter 6, we made some abstractions in the study of negotiation
techniques for solving personnel shortages and improving efficiency. By
applying negotiation, we tried to improve the global solution quality. Other
managerial considerations need to be taken into account. For instance, not
every nurse is willing to work in other wards, while others do not want to be
permanently assigned to one ward. Similar to (Smet et al., 2012b), who study
fairness objectives for the division of workload among nurses at the level of one
ward, we should incorporate fairness measures when distributing (individual)
shifts among the wards in a hospital. It should not always be the same ward
that needs to cover additional shifts. Furthermore, the manager wants to raise
certain quality levels, wants to minimize the personnel cost, wants to decide
where resource shortages are allowable at peak moments . . . In order to apply
the presented techniques in real world settings, an adaptation and extension of
the nurse rostering model is essential. We assume the subjects of negotiation
(the shifts) have the same meaning in every ward. In reality, this is not the case.
Shift types can have different definitions in different wards. An interesting
research direction is to study ontologies for supporting negotiation (Tamma
et al., 2005) in the field of nurse rostering research. The negotiation protocol
does not need to be ’hard-coded in agents’. By agreeing on an ontology, agents
match their vocabularies, acquire (background) knowledge on the negotiation
protocol and their specific settings. For selecting ’problematic shifts’ in a roster,
we used an algorithm based on the heuristic ordering of shifts (Burke et al.,
2008). More advanced measures need to be researched in order to identify
better candidate shifts. One possibility is to develop measures based on SAT
features, analogous to the hardness research (Bilgin et al., 2009) based on
the translation scheme of Chapter 4. The performance of the combinatorial
auction showed to be inferior to the performance of the other negotiation
protocols. We used a simple algorithm for searching the best combination
of non overlapping packages (combination of shifts). This problem, the winner
determination problem, is known to be a complex (NP-hard) combinatorial
optimisation problem (Cramton et al., 2006). Better algorithms exist, which
presumably will result in better solutions. Similar features as for the ’candidate
selection’ can be used to better estimate the impact of assigning a specific
package to a certain ward. Finally, applying negotiation in this context is in
a sense a parallelisation or decomposition of larger nurse rostering problems.
Currently, we studied decomposition up to the level of a ward and only for
a limited number of wards. An interesting research direction is to study the
impact of this decomposition on the solution quality, which are the boundaries
(max. number of divisions) of the decomposition, is quality lost or gained and
to what extent, . . .

124 CONCLUSIONS AND FUTURE WORK

8.2.4 Mid term, multi-issue negotiation

We studied a negotiation protocol for the division of two issues among multiple
agents in a ward in Chapter 7. Although the results were only discussed for
two agents, the extension to multiple agents is straightforward. Because we
consider an alternating offer protocol, we can aggregate the bids of the agents
into a combined offer. This combined offer is used to calculate the reference
point and no further changes to the protocol are necessary. A second extension
is negotiation for more than two issues. For a small number of issues (ie.
3 or 4), a similar methodology as presented in Chapter 7 may be feasible.
For a larger number of issues, such reasoning is probably inadequate. One
possible solution could be to aggregate multiple issues into a limited number of
categories, analogously to the aggregation of the attributes of the local nurse
rostering problem into operational performance curves. Because we decided
for an offline approach, the construction of the operational performance curves
is resource consuming and computationally intensive. One possible solution
is to predict the value of the objective function using hardness analysis of
nurse rostering problems (Bilgin et al., 2009). The computational process itself
can be made more effective by concentrating on the search for the points
where instability comes in, effectively compromising between accuracy and
computational efficiency. Also, in a real world hospital, the simulation step
may be omitted, because rosters from the past (e.g. the last 6 months) can be
used as input to calculate the operational performance platforms.

8.2.5 Integration of dependent decision problems

A challenging research direction in the line of the previous, is to further study
the integration of different, dependent decision problems either at the same
level or at different levels of personnel management. At the short term level in
a hospital, we can for instance identify three dependent decision problems:

• the classical nurse rostering problems (Burke et al., 2004; De Causmaecker
and Vanden Berghe, 2011), subject of this thesis.

• the patient admission problem (Demeester et al., 2010). Patients are
assigned to beds in appropriate departments, dependent on medical
requirements, satisfying as much of the patients’ preferences as possible
while balancing the number of patients between the different departments.

• the surgery admission problem (Riise and Burke, 2011). The problem
involves assigning operating rooms and dates to a set of elective surgeries
as well as the scheduling of surgeries of each day and room.

FUTURE RESEARCH 125

The number of surgeries performed influences the number of beds required
for the patients and influences the number of nurses required to provide care
for the patients. For each of the presented problems, decisions are taken
at different levels. The number of beds available in a department/hospital
influences the number of surgeries that can be performed and the number of
required surgeons. A hospital can decide to open a new department or to close
others to free resources allowing to specialise in particular treatments, . . . The
decision problems at the different levels affect each other and should be studied
in this broader, dynamic context (De Causmaecker and Vanden Berghe, 2012).

Appendix A

Changes to the numbering
evaluation method

The original evaluation method consists of three phases. The initialisation
phase sets the start values induced by the solution of the previous planning
period. The intermediate phase evaluates the constraints on consecutive
events and rest periods for the current planning period. When the evaluation
has reached the last event in the planning period, a final evaluation on the
constraints is required. More details on these phases can be found in the
original paper (Burke et al., 2001).

As we do not consider the previous planning period within the competition, we
can also simplify the initialisation phase. It is sufficient to initialise last_nr to
a certain value instead of running the initialisation algorithm.

For some constraints within the Nurse Rostering Competition, we need to
denote how to evaluate them at the end of planning period. In this thesis,
last_nr and future_nr denote how to evaluate a constraint at the borders of
the planning period. The final evaluation phase taking future_nr into account,
is given below.

FOR i=1, ... , I
IF (total > max_total) THEN

penalty_max_total = penalty_max_total +
cost_max_total * (total - max_total)

IF (total < min_total) THEN
penalty_min_total = penalty_min_total +
cost_min_total * (total - min_total)

127

128 CHANGES TO THE NUMBERING EVALUATION METHOD

IF (future_nr != U)
IF (last_nr = future_nr - 1)

consecutive = consecutive + 1;

IF (consecutive > max_consecutive) THEN
penalty_max_consecutive = penalty_max_consecutive +
cost_max_consecutive * (consecutive - max_consecutive)

IF (consecutive < min_consecutive) THEN
penalty_min_consecutive = penalty_min_consecutive +
cost_min_consecutive * (min_consecutive - consecutive)

FOR EACH number t in numbering i
IF (pert[t] > max_pert[t]) THEN

penalty_max_pert = penalty_max_pert +
cost_max_pert * (pert[t] - max_pert[t])

IF (pert[t] < min_pert[t]) THEN
penalty_min_pert = penalty_min_pert +
cost_min_pert * (min_pert[t] - pert[t])

IF (last_nr != U AND future_nr != U) THEN
between = future_nr - last_nr - 1

IF (between > max_between) THEN
penalty_max_between = penalty_max_between +
cost_max_between * (future_nr - last_nr - 1)

IF (last_nr != U AND future_nr != U) THEN
between = future_nr - last_nr - 1

IF (between > 0 AND between < min_between) THEN
penalty_min_between = penalty_min_between +
cost_min_between * (future_nr - last_nr - 1)

i=i+1

Appendix B

Formal description of
constraints using numberings

We give a formal description using numberings for each constraints presented
in Section 3.1 of Chapter 3.

B.1 Maximum number of assignments

Consecutive time units have consecutive numbers assigned. The variable
max_total is set to the maximum number of assignments. last_nr and
future_nr are Undefined. An example is given in Table B.1.

Mon Tue Wed Thu Fri Sat Sun

E L E L E L E L E L E L E L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Table B.1: Maximum number of assignments

B.2 Minimum number of assignments

The same numbering as for the maximum number of assignments constraint
can be used (Table B.1). The variable min_total is set to the minimum number
of assignments. last_nr and future_nr are Undefined.

129

130 FORMAL DESCRIPTION OF CONSTRAINTS USING NUMBERINGS

B.3 Maximum and minimum number of consecu-

tive working days

Each time unit on the same day has the same number. The first day is assigned
0. Consecutive days have consecutive numbers. Max_consecutive is set to the
maximum number of consecutive working days. Min_consecutive is set to the
minimum number of consecutive working days. last_nr and future_nr are
Undefined. An example is given in Table B.2.

Mon Tue Wed Thu Fri Sat Sun

E L E L E L E L E L E L E L
0 0 1 1 2 2 3 3 4 4 5 5 6 6

Table B.2: Number of consecutive working days

B.4 Maximum and minimum number of consecu-
tive free days

These two constraints use the same numbering as the number of consecutive
working days constraints. Max_between is set to the maximum number of
free days. Min_between is set to the minimum. last_nr is assigned −1 and
future_nr is assigned (numberofdays), 7 for the numbering in table B.2.

B.5 Maximum number of consecutive working week-
ends

Each time unit of the days of the same weekend has the same number.
Consecutive weekends have consecutive numbers. All other time units are
assigned Undefined. Max_consecutive is set to the maximum number of
consecutive working weekends. last_nr and future_nr are Undefined. An
example is given in Table B.3.

COMPLETE WEEKENDS 131

Fri Sat Sun Mon Tue

E L E L E L E L E L
U U 0 0 0 0 U U U U

Wed Thu Fri Sat Sun

E L E L E L E L E L
U U U U U U 1 1 1 1

Table B.3: Number of consecutive working weekends

B.6 Complete weekends

Time units on the same day are assigned the same number. Consecutive days
in the same weekend have consecutive numbers. There must be a difference of
at least two between the number of a weekend and the last day of the previous
weekend. Min_consecutive is set to the number of days in a weekend, in our
case this is three. last_nr and future_nr are Undefined. A higher penalty is
raised if the working days in the weekend are not consecutive. In this case,
with uniform cost, X 0 X (X = working, 0 = not working), raises a penalty of
4. An example numbering is given in Table B.4.

Fri Sat Sun Mon Tue

E L N E L N E L N E L N E L N
0 0 0 1 1 1 2 2 2 U U U U U U

Wed Thu Fri Sat Sun

E L N E L N E L N E L N E L N
U U U U U U 3 3 3 4 4 4 5 5 5

Table B.4: Complete weekends

B.7 Identical complete weekends

The time units for the same shift type on weekend days are assigned the
same number. Different shift types are assigned different numbers. Different
weekends are assigned different numbers. For each assigned number, min_pert
is set to the number of days in the weekend. last_nr and future_nr are
Undefined. An example is given in Table B.5.

132 FORMAL DESCRIPTION OF CONSTRAINTS USING NUMBERINGS

Fri Sat Sun Mon Tue

E L E L E L E L E L
U U 0 1 0 1 U U U U

Wed Thu Fri Sat Sun

E L E L E L E L E L
U U U U U U 2 3 2 3

Table B.5: Identical complete weekends

B.8 Single assignment per day

Time units on the same day are assigned the same number. Time units of
different days are assigned different numbers. max_pert for each assigned
number is set to one. last_nr and future_nr are Undefined. An example is
given in Table B.6.

Mon Tue Wed Thu Fri Sat Sun

E L E L E L E L E L E L E L
0 0 1 1 2 2 3 3 4 4 5 5 6 6

Table B.6: Single assignment per day numbering

B.9 Two free days after a night shift

The time unit of the first night shift is assigned a number. The time units
of all the shift types except for that of the night shift of the following
days get a consecutive number. All other time units are assigned undefined.
max_consecutive is set to one. last_nr and future_nr are Undefined. For this
constraint, multiple numberings are required (see appendix 3.2.1). An example
is given in Table B.7.

Mon Tue Wed

E L N E L N E L N
U U 0 1 1 U 1 1 U

Table B.7: Two free days after a night shift

REQUESTED DAY ON/OFF 133

B.10 Requested day on/off

All time units of a requested day off are assigned the same number. Different
requests are assigned a different number. All other time units are assigned
undefined. max_pert for each number of each requested day off is set to zero.
The numbering is the similar for requested days on. min_pert is then set to
one. last_nr and future_nr are Undefined. The example in table B.8 illustrates
three day on/off requests: the employee either wants to work or wants to be
free on Monday, Thursday and Saturday.

Mon Tue Wed Thu Fri Sat Sun

E L E L E L E L E L E L E L
0 0 U U U U 1 1 U U 2 2 U U

Table B.8: Day off requests

B.11 Requested shift on/off

The time unit of the requested shift off is assigned a number. Time units of
different shift off requests are assigned different numbers. All other time units
are assigned undefined. max_pert for each assigned number is set to zero. The
numbering is the same for requested shifts on. min_pert is then set to one.
last_nr and future_nr are Undefined. An example is given in Table B.9.

Mon Tue Wed Thu Fri Sat Sun

E L E L E L E L E L E L E L
0 U U U U U U 1 U U 2 U U U

Table B.9: Shift off requests

B.12 Alternative skill

The time units for which the employee does not have the required skill are
assigned a number. In the example in Table B.10, the employee is not allowed
to cover a late (L) shift type.. Different time units are assigned different
numbers. All other time units are assigned undefined. max_pert for each
assigned number is set to zero. last_nr and future_nr are Undefined.

134 FORMAL DESCRIPTION OF CONSTRAINTS USING NUMBERINGS

Mon Tue Wed Thu Fri Sat Sun

E L E L E L E L E L E L E L
U 0 U 1 U 2 U 3 U 4 U 5 U 6

Table B.10: Alternative skill - Employee cannot work shift type L

B.13 Unwanted patterns

An unwanted pattern is a sequence of assignments that a nurse does not want
to work. We distinguish between patterns that are unwanted on specific days
(e.g. a nurse does not want to work a night shift before a free weekend, a nurse
wants to work on Friday before a working weekend, . . .) and patterns that are
unwanted throughout the entire planning period (e.g. a nurse does not want
to work a late shift before an early shift,).

A pattern consists of a number of pattern entries X: [X]1... n. A pattern entry
X can be one of the following:

• ST: a specific shift type

• W: any shift type on a day

• F: free (no shift type) on a day

A pattern entry X can occur on any day in the scheduling period or on a
specific day. Some patterns need multiple numberings (see Section 3.2.1).

We introduce the following pattern types:

1. {W, ST } − [F]2...n: No shift or a specific shift cannot be worked before
a number of free days. E.g. a night shift cannot be worked before a
free weekend (Table B.12). We assign the time unit of the shift type (or
all time units of the day) that cannot be worked a number. The free
days following get a consecutive number. min_consecutive is set to two.
last_nr is Undefined, future_nr is assigned a consecutive number of the
free days, in this case two. A general example is given in Table B.11.

W F F F F
E L N E L N E L N E L N E L N
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table B.11: W − F − F − F − F

UNWANTED PATTERNS 135

Fri Sat Sun

E L N E L N E L N
U U 0 1 1 1 1 1 1

Table B.12: N − F − F : No night shift before a free weekend

2. F − [W, ST]2...n: No free day can occur before working any of a number
of consecutive days or shift types. E.g. If an employee works a shift in a
weekend, the employee should also work on Friday (Table B.14.). The free
day before the working days (shift types) is assigned a number n. The
working days (shift types) following get a consecutive numbers starting
from n+1. last_nr is set to n−3. min_between is set to two. A seperate
numbering is required for every series of shifts subject to the pattern. For
the weekend example (Table B.14), a numbering is required per weekend
in the planning horizon. A general example is given in Table B.13.

F W W W W
E L N E L N E L N E L N E L N
3 3 3 4 4 4 5 5 5 6 6 6 7 7 7

Table B.13: F − W − W − W − W

Fri Sat Sun

E L N E L N E L N
3 3 3 4 4 4 4 4 4

Table B.14: F − W − W : Working on Friday if working a weekend

3. [ST]2...n: Unwanted shift type successions. E.g. L-E-L. Consecutive
shift types in the pattern are assigned consecutive numbers. The other
shift types are assigned undefined. There is a difference of 1 between
the first number of a new series and the last number of the previous
series. max_consecutive is set to the length of the pattern. last_nr and
future_nr are Undefined. An example is given in Table B.15. Multiple
numberings are required to express this pattern type (Section 3.2.1)

136 FORMAL DESCRIPTION OF CONSTRAINTS USING NUMBERINGS

Mon Tue Wed

E L N E L N E L N
U 0 U 1 U U U 2 U

Thu Fri Sat

E L N E L N E L N
U 4 U 5 U U U 6 U

Table B.15: L − E − L

Appendix C

Rewriting non monotonous
numberings

We show that the restriction to monotonous numberings (Definition 7 in
Chapter 4) does not limit the expressiveness of the nurse rostering models.
In fact, every constraint as presented in Chapter 3 can be expressed using
monotonous numberings.

Consider for example the unwanted pattern late (L) - early (E), stating that
a nurse should not have an early shift assigned after having worked a late
shift on the day before. Numbering Ni in Table C.1 is an example numbering
expressing this constraint for nurse rostering problem with a planning horizon
of two weeks and two shift types. max_consecutive is set to 1.

Numbering Ni can be rewritten into multiple numberings. For the numbering
method presented in (Burke et al., 2001), non monotonous numberings were
introduced for compactness. Combining numbering Ni,1 and Ni,2 into one
numbering Ni results in a more efficient evaluation. For use with the SAT
translation (Chapter 4), replacing non monotonous numberings by a set of
monotonous numberings will not increase the number of contiguously ascending
sequences. Hence, this does not influence complexity.

137

138 REWRITING NON MONOTONOUS NUMBERINGS

Days Mo Tu We Th Fr Sa Su

Shift type L E L E L E L E L E L E L E

Time units 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Numbering Ni 0 22 24 1 3 25 27 4 6 28 30 7 9 31

Numbering Ni,1 0 U U 1 3 U U 4 6 U U 7 9 U

Numbering Ni,2 U 22 24 U U 25 27 U U 28 30 U U 31

Mo Tu We Th Fr Sa Su Days

L E L E L E L E L E L E L E Shift type

15 16 17 18 19 20 21 22 23 24 25 26 27 28 Time units

33 10 12 34 36 13 15 37 39 16 18 40 42 19 Ni
U 10 12 U U 13 15 U U 16 18 U U 19 Ni,1
33 U U 34 36 U U 37 39 U U 40 42 U Ni,2

Table C.1: Rewriting non monotonous numberings

Appendix D

Competition Rules

The competition has a set of rules that the participants have to obey. The rules
are the following:

Rule 1: This competition seeks to encourage research into automated nurse
rostering methods, and to offer prices to the most successful methods
in particular tracks. It is the spirit of these rules that is important, not
the letter. With any set of rules for any competition it is possible to work
within the letter of the rules but outside the spirit. The organisers ask
that you: “Please don’t do this”. It’s not fair, it’s not good science, and
it will result in disqualification.

Rule 2: The organisers reserve the right to disqualify any participant from the
competition at any time if the participant is determined by the organisers
to have worked outside the spirit of the competition rules. The organisers’
decision is final in any matter. Decisions will be made democratically by
the organisers.

Rule 3: The organisers reserve the right to change the rules at any time and
without notice. Any change of rules will be accompanied by a general
email to all participants.

Rule 4: The competition has an opening day and a deadline when all submissions
must be uploaded. This deadline is absolute and no extensions will be
given under any circumstances because to do so would be unfair to other
participants.

139

140 COMPETITION RULES

Rule 5: Participants have to implement an algorithm to tackle the problem on a
single processor machine; they can use any programming language. The
use of third-party software is allowed under the following restrictions:

– it is free software

– its behaviour is (reasonably) documented

– it runs under a commonly-used operating system (Unix/Linux or
Windows)

Rule 6: The goal is to produce rosters in which all hard constraints are satisfied
(i.e. feasible rosters) and to minimise the number of broken soft
constraints.

Rule 7: Instances of different size and type will appear on the web site from the
opening day. Two weeks before the deadline more instances will be placed
on the web. A third set of datasets will be used to internally rank the
top participants. The datasets are therefore classified as Early Instances,
Late Instances and Hidden Instances. Participants should refer to the
information associated with each track for further specifics on datasets.
The Hidden Instances will be released after the competition is closed.

Rule 8: Participants have to benchmark their machine with the program provided
in order to know how much time they have available to run their program
on their machines.

Rule 9: The algorithms should take as input a problem file in the format described,
and produce as output a solution in the described format. It should
do so within the allowed CPU time. Obviously the algorithm should
not take account of additional hard coded knowledge about the instance
(e.g. introducing instance specific heuristics). The same version of the
algorithm must be used for all instances. That is, the algorithm should
not “know” which instance it is solving - while your particular algorithm
might analyse the problem instance and set parameters accordingly, it
should not “recognise” the particular instance. The programmer should
not set different parameters for different instances except when the
program is doing this automatically, then this is acceptable.

Rule 10: The algorithm can be either deterministic or stochastic. In both cases,
participants must be prepared to show that these results are repeatable
in the given computer time. In particular, the participants that use a
stochastic algorithm should code their program in such a way that the
exact run that produced each solution submitted can be repeated (by
recording the random seed, etc..). They can try several runs to produce
each submitted solution (each with the allowed computer time), but they
must be able to repeat the run for any solution submitted.

COMPETITION RULES 141

Rule 11: Participants should submit for each Early and Late Instance the best
score found by their algorithm in the specified computer time, by
uploading it onto the web site.

Rule 12: Participants should also submit a concise and clear description of their
algorithm, so that in principle others can implement it. A template will
be made available one month before the end date for this purpose. This
is a fundamental part of a participants’ submission.

Rule 13: For each track, a set of 5 finalists will be chosen after the competition
deadline. Ordering the participants will be based on the scores provided
on the Early and Late Instances. The actual list will be based on the
ranks of solvers on each single instance. The mean average of the ranks
will produce the final place list. More details on how the orderings will
be established can be found in Section 5.5.

Rule 14: The finalists will be asked to provide the executable that will be run
and tested by the organisers. The finalists’ solver will be rerun by
the organisers on all instances (including the Hidden ones). It is the
responsibility of the participant to ensure all information is provided to
enable the organisers to recreate the solution.

The solver submitted by the finalist should require as command-line
arguments, input and output file names and, for stochastic solvers only,
the random seed. For example (stochastic solver):

> my_solver.exe sprint1.txt my_solution.txt 1542955064

If appropriate information is not received or indeed the submitted
solutions cannot be recreated, another finalist will be chosen from the
original participants.

Rule 15: Finalists’ eventual place listings will be based on the ranks for each single
instance for a set of trials on all instances (including the Hidden ones).
As with Rule 10, an explanation of the procedures to be used can be
found in Section 5.5.

Rule 16: In some circumstances, finalists may be required to show source code to
the organisers. This is simply to check that they have stuck to the rules
and will be treated in the strictest confidence.

Rule 17: Entries from participating organising partners will not be permitted.
However, results from participants who choose to work on the problems
will be presented for comparison.

Appendix E

XML and text dataformat

We provide an XML and text-only data format for representing nurse rostering
problem instances (and solutions of the instances) as described in Chapter 3.
Next to a description of the schemes of both data formats, a small sample
instance and solution are given as an example.

XML

An XML-schema (.xsd) is available to describe the structure of the instances:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:annotation>
<xs:documentation>

Schema for personnel scheduling problems.
</xs:documentation>

</xs:annotation>
<xs:element name="SchedulingPeriod">
<xs:complexType>
<xs:sequence>
<xs:element name="StartDate" type="xs:date"/>
<xs:element name="EndDate" type="xs:date"/>
<xs:element name="Skills" type="Skills" minOccurs="0"/>
<xs:element name="ShiftTypes" type="ShiftTypes"/>
<xs:element name="Patterns" type="Patterns" minOccurs="0"/>
<xs:element name="Contracts" type="Contracts"/>
<xs:element name="Employees" type="Employees"/>
<xs:element name="CoverRequirements" type="CoverRequirements"/>
<xs:element name="DayOffRequests" type="DayOffRequests" minOccurs="0"/>
<xs:element name="DayOnRequests" type="DayOnRequests" minOccurs="0"/>
<xs:element name="ShiftOffRequests" type="ShiftOffRequests" minOccurs="0"/>
<xs:element name="ShiftOnRequests" type="ShiftOnRequests" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="ID" type="xs:string" use="required"/>

143

144 XML AND TEXT DATAFORMAT

<xs:attribute name="OrganisationID" type="xs:string" use="optional"/>
</xs:complexType>

</xs:element>
<xs:complexType name="Skills">
<xs:sequence>
<xs:element name="Skill" type="ID" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="ShiftTypes">
<xs:sequence>
<xs:element name="Shift" maxOccurs="unbounded">
<xs:complexType>
<xs:all>
<xs:element name="StartTime" type="xs:time"/>
<xs:element name="EndTime" type="xs:time"/>
<xs:element name="Description" type="xs:string" minOccurs="0"/>
<xs:element name="Skills" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="Skill" type="ID" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:all>
<xs:attribute name="ID" type="ID" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Patterns">
<xs:sequence maxOccurs="unbounded">
<xs:element name="Pattern">
<xs:complexType>
<xs:all>
<xs:element name="PatternEntries">
<xs:complexType>
<xs:sequence minOccurs="2" maxOccurs="unbounded">
<xs:element name="PatternEntry">
<xs:complexType>
<xs:all>
<xs:element name="ShiftType" type="xs:string"/>
<xs:element name="Day" type="WeekDayOrAny"/>

</xs:all>
<xs:attribute name="index"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:all>
<xs:attribute name="weight"/>
<xs:attribute name="ID" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Contracts">
<xs:sequence>
<xs:element name="Contract" maxOccurs="unbounded">
<xs:complexType>
<xs:all>
<xs:element name="SingleAssignmentPerDay"

type="WeightOnly" minOccurs="0"/>

XML AND TEXT DATAFORMAT 145

<xs:element name="MaxNumAssignments"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="MinNumAssignments"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="MaxConsecutiveWorkingDays"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="MinConsecutiveWorkingDays"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="MaxConsecutiveFreeDays"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="MinConsecutiveFreeDays"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="MaxConsecutiveWorkingWeekends"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="MinConsecutiveWorkingWeekends"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="MaxWorkingWeekendsInFourWeeks"
type="OnAndWeight" minOccurs="0"/>

<xs:element name="WeekendDefinition"
type="Weekend" minOccurs="0"/>

<xs:element name="CompleteWeekends"
type="WeightOnly" minOccurs="0"/>

<xs:element name="IdenticalShiftTypesDuringWeekend"
type="WeightOnly" minOccurs="0"/>

<xs:element name="NoNightShiftBeforeFreeWeekend"
type="WeightOnly" minOccurs="0"/>

<xs:element name="TwoFreeDaysAfterNightShifts"
type="WeightOnly" minOccurs="0"/>

<xs:element name="AlternativeSkillCategory"
type="WeightOnly" minOccurs="0"/>

<xs:element name="UnwantedPatterns" minOccurs="0">
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Pattern" type="ID"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Description"/>

</xs:all>
<xs:attribute name="ID" type="ID" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Employees">
<xs:sequence>
<xs:element name="Employee" maxOccurs="unbounded">
<xs:complexType>
<xs:all>
<xs:element name="ContractID" type="ID"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="Skills" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="Skill" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:all>
<xs:attribute name="ID" type="ID" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>

146 XML AND TEXT DATAFORMAT

</xs:complexType>
<xs:complexType name="ConstraintAttributes">
<xs:attribute name="on" type="xs:boolean" use="optional"/>
<xs:attribute name="weight" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>
<xs:complexType name="OnAndWeight">
<xs:simpleContent>
<xs:extension base="xs:nonNegativeInteger">
<xs:attribute name="on" type="xs:boolean" use="optional"/>
<xs:attribute name="weight" type="xs:nonNegativeInteger" use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:complexType name="WeightOnly">
<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute name="weight" type="xs:nonNegativeInteger" use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:complexType name="CoverRequirements">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="DayOfWeekCover">
<xs:complexType>
<xs:sequence>
<xs:element name="Day" type="WeekDay"/>
<xs:element name="Cover" type="Cover" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="DateSpecificCover">
<xs:complexType>
<xs:sequence>
<xs:element name="Date" type="xs:date"/>
<xs:element name="Cover" type="Cover" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
<xs:complexType name="Cover">
<xs:sequence>
<xs:choice>
<xs:element name="Shift" type="ID"/>

</xs:choice>
<xs:element name="Preferred" type="xs:nonNegativeInteger" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="DayOffRequests">
<xs:sequence>
<xs:element name="DayOff" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="EmployeeID" type="ID"/>
<xs:element name="Date" type="xs:date"/>

</xs:sequence>
<xs:attribute name="weight" type="xs:nonNegativeInteger" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="DayOnRequests">
<xs:sequence>

XML AND TEXT DATAFORMAT 147

<xs:element name="DayOn" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="EmployeeID" type="ID"/>
<xs:element name="Date" type="xs:date"/>

</xs:sequence>
<xs:attribute name="weight" type="xs:nonNegativeInteger" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="ShiftOffRequests">
<xs:sequence>
<xs:element name="ShiftOff" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="ShiftTypeID" type="ID"/>
<xs:element name="EmployeeID" type="ID"/>
<xs:element name="Date" type="xs:date"/>

</xs:sequence>
<xs:attribute name="weight" type="xs:nonNegativeInteger" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="ShiftOnRequests">
<xs:sequence>
<xs:element name="ShiftOn" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:choice>
<xs:element name="ShiftTypeID" type="ID"/>

</xs:choice>
<xs:element name="EmployeeID" type="ID"/>
<xs:element name="Date" type="xs:date"/>

</xs:sequence>
<xs:attribute name="weight" type="xs:nonNegativeInteger" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:simpleType name="WeekDay">
<xs:restriction base="xs:string">
<xs:enumeration value="Sunday"/>
<xs:enumeration value="Monday"/>
<xs:enumeration value="Tuesday"/>
<xs:enumeration value="Wednesday"/>
<xs:enumeration value="Thursday"/>
<xs:enumeration value="Friday"/>
<xs:enumeration value="Saturday"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="WeekDayOrAny">
<xs:restriction base="xs:string"/>

</xs:simpleType>
<xs:simpleType name="Weekend">
<xs:restriction base="xs:string">
<xs:enumeration value="SaturdaySunday"/>
<xs:enumeration value="FridaySaturdaySunday"/>
<xs:enumeration value="FridaySaturdaySundayMonday"/>
<xs:enumeration value="SaturdaySundayMonday"/>

</xs:restriction>
</xs:simpleType>

148 XML AND TEXT DATAFORMAT

<xs:simpleType name="ID">
<xs:restriction base="xs:string">
<xs:pattern value="([a-zA-Z0-9._])+"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

An example instance using this scheme is given in Section E.1.

Text

The template for the text format is listed below. The value of boolean is 0
or 1, int+ means a positive integer. Furthermore, when an element refers to
another element, capital letters are used. E.g. the type of required skill(s) for a
shift type is given under SHIFT_TYPES by the element ’Skill’, which is of type
’SKILLS.Skill’. This means that the type of shift type skill is a string (same as
Skill under SKILLS) and that the value of SHIFT_TYPES.Skill equals a value
listed under SKILLS.

The percent sign, %, is used in the text template to indicate the different
elements of a “mother” element (which is typically written in CAPITAL letters.
All lines starting with ’%’ will be replaced by data.

SCHEDULING_PERIOD
% ID <string>,
% StartDate <YYYY-MM-DD>,
% EndDate <YYYY-MM-DD>;

SKILLS = n1
% Skill <string>;

SHIFT_TYPES = n2
% ID <string>,
% Description <string>,
% StartTime <HH:MM:SS>,
% EndTime <HH:MM:SS>,
% NumberOfRequiredSkills <int>,
% RequiredSkill <SKILLS.Skill>; // separate by space, not comma.

CONTRACTS = n3
% ID <string>,
% Description <string>,
% SingleAssignmentPerDay (on|weight) (<boolean>|<int>),
% MaxNumAssignments (on|weight|value) (<boolean>|<int>|<int>),
% MinNumAssignments (on|weight|value) (<boolean>|<int>|<int>),
% MaxConsecutiveWorkingDays (on|weight|value) (<boolean>|<int>|<int>),
% MinConsecutiveWorkingDays (on|weight|value) (<boolean>|<int>|<int>),
% MaxConsecutiveFreeDays (on|weight|value) (<boolean>|<int>|<int>),
% MinConsecutiveFreeDays (on|weight|value) (<boolean>|<int>|<int>),
% MaxConsecutiveWorkingWeekends (on|weight|value) (<boolean>|<int>|<int>),
% MinConsecutiveWorkingWeekends (on|weight|value) (<boolean>|<int>|<int>),
% MaxWorkingWeekendsInFourWeeks (on|weight|value) (<boolean>|<int>|<int>),
% WeekendDefinition <Weekend>

XML AND TEXT DATAFORMAT 149

% CompleteWeekends (on|weight) (<boolean>|<int>),
% Ident.ShiftTypesDuringWeekend (on|weight) (<boolean>|<int>),
% NoNightShiftBeforeFreeWeekend (on|weight) (<boolean>|<int>),
% TwoFreeDaysAfterNightShifts (on|weight) (<boolean>|<int>),
% AlternativeSkillCategory (on|weight) (<boolean>|<int>),
% NumberOfUnwantedPatterns <int>,
% UnwantedPatterns <PATTERNS.ID>;
// separate pattern IDs by space (NOT comma)

PATTERNS = n4
% ID <string>,
% Weight <int>,
% NumberOfShiftTypes <int>,
% ShiftType (<SHIFT_TYPES.ID|Weekday OR Any>);

EMPLOYEES = n5
% ID <string>,
% Name <string>,
% ContractID <CONTRACTS.ID>,
% NumberOfSkills <int>,
% EmployeeSkills <SKILLS.Skill>;

// COVER_REQUIREMENTS

DAY_OF_WEEK_COVER = n6
% Day <WeekDay>,
% Shift <SHIFT_TYPES.ID>,
% Preferred <int+>;

DATE_SPECIFIC_COVER = n7
% Date <YYYY-MM-DD>,
% Shift <SHIFT_TYPES.ID>,
% Preferred <int+>;

DAY_OFF_REQUESTS = n8
% EmployeeID <EMPLOYEES.ID>,
% Date <YYYY-MM-DD>,
% weight <int+>;

DAY_ON_REQUESTS = n9
% EmployeeID <EMPLOYEES.ID>,
% Date <YYYY-MM-DD>,
% weight <int+>;

SHIFT_OFF_REQUESTS = n10
% EmployeeID <EMPLOYEES.ID>,
% Date <YYYY-MM-DD>,
% ShiftTypeID <SHIFT_TYPES.ID>,
% weight <int+>;

SHIFT_ON_REQUESTS = n11
% EmployeeID <EMPLOYEES.ID>,
% Date <YYYY-MM-DD>,
% ShiftTypeID <SHIFT_TYPES.ID>,
% weight <int+>;

An example using the above template is given in Section E.2.

150 XML AND TEXT DATAFORMAT

E.0.1 Output format

Output format templates, for representing solutions, are also available in XML
and text.

XML

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2009 (http://www.altova.com) by SSS (SSS) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Solution">
<xs:complexType>

<xs:sequence>
<xs:element name="SchedulingPeriodID" type="xs:string"/>
<xs:element name="Competitor"/>
<xs:element name="SoftConstraintsPenalty" type="xs:nonNegativeInteger"/>
<xs:element name="Assignment" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Date" type="xs:date"/>
<xs:element name="Employee" type="xs:string"/>
<xs:element name="ShiftType" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

An example of a solution, using this scheme, is given in Section E.3

Text

The text format for solutions is:

// The ID of the instance that this is a solution to.
ProblemInstance = <SCHEDULING_PERIOD.ID>
// Name of the competitor. Use the same name for all solutions you provide.
% Competitor <string>,
% SoftConstraintsPenalty <int>;

ASSIGNMENTS = n1 // The number of assignments that follow.
% Date <YYYY-MM-DD>,
% Employee <EMPLOYEES.ID> ,
% ShiftType <SHIFT_TYPES.ID>;

An example of a solution, using this format, is given in Section E.4.

EXAMPLE OF AN XML INSTANCE FILE 151

E.1 Example of an XML Instance File

Below is an example of an xml instance file.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<SchedulingPeriod ID="EXAMPLE"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="competition.xsd">

<StartDate>2010-01-01</StartDate>
<EndDate>2010-01-29</EndDate>
<Skills>

<Skill>Nurse</Skill>
</Skills>
<ShiftTypes>

<Shift ID="E">
<StartTime>06:30:00</StartTime>
<EndTime>14:30:00</EndTime>
<Description>Early</Description>
<Skills>

<Skill>Nurse</Skill>
</Skills>

</Shift>
<Shift ID="L">

<StartTime>14:30:00</StartTime>
<EndTime>22:30:00</EndTime>
<Description>Late</Description>
<Skills>

<Skill>Nurse</Skill>
</Skills>

</Shift>
</ShiftTypes>
<Patterns>

<Pattern ID="0" weight="1">
<PatternEntries>

<PatternEntry index="0">
<ShiftType>L</ShiftType>
<Day>Any</Day>

</PatternEntry>
<PatternEntry index="1">

<ShiftType>E</ShiftType>
<Day>Any</Day>

</PatternEntry>
</PatternEntries>

</Pattern>
</Patterns>
<Contracts>

<Contract ID="0">
<Description>fulltime</Description>
<SingleAssignmentPerDay weight="1">true</SingleAssignmentPerDay>
<MaxNumAssignments on="1" weight="1">16</MaxNumAssignments>
<UnwantedPatterns>

<Pattern>0</Pattern>
</UnwantedPatterns>

</Contract>
<Contract ID="1">

<Description>75_time</Description>
<SingleAssignmentPerDay weight="1">true</SingleAssignmentPerDay>
<MaxNumAssignments on="1" weight="1">12</MaxNumAssignments>
<UnwantedPatterns>

<Pattern>0</Pattern>
</UnwantedPatterns>

152 XML AND TEXT DATAFORMAT

</Contract>
</Contracts>
<Employees>

<Employee ID="0">
<ContractID>0</ContractID>
<Name>0</Name>
<Skills>

<Skill>Nurse</Skill>
</Skills>

</Employee>
<Employee ID="1">

<ContractID>0</ContractID>
<Name>1</Name>
<Skills>

<Skill>Nurse</Skill>
</Skills>

</Employee>
</Employees>
<CoverRequirements>

<DayOfWeekCover>
<Day>Monday</Day>
<Cover>

<Shift>E</Shift>
<Preferred>2</Preferred>

</Cover>
</DayOfWeekCover>
<DayOfWeekCover>

<Day>Tuesday</Day>
<Cover>

<Shift>L</Shift>
<Preferred>2</Preferred>

</Cover>
</DayOfWeekCover>

</CoverRequirements>
<DayOffRequests>

<DayOff weight="1">
<EmployeeID>0</EmployeeID>
<Date>2010-01-03</Date>

</DayOff>
</DayOffRequests>
<ShiftOffRequests>

<ShiftOff weight="1">
<ShiftTypeID>L</ShiftTypeID>
<EmployeeID>1</EmployeeID>
<Date>2010-01-15</Date>

</ShiftOff>
</ShiftOffRequests>

</SchedulingPeriod>

E.2 Example of a Text Instance File

Below is an example of a text instance file based on the same instance as the
xml example in Appendix E.1.

// Comments can be added by prefixing the comment with ’//’.

// Text following ’//’ should not be treated.

EXAMPLE OF A TEXT INSTANCE FILE 153

//

SCHEDULING_PERIOD;

//

EXAMPLE, 2010-01-01, 2010-01-29;

//

SKILLS = 1;

//

Nurse;

//

SHIFT_TYPES = 2;

//

E, Early, 06:30:00, 14:30:00, 1, Nurse;

L, Late, 14:30:00, 22:30:00, 1, Nurse;

//

CONTRACTS = 2;

//

0, fulltime, (1|1), (1|1|16), , , , , , , , , , , , , , , , 0, , 1, 0;

1, 75_time, (1|1), (1|1|12), , , , , , , , , , , , , , , , 0, , 1, 0;

//

PATTERNS = 1;

//

0, 1, 0, L Any E Any;

//

EMPLOYEES = 2;

//

0, 0, 0, 1, Nurse;

1, 1, 0, 1, Nurse;

//

154 XML AND TEXT DATAFORMAT

DAY_OF_WEEK_COVER = 2;

//

Monday, , E, 2;

Tuesday, , L, 2;

//

DATE_SPECIFIC_COVER = 0;

//

//

DAY_OFF_REQUESTS = 1;

//

0, 2010-01-03, 1;

//

DAY_ON_REQUESTS = 0;

//

//

SHIFT_OFF_REQUESTS = 1;

//

1, 2010-01-15, L, 1;

//

SHIFT_ON_REQUESTS = 0;

//

E.3 Example of a XML Solution File

<Solution>
<SchedulingPeriodID>EXAMPLE</SchedulingPeriodID>
<Competitor>PlanCo</Competitor>
<SoftConstraintsPenalty>3</SoftConstraintsPenalty>
<Assignment>

<Date>2010-01-01</Date>
<Employee>1</Employee>

EXAMPLE OF A TEXT SOLUTION FILE 155

<ShiftType>L</ShiftType>
</Assignment>
<Assignment>

<Date>2010-01-01</Date>
<Employee>2</Employee>
<ShiftType>E</ShiftType>

</Assignment>
<Assignment>

<Date>2010-01-01</Date>
<Employee>3</Employee>
<ShiftType>D</ShiftType>

</Assignment>
<Assignment>

<Date>2010-01-01</Date>
<Employee>4</Employee>
<ShiftType>N</ShiftType>

</Assignment>
<Assignment>

<Date>2010-01-01</Date>
<Employee>5</Employee>
<ShiftType>E</ShiftType>

</Assignment>
<Assignment>

<Date>2010-01-01</Date>
<Employee>6</Employee>
<ShiftType>N</ShiftType>

</Assignment>

....

</Solution>

E.4 Example of a Text Solution file

Here is an example of a text solution file based on the same solution as in the
xml example in Appendix E.3.

//
SOLUTION = EXAMPLE;
//
PlanCo, 3;

//
ASSIGNMENTS = 6;
//
2010-01-01, 1, L;
2010-01-01, 2, E;
2010-01-01, 3, D;
2010-01-01, 4, N;
2010-01-01, 5, E;
2010-01-01, 6, N;

...

Bibliography

S. Acharyya. A SAT Approach for Solving The Nurse Scheduling Problem. In
IEEE Region 10 Conference, 2008.

S. Aknine, S. Pinson, and M. F. Shakun. An extended multi-agent negotiation
protocol. Autonomous Agents and Multi-Agent Systems, 8(1):5–45, Jan.
2004.

B. An, V. Lesser, and K. Sim. Strategic agents for multi-resource negotiation.
Autonomous Agents and Multi-Agent Systems, 23(1):114–153, 2011.

J. Argelich and F. Manyà. Exact max-sat solvers for over-constrained problems.
Journal of Heuristics, 12:375–392, 2006.

R. Asín, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell. Cardinality
networks and their applications. In Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing, SAT ’09,
pages 167–180, 2009.

L. M. Ausubel and P. Milgrom. Ascending proxy auctions. Discussion Papers
03-035, Stanford Instititute for Economic Policy Research, Aug. 2004.

O. Bailleux and Y. Boufkhad. Efficient CNF Encoding of Boolean Cardinality
Constraints. In F. Rossi, editor, Principles and Practice of Constraint
Programming - CP 2003, volume 2833 of Lecture Notes in Computer Science,
pages 108–122. Springer Berlin / Heidelberg, 2003.

J. Bard and H. Purnomo. Incremental changes in the workforce to
accommodate changes in demand. Health Care Management Science, 9:71–
85, 2006.

B. Bilgin, P. De Causmaecker, S. Haspeslagh, T. Messelis, and G. Van-
den Berghe. Hardness studies for nurse rostering problems. In LION, Trento,
Italy, 14-18 January 2009, Jan. 2009.

157

158 BIBLIOGRAPHY

B. Bilgin, P. De Causmaecker, B. Rossie, and G. Vanden Berghe. Local search
neighbourhoods for dealing with a novel nurse rostering model. Annals of
Operations Research, 194:33–57, 2012.

P. Brucker, E. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A shift
sequence based approach for nurse scheduling and a new benchmark dataset.
Journal of Heuristics, 16:559–573, 2010.

E. Burke and T. Curtois. New computational results for nurse rostering
benchmark instances. technical report, 2011. Technical report, School of
Computer Science, University of Nottingham, 2011.

E. K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe. Fitness
Evaluation for Nurse Scheduling Problems. In Proceedings of the Congress
on Evolutionary Computation (CEC2001), pages 1139–1146, 2001.

E. K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem.
The State of the Art of Nurse Rostering. Journal of Scheduling, 7(6):441–499,
2004.

E. K. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman. A hybrid heuristic
ordering and variable neighbourhood search for the nurse rostering problem.
European Journal of Operational Research, 188(2):330 – 341, 2008.

R. Buttner. A classification structure for automated negotiations. In Web
Intelligence and Intelligent Agent Technology Workshops, 2006. WI-IAT
2006 Workshops. 2006 IEEE/WIC/ACM International Conference on, pages
523 –530, dec. 2006.

M. Cadoli and A. Schaerf. Compiling problem specifications into SAT. Artificial
Intelligence, 162(1-2):89–120, Feb. 2005.

E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1), Sept.
1971.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, STOC ’71, pages
151–158, 1971.

M.-C. Côté, B. Gendron, C.-G. Quimper, and L.-M. Rousseau. Formal
languages for integer programming modeling of shift scheduling problems.
Constraints, 16(1):54–76, 2011.

P. I. Cowling, D. Ouelhadj, and S. Petrovic. A multi-agent architecture for
dynamic scheduling of steel hot rolling. Journal of Intelligent Manufacturing,
14(5):457–470, 2003.

BIBLIOGRAPHY 159

P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions.
MIT Press, 2006.

P. De Causmaecker and G. Vanden Berghe. A categorisation of nurse rostering
problems. Journal of Scheduling, 14:3–16, 2011.

P. De Causmaecker and G. Vanden Berghe. Towards a reference model for
timetabling and rostering. Annals of Operations Research, 194:167–176, 2012.

P. Demeester, W. Souffriau, P. De Causmaecker, and G. Vanden Berghe. A
hybrid tabu search algorithm for automatically assigning patients to beds.
Artificial Intelligence in Medicine, 48(1):61 – 70, 2010.

L. Di Gaspero, S. Mizzaro, and A. Schaerf. A multiagent architecture for
distributed course timetabling. In Proceedings of the 5th International
Conference on the Practice and Theory of Automated Timetabling (PATAT-
2004), August 2004.

T. M. Dias, D. F. Ferber, C. C. De Souza, and A. V. Moura. Constructing
nurse schedules at large hospitals. International Transactions in Operational
Research, 10(3):245–265, 2003.

L. Duan, M. K. Doğru, U. Özen, and J. C. Beck. A negotiation framework
for linked combinatorial optimization problems. Autonomous Agents and
Multi-Agent Systems, Apr. 2011.

A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and
rostering: A review of applications, methods and models. European Journal
Of Operational Research, 153(1):3–27, 2004.

M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. pages 226–231.
AAAI Press, 1996.

P. Faratin, C. Sierra, and N. R. Jennings. Using similarity criteria to make issue
trade-offs in automated negotiations. Artificial Intelligence, 142(2):205–237,
2002.

S. Fatima, M. Wooldridge, and N. Jennings. Multi-issue negotiation with
deadlines. Journal of Artificial Intelligence Research, 27(1):381–417, 2006.

S. Fatima, M. Wooldridge, and N. R. Jennings. An analysis of feasible
solutions for multi-issue negotiation involving nonlinear utility functions. In
Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems - Volume 2, AAMAS ’09, pages 1041–1048, 2009.

160 BIBLIOGRAPHY

S. S. Fatima, M. Wooldridge, and N. R. Jennings. An agenda-based framework
for multi-issue negotiation. Artif. Intell., 152(1):1–45, 2004.

D. E. Ferguson. Fibonaccian searching. Commun. ACM, 3(12):648–, Dec. 1960.

C. A. Glass and R. A. Knight. The nurse rostering problem: A critical appraisal
of the problem structure. European Journal of Operational Research, 202(2):
379–389, 2010.

M. Gobert, L. Alvarez-Irusta, G. Berckmans, M. Coêffé, O. Dardenne,
S. Ghysselinckx, T. Van Durme, D. Myny, D. Debergh, F. Gossiaux,
T. Vaes, T. Vandenbrande, P. Van Pelt, W. Ver Heyen, and M. Lamberts.
Optimalisatie van het roosterbeleid en de mobiele equipe voor onmiddellijke
vervanging: naar meer gezonde en voorspelbare roosters door de efficiënte
inzet van de mobiele equipe, 2009.

T. Groves. Incentives in Teams. Econometrica, 41(4):617–631, 1973.

R. H. Guttman, A. G. Moukas, and P. Maes. Agent-mediated electronic
commerce: a survey. Knowl. Eng. Rev., 13(2):147–159, July 1998.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software: an update. SIGKDD Explor. Newsl., 11:
10–18, November 2009.

A. K. Hutzschenreuter, P. A. N. Bosman, and J. A. La Poutré. Evolutionary
Multiobjective Optimization For Dynamic Hospital Resource Management.
In M. Ehrgott, C. M. Fonseca, X. Gandibleux, J.-K. Hao, and M. Sevaux,
editors, Proceedings of Evolutionary Multi-Criterion Optimization 2009,
volume 5467 of Lecture Notes in Computer Science, pages 320–334. Springer,
2009.

INRC2010. First international nurse rostering competition website. URL:
http://www.kuleuven-kortrijk.be/nrpcompetition, 2010.

T. Ito, M. Klein, and H. Hattori. A multi-issue negotiation protocol among
agents with nonlinear utility functions. Multiagent Grid Syst., 4(1):67–83,
2008.

M. O. Jackson. Mechanism theory, 2001.

N. Jennings, P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge.
Automated Negotiation: Prospects, Methods and Challenges. International
Journal of Group Decision and Negotiation, 10(2):199–215, 2001.

C. Jonker, V. Robu, and J. Treur. An agent architecture for multi-attribute
negotiation using incomplete preference information. Autonomous Agents
and Multi-Agent Systems, 15(2):221–252, Jan. 2007.

http://www.kuleuven-kortrijk.be/nrpcompetition

BIBLIOGRAPHY 161

R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

M. Klein, P. Faratin, H. Sayama, and Y. Bar-Yam. Protocols for negotiating
complex contracts. Intelligent Systems, IEEE, 18(6):32–38, 2003.

D. E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting
and searching. 1998.

S. Koenig, C. Tovey, M. Lagoudakis, V. Markakis, and D. Kempe. The power
of sequential single-item auctions for agent coordination. In Proceedings of
the National Conference on Artificial Intelligence, 2006.

S. Kraus. Strategic negotiation in multiagent environments. MIT Press, 2001.

G. Lai and K. Sycara. A Generic Framework for Automated Multi-attribute
Negotiation. Group Decision and Negotiation, 18(2):169–187, 2009.

G. Lai, C. Li, K. Sycara, and J. Giampapa. Literature review on multi-attribute
negotiations. Technical report, 2004.

H. C. Lau, S. F. Cheng, T. Y. Leong, J. H. Park, and Z. Zhao. Multi-Period
Combinatorial Auction Mechanism for Distributed Resource Allocation and
Scheduling. In Proceedings of the 2007 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, IAT ’07, pages 407–411, 2007.

R. Y. K. Lau, M. Tang, and O. Wong. Towards genetically optimised responsive
negotiation agents. In Intelligent Agent Technology, 2004. (IAT 2004).
Proceedings. IEEE/WIC/ACM International Conference on, pages 295–301,
2004.

K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical
hardness of optimization problems: The case of combinatorial auctions.
In P. Van Hentenryck, editor, Principles and Practice of Constraint
Programming - CP 2002, volume 2470 of Lecture Notes in Computer Science,
pages 91–100. Springer Berlin / Heidelberg, 2006.

M. Lopez-Carmona, I. Marsa-Maestre, M. Klein, and T. Ito. Addressing
stability issues in mediated complex contract negotiations for constraint-
based, non-monotonic utility spaces. Autonomous Agents and Multi-Agent
Systems, pages 1–51, 2010.

M. Lopez-Carmona, I. Marsa-Maestre, E. De La Hoz, and J. Velasco. A
region-based multi-issue negotiation protocol for nonmonotonic utility spaces.
Computational Intelligence, 27(2):166–217, 2011.

162 BIBLIOGRAPHY

X. Luo, N. R. Jennings, N. Shadbolt, H. Leung, and J. Lee. A fuzzy constraint
based model for bilateral, multi-issue negotiations in semi-competitive
environments. Artificial Intelligence, 148(1-2):53–102, Aug. 2003.

B. Maenhout and M. Vanhoucke. An evolutionary approach for the nurse
rerostering problem. Computers & Operations Research, 38(10):1400 – 1411,
2011.

I. Marsa-Maestre, M. Lopez-Carmona, and J. Velasco. Improving trade-offs in
bilateral negotiations under complete and incomplete information settings.
In T. Bui, T. Ho, and Q. Ha, editors, Intelligent Agents and Multi-Agent
Systems, volume 5357 of Lecture Notes in Computer Science, pages 275–286.
Springer Berlin / Heidelberg, 2008.

I. Marsa-Maestre, M. Lopez-Carmona, J. A. Carral, and G. Ibanez.
A Recursive Protocol for Negotiating Contracts Under Non-monotonic
Preference Structures. June 2011.

B. McCollum. A perspective on bridging the gap between theory and practice
in university timetabling. In E. Burke and H. Rudová, editors, Practice
and Theory of Automated Timetabling VI, volume 3867 of Lecture Notes in
Computer Science, pages 3–23. Springer Berlin / Heidelberg, 2007.

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J.
Parkes, L. Di Gaspero, R. Qu, and E. K. Burke. Setting the Research
Agenda in Automated Timetabling: The Second International Timetabling
Competition. INFORMS JOURNAL ON COMPUTING, 2009.

P. Milgrom. Putting auction theory to work: The simultaneous ascending
auction. Journal of Political Economy, 108(2):245–272, 2000.

M. Moz and M. Vaz Pato. An integer multicommodity flow model applied
to the rerostering of nurse schedules. Annals of Operations Research, 119:
285–301, 2003.

M. Moz and M. Vaz Pato. A genetic algorithm approach to a nurse rerostering
problem. Computers & Operations Research, 34(3):667 – 691, 2007.

D. Myny, T. Defloor, L. Alvarez-Irusta, D. Annys, F. Demeyere, I. DeVreese,
V. Proenca, M. Vandermolen, K. Vanderwee, A. Van Hecke, and M. Gobert.
Eindrapport welame, 2010.

E. Nudelman, K. Leyton-Brown, H. Hoos, A. Devkar, and Y. Shoham.
Understanding random sat: Beyond the clauses-to-variables ratio. In
M. Wallace, editor, Principles and Practice of Constraint Programming -
CP 2004, volume 3258 of Lecture Notes in Computer Science, pages 438–452.
Springer Berlin / Heidelberg, 2004.

BIBLIOGRAPHY 163

T. Osogami and H. Imai. Classification of various neighborhood operations
for the nurse scheduling problem. Technical Report 135, The Institute of
Statistical Mathematics, 2000.

S. Petrovic and G. Vanden Berghe. A comparison of two approaches to nurse
rostering problems. Annals of Operations Research, 194:365–384, 2012.

A. Ragone, T. Noia, E. Sciascio, and F. M. Donini. Logic-based automated
multi-issue bilateral negotiation in peer-to-peer e-marketplaces. Autonomous
Agents and Multi-Agent Systems, 16(3):249–270, Mar. 2008.

H. Raiffa. The Art and Science of Negotiation. Harvard University Press, 1982.

A. Riise and E. Burke. Local search for the surgery admission planning problem.
Journal of Heuristics, 17:389–414, 2011.

J. S. Rosenschein and G. Zlotkin. Rules of Encounter - Designing Conventions
for Automated Negotiation among Computers. MIT Press, 1994.

A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 50
(1):pp. 97–109, 1982.

A. Schaerf and L. Di Gaspero. Measurability and reproducibility in university
timetabling research: Discussion and proposals. In E. Burke and H. Rudová,
editors, Practice and Theory of Automated Timetabling VI, volume 3867
of Lecture Notes in Computer Science, pages 40–49. Springer Berlin /
Heidelberg, 2007.

W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie. Applications of agent-
based systems in intelligent manufacturing: An updated review. Advanced
Engineering Informatics, 20(4):415 – 431, 2006.

C. Sinz. Towards an optimal cnf encoding of boolean cardinality constraints. In
Proceedings of the 11th International Conference on Principles and Practice
of Constraint Programming (CP 2005), pages 827–831, 2005.

P. Smet, B. Bilgin, P. De Causmaecker, and G. Vanden Berghe. Modelling and
evaluation issues in nurse rostering. Annals of Operations Research, pages
1–24, 2012a.

P. Smet, S. Martin, D. Ouelhadj, E. Özcan, and G. Vanden Berghe.
Investigation of fairness measures for nurse rostering. In Proceedings of
the 9th International Conference on the Practice and Theory of Automated
Timetabling, 2012b.

R. G. Smith. The contract net protocol: High-level communication and control
in a distributed problem solver. IEEE Trans. Comput., 29(12):1104–1113,
Dec. 1980.

164 BIBLIOGRAPHY

V. Tamma, S. Phelps, I. Dickinson, and M. Wooldridge. Ontologies for
supporting negotiation in e-commerce. Engineering Applications of Artificial
Intelligence, 18(2):223 – 236, 2005.

P. Valckenaers, Hadeli, B. Saint Germain, P. Verstraete, and H. Van
Brussel. Emergent short-term forecasting through ant colony engineering
in coordination and control systems. Advanced Engineering Informatics, 20
(3):261 – 278, 2006.

C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, and E. Housos. A systematic
two phase approach for the nurse rostering problem. European Journal of
Operational Research, 219(2):425 – 433, 2012.

J. Vandeurzen. Werk maken van werk in de zorgsector. Actieplan ter
bevordering van de werkgelegenheid in de zorgsector, 2010.

M. Vanhoucke and B. Maenhout. On the characterization and generation
of nurse scheduling problem instances. European Journal of Operational
Research, 196(2):457 – 467, 2009.

M. Vaz Pato and M. Moz. Solving a bi-objective nurse rerostering problem by
using a utopic pareto genetic heuristic. Journal of Heuristics, 14:359–374,
2008.

W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders.
The Journal of Finance, 16(1):8–37, 1961.

J. Von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944.

D. M. Warner. Scheduling nursing personnel according to nursing preference: A
mathematical programming approach. Operations Research, 24(5):842–856,
1976.

G. Weil, K. Heus, P. François, and M. Poujade. Constraint programming for
nurse scheduling. Engineering in Medicine and Biology Magazine, IEEE, 14
(4):417 –422, 1995.

M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason. Auction
protocols for decentralized scheduling. Games and Economic Behavior, 35
(1-2):271 – 303, 2001.

M. P. Wellman, J. K. MacKie-Mason, D. M. Reeves, and S. Swaminathan.
Exploring bidding strategies for market-based scheduling. In Proceedings of
the 4th ACM conference on Electronic commerce, EC ’03, pages 115–124,
2003.

BIBLIOGRAPHY 165

M. J. Wooldridge. An Introduction to MultiAgent Systems (2. ed.). Wiley,
2009.

M. Wu, M. de Weerdt, and H. La Poutré. Efficient Methods for Multi-agent
Multi-issue Negotiation: Allocating Resources. In Proceedings of the 12th
International Conference on Principles of Practice in Multi-Agent Systems,
PRIMA ’09, pages 97–112, 2009.

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-based
algorithm selection for sat. J. Artif. Int. Res., 32(1):565–606, June 2008.

G. Zlotkin and J. S. Rosenschein. Mechanism design for automated negotiation,
and its application to task oriented domains. Artificial Intelligence, 86(2):
195 – 244, 1996.

List of publications

International journal papers

• S. Haspeslagh, P. De Causmaecker, A. Schaerf and M. Stølevik, The
first international nurse rostering competition 2010, Annals of Operations
Research, pages 1-16, online first, doi: 10.1007/s10479-012-1062-0

• S. Haspeslagh and P. De Causmaecker, Bridging the gap between short
and mid term nurse rostering through a negotiation protocol, submitted
to Journal of Scheduling

International conference papers published in the conference
proceedings

• S. Haspeslagh, P. De Causmaecker and G. Vanden Berghe, Distributed
decision making in hospital wide nurse rostering problems, MISTA
2007, Proceedings of the 3th Multidisciplinary International Scheduling
Conference: Theory and Applications, Paris, pages 192-199

Abstracts and presentations at international conferences

• S. Haspeslagh, P. De Causmaecker and G. Vanden Berghe, Framework
for negotiation in Distributed Nurse Rostering Problems, PATAT 2006,
Proceedings of the 6th International Conference on the Practice and
Theory of Automated Timetabling, Brno, pages 426-431

• B. Bilgin, P. De Causmaecker, S. Haspeslagh, T. Messelis and G. Vanden
Berghe, Hardness studies for nurse rostering problems, LION 2009,
Trento, pages 1-4

167

168 LIST OF PUBLICATIONS

• S. Haspeslagh, P. De Causmaecker and G. Vanden Berghe, A multi-agent
system handling personnel shortages in hospitals, MISTA 2009, Proceed-
ings of the 4th Multidisciplinary International Scheduling Conference:
Theory and Applications, Dublin, pages 693-695

• S. Haspeslagh, P. De Causmaecker, A. Schaerf and M. Stølevik, The
First International Nurse Rostering Competition 2010, PATAT 2010,
Proceedings of the 8th International Conference on the Practice and
Theory of Automated Timetabling, Dublin, pages 498-501

• S. Haspeslagh and P. De Causmaecker, Pareto optimal negotiation
for nurse rostering problems, MISTA 2011, Proceedings of the 5th
Multidisciplinary International Scheduling Conference: Theory and
Applications, Phoenix, pages 1-5

Abstracts, papers and presentations at national conferences

• S. Haspeslagh and P. De Causmaecker, ORBEL 21, Benchmarks for the
Nurse Rostering Problems, Luxembourg, 2007, pages 1-2

• T. Messelis, S. Haspeslagh, B. Bilgin, P. De Causmaecker and G. Vanden
Berghe, Towards prediction of algorithm performance in real world
optimisation problems, BNAIC 2009, Proceedings of the 21st Benelux
Conference on Artificial Intelligence, Eindhoven, pages 177-183

• R. Lagatie, S. Haspeslagh and P. De Causmaecker, Negotiation protocols
in distributed nurse rostering, BNAIC 2009, Proceedings of the 21st
Benelux Conference on Artificial Intelligence, Eindhoven, pages 145-152

• T. Messelis, S. Haspeslagh, P. De Causmaecker, B. Bilgin and G. Vanden
Berghe, Hardness studies for nurse rostering problems, ORBEL 23,
Proceedings of the 23th Annual conference of the Belgian Operations
Research Society, Leuven

• T. Messelis, S. Haspeslagh, P. De Causmaecker, On expressing nurse
rostering constraints as propositional satisfiability problems, ORBEL 24,
Proceedings of the 24th Annual conference of the Belgian Operations
Research Society, Liège, pages 1-2

• P. De Causmaecker and S. Haspeslagh, Algorithm analysis and higher
level decision support for nurse rostering, ORBEL 26, Proceedings of
the 26th Annual conference of the Belgian Operations Research Society,
Brussel, pages 1-2

Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Science

Department of Computer Science

CODeS Research Group

Etienne Sabbelaan 53

B-8500 Kortrijk

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Objective
	Contributions
	Structure of the Thesis

	Literature
	The Nurse Rostering Problem
	Negotiation
	Multi-attribute versus multi-issue: definition and classification
	Classification by level of interdependency
	Classification by protocol category
	Categorisation by Information situation and Mediator type
	Categorisation by Time

	Formal models for nurse rostering problems
	Description
	Formal representation of nurse rostering problems using numberings
	Description of constraints using numberings

	Mathematical model
	Conclusion

	Automated translation of nurse rostering problem instances to SAT and MIP models
	Formal definitions of generic constraints
	Translation of generic constraints to SAT
	Preprocessing
	Translation of 'consecutive' and 'between' constraints
	Translation of counting constraints

	Translation of generic constraints to MIP
	Translation of consecutive constraints
	Translation of 'between' constraints
	Translation of counting constraints

	Experiment
	Conclusion

	The First International Nurse Rostering Competition 2010
	Introduction
	Competition rules
	Benchmarking
	Problem description, competition instances and evaluation of solutions
	Solution Ranking
	Preliminary Round
	Final

	Competition Tracks and Results
	Sprint track
	Middle Distance track
	Long Distance track
	Lessons learned

	Conclusion

	Negotiation protocols for short term nurse rostering
	Framework for negotiation
	Constructing local rosters and evaluation of offers
	Subject of negotiation

	Negotiation protocols
	Contract Net Protocol
	Extended Contract Net Protocol
	Simultaneous Ascending Auction
	Limited Vickrey Auction
	Ascending Proxy Auction

	Experiments and results
	Speed
	Quality
	Network load
	Comparison with centralised approach

	Conclusion

	Pareto optimal negotiation through algorithm analysis
	Negotiation model
	Determining the operational performance levels of a ward
	Indifference curves and negotiation in a complete information setting
	Negotiation with incomplete information
	Theoretical analysis and experimental evaluation
	Theoretical analysis
	Experimental evaluation

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Research
	Modelling and representation of rostering problems
	Translation schemes to other problems domains
	Short term negotiation
	Mid term, multi-issue negotiation
	Integration of dependent decision problems

	Changes to the numbering evaluation method
	Formal description of constraints using numberings
	Maximum number of assignments
	Minimum number of assignments
	Maximum and minimum number of consecutive working days
	Maximum and minimum number of consecutive free days
	Maximum number of consecutive working weekends
	Complete weekends
	Identical complete weekends
	Single assignment per day
	Two free days after a night shift
	Requested day on/off
	Requested shift on/off
	Alternative skill
	Unwanted patterns

	Rewriting non monotonous numberings
	Competition Rules
	XML and text dataformat
	Output format
	Example of an XML Instance File
	Example of a Text Instance File
	Example of a XML Solution File
	Example of a Text Solution file

	Bibliography
	List of publications

