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Abstract

This thesis deals with the analysis and design of trusted computing platforms.
Trusted computing technology is a relatively new enabling technology to improve
the trustworthiness of computing platforms. With minor changes to the boot
process and the addition of a new hardware security component, called TPM
(Trusted Platform Module), trusted computing platforms offer the possibility
to verifiably report their integrity to external parties (i.e., remote attestation)
and to bind information to a specific platform (i.e., sealed storage).

The first part of this thesis mainly focuses on the analysis of existing trusted
computing platforms. We analyze the functionality provided by the specifications
of the TCG (Trusted Computing Group) and purely software-based alternatives.
Based on this analysis we present an improvement to a software-based attestation
scheme: we propose to measure the execution time of a memory checksum
function locally (with the time stamping functionality of the TPM) instead of
remotely (over the network).

We also study the resilience of trusted computing platforms against hardware
attacks. We describe how attacks on the communication interface of the TPM
can circumvent the measured boot process. The feasibility of these attacks is
investigated in practice. Additionally we explore which operations should be
targeted with a side channel attack to extracts the secret keys of a TPM.

The second part of this thesis addresses some of the challenges to implement
trusted computing technology on embedded and reconfigurable devices. One of
the main problems when integrating a TPM into a system-on-chip design, is
the lack of on-chip reprogrammable non-volatile memory. We develop schemes
to securely externalize the non-volatile storage of a TPM. One scheme relies
a new security primitive, called a reconfigurable physical unclonable function,
and another extends the security perimeter of the TPM to the external memory
with a cryptographic protocol.

We propose a new architecture to reset the trust boundary to a much smaller
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scale, thus allowing for simpler and more flexible TPM implementations. The
architecture has two distinctive features: the program code is stored outside
the coprocessor and only gets loaded in RAM memory when needed, and the
architecture is open by allowing to execute arbitrary programs in remotely
verifiable manner.

Finally, we study how the TPM can be implemented securely on reconfigurable
hardware. This type of implementation is beneficial because it allows for
updates of the software as well as of the hardware of the TPM (e.g., the
cryptographic coprocessor) in the field. We examine the implementation options
on reconfigurable hardware that is currently available commercially. Next,
we propose a novel architecture that can measure and report the integrity of
configuration bitstreams.



Samenvatting

Dit proefschrift handelt over de analyse en het ontwerp van vertrouwde
computerplatformen. Vertrouwde computerplatformen zijn een relatief nieuwe
technologie die de betrouwbaarheid van computersystemen kan verbeteren.
Door kleine wijzigingen aan het opstartproces en de toevoeging van een nieuwe
hardwarebeveiligingscomponent, TPM (Trusted Platform Module) genoemd,
maken vertrouwde computerplatformen het mogelijk om hun integriteit op
een verifieerbare manier te rapporteren aan externe partijen (dit is attestatie
op afstand) en om informatie te koppelen aan een specifiek platform (dit is
verzegelde opslag).

Het eerste deel van dit proefschrift concentreert zich voornamelijk op de analyse
van bestaande vertrouwde computersystemen. We bekijken de functionaliteit
die aangeboden wordt door de specificaties van de TCG (Trusted Computing
Group) en door puur software-gebaseerde alternatieven. Op basis van deze
analyse stellen we een verbetering voor aan een schema voor software-
gebaseerde attestatie. Hierbij wordt de uitvoeringstijd van de functie die
een checksum over het geheugen berekent, lokaal gemeten (met behulp van de
tijdszegelfunctionaliteit van de TPM) in plaats van de meting op afstand (over
het netwerk) uit te voeren.

We bestuderen ook in welke mate vertrouwde computerplatformen bescherming
bieden tegen hardware-aanvallen. We beschrijven hoe aanvallen op de
communicatie-interface van de TPM het geauthentiseerde opstartproces kunnen
omzeilen. De praktische haalbaarheid van deze aanvallen wordt onderzocht.
Bovendien onderzoeken we op welke bewerkingen nevenkanaalaanvallen zich
moeten richten om de geheime sleutels van een TPM te achterhalen.

Het tweede deel van dit proefschrift pakt enkele uitdagingen aan die zich stellen
wanneer de technologie van vertrouwde computerplatformen toegepast wordt
op ingebedde en herconfigureerbare toestellen. Een van de pijnpunten van de
integratie van een TPM in een systeem-op-chip-ontwerp, is het feit dat intern
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niet-vluchtig geheugen onvoldoende voor handen is. We ontwerpen schema’s
om de niet-vluchtige opslag van een TPM op een beveiligde manier extern
te maken. KEén schema steunt op een nieuw beveiligingsprimitief, dat een
herconfigureerbare fysisch onkloonbare functie genoemd wordt. Een andere
oplossing breidt de beveiligingsperimeter van de TPM uit naar het extern
geheugen met een cryptografisch protocol.

We stellen een nieuwe architectuur voor die de vertrouwensgrens terugzet naar
een veel kleinere schaal en die aldus meer eenvoudige en meer flexibele TPM-
implementaties toelaat. De architectuur heeft twee onderscheidende kenmerken:
de programmacode wordt buiten de coprocessor opgeslagen en enkel in het RAM-
geheugen geladen wanneer nodig en de architectuur is open door de uitvoering
van willekeurige programma’s toe te laten zodat dit op afstand geverifieerd kan
worden.

Ten slotte bestuderen we hoe de TPMs op veilige wijze geimplementeerd
kunnen worden op herconfigureerbare hardware. Zo’n implementatie is voordelig
omdat het toelaat om zowel de software als hardware van de TPM (bv. de
cryptografische coprocessor) bij te werken. We onderzoeken de mogelijkheden
tot implementatie op herconfigureerbare hardware die momenteel commercieel
beschikbaar is. Daarna stellen we een nieuwe architectuur voor die de integriteit
van configuratiebestanden kan meten en rapporteren.
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Chapter 1

Introduction

1.1 Background on Trusted Computing

As today’s software is becoming more and more mobile and inherently networked,
and its tasks get increasingly critical, mechanisms should be in place to establish
trust relationships between computing platforms. For instance, in online banking
the bank wants be assured that a financial transaction is generated by a
legitimate client of the bank and not by malware that has infected the client’s
computer. Similarly, providers of digital content such as music, movies and
e-books want to check whether a so-called Digital Rights Management (DRM)
system is properly installed on the consumer’s platform. The DRM software
typically restricts the usage of the digital content; e.g., the content can only
be played on a certain number of computers or media players, for a limited
number of times or during a specific time period. In online games “misbehaving’
users must be identified. The usage of bots that automate certain actions in
the game, or the installation of cheat software that gives the user advantages
over the other players (e.g., viewing through walls) must be detected. As a final
example, it would be desirable in Virtual Private Network (VPN) solutions to
grant remote access to a corporate network over the public Internet not only
based on user credentials (e.g., password, digital signature, biometrics), but
also on the verification of the platform’s integrity.

Y

For all these applications, it is clear that only legitimate, untampered client
applications should be granted access to a service. Hence, an authorized entity
wants to be able to both identify a remote platform and verify whether its
software is running untampered. In the literature this process is often called
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remote attestation. If tampering is detected, the verifier will want to disconnect
the client from the network, stop the service to this particular client, or even
force that client application to halt its execution.

1.1.1 Closed Platforms

In closed systems, communicating platforms have an a priori trust relationship.
The client platform is assumed to only run the legitimate software of the service
provider and cryptographic keys to access the service can be embedded inside
the device. Typical examples are Consumer Electronics (CE) devices such
as DVD players and recorders, portable media players, satellite TV receivers,
digital TV set-top boxes, and game consoles. Often the user of such device has
an incentive to modify the original software or extract the embedded keys; for
instance to play a DVD with a foreign region code, to watch pay TV for free,
or to play a pirate copy of a computer game.

Typically the integrity of code executing on a closed platform does not have to be
verified remotely as no software interface is provided to install malicious modified
code. The fact that a device has access to the correct cryptographic keys is
believed to offer sufficient evidence that the service provider is communicating
with an authentic platform. Therefore there is an implicit trust relationship.
The closeness of the platform’s software forces attackers to resort to hardware
attacks on the platform. Consequently numerous security mechanisms are
commonly implemented in hardware: e.g., the initial boot loader of the platform
is stored in Read-Only Memory (ROM) and only starts authorized code (i.e.,
signed by the device manufacturer), cryptographic keys are stored in a tamper
resistant module such as a smart card, and the communication and memory
buses of the platform are physically and/or cryptographically protected against
eavesdropping and tampering.

1.1.2 Open Platforms

On open platforms such as the Personal Computer (PC) an adversary has total
control over all the software including the operating system. The adversary can
remotely compromise the platform through a security vulnerability, but he can
also have local control of the platform if he is trying to attack an application on
his own machine. The latter is for instance the case when a PC user attempts to
circumvent a DRM system. Moreover, adversaries with local access can perform
hardware attacks, such as using DMA to read and/or alter the main computer
memory.
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Establishing a secure execution environment in such conditions is a big
challenge. Many enabling technologies has been researched in this area.
Aucsmith [12] introduced that concept of tamper resistant software that has
built-in integrity checks to detect tampering of its code, and Horne et al. [52]
and Chang and Atallah [52] presented improved implementations of Aucsmith’s
concept. Typically tamper resistant software is complemented with obfuscation
techniques [63, 64, 179, 307] that complicate the reverse engineering of the binary
executable and hence make it more difficult to understand how to circumvent
a tamper detection mechanism. Finally, white-box cryptography [309] aims to
hide cryptographic keys into applications, either in a large collection of lookup
tables, as proposed by Chow et al. [60, 61], or in executable code, as proposed
by Michiels and Gorissen [199]. The scheme of Michiels and Gorissen is a
form of tamper resistant software, as code modifications will alter the key and
consequently cripple the functionality of the application.

However, when these software techniques are used to protect standalone, non-
networked applications, their security is limited. Obfuscation makes the reverse
engineering process more time consuming but not impossible, and most proposals
for a white-box block cipher have been broken [26, 112, 139, 310]. Tamper
resistant software typically calculates a checksum on its code and checks whether
the checksum corresponds with an expected value. In offline applications this
expected value has to be stored inside the software and the decision whether
tampering has occurred, has to be taken locally by the client software itself.
Wurster et al. [292, 308] showed that self-checking software can be attacked
with hardware support and Tan et al. [270] observed that the tamper response
mechanism is often a weak point.

Networked applications suffer less from these issues. The integrity checksums
do not have to be present in the client software and the comparison between
the runtime and the pre-computed checksum can be performed remotely by
the service provider, that is not under control of an attacker. Additionally
the service provider can periodically replace the client application with a new
version, containing a different cryptographic key and/or obfuscated in another
way. This code replacement, which was proposed in the work of Ceccato et
al. [48, 49], can be used to limit the time an adversary has to reverse engineer a
version of the application.

An adversary that has complete control over an untrusted platform, also has
control over its input and output network traffic. This makes it difficult for a
remote verifier to be assured of communicating with a particular environment
on a given platform. The attacker can forward the remote attestation protocol
from a tampered platform to an honest platform. Similarly, he can compromise
the platform immediately after the attestation protocol has verified the integrity
of the platform.
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In addition, the verifier has to determine whether the software is running
directly on the operating system of the platform or in a simulator, emulator
or virtual machine. So-called genuinity tests were developed by Kennell and
Jamieson [148] to verify whether software is running on specific hardware. These
tests leverage detailed knowledge about the processor of the untrusted platform
and are slow to execute on other processors or to simulate. In practice however,
the proposed solution turns out to be flawed, as shown by Shankar et al. in [240].

The Pioneer system proposed by Seshadri et al. [235, 236, 237] establishes
whether software on an untrusted host is untampered by calculating a checksum
over its runtime memory image. If the resulting checksum is not reported within
a defined time frame, the verifier assumes that the checksum function itself has
been altered; the timing information helps to detect the overhead caused by
modifications to the checksum functionality and redirection of the network flow.
The proposed solution was first proposed for embedded systems with a low-end
microcontroller [238] and later for legacy PC systems. The scheme relies on
strong assumptions on the underlying hardware; e.g., the processor must not
be overclocked or the size of the memory must not be increased.

Alternatively, one can limit the impact of tampering by moving critical code
away from untrusted platforms. Zhang and Gupta [320] introduced software
splitting as a technique for protecting software from piracy. The core idea of this
technique is to remove small but essential components from an application and
place them either on a secure server on the Internet or on a secure coprocessor
(see Section 1.1.3). Dvir et al. [85] developed a non-blocking software splitting
technique and Ceccato et al. [46, 47] formulated a framework to identify which
portions of the client code should be moved to the server. All these schemes
are a form of server side execution.

1.1.3 Secure Coprocessor

The software-based attestation schemes proposed for open platforms will never
give the same confidence level as the hardware mechanisms of a closed platform.
Therefore, in the nineties the idea arose to add a secure coprocessor to the open
PC platform [248, 249, 312, 313]. This coprocessor offers a closed execution
environment next to the untrustworthy legacy operating system. The security
mechanisms of closed platforms are applied: the coprocessor only executes
authenticated code and physical shielding provides hardware tamper resistance.

Even if plenty of research has been done on secure coprocessors, their commercial
success is limited to banking networks. IBM is the main manufacturer of off-
the-shelf secure coprocessor products that are freely programmable. The IBM
4758 [86] was a PCI card with a 486 processor, a cryptographic engine, and
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battery-backed RAM for non-volatile storage and it ran a proprietary operating
system called CP/Q-++ that supports custom applications. Its successors,
the IBM 4764 and 4765, use a PowerPC processor and embedded Linux as
operating system. The IBM secure coprocessor family supports outbound
authentication [246, 247]: the ability of coprocessor applications to authenticate
themselves to remote parties. IBM also provides an Application Programming
Interface (API) called Common Cryptographic Architecture (CCA), which can
be used to protect banking transactions, but Bond [32] demonstrated a number
of flaws in this API.

In some sense the latest generation of smart card meets the definition of secure
coprocessor. Traditionally smart cards have been constrained in processing
power and storage capacity and a dedicated smart card reader was needed.
Hence the application of classical cards has been limited to some specific tasks,
such as data and entity authentication (e.g., SIM card), identification and
digital signatures (e.g., eID card) and financial payments (e.g., EMV credit
card). However, the latest generation of smart cards is getting a high speed
interface (i.e., USB), a high density non-volatile memory (i.e., Flash memory)
and a more powerful microprocessor.

With the appropriate cryptographic techniques the coprocessor can establish a
secure communication channel to a remote entity through the network connection
of the untrustworthy host computer. This channel can be used to report the
identity and integrity of code executing in the secure environment, and to update
and configure its software components. However, it is less straightforward to
establish a secure path to a human operator of the open platform: the input of
the user (e.g., key strokes entered on the keyboard or mouse movement) and
the output to the user (e.g., information displayed on the computer screen)
can be intercepted and manipulated by malicious software on the PC. For this
reason, some applications (e.g., in the banking world) mandate the usage of a
card reader with pin pad and display or cards with display and OK button.

1.1.4 Trusted Computing Platforms

In the nineties academic researchers proposed architectures to improve the
trustworthiness of the PC bootstrap process. All assume the Basic Input/Output
System (BIOS), which acts as initial boot loader of the PC platform, to be
immutable and use it as trust anchor for a secure bootstrap. Arbaugh introduced
the concept of chaining layered integrity checks [7, 8]. Each software component
loaded during the boot process (starting from the BIOS) checks the integrity of
the next component (by verifying a digital signature) before passing control to
it. He also defined a mechanism for automatic recovery of corrupt or invalid
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bootstrap components [9]. This proposal effectively turns the PC into a closed
platform as it restricts the software that can be booted.

Grof3 [115, 129] defined a secure bootstrap architecture that supports remote
attestation. The platform contains a unique asymmetric key pair signed
by the hardware manufacturer and the operating system is signed by the
operating system producer. During startup the integrity of the operating
system is checked by verifying the digital signature, and the platform signs the
identity of the operating system with its private key yielding a boot certificate.
During operation the integrity of the platform can be remotely verified with a
cryptographic challenge-response protocol that transfers the boot and hardware
certificate. A very similar solution was already presented earlier by Gasser et
al. in [108].

The main initiative for a new generation of computing platforms was taken
by the Trusted Computing Platform Alliance (TCPA), a consortium of most
major IT companies, and its successor the Trusted Computing Group (TCG).
This initiative opted for a different approach that respects the openness of
the PC platform. A TCG enabled platform reliably measures the software
components that get loaded during startup by calculating their cryptographic
hash and records these measurements in a hardware security module, the
Trusted Platform Module (TPM). This approach is called authenticated boot,
measured boot or trusted boot. Measured boot does not impose restrictions on
the operating system that the platform can boot, as the TPM merely operates
as a logging device that does not actively intervene in the bootstrap process.
This means that the platform can start into an arbitrary but verifiable state.
After startup, the platform state can be reported to a remote entity with an
attestation protocol or it can be used to securely bind secrets to a specific
platform configuration in a process commonly referred to as sealed storage. The
former enables service providers to restrict access to a network service based on
the measured platform configuration and identity.

The remote attestation provided by TCG platforms has a number of issues which
limit practical deployment. Firstly, in its original form the TCG attestation
process posed some privacy concerns, which are partially addressed by the Direct
Anonymous Attestation (DAA) protocol [38, 42] of the TPM 1.2 specification.
Secondly, binary measurement of the platform configuration has scalability issues
because managing the multitude of possible configurations can be troublesome,
and allows for discrimination of certain configurations. Lastly, attestation of
individual applications [226] necessitates a secure operating system. We will
provide an analysis of the TCG remote attestation functionality in Section 2.1.

The initial focus of the TCG was on the open PC platform, resulting in the
specification of a TPM. Originally the TCG envisioned that this TPM would
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be generic enough to be used in a large variety of computing platforms such
as servers, mobile phones, computer peripherals, etc. However, it turns out
that other platforms have slightly different security requirements. In particular,
for mobile phones and embedded devices, which are historically more closed,
it is desirable that the platform is halted before untrusted software is started,
like in the research of Arbaugh. Therefore the TCG Mobile Phone Work
Group (MPWG) published the specification for a Mobile Trusted Module (MTM)
and proposed a reference architecture. The specification distinguishes between
local and remote owner trusted modules, defines a subset of TPM commands
that have to be implemented, and describes mobile specific commands, e.g., to
implement secure boot in a standardized way.

1.1.5 Compatibility with Legacy Operating System

Pure software approaches for remote attestation, that rely on timed execution of
a checksum function, have a number of limitations. It is impossible to uniquely
identify the platform, creating an opportunity for proxy attacks that forward
the attestation protocol from a tampered platform to an honest platform. To
determine the expected execution time of the checksum computation, detailed
knowledge about the processor of the untrusted platform is needed. The
adversary will be tempted to replace the processor with a faster one such that
the extra computing cycles can be used to tamper with the checksum function.
The expected execution time can be unreliable because the verifier has to
make a worst case assumption on the network latency, which can be rather
unpredictable on the Internet.

Meanwhile, more than 600 million computers equipped with TPMs have been
sold today, but their functionality is hardly used. The main reason for this is
the lack of software support. If legacy operating systems such as Windows and
Linux are used on a TCG platform, the chain of trust can be easily subverted,
e.g., by loading a malicious device driver or by exploiting a kernel level security
vulnerability. A solution that is often proposed to increase the trustworthiness
of the PC platform while maintaining backward compatibility, is the usage of
a Virtual Machine Monitor (VMM) or hypervisor [101, 102, 160, 181]. In this
way a security critical application can run on a dedicated Virtual Machine (VM)
isolated from the VM that hosts the legacy operating system. The integrity of
the application VM and the hypervisor can be verified with a remote attestation
protocol. Trusted virtualization layers have been researched and developed,
for instance in Microsoft’s Next-Generation Secure Computing Base (NGSCB)
project [96, 212], the German EMSCB project [225] and the European OpenTC
project [160], but are not yet commercially available.
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Given the shortcomings of software-based attestation schemes and the lacking
software support for TCG platforms we proposed a hardware-assisted software
solution in [229, 230]. In particular we improved the Pioneer scheme by using
the time stamping functionality provided by the TPM. Our solution only
relies on a secure bootloader, instead of a secure operating system or a trusted
virtualization layer. We will discuss this scheme in detail in Chapter 2.

Another approach is taken in the work of McCune et al. [190, 192, 193, 194].
They propose to use the late launch capability offered by AMD’s Secure
Virtual Machine (SVM) extensions and Intel’s Trusted Execution Technology
(TXT) [113, 114] in order to create a strongly isolated execution environment
that can be remotely verified. The Trusted Computing Base (TCB) for this
proposal is very small and hence the resulting solution potentially provides a
strong level of assurance. This scheme has strong hardware requirements, i.e., a
x86 processor with SVM/TXT and a TPM, and incurs significant performance
overhead due to its frequent use of slow TPM operations. In 2010 McCune et
al. overcame the performance issue by building a tiny hypervisor that includes
a fast and minimized virtual/software TPM [191].

For more background on secure bootstrapping and remote attestation for
commodity computers, we recommend the extensive survey of Parno et al. [209,
210].

1.2 Thesis Outline and Contributions

This section outlines the structure of the thesis and details the personal
contributions. The thesis is organized in seven chapters.

Chapter 1: Introduction. The first chapter provides a brief background on
trusted computing platforms. We also outline a summary and the contributions
of each chapter separately.

Chapter 2: Remote Attestation. In Chapter 2 we provide an introduction
to the main TCG specifications. We analyze the attestation functionality
provided by the TCG and purely software-based attestation techniques. After
this analysis, we present a new scheme for remote attestation that combines an
existing software-based attestation scheme with the time stamping functionality
of the TPM. This scheme was developed in collaboration with Wyseur and it is
published in [229, 230].
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Chapter 3: Hardware Attacks. In Chapter 3 we analyze the resilience of
trusted computing platforms against hardware attacks. We mainly focus on
the analysis and manipulation of the TPM’s communication interface. This
research, which includes experimental results on an Atmel 1.1b TPM, was done
under supervision of Kursawe and the initial findings are published in [165]. In
this chapter we also discuss how TPMs can be attacked theoretically with a
side channel attack.

Chapter 4: Non-Volatile State Protection. In Chapter 4 we investigate how
the non-volatile state of a TPM can be protected in external non-volatile memory.
We provide a generic framework for non-volatile state protection and present the
concept of PUF-based key storage. Next, we introduce reconfigurable Physical
Unclonable Functions (PUFs) as a new security primitive and discuss how they
can be utilized in non-volatile state protection schemes. Finally, we describe how
the security perimeter of a TPM can be extended to an external non-volatile
memory module with a cryptographic protocol. The research on reconfigurable
PUFSs, which is presented in [163], is joint work with Kursawe, Skori¢ and Tuyls,
who came up with the concept of a reconfigurable PUF when working at Philips
Research, and Sadeghi. The author of this thesis is responsible for the scheme
to protect the persistent state of a TPM with a reconfigurable PUF and for the
idea to create a logically reconfigurable PUF with a static PUF and embedded
non-volatile memory. The work on authenticated external non-volatile memory
was performed under supervision of Tuyls and it was published in [228].

Chapter 5: Flexible TPM Architecture. In Chapter 5 we introduced a new
architecture for a secure coprocessor called pTPM, that allows simpler and more
flexible TPM implementations. In order to minimize the hardware resources of
the pTPM architecture, the program code of the processor is stored in external
non-volatile memory and only gets loaded in internal memory when needed.
The pTPM architecture was developed in collaboration with Kursawe. This
chapter is an extended version of [164].

Chapter 6: Reconfigurable Trusted Computing. In Chapter 6 we discuss
how the techniques from Chapter 4 can be used to protect the persistent state
of a trusted module on currently available FPGAs. This research is published,
in part, in [228]. We also describe a novel FPGA architecture that defines a
root of trust to measure and report the integrity of partial bitstreams. The
research on this architecture, which is presented in [87], was initially started by
Eisenbarth, Giineysu, Paar, Sadeghi and Wolf from Ruhr-Universitdt Bochum.
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The author of this thesis contributed at a later stage by helping to refine and
improve the architecture.

Chapter 7: Conclusions and Future Work. In Chapter 7 we summarize the
most important findings of this thesis and propose a number of future research
directions.



Chapter 2

Remote Attestation

A number of applications require verification of software executing on a remote
platform. Trusted computing platforms promise to solve this problem, but
large scale deployment of this technology is limited because there are scalability
issues and lacking software support. On the other hand, timed execution of
code checksum calculations offers a solution on legacy platforms, but cannot
provide strong security assurance as it solely relies on software mechanisms.

In this chapter we analyze the attestation functionality provided by the TCG and
purely software-based attestation techniques. Next we present a new solution,
which we presented in [229, 230], that uses the time stamping functionality of
the TPM and a modified bootloader to enhance an existing timed execution
scheme.

2.1 Attestation with Trusted Computing Platforms

Trusted computing initiatives intend to solve some of today’s security problems
of the underlying computing platforms through hardware and software changes.
The main initiative for a new generation of computing platforms is the TCG,
a consortium of most major IT companies. The TCG sees itself mainly as
a standard body' and it does not provide any infrastructure to fully utilize
the technology. Only in 2009 the TCG announced a certification program to

In 2009 the TPM specifications were approved as an ISO/IEC standard, namely
ISO/IEC 118809.

11
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test the correctness of implementations.? The TCG specifications define three
components that form a Trusted Platform.

1. The core component of a TCG platform is a hardware module called
Trusted Platform Module (TPM) or Mobile Trusted Module (MTM).
This component will be explained in more detail in Section 2.1.1.

2. The second component is called Core Root of Trust for Measurement
(CRTM), and is the first code that the platform executes when it is
booted. In a PC, this is the first part of the BIOS, which cannot be
flashed or otherwise be modified. New-generation PCs with SVM/TXT
support have the ability to measure and start a hypervisor after the legacy
operating system has booted; this measured launch routine is known as
the Dynamic Core Root of Trust for Measurement (D-CRTM) whereas
the BIOS boot block is known as the Static Core Root of Trust for
Measurement (S-CRTM).

3. To compensate for the lack of functionality in the TPM, the TCG specifies
a TCG Software Stack (T'SS), which facilitates some of the complex, but
non-critical functionality and provides standard interfaces for high-level
applications.

2.1.1 Trusted Platform Module

The TPM is a smart card like hardware module that was originally envisioned
to be platform agnostic. However, in practice, the specification is primarily
designed for the PC platform and therefore the TCG later on made a
specification for a hardware module more tailored for advanced mobile devices
such as smart phones and tablets, called MTM. The MTM specification adds
some mobile specific functionalities and declares (mandatory) TPM features
optional in order to minimize the footprint of the module [91].

The TPM has to be securely bound to the rest of the platform. In a PC the
binding is accomplished by implementing the functionality with a dedicated
discrete chip and by mounting it on the motherboard or by integrating the
TPM into the chipset. Some of the first discrete TPMs were installed on a
separate daughterboard plugged into the motherboard and hence a logical
binding mechanism was required to guarantee that the module could not be

2At the moment of writing only two products, the Infineon TPM and the latest
STMicroelectronics TPM, have been certified. This TCG certification program was presumably
created because independent testing by Sadeghi et al. [223] revealed non-compliance bugs in
some early TPM products.
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Figure 2.1: Simplified architecture of TPM 1.2.

removed and replaced with a different TPM. Nowadays the TPM chip is
soldered directly onto the motherboard, establishing a physical binding.

For the MTM specification various implementation options exist, especially
because a mobile phone will contain multiple trusted modules for different
stakeholders (e.g., device manufacturer and cellular operator). The MTM can
be implemented in hardware as a separate dedicated chip or integrated into
existing chips [72], or as software running on the main processor, possibly in
a higher privileged mode [90, 297]. If the platform has to support multiple
execution engines, software/virtual trusted modules can run in isolated domains
provided by a microkernel or hypervisor [24, 231, 234, 319].

Both TCG modules can be implemented with similar hardware, namely a
microcontroller, a cryptographic coprocessor (supporting RNG, RSA, SHA-1,
and HMAC), read-only memory for firmware and certificates, volatile memory
and non-volatile memory. Figure 2.1 gives a schematic overview of the internal
architecture of a TPM version 1.2. The trusted module communicates with
the central microprocessor of the platform over an I/O bus. The Low Pin
Count (LPC) bus is the standardized interface for PCs to communicate with a
TPM. Some manufacturers also provide a TPM variant for embedded systems
that has an Inter-Integrated Circuit (I2C) or System Management Bus (SMBus)
interface (see Table 3.1).

The trusted module needs volatile memory for temporary data. This includes
key slots to load keys that are stored outside the trusted module, information
(e.g., nonces) about authorization sessions, and a set of so-called Platform
Configuration Registers (PCRs) that are used to store measurements (i.e., hash
values) about the platform configuration. The content of these registers can
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only® be modified using the irreversible process known as “extending”:
PCRyew = H(PCRo|| M),

with PCR.q the previous register value, PCR,q, the new value, M a new
measurement, Hthe cryptographic hash function Secure Hash Algorithm 1
(SHA-1) and || denoting the concatenation of values. The operation has several
benefits: (a) it is computationally infeasible to find two different measurement
values M that yield the same extended PCR value, (b) it preserves the order
in which the measurements are recorded in the register (e.g., extending M;
before M results in a different value than extending M; after M), and (c) the
operation allows to store an unlimited number of measurements in a single PCR
value. In the 1.2 version of the TCG specifications SHA-1 is still used as hash
algorithm. Although the theoretical collision attacks on SHA-1 do not pose
immediate concerns for the PCR extension operation, the TPM 2.0 specification
will support additional hash functions, including SHA-2 and Whirlpool.

The non-volatile memory is used to securely store the trusted module’s persistent
state, that includes cryptographic keys, authorization data and monotonic
counters. The TPM contains two important long-term asymmetric keys:

1. The Endorsement Key (EK) uniquely identifies each TPM. During
production this key is generated externally and programmed in the TPM
by the manufacturer or alternatively it is generated inside the TPM
(with the TPM__CreateEndorsementKeyPair command). The manufacturer
may provide a certificate on the EK, however in practice Infineon
and STMicroelectronics currently are the only manufacturers shipping
endorsement certificates with their TPMs. This lack of endorsement
certificates implies that it is not straightforward to distinguish a genuine
hardware TPM from a software emulator. Optionally the TPM may
support a mechanism to revoke the EK and create a new key (using the
TPM_ RevokeTrust and TPM_ CreateRevocableEK command respectively).
However this is only sensible if the owner is prepared to certify the new
key himself and if the platform is required only to be trusted by parties
that trust the certification (e.g., within a corporation).

2. The Storage Root Key (SRK) is uniquely created inside the TPM, when
ownership over the TPM is taken, and acts as the root of the tree of storage
keys. The TPM__TakeOwnership operation also generates a secret random
value known as tpmProof which the TPM uses to identify encrypted blobs
that it creates. The SRK (and tpmProof) can be changed by revoking (with

3The version 1.2 specification introduced a number of PCRs that can be reset (using
TPM__PCR_ Reset) by higher privileged (determined by locality) code.
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TPM_ OwnerClear) and re-taking ownership, but this process destroys all
existing keys maintained by the TPM and hence it is probably only done
when a platform is decommissioned.

Other data included in the persistent state include the owner’s authorization data
(i.e., password), the content of monotonic counters, volatile state information
that is temporally stored with the TPM__SaveState command, and additional
status information (e.g., the number of failed authorization attempts used to
prevents a dictionary attack against the owner’s password).

2.1.2 TCG Functionality
Authorization

The TPM contains a comprehensive authorization scheme because several
entities may have a relationship with one platform. Most importantly, it differs
between the owner (the entity who bought the platform), the user who has
physical access to the machine, and normal users who may have special rights on,
for example, cryptographic keys administered by the TPM. With few exceptions,
the owner is the entity with all rights to the TPM, who can, however, give
up rights in favor of other users, which he then cannot revoke; in the TCG
specifications this process is known as delegation.

An authorization secret called AuthData is associated with every TPM key
and it can be used to limit access to that key (i.e., even for the owner of the
platform). Demonstration of ownership of or authorization to use the key is done
by accompanying a TPM command with an Hash-based Message Authentication
Code (HMAC) of the command parameters, keyed with the AuthData or a shared
secret derived from the AuthData; the response to an authorized command is
also accompanied by an HMAC of the response parameters. A good overview
of the TCG authorization protocols is given in [55].

The authorization secret may be weak (i.e., containing low entropy) and hence
it may be guessable. Therefore the TCG mandates TPM manufacturers
to implement a dictionary attack mitigation scheme; after a number of
authorization failures the TPM will for instance exponentially increase the
time between authorization attempts.*

Chen and Ryan have identified two flaws in the TCG authorization protocols.
Firstly, in certain circumstances offline dictionary attacks on low-entropy

4The TPM owner can reset the dictionary attack mitigation scheme using the
TPM__ResetLockValue command.



16 REMOTE ATTESTATION

authorization secret are possible [54], effectively circumventing the online
mitigation scheme. Secondly, sharing of authorization data between users
allows a TPM impersonation attack that completely breaks the security of
the TPM storage functions [55]. The TCG endorses the practice of sharing of
authorization data and for instance Windows Vista applies it by setting the
SRK password to a “well-known” value (all-zeros). However, the TCG explicitly
states that in this particular scenario the confidentiality of authorization data
can be protected with a so-called transport session (see Section 3.2.4).

Key Management

To reduce the amount of non-volatile memory needed inside the TPM, only one
key, namely the SRK, needs to be permanently stored inside the TPM. Other
keys maintained by the TPM can be “wrapped” (encrypted) under the SRK or
by another storage key that is already maintained by the TPM. These wrapped
keys are maintained outside the TPM by the TSS, which typically stores the
keys on hard disk. This allows the TPM to maintain a virtually unlimited
number of keys, at the price that it gives up the control over the lifetime of keys
— neither can the TPM revoke individual keys itself (save of the SRK, which
then destroys all keys maintained by the TPM). Nor can the TPM prevent the
operating system from destroying keys maintained by the TPM.

The two main commands to manage the key hierarchy are TPM__CreateWrapKey
and TPM__LoadKey2. The TPM_ CreateWrapKey command takes as argument
(a pointer to) the parent key, generates a new key, and returns the generated
key. The two parts of the newly created key are exported in a different way:
the public part of the key pair is exported in plaintext, whereas the private part
is encrypted/wrapped under the parent key. Before a TPM key can be used, it
must be loaded using TPM__LoadKey2. This command takes as argument the
key blob, decrypts the wrapped private key and stores it in volatile memory,
and returns a handle, i.e., a pointer to the loaded key. Since the operation
involves a decryption with the parent key, this key must be loaded in the TPM
beforehand and its key handle is provided as argument to the command. The
SRK is permanently loaded and has a well-known handle value. It is left to the
TSS on the host platform to properly manage which keys are currently loaded
in the TPM and what their corresponding handles are.

The TCG defines the following main types of keys:

o Storage keys are used to wrap other keys in the TPM’s protected storage
and hence form the inner nodes of the key tree.
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« Binding keys are used to encrypt secret data (using TPM_ Bind and
TPM_UnBind). Typically they protect symmetric keys that the host
platform uses to encrypt arbitrary sensitive information.

o Signing keys are used to sign arbitrary data (e.g., using TPM_ Sign).
They are used for signing operations only and form the leaves of the key
tree.

o Identity keys, also known as Attestation Identity Keys (AIKs), are
special signing keys used for attestation to prove that data originated in
a genuine TPM (see below). They are always direct children of the SRK.

e Legacy keys are keys that have been created outside the TPM. They
can be used for encryption and signing operations, and are useful for
interoperability with existing systems.

Besides the type, TPM keys have various other properties, such as authorization
data to restrict access, a particular platform configuration to which the key
is bound (see below) or migration type. The TPM keys can be migratable,
non-migratable or certified migratable. A non-migratable key may not leave the
TPM at all; the specification does suggest an optional maintenance mechanism
to move the entire content of one TPM to another, but this mechanism is rather
complex and thus not supported by most implementations. If a key is to be
migrated, authorization from the TPM owner is required.

Integrity Measurement

The initial platform state is “measured”® by computing cryptographic hashes of
all software components loaded during the boot process. Figure 2.2 shows the
case of a TCG-compliant PC. The task of the CRTM is to measure (i.e., compute
a hash of) the code and parameters of the BIOS and extend the first PCR
register with this measurement (using the TPM__Extend operation explained
above). Next, the BIOS will measure the binary image of the bootloader before
transferring control to the bootloader, which in its turn measures the operating
system. The PCRs represent an accumulated measurement of the history of

5The term “measurement” is normally defined as the process or the result of determining
the ratio of a physical quantity (e.g., length, time, temperature) to a unit of measurement (e.g.,
meter, second, degree Celsius). The term “integrity measurement” does not comply with this
literal definition because the integrity of platform is not a quantity that can be “measured”;
i.e., it is impossible to make a distinction between more and less integrity. The TCG defines
integrity measurement as “the process of obtaining metrics of platform characteristics that
affect the integrity (trustworthiness) of a platform, and putting digests of those metrics in
shielded locations (called PCRs).”



18 REMOTE ATTESTATION

SML

_— "\

CRTM | —> —— | OSloader | ——* > |Application

TPM _Extend

/

TPM_Quote

‘

Figure 2.2: Integrity measurement during boot process of TCG-compliant PC.

all code that has executed from the power-up of the platform. In this way a
chain of trust can be established from the CRTM to the operating system and
potentially even to individual applications.

Integrity Reporting

The TCG attestation allows to report the current platform configuration (PCRy,
..., PCR,) to a remote party. It is a challenge-response protocol, where an anti-
replay challenge provided by the remote party and the current value of chosen
PCRs are digitally signed with an AIK (using the TPM__ Quote command). If
needed, a Stored Measurement Log (SML), describing the measurements that
lead to a particular PCR value, can be reported as well. The AIKs act as
pseudonyms of the EK which uniquely identifies a TPM.

A trusted third party called Privacy Certification Authority (CA) is used to
create a certificate on the public part of the AIKs.® The TPM_ Makeldentity
command is used to create a new AIK and obtain the public part. This public
ATK, the public EK and the endorsement certificate are sent to the privacy
CA, who checks the endorsement certificate, signs a certificate for the AIK, and
encrypts the AIK certificate with a session key, which is encrypted with the
EK. The TPM_ Activateldentity command decrypts the session key and releases
it to the user software. Finally, the software uses the session key to decrypt the
ATK certificate.

6 At the moment of writing two experimental privacy CAs exists: http://www.privacyca.
com was created by Hal Finney, one of the developers of the open source TSS TrouSerS,
whereas http://privacyca.iaik.tugraz.at is hosted by the IAIK research group of TU
Graz [215].
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Version 1.2 of the TCG specification defines a cryptographic protocol called
DAA [38] to eliminate the need for a Privacy CA, as it can potentially link
different AIKs of the same TPM.

TCG technology also supports the concept of sealing, which enables to
cryptographically bind certain data or keys to a certain platform configuration.
The TPM_ Seal commands takes as argument a key handle, the data to be
encrypted, and information about PCRs to which the data should be bound,
and returns a sealed blob. The TPM will only “unseal”/release this data if a
given configuration is booted (using TPM__Unseal). This can be considered as
an implicit form of attestation: an application can seal a secret in the TPM
and, if the application is able to unseal this secret, the platform is known to be
in a specific state.

2.1.3 Application Level Attestation

TCG attestation is designed to provide remote verification of the complete
platform configuration, which consists of all software loaded since startup of
the platform. However, establishing a chain of trust to individual programs is
not straightforward in practice.

Operating System Requirements

The operating system needs to measure the integrity of all privileged code it
loads (i.e., kernel modules), because these can be used to subvert the integrity
of the kernel. Traditionally loadable kernel modules or device drivers are used
to inject kernel backdoors. However, legacy operating systems are monolithic,
too big and too complex to provide a sufficiently small TCB [192] and hence
they are often prone to security vulnerabilities. Therefore legacy operating
systems cannot guarantee a chain of trust beyond the bootloader. This is why
trusted computing initiatives rely on a microkernel such as sel.4 [130, 151], a
hypervisor such as Xen [16, 202], or a combined microkernel-hypervisor such as
NOVA [260], OKL4 microvisor [131] or PikeOS to achieve both security and
backward compatibility. If the platform has hardware support for virtualization,
the overhead of the hypervisor will be limited.

Load-Time Binary Attestation

A first approach to attest individual programs is to directly apply the TCG
(i.e., load-time binary) attestation on all userland components. This approach is
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applied in the Integrity Measurement Architecture (IMA) of Sailer et al. [226].
On the creation of user level processes, the kernel measures the executable code
loaded into the process (i.e., the original executable and shared libraries) and
this code can subsequently measure security sensitive inputs that its loads (e.g.,

arguments, configuration files, shell scripts). All these measurements are stored
in a PCR register and the SML.

In its basic form TCG attestation has some shortcomings. First, binary
attestation is not scalable because a huge number of possible configurations
exist. Every new version of a component will have a different binary and hence
produces a different hash value. The verifier of a remote attestation process has
to maintain a huge database of measurements in order to determine whether
the reported configuration is trustworthy.

According to England [95], a typical Windows installation loads two hundred
or more drivers from a known set of more than 4 million. Steffen [259] on the
other hand reports that around 1200 files are measured by the IMA scheme
during startup of a Linux desktop and for each Linux version more than 10000
reference measurements must be stored in the attestation database. In [50]
Cesena et al. investigated the scalability of TCG attestation and they conclude
that between 1000 and 3700 measurements are recorded on a Linux desktop
platform, depending on the configuration of IMA. They also point out that the
Fedora 14 distribution consists of more than 22000 packages, containing 2.9
million files in total.

Lastly, load-time attestation provides no runtime assurance as there can be a
big time difference between integrity measurement (i.e., startup of the platform)
and integrity reporting. The platform could have been compromised since it
has been booted. This is sometimes referred to as a Time-of-Check Time-of-
Use (TOCTOU) attack.

Hybrid Attestation Schemes

To overcome some of the shortcomings of binary attestation, more flexible
attestation mechanisms have been proposed in the literature.

The BIND scheme of Shi et al. [241] provides fine-grained attestation by not
verifying the complete memory content of an application, but only the piece of
the code that will be executed. Furthermore it allows to include the data that
the code produces in the attestation data. The solution requires the attestation
service to run in a more privileged execution environment and the integrity of
the service is measured using the TPM.
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In [121] the concept of semantic remote attestation is proposed by Haldar et al.
This is also a hybrid attestation scheme, where a virtual machine is attested by
the TPM and the trusted virtual machine will certify certain semantic properties
of the running program.

Property-based attestation [216, 224] takes a similar approach where “properties”
of the platform and/or applications are reported instead of hash values of the
binary images. Sadeghi and Stiible [224] define a platform property as a quantity
that describes an aspect of the behavior of that platform with respect to certain
requirements. A platform property could for instance state that it strictly
isolates processes from each other or that it is complies with privacy laws. One
practical proposal is to use delegation-based property attestation: a certification
agency certifies a mapping between properties and configurations and publishes
these property certificates [161].

2.2 Software-based Attestation on Legacy Plat-
forms

In this section we present two software-based attestation solutions that offer
an alternative for TCG attestation on legacy platforms that are not (yet)
equipped with a TPM. They rely on the timed execution of a checksum
function: the Pioneer scheme of [235, 236, 237] and the Timed Executable
Agent System (TEAS) solution of Garay and Huelsbergen [99)].

2.2.1 Checksum Functions

A widely implemented technique in software tamper resistance is the use of
checksum functions (e.g., in software guards [52]). These functions read the
software code, compute a hash value and check whether the value corresponds
with an expected value that was pre-computed. If the values do not match, the
software is assumed to be tampered with and an appropriate response must
be taken; in an offline scenario the software will typically be stopped and in a
networked application the tampered software is no longer granted access to a
network service.

Note that the hash function used does not necessarily have to satisfy all
requirements of a cryptographic hash function. It must provide second preimage
resistance, such that the software cannot be tampered with in a meaningful
way and still yield the same hash value. In order to protect against insiders,
the function must also resist collision attacks.
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In [292, 308] Wurster et al. describe a generic memory copy attack on
check functions. This attack tries to distinguish if code instructions are
interpreted/executed or if they are read (i.e., when they are used as input
to a checksum function). Hence, tamper detection can be fooled when reading
of code is redirected to an untampered copy, although a tampered copy is
executed. Wurster et al. analyze how the Memory Management Unit (MMU)
of modern process architectures can be used to facilitate the attack.

Two techniques to detect memory copy attacks have been proposed. A first
approach is the accurate measurement of the execution time of the checksum
function. Memory copy attacks introduce some levels of indirection, which
imply extra computations that slow down the execution, and this behavior can
be detected.

A second option that is proposed by Giffin et al. in [109], is the usage of self-
modifying code to detect a memory copy attack. If the verification function
modifies itself, only the clean (i.e., untampered) memory copy, where memory
reads/writes are pointed to, will be updated. Doing so, a verifier can notice
that the execution, i.e., running the unmodified tampered copy, has not been
changed, and thus detect the attack.

2.2.2 Pioneer

In [238] Seshadri et al. describe a remote attestation solution for embedded
devices, without the need for any hardware changes (e.g., the addition of
a TPM). Later, they proposed an adapted solution for legacy PC systems,
called Pioneer [236, 237]. The Pioneer scheme consists of a two-stage challenge-
response protocol. First, the verifier obtains an assurance that a verification
agent is present inside the operating system on the untrusted host. Next, this
verification agent reports the integrity of the executable that the verifier is
interested in, similar to TCG attestation.

Protocol Description
The detailed steps of the Pioneer protocol are depicted in Figure 2.3.
1. The verifier invokes the verification agent V' on the untrusted host by

sending a challenge n, and starts timing its execution: t1 < fcurrent-

2. This challenge is used as a seed for a pseudo-random walk through the
memory of the verification agent. Based on this walk, a checksum is
computed: ¢ cksum(n, V).
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Figure 2.3: Schematic overview of Pioneer protocol.

3. The verification agent reports the checksum c to the verifier. The verifier
can now check the integrity of the verification agent by verifying that two
conditions are satisfied:

(a) The checksum must correspond with the value that the verifier has
calculated on its own local copy of the verification agent.

(b) The fingerprint of the verification agent must be delivered in time
(t2 < tcurrent), i-€., the verifier knows an upper bound on the expected
execution time of the checksum calculation:

to —t1 < Atcxpcctcd = Atcksum + Atnctwork + 5t,

with Afcsum the expected execution time of the checksum function,
Atpetwork the network delay, and 0t some margin.

4. The verification agent computes a cryptographic hash of the executable
E as a function of the original nonce: h < H(n||E).

5. This hash is sent to and verified by the verifier. Again, the verifier needs
to independently perform the same computation on a local copy of the
executable.

6. The verification agent invokes the application F and transfers control to
it.
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Checksum Function

When an adversary attempts to produce a correct checksum while running
tampered code, this should be detectable due to an execution slowdown.
In Pioneer, the Program Counter value and/or the Data Pointer value are
incorporated into the checksum computation in order to cause a measurable
execution slowdown, when a memory copy attack is deployed. Because an
adversary needs to forge these values as well, this will lead to an increase in
execution time.

The design of the checksum function cksum() in Pioneer is subject to several
constraints:

e The checksum function should be optimal in execution time. If an
adversary would be able to optimize the checksum function, he would
gain time to perform malicious actions.

e To maximize the adversary’s overhead, the checksum function will read
the memory in a pseudo-random traversal. This prevents the adversary
from predicting the memory reads beforehand. The challenge n seeds the
pseudo-random traversal.

e The execution time of the checksum function must be predictable. Hence,
Pioneer needs to run in supervisor mode and with interrupts disabled.
For this reason, the proof-of-concept implementation of Pioneer by the
authors runs inside a network interface driver of the Linux kernel.

Shortcomings

The security of the Pioneer solution relies on three important assumptions.

First, the verifier needs to know the exact hardware configuration of the
untrusted platform, including the Central Processing Unit (CPU) model, clock
speed and memory latency, in order to compute the expected untampered
execution time. If an adversary is able to replace or overclock the CPU, he
could influence the execution time. Hence in the Pioneer system, it is assumed
that the hardware configuration is known by the verification entity and cannot
be changed.

Secondly, an adversary could act as a proxy, and ask a faster computing device
to compute the checksum on his behalf. To avoid this, in the Pioneer protocol,
it is assumed that there is an authenticated communication channel between
the verification entity and the untrusted execution platform.
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Finally, a general problem that remains is the network latency. Hence Pioneer
assumes that the verification entity is located on the same local network as
the untrusted execution platform. Consequently the network latency is less
probabilistic than on the public Internet.

2.2.3 Timed Executable Agent System

Garay and Huelsbergen also rely on the time execution of a verification agent
in their TEAS [99]. Contrary to Pioneer, TEAS issues a challenge that is an
obfuscated executable program potentially computing any checksum function.
Hence, the verification agent is mobile in TEAS, while Pioneer uses a single
fixed verification function invoked with a random challenge.

The motivation is that an attacker has to reverse engineer the obfuscated and
unpredictable agent (i.e., to gather information on the checksum function used)
and that he has to do this within the expected time, in order to fool the
verification entity. It should be noted that the verification entity still has to
keep track of execution time to detect hardware assisted memory copy attacks.

The TEAS solution is a generic framework for remote attestation without
hardware support. However, as no (proof-of-concept) implementation exists
and as the authors did not consider the memory copy attack of Wurster et al.,
it is difficult to judge the practical security of this approach.

2.3 Local Execution Time Measurement with TPMs

In [229, 230] we proposed a new variant of the Pioneer scheme that relies on
the time stamping feature of TPMs. The core idea of our proposal is to locally
measure the execution time of the checksum function, instead of timing the
execution remotely on the verifier. Additionally, the usage of a TPM enables
to identify on which platform the software is executing. In [232, 233] Sadeghi
et al. propose an alternative software-based attestation scheme that binds the
software to the platform by means of a PUF, instead of with a TPM.

In this section we first describe the time stamping feature of TPMs and next how
this functionality can be used to enhance software-based attestation schemes
that rely on timed execution. The basic version of our scheme does not require
extensive trusted computing software support, because we do not use the
integrity measurement functionality of the TPM. The only requirement is a
TCG-enabled BIOS to startup the TPM and a TPM device driver to use the
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time stamping functionality. In Section 2.4 we will describe some enhancements
to the basic scheme, that utilize a trusted bootloader.

2.3.1 TPM Time Stamping

Time stamping is one of the features in version 1.2 of the TPM specification
that was not supported by TPM 1.1b. The TPM can create a time stamp on a
blob:

TS < signgg(blob||t|| TSN),

with SK a signature or identity key, blob the digest to stamp, t the current
time and TSN a nonce determined by the TPM. The time stamp TS does not
include an actual Universal Time Clock (UTC) value, but rather the number of
timer ticks that the TPM has counted since startup of the platform. Therefore
the functionality is sometimes called tick stamping instead of time stamping. It
is the responsibility of the caller to associate the ticks to an actual UTC time,
which can be done in a similar way as in online clock synchronization protocols.

Tick Session

The TPM counts ticks from the start of a timing session, which is identified
with the Tick Session Nonce (TSN). On a PC, the TPM may use the clock of
the LPC bus as timing source, but it may also have a separate clock circuit
(e.g., with an internal crystal oscillator or with an oscillator circuit). At the
beginning of a tick session, the tick counter is reset to 0 and the session nonce
TSN is randomly generated by the TPM. The beginning of a timing session
is platform dependent. In a PC desktop power is continually available to the
TPM by using power from the wall socket, while in a mobile platform power
may be unavailable when the platform is in a suspend or sleep mode. In laptops,
the clock of the LPC bus can be stopped to save power, which could imply that
the tick counter is stopped as well. Consequently it depends on the platform
whether the TPM will have the ability to maintain the tick counter across power
cycles or in different power modes on a platform.

Tick Counter Resolution

According to the specification the tick counter has to have a maximum resolution
of 1 us, and a minimum resolution of 1 ms. Our initial experiments show that the
Infineon TPM has a resolution of 1 ms and that the Atmel TPM clearly violates
the TCG specification [282]. Subsequential invocations of the TPM_GetTicks
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command on the Atmel TPM give a tick count value that is incremented with
one; so effectively its tick counter behaves as a monotonic counter and not as a
clock!” This is not the first instance of non-compliance of TPM implementations
with the TCG specification [223].

2.3.2

Improved Pioneer Protocol

We propose to improve the Pioneer protocol by employing the tick stamping
functionality described above (see Figure 2.4).

1. The verifier V' sends a challenge n to the verification agent A.

2. The verification agent uses the TPM to create a tick stamp on this
challenge: TS7 < signgg(n||t1]|TSN1). The result TS is sent to the
verifier.

3. The verification agent uses TS; as seed for the pseudo-random walk
through its memory, resulting in a fingerprint: ¢ + cksum(75S1,V).

4. The calculated checksum gets time stamped by the TPM as well: TS, +
signgg(c||t2]|| TSNz). This result T'S; gets reported to the verifier.

5. The verifier can now verify the integrity of the verification agent by
performing the following steps:

(a)
(b)

()

Verify the two signatures T'S; and T'S,. At this stage the untrusted
platform can be uniquely identified.

Check if TSNy = TSN,. This enables the verifier to determine

whether the TPM has been reset by a platform reboot or a hardware
attack (see Chapter 3).

Extract the tick counters t; and 9 from the time stamps and check
whether ¢35 — ¢; corresponds with the expected execution time of the
checksum function:

to —t1 < Atexpected = Atcksum + Atsign + 5t7

with Afcksum the expected execution time of the checksum function,
Atgign the TPM signing duration, and 0t a bound on the latency
between the operations and the time to generate a TPM tick stamp.

"This behavior is valid in an older revision (64) of the 1.2 specification, where the TPM only
needs to guarantee that “the clock value will increment at least once prior to the erecution
of any command.” Sending other commands between two TPM_GetTicks requests, confirms
that the tick counter of the Atmel TPM increments after every command.
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Figure 2.4: Time overview of the improved Pioneer protocol. The three entities
involved are the remote verifier V, the local verification agent A and the TPM.
n denotes the challenge sent by V, T'S; the timestamp produced by the TPM on
n, ¢ the checksum computed by A based on TS;, and finally T'Ss the timestamp
produced by the TPM on c.

(d) Check whether the checksum ¢ corresponds with the value that the
verifier has calculated on its own local copy of the verification agent.

(e) The subsequent steps are the same as in the original Pioneer protocol
(step 4 to 6 in Figure 2.3).

The advantage of this improved Pioneer protocol is that the timing is moved from
the verifier to the verification agent on the untrusted platform. Consequently,
the verifier no longer needs to take into account the (non-deterministic) network
latency. Instead the verifier has to know the duration of a TPM signature
generation Atgqn, which will depend on the actual TPM used. We expect that
this time is constant because the length of the data that is signed, is fixed.
Otherwise the TPM would be trivially vulnerable to a timing analysis. Hence,
the total expected computation time Atcxpected can be estimated accurately.

Because each TPM signs with a unique key SK, an authenticated channel is
established between the verifier and the verification agent. If a verifier holds
a database that links the TPM signing key to the CPU specification of the
platform, he can take this into account to estimate the expected execution time
Atcksum of the checksum function. It should be noted that the length of the
pseudo-random walk calculated by cksum() has to be sufficiently large as the
resolution of the TPM tick counter is limited.

In order to deploy this system, only a TPM device driver, which is available for
most legacy operating systems, needs to be installed on the untrusted platform.
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There is no need for extensive software support (like a full-blown TSS), because
the scheme does not rely on TCG attestation. Note that the Pioneer verification
agent is part of the operating system, so this functionality has to be added.

Nevertheless, an adversary is still able to replace the CPU or install faster
memory to attack the system. In Section 2.4 we will address this shortcoming
with an adapted bootloader.

2.3.3 Proxy Attacks

Although the improved protocol addresses a great deal of the issues raised in
Pioneer, it still remains vulnerable to a proxy attack. A slow computer with
a TPM can send its time stamp TS to a fast computer that computes the
checksum results. This result ¢ is sent back to the slow machine that provides
a signed attestation TS5 to the verifier. The network overhead, of forwarding
the communication between the two computers, is absorbed by the reduced
computation. We provide two possible strategies to address this attack.

Firstly, in the original Pioneer protocol, a checksum is computed over the
memory of the verification function, which includes the send function. The
verification agent can be modified to only accept messages from the verifier,
based on the network address. This would mean that the fast computer that
runs the genuine verification agent, will not accept the request from the slow
computer. Similarly, the address of the verifier can be included in the checksum
calculation. However, in practice network addresses can be spoofed.

Secondly, the verification agent also contains a function to communicate with
the TPM. If the checksum function is computed over this function as well, then
there is a guarantee that there is only one way to invoke the verification agent.
In this case the genuine verification agent will always use its internal TPM, and
not a remote TPM.

2.3.4 Experimental Results

In our original research, which is published in [229, 230], we did some
experiments with the TPM tickstamping functionality, but we did not make a
full implementation of the improved Pioneer protocol.

In 2012 Kovah et al. [159] proposed a software-based attestation scheme that
is based on the Pioneer protocol and they presented a working Windows
implementation of their scheme. They implemented a variant that measures
the execution time of a checksum function using the network round-trip time
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and a variant that uses TPM tick stamping. They tested both variants on
32 identical hosts that were equipped with a STMicroelectronics TPM. The
authors confirmed experimentally that the TPM tick stamping functionality can
be used to measure the overhead of a checksum forgery attack and consequently
to detect the presence of an attacker. However, they concluded that the TPM
tick counter is not accurate enough to measure the network delay of a proxy
attack: the network delay was around 1.5 ms for their setup, while the resolution
of the TPM tick counter is only 1 ms, and hence the overhead of the proxy
attack was only 1 tick.

With their experiments Kovah et al. identified two shortcomings of the TPM-
based variant. First, the TPM tick stamping adds a considerable overhead.
The TPM-based variant takes about 1.3 seconds for the complete protocol,
whereas the running time of their checksum function is only 0.1 second. So the
calculation of the two TPM tick stamps takes at least 1 second. Second, the
authors observed a lot of drift between the tick counters of different TPMs. The
measurements of the checksum calculation differ slightly for each TPM, while
the underlying hardware is identical. This signifies that the verifier cannot set a
single baseline for the expected number of TPM ticks for the checksum function
across different hosts. The authors proposed to measure this baseline for each
host with a provisioning process in a dedicated environment. We believe that
this issue can also solved with an adapted bootloader (see Section 2.4).

2.4 Configuration Identification with Trusted Boot-
loader

The TPM-assisted Pioneer scheme can be further improved by using the TPM
to report the processor specification. In this way some hardware attacks, where
the processor or/and the memory get replaced by faster variants, can be detected
during attestation. More specifically, we propose to modify the bootloader.
Bootloaders tend to be a lot smaller, and hence more trustworthy, than legacy
operating systems. The OSLO bootloader [147] for instance is around 1000
lines of code, while a Linux 2.6 kernel contains more than 7 million lines of
code. The integrity of the enhanced bootloader can be reported using standard
TCG functionality. We still rely on timed execution to detect the compromise
of legacy operating systems, given that the correct processor specification is
known.
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2.4.1 Processor ldentification

A first approach is to enhance the bootloader to report the processor identifier to
the TPM. Pentium class processors for instance have a CPUID instruction that
returns the vendor identifier (e.g., Intel or AMD), stepping, model, and family
information, cache size, clock frequency, presence of features (like MMX/SSE),
etc. All this information needs to be stored in the SML and its hash should be
extended to one of the PCRs. Before the improved Pioneer protocol is performed,
the TPM will attest that the trusted bootloader was loaded correctly (i.e., its
hash is stored in a certain PCR) and identifies the processor by digitally signing
the PCR that contains the hashed processor identifier.

This mechanism allows to detect processor replacement and simulation, because
the expected execution time will depend on the processor identification. On
the other hand, this scheme cannot cope with the replacement of the computer
memory (i.e., upgrading Random Access Memory (RAM) with lower latency).

2.4.2 Runtime Checksum Performance Measurement

Another strategy is to run performance measurement code during the startup
of the platform. The bootloader could be adapted to run the Pioneer checksum
function with a locally generated challenge (e.g., produced by the TPM random
number generator) and measure the required execution time. This timing
can be measured accurately with the CPU cycle counter (i.e., the RDTSC
instruction for Pentium class CPUs) or with lower precision using the TPM
time stamping mechanism described earlier. The trusted bootloader will report
this performance benchmark to the TPM, which later can sign the recorded
value. This benchmark is again stored in a PCR register and logged in the
SML.

This technique can provide the verifier with a very accurate expectation of the
checksum function’s execution time. During the attestation phase, the verifier
can rely on the timing information determined by trusted bootloader. Both
processor and memory changes can be successfully and efficiently detected in
this way.

This approach can also address the issue that is raised in [159], namely that
the duration of the tick stamp generation Atg,, is TPM specific.
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2.5 Conclusion

At the moment commercially available operating system only offer limited
trusted computing support. At most they provide a TPM device driver, a T'SS
and/or a TPM-aware bootloader. This however is insufficient to achieve remote
attestation of individual applications. In the meantime, pure software-based
attestation schemes have been proposed for legacy platforms. They rely on
the timed execution of a checksum function, that computes an application
fingerprint. The execution time is measured remotely by the verifier, imposing
heavy assumptions that are difficult to achieve in practice.

In this chapter, we have proposed improvements for these software-based
attestation protocols. By using the time stamping functionality of a TPM,
the execution time of the fingerprint computation can be measured locally.
This also allows to uniquely identify the platform that is being verified. The
solution can be further strengthened with a trusted bootloader. This bootloader
can identify the processor specification of the untrusted platform and provide
accurate timing information about the checksum function.



Chapter 3

Hardware Attacks

A TCG platform consists of two important security components that act as
roots of trust: an immutable software component called CRTM which initiates
the measurement of the boot process, and a hardware component called TPM
which reports the measured platform state and offers protected storage of data.
The components must be trusted if the platform is to be trusted.

In this chapter we analyze the resilience of these components against hardware
attacks. We mainly focus on the analysis and manipulation of trusted platform
communication, as we have presented in [165].

3.1 Attacks on Trusted Computing Platforms

There are a number of ways to circumvent the security features provided by a
trusted computing platform. A first option is to target the TPM directly and try
to extract the secrets that the TPM protects. Once the SRK is revealed, all keys
in the TPM’s key hierarchy are compromised. Knowledge of the private part of
the EK enables the creation of software clones of a genuine hardware TPM. A
second approach is to leave the TPM untouched, but falsify the platform state
that is recorded in the TPM. This can be done by modifying the CRTM which
is supposed to be immutable, by manipulating the integrity measurements as
they are sent to TPM, or by compromising software after its integrity has been
measured. This second type of attack compromises the remote attestation and
sealed storage functionality because a different configuration can be recorded in
the TPM than the configuration that is actually started on the platform.

33
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3.1.1 Attacks on the TPM

The TPM specifications have received a lot of scrutinizing by independent
security researchers. In [54, 55] Chen and Ryan identified attacks on the TCG
authorization protocols. In particular, they discourage the practice to set the
authorization data of the SRK to a well-known value and share it between
multiple users; knowledge of this secret allows a TPM impersonation attack.
They also show that in certain circumstances dictionary attacks are possible on
authorization data. Other flaws and inconsistencies of less significant nature
have been found in [39, 120, 178].

Sadeghi et al. developed a prototype test suite for TPM compliance testing [223].
Their tests revealed non-compliant behavior with respect to the TCG
specification and bugs in several early TPM implementations. They also
illustrated that these bugs may have a security impact. For instance, in one
commercial TPM implementation the dictionary attack mitigation mechanism
could be bypassed. Initially the TCG saw itself primarily as a standard body
and did not perform any certification of products of its members. However, in
April 2009 the TCG announced a certification program. For a TPM product
to achieve TCG certification, it must undergo functional testing using an
automated compliance test suite and a third-party security evaluation using

Common Criteria (CC) according to a Protection Profile developed by the
TCG.

The TCG trust model assumes software attacks only, but most TPM chips do
offer some form of protection against hardware attacks as they are typically
derived from security processors that are also used in smart cards. The TPM is
designed to be a low-cost component that should not increase the cost of the
platform significantly. This is one of the reasons why TPMs are primarily present
in high-end, enterprise-class laptop and PC series, and not in low-end computers
(e.g., netbooks). Given their low price tag, it is reasonable to assume that
the TPM-chips on the market can be reverse engineered with state-of-the-art
techniques [277] and that they are susceptible to physical attacks.

The wide range of techniques that has been developed to physically attack
hardware security modules, such as smart cards, can be applied on TPMs as
well. Invasive attacks can be used to read out the content of memories or observe
data buses while the chip is operating [5, 6, 126, 157]. This type of attacks
typically requires a high budget, qualified specialists and expensive equipment
such as a Focused Ion Beam (FIB), an electron microscope, a laser cutter, and/or
microprobing station. Fault attacks are another way to attack cryptographic
implementations [15, 25, 33]. Faults can be induced in a non-invasive manner,
for instance with glitches in the external power or clock supply [6], or semi-
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Figure 3.1: Chip layout of Infineon SLB 9635 TT 1.2 TPM [271]. The main
components are (1) SRAM memory, (2) EEPROM memory, (3) microprocessor,
(4) ROM memory, (5) DES engine and (6) RSA engine.

invasively, for example with a laser or white light [244]. Side-channel attacks
exploit the fact that a physical implementation of a cryptographic algorithm
leaks unwanted information while processing secret data. The physical leakage,
including timing [154], power consumption [155] and Electromagnetic (EM)
radiation [98, 219], can be measured externally.

In 2010 Tarnovsky demonstrated a successful invasive attack on the Infineon
TPM [110, 271]. This chip is generally considered as one of the most secure
on the market because it is the first that has undergone a Common Criteria
evaluation at Evaluation Assurance Level (EAL) 4+. Figure 3.1 shows an
image that he took of the chip’s layout and highlights the main components.
The development of the technique to bypass the tamper protective mesh on
top of the chip and to microprobe the data bus of the microprocessor took 6
months. Tarnovsky estimates that another 6 months are needed to analyze the
microprocessor code and to determine how keys are stored in the EEPROM.
The attack is fairly sophisticated and requires access to a FIB. It involves the
following steps: de-packaging the chip, removing the passivation layer, bridging
the protective mesh, digging holes through the mesh, and probing the wires of
the data bus one by one with a needle. In order to ease the eavesdropping of
the bus, certain countermeasures, such as the usage of the internal clock and
the generation of dummy bus cycles, must be disabled by injecting faults with
a second needle.
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To date, no side-channel attacks nor fault attacks on a commercial TPM-chip
have been reported, not even failed attempts. In Section 3.4 we will outline
which TPM commands are good candidates to attack with a side-channel
analysis and describe the impact of such an analysis.

In [159] Kovah et al. did some experiments with the TPM tick stamping
functionality. Quite surprisingly, they observed that the tick stamp times of
the Broadcom TPM differ depending on the signing key that is used, whereas
the STMicroelectronics TPM does not exhibit this behavior. This could signify
that they unknowingly discovered that the Broadcom TPM is vulnerable to
simple timing attacks.

3.1.2 Attacks on the Platform

Attackers can target other platform components than the TPM, with as goal
the subversion of the integrity measurement. The attack with the highest
impact is a compromise of the CRTM. According to the TCG specifications,
an appropriate security mechanism should be in place to guarantee that the
CRTM is immutable, in the sense that it can only be replaced or modified by an
agent approved by the platform manufacturer. In a PC the S-CRTM will either
be the BIOS Boot Block or the entire BIOS. In [147] Kauer demonstrated that
the immutability condition is not met on an early TPM-equipped laptop, as he
was able to reflash the BIOS with a modified image that does not extend PCR
registers. New BIOSes have protection against unauthorized reflashing; they
will only accept updates that are signed by the manufacturer. However, it is
dubious that these solutions provide appropriate protection against hardware
attacks, such as in-circuit reprogramming or replacement of the Flash chip.
In [304] Wojtczuk and Rutkowska demonstrated an attack on Intel BIOSes with
Flash protection. They were able to exploit a heap overflow in the code that
parses the (unsigned) boot splash logo. As the parser executes early in the boot
process before the reflashing locks are applied, they were able to overwrite the
BIOS image. It is unclear whether this vulnerability can be used to compromise
the CRTM.

The TCG specifications also state that it should not be possible to reset the
TPM without resetting the whole platform. In [165] we suggested that this
condition might not hold if an attacker has physical access to the reset line of
the LPC bus. Our suspicion was confirmed by Kauer [147] and Sparks [250]
independently. Kauer also observed that the Infineon 1.1b TPM can be reset by
setting the reset bit in a control register. The TPM reset attack and its impact
will be described in more detail in Section 3.2.2.
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As already observed in the previous chapter, the TCG’s integrity measurement
and reporting functionality only provides assurance about the load-time
configuration of a platform. The software running on the platform can be
attacked at runtime, after it has been measured [37]. Typically, this can be
done by exploiting a software vulnerability in the operating system, such as a
buffer overflow, a format string bug, a race condition, etc. So trusted computing
technology is only a building block to increase the trustworthiness of platforms,
but it is useless without appropriate software support.

It is very important to note that the TCB consists of a number of components
that must be trusted. In a traditional system, it consists of at least the CPU,
the chipset, the TPM, the BIOS, the kernel of the operating system, all the
applications running with administrator privilege, and probably all the devices
connected to the machine. This implies that a number of additional attack
vectors exists besides the exploitation of software bugs in highly privileged code.
The memory of the operating system can be read and modified at runtime with
Direct Memory Access (DMA). DMA attacks are typically performed using
a malicious PCI/PCMCIA card [44, 71, 214] or with a FireWire device [18,
31, 77]. However they can also be performed by a legitimate device that has
been compromised. In [84] Duflot et al. describe an attack on a Broadcom
network card. Through an implementation bug in a remote administration
protocol, they were able to compromise the firmware of the network card’s
embedded microprocessor and sequentially write to the main host memory
using a DMA transfer. In [273] Tereshkin and Wojtczuk demonstrated an
attack on Intel’s remote management functionality called Active Management
Technology (AMT), which is included in the latest generation chipsets. They
were able to run malicious code on the microprocessor that is embedded in
the Memory Controller Hub (MCH) (i.e., Intel terminology for the northbridge
chip). This microprocessor, which is called Management Engine (ME), can
access the main memory with DMA and hence can at runtime compromise the
operating system and potentially even the S-CRTM. Their attack no longer
works on newer AMT versions, which only execute firmware that is digitally
signed by Intel [175].

Additional hardware changes to the PC platform complement the TCG
technology and address some of the issues described above. The x86 hardware
virtualization extensions, in particular the addition of an Input/Output Memory
Management Unit (IOMMU) (known as Intel VT-d and AMD-Vi), allow
a hypervisor to restrict the memory that devices may access. When this
functionality is used, the TCB will typically consist of the CPU, the chipset,
the TPM, the BIOS, a minimal hypervisor and its management domain. The
guest operating systems and their device drivers do not have to be trusted and
devices cannot perform DMA attacks on the hypervisor.
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The late launch feature provided by Intel TXT and AMD SVM offers a solution
for the TPM reset attack. More details will be provided in Section 3.2.2. It
is a misconception that by using late launch the BIOS can be excluded from
the TCB. The BIOS is no longer responsible for the integrity measurement of
the TCB (i.e., its role as CRTM), but it still provides low-level structures such
System Management Interrupt (SMI) handlers and Advanced Configuration
Power Interface (ACPI) tables that can be used to subvert the security of the
platform [82].

In 2009 two attacks were announced against Intel TXT by Wojtczuk et al.
In [303] they presented an implementation bug in a software component of TXT
and in [301] an attack was demonstrated using malicious System Management
Mode (SMM) code. In the second attack they inserted an SMM backdoor which
is undetected by the late launch, and used it later to compromise the hypervisor.
This attack method is not new as it was for instance demonstrated in 2006
by Duflot et al. in [80]. Recent chipsets limit access to the memory in which
the SMM code resides, but the currently implemented protection is ineffective
because it can be circumvented by a chipset bug [301] or with CPU cache
poisoning [81, 82, 83, 302]. It is important to note that the design team of Intel
TXT was well aware of potential SMM attacks. In [113, 114] the concept of an
SMM Transfer Mode (STM) that shields SMM code, is introduced. However
currently no known implementation of an STM is available.

3.2 Attacking the TPM Communication Bus

The previous section illustrates that the TPM is reasonably secure against
software attacks and non-invasive hardware attacks, and that the CRTMs, both
static and dynamic, of recent PC platforms seems to be immutable. This
suggests that the necessary hardware support is available to build a secure and
trustworthy system with the TCG technology. However in [165] we identified
that most PC implementations of the TCG architecture literally and figuratively
have a weak link: the communication channel between the TPM and the CPU
is unsecured. In PCs the TPM is usually connected to the LPC bus, which also
hosts the BIOS Flash memory and low-bandwidth “legacy” Input/Output (I/0)
devices (such as serial and parallel port, PS/2 keyboard and mouse, floppy
disk controller). We demonstrated that it is feasible to sniff the LPC bus and
eavesdrop the TPM communication. Section 3.3 will provide more details about
our experiments.

In our work we used a fairly expensive logic analyzer and the lines of
the LPC bus were easily accessible because the TPM was mounted on
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a daughterboard. However, this does not imply that the monitoring of
trusted platform communication is impossible when access to the bus is less
straightforward (e.g., the TPM is mounted directly on the motherboard), nor
that it is costly. In [135, 136] Huang demonstrated that the HyperTransport
bus between the northbridge and southbridge chip of the Microsoft Xbox can
be sniffed cheaply with a custom tapping board connected to an FPGA board.
The HyperTransport bus of the Xbox has a much higher bandwidth than the
LPC bus (8-bit/200 MHz DDR versus 4-bit/33 MHz) and it is more difficult to
access. Huang gained physical access to the bus by removing the solder mask
of the Xbox’s motherboard (i.e., the protective coating over the copper traces)
with fine-grit sand paper and by soldering the tapping circuit onto the exposed
copper traces.

During the European Trusted Infrastructure Summer School 2009 Winter [298]
demonstrated a low-cost LPC bus analyzer, based on a Xilinx Spartan 3E
FPGA and a Cypress FX2 microcontroller with USB 2.0 interface, and used it to
eavesdrop the TPM communication. Winter extended his attack setup [299, 300]
and showed how the TPM communication can be actively manipulated on the
LPC bus.

Three types of attacks can be distinguished that utilize physical access to
the communication bus of the TPM: passive eavesdropping of the TPM
communication, hardware reset of the TPM after platform startup, and
active modification of the TPM communication. For each attack scenario
we will discuss the security implications and we will also describe possible
countermeasures.

3.2.1 Passive Monitoring

The commands issued to the TPM and the corresponding responses produced
by the TPM can be recorded. This technique proved useful in the development
of open source device drivers for the first TPMs. The TPM 1.1b specification
does not specify the low-level interface of the TPM (e.g., type of bus cycles
or I/0 addresses). The undocumented, proprietary protocols could be reverse
engineered by sniffing the communication of the closed Windows drivers. For
the 1.2 version of the specification, the interface has been standardized in [279]
and consequently only one device driver is needed to support TPMs of different
manufacturers.

Eavesdropping on the TPM communication bus can be useful to reconstruct
the extension operations leading to a certain PCR value. As explained in
Section 2.1.1 the content of a PCR is the result of a cryptographic hash function
and it is computationally infeasible to determine the input of the extension
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operation because of the one-wayness property of a cryptographic hash function.
In practice, eavesdropping of the TPM__Extend commands is not necessary
because the measurements that are extended in a PCR register, are normally
also logged in the so-called SML. In the case of a PC, this event log is stored
as an ACPI table.

The security implications of this attack scenario are rather limited. Authoriza-
tion data is never sent in the clear, so it will not be exposed by eavesdropping
the trusted platform communication. As explained in Section 2.1.2, the proof of
knowledge of authorization data is done with a cryptographic challenge-response
protocol, which protects against replay and man-in-the-middle attacks but not
against offline dictionary attacks on low-entropy passwords. Furthermore,
authorization data is always encrypted when inserted or modified in the TPM.
During the TPM__TakeOwnership command the authorization data of the TPM
owner and of the SRK are encrypted with the public EK. When these secrets
are changed (with TPM_ ChangeAuthOwner), the new authorization data is
encrypted with (a secret derived from) the current owner password. Similarly,
when the authorization data of a key in the TPM’s key hierarchy is inserted or
modified (with TPM__ChangeAuth), the data is encrypted with a shared secret
derived from the authorization secret of its parent key.

Passive monitoring of TPM communication mainly poses a concern when an
external entity stores secrets in a remote TPM that is under attack of the local
user. This could for instance be the case in a DRM scheme where a secret key
is sealed to a certain virtual machine that is not under control of a local user.
The secret key can be intercepted on the LPC bus when it is inserted in the
TPM (with TPM_Seal) or released from the TPM (using TPM__Unseal). For
this reason, the TPM 1.2 specifications define a new command that addresses
this issue: TPM__SealX. The command behaves like TPM__Seal, but the input
data of the command is encrypted with the same encryption scheme that is used
to insert and change authorization data. It places information in the sealed
blob such that the result of the TPM__Unseal operation will also be encrypted.

As described earlier, it is a common practice to set the SRK password to a
well-known value, e.g., all-zeros in the case of Windows Vista and some open
source tools. However, if this is the case, secret data still leaks when the data is
inserted under the SRK (using TPM__SealX). The encryption key that is used
to encrypt the TPM__SealX input, is derived from the known SRK authorization
data, and hence it is also known to an attacker. In fact, Chen and Ryan
made the same observation about the insertion of authorization data under a
shared /well-known authorization secret in [55]. If authorization data is shared
between users, it is advisable to seal/unseal secret data and insert/change
authorization data in an encrypted transport session (see Section 3.2.4).



ATTACKING THE TPM COMMUNICATION BUS 41

3.2.2 Reset Attacks

At startup of the platform or after a platform reset the TPM is initialized in two
steps. A hardware-based signal triggers the TPM__Init command. This command
sets an internal flag to indicate that the TPM is undergoing initialization and
puts the TPM in a state where it waits for the command TPM_ Startup. The
TPM Interface Specification (TIS) recommends to use the reset line of the
LPC bus as hardware trigger for TPM_ Init [279]. Next, the S-CRTM issues
the startup command, which can select three different modes: clear, save and
deactivated. In a “clear” start all variables will go back to their default state.
The “save” mode on the other hand informs the TPM to restore various values
based on a prior TPM__ SaveState and continue operation from the saved state.
This mode will for instance be used to recover from standby, also known as
Suspend to RAM. During a recovery from hibernation, also known as Suspend
to Disk, or a complete reboot the S-CRTM will perform a “clear” start. In the
“deactivated” mode the TPM is turned off and all subsequent command requests
fail. The deactivated state can only be reset by performing another TPM__Init.

If an adversary has physical access to the platform, he can disconnect the LPC
reset line from the TPM, either directly at the pin of the TPM-chip or at the
connector of the TPM daughterboard. This allows for two types of attack: (1)
the TPM can be reset without resetting the rest of the platform and (2) the
platform can be reset without resetting the TPM. We call the first attack a
TPM reset attack and the second a platform reset attack.

With the TPM reset attack an adversary can start the platform, physically
reset the TPM, reinitialize the TPM by issuing TPM_ Startup with the “clear”
option, and record an arbitrary configuration in the PCRs that differs from the
one that is really booted. The TPM can be reset with the LPC reset signal
or by temporally grounding the supply voltage. The feasibility of this attack
has been demonstrated by Kauer in [147] and Sparks in [250]. Both attacked a
TPM that was mounted on a daughterboard, which made physical access to the
reset line relatively easy. It is important to note that Sparks did not disconnect
the TPM pin from the LPC reset line. Therefore other devices on the LPC bus,
such as the keyboard and mouse controller and the fan controller, were also
reset. However, the reset signal does not propagate to the CPU or devices on
other busses, e.g., Peripheral Component Interconnect (PCI) bus. This signifies
that the attack does not need to target the TPM reset pin directly, but it can
also be performed by physical access to the reset pin of another chip on the
LPC bus, e.g., the BIOS Flash chip or the Super I/O controller.

The platform reset attack enables an attacker to start the platform in a certain
configuration (that gets recorded in the PCRs), physically disconnect the reset
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signal of the TPM and reboot the platform into a different configuration. If the
platform is restarted with the hardware reset signal, this is often called a warm
reboot or a soft reboot. Another approach is to connect the TPM to an external
supply and to do a complete power cycle (turn off and then on); this is known as
a cold reboot or hard reboot. During the reboot the S-CRTM will try to startup
the TPM, but the TPM will return an error code because the TPM_ Startup
command was not preceded by TPM__Init. As a consequence the PCRs are not
reset to their default value. It is not properly specified in [284] whether or
not the S-CRTM will extend new measurements in the PCRs if TPM__Startup
fails. If the measurements get extended for a second time, the static PCRs will
contain values that are of no interest to the attacker. Nevertheless the PCRs
used by the D-CRTM are left untouched, which can be exploited. If the static
PCRs also retain their value, the static chain of trust can be subverted as well.

The latest TCG specifications have two features that in combination with
the D-CRTM can be used as countermeasure against reset attacks: resetable
PCRs and locality. Whereas in the 1.1b TPM specification [285] the PCRs can
only be manipulated by the extension operation (see Section 2.1.1), the 1.2
version [281, 282, 283] defines a new command TPM__PCR_ Reset which under
certain conditions can reset the PCR value. The PC specific specifications [279,
284] define 16 static PCRs, which can only be extended, and 8 dynamic PCRs,
which can also be reset. The 1.2 specification also introduces the concept of
locality which allows the TPM to distinguish between different privilege levels.
Certain dynamic PCRs can only be reset and extended by software/hardware
with a high locality level. For instance, the D-CRTM, which has the highest
locality level (i.e., locality 4), has exclusive access to PCR, 17. Special LPC bus
cycles that can only be generated by the chipset/CPU (see Section 3.3.2) are
used to reset and extend the D-CRTM PCR. It is also possible to specify what
the locality level must be in order to unseal certain data and to remotely attest
the locality level with the TPM__Quote2 command.

In [147] Kauer argues that, in order to protect against a TPM reset attack,
the S-CRTM must be abolished and the D-CRTM must be used instead. His
key observation is that the dynamic PCR of the D-CRTM is reset to the value
—1 during TPM_ Startup and that only the D-CRTM can reset the register to
the value 0 with the special LPC bus cycles. Therefore it is impossible for
an attacker to reset the PCR to 0 with a hardware attack and extend “fake”
measurements in the register. Kauer developed a proof-of-concept bootloader
called OSLO that is measured by the D-CRTM provided by AMD SVM. The
open source bootloader thboot! provides similar functionality for Intel TXT.

However, the dynamic chain of trust does not protect against the platform

Thttp://sourceforge.net/projects/tboot/
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reset attack. When the platform reboots, only the static chain of trust will
be measured. If an adversary loads an operating system that does not start
the D-CRTM, the dynamic PCRs will still contain the measurements that were
recorded before the reboot. This situation can particularly be exploited to forge
a remote attestation. The platform configuration is measured during the boot
process and the remote attestation protocol is executed afterwards, when network
connectivity has been established. The timing of the platform reset is not so
critical and, if needed, the attacker can even delay the TPM_ Quote request
by temporarily disabling the network connection. It is less straightforward
to extract a sealed secret with a platform reset attack. Typically, a software
component will extend measurements in a PCR until the register contains the
desired platform configuration. Subsequently the software asks the TPM to
reveal the secret data that is sealed under this configuration. It is common
practice for the software component to extend another value in the PCR
immediately after the TPM has unsealed the data. The extra PCR extension
guarantees that other software components, which are loaded later in the boot
process, cannot unseal the same secret data. Clearly this makes the timing of
a platform reset more difficult: the platform must be rebooted after the first
TPM__Extend operation(s) that record the correct platform state and before the
TPM_Extend command that invalidates the PCR content.

3.2.3 Active Monitoring

The previous attack scenario disconnects the reset pin of the TPM from the
reset wire of the LPC bus and actively manipulates the reset signal of the
platform and the TPM. This type of hardware attack is reasonably easy to
perform, because the timing of the reset signal can be done manually. A more
powerful attack is the active monitoring of the four data wires of the LPC bus.
This enables an attacker to intercept the commands that are sent to the TPM
and selectively drop or modify them. Again the main objective of the attacker
will be to fool the TPM about the platform status, and thus circumvent the
sealed storage or remote attestation functionality.

Two attacks can be distinguished: (1) blocking TPM communication and (2)
modifying TPM communication. The second type requires an electronic device
that intercepts and decodes the TPM commands that are sent by the host
platform, overwrites certain parameters, and transmits the modified commands
to the TPM. Similarly the interposing device can also modify the response of
the TPM. The monitor device can be realized with a microcontroller or with a
FPGA. The delay introduced by the interposing device will typically not be
detected by the host platform because a TPM is a slow device; some operations,
such as the generation of signature, may take several hundred milliseconds. The
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blocking attack can be performed manually for instance by introducing switches
on the LPC data lines.

The static chain of trust can be attacked by blocking the TPM communication
at platform startup, for instance by (temporarily) disconnecting the LPC data
wires from the TPM pins. The S-CRTM is unable to perform the TPM_ Startup
and integrity measurements cannot be extended in the PCRs. Afterwards, the
LPC communication can be unblocked and malicious software can start up
the TPM and record a fake platform configuration. This attack scenario is
equivalent to the TPM reset attack.

The dynamic chain of trust can be attacked by modifying the TPM
communication. The locality level is determined by the LPC address, and
the chipset guarantees that only the D-CRTM instruction use the address for
the highest locality level. However an interposing device can overwrite the LPC
address and hence malicious software can assert the highest privilege level. This
signifies that an attacker can reset the D-CRTM PCR and extend arbitrary
values into the register. In 2011 Winter and Dietrich demonstrated the practical
feasibility of this attack scenario in [299, 300].

The TCG authorization sessions (described in Section 2.1.2) are used to
determine whether an entity is authorized to perform a function or use a certain
TPM object, say a key, by proving knowledge of shared authorization data. The
authorization protocol protects the integrity (and freshness) of TPM commands:
a Message Authentication Code (MAC) value, keyed with the authorization
secret, is computed over some input parameters of the command and appended
to the command. However, the locality level is added to the TPM command
at the level of the LPC interface. So the locality level is not included in the
MAC computation and modification of the level remains undetected. Moreover,
the TPM__Extend command does not support authorization sessions, so an
interposing device can overwrite the parameters of this command, irrespectively
whether locality is used.

3.2.4 Transport Session

As illustrated above, physical access to the TPM interface allows for some
reasonably simple, yet powerful attacks. Sealed storage and remote attestation
can be deceived by falsifying the content of the PCRs with a reset attack or with
active manipulation of the TPM commands, and sealed data or authorization
passwords may leak when transmitted over the LPC communication bus. The
1.2 version of the TPM specification introduces the notion of encrypted transport
sesstons, which can be utilized as a generic countermeasure against attacks on
the TPM interface.
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Transport sessions are initiated with the TPM__EstablishTransport command,
which establishes a session key using a public storage key. The storage key
must be loaded before the establishment of the transport session. An external
entity can be assured that the storage key was created inside TPM with the
TPM__CertifyKey command, which produces a signature with an identity key.
A privacy CA can vouch that the identity key that is used to certify the storage
key, belongs to a genuine TPM. Once the transport session is established, any
TPM command can be wrapped in the session using the TPM__ExecuteTransport
command. Transport sessions use a protection scheme similar to that of the
TCG authorization sessions: rolling nonces, which are provided by the caller
and the TPM, are used for freshness and a MAC value protects the integrity of
the wrapped commands.

Three options can be selected when a transport session is established: (1)
the session provides encryption, (2) it provides a log of all operations that
occurred in the session, or (3) it is exclusive and any command executed
outside the transport session causes the invalidation of the session. Typically
the encryption is done by using the mask generation function MGF1 from
PKCS #1 as a stream cipher; the output of the function is XORed to the
plaintext messages. The MGF1 function uses the SHA-1 hash function and is
seeded with the established shared secret and the rolling nonces. Optionally
the TPM can support a proper symmetric encryption algorithm such as AES
in Counter (CTR) or Output Feedback (OFB) mode. If session logging is
enabled, the TPM__ReleaseTransportSigned command ends the transport session
and returns a signed log of all operations performed during the session. For
every wrapped command the log contains a digest of the input parameters, a
digest of the output parameters, the current tick counter value and the locality
level that called TPM__ExecuteTransport.

An encrypted transport session typically serves as a confidential and
authenticated end-to-end channel between a remote entity and the TPM. Clearly
it can also be used to protect against passive eavesdropping of the LPC bus.
Data can be sealed and unsealed securely in an encrypted transport session and
authorization data can be inserted and modified safely, without the risk of the
secrets leaking on the communication interface. However, the establishment of
an encrypted transport session introduces a considerable overhead. A random
session key must be generated and it must be encrypted with a public storage
key of the TPM. It will be rather cumbersome to use an encrypted transport
session early in the boot process. Rivest Shamir Adleman (RSA) public key
encryption must be added to a least the S-CRTM and the D-CRTM, which
adds complexity. It is not immediately clear whether every software component
in the boot process needs to establish a transport session on its own or whether
the session key can be passed along.
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Transport sessions protect the confidentiality of TPM commands against a
passive eavesdropper. However, this functionality cannot protect against an
active monitoring attack that blocks certain commands, for instance a critical
PCR extend operation. Likewise they cannot prohibit an adversary from sending
additional commands outside the transport session. If the transport session is
exclusive, the execution of commands outside the session will terminate the
session. Consequently the execution of a malicious command can be detected
by making the transport session exclusive, but it cannot be prevented.

3.2.5 LPC Bus Encryption

Transport sessions work at the level of TPM commands and require public key
cryptography to establish a session key. This stems from the fact that the feature
is designed for remote entities to establish a secure channel to a distant TPM.
As motivated above, this mechanism is less suitable as countermeasure against a
local hardware attack on the TPM communication interface. From a theoretical
viewpoint a much simpler solution would be the encrypt and authenticate
the low-level LPC bus cycles with a low-latency symmetric cipher [34, 153].
However, there are some practical hurdles with this approach.

In order to have a transparent and manageable solution, the southbridge chip
which drives the LPC bus, will only encrypt the LPC bus cycles that are
addressed to the TPM. This signifies that the TPM communication is only
protected on the slow LPC bus, but not on the high speed busses between the
southbridge and northbridge and between the CPU and the northbridge, which
is known as the Front Side Bus (FSB). The underlying motivation is that these
other busses are more difficult to eavesdrop, let only manipulate, because of
their very high bandwidth and that it is hard to gain physical access to them.

The southbridge chip and the TPM must share a symmetric key that has to be
inserted in both devices during assembly of the motherboard. This signifies that
the southbridge chip has to contain a bit of Non-Volatile Memory (NVM) to store
the bus encryption key (see Section 4.2.6). Moreover, in order to protect against
a replay attack the TPM communication must be protected with randomly
generated nonces. The addition of NVM, a Random Number Generator (RNG)
and perhaps a cryptographic engine signifies a higher hardware cost for the
southbridge chip. The programming of the shared bus encryption key introduces
extra overhead during the assembly process of the motherboard.

Data transfers on the LPC bus are serialized over four data wires: information
such as cycle type and direction, address and data, are transferred serially.
The LPC bus is shared by the TPM and other peripheral devices. All devices
monitor the bus and determine based on the cycle type, direction and address
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to which device the communication is destined. Therefore, only the data
field of the bus cycle may be manipulated by the bus encryption engine. It
seems advisable to not only protect the confidentiality of the low-level TPM
communication, but also its integrity and freshness. Hence, nonces must be
provided by the southbrigde and the TPM and a MAC must be calculated over
the TPM command and the fresh nonces. The nonces and the MACs must also
be transmitted over the LPC bus.

As described above, the locality level is determined by the LPC address.
Therefore it is paramount that the address field of the LPC bus cycles is
also included in the calculation of the MAC. Otherwise, an interposing device
can still assert the locality level of the D-CRTM and assist malicious software

to manipulate the content of the PCR that normally can only be accessed by
the D-CRTM.

3.2.6 Integrated TPM

Another approach to mitigate hardware attacks on the TPM communication
interface is the integration of the TPM into another device. This approach is
used in practice, but primarily as a cost saving technique, because there is no
longer a need to add a separate TPM chip on the motherboard.

An integrated TPM has both advantages and disadvantages from a security
perspective. If the pins of the chip in which the TPM functionality is
integrated, are more difficult to access physically, the hardware attacks on
the communication bus become more difficult. On the other hand, an integrated
TPM might be less secure against invasive attacks, because some hardware
countermeasures such as protective shielding might be too expensive to be
applied on a bigger integrated circuit. Similarly an independent security
evaluation is probably also more costly, because the influence of the other
functionality of the device on the TPM functionality has to be assessed.

Table 3.1 gives an overview of all TPM products that are currently available or
have been in the past; at least these TPM implementations have been listed on
the website of the respective manufacturers. Some chips, in particular those
implementing the 1.1b version of the TPM specification, are out of production.
There are three manufacturers that have integrated the TPM functionality into
another device.

National Semiconductor integrated a TPM into a Super I/O controller, which
is connected to the LPC bus anyway. Most discrete TPM chips use a 28-pin
TSSOP package, which has pins that are spaced 0.65 mm apart, where as
the National Semiconductor integrated TPMs use a 128-pin PQFP or 100-pin
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Table 3.1: Overview of commercial TPM products.

HARDWARE ATTACKS

manufacturer product number version | interface | integrated | EK cert
Atmel AT97SC3201 1.1b LPC no no
Atmel AT97SC3201S 1.1b SMBus no no
Atmel AT975C3202 1.2 LPC no no
Atmel AT97SC3203 1.2 LPC no no
Atmel AT97SC3203S 1.2 SMBus no no
Atmel AT975C3204 1.2 LPC no no
Atmel AT97SC3204T 1.2 12C no no
Broadcom BCM5751M 1.1b LPC GE* no
Broadcom BCM5752 1.2 LPC GE no
Broadcom BCM5752M 1.2 LPC GE no
Infineon SLD 9630 TT 1.1 1.1b LPC no yes
Infineon SLB 9635 TT 1.2 1.2 LPC no yes
Intel iTPM 1.2 FSB chipset no
National® PC21100 1.1 LPC no no
National PC8374T 1.1b LPC Super I/0O no
National PC8392T 1.1b LPC Super I/O no
National PC8374S 1.2 LPC Super I/O no
Winbond WPCT200 1.2 LPC no no
Winbond WPCT210 1.2 LPC no no
Winbond WPCT300 1.2 SPI no no
Winbond WPCT301 1.2 12C no no

Nuvoton NPCT42x 1.2 LPC no optional

Nuvoton NPCT50x 1.2 12C no optional
Sinosun SSX35 1.2 LPC no no
STM® ST19WP18-TPM 1.2 LPC no no
STM ST19NP18-TPM 1.2 LPC no no
STM ST19NP18-TPM-12C 1.2 12C no no
STM ST33TPM1212C 1.2 12C no yes
STM ST33TPM12LPC 1.2 LPC no yes
STM ST33TPM12SPI 1.2 SPI no yes

@ Gigabit Ethernet controller
b National Semiconductor
¢ STMicroelectronics
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LQFP package with a pin spacing of 0.50 mm. Physical access to the pins is
a bit more difficult, but not that much. Active and passive monitoring of the
LPC bus is still possible. A TPM reset attack will reset the entire Super I/0
controller, but this is not a big issue. The attacker just has to reinitialize the
Super I/0 controller as well. In fact, Sparks [250] did not disconnect the TPM
reset pin from the LPC bus. So in his experiments the Super 1/O controller got
reset as well.

Broadcom on the other hand includes the TPM functionality into Gigabit
Ethernet controllers and these chips use a BGA package. The Ethernet
component of the chip is accessed by the platform through the PCI Express
bus and the TPM part is connected to the LPC bus. The pins of a Ball Grid
Array (BGA) package are located underneath the package and hence they are
more difficult to access physically. It is therefore nearly impossible to insert an
interposing device between the southbridge and the Broadcom TPM. However,
if another device is connected to the LPC bus as well (e.g., BIOS Flash or Super
1/0 controller), it might still be possible to eavesdrop the LPC bus at the pins
of the other device and perform a TPM reset attack.

Intel has adopted a more radical approach by integrating the TPM into the
MCH, which is the northbridge of the chipset. This means that the TPM is
accessed directly through the very high speed FSB between the CPU and the
northbridge, instead of the slow LPC bus. Consequently it is more difficult to
monitor the TPM communication. For instance, the Intel Q45 chipset, which
has the integrated TPM (iTPM), supports a 1333/1066/833 MHz F'SB and has a
Flip Chip BGA package with 1254 solder balls. Reset attacks are also infeasible
because it is impossible to decouple the TPM reset from the platform reset.
If the northbridge chip is reset, not only the TPM functionality is reset but
also the memory controller of the platform. There are some design challenges
to the Intel solution. The MCH chip lacks internal non-volatile memory to
store the TPM firmware and persistent state, and hence it has to rely on the
external SPI Flash chip that stored the BIOS image. The topic of non-volatile
state protection is the subject of Chapter 4. As mentioned earlier, certification
and security evaluation of an integrated TPM is more difficult than with a
discrete TPM. In the case of the Intel iTPM it is more challenging, because the
embedded microprocessor inside the MCH that runs the TPM firmware, also
runs the AMT remote management functionality [175].
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3.3 Experimental Results

We did our experiments in the middle of 2005 on one of the first desktop PCs
that shipped with a TPM. In particular we used an IBM ThinkCentre M50,
which had an Atmel 1.1b TPM. The TPM is installed on a daughterboard and
therefore its communication interface is easily accessible. Furthermore, we chose
an IBM machine, because in those days most of the open source support of
TCG technology was developed by IBM. The Linux device drivers for the most
TPMs and the open source TSS called TrouSerS have been developed by IBM’s
Linux Technology Center. In 2008 IBM employees wrote a book on practical
implementation aspects of trusted computing technology [51].

When we did our analysis, the pin layout of the Atmel TPM was not properly
documented. The meaning of all pins was only defined in a later version of the
datasheet. We had to do some reverse engineering in order to determine how
the TPM pins were connected to the connector of the daughterboard and which
pins corresponded with signals of the LPC bus. The reverse engineering of the
daughterboard will be presented in Section 3.3.1.

The 1.1b specification does not specify the low-level TPM interface. As a
result the method to transfer the TPM commands over the LPC bus differs
slightly for every TPM manufacturer, requiring a different device driver. The
interface of the Atmel 1.1b TPM is specified in documentation that is not
publicly available. However, we were able to determine the interface from the
open source Linux device driver, which was written by IBM people who had
access to this documentation, and by analyzing the communication on the LPC
bus. The interface of the Atmel TPM will be described in Section 3.3.2.

The situation has changed with the 1.2 TIS, which rigorously standardized the
low-level interface [279]. Consequently a single device driver can support any
1.2 TPM that implements the TIS interface. This is exactly the reason why
Microsoft Vista only supports 1.2 TPMs, even though Vista only uses TPM
1.1b features (e.g., for the full disk encryption scheme called Bitlocker).

3.3.1 Reverse Engineering of TPM Daughterboard

Some effort was needed to determine the electrical specification and function
of all signals on the TPM daughterboard. Figure 3.2(a) shows the front side
of the daughterboard, i.e., the side facing the motherboard. The chip that is
denoted with U2 on the circuit board, is the Atmel AT975C3201 TPM. All
communication to the motherboard happens over the 30 pin connector at the
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(a) Front side view of daughterboard. (b) Wire connected to daughterboard.

Figure 3.2: TPM daughterboard of IBM ThinkCentre M50.

bottom. In order to simplify physical access to the LPC bus we soldered a wire
onto the daughterboard connector, as depicted in Figure 3.2(b).

We measured the voltage level on the pins of the daughterboard connector when
the platform was powered off and powered on. This enabled us to determine
which pins correspond with the ground level and the supply voltage. We noticed
that one of the pins is high even if the PC is turned off and concluded that this
pin is connected to the CMOS battery, which powers the computer’s Real-Time
Clock (RTC). The Atmel datasheet mentions that the TPM senses the battery
to detect if it is removed from the PC. However, we believe that it is possible
to (temporally) remove the daughterboard by connecting the pin to an external
battery.

With an oscilloscope and a logical analyzer we were able to find the pins that are
connected to the LPC bus and determine the meaning of the different signals.
The main challenge was to identify the assignment of the four data wires of
the bus. We solved this by modifying the Linux TPM device driver to display
which bytes are transferred over the LPC bus to/from the TPM. By comparing
this information with what we measured on the four wires, we were able to
determine the order of the signals.

With the modified device driver and the logical analyzer we were also able to
understand how the TPM commands and responses are transferred over the
LPC bus in the case of the Atmel TPM (see Section 3.3.2). At that stage we
were able to eavesdrop the TPM communication (see Section 3.3.3).

We accidentally damaged the motherboard of the PC, presumably by short-
circuiting some pins on the daughterboard connector. Because the computer
was unusable at that stage, we removed the daughtboard from the PC and
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Table 3.2: Interconnection of Atmel AT97SC3201 and daughterboard connector.

Pin Name | Description TPM Pin | Connector Pin
GND Ground 12 1
LAD[3:0] | LPC Command, Address & Data || 24,23,26,25 9,22,8,23

LFRAME# | LPC Frame Indicator 2 28
LCLK LPC Clock (33 MHz) 28 29
LRESET# | System Reset (active low) 1 5
SIRQ Serialized IRQ 27 11
VBB Battery Input 14 16
VCC 3.3V Supply Voltage 13 18
CLKRUN# | Clock Control 7 GND
10A Input/Output A (SMBus clock) 3 GND
10B Input/Output B (SMBus data) 6 unknown
10C Input/Output C (GPIO pin) 22 GND
Xtamper | External Tamper Detect 21 GND
Xtall 32.768 kHz Crystal 9 GND
Xtal2 32.768 kHz Crystal 8 unknown

measured with a multimeter how all pins of the Atmel TPM are wired to the
connector of the daughterboard.

Table 3.2 describes the interconnection of the TPM pins and the connector pins.
We start numbering the connector pins as viewed on Figure 3.2(a) from the
left lower corner (this is pin 1), and continue counter clockwise (thus the upper
left pin is pin 30). For the pins of the TPM we follow the notation used in the
AT97SC3201 datasheet; on Figure 3.2(a) the pin in the right upper corner is
pin 1 and the numbering is also counter clockwise. The name and functional
description of the TPM pins is also extracted from the Atmel datasheet. As
mentioned before, the earlier version of the datasheet, which was available when
we started our experiments, did not contain this information, but we were still
able to determine the location of the pins of interest of the LPC bus.

Some signals are connected to the ground level, which originates from connector
pin 1, because their functionality is unused. The CLKRUN# signal can normally
be used to stop the LPC bus clock; this is useful in a mobile computer as power
saving mechanism (e.g., during a Suspend to RAM). The two-wire SMBus
interface, with I0A the clock and I0B the data signal, provides an alternative
to the LPC bus interface. The external tamper detection signal Xtamper can
presumably notify the TPM to take certain countermeasures. An external
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Figure 3.3: Typical LPC bus timing. LFRAME# is the frame indicator, LCLK the
clock and LAD[3:0] the address and data wires. CT/DIR indicates the cycle
type and direction and TAR denotes turn-around.

crystal can be used by the TPM in combination with the motherboard battery
to generate the RTC. If this crystal is connected to the TPM, the signal is also
used (much like VBB) to detect if the TPM has been removed from the platform.

3.3.2 Low Pin Count Bus

As explained earlier, the initial TCG PC client specification did not standardize
the low-level TPM interface. According to the datasheet, the Atmel 1.1b TPM
supports both the LPC bus and the SMBus as transfer mechanism. From
the analysis at the daughterboard it was clear that the LPC bus is used in
the IBM machine. Nowadays Atmel produces a 1.2 TPM with an LPC-based
TIS-interface for PCs, but also one with a 100 kHz SMBus two-wire interface
that is targeted at embedded devices (see Table 3.1). In this section we explain
in more detail the proprietary LPC interface of the Atmel 1.1b TPM.

The LPC specification [137] was developed by Intel for ISA-less PCs. It offers a
cost-effective and easy bus, with only seven mandatory signals namely LAD[3:0],
LFRAME#, LRESET# and LCLK, and some optional signals, such as CLKRUN# and
SIRQ. The LPC bus uses the 33 MHz clock of the PCI bus as clock LCLK, and
allows various transfer protocols (memory, I/O, DMA, firmware memory and
bus master).

Data transfers on the LPC bus are serialized over a 4-bit bus. The frame
indicator signal LFRAME# is used by the host to start or stop transfers, and by
peripherals to determine when to monitor the bus for a cycle. The LAD[3:0]
bus communicates address, control, and data information serially. The general
flow of cycles is visualized in Figure 3.3 and goes as follows:

1. A cycle is started by the host when it drives LFRAME# active, and puts the
appropriate start value on the LAD[3:0] signal lines.
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2. The host sends information regarding the cycle, such as the cycle type
and direction (denoted with CT/DIR in Figure 3.3), and the address of
the peripheral.

3. The host optionally sends data, and turns the bus around to monitor the
peripheral for the completion of the cycle; the turn-around is denoted
with TAR in Figure 3.3.

4. The peripheral can assert a number of wait states to synchronize and
indicates the completion of the cycle by sending the appropriate ready
value on the LAD[3:0] signal lines. Optionally the peripheral sends
response data.

5. Finally, the peripheral turns the bus around to the host, ending the cycle.

By studying the Linux device driver and the LPC communication captured
with the logic analyzer, we determined that LPC I/O cycles are used by the
Atmel TPM: I/0 Write cycles are used to send requests and I/O Read cycles
to get back the responses. The 1.2 TIS interface also uses I/O cycles for legacy
software, but defines two new special cycles (TPM-Write and TPM-Read) to
assert a locality level. The LPC locality cycles are identical to the standard
I/0 cycles with the exception of the START field, which is set to a previously
reserved value.

Table 3.3 gives the definition of all I/O cycle fields. The exact sequence of the
fields for an I/O Read cycle matches the generic timing of Figure 3.3. For I/0O
cycles the address field is 16 bits (so 4 clock cycles), and the data returned
is 8 bits (thus 2 clocks). A write cycle is very similar: after the address is
transferred, one data byte is sent, and the bus is handed over to the TPM, that
will add wait states until it is ready to turn around the bus.

The value of LAD[3:0] is given in hexadecimal format, and the 16-bit I/O
address (represented with a 4-digit hex code) is transferred with the most
significant nibble first. During the turn-around time LAD[3:0] will be driven
to OxF during the first clock cycle, and tri-state during the second clock cycle.
The TPM needs to assert wait states, and does so by driving 0x6 (i.e., Long
Wait) on the bus until it is ready (so n — 1 clock cycles); when ready, it drives
0x0 during 1 clock cycle.

The two I/O addresses in Table 3.3 are specific to the Atmel TPM, and the
procedure to send and receive TPM datagrams over the LPC bus is also
proprietary. According to comments in the Linux driver, the Atmel chip
does not support interrupts. This is strange because the public datasheet list
the SIRQ signal, which suggests that interrupts are supported. Anyway, the
Atmel 1.1b TPM has a port mapped interface, with a data port and a status
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Table 3.3: LPC I/0 cycle field definitions.

Field # Clocks Description LAD[3:0]
START 1 Start of Cycle 0x0
Cycle Type/Direction
CT/DIR 1 I/O Read 0x0
I/O Write 0x2
Address
ADDR 4 TPM data port (Atmel specific) 0xE000
TPM status port (Atmel specific) 0xE001
TAR 2 Turn-Around OxFF
Synchronize
SYNC n Ready 0x0
Long Wait 0x6
Data byte
DATA 2 least significant nibble first Datal[3:0]
most significant nibble next Data[7:4]

port. The status of the TPM must be determined by polling its status port and

the transfer protocol goes roughly as follows:

1. A TPM command is transferred using multiple I/O Writes to the TPM’s

data port.

2. The device driver will repeatedly check the status, using I/O Reads of the
status port, to see if the TPM is still busy and to determine when data is
available.

3. Once data is available, the TPM response can be read byte by byte using
I/0O Read cycles from the TPM’s data port. As the driver does not know
the size of the response, it will always check the status of the TPM to

determine if data is still available, before reading the next byte.

4. The transfer is completed whenever no data is left.

Note that Chapter 4 of the IBM book on trusted computing [51] describes how
to write a TPM device driver and gives as example the driver of the Atmel 1.1b

TPM.
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3.3.3 Analysis of Trusted Platform Communication

For our analysis of the LPC interface, we used the TPM__GetCapability command,
which queries the TPM for certain information including the manufacturer, the
version, the supported key size and algorithms. This command is available when
TPM ownership has not been taken and thus it was a natural choice for a first
analysis. We logged in on the computer remotely in order to be assured that
there is no activity from the keyboard controller on the LPC bus. An Agilent
16900 Logic Analysis System was used to analyze the communication on the
LPC bus.

Once we had figured out the meaning of the different signals of the LPC bus,
in particular the order of LAD[3:0], and the transfer protocol that is used, we

were able to log arbitrary TPM commands and their respective responses on
the LPC bus.

Next we wanted to recorded the TPM commands during the startup of the PC.
We were interested to see whether the S-CRTM calculates the SHA-1 hash over
the BIOS image in software or whether it relies on the comparatively slow TPM
to do so. In our previous experiments we were sure that the TPM was the only
device communicating on the LPC bus, but during the boot process a lot of
additional traffic is generated on the LPC bus. The S-CRTM and the BIOS
image are read from the BIOS Flash over the same bus.

The Agilent logic analyzer can trigger on the first packet to the TPM, based
on a trigger sequence that includes the LPC address, and fill its memory from
that moment in time. However, after the S-CRTM has issued the TPM__ Startup
command, it loads the BIOS firmware over the LPC bus such that its integrity
can be measured. This fills up the acquisition memory of the logic analyzer,
and the subsequent TPM packets cannot be captured. The logical analyzer
has no feature to only log TPM packets, so selectively store datagrams. It is
possible though, but not really practical, to startup the PC many times, and
use a different trigger condition to ultimately capture all LPC traffic during
startup; post-processing of this data is required to filter out the relevant TPM
communication.

We considered two options to efficiently address this practical limitation of the
Agilent logic analyzer:

e Implement a dedicated logging device that only logs communication
addressed to the TPM. Such device has to analyze the packets on the
bus, and only store the ones from and to the TPM. The logged data has
to be sent to a computer for further analysis.
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o Insert a device between the LPC bus and the logic analyzer, which acts
as a packet filter. This device will only forward packets to the logic
analyzer if they satisfy certain criteria, namely that they have the TPM
as destination.

Both solutions can be implemented in software, for instance with a microcon-
troller, or in hardware on an Field Programmable Gate Array (FPGA). We
choose the second approach and implemented the filtering functionality on a
Xilinx Virtex-II Pro. The idea was also that this would be a good starting point
for active bus attacks, e.g., blocking or manipulation of TPM commands or
reset attacks. However, because of a misconfiguration of the FPGA pins, we
accidently damaged the PC motherboard and we had to stopped the experiment.

In [165] we described our experimental results and outlined some active attack
scenarios. In this paper we suggested the LPC reset signal (LRESET#) as
possible attack candidate, and the feasibility of this attack was confirmed later
in [147, 250]. We also emphasized the potential of active manipulation on the
LPC bus. In 2011 Winter and Dietrich demonstrated the first practical active
attack on the TPM communication that requires a single wire of the LPC bus
(i.e., LFRAME#) to be hijacked. They built a dedicated logging device, consisting
of a microcontroller board and an FPGA board.

3.4 Side-Channel Attacks on TPMs

To date no independent security evaluation of commercial TPM products has
been published, except for the advanced invasive attack on the Infineon TPM
by Tarnovsky [110, 271]. Some compliance testing was performed on early TPM
implementations and minor issues were identified by Sadeghi et al. [223], but the
security implications of this analysis were fairly limited. It would be interesting
to see how resistant the existing TPM products are against side-channel attacks.

The TPM implementations of Atmel, Infineon and STMicroelectronics are
derived from secure microprocessors that are used in smart cards and other
security applications. Hence these products will probably implement some
countermeasures against side-channel attacks. Other products, such as the
integrated TPM of Broadcom or Intel, might offer a lower security level because
they originate from PC components which are traditionally optimized for
performance and/or cost instead of security.

Different side-channel attacks can be applied to TPMs. The power consumption
can be measured on the external supply pins. This can be done by connecting
GND and VCC to an external power supply instead of the motherboard supply,
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and measuring the current flowing into the TPM. If physical access to the pins
is hard, which is the case for integrated TPMs, the attacker might have to resort
to the analysis of the EM radiation produced by the TPM. Another option is the
non-invasive injection of faults (i.e., glitches) on the supply voltage or the clock
input. However, many TPM manufacturers claim to have implemented defense
mechanisms against this type of attack. For instance, the reverse engineering
of the Infineon TPM by Tarnovsky has revealed that it generates an internal
clock signal, and consequently glitches on the externally provided LPC clock
do not influence the cryptographic operations.

Clearly, more work is needed to determine the effectiveness of side-channel
attacks on commercial TPM implementations. In the remainder of this section
we will highlight which TPM commands manipulate important secret data and
hence are interesting candidates, albeit in theory, for a side-channel attack.
In our discussion we make abstraction of the type of side channel attack that
would be used in practice.

3.4.1 Attacking the Endorsement Key

If the TPM ships with an endorsement certificate, the extraction of the private
part of the EK is an important security threat. Once the private EK is revealed,
the key can be programmed into a software TPM and used to circumvent the
remote attestation protocol. A privacy CA will believe that the software TPM
is a genuine hardware TPM because it has a valid endorsement certificate. As a
result the CA will issue certificates on the AIKs of the software clone. At that
stage the software TPM can report arbitrary “fake” platform configurations.

Before ownership is taken, the public EK can be read with the TPM__ReadPubek
command. Afterwards, the public portion of the EK and the SRK can be read
with TPM__OwnerReadInternalPub, but this command requires authorization
from the TPM owner. This does not really pose a problem, because an attacker
can always clear the ownership and then read the public EK without any
restriction. Note that the SRK is deleted if the ownership is cleared, so this
technique has to be avoided when the SRK is the attack target (see Section 3.4.2).

There are only two commands that process the private part of the EK:
TPM__TakeOwnership and TPM__Activateldentity. The first command takes as
input the owner password and the SRK authorization data, encrypted with the
public EK. It will decrypt the two passwords with the private EK and generate
some secret persistent values including a new SRK. The public part of SRK is
exported by this command. The TPM__Activateldentity command decrypts a
blob which contains the symmetric session key that the privacy CA has used to
encrypt an AIK certificate. This command requires the authorization of the
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TPM owner and it must be preceded by the TPM__Makeldentity which generates
the AIK that the CA needs to certify.

If the side-channel attack requires the measurements of a large number of public
key decryptions with the private EK, the second TPM command seems the
best choice. Repetitively taking and clearing ownership of the TPM will be
slow because the TPM_ TakeOwnership command will every time generate a
number of RSA key pairs. On the other hand, one TPM__Makeldentity command
may be followed by a number of TPM_ Activateldentity operations, all with a
different session key. If a side channel attack also needs leakage measurements
of cryptographic operations with a known key, this can be done by decrypting
data with a legacy key (see Section 2.1.2) using the TPM_ Unbind operation.
This is for instance a requirement for a template attack [53].

3.4.2 Attacking the Storage Root Key

As explained in Section 2.1.2, the TPM stores the SRK in internal non-volatile
memory. All other keys protected by the TPM are stored externally albeit in an
encrypted form. This makes the SRK, which forms the root of the TPM’s key
hierarchy, a critical asset. If a side-channel attack is successful in the extraction
of the SRK, the protected storage of the TPM is completely compromised: all
keys stored outside the TPM can be decrypted.

Because the SRK is a storage key, it can only be used as an encryption key and
not as a signature key. This means that an attack should target an operation
that uses the private SRK as a decryption key. A naive attack scenario would
be to repetitively generate a key under the SRK with TPM_ CreateWrapKey
and load the newly created key with TPM__LoadKey2. However, this approach
is inefficient because the generation of an RSA key pair is time consuming.

It is much easier to attack the TPM__Unseal operation. The TPM expects an
encrypted blob that was created with a prior TPM__Seal operation. If a random
ciphertext is provided, the TPM will decrypt it and subsequently validate the
structure of the plaintext. The validation will fail and the TPM will return an
error indicating that the provided input is not a sealed blob. However, at that
stage the TPM has already used the private SRK for the decryption and the
side-channel leakage during this operation can still be measured.

One potential hurdle is the fact that authorization data must be provided in
order to make use of the SRK. In most practical applications, this authorization
data is set to a well-known value, namely all-zeros. However, if the value is
unknown, the decryption with the SRK will not be performed because the
authorization protocol fails. Consequently, the attacker must first perform a
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side-channel attack on the SRK password, before he can attack the SRK itself.
As described in Section 2.1.2, in order to determine whether the caller knows the
SRK password, the TPM will calculate a MAC value on the parameters of the
TPM command, keyed with the secret password, and verify whether it matches
with the MAC value provided by the caller. Every time the attacker sends
a command with an incorrect authorization digest, the TPM will calculate a
MAC value and subsequently return an error indicating an authorization failure.
The attacker can probably perform an attack on the MAC function because he
knows all the inputs to the function except for the secret password. However, in
practice the described attack is unlikely to succeed. TPMs implement schemes
that will gradually slow down authorization after a number of failed attempts.
Hence it will take an extremely long time before a sufficient number of leakage
measurements can be taken.

3.5 Conclusion

In this chapter we have studied practical and theoretical hardware attacks on
TCG compliant platforms. The two roots of trust that define a TCG compliant
platform, are the CRTM, which starts the measured boot process, and the TPM,
which is responsible for protected storage of sensitive data and for reporting of
the platform state. It is clear that these two components are attractive attack
targets. A compromise of the CRTM enables an attacker to subvert the chain
of trust by recording false integrity measurements in the TPM. If the TPM is
attacked directly, the endorsement key and the storage root key are the most
interesting targets. An extraction of the former enables an attacker to report
arbitrary platform configurations and a compromise of the later exposes all data
that is protected by the TPM. In Section 3.4 we have discussed how these two
keys can be theoretically attacked with a side-channel attack. The practical
applicability of these attacks on commercial TPMs depends heavily on whether
countermeasures have been taken in the RSA implementation.

We were the first to observe that the communication interface between the TPM
and its host is literally and figuratively the weakest link in a TCG compliant
platform. We demonstrated experimentally that the commands and responses
can passively be monitored when they are sent over the LPC interface of an
Atmel 1.1b TPM. In practice this attack scenario is useful to eavesdrop keys
when they are unsealed by the TPM. We have also described two attack
scenarios that exploit the fact that the host platform and the TPM can be reset
independently. Finally we discussed the impact of other active attacks that
manipulate the trusted platform communication.
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The attacks on the TPM communication interface are fairly easy to perform
using off-the-shelf lap equipment, yet they have severe security implications.
In this chapter we have discussed various countermeasures, such as locality
and transport sessions, that are present in the TPM specification. The most
effective way however to resolve these attacks is the integration of the TPM
in another hardware component with a communication interface that is more
difficult to analyze. Ideally the TPM should be integrated in the same chip that
acts as CRTM, namely the CPU. This topic will be covered in the Chapter 4,
where we will study how to embed the TPM in a hardware component that
lacks reprogrammable non-volatile memory.






Chapter 4

Non-Volatile State Protection

The integration of a TPM into another hardware component can be advantageous
over an implementation as a discrete chip. On the one hand, hardware attacks
on the communication interface of an integrated TPM could be more difficult
to perform. On the other hand, the integration could mean a cost saving. One
of the key problems when integrating a trusted module into another hardware
component or an embedded system-on-chip design, is the lack of on-chip
Multiple-Time Programmable (MTP) Non-Volatile Memory (NVM).

In this chapter, we investigate how the non-volatile state of a trusted module
can be protected in external non-volatile memory. The approach based on
authenticated external NVM has been presented in [228] and the approach
based on a reconfigurable PUF in [163].

4.1 Introduction

As illustrated in Chapter 3, in the past TPMs were often implemented as a
discrete cryptographic chip that is physically bound to the rest of platform by
soldering it to the platform’s mainboard. This meant that during the initial
deployment of TCG technology the TPM was typically added as an optional
component, only available in some PC/laptop configurations. Later, the TPM
functionality got integrated in other peripheral components, such as a network
controller, and it became more widespread. In 2008 Intel introduced a TPM
that is integrated into the MCH, a core hardware component of the PC platform,
also referred to as the northbridge of the chipset. The integration of the TPM
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into another hardware component signifies a lower bill of materials. However,
this integration has an impact on the security of the trusted computing platform
as well. On the one hand, it makes the TPM less vulnerable to attacks on
the communication interface, because physical access to the interface becomes
cumbersome. On the other hand, the security evaluation of an integrated
TPM may be more difficult because the TPM functionality is part of bigger
component. Additionally, it may be harder to implement countermeasures
against physical attacks, such as shielding or special logic styles.

4.1.1 Mobile Trusted Module

The MTM specification abstracts a trusted mobile platform as a set of trusted
engines, each acting on behalf of a different stakeholder. For a mobile phone
a number of stakeholders can be identified: the device manufacturer, the
cellular network operator, the application providers and the user. Every trusted
engine will have its own MTM. As most stakeholders do not have physical
access to the device, a distinction is made between Mobile Remote Owner
Trusted Modules (MRTMs) and Mobile Local Owner Trusted Modules (MLTMs).
MRTMs have a pre-installed remote owner, cannot be disabled by the local user
and need to support secure boot [73]. MLTMs are more like a regular TPM,
except optimized for embedded device. For an in-depth summary of the MTM
specification we refer to Ekberg and Kylanpaa [91].

Some proof-of-concept implementations of the MTM specification have been
presented by academic research groups as well as by the research centers of Nokia
and Samsung. However, mobile phone manufacturers have not yet expressed
the intention to incorporate MTMs in commercial products.

In the scientific community a number of approaches has been proposed to
implement the MTM specification. We briefly describe them here. For a more
detailed description of the different approaches we refer the reader to [116].

A first approach is to implement the MTM in hardware like a traditional
TPM, either as a separate dedicated chip or integrated into another hardware
component. Researchers of the Korean Electronics and Telecommunications
Research Institute demonstrated the feasibility of this approach by making a
discrete MTM chip in 0.18 um CMOS technology [150].

A second implementation option is to run the MTM as software in a
programmable execution environment that is isolated from the — potentially
untrustworthy — main operating system. The software MTM can run on a
secondary microprocessor that is physically isolated from the main application
processor. Examples of secondary processor in a mobile phone are the embedded
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Secure Element (SE) of a Near Field Communication (NFC)-enabled phone, a
secure microSD (e.g., provided by G&D Secure Flash Solutions) or even the
SIM card. Dietrich demonstrated the implementation of the MTM specification
on a JavaCard-based SE [72].

Alternatively, the software MTM can run in the so-called Trusted Execution
Environment (TrEE) [158] of the main application processor. This environment
is logically isolated from the rest of the platform. Typical examples of TrEE
technologies are ARM TrustZone [177, 296] and TI M-Shield [13]. Proof-
of-concept MTM implementations executing in a TrEE have been presented
in [74, 90, 297].

A final implementation option, which has been proposed in [24, 231, 234, 319],
is to run multiple software/virtual MTMs in separate environments that are
isolated from each other and from the main operating system by a microkernel
or hypervisor.

4.1.2 Embedded Trusted Computing

In this chapter we investigate the integration of the TPM/MTM functionality
into existing platform components. As stated earlier, this integration is desirable,
because a discrete trusted module increases the cost of the platform. Sometimes
an embedded trusted module is also less prone to attacks on its communication
interface to the CRTM component, either because the bandwidth of the interface
is very high or because the interface is not accessible except with an invasive
attack. The former applies for instance to Intel’s iTPM. The latter is the case
when the trusted module is integrated in the same chip as the platform’s main
processor.

We focus primarily on the protection of the trusted module’s non-volatile
state or persistent state, when the module is embedded into a component
that lacks on-chip MTP NVM. The persistent state includes cryptographic
keys, authorization data and monotonic counters. There are two main reasons
why embedded NVM is often not available. First, traditional floating gate-
based MTP NVM technologies, such as Flash memory and EEPROM, are too
expensive because they require additional masks and processing steps relative to
a standard Complementary Metal Oxide Semiconductor (CMOS) logic process.
Second, logic NVM memory solutions that are compatible with CMOS [69], as
offered by IP providers such as eMemory, Kilopass, Novocell Semiconductor,
NSCore, Sidense and Synopsys (formerly Virage Logic), are still relatively new
and hence not (yet) widely deployed.

We see three important scenarios where the trusted module can be integrated
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into a hardware component which lacks on-chip NVM: the integration of
the TPM functionality into the chipset of a PC, the implementation of the
MTM specification on the application processor of a mobile device, and the
implementation of a trusted module on an FPGA. These are now discussed in
more detail.

Integration of TPM into Chipset

Intel has built a secondary microprocessor, known as the Management Engine
(ME), into business PCs with vPro technology. The ME processor is embedded
in the MCH of the chipset and it is traditionally used to remotely manage the
PC; this feature is known as Intel AMT. However, in the latest generation of
the vPro platform, the ME also runs the integrated TPM (iTPM) functionality.

The MCH is made in the latest CMOS technology and it does not contain Flash
memory for cost reasons. This means that the firmware and the non-volatile
state of the ME — and consequently of the iTPM — have to be stored externally
in the Serial Peripheral Interface (SPI) Flash memory which also stores the
BIOS image.

MTM on Application Processor

For quite some time application processors for smart phones and tablets have
had security features such as a cryptographic accelerator and internal Static
Random Access Memory (SRAM) and ROM for secure boot [158]. Modern
high-end application processors also support ARM TrustZone and TT M-Shield,
which can be used to run security critical tasks in a general-purpose Trusted
Execution Environment (TrEE). This TrEE is isolated from the other software
of the platform by low-cost hardware extensions and minimal software support.
As demonstrated in [74, 90, 297] this isolated environment is ideally suited to
run a software MTM.

However, in general the application System-on-Chip (SoC) of a mobile
phone lacks embedded reprogrammable NVM. It will have some One-Time
Programmable (OTP) non-volatile memory, which can be programmed during
manufacturing (e.g., laser fuses) and/or in the field (i.e., electrical programmable
fuses or eFuses). This memory is typically used for secure key storage.

The lack of on-chip MTP NVM implies that the MTM’s firmware and non-
volatile state must be stored in external NVM, albeit in a secured manner. A
protection scheme is necessary to guarantee the confidentiality, integrity and
freshness of the externalized firmware and state.
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Trusted Module on FPGA

A third scenario is the implementation of a trusted module on reconfigurable
hardware, such as a Field Programmable Gate Array (FPGA). Reconfigurable
hardware facilitates field upgrades of the trusted module implementation. The
firmware of the module can be update to fix non-compliance bugs [223] or
potentially support future versions of the TPM specification. Additionally
the hardware can be upgraded for instance to replace broken/depreciated
cryptographic algorithms (e.g., the SHA-1 hash function).

The majority of the commercial FPGAs are volatile, which means that the
bitstream that configures the reconfigurable logic, is stored in external NVM
when the FPGA is powered down. High-end volatile FPGAs support bitstream
encryption, which works in the following manner: the configuration bitstream
is stored in the external NVM in encrypted form and is passed through a
hard-wired decryption engine before it is loaded on the reconfigurable logic. For
on-chip key storage FPGA manufacturers rely on battery-backed SRAM or on
OTP fuses. The bitstream encryption functionally only protects against cloning
and reverse engineering of the bitstream. An additional protection scheme is
necessary to protect against downgrading of the bitstream to an older version
and to secure user data, such as the persistent state of a security module, in
the external NVM.

We will look in more detail at reconfigurable trusted computing in Chapter 6.

4.1.3 Non-Volatile State

In Section 2.1.1 we gave a detailed description of the trusted modules that
have been specified by the TCG, namely the TPM and the MTM. We
briefly recapitulate the state information that these TCG modules contain.
A distinction can be made between a volatile part, which is cleared when the
platform and thus the module are reset, and a persistent part, which has to
survive power cycles and consequently must be stored in non-volatile memory.

On the one hand, the trusted module needs volatile memory for temporary
data. This includes key slots to load keys stored outside the trusted module, a
number of Platform Configuration Registers (PCRs) that store measurements
(i.e., hash values) made during startup of the platform, and information (e.g.,
nonces) about the concurrent authorization sessions.

On the other hand, some information maintained by the trusted module has
to be stored persistently. For the TPM, this includes the EK that uniquely
identifies each TPM, the SRK that encrypts other keys maintained by the TPM,
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Table 4.1: Monotonic counters in MTM and TPM.

type size (bits) increment command
counterBootstrap 5 MTM__IncrementBootstrapCounter
counterRIMProtect 12 TPM__IncrementCounter
counterStorageProtect 12 TPM__IncrementCounter
TPM 1.2 32 TPM__IncrementCounter

the owner’s authorization data (i.e., password), and the monotonic counters.
The persistent state of an MTM contains similar data.

As a dictionary attack mitigation technique, the trusted module keeps track
of the number of failed authorization attempts. This information should also
be stored persistently. Finally, the TPM__SaveState command can be used to
temporally save volatile state information (e.g., content of PCRs) in persistent
state.

4.1.4 Monotonic Counters

The TPM 1.2 specification supports at least 4 concurrent 32 bit monotonic
counters that can be created, incremented, read and destroyed. In [227]
Sarmenta et al. examine how one physical TPM monotonic counter can be used
to support virtual monotonic counters. They also propose new TPM commands
to efficiently support an arbitrary number of virtual monotonic counters and
so-called count-limited objects.

The generic TPM 1.2 counters have been defined as optional in the MTM
specification. Instead three dedicated monotonic counters are specified (listed in
Table 4.1). The bootstrap counter has a length of 5 bits, which means that it is
initialized to 0 and runs up to 31. This counter is used to verify the validity of
the firmware image that is initially executed during the bootstrap process, and
it is crucial for the integrity of firmware upgrades. The small range of values
makes it possible to implement the counter as 31 OTP bits in hardware (e.g.,
with fuses). The RIM protection counter enables a higher resolution of software
upgrades (i.e., 212 = 4096 steps), whereas the storage protection counter is an
additional monotonic counter for other purposes.

It should be noted that the idea to protect the boot process against downgrades
with OTP fuses is used in other commercial products, e.g., the Microsoft Xbox
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360 game console! and the Motorola Droid X phone [152].

4.2 Protection of Non-Volatile State in External
Memory

In this section we present a framework to protect the persistent state when it is
stored in external NVM. Any state protection scheme will rely on authenticated
encryption, secure key storage and a replay-detection mechanism. These building
blocks follow quite naturally from the security requirements that we will define
in Section 4.2.1.

In the remainder of this chapter, we will describe in detail two state protection
schemes. One scheme, which we presented in [228], relies on external
authenticated non-volatile memory. The other makes use of a new security
primitive called Reconfigurable Physical Unclonable Function (RPUF), which
we introduced in [163].

We assume that an adversary has access to the communication interface between
the chip in which the trusted module is embedded, and the external NVM chip
that stores the persistent state. For now we do not address invasive hardware
attacks on either the trusted module or the external NVM chip. The SPI
bus is used as communication interface in many of the use cases described
in Section 4.1.2; for instance SPI Flash memory is used in a modern PC to
store the BIOS image and it is a popular choice to store FPGA bitstreams.
The bandwidth of such an NVM interface is typically rather low. As we have
demonstrated in Section 3.3 of the previous chapter, it is fairly straightforward
to monitor a low-speed communication bus. Therefore we assume that the
attacker can passively eavesdrop the communication and/or actively access the
interface to read/write the content of the external memory.

4.2.1 Security Requirements

In order to sufficiently protect the persistent state of a trusted module, which
we denote with 7T, the following requirements have to be considered:

1. State confidentiality: It should be infeasible to read the content of 7.
Disclosure of T will for instance reveal the private part of the SRK or of
the EK.

Ihttp://wuw.free60.org/Fusesets explains the function of the Xbox 360’s fuse sets.
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2. State integrity: Unauthorized modification of 7 should be infeasible.
Otherwise an adversary can for instance change the owner’s password.

3. State uniqueness: Cloning of the trusted module must be infeasible.
Hence, copying of the EK to another module has to be prevented.

4. State freshness: Replay of an old state must be infeasible. This is
mainly necessary to protect the monotonicity of counters.

The TCG specifications differ regarding the last requirement. The TPM has to
store its general purpose monotonic counters in physically shielded locations,
which implies tamper-resistant or tamper-evident hardware. The mobile specific
monotonic counters should only be shielded from software executing outside the
context of the MTM. This implies that for MTMs state freshness must not be
guaranteed in the case of hardware attacks. The TCG Mobile Phone Work Group
intends to tighten the security requirements of the MTM counters to the level of
the TPM specifications “immediately when it becomes feasible to implement such
counters in mobile phones.” This comment clearly acknowledges our observation
that the application processor of mobile phones lacks the necessary embedded
NVM.

Note that we do not list state availability as a security requirement. An
attacker can always delete 7 in the external NVM or physically disable the
communication interface between the trusted module and the NVM chip. In
some sense this is equivalent to performing a Denial-of-Service (DoS) attack on
the interface to a discrete TPM. Moreover, the external NVM typically also
stores other platform components, such as the mobile phone’s operating system
or the FPGA bitstream. Hence the consequences of this type of attack reach
further than the disabling of the trusted module.

4.2.2 Generic Approaches

We identify two generic approaches to achieve the defined security requirements.
Both approaches store the persistent state externally in an encrypted and
authenticated form, but they differ slightly with respect to replay detection.

Non-Volatile State Protection with Updatable Key

The first approach, which is illustrated in Figure 4.1, relies on an updatable key.

With the algorithm Enc we mean an Authenticated Encryption (AE) scheme.
The AE scheme simultaneously protects the confidentiality and authenticity
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Figure 4.1: Non-volatile state protection with updatable key.

of the persistent state (see Section 4.2.3). The corresponding Dec algorithm
decrypts the non-volatile state and verifies its integrity. If the verification fails,
Dec will return ¢ (indicating an integrity failure). Otherwise it will return the
plaintext state T (see Figure 4.1(a)).

Whenever the non-volatile state is updated, it is authenticated and encrypted
with a newly generated key A% (see Figure 4.1(b)). Older versions of the state
will be rejected because they were protected by a different key. The generation
of the new key can be done with a random number generation or it can be
derived from the previous key, for instance, with a one-way function.

Non-Volatile State Protection with Nonces

The second method, which is depicted in Figure 4.2, uses a fixed key k7 and a
nonce ny. The nonce can either be a monotonic counter or a random number.
In this approach the replay detection is done explicitly, whereas in the first
approach it is implicit.

When reading its persistent state, the trusted module verifies whether the
nonce ny that is stored externally, corresponds with its own local copy (see
Figure 4.2(a)). If the nonce does not match, the trusted module knows that it
received an old version of T in this case the replay-detection algorithm returns
¢. Note that the Dec algorithm can also return g.

When writing an updated version of the state to the external NVM, a new
nonce n’- will be generated, respectively by incrementing the monotonic counter
or by generating a new random number. Next, the updated state 7’ and the
fresh nonce n’- are authenticated and encrypted with the fixed key k7.
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Figure 4.2: Non-volatile state protection with nonce and fixed key.

4.2.3 Authenticated Encryption

Both schemes utilize an AE algorithm to protect the confidentiality and the
integrity of the persistent state. Typically this type of algorithm can be
constructed with a generic composition of an encryption algorithm and a keyed
hash function (i.e., MAC algorithm) or by using a block cipher in a dedicated
AE mode of operation [27]. In the former case, two independent keys must be
used instead of a single key ks like depicted in Figure 4.1 and 4.2.

In the current TPM specification the only mandatory encryption algorithms are
RSA encryption with Optimal Asymmetric Encryption Padding (OAEP) and
RSA encryption with PKCS #1 version 1.5 encoding. In theory the trusted
module’s persistent state could be encrypted with one of these RSA encryption
schemes. In fact, this is how the TPM’s key hierarchy is protected, as explained
earlier in Section 2.1.2.

However, for efficiency reasons it is preferable to use a symmetric key algorithm
instead. The TPM specification defines Advanced Encryption Standard (AES)
in CTR mode and in OFB mode as optional encryption algorithms, e.g., for
encrypted transport sessions (see Section 3.2.4). For instance, the Common
Criteria evaluation report of the Infineon TPM indicate that it support AES in
CTR mode (with key size of 128 bits) for transport sessions and that it also
uses Triple DES (3DES) in Cipher Block Chaining (CBC) mode (with key size
of 168 bits) internally to protect firmware upgrades. It is unclear whether other
TPM manufacturers also support a symmetric encryption algorithm.

Note that if a symmetric key algorithm is available in the trusted module, it
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could also be used to protect the module’s key hierarchy. This would mean that
the SRK is made a symmetric key. In fact, Ekberg and Bugiel chose to make
the SRK symmetric in order to minimize the memory footprint of their MRTM
software implementation. They highlight the impact of this decision in [90].

By default TPMs already support a MAC algorithm, namely the HMAC
construction [19] using the SHA-1 hash function. Alternatively, a MAC
algorithm can be constructed from a block cipher (e.g., CBC-MAC [29],
CMAC/OMAC [138], EMAC [213]) or based on a universal hash function
(e.g., UMAC [28], GMAC [195]).

Various implementation options exist for an AE scheme Enc that is suited to
protect the trusted module’s persistent state. A first option is the combination
of a MAC algorithm and a symmetric key algorithm. A logical choice for the two
components are HMAC-SHA1 and AES respectively, because these algorithms
are already used in the TCG specifications. Traditionally three composition
methods are considered:

¢ Encrypt-and-MAC: Encrypt the plaintext and append a MAC of the
plaintext.

e MAC-then-encrypt: Append a MAC to the plaintext and then encrypt
them together.

e Encrypt-then-MAC: Encrypt the plaintext to get a ciphertext and
append a MAC of this ciphertext.

Bellare and Namprempre showed that the third construction provides the
strongest security guarantees [21]. The Encrypt-then-MAC method also has
the advantage that the integrity of the state can be verified without the need
to decrypt it first.

A second option is to use a block cipher, preferably AES, in a dedicated AE mode
of operation. Examples of AE modes are CCM [141], CWC [156], EAX [22],
GCM [195], IAPM [142], and OCB [221]. A distinction can be made between
one-pass and two-pass schemes. The one-pass modes IAPM and OCB are highly
efficient because they process the input message in a single pass, but sadly they
are encumbered by patents. The two-pass modes on the hand are patent-free,
but slower. However, the TPM was never intended to be a high-speed device,
so it should not be an issue to use a slower AE mode.

In Figure 4.2 we indicated that the nonce ny is prepended to the plaintext state
T before it is processed by the AE algorithm. Block cipher modes of operations
typically use an Initialization Vector (IV). It is logical to use the nonce ny as
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IV for the Enc algorithm. We denote the former method with Ency, (ny||T)
and the latter with Encg, (n7, 7).

4.2.4 Frequency of State Updates

Irrespectively whether the state protection scheme relies on a fixed key and a
nonce or an updatable key, or whether the Encrypt-then-MAC construction or
a combined AE mode is used, the complete persistent state must be processed
whenever it is accessed by the trusted module. When reading the state from the
external NVM, it must be read entirely in order to verify its integrity. Every
time the content of the non-volatile state is modified, the whole state must be
re-encrypted, re-authenticated and overwritten in external NVM. This signifies
that the trusted module needs enough internal RAM to cache the persistent
state.

As explained in Section 4.1.3 the non-volatile state consists of some objects that
are rarely changed and others (in particular the counters) that can be updated
more frequently. Note that the TPM specification limits the rate at which the
monotonic counters can be incremented (with TPM__IncrementCounter) to once
every b seconds. Examples of infrequently updated objects are the EK and the
SRK. The EK is installed during manufacturing and it will normally remain the
same during the lifetime of a TPM; the TPM 1.2 specification does include the
ability to reset the EK, but this feature is optional and often not supported in
practice. The SRK on the hand is created when ownership is taken of the TPM
and it will remain the same until the TPM is cleared and ownership is retaken.
In the case of an MRTM the SRK and EK will never change because they are
pre-installed by the remote owner (e.g., manufacturer or mobile operator).

The overhead of the state protection scheme can be reduced by splitting the
state into two parts: one part containing the dynamic objects (i.e., counters)
and the other comprising the infrequently updated objects (e.g., long term keys).
As a result, whenever a monotonic counter is incremented, only the dynamic
part of the persistent state has to be updated in the external NVM. Moreover,
only one of the two parts has to be cached internally in the trusted module.

4.2.5 Authentication Tree

It is possible to go one step further by authenticating and encrypting logical
objects (keys, counters, authorization data, ...) individually. The two generic
approaches of Section 4.2.2 can be applied directly to these objects. However,
this means that for every object the trusted module needs to remember either
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Figure 4.3: Non-volatile state protection with an authentication tree. The
non-volatile state 7 is split into different logical objects O;. Elements in a
dashed box are authenticated and encrypted with the key kr. o; denotes an
authentication tag and n; a nonce. The trusted module only stores the root of
the authentication tree ny in on-chip memory and the rest of the tree is stored
in untrusted external NVM.

an updatable key or a nonce. This issue can be overcome by protecting the
object keys/nonces with a single updatable key/nonce and storing them in the
external NVM.

In Figure 4.3 we illustrate two possible schemes for the protection of individual
non-volatile objects. Every object O; is authenticated and encrypted with the
same key k7 that is stored inside the trusted module. A fresh nonce n; is
associated with every object O;. We call these the object nonces.

In order to guarantee the freshness of a certain object, the corresponding object
nonce must be regenerated every time the object is modified. As discussed earlier,
this can be done by prepending the nonce to the object before encryption (i.e.,
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Ency.,(n;]|O;)) or by using it as IV for the AE algorithm (i.e., Ency, (n;, O;)).
The following two examples illustrate how the object nonces can be generated:

o If the AE algorithm works in CBC mode, the object nonce can be used
as the IV. The IV should be random and unpredictable (i.e., n; = rnd;).

o If the AE algorithm works in CTR mode, the object nonce can be used
as the initial counter value. It can be chosen partially random (i.e.,
n; = rnd;||0) or as n; = i||ctr;||0 with ctr; a monotonic counter that is
incremented on every update of O;. The number of zeros depends on the
length of the object.

In order to detect replay of the non-volatile objects we propose to protect the
integrity of the object nonces with a so-called authentication tree [93, 123, 196].
The authentication tree reduces the problem of replay detection to the integrity
protection of the root of the tree. The root of the authentication tree must be
stored in the on-chip memory of the trusted module, while the rest of the tree
can be stored in an untrusted external NVM.

Authentication trees have been used in a variety of schemes for the encryption
and integrity protection of external RAM memories [92]. We will briefly discuss
how two authentication tree schemes can be used for the protection of the
trusted module’s non-volatile state.

Tamper-Evident Counter Tree

The solution that we describe in Figure 4.3(a), is an adaptation of the Tamper-
Evident Counter Tree (TEC-Tree) scheme that was proposed by Elbaz et al. [93].
The original scheme use the principle of AREA (Added Redundancy Explicit
Authentication) for integrity protection. They insert redundancy (a nonce) in
the plaintext message before encryption and check it after decryption. This
principle requires a block cipher mode of operation that provides infinite error
propagation on encryption and on decryption. Elbaz et al. apply the AREA
principle on a block level [94], which means that they add redundancy to every
block and use Electronic Code Book (ECB) mode. We believe that it makes
more sense to use a proper AE scheme for Enc instead of the AREA principle.

Our adapted scheme works as follows. The objects O; and their corresponding ob-
ject nonces n; are encrypted and authenticated with key k7 (i.e., Ency, (n;]|O0;))
and subsequently stored externally as the leaves of the tree. The intermediate
nodes of the tree group a number of the object nonces. These nodes are also
encrypted and authenticated by the key k7 and their freshness is protected by
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another nonce, which we call an intermediate nonce. Finally, the root node of
the tree groups the intermediate nonces. The nonce ny protects the freshness
of the root of the tree and hence it has to be stored internally in the trusted
module in order to detect replay of any element in the authentication tree. We
call ny the root nonce.

Elbaz et al. proposed to use counters for the nonces and hence they named their
scheme Tamper-Evident Counter Tree or TEC-Tree. The nonces are constructed
in the following manner: n; = a;||ctr; with a; the address of the element and
ctr; a counter.

In Figure 4.3(a) we illustrate an example where the persistent state T consists
of nine objects and where a ternary TEC-Tree is used. In a ternary tree
there are (at most) three child nodes under every node. The intermediate
nodes are calculated by grouping three objects nonces: Ency, (n;||0;) with
O10 = ni||ne||ng for the left node, O11 = ny||ns||ne for the middle node
and O12 = ny||ns||ng for the right node. The root node is computed as
EanT(TLTHOT) with OT = n10||n11||n12.

When the trusted module wants to read a certain object O;, the following steps
must be performed:

1. The trusted module reads the encrypted object (e.g., Ency, (n;]|0;)) from
the external NVM, decrypts it and verifies its integrity (using the Dec
algorithm of the AE scheme).

2. The trusted module reads the intermediate node (e.g., Encg, (n;]|0;))
from the external NVM, decrypts it and verifies its integrity. Next it
checks whether the object nonce n; that was decrypted in the previous
step, matches the nonce that is stored in the plaintext intermediate node
0;.

3. The trusted module reads the root node (i.e., Ency, (ny||O7)) from the
external NVM, decrypts it and verifies its integrity. Next it verifies
whether the intermediate node n; that was decrypted in the previous step,
corresponds to the nonce that is stored in the plaintext root node O7.

4. The trusted module checks whether the root nonce ns that was decrypted
in the previous step, is the same as the value that the module stores
internally.

Every time an object O; is changed, the trusted module must update the path
in the authentication tree from the corresponding leaf node to the root node.
For every element that is modified in the tree, a new nonce must be generated
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by incrementing the counter value. For instance, if O changes in Figure 4.3(a),
the nonces n4, n11 and ny will be altered.

An important feature of the TEC-Tree scheme is that the authentication tree
is parallelizable [123] (for read and write operations). This means that the
cryptographic operations involved when reading and updating the tree can be
performed in parallel.

Hash Tree

In Figure 4.3(b) we illustrate an alternative solution, which builds upon the
memory protection schemes of the MIT research group of Devadas [62, 107, 266].

The non-volatile objects O; are authenticated and encrypted with a fixed key
k7, like in the previous scheme. The AE algorithm typically generates message
authentication tags on the objects; e.g., in the case of the Encrypt-then-MAC
construction the tag is the MAC on the ciphertext. This can be denoted as
follows: (¢;,0;) < Encg,(n;, O;) with n; the object nonce (used as IV), ¢; the
object ciphertext and o; the object tag.

Note that in Figure 4.3(b) we depict the object tags explicitly, while in
Figure 4.3(a) they are also present but not shown.

A hash tree, also known as Merkle tree [196], is used to protect the freshness
of the persistent state. The object tags o; form the leaf nodes of the tree and
they are hashed together yielding the intermediate hashes. This process is
repeated until the root of the tree is reached. Figure 4.3(b) gives the example
of nine objects and a ternary hash tree (with height 2). The intermediate
nodes hash together three object tags: nig = H(o1||o2||o3) for the left node,
n11 = H(o4l|os||oe) for the middle node and nio = H(o7||og||og) for the right
node. The root of the tree ny, which is called the root hash, is calculated by
hashing the intermediate hashes; i.e., ny = H(n1o||n11||n12)-

A disadvantage of this scheme compared to the previous is that a hash tree
is non-parallelizable. When the persistent state is modified, the path from
the modified object to the root of the tree must be updated sequentially. For
instance, if in Figure 4.3(b) O7 is modified, first it must be authenticated and
encrypted (with a fresh nonce ny) yielding a new value for o7, subsequently the
intermediate hash ni2 can be recalculated and finally the root of the tree nr
can be recomputed.
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Incremental Hashing

Usually a collision-resistant hash function is used to construct a hash tree.
However, in [134] Hu et al. propose a fast memory authentication protocol
that is based on a Merkle tree built using the universal hash family NH [28]
combined with the AES algorithm. The main advantage of their scheme is
that the NH family of universal hash functions has the ability to incrementally
update hashes.

The concept of incremental hashing was introduced in the work of Bellare et
al. [20]. The idea behind this concept is that once having once the hash of a
document M has been calculated, the time to update the hash upon modification
of M should be proportional to the amount of modification done on M.

4.2.6 On-Chip Non-Volatile Memory

The goal of this chapter has been to minimize the on-chip non-volatile memory
that is needed inside the trusted module. The state protection scheme protects
the confidentiality, the integrity and the freshness of the module’s persistent
state when it is stored in untrusted external NVM. All the approaches that we
have described, still require a small amount of embedded NVM.

In Section 4.2.2 we have identified two generic approaches for non-volatile
state protection. The first relies on an authentication/encryption key k7 that
is modified on every state update. The on-chip non-volatile memory that is
needed to store the key k7 has to be reprogrammable because the key is changed
repeatedly. Whenever the state is altered, the content of the external NVM will
be re-encrypted and re-authenticated with a newly generated k7. In order to
recover from failures during this update process, it is advisable to temporarily
store the old and new version of k7 in the on-chip NVM. So in practice the
size of the on-chip storage is at least twice the key size.

The second generic approach makes use of a fixed key k7 and an additional
value that protects against state replay. This additional value is changed every
time the non-volatile state is altered. Examples of the replay-detection value
are the root of an authentication tree or a counter or random number that is
used as the IV to authenticate and encrypt the persistent state.

On the one hand, the state protection key k7 can be programmable in OTP
NVM during manufacturing of the trusted module. It is important that the key
k7 is unique for every trusted module. Otherwise the content of the external
NVM can be copied from one module to another. This attack will be successful
under the condition that the replay-detection value is the same for both modules;



80 NON-VOLATILE STATE PROTECTION

if a counter is used for ny there is a reasonable chance that this condition is
satisfied.

ON the other hand, the replay-detection value has to be stored in on-chip MTP
memory because it changes on every state update. If the value is a counter,
it is not strictly necessary to maintain a backup copy for reliability reasons;
if a failure occurs during the state update process the previous value can be
deducted from the counter value itself. However, if the value is random (either a
randomly generated nonce or a calculated hash value), it is prudent to store the
value twice. The amount of embedded MTP memory that is needed, depends
on the number of state updates that have to be supported. The TCG requires
that a TPM can store at least one 32-bit monotonic counter and an MTM at
least one 5-bit counter (see Table 4.1).

One-Time-Programmable Non-Volatile Memory

The key difference between strictly ROM and OTP NVM, also referred to as
Programmable Read-Only Memory (PROM), is that the content of ROM is
determined before production of the device and hence fixed for all manufactured
devices, whereas OTP NVM is programmed after the device is produced. As
described earlier, the externalized state must be uniquely bound to a specific
trusted module and consequently the state protection key ks must be different
for every module. This implies that the key must to be stored with OTP
memory instead of ROM.

A common technique to realize OTP NVM are fuses and antifuses. Whereas
a fuse starts with a low resistance and is designed to permanently break an
electrically conductive path (e.g., when the current through the path exceeds
a specified limit), an antifuse starts with a high resistance and is designed to
permanently create an electrically conductive path. The fact whether a fuse or
antifuse is blown or not, can be used to store logical bits.

Some fuse technologies can only be programmed during the manufacturing
of an Integrated Circuit (IC); e.g., laser fuses must be blown up with a laser
beam. More recent electrically programmable fuse (eFuse) technologies can be
programmed during manufacturing as well as in the field. The high voltage
that is needed to blow the (anti)fuse can be provided through an external pin
or generated internally by a built-in charge pump.

In practice the module-specific, non-updatable key ks will be generated
externally and programmed into the trusted module by the manufacturer (e.g.,
through an external pin or with a laser) or alternatively it will be generated
internally and burned in the non-volatile memory by the trusted module itself.
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In both scenarios field programmability is not a strict requirement for the NVM
technology that is used. In the latter scenario the manufacturer can provide
the voltage externally that is needed to burn the (anti)fuses, even though the
key is generated internally.

As explained in Section 4.1.4 a limited-size monotonic counter can be
implemented with multiple OTP NVM cells: the number of OTP fuses that have
been blown determines the value of the counter. Traditional eFuse technologies,
which use silicided polysilicon lines, are not suited for high density NVM because
the fuses take considerable chip area. Novel logic OTP NVM solutions promise
smaller NVM cells, sometimes even the equivalent of a single CMOS transistor.
However, OTP memory will never be large enough to efficiently support the
general-purpose 32-bit TPM monotonic counters.

Multiple-Time-Programmable Non-Volatile Memory

The motivation of this chapter is that there are a number of computing platforms
where embedded reprogrammable NVM is unavailable or scarce, predominantly
for cost reasons. The cases that we identified are the integration of a TPM in
the chipset of a PC, the realization of an MTM on the application processor
of a mobile phone, and the implementation of a trusted module on a volatile
FPGA.

The only MTP NVM technology that is used in practice in the identified cases,
is battery-backed RAM. The Intel iTPM solution uses OTP fuses for a 128-bit
chipset key, that takes the role of k1 in our terminology, and it relies on the
motherboard battery, which traditionally powers the RTC, to retain a monotonic
anti-replay counter in volatile RAM across power cycles. Altera and Xilinx
FPGAs can store a cryptographic key to protect their configuration bitstream,
either in OTP fuses or in battery-backed SRAM. However, battery-backed
RAM is not a viable solution for all platforms because of its drawbacks: the
extra battery signifies an additional cost and the maintenance issues arise when
the battery is drained. Modern mobile phones already struggle with their
battery lifetime and they often have a user replaceable battery, which implies
that the backup power is not necessarily guaranteed.

A number of small Intellectual Property (IP) companies, including eMemory,
Kilopass, Novocell Semiconductor, NSCore and Sidense, offer unconventional
embedded NVM technologies [69]. These NVM solutions are not based on
floating gate transistors like traditional Electrically Erasable Programmable
Read-Only Memory (EEPROM) and Flash memory and they can be
manufactured in standard CMOS processes without additional mask layers
or process steps. However, these solutions are often immature: they are not
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available in the latest CMOS process technology or they support only a limited
number of reprogrammability cycles.?

In [228] we determined that an alternative approach, until low-cost embedded
MTP NVM technology becomes a commodity, is to extend the security perimeter
of the trusted module to the external NVM chip. By adding a MAC primitive
and some additional logic to the external NVM chip and by programming
a symmetric key in both the trusted module and the external NVM, the
integrity and freshness of NVM’s read and write operations can be protected
cryptographically. In Section 4.4.1 this proposal will be described in detail.

Ekberg and Asokan build upon our work in [89]. They mainly focused on lifecycle
management issues, such as field replacement of NVM units and testability of
newly fabricated as well as field-returned units. Micron (formerly Numonyx,
and originally Intel and STMicroelectronics) sells security-enhanced NOR Flash
memory that supports authenticated and replay-protected operations. The
original Intel concept consisted of a standard Flash memory with an integrated
RSA and SHA-1 engine and a hardware RNG [4].

4.3 Physical Unclonable Function-Based Key Stor-
age

In this section we discuss how Physical Unclonable Functions (PUFs) can be
used to solve the problem of non-volatile state protection. Previous work has
shown that unique identifiers and device specific cryptographic keys can be
derived from the responses of a PUF [264, 268, 287]. Tt is clear that the key k1
that is needed to protect the trusted module’s persistent state, can be derived
from a PUF response. In Chapter 6 we will show that this approach is ideally
suited when implementing a trusted module on reconfigurable hardware.

Regular PUFs have a static challenge-response behavior, i.e., for a given
challenge the PUF will always return (a noisy version of) the same response.
This implies that the PUF-derived key k7 is fixed and thus that the state
protection scheme still needs to rely on additional source of freshness for the
prevention of state replay (see Section 4.2.2).

Ideally, however, a dynamic PUF would be desirable in order to allow the
key k7 to be updated. This would remove the need to include additional
MTP NVM in the trusted module. In [163] we investigated how to modify the

2Some logic NVM technologies are in fact antifuse-based and mimic the MTP behavior
with multiple OTP NVM cells. Sidense calls this emulated MTP mode and eMemory uses
the term pseudo MTP.
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challenge-response behavior of a PUF, which would enable the realization of
an updatable PUF-derived key. This new security primitive, which we call a
reconfigurable PUF, can be used to protect the trusted module’s persistent
state without on-chip MTP NVM.

4.3.1 Physical Unclonable Functions

PUFs are a relatively new?® security primitive introduced in [206, 207] and

extensively studied since the beginning of this century. They provide a low-
cost manner to make devices tamper evident and may protect them against
counterfeiting. Their unclonability is not based on fundamental physical laws
(as in the case of quantum cryptography and qubits), but it is based on physical
phenomena that are known to be very hard, time consuming and expensive to
replicate. Typically, a challenge-response mechanism provides an interface to
the PUF and defines the functional behavior of the PUF.

The way to work with PUFs is very similar to the way of working with human
biometrics. Just as in the biometrics situation, an enrollment phase is carried
out first. During this phase the PUF is challenged for the first time and its
response(s) is (are) processed and characterized. Later, during the verification or
reconstruction phase, a response is measured according to the same challenge(s)
as applied during enrollment. The fresh response(s) will be close (according
to some distance measure) to the corresponding enrollment response(s) on the
same PUF but very different from the response(s) on a different PUF. Hence,
the challenge-response behavior of PUFs can be used to identify or authenticate
the PUF itself and thus, the object in which the PUF is embedded or inherently
present.

Today many PUF implementations are known [105, 117, 162, 176, 206, 287] and
thanks to their low-cost tamper evident or tamper resistant implementations,
PUFs are proposed as security primitives in a multitude of applications, which
include: Radio Frequency Identification (RFID) authentication when used in
combination with the HB and HB+ protocols [124, 125], secret key storage and
tamper evident containers [265, 268, 287], building blocks of block and stream
ciphers [10], and in IP applications [118, 119, 243].

In our research we focus on the usage of a PUF for key storage and we are
primarily interested in PUF's that are intrinsically present in ICs, i.e., without
requiring any change to the hardware or the production process. The main
examples of intrinsic PUFs are based on (volatile) memory structures such as

31In the early 90s, well before the introduction of the PUF concept, Simmons [242] and
Tolk [276] proposed an unclonable identification system based on random optical reflection
patterns.
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SRAM [117, 132, 133], flip-flops [184, 290] and latches [162, 263] or on delay
variations in combinatorial circuits [105, 106, 176, 267, 269].

In [264, 287] a new paradigm for key storage was introduced and discussed: do
not store a key in digital form in a device, but resurrect it from the available
hardware (read PUF) every time you need it. This new paradigm offers an
attractive alternative for key storage with traditional non-volatile memory, for
two reasons:

e When the device is not powered, the long-term key is not present and
therefore it is less vulnerable to (semi-)invasive attacks. For instance, it has
been shown that invasive FIB attacks on a coating PUF will significantly
modify the key that is derived from the protective coating [287]; in some
sense, this behavior can be considered a form of automatic key zeroization.
However, it remains unclear to what extent intrinsic PUF's protect against
active invasive attacks (e.g., probing) [198]. It is sometimes argued that
the challenge-response behavior of a intrinsic PUF will change when the
chip is decapsulated and its passivation layer is removed, but, as far as
we can tell, this behavior has not (yet) been experimentally verified.

e When this approach is implemented with an intrinsic PUF, the cost
penalty is very limited since intrinsic PUF are only based on base-line
semiconductor components (e.g., SRAM cells) present in all current and
in all near future foreseeable technology nodes.

For an in-depth overview of various applications of PUFs and of the most
important PUF constructions that have been proposed in the literature we refer
to Maes [182].

4.3.2 Reliable Key Extraction with Fuzzy Extractors

The generation of a secret key from PUF responses needs some additional
processing steps. The process that turns a PUF response into a cryptographic
keys, consists of two steps: error correction and randomness extraction. We
briefly repeat the concept of a fuzzy extractor or helper data algorithm that
allows to extract a cryptographically secure key from noisy and non-uniformly
random PUF responses. For details we refer to the literature [76, 180, 288, 294].
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Enrollment

During enrollment of the PUF, the procedure Gen is carried out:
(k,w) + Gen(r).

It takes as input a noisy PUF response r and creates a key k and helper data w.
Clearly the key k has to be kept secret. The helper data w on the other hand
is public and can be stored in non-secure NVM. In order to protect against
active attackers (changing the helper data) robust fuzzy extractors should be
used [36].

Reconstruction

During the key-reconstruction phase, a noisy PUF response r’ is measured.
Then the procedure Rep is run:

k <+ Rep(r’,w) .

It produces the same key k on input v’ and w given that r’ is sufficiently close
to r.

Practical Aspects

Proof-of-concept implementations of fuzzy extractors have been presented in the
academic literature [35, 185, 314]. Intrinsic-ID, a spin-out of Philips Research,
offers commercial IP for intrinsic PUFs and accompanying fuzzy extractors.

In 2011 Merli et al. demonstrated that side-channel attacks can be performed on
fuzzy extractors [198]. In particular they targeted the Toeplitz universal hash
function that is often used for randomness extraction in the key reconstruction
phase. Countermeasures against this type of attack have yet to be proposed.
Note however that side-channel attacks can also be mounted on the encryption
algorithm Enc while it processes the PUF-derived key k7, so after the fuzzy
extractor has executed.

4.3.3 Reconfigurable PUFs

The traditional PUF constructions have always considered a static challenge-
response behavior: for a given challenge, the PUF should always yield the
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same or a similar response.* In order to achieve updatable PUF-based key
storage, a mechanism is needed to alter the challenge-response behavior. Lim
was the first to observe that this is a desirable feature and denoted this as a
Reconfigurable Physical Unclonable Function (RPUF) [176]. He also sketched
an arbiter PUF with floating gate transistors. However, it is unclear how the
proposed PUF construction would be reconfigured and whether a reconfiguration
sufficiently changes the PUF’s responses. In [163] we defined the RPUF primitive
rigourously, presented the first physical implementations of a reconfigurable
PUF and introduced a scheme that uses an RPUF to protect the non-volatile
state of a trusted module.

Majzoobi et al. also use the term reconfigurable PUF [187] for the implementa-
tion of a static PUF in reconfigurable hardware. However, this approach does
not yield a secure RPUF because the reconfigurations of contemporary FPGAs
can be undone.

Loosely speaking an RPUF is a PUF with a mechanism to change the PUF
into a new one, ideally with a new unpredictable and uncontrollable challenge-
response behavior even if one would know the challenge-response behavior of
the original PUF. Additionally the new PUF inherits all the security properties
of the original one. Furthermore, the reconfiguration mechanism has to be
uncontrollable and should not be based on updating a hidden parameter; e.g.,
part of the challenge [176] or the location of the PUF structure in reconfigurable
FPGA logic [187]. The PUF reconfiguration must be difficult to revert, even
with invasive means.

In the following, we present two possible implementations of reconfigurable PUF's.
The disadvantage with the proposed implementations is that the PUF is not
inherently present in ICs and the manufacturing process to make such a device
(IC with embedded reconfigurable PUF) is significant. It is an active research
area to design more practical reconfigurable PUFs that can be implemented
intrinsically (i.e., in CMOS technology). So for now the practicality of this
solution (as a replacement for embedded MTP NVM) is limited.

Before describing the physical implementation of the RPUF, we introduce
certain parameters which will make the treatment of the RPUF more concise
and specific.

4In practice, due to measurement noise, the responses should be as close to each other as
possible.
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Formal Definition of Reconfigurable PUF

Let S = {0,1}"™ denote the configuration space of the physical system that
constitutes the PUF, C be the space of challenges that can be applied to the
system and R be the response space of the system. The responses in R are
observed through a noisy channel. Therefore we model the mapping that maps
challenges to responses as random variables as follows,

P={R:S8 xC — R|R(s,c) is a random variable distributed according
to Psc},

where P . denotes a probability distribution on R. The responses R(.,.) of the
PUF depend on the configuration s € S of the physical system, which is secret,
and on the challenge ¢ (which is public) applied to it.

Note that for a fixed challenge ¢ there are 2™ possible noisy responses R(.,c)
since the number of physical systems is 2.

The state space S defines the configurations of the random components in
the PUF that determine its functional behavior. As an example we mention
that it defines the positions of the scattering particles in the case of optical
PUFs [206, 289].

More precisely we define PUF's as follows:
Definition 1 (Type of PUF) We define a PUF type as a set of physical

systems represented by the tuple (S, P,C,R) with state space S, function space
P, challenge space C, and response space R.

Definition 2 (PUF Instantiation) An instantiation of the PUF type (S, P,
C,R) is defined by (s, R(s,.)) with secret state s €r S, where R(s,.) is the
restriction of the random variable R(.,.) to the space C.

Next we consider the security of PUF instantiations.

Definition 3 (PUF Security) We call a PUF instantiation information
theoretically secure® iff the following conditions hold:

I(R(C"); R(C),C,C") =0,

where C,C", R(C'), R(C") are random variables over C and R, and I(.;.) denotes
the mutual information. We call it physically secure if

5 Analog definitions can be given to define cryptographically secure PUFs.
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1. It is very hard to clone the PUF), i.e., the time complezity of making a
physical or mathematical (simulation) copy is exponential in n.

2. The PUF is tamper evident.

We remind the reader that unclonability of a PUF means that the PUF is also
unclonable for the manufacturer of the PUF (manufacturer non-reproducibility).
The production of the PUF is not based on a secret that the manufacturer has
to hide. Tamper evidence stands for the fact that when the PUF is damaged
(e.g., by an invasive attack) the PUF is damaged up to such an extent that its
challenge-response behavior is completely changed in an unpredictable way.

For a given challenge ¢ € C we denote by r(s, ¢) the actual response of the PUF
(often we will write r(c) when it is clear which PUF is being considered).

Definition 4 (PUF Interfaces) An instantiation of a PUF (s,R(s,.)) has
the following interface function

r(c) + Read(c) with r(c)eR.

Moreover, an instantiation of a reconfigurable PUF has additionally the following
interface function
s’ < Reconf with s €rS.

Note that s’ €g S implies that a completely new uncontrollable physical system
(and hence challenge-response behavior) is generated.

For |C| =1 (i.e., a PUF with only one challenge) the PUF is called a Physically
Obfuscated Key (POK) [103]. In the remainder of this section we mainly
talk about information theoretically and physically secure instantiations of a
PUF/POK, but just call them PUFs.

Reconfigurable Optical PUF

As a first example of a reconfigurable PUF we present the reconfigurable optical
PUF. The physical structure is an object containing light scattering particles.
The position and physical state (polarization) of these particles define the
configuration of the structure [289]. The structure satisfies the following two
conditions:

1. When the structure is irradiated with a laser beam within normal operating
conditions, the structure does not change its internal configuration and
produces a “steady” speckle pattern (see Figure 4.4(a)).
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(a) Before Reconf. (b) After Reconf.

Figure 4.4: Example of speckle pattern.

2. When the structure is irradiated with a laser beam outside the normal
operating conditions, the structure will change its internal configuration
(see Figure 4.4(Db)).

Concretely we propose a structure that consists of a polymer containing randomly
distributed light scattering particles® as opposed to the normal glass (optical)
PUF by Pappu [206].

In terms of the parameters that we previously described, the reconfigurable
optical PUF is described as follows:

e The configuration space is given by S = {0,1}" where n = V/\3 and
V' the volume of the structure and A the wavelength of the laser. A
cube of volume A? is usually called a vozel. A configuration string s € S
defines the voxels in which a scatterer is present and defines completely
the speckle patterns that are generated when the structure is irradiated
with a laser beam.

e The challenge space C is defined by the set of angles and locations under
which the structure should be irradiated by the laser beam.

o The response space R is the set of all possible speckle patterns (see
Figure 4.4 for two examples).

o It was shown in [289] that the angles and locations have to be sufficiently
far apart to satisfy the information theoretical security condition, which
states that the mutual information between two responses corresponding
to two different challenges is (approximately) equal to zero.

6 Alternatively a phase change substance, widely used in rewritable optical discs, can be
used instead of a polymer.
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counter weight

Figure 4.5: Schematic side view of integrated optical PUF [288].

e The fact that an optical PUF is hard to clone in a physical way follows
from the fact that speckle phenomena are very sensitive to very small
variations in the locations of the scattering particles [206]. Accurate
mathematical modeling of speckle phenomena is very difficult [111].

o The interface Read(c) applied to a challenge ¢ is implemented by irradiating
the PUF with the laser according to the angle and position defined by ¢
and measuring the speckle pattern with the CMOS sensor (see Figure 4.5).

e The Reconf command is implemented by driving the laser at a higher
current such that a laser beam of higher intensity is created which heats
up the polymer locally and starts to melt. After a short time the laser
beam is removed and the structure cools down such that the particles
freeze.

Finally we note that Skori¢ et al. [294] have shown that optical PUFs (containing
a laser and a structure) can be completely integrated and therefore be produced
very compactly. The results obtained there clearly transfer to the reconfigurable
optical PUF too. Hence we believe that a practical implementation is feasible.

Further investigation is needed to determine the quality of the optical RPUF
construction. Will other external factors such as environmental temperature also
trigger the reconfiguration behavior? How independent are challenge-response
pairs before and after reconfiguration, especially after repeated reconfigurations?
How many reconfigurations can be supported before the polymer material
deteriorates?

Phase-Change Memory-based RPUF

Phase Change Memory (PCM) is a new type of fast non-volatile memory that
has the potential to replace Flash memory and even DRAM [220, 306]. Each
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r=0 r=1 7=0 r=1 resistance (€2)
“left” “right” “left” “right”
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Figure 4.6: PCM-based RPUF. Limited control over the heating allows for 2
logical states and an accurate measurement gives one RPUF bit r.

memory cell contains a piece of chalcogenide glass, usually a doped alloy of
germanium, antimony and tellurium (GeSbTe), the same material used in
rewritable optical discs. By subjecting it to a specific heating pattern, a phase
change is induced: in the amorphous state the resistivity is high (logical “1”
state) and in the crystalline state it is low (“0”). Intermediate states (e.g.,
semi-amorphous and semi-crystalline) can be realized as well, allowing for more
than one bit of storage per cell. This is known as Multi-Level Cell (MLC)
PCM [205]. The heating is regulated by passing a current through the cell. The
state is read out by measuring its resistance. PCM has very favorable properties.
Phase transition times of 5 ns have been achieved. Furthermore, a PCM cell
may endure around 10® write cycles.

We observe that the control over the phase can be made less precise than the
accuracy of the resistance measurement. Consider a cell whose state can be
controlled just well enough to reliably realize n logical states (resistance axis
divided into n intervals), while measurements are precise enough not only to
tell in which interval the resistance lies, but also where in that interval. Each
logical interval is subdivided into a number of more fine-grained intervals, e.g.,
“left” and “right” (Figure 4.6). This additional information is easy to read, but
cannot be controlled during the writing process. Hence we have an uncontrolled
process resulting in a long-lived random state that can be reconfigured at will;
precisely what is needed for an RPUF. PCM’s suitability for embedded memory
allows for a compact RPUF located inside an integrated circuit.

At the moment the PCM-based RPUF remains a concept. In 2010 Micron
(formerly Numonyx) and Samsung released Single-Level Cell (SLC) PCM
products as an alternative for NOR Flash memory. However, these commercial
products can not be used to practically verify the proposed RPUF construction,
because internal access is needed to measure the resistance of the memory cells.
Furthermore, the literature suggests that MLC PCM suffers from resistance
drift, i.e., the resistance of a PCM cell increases over time [59]. This phenomenon
will have a negative effect on the RPUF construction that we propose.
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Figure 4.7: Non-volatile state protection with RPUF-derived key.

Also note that it is uncertain whether a PCM-based RPUF will protect against
physical attacks. It might be possible to distinguish the state of a PCM cell
visually with an electron microscope. Alternatively an adversary might try to
measure the resistance of memory cells with an invasive probing attack.

4.3.4 Non-Volatile State Protection with RPUFs

In Figure 4.7 we illustrate how the non-volatile state of a trusted module can
be externalized and protected with an RPUF-derived key. The scheme is a
straightforward implementation of the generic state protection scheme that
relies on an updatable key (see Section 4.2.2). Each time the state 7 is modified,
the RPUF is reconfigured, new helper data w/- is generated and the persistent
state is re-encrypted and re-authenticated with the resulting new key k/-.

We consider that PUF reconfigurations are uncontrollable and consequently
difficult to revert. This enables the trusted module to detect replay attacks. An
adversary might be able to read the encrypted state from the external NVM and
can try to overwrite it at a later moment in time with this old copy. However,
he will not be successful as the RPUF-derived state protection key will have
been altered.

Efficiency Improvements

When we introduced authentication trees as a technique to efficiently protect the
integrity and freshness of the non-volatile state (see Section 4.2.5), we assumed
that the state would be authenticated and encrypted with a fixed key k. We
also assumed that the root of the authentication tree ny, which is a counter in
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the case of a TEC-Tree and a hash value for a Merkle tree, would be persistently
stored inside the trusted module. In [163] we argued that the root can also be
stored in external NVM, if it is authenticated with an updatable RPUF-derived
key.

Reliable State Updates

In order to recover from accidental or malicious failures during an update
of the state 7 we propose to authenticate the root of the authentication
tree” with two keys kauth, and kausn, derived from different RPUFs: o7, =
Hpun, (n7) and o7, = Hy,,, (n7). This requirement stems from the fact that
the reconfiguration mechanism of an RPUF is uncontrollable and unpredictable:
the new PUF responses will only be known after the reconfiguration has occurred.

Whenever an object O, changes, the following steps must be performed:
1. A copy of the path from O; to the root hash ny (see Figure 4.3) is
temporary stored in non-volatile memory.

2. The path in the authentication tree is updated: a new object nonce n} is
generated, the modified object O is authenticated and encrypted with the
fixed key k7 and the new nonce n/ (yielding a new object ciphertext ¢ and
object tag o}). The intermediate hashes and root hash are recomputed.

3. The first RPUF is reconfigured, its new response is read, and the Gen

algorithm is run to derive a fresh key A7, -

4. The updated root hash n/- is authenticated with the new first key:

or =Hi  (nf).

authy

5. The second RPUF is reconfigured, its new response is read, and the Gen
algorithm is run to derive a fresh k[ .

6. The updated root hash n/- is authenticated with the new second key:
o =Hi  (nf).

autho

7. The backup copy (made in step 1) is deleted.

Three failure scenarios can be distinguished:

"We use a Merkle tree as an example, but the same approach can be taken for other
authentication trees.
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o If a failure occurs before step 3, the trusted module will use the backup
copy that was made at the beginning, to rollback to the previous state 7.
Any changes that have been done to the authentication tree have to be
undone.

o A failure during step 3 or 4 results in o7; and kaueh, being out of sync.
The integrity of the previous state 7 can still be validated with o7,
which has not been modified. All changes that have been made to the
authentication tree must be rolled back. Furthermore the first RPUF
must be reconfigured, yielding a new key k;’uthl, and the old root hash
ny must be authenticated with the new first key:

o If a failure occurs after step 4, the trusted module will use 7" as its state.
The update process must be restarted from step 5, because otherwise o,
remains invalid.

Note that three PUFs are needed in total: one static PUF to store the fixed
key k1 and two reconfigurable PUF's to derive the dynamic authentication keys
kauthl and kauthg'

4.3.5 Discussion
Implementation Cost

The RPUF-based protection scheme comes at a cost in chip area. Additional
hardware resources are needed for the fuzzy extractor, a symmetric cipher and
a hash function. In most systems, adding these additional functions is relatively
cheap. The main cost will be the implementation cost of the actual PUFs.

For static PUFs there is a good understanding of the practical cost since
various prototype implementations, both in Application Specific Integrated
Circuits (ASICs) and on FPGAs, have been demonstrated. Moreover, IP cores
for intrinsic PUF's are commercially available today: Intrinsic-ID commercializes
SRAM-based PUFs and Verayo offers solutions based on delay variations (i.e.,
arbiter PUF and ring oscillator PUF).

However, right now it is impossible to predict the implementation cost of an
RPUF because a practical realization of RPUFs in standard CMOS technology
has yet to be found. The working principle of the optical RPUF has been
experimentally verified, but this is not a good candidate for integration into an
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IC. On the other hand, the PCM-based RPUF construction seems a promising
concept, but it still has to be practically verified. Furthermore, it is unclear at
what cost PCM can be integrated in a trusted module. At the moment embedded
Flash memory is probably cheaper than on-chip phase-change memory.

In addition, the protection scheme introduces an overhead in memory wear, as
the persistent state is encrypted. Whereas minor state updates normally only
require a small portion of NVM to be changed, now at least one encrypted block,
as well as a number of nodes in the authentication tree need to be updated.®
We believe though that the total overhead of write operations into the memory
is relatively small, and standard techniques used in NVM memory controllers
(such as relocation of ‘hotspots’) can be used to mitigate the additional effects.

Logically Reconfigurable PUFs

In [163] we observed that the security properties of an RPUF can be also be
achieved with the combination of a static PUF and non-volatile memory? and we
gave the example of coating PUF on top of NVM. Katzenbeisser et al. introduced
the name Logically Reconfigurable Physical Unclonable Function (LRPUF) for
this type of construction [146].

We proposed to split the challenge ¢ that is applied to the static PUF into
two parts: the challenge cext that is exposed using the external interface, and a
reconfiguration state Srecont that is stored in the NVM. When the response of
logical RPUF is read, the parts of the challenge are combined:

T4 Read(cint) with  cing = CextHSreconf'

A reconfiguration of the LRPUF corresponds with updating the state S;econt. It
should not be possible to revert to a previous reconfiguration state, so the state
must be generated inside the LRPUF with a RNG or as a monotonic counter.

In order to protect against invasive replay attacks on the LRPUF, it is crucial
that the static PUF and the NVM are tightly integrated. Attempts to access
the embedded NVM from the outside should significantly change the responses
of the PUF. That is why we proposed to use a protective coating as static PUF.

81t should be noted though that the description of our scheme omits several optimizations.
It is possible, for example, to have an unbalanced authentication tree with dynamic items
(such as counters) close to the root and in small blocks, while more static objects (such as fixed
cryptographic keys) can be in bigger blocks and further from the root of the authentication
tree).

9The construction of Lim [176] that is based on an arbiter PUF and floating gate transistor,
can be considered as the first proposal for a logical RPUF. The controlled PUF construction
with “multiple personalities” of Gassend et al. [104] also strongly resembles a logically
reconfigurable PUF.
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In 2011 Lao and Parhi [172, 173] and Katzenbeisser et al. [146] proposed
alternative LRPUF constructions. Moreover, schemes implementing a PUF on
an FPGA can be considered LRPUFs. By changing the FPGA’s configuration
bitstream, which resides in NVM, to implement a different PUF (e.g., another
construction or another location in the reconfigurable logic) the challenge-
response behavior will be modified [187]. These constructions do not satisfy
our (informal) definition of an RPUF, which states that “the reconfiguration
mechanism has to be uncontrollable and should not be based on updating a hidden
parameter” and that “the PUF reconfiguration must be difficult to revert.”

Non-Volatile Memory versus Reconfigurable PUFs

Our research on reconfigurable PUFs has been motivated by the fact that this
new security primitive offers a promising alternative for on-chip non-volatile
memory and hence that it can be used to securely store the persistent state
of a security module in external memory. However, above we have introduced
the concept of LRPUFs which requires embedded NVM, and we presented an
RPUF construction based on a novel NVM technology namely phase-change
memory. This leads to an intriguing situation, where the distinction between
reconfigurable PUFs and NVM is vague and where one might wonder whether
RPUFs make any sense.

We try to address this confusion by making three remarks.

o Logically reconfigurable PUFs might be a useful security primitive for
some of the applications described in [146]. However, it is our belief that
they are a contrived solution for the state protection problem: it makes
more sense to derive a fixed key directly from the PUF response and use
the embedded MTP NVM to store a replay-detection value instead (see
Section 4.2.2).

e As shown with the PCM-based construction, novel NVM technologies
are good candidates for the physical realization of an RPUF. Two
requirements must be met: the read operation on the memory cell should
be (fairly) stable,'® but the write operation must be uncontrollable. This
suggests that experimental technologies that are not reliable enough as
NVM, could potentially be used as an RPUF.

o We suspect that an uncontrollable physical reconfiguration (e.g., melting
a phase-change material) is more secure against physical attacks than a
logical reconfiguration (i.e., replacing a key in NVM with new random

10The fuzzy extractor can correct a certain noise level and remove a bias.
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number). Note however that invasive microprobing on the read interface
of an RPUF or of NVM will likely be similarly successful.

4.4 Extending the Security Perimeter of the Trusted
Module

In Section 4.2 we studied how the non-volatile state of a trusted module can
be securely stored in external NVM and we introduced two generic approaches
to do so. The first approach relies on a fixed key to protects the state’s
confidentiality and integrity and an additional dynamic value for state replay
detection. The second scheme uses a single dynamic key that is altered on
every state update. We identified that the appropriate technology is available
to store fixed cryptographic keys in a cost-effective way, namely OTP fuses and
intrinsic PUFs. However, we argued that today’s MTP NVM solutions, except
perhaps battery-backed RAM, are not fully suited for low-cost integration into
mass-produced ICs. In Section 4.3.3 we presented reconfigurable PUFs as an
enabling technology for secure updatable key storage and suggested them as
an alternative for conventional reprogrammable NVM. However, we failed to
provide a convincing practical realization of an intrinsic RPUF.

We determined in [228] that the most promising approach, until low-cost
embedded MTP NVM becomes commonly available, is to extend the security
perimeter of the trusted module to another hardware component that already
has NVM. Understandably the communication interface between the two
components must be protected with a cryptographic protocol. Otherwise the
attacks that we demonstrated on the TPM’s bus interface (see Chapter 3) could
be applied.

4.4.1 Non-Volatile State Protection with External Authenti-
cated NVM

In Figure 4.8 we give an example that applies the principle of security perimeter
extension. This example is a simplification of the scheme that we presented
in [228].

The main idea of our proposal is to use a state protection scheme that relies
on a fixed key k7 and an updatable nonce ny (as generically described in
Section 4.2), and to securely externalize ny with a special memory interface
that provides mutual authentication. The external NVM component exposes an
authenticated memory interface, that will be described in Section 4.4.2, as well
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Figure 4.8: Non-volatile state protection with external authenticated NVM.

as a regular interface. The trusted module uses the legacy interface to store
the protected non-volatile state!’ and the authenticated interface to store the
nonce ny.

We tried to minimize the hardware primitives that are needed to implement
the authenticated memory interface. A MAC algorithm, an OTP key store
containing k,utn, @ monotonic counter nyym, and some additional control logic
must be added to the external NVM chip. The building blocks that must
be included in the trusted module for the memory authentication protocol,
are a MAC algorithm, a hardware RNG and an OTP key store holding k.usn-
Additionally, to securely disembed 7, the trusted module requires a symmetric
AE algorithm Enc and some embedded OTP memory holding k7.

Remember that TPMs and MTMs must already include the HMAC-SHA-1
algorithm and an RNG. So the overhead for the trusted module is limited to
the symmetric cipher and a limited amount of embedded OTP NVM.

We believe that our solution divides the security responsibilities in a sensible
way. The external NVM module is only entrusted with the task of state replay
detection, while the trusted module is responsible for state confidentiality
and state integrity protection. This segregation of responsibilities has two
advantages:

111n Figure 4.8 we denote the protected state as Ency. (n7||T). However, as explained in
Section 4.2.3 and 4.2.5 the updatable nonce ny could also be the root of an authentication
tree or it could be used as the IV of the AE scheme (i.e., Ency (n||T)).
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Table 4.2: Access control table of external NVM.

key counter | regular | authenticated
Kauth NNVM memory memory
read never optional | always optional
write once never always never
authenticated read never always | optional always
authenticated write | optional never optional always

e The hardware requirements for the external NVM chip and hence the
additional cost are low. For instance, a scheme that stores the persistent
state in plaintext inside the external NVM and encrypts it on-the-fly when
transmitted over the NVM interface, will be more expensive because a
symmetric cipher has to be included in the external NVM chip. Also note
that the external NVM does not need a hardware RNG in our proposal.

e The security impact of a compromised external NVM component is limited.
If an adversary extracts the authentication key k.usn from the external
NVM, he can only replay old versions of the state. He cannot read the
non-volatile state nor make arbitrary modifications to it, as this requires
knowledge of key k.

Remark that the regular external NVM and the authenticated external NVM
do not necessarily have to be offered by the same hardware component, as
shown in Figure 4.8. The scheme can also be implemented with three discrete
components: the (embedded) trusted module, a standard Flash memory chip
storing the encrypted state, and a third security-enhanced NVM component
hosting the replay-detection nonce. This type of setup is for instance suggested
in a patent of Nokia [11].

4.4.2 Memory Authentication Protocols

As shown in Figure 4.8, the external NVM is divided into four parts: a key
store that contains k,uth, @ monotonic counter nyvy, a memory range that is
protected with a mutual authentication protocol, and a memory range that
is accessible with the regular memory interface. Our proposal only stores the
replay-detection nonce ns in the authenticated external NVM. The regular
external NVM is used to store the externalized state Ency, (n7||7T) and other
data, such as program code, configuration data, user data, etc.
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Furthermore, the external NVM chip provides a regular interface as well as an
authenticated interface. Table 4.2 lists which operations are allowed on which
parts of the external NVM. The main restrictions that must be enforced are
the following:

e The key k.uth can never be read and it can be programmed once with a
regular write operation.
e The monotonic counter nyyy is read only.
e A regular write operation fails on the authenticated memory range.
The support of some combinations is optional because they are not used in our

scheme, e.g., reading the content of the authenticated memory with a regular
read operation.

Authenticated Read Operation

In order to read the nonce ny from the external authenticated NVM, the
following steps must be performed (see Figure 4.9(a)):

1. The trusted module generates a random challenge nry and sends it to
the external NVM.

2. The external NVM reads the nonce ny from its internal memory.

3. The external NVM returns ny accompanied with a MAC on the value 0,
the challenge ny and the data ng.

4. The trusted module verifies the MAC. If verification fails, the trusted

module aborts.

Afterwards the trusted module can check whether the nonce ny that it just
read, corresponds with the value that is embedded in the encrypted state
Ency, (nr]|T).

Authenticated Write Operation

In order to write the new nonce n/- to the external authenticated NVM, the
following steps must be performed (see Figure 4.9(b)):
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Figure 4.9: Authenticated memory interface to access external NVM.

1. The trusted module sends n’- accompanied with a MAC on the value 1,

the current counter value nyvy and the data n’-.

2. The external NVM determines whether the trusted module knows the
current counter value nyyy by checking the MAC. If the verification fails,

the external NVM aborts.

3. The external NVM writes the new value n/- to its internal memory and

increments its monotonic counter.

4. The trusted module verifies whether the nonce n’ was written correctly
by performing the authenticated read protocol from Figure 4.9(a).

In the first step we assume that the trusted module knows the current counter
value nxym, which acts as the challenge nyyy of the external NVM. This
implies that the trusted module maintains a copy of the monotonic counter
in volatile RAM memory. This local copy is also incremented after every
authenticated write operation. However, if the counter value gets lost (e.g.,
because of a power cycle of the trusted module), the trusted module can retrieve
it with an authenticated read operation on the memory address of the external

monotonic counter.



102 NON-VOLATILE STATE PROTECTION

The trusted module needs to perform step 4 in order to determine whether
the write operation was successful. In [228] we described a slightly different
variant of the authenticated write operation, in which the external NVM returns
Hi,.oo (nnvM +1) as an explicit confirmation that the write operation succeeded.

Security Analysis

The authenticated read operation is a two-pass challenge-response protocol that
provides unilateral authentication of the external NVM component, whereas
the authenticated write operation is a one-pass stateful protocol that provides
unilateral authentication of the trusted module. Mutual authentication is
achieved when both operations are combined; e.g., by reading the current counter
value nxvm, subsequently writing the new value n/- and finally confirming that
the write operation was successful with an additional read operation.

Both operations use the one-way function H keyed with the shared secret k,utn.
If this long-term key is compromised, an attacker can impersonate the trusted
module in the write operation and the external NVM in the read operation.
The protocols rely on nonces for freshness: the random number ny; for the
read operation and the synchronized monotonic counter nyvy for the write
command. It is important that these nonces are never reused.

The fixed values 0 and 1, that are included in the authentication tag to indicate
a read and a write operation respectively, are essential for the security of
the protocol. If they would be removed, then the protocol can be attacked
as follows: the adversary performs an authenticated read operation with a
future counter value nyyy + @ as challenge and gets the authentication tag
Hr, ... (nNvM +2||n7) as response; next he waits for ¢ legitimate write operations
by the trusted module, and finally he uses the response that he got earlier to
overwrite the future version of replay detection with the old version nr.

4.4.3 Practical Aspects
Pairing the Trusted Module and the External NVM

For simplicity reasons we assume that a trusted entity generates the
authentication key k,.tn and programs it in the trusted module and the external
NVM. This pairing phase must take place in a secure environment, typically in
the manufacturing plant of the end device that embeds the trusted module. At
the same time the trusted entity programs the state protection key k7 in the
trusted module.
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The external NVM provides a simple interface that guarantees one-time-
programmability of k.un: one ordinary write operation can be performed
on the address of the key store and all subsequent read and write operations
to this memory address will fail (see Table 4.2). For various other options
to implement OTP Flash memory we refer to the work of Handschuh and
Trichina [127, 128].

Note that, once the keys k1 and k.., are programmed, the internal state of
the trusted module will be initialized. This process includes the generation of
the EK (for a TPM or MLTM) and the SRK (for an MRTM), the creation of
an endorsement certificate on the public EK, programming of the necessary
information for secure boot, etc.

Lifecycle Management

The focus of our research was the definition of a secure and low-cost NVM
authentication scheme. We paid less attention to practical aspects such as
testability, field replaceability and auditability. Some of these aspects can be
addressed by supporting a reset operation that puts the external NVM in an
uninitialized state: this operation erases the key k,utn, the monotonic counter
nnvm and the content of the authenticated memory range (i.e., ny). For an
elaborate discussion on lifecycle management for external authenticated memory
we refer to the work of Ekberg and Asokan [89].

4.4.4 Alternative Segregation of Responsibilities

We briefly describe alternative ways to extend the security perimeter of the
trusted module. The underlying concept remains the same: the trusted module
relies on the non-volatile memory of an additional hardware component and the
communication between the two components is protected with a cryptographic
protocol.

Entrusting the External NVM with State Integrity Protection

The above solution only utilizes the authenticated memory of the external NVM
to store the nonce ny, while the state itself is stored in the regular external
NVM. In the scheme that we originally proposed in [228], the state is stored
completely with the authenticated memory interface. This implies that the
monotonic counter nyyvym of the external NVM assumes the role of the state
replay nonce: nyyy = ny. The trusted module is still held responsible for the
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Figure 4.10: Encrypted memory interface to access external NVM.

state’s confidentiality. This also means that the non-volatile state can be stored
in the external authenticated NVM as Ency, (7).

Entrusting the External NVM with State Confidentiality Protection

One step further is to also make the external NVM responsible for the state
confidentiality and integrity. In Figure 4.10 we describe an encrypted memory
interface to accomplish this. The MAC algorithm is replaced by an AE scheme
Enc that is keyed with the shared secret k7. Note that there is no longer a need
for two separate keys kautn and k7.

An additional advantage of this approach is that the non-volatile state can be
read and updated in smaller logical object O; instead of processing the state as
one whole.

4.5 Conclusion

In this chapter we investigated the integration of a trusted module into a system-
on-chip design that lacks embedded reprogrammable non-volatile memory. In
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particular, we studied how to securely store the persistent state of the trusted
module in external memory. Practical examples where this is a requirement,
are the integration of a TPM into the chipset of a PC, the implementation of
the MTM specification in the trusted execution environment of an application
processor, and the implementation of a trusted module on a volatile FPGA.

We presented two generic approaches to protect the externalized state. Both
approaches authenticate and encrypt the persistent state with a secret key that
is embedded in the trusted module. The detection of state replay, which is the
most challenging security property to accomplish, is done differently. The first
approach generates a new state protection key every time the persistent state
is updated. Older versions of the state are rendered invalid because they are
authenticated and encrypted with a different key than the newly generated key.
In the second approach the state protection key remains fixed, but a fresh nonce
is included in the persistent state on every update.

We also discussed techniques to improve the efficiency of the schemes. Normally,
a small update in the persistent state (e.g., incrementing a monotonic counter)
would require that the trusted module re-encrypts and re-authenticates the
complete state. However, by splitting the state into logical objects and by
authenticating these objects with an authentication tree, the overhead of the
state protection scheme can be reduced. When an object is changed, only the
path to the root of the tree has to be modified.

The generic approaches that we introduced, still requires a small amount of
non-volatile memory inside the trusted module for the storage of the secret
key and (optionally) the replay detection nonce. In this chapter we made the
fundamental assumption that floating gate based Flash memory or EEPROM
cannot be embedded cheaply in a system-on-chip design; hence the need to
externalize the persistent storage. Consequently, alternative NVM technologies,
such as battery backed RAM, fuses and PUFs, must be used.

PUFs have been proposed in the literature as a technique for key storage
and this technology is starting to be used in commercial applications. In this
chapter, we proposed the concept of a reconfigurable PUF, which is a PUF with
a reconfiguration mechanism to irreversibly alter its challenge-response behavior.
This reconfiguration functionality can be used to modify the key that is derived
from the PUF response. Consequently this new primitive can be utilized in a
state protection scheme that relies on an updatable secret key. We have also
presented a formal definition of an RPUF, as well as two RPUF constructions.

Finally we proposed to extend the security perimeter to the external NVM as
an alternative to including MTP NVM in the trusted module. In this case, a
cryptographic protocol protects the communication between the trusted module
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and the external memory. The external memory can be entrusted with different
responsibilities, ranging from the external memory being only responsible for
state replay detection to a fully authenticated and encrypted memory interface.



Chapter 5

Flexible TPM Architecture

With the utilization of TPM-based trusted platforms in real applications, and
the subsequent adaption of the specification to the experience gained from
such utilization, it increasingly appears that the TPM architecture has some
fundamental flaws that result in more and more complex and expensive hardware
requirements.

In this chapter, we propose a new architecture, which we presented in [164], to
reset the trust boundary to a much smaller scale, thus allowing for simpler and
more flexible TPM implementations, without sacrificing the security gains from
a classical TPM.

5.1 Introduction

As explained in Chapter 2 TPMs were introduced by the TCPA to provide a low-
cost, universal building block on which platforms could build systems to provide a
certain level of trust to the platform. However, over time, the TPM specification
has gained substantially in scope and complexity to accommodate different
functional requirements. As explained in Section 3.1.1, a number of mostly minor
flaws and inconsistences have been identified in the specifications [39, 54, 55,
120, 178] and a study by Sadeghi et al. has revealed that some vendors already
struggle with the corresponding implementation complexity [223]. Also, for the
more cost sensitive mobile world, a different specification, namely the MTM,
was required to keep the complexity to a manageable level. In practice, however,
great effort is still needed to implement an MTM in a resource-constrained
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TrEE [90].

As a consequence, current TPM implementations have moved away from the
original philosophy of the TCPA, namely, a simple, easy to implement and
verify module that serves as a foundation for trust in the platform. In addition,
thanks to increasing interest and utilization of TPMs, more requirements for
additional functionality are generated, e.g., support of multiple executions for
virtualized machines [24], support for distributed protocols, etc.

In this chapter, we investigate how TPM functionality can be achieved with
simpler hardware, and with greater flexibility towards supporting specialized
application demands. To this end, we re-investigate which of the functionality
needs to be implemented inside the trust boundary (i.e., in the trusted hardware),
and which parts can safely be externalized onto the host platform. By
externalizing large parts of the TPM implementation, we arrive at a hardware
base that is smaller in size, more flexible to use, and simpler to implement and
verify.

In Chapter 4 we already illustrated that the non-volatile state of a TPM can
be securely externalized. In [164] we presented a flexible TPM architecture
that goes even further by also “disembedding” the TPM’s firmware. In the
remainder of this chapter we will describe this alternative TPM architecture,
which we named pTPM.

5.1.1 Related Work

Chevallier-Mames et al. [57] proposed a theoretical blueprint of a ROM-less
smart card called Externalized Microprocessor (XuP). All the executable code
of the XuP is stored in the terminal and program instructions are fetched when
needed. The advantages of a ROM-less secure token are numerous: chip masking
time disappears, bug patching becomes a mere terminal update and hence does
not imply any roll-out of cards in the field, and most importantly, code size
ceases to be a limiting factor. The terminal is considered untrustworthy and
hence the XuP must authenticate the external program code. Chevallier-Mames
et al. propose a number of public-key oriented alternatives to authenticate the
disembedded code: verification per instruction, batch verification with RSA
screening, and verification of code sections. In the extended version of the
paper [58] MAC-based variants are also given.

In [87] we investigated how to embed a TPM in a reconfigurable SoC design. We
defined a new FPGA architecture that includes a minimal root of trust called
Bitstream Trust Engine (BTE). This novel architecture not only enables field
updates of the TPM’s firmware, but also of the TPM hardware (i.e., a partial
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configuration bitstream). The BTE component records the partial configuration
bitstreams that are loaded on the reconfigurable logic, and limits access to the
FPGA'’s internal NVM. We will describe this proposal in detail in Chapter 6.

Costan et al. [65, 66] proposed the Trusted Execution Module (TEM) as a more
flexible alternative for TPMs. The TEM can execute arbitrary general purpose
applications, which are split into executable fragments called closures. The
closures are encrypted with the TEM’s public encryption key, guaranteeing that
only designated modules can run the application. In [164] we independently
proposed the idea of splitting a security application into atomic tasks as a
strategy to minimize the memory footprint of the trusted module. However, we
took a different approach than Costan et al. Our pTPM architecture explicitly
supports remote attestation; i.e., it proves to an external entity with a digital
signature that a result is produced in an identifiable module. The TEM scheme,
on the other hand, guarantees that only a designated module can run a certain
application by encrypting the application with the module’s public key.

In [90] Ekberg and Bugiel demonstrated a practical implementation of a minimal
MRTM that runs in the M-Shield TrEE of a Nokia N96 handset. Because the
secure RAM of their target application processor is limited in size (around 7 kB),
the implementation is divided into parts (collections), individually minimized
in terms of code and data size. In particular, they have grouped the MRTM
commands by size and function into 12 collections of 1-4 commands each.
Depending on the command to be executed, one of these collections is loaded
into the secure environment and executed. The integrity of the disembedded
code collections is maintained by the underlying M-shield security architecture,
by means of digital signatures. In a similar fashion, the state for the MRTM(s)
is loaded and returned with every command invocation. The confidentiality
and integrity of the externalized state is protected with AES in CBC mode
and HMAC-SHA-1. They proposed a list of state size optimizations, mainly
targeting the key structures. The work of Ekberg and Bugiel proves the practical
viability of the code/state disembedding principle.

Dietrich and Winter also built upon our work. In [75] they use the principle
of dynamic command loading to implement flexible MTMs on the resource-
limited TrEE of a mobile phone. The potential advantages that they listed,
are algorithm flexibility (e.g., replacing the SHA-1 function or the RSA-based
DAA scheme) and field updates (e.g., installing optional MTM commands on
modules that have already been deployed in the field). They described two
implementations, the first on an ARM TrustZone TrEE and the second on a
JavaCard-based Secure Element (SE). For instance, in the case of the JavaCard
implementation, they split the MTM into different JavaCard applets, each
implementing a set of commands. A master applet that is always present
provides access to MTM’s state using a shared interface and the command
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applets are loaded and unloaded when needed.

5.1.2 Towards an Alternative TPM Architecture

With the work on trusted computing progressing over the last ten years, the
design of current TPM implementations is starting to show the first limitations.
The primary problem is that the hardware is supporting both too much and
too little functionality. In attempting to accommodate all requirements from
different users of the technology, the “one-size-fits-it-all” approach towards TPMs
has lead to huge implementations, making the hardware complex, hard to verify,
and expensive. Each of those issues has already started to cause problems: a
different specification was required for more cost-sensitive mobile devices [91],
the complexity has been difficult to manage for some manufacturers [223],
and governments keep worrying about verifiability of the security critical
component [40]. With future specifications, this problem is likely to get only
bigger rather than smaller. While few commands are likely to disappear,
experience with TPMs in real platforms has lead to new requirements that
future versions will have to accommodate (e.g., cryptographic algorithm agility
and advanced virtualization support).

We see that one way to approach these issues is to redefine the trust boundaries
of the TPM architecture. By putting more functionality of a TPM outside of
the trusted hardware, we increase flexibility (as outside mechanisms can easily
be adapted, and usually have more resources at their disposal than functionality
implemented inside the TPM), and reduce the size of the critical hardware
components that we need to protect. To this end, we propose to remove the entire
TPM code base (i.e., the implementation of the TPM functionality) outside
of the secure hardware. As with other TPM related storage (see Chapter 4),
there is no security requirement to store this data inside the trusted hardware,
as long as the TPM can authenticate it properly.! The TPM trust boundary
then only needs to incorporate an authentication key as well as enough RAM
memory to store the command code during execution.

While this approach does require new mechanisms for code authentication and
attestation, the functionality of the hardware can now be reduced to a very
small number of commands, and future extensions to the functionality can be
added without needing to modify the hardware specification. More importantly
though, externalizing the code from the hardware adds a new degree of flexibility
that can handle most of the limitations current TPM implementations face:

1For protection of intellectual property, a producer may also want to encrypt the data; for
the TPM security functionality this is not required though.
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Verifiability. Given that the TPM executes security relevant code, users
(especially government related users) do want assurance that the TPM is
implemented properly. By separating code and hardware, the hardware
becomes substantially easier to verify, while it can be assured that the
code has not been modified for a particular TPM. Also, it is possible to
separate code and hardware implementation, allowing for alternative
implementations. If the standard proposes a generic programming
language (e.g., basing the TPM on a JavaCard runtime environment [72])
it is even possible for pure software vendors or the open source community
to provide different TPM implementations. In addition, users with special
security needs can use their own, individual code.

Customizability. TPM functionality becomes easier to extend or to limit.
Current TPMs suffer from the fact that platform producers demand an
increasing amount of functionality, while TPM manufacturers want to
decrease the implementation complexity. With externalized commands,
each platform can supply the commands needed for its particular operation,
and omit functionality designed for different platforms. This even allows
very special-purpose commands in the TPM, or even freely programmable
code. The only limit here is that guarantees given by the TPM according
to the TPM specification (e.g., the protection of certain keys) are never
violated. This is assured by having one manufacturer authenticate
their (external) firmware, and not allowing other processes to access
the resources of that implementation.

Upgrades. TPM code can easily be updated in the field; the real hardware
does not carry any functionality anymore, allowing to fix implementation
bugs, retire insecure algorithms (such as SHA-1), or upgrading to newer
versions of the TPM specification. To upgrade the TPM code, the old
code simply can be replaced by (authenticated) new code. It must be
taken care of though that the two versions cannot be mixed, as this may
cause unpredictable behavior.

Multiprocessing. Several TPMs can be implemented on the same hardware.
This is, for example, helpful for virtual machines running on the same
server, which is a growing application for TPM usage and causes problems
that are difficult to solve with only one hardware TPM. In addition,
it allows for TPMs with different functionalities or for several MTMs
protecting different stake holders.

Specialized TPM implementations. Current TPMs are designed in a way
that the same hardware is used in high-end servers and low-end embedded
devices. In our proposed settings, low-end TPMs can implement the
minimal hardware necessary to run, while high-end server TPMs can offer
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more memory, command cache and faster process management hardware to
allow for rapid context switches. It is also possible for very low-end devices
to build a TPM that does not have the resources for all commands in the
TCG standard, but supports the commands required for the particular
platform. While such a device cannot claim TCG compliance, it can reuse
hardware components and interface with TCG-compliant software.

While the goal is to add flexibility to and simplify the hardware of the TPM
functionality, one requirement for our architecture is to allow for a functionality
similar to current TPMs; i.e., the trust model and functionality of the TPM
specification must be compatible with the new hardware architecture. We
extend the TPM requirements by allowing the architecture to support parallel,
independent processes; i.e., it is possible to run several different security co-
processors in one hardware block without interference. This is relevant in the
areas of virtualization, where one hardware TPM needs to support a number of
virtual machines, each of which needs its own virtual TPM, or for the support
of multiple TPMs in one platform acting on behalf of different stakeholders.
The latter is for example proposed in the MTM specification, where separate
logical TPMs are proposed to protect the mobile operator, the service provider
and the end user, respectively. Allowing different logical TPMs with different
code bases takes this approach further, even allowing individual applications
(e.g., a banking application) to have a dedicated, specialized trusted module.

As with classical TPMs, performance is not a priority: TPMs are not meant
to work as cryptographic accelerators, but as slow and reliable building blocks.
Nevertheless, the rather small communication bandwidth of current TPMs
makes communicating large code segments a relatively inefficient operation.
We would argue, though, that this is not a real problem; most frequently used
commands are rather simple, and thus have relatively short implementations —
in the open source TPM emulator [252], most commands can be implemented in
a few lines of C-code — with the notable exception of the DAA implementation,
which, however, is so far not used in any real setting. As TPMs were never
meant to perform fast, the additional delay is usually tolerable. An approach
to speed up the scheme is to allow for a library of basic functions (e.g., the
hash function) to be either pre-installed, or loaded into the TPM at startup
and cached for future use.

5.2 uTPM Architecture

Our proposal for a new flexible Trusted Execution Environment (TrEE), which
we call pTPM, was first presented in [164]. The pTPM architecture builds
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upon the XuP concept of Chevallier-Mames et al. [57] and the BTE proposal
of Eisenbarth et al. [87], which will be described extensively in Chapter 6. The
process and memory management of our proposal are inspired by the JavaCard
architecture [56].

In this section we give a high-level conceptual description of the pTPM
architecture and in the following sections we will describe the low-level interfaces
and implementation options in more detail.

5.2.1 Design Principles

Figure 5.1 gives a schematic description of the yTPM architecture and highlights
the main design principles. Conceptually the pTPM is a basic processor
operating on dedicated RAM memory, which contains program code and
volatile data, and NVM memory, which stores persistent state information.
It has two logical 1/O ports, denoted 10 and XI0.?2 The 10 port is the regular
communication interface that is used to exchange data between software running
on the host processor and a process executing inside the pTPM’s runtime
environment; e.g., the CRTM and TSS issue TPM commands and receive
responses over the 10 port. The XIO port on the other hand is used by an
external software component called pT'SS to manage the processes (e.g., creation,
activation and suspension) and to load the firmware code (and optionally the
externalized non-volatile state) in the yTPM execution environment.

Disembedded Firmware

The core idea of our proposal is that program code that runs on the pTPM
processor (i.e., the firmware) is stored outside the security perimeter of the
uwTPM execution environment and loaded over the XIO interface. This removes
the need for on-chip ROM and consequently reduces the required hardware
resources. More importantly, the disembedding of the firmware allows for a
flexible, customizable and field-updatable TPM implementation. Furthermore,
the functionality that runs on the yTPM is not only limited to the TCG
specifications, but it can be arbitrary; consequently the yTPM architecture can
act as a general-purpose secure coprocessor.

Note that on Figure 5.1 the yTPM contains embedded NVM. This memory
is used to persistently store key material and program state information (see
below), but it is not used to store program code.

2In practice the two interfaces will most likely use the same communication bus, e.g., LPC.
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Figure 5.1: Conceptual TPM architecture. The firmware of the TPM process
is split into three command collections and one cryptographic library. Only one
of the three command collections and the library, which are marked bold, are
present in the RAM memory.

Firmware Authentication

Since the firmware is stored in external — and hence potentially untrusted
— NVM, it is essential that the authenticity of the disembedded firmware is
verified while it is loaded in the RAM and before it is subsequently executed.
If no mechanism is in place to authenticate the firmware, it is easy to load
malicious code over the XIO interface that compromises (e.g., reads or modifies)
the pTPM’s internal state.

We want the pTPM architecture to be completely open and non-restrictive:
there should be no restrictions on the code that can be run. For this reason
we adopt the concept of measured boot (i.e., measuring code and afterwards
reporting it with a protocol) instead of secure boot (i.e., stopping execution
when code is not signed by the yTPM manufacturer).

With this design principle our proposal differs fundamentally from a JavaCard-
based TrEE. The management of JavaCard runtime environments is defined
in the GlobalPlatform (formerly Visa Open Platform) specifications [188]. In
order to install applets on a JavaCard runtime environment, the applet provider
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must first authenticate to the GlobalPlatform card manager of the environment,
which is responsible for card content management. This authentication step
is typically based on a symmetric cipher such as 3DES and hence requires
the knowledge of a shared secret key. Practically deployed smart cards often
implement a fixed functionality and are rarely updated in the field. Hence, in
many applications, for instance the Belgian Electronic Identity (eID) card, the
functionality is implemented as a single JavaCard applet and the secret key
for card content management is only known by the card issuer. The primary
example of a JavaCard runtime environment that executes multiple applets
of different stakeholders, is the SE of a NFC-enabled mobile phone. Various
security applications can rely on the SEs: for identification of the mobile
subscriber (i.e., Subscriber Identity Module (SIM)), digital rights management
for mobile TV, contactless mobile payments, electronic vouchers (e.g., Google
Wallet), etc. The content of the SE will be managed by the mobile network
operator, by the phone manufacturer, or by an external party known as the

Trusted Service Manager (TSM). For development purposes, the key for card
content management can be set to a publicly known default value and any
developer can install applets on the TrEE.3

We define a new trust anchor called Firmware Trust Engine (FTE) that deals
with the firmware externalization and that manages the multiple execution
contexts (see below). The FTE plays the same role in the uTPM as the TCG
roots of trust, namely:

e Root of Trust for Storage by providing shielded locations to persistently
store key material;

e Root of Trust for Measurement by measuring the identity of the
externalized firmware when it is loaded in the pTPM environment
and recording this measurement in a so-called Firmware Configuration

Register (FCR); and

e Root of Trust for Reporting by signing the content of the FCR with the
signature key SKyeoy, that is certified by the pTPM manufacturer. We
call this key the Hardware Endorsement Key (HEK).

In Section 5.2.2 and 5.2.3 we will describe how the FTE can isolate the yTPM
processes and their associated states from each other, whereas Section 5.2.4
and 5.2.5 will cover firmware integrity measurement and reporting.

3For personal experience we know that it is not always easy to program security applications
(in our case a mobile wallet for events) on NFC phones. The SE of the Nokia 6131 NFC
phone can be unlocked for development purposes, such that its chip specific keys get revoked
and reset to a public value. However, for more recent NFC-enabled Android phones, such as
the Google Nexus S and Galaxy Nexus, this feature does not exist.
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Limited RAM Resources

Another important design choice is to keep the embedded RAM of the uTPM
small. In order to minimize the RAM footprint of the TPM firmware, the TPM
commands should be grouped into small collections of a limited number of
commands. The collections can be as fine-grained as individual TPM commands
or more coarse-grained, consisting of high-level TPM features such as integrity
collection and reporting.* The command collections are loaded in and unloaded
from the yTPM when needed, and operate on a common state, which resides in
volatile RAM and/or persistent NVM.

We support the ability to load shared libraries, for instance with common
cryptographic operations, that remain persistent in RAM memory, when
different code collections are loaded. Figure 5.1 visualizes an example where the
TPM firmware consists of three collections of commands and one cryptographic
library and where the first collection and the library have been loaded in RAM
memory; in this example the RAM memory must be big enough to contain the
shared library and one collection of TPM commands.

Multiprocessing Support

The pTPM architecture can execute multiple processes — either TPM instances
or even arbitrary general purpose code — in parallel. At any given moment at
most one execution context can be active. We assume that the scheduling of
processes is done by a software component outside the trusted computing base
of the yTPM. This external software component, which we call 4TSS, indicates
which process should run and it loads the externalized code into the running
process. The pTPM guarantees strong process isolation: each process has access
to a dedicated portion of the NVM, and the volatile memory, which stores the
program’s volatile state and code, is cleared securely during a process switch.

The design choice to schedule the processes outside ' TPM is inspired by the
JavaCard architecture, which supports also strictly isolated execution of multiple
applets on a physical smart card. In the JavaCard architecture applets are
explicitly activated by issuing a selection command with the identifier of the
applet. Prior to calling the select method of the indicated applet, the JavaCard
runtime environment shall first deselect the previously selected applet.

4A possible grouping of commands is the one mentioned in part 3 of the TPM main
specification [283].
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Note that the JavaCard architecture supports the ability to share objects
between applets. We do not support this feature in order to keep the yTPM
architecture simple.

While we design our architecture to allow for an arbitrary number of processes,
realistically the number of processes running on a single pTPM will be relatively
low. The only use case that we see for a large number of TPM processes, is a
server with many virtualized machines each with their own associated TPM.
In this case, the manufacturer should choose a high-end pTPM with a large
amount of internal memory and a fast communication bus. In other words,
while we do not want to set an upper limit on the number of processes and
their memory requirements, we are not trying to build an architecture that
scales efficiently to hundreds of processes if the pTPM only has 1 kbit of RAM
memory.

Non-Volatile State

In Figure 5.1 and in the remainder of this chapter we assume that the pTPM
has abundant embedded non-volatile memory to store the persistent state of
the different processes as well as the internal key store of the FTE. It is clear
that the state protection schemes that we have discussed in Chapter 4, can
be applied to reduce the need for this embedded NVM; e.g., the state 7T; of
every process can be encrypted with a fixed key and authenticated with an
authentication tree. If the persistent data storage of the uTPM is externalized,
not only the code but also the non-volatile state must be loaded when a process
is made active. Moreover, whenever the process modifies its state, the updated
state must be returned to uTSS (as an authenticated, encrypted and replay
detectable blob).

Observe that the scheduling of processes is done outside the pTPM. This has
some implications for the development of a TPM implementation and other
uTPM applications, particularly with respect to the use of RAM memory to
store volatile state information. When the yTSS switches from one process to
another, the content of the volatile RAM will be cleared. For instance, if the
RAM memory is used to store the PCRs of a TPM, their content will be lost
during a process switch. Hence, it is necessary to temporarily store the TPM’s
volatile state in the embedded NVM (e.g., with the TPM__SaveState command)
before another process is activated.

Alternatively the whole process state can always be stored in NVM instead
of RAM. This design strategy is applied in the JavaCard architecture, which
by default stores objects in persistent memory. However, the architecture also
support the creation of so-called transient objects that are stored in RAM
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memory and reset to a default value at the occurrence of certain events, such
as card reset or applet deselection. As traditional smart cards are externally
powered, the JavaCard runtime environment supports atomic transactions to
protect the updates on persistent objects against potential card tear failures.
In contrast, updates to transient objects are not atomic and hence not affected
by transactions.

5.2.2 Process Management

The pTPM architecture supports multiple execution contexts, which we call
processes. A process typically corresponds with the implementation of a TPM,
but, as argued before, it could also be another (arbitrary) security task. The
scheduling of the processes is done outside the pTPM: the yTPM Software
Stack (uTSS) indicates which process the uTPM should run. To keep the
scheduling simple we assume that process switches are not allowed while the
TPM is executing a command; this implies that TPM commands are atomic.
Therefore the yTPM may block operation temporarily if one process is executing
a computationally heavy task such as RSA key generation, or block completely
if the code running in it is blocking (e.g., infinite loop). However, those blocking
events are either rare or suggest that something has gone massively wrong,
whereas the ability to switch processes at arbitrary times would lead to greatly
increased complexity.

Process Description

For every process the yTPM maintains a data structure P;, that contains the
necessary information to manage the particular process. In the literature this
data structure is typically called a process control block or a process descriptor.
At least the following basic information must be stored in the process control
block of a 4 TPM process:

e The process identifier PID uniquely identifies the process. It is used by
the 4TSS to indicate which process must be activated in the execution
environment. This is very similar to the Application Identifier (AID)® of
smart card applications.

5The AID is defined to be a sequence of bytes between 5 and 16 bytes in length. The
first 5 bytes of the AID form the Registered application provider Identifier (RID), which is
issued by the ISO/IEC 7816-5 registration authority. The following bytes are the Proprietary
Application Identifier Extension (PIX) which enables the application provider to differentiate
between the different applications offered.
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e A firmware configuration F is associated with every process. This
value represents the integrity measurement of the program code (i.e.,
the firmware) that the process will execute. It is recorded in the FCR
immediately after the creation of the process and it can later be reported
with an interactive remote attestation protocol (see Section 5.2.5).

e Each process has a firmware authentication key k.un. Depending on
the scheme that is used to authenticate the disembedded firmware (see
Section 5.2.4), this is either a symmetric or a public key. A symmetric
key will be used to verify a MAC on the externalized firmware, whereas a
public key is used to verify a digital signature.

e The process descriptor also includes information about the non-volatile
data space that stores the persistent state 7 of the process. For simplicity
reasons we assume that each process has exclusive access to a contiguous
chunk of non-volatile memory (see below) and that this data space is
allocated statically at process creation. This signifies that the base address
b and size s of the memory chunk are included in P. Note that for each
process, P; is stored in the embedded NVM together with the non-volatile
state T; (see Figure 5.1).

e The uTPM also keeps track of the current process state. The process
lifecycle and the different process state transitions are explained below.

Summarized, the process control block is represented with a tuple

P = {Ple‘T:a kauthyb,s, state} .

Process Lifecycle

The lifecycle of pTPM processes is illustrated in Figure 5.2. A normal process
will typically undergo the following steps:

1. The process is created when the pTSS issues the CreateProcess command
on the XIO interface. During this operation non-volatile memory is
allocated for the descriptor P and the non-volatile data space 7. In this
process state, the firmware configuration F is still uninitialized, but the
other values in P are already valid. If the firmware is authenticated with a
symmetric MAC algorithm, the secret key kautn will randomly generated
during the process creation. If the firmware authentication is based on a
digital signature, the public key k,u¢n will be associated with the process
in the next process state.
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2. After the creation of a process, the process goes into a measuring state,
in which only Authenticate commands can be issued. The Authenticate
command simultaneously measures and authenticates the program code
(i.e., firmware) that will later be executed by the process. More concretely,
the pTSS will load a code collection over the XIO interface. The FTE will
“measure” the integrity of this code collection and update the firmware
configuration F of the process. Finally, the FTE will compute a MAC on
the code collection and return this MAC to the pTSS.

3. Next, the process can be selected with the SelectProcess command.

4. Once the process has been selected, it can finally run program code
with the Execute command. In the executing state the ' TPM will only
execute code that has previously been authenticated during the measuring
state of the process. In other words, it will only run code collections that
are authenticated with k,un. The process can go back in the measuring
state to authenticate additional commands, but this feature is optional.

5. As explained in Section 5.2.1, for simplicity reasons the scheduling of
processes is performed outside the yTPM, by the puTSS. Before another
process can run, the currently selected process must be suspended and put
into the deselected state with the DeselectProcess command. Afterwards,
the process can be resumed by reselecting it and reloading its firmware.

6. Finally, the process ends its existence when it is destroyed with the
DeleteProcess command. In Figure 5.2 we include a deleted state, but
in practice this is a dummy state since the deletion of a process frees all
its resources.

Remark that in Figure 5.2 the executing state is considered to be blocking.
Consequently the process is stuck into this state until the program code is
finished or until the xTPM and/or the platform are reset. However, this is
not a strict requirement and the architecture could support a mechanism to
interrupt a blocked process.

Interface for Process Management

The uTPM processes can be managed with the following commands over the
XIO interface:

o CreateProcess(PID, s) creates a new execution context with process
identifier PID and a non-volatile data space of size 5.5 If the process

6This corresponds with the “non-volatile data space limit” parameter of the GlobalPlatform
install command. In the yTPM architecture there is no equivalent for the “non-volatile code
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Figure 5.2: Lifecycle of an yTPM process.

number is no longer available, an error is returned. The pTSS can decide
to delete the process in order to reclaim the desired PID. If the desired
amount of non-volatile memory cannot be allocated, an error is returned
as well; optionally this error code can indicate the amount of memory
that is available.

 SelectProcess(PID) switches context to the process with identifier PID.
Once a process is selected, only program code that has been authenticated
with the correct firmware authentication key k,.tn will be accepted on
the XIO interface.

e DeselectProcess temporarily stops the currently selected process. This
involves clearing its volatile memory. The DeselectProcess command must
be issued before another process can be selected.”

e DeleteProcess permanently stops the currently selected process. This
command clears the volatile and non-volatile memory of the process and
deletes the associated process descriptor P.8

e ListProcesses outputs the list of all processes. For each process, the
tuple {PID, F, s, state} with PID the process identifier, F the firmware

space limit”. As the firmware is stored outside the pTPM, its size can be (theoretically)
unlimited.

"The DeselectProcess command could also be made implicit: the selection of a different
process automatically deselects the currently selected process. The JavaCard architecture
works in this manner.

8The deletion of a process requires two commands, namely SelectProcess(PID) followed by
DeleteProcess. This behavior could be simplified by including the process identifier directly
as argument: DeleteProcess(PID).
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configuration, s the size of the non-volatile data space and state the
process state. This command allows the user to identify unwanted pTPM
usage or processes that use too much memory.

The commands that deal with firmware measurement, execution and reporting
will be described in Section 5.2.4 and 5.2.5.

5.2.3 Memory Management

In order to minimize the hardware resources of the yTPM, the size of the RAM
and NVM memory should be kept small. For this reason, the volatile RAM
will only contain the code and data of the currently selected process. While
the process is selected, it will have exclusive access to the RAM memory and,
when it is deselected, the complete RAM content will be cleared by the pTPM.
Consequently the information that is stored in RAM will not leak during a
process switch.

We assumed that the yTPM has sufficient internal NVM. This requirement can
be relaxed by partly externalizing the NVM with the techniques described in
Chapter 4. As indicated in Figure 5.1 the FTE ensures that each process has
access to its own dedicated, contiguous non-volatile data space, but not to the
memory of other processes.

If desired, a mechanism to share NVM between different processes could
be provided. This shared memory could then be used for Inter Process
Communication (IPC). The JavaCard architecture supports this feature with
the shareable interface object mechanism. However, such functionality would
greatly increase the complexity of the pTPM architecture. Moreover, processes
can always establish a secure communication channel through the pTSS.

Non-Volatile Memory

To ensure strict process isolation and memory protection, we propose to
implement rudimentary virtual memory management support. The process
will access its non-volatile data space with logical addresses and the FTE will
map these logical addresses to physical NVM addresses. Figure 5.3 provides an
example of this mapping mechanism.

In order to keep the memory management as simple as possible, we assume that
the allocation of the non-volatile data space is static and contiguous. For each
process, the FTE maintains the base address b and the size s of its non-volatile
data space. These parameters are stored in the process descriptor P and they
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Figure 5.3: Mapping of process memory to physical NVM and RAM.

remain the same during the lifetime of the process. The size s is specified as a
parameter of the CreateProcess command and the address b is determined by
searching the first memory chunk that is free and big enough to store 7.

In Figure 5.3 we assume that the process has a unified memory address space:
low addresses (starting from address 0) are mapped to the physical RAM and
high addresses (starting from address h) to physical NVM. When process i
wants to access the high logical address h + a, the address gets mapped to the
physical NVM address b; + a on the condition that a < s;. For process j the
same memory address is translated to the physical address b; + a iff a < s;.

The memory address translation is easy to implement and very fast. There
are two disadvantages of this simple scheme. Since the non-volatile data space
is allocated during process creation, it cannot grow dynamically at runtime.
However, this is likely not a big restriction. For instance, the JavaCard language
supports dynamic object creation and garbage collection, but the usage of these
features is discouraged.” Developers typically have a clear idea of how much
memory their applet will use. The biggest downside is that the scheme suffers

9JavaCard programming guidelines always advise to allocate all objects in the install
routine of the applet. Furthermore, when an applet is installed using the GlobalPlatform
framework, the “non-volatile data space limit” can be specified as parameter.
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from memory fragmentation, because it might not be possible to reuse the
non-volatile data space of the deleted processes.

Moreover, a practical realization of the yTPM architecture will presumably
externalize the NVM. This means that the non-volatile data 7 of the process
will be loaded in the RAM of the uTPM together with its firmware at runtime.
In this case, the memory fragmentation issue does not occur.

Volatile Memory

As explained earlier, a process has exclusive access to the RAM memory while
it is selected, and the yTPM clears the complete RAM content during a
process switch. Consequently, the volatile memory is directly accessible by
the process without intervention of the FTE and hence no address translation
must be performed. The application developer is personally responsible for the
management of the application’s volatile memory.

A common usage scenario will be to divide the volatile memory of a process into
a static and a dynamic part. The static part will contain code and data that is
shared between different code collections of a particular process. If data has
to be passed from one code collection to another (e.g., an intermediate result
in complex calculation or the PCRs of a TPM), the data could be temporarily
stored in the yTPM’s non-volatile memory. However, it is much faster to retain
the data in RAM memory. Another example is the storage of a shared library
in volatile memory, which is used by multiple code collections (see below). The
dynamic part, on the other hand, is used as scratchpad memory and to store
the program code that is being executed.

Figure 5.3 shows a possible memory layout for two processes. The dynamic part
of the volatile process memory is located at the bottom of the physical RAM
memory and the static part at the top. In the case of process ¢, which represents
a TPM implementation, the code of the TPM command gets loaded at address
0, whereas the shared library is loaded at a certain offset. Consequently, when
a new TPM command is loaded, the program code of the previous command
is overwritten, but the shared library and the volatile state information are
untouched.

Library Support

To minimize the implementation size of each command, the 4TPM could include
a library for standard cryptographic operations. In addition, it is possible to load
specialized libraries into the static volatile memory that allow for optimizing
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the size of the individual code collections. Those libraries are uploaded after a
process is selected and stay in memory until the next process switch.

In Section 5.2.4 we will describe in detail how program code and libraries get
loaded in the pTPM.

Process Switch

During a process switch, the physical RAM memory is automatically cleared and
overwritten. This guarantees that no secrets leak between processes. The shared
library code and the dynamic program code need to be reloaded externally by
the uTSS. However, in some cases the process might need to temporarily store
its volatile data to the non-volatile memory before it is suspended, and restore
this data afterwards on resumption. This can be done in different ways.

e The process itself is responsible for the storage of sensitive state
information. The current TCG specification has commands to suspend
and resume the TPM, which are normally used for power saving of the
platform. The TPM_ SaveState command stores the volatile state, which
include the content of PCRs, in NVM and TPM_ Startup restores this
information. The pTSS can use these commands to save the volatile data
before deselecting the TPM process and to restore it after reselection of
the TPM process.

e Each process has an exit and entry routine. The exit routine is executed
before the yTPM switches to a new process, and the entry routine is
executed immediately after the process is selected. The exit and entry
routine are registered with the FTE during the process creation. This
concept is similar to JavaCard applets, which have a select and deselect
method.

¢ The memory management unit of the FTE implements swapping. This
however adds extra complexity to the pTPM and hence contradicts the
principle of a minimal root of trust.

We prefer the first approach as this requires minimal support by the pTPM.

The application developer must be aware that the content of the RAM memory
can be lost unexpectedly. In fact, the same restriction also exists when developing
a smart card application: the power to a smart card can suddenly be interrupted
by a so-called card tear, i.e., by someone removing the card from the reader.
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5.2.4 Firmware Integrity Measurement

In Section 5.2.2 we explained that the process goes into a measuring state
after its creation. In this state the uTSS will provide the pTPM with the
disembedded firmware such that the integrity of the firmware can be measured
and recorded in the FCR of the process (i.e., the value F in its process control
block P).

The FCRs of the pTPM fulfill a similar role as the PCRs of a TPM. A FCR
will store the integrity measurement of the program code that executes in a
uTPM, whereas a PCR, contains the integrity measurements of certain software
components of a generic computing platform. The content of both configuration
registers can be reported with a remote attestation protocol. It should be noted
that the number of PCRs of a TPM is fixed (e.g., 16 for TPM 1.1b and 24 for
TPM 1.2). Therefore multiple integrity measurements are extended in the same
PCR register and a measurement log is needed to determine how the final PCR
value was computed. In contrast, the number of FCRs is dynamic, since each
#TPM process has its own dedicated FCR.

A core design principle of the yTPM architecture is that the program code of
an application cannot be stored in the RAM as a whole, since the RAM size is
limited. Consequently only a single command or a small collection of commands
is loaded at once in the execution environment. We represent the firmware of a
pTPM application as a list of executable commands ¢;:

{Co,Cl,CQ, e ,Cn}.

The pTPM architecture differs from the XuP proposal [57] that also externalizes
the firmware: the XuP only executes code authorized by the device manufacturer,
whereas the fTPM can run arbitrary code but in such a way that executed code
can be reported to an external verifier. We propose two schemes for measured
execution of program code. The first resembles binary attestation and the
second realizes a form of property-based attestation.

Binary Measurement

The first option is to use the hash of the complete firmware as the firmware
configuration F of the process:

]::H(Co,cl,...,cn).

It is important to note that the order in which the commands are measured,
determines the resulting hash.
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Alternatively, the binary measurement could be computed like the PCR
extension operation of a TPM:

F =H(H(H(0,c),--.),¢n)-

While the process is in the measuring state, the uT'SS provides the pTPM
with the whole firmware image by sequentially loading the code fragments
¢;. Each time an additional command is loaded, the FTE updates the FCR.
Simultaneously the FTE also returns a MAC on the code fragment. The MAC
is computed with the firmware authentication key k.., that is randomly
generated during the process creation and that is stored in the process control
block P. By measuring the complete firmware, the ' T'SS will end up with a list
of MACed executable code fragments:

{Heos ot {er, by {enspin}} with g = Hiyon(ci) -

Once the whole firmware image has been recorded in FCR, the process can be
selected to run the commands that have just been measured. In the executing
process state, the pTPM will only execute commands ¢; that have a valid MAC.

Figure 5.2, which describes the yTPM process lifecycle, indicates that the
process can optionally return from a measured state to the measuring state.
This means that at a later stage the firmware configuration F can be updated
to include additional commands. In the case of binary firmware measurement,
this feature should not be supported as it can be abused by malware to read out
the non-volatile state 7 of a process. The yTPM cannot distinguish between
additional firmware from the original application developer and malicious code.
This implies that once the process has exited the measuring state, it can not
go back.

With this measurement technique, the only way to securely modify or extend
the program code of a deployed yTPM application, is to create a new process,
measure the latest firmware version in this newly created process and finally
delete the existing process. Of course the downside of this approach is that the
non-volatile state of the old process is lost, unless a state migration mechanism
is implemented.

Interface for Binary Measurement

In order to implement the binary measurement technique, the yTPM provides
the following commands on the XIO interface:

o Authenticate(c) loads the code collection ¢ in the RAM, updates the FCR
of the process and returns a MAC on ¢: p = Hy,,, (¢).
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o Execute(c, p) loads the program code ¢ and verifies the accompanying
MAC p. If the verification is successful, the code c is executed.

o LoadLibrary(l, 1) loads the library code [ and verifies the associated MAC p.
If the verification fails, the library [ is erased from the memory. Otherwise,
the library is kept in memory such that its functions can be called by the
process.

Figure 5.3 illustrates that regular program code and library code are loaded
at a different location in the volatile memory space of a process. The Execute
command loads program code at the bottom of the memory space, namely at
address 0. The LoadLibrary command on the other hand loads program code at
a certain offset. This offset can be a pre-defined value or it can be specified as
a parameter of the LoadLibrary command.

Property Measurement

A second option is to sign the code of every individual command or of every
command collection. The complete firmware can then be represented as the
public key PK of the firmware developer and a list of executable code fragments
c; and associated digital signatures o;:

{PK,{co,00},{c1,01},...,{cn,0n}} with o; =signgg(c;).

The private key SK with which the firmware developer signs the firmware, is
the same for all commands c¢;.

The pTPM will use the hash value of the corresponding public key PK as the
firmware configuration F of the process:

F = H(PK).

Alternatively, the developer’s public key PK can be replaced by a property
certificate. This certificate will contain the public key PK as well as attributes
describing certain properties (e.g., version) of the firmware. The property
certificate is issued by a trusted third party, that maps binary measurements to
properties. In the literature this approach is commonly referred to as delegation-
based property attestation [161, 224].

It might occur that the main TPM functionality is produced by one entity
(e.g., a current TPM vendor), but extensions are added by a different entity
(e.g., a government agency). In this situation the second entity has to sign the
extensions as well as the original code with its own signature key.
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The verification of digital signatures imposes a considerable computational and
communication overhead, which will slow down the loading and unloading
of commands in the pTPM execution environment. This bottleneck can
be overcome by verifying the signature on every TPM command once and
calculating a MAC for subsequent verifications. Similarly to the binary
measurement approach, the random firmware authentication key k,un will
be used to MAC the program code.

While the process is in the measuring state, the pT'SS can load the signed
firmware in yTPM to get it MACed. By doing so the uTSS will end up with a
list of authenticated executables:

{{007,“0}7{017“1}7‘"7{0717,[1/71}} with Hi :Hkauth(ci)'

The big difference between binary and property measurement is that the FCR
of the process is not modified while the firmware is authenticated. There is an
initial step that associates the public key PK with the process and this will
determine the firmware configuration /. Once this association step is done, the
#TPM can either execute signed code, transform signed code into MACed code,
or execute MACed code.

With property measurement a process can always return to the measuring
process state in order to authenticate additional commands, whereas binary
measurement does not support this feature. Hence, it is possible to add or
replace commands without changing the firmware configuration F, provided
that the application developer signs the new commands with the same private
key SK. This needs to be done carefully though, as mixing different versions of
commands might lead to security problems. It is thus recommended to create a
new process with a different firmware configuration (i.e., different SK and PK)
if major updates are made, and authenticate the updated firmware in the newly
created process.

In the case of a TPM implementation, changing the firmware configuration is
equivalent with the creation of a new logical TPM. Consequently, the existing
keys of the old TPM will be lost, unless they are migrated with the migration
or maintenance functionality.'® It would be possible to build in some versioning
support as well, but this would add unnecessary complexity to the pTPM
architecture.

10This complies with the TPM specification, which states that “ When a field upgrade
occurs, it is always sufficient to put the TPM into the same state as a successfully executed
TPM__RevokeTrust.”
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Interface for Property Measurement

For the signature-based measurement approach there are two implementation
options: (1) the uTPM can always work with signed program code or (2) it can
verify the signed firmware once in the measuring process state and subsequently
operate on MACed program code.

For the first option, the following ' TPM commands need to be supported:

o AssociateKey(PK) loads the public key PK in volatile memory and stores
F = H(PK) as firmware configuration in the process descriptor.

o Execute(c, o) loads the program code ¢ and verifies its signature o. If the
verification is successful, the code ¢ is executed.

o LoadLibrary(l, o) loads the library code ! and verifies the associated
signature o. If the verification fails, the library [ is erased from the
memory. Otherwise, the library is kept in memory such that its functions
can be called by the process.

The AssociateKey command has to be invoked when the process is in the
measuring state, directly after the process creation. The association of the
key PK to the process can happen only once. Otherwise it is possible for an
adversary to program its own public key and run malicious firmware signed
with this key to read or modify the state T of the target application.

If the uT'SS wants to associate a different key with the process, the existing
process must be stopped and a new process must be created, with DeleteProcess
and CreateProcess respectively.

For the second option, the following yTPM commands have to be supported:

o AssociateKey(PK) loads the public key PK in volatile memory and stores
F = H(PK) as firmware configuration in the process descriptor.

o Authenticate(c, o) loads the program code ¢ in the RAM and verifies its
signature o. If the verification is successful, the yTPM returns a MAC
on ¢t = M, (€)-

o Execute(c, p) loads the program code ¢ and verifies its MAC p. If the
verification is successful, the code ¢ is executed.

e LoadLibrary(l, 1) loads the library code [ and verifies its MAC p. If the
verification fails, the library [ is erased from the memory. Otherwise, the
library is kept in memory such that its functions can be called by the
process.
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With this implementation option, it is possible to authenticate additional code
securely, as long as the application developer’s key PK remains the same.

5.2.5 Firmware Integrity Reporting

The FTE guarantees that a process only executes authenticated code and
that processes run isolated from each other. Therefore, the secrets stored by
an application (e.g., SRK of a TPM, monotonic counters, owner credential,
etc.) stay confidential. The TPM process can generate its own EK, but a
mechanism is desired to link this key to the uTPM hardware and the firmware
configuration F. Otherwise remote parties cannot distinguish between a TPM
process executing in a pTPM processor and a software emulator on a PC [252].

For this reason, every uTPM ships with an asymmetric key pair called HEK that
uniquely identifies the device. The private part of the HEK, which we denote
SKJev, is stored in the pTPM’s on-chip OTP NVM and never leaves the device.
The public part of the HEK is signed by uTPM producer during manufacturing,
yielding the hardware endorsement certificate. The HEK certificate can be
stored outside the pTPM.

The FTE provides the following attestation routines:

o FTE_FCRRead() returns the firmware configuration F, which is stored in
the FCR.

o FTE_Quote(b) uses the HEK to create a signature on the blob b and the
FCR content:

q = signgk,., (b, F).

It is important to note that the attestation feature is not exposed externally
over the XIO interface, but only internally to pTPM processes.

With this functionality, it is possible to bind the EK of a TPM process to the
HEK of the underlying yTPM process.

The TPM process will generate its own endorsement certificate by performing
the FTE_Quote operation on the public EK: certprx = signgg,  (EK,F).
This endorsement certificate will be provided later to a privacy CA when the
TPM registers an AIK certificate (see Section 2.1.2). The privacy CA should
include the firmware configuration F as an attribute in the AIK certificates.
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5.3 Discussion

5.3.1 Implementation Options

Figure 5.1 gave a conceptual representation of the uTPM architecture. A number
of options exists to realize the proposed architecture in practice. The yTPM
can be implemented as a discrete chip or embedded in an existing platform
component, as is the case with a traditional TPM or an SE. Alternatively, the
functionality can be realized, like a MTM, as a software component that runs
logically isolated from the rest of the platform. As illustrated in Section 4.1 the
isolation between a legacy and a trusted execution environment can be achieved
with hardware extensions such as ARM TrustZone or TI M-Shield or with a
security kernel.

Hardware Requirements

The uTPM requires similar hardware components as a regular TPM or a smart
card: a secure microcontroller possibly assisted by a cryptographic coprocessor,
volatile RAM memory and MTP non-volatile memory. The cryptographic
primitives that must at least be supported, are a MAC algorithm to authenticate
the disembedded firmware and a public key signature scheme (both verification
and generation).

The major difference between a conventional TPM and the pTPM architecture
is the lack of ROM. For current TPMs, the ROM contains the firmware that
implements the fixed functionality defined by the TCG specifications.!! The
uTPM architecture conversely is ROM-less and stores its firmware outside its
security perimeter. The uTPM contains an OTP key store for the private
hardware endorsement key SKge,. Furthermore the pTPM also contains
reprogrammable NVM to store the process control block P; and the persistent
state 7T; of the processes that operate in the pTPM environment. As shown in
Chapter 4 this memory can be securely externalized with an adequate state
protection scheme.

The communication interface of the yTPM architecture differs from a traditional
TPM. A standard TPM has a single I/O bus to transfer data from and to the
rest of the platform. The yTPM on the other hand has a second interface to
manage the processes and load program code. We denoted the interface to
transfer data 102 and the control interface XIO. In a real implementation both

11The TCG specifies an optional TPM_ FieldUpgrade command to update the firmware.
This implies that the firmware can be stored (partially) in reprogrammable NVM.
120ptionally this port supports locality.
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(logical) interfaces will use the same physical bus. The TPM’s communication
interface is ordinarily a low speed bus (e.g., LPC or SMBus). However, when
Ekberg and Bugiel implemented a software MTM with disembedded firmware
and externalized non-volatile state [90], they found out that the communication
interface becomes a bottleneck. Whenever code collections are loaded onto
the uTPM execution environment, the firmware must be transferred over the
XIO interface and subsequently its integrity must be verified. Similarly the
non-volatile state will be swapped in and out over this communication bus. The
bandwidth and latency of the XIO interface could pose a problem, especially if
the yTPM is used to run a security application that requires a fast transaction
speed (e.g., NFC payments in a large event).

Realization of Firmware Trust Engine

The core component of the uTPM architecture is the FTE, which is responsible
for process and memory management and for firmware authentication.

In [164] we originally envisioned the FTE to be implemented as hard-coded logic
that is separated from the microcontroller on which the firmware is executed.
The FTE will receive requests over the XIO interface, e.g., to load a different
code collection in the current execution context or to switch to another process.
Based on the request it has to control the microcontroller (e.g., start/stop the
processor) and the RAM (e.g., load another code collection into memory or clear
the memory during a process switch). Additionally, it also must control access
to the NVM such that a process can only access its own persistent state. These
requirements imply that the FTE must be tightly integrated in the memory
controller and the interrupt controller of the microcontroller.

A more natural way to realize the FTE functionality is with a basic operating
system. This operating system will closely resemble a traditional JavaCard
runtime environment, especially considering that the pTPM’s multiprocessing
and memory management are strongly inspired by the JavaCard architecture.
The main differences between the yTPM architecture and a JavaCard runtime
environment is the card context management: the yTPM offers an open
environment where arbitrary applications can be executed, albeit in a measured
fashion that can later be cryptographically verified, whereas the GlobalPlatform
framework is essentially closed since a third party, such as the TSM, controls
which applications can be installed on the runtime environment. A secondary
difference is the fact that the applet code and its associated state are stored
externally. This implies that the size of the NVM (typically 16-32 kB) of the
JavaCard SE no longer forms a restriction.
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Note that a software realization mandates that the FTE is stored reliably and
that its integrity is protected. This requirement can be met by storing the
operating system in on-chip ROM, hence inside the pTPM security perimeter.
Alternatively a secure boot loader, that is stored in on-chip ROM, can be used
to retrieve the operating system from an external storage medium. In the latter
case, a chain of trust will be created:

1. The boot ROM will load the operating system and check its integrity,
either by comparing the hash on the operating system’s image with an
expected value in ROM or by verifying the digital signature on the image
with the manufacturer’s public key in ROM. This step applies the secure
boot principle.

2. The FTE, which is part of the operating system, will load the disembedded
firmware that gets executed in the pTPM. It will measure the integrity of
the firmware and afterwards report the firmware’s integrity with a remote
attestation protocol. This step applies the measured boot principle.

uTPM Software Stack

In Section 5.2.1 we explained that the pTPM needs an accompanying software
component on the platform, the pTSS. The most obvious implementation
option is to extend a conventional TSS with the functionality to deal with the
externalized firmware. The TSS has to store the disembedded firmware and
load the appropriate program code over the XIO port before issuing a TPM
command over the O port. The integrity of the TPM’s firmware is protected by
the authentication key kau¢n, but its availability cannot be guaranteed. If the
external firmware gets deleted (purposely or involuntary), the corresponding
pwTPM process becomes unusable. However this is not a big concern as other
DoS attacks can be applied on current TPMs (e.g., deleting part of the TSS or
the TPM driver), and TPMs were never meant to withstand a DoS attack.

Although not indicated on Figure 5.1, it is also necessary that the platform’s
CRTM stores the code of the TPM commands that are used during the platform
startup (e.g., TPM__Extend). The CRTM might use another non-volatile storage
medium, such as the BIOS Flash memory, than the TSS.

5.3.2 Memory Externalization

Up until now, we have assumed that the pTPM has abundant on-chip memory
to store the non-volatile state of all processes that run in its trusted execution
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environment. This may seem strange because we do a lot of effort to disembed
the program code from the pTPM, while the non-volatile data space of processes
is still stored inside the yTPM. The assumption of on-chip storage of the process
data was made to simplify the description of the uTPM architecture. However,
we envision that a practical implementation of the yTPM architecture will
externalize the storage of the non-volatile process data as well as the process
code.

There are two major challenges with externalized memory. Firstly, the memory
management becomes more complex, especially if the internal RAM of the
uTPM is too small to hold the complete non-volatile data space of a single
process. Secondly, a scheme is needed to protect the confidentiality, integrity
and freshness of the externalized non-volatile storage. In Chapter 4 we developed
a variety of solutions for the latter challenge. Briefly summarized, the pTPM
requires a small amount of reprogrammable NVM to store either a replay
detection nonce or an updatable symmetric key.

Multiprocessing Support

As shown in Figure 5.1, the non-volatile memory of the yTPM contains the
process descriptor P; and non-volatile state 7; for every process and the device
specific key SKgey. The HEK must be programmed during the manufacturing
of the yTPM and, because it does not change afterwards, it can be stored with
OTP fuses. The other non-volatile data can be stored outside the pTPM’s
security perimeter, provided that it is protected with a secret key that is only
known by the pTPM. This key, which we called the state protection key in
Chapter 4, fulfills a comparable role as the SRK of a conventional TPM. The
keys maintained by a TPM are encrypted by the SRK, which forms the root
of a key hierarchy, and they are stored outside the TPM, for instance on hard
disk. Similarly the state protection key protects the non-volatile memory of
processes in external memory.

In Section 4.2.1 of the previous chapter we identified the security requirements for
the externalized non-volatile storage. The non-volatile data must be encrypted
and authenticated to protect its confidentiality and integrity and the state
protection key has to be different for every device such that the externalized
state is uniquely bound at a specific yTPM. Furthermore, the yTPM needs to
make sure that all old versions of the externalized memory become unavailable
whenever the memory is updated. This last requirement is important in order
to guarantee that the control block P of a process contains the up-to-date
firmware configuration F or if a process maintains a monotonic counter in its
persistent state 7. In Chapter 4 we explained that state replay can be detected
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(1) by including a nonce in the externalized memory and maintaining a local
copy of this nonce inside the uTPM or (2) by changing the state protection key
every time the memory content is updated.

As motivated in Section 5.2.1 multiprocessing support is an essential feature of
the proposed uTPM architecture. The memory externalization scheme must
adequately isolate the non-volatile data of the different yTPM processes. In
general, one can choose to protect the persistent data of each process with an
individual key k7; or to use one global state protection key ky for all processes.
With the latter approach, it is important that the externalized memory of
different processes cannot be interchanged. This can for instance be done by
checking whether the process identifier PID matches the value in the encrypted
process description.

In a practical realization of the yTPM architecture the amount of embedded
MTP NVM will be limited. Therefore it is not possible to store an updateable
key k7, or a replay detection nonce ny; for an unlimited number of processes.
Consequently the number of yTPM processes could be limited in order to not
run into this restriction. Alternatively, the keys and/or nonces that protect
the non-volatile memory of the different processes, could be externalized as
well. This can be done by encrypting the keys k7; with one global key k7 or by
protecting the integrity of the nonces ny; with an authentication tree, whose
root nonce ng is kept inside the pTPM.

Memory Management

In Section 5.2.3 we explained that the uTPM clears its RAM memory during
a process switch. The application developer must anticipate this feature by
temporarily storing the volatile data of a process to the embedded NVM before
the process is suspended. Therefore the process exposes commands to save and
restore its volatile data and the pT'SS issues these commands before and after
a process switch respectively.

When we take into consideration that the on-chip NVM of the pTPM is not
big enough to simultaneously hold the persistent state of all processes, the
memory management must be modified. In Figure 5.3 we described how the
memory layout of a process gets mapped to the volatile RAM memory and the
persistent NVM memory. When implementing NVM externalization, the strict
distinction between the volatile code and data space and the non-volatile data
space is no longer necessary. The yTPM only needs a small amount of NVM for
persistent key storage and the rest of its on-chip memory can be volatile RAM.
The program code of a process as well as its data are stored in the internal
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RAM when the process is selected, and in the external NVM when the process
is deselected.

The authenticity and integrity of the program code is protected by the schemes
that are discussed in Section 5.2. The confidentiality, integrity and freshness
of the process state will be protected by the state protection schemes that we
proposed in Section 4.2. Note that we do not consider confidentiality and version
management of the firmware as essential requirements. If these properties are
desirable, the state protection scheme can also be used to secure the disembedded
firmware.

In Section 5.2.3 we explained that rudimentary virtual memory management is
needed to map the logical process memory to physical RAM and NVM addresses.
This requirement is no longer necessary since the memory of an active process
will only reside in the on-chip RAM. The running process will have full access
to the RAM memory, except for a dedicated portion of the memory in which
the FTE will maintain the process descriptor.

In a simple setting, we can assume that the state of each process fits completely
into the embedded RAM of the pTPM, but that the size of this memory is
insufficient to simultaneously hold the data space of all processes. Consequently,
the process state must be swapped during a process switch. As an answer to a
process creation/switch command, the pTPM returns the memory content of
the current process as an authenticated and encrypted blob, and expects the
content of the next process in return. This functionality does not necessarily
need to be implemented in the pTPM hardware itself; the process can provide
commands to the yTSS for the retrieval and cleaning of its memory (e.g., with
the TPM_ SaveState and TPM_ Startup command).

If the memory that is needed to execute a process exceeds the size of the
hardware memory in the ' TPM, memory management gets more complicated.
In theory, one can design a scheme that simulates page faults as TPM responses
to the uTSS. For instance it is possible for the yTPM to communicate to the
uTSS during command execution by using error codes; the uTPM is a passive
device, hence error codes are the only mechanism to notify the yTSS about
problems. This would allow us to implement a function that can swap in and
out blocks of internal memory manually while commands are being processed.
We do, however, feel that such design is an abuse of error codes and the support
for this functionality contradicts the principle of a minimal root of trust.
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Memory Availability

It should be noted that externalization of the NVM allows for new forms of DoS
attacks. While the externalized firmware can easily be replaced if it got lost, an
attacker may be able to remove the externalized NVM for good, and the only
recovery from such an attack is the reset of the yTPM to its default setting.
While this attack is not critical in most TPM usage scenarios — to execute it,
the attacker already requires a level of control over the host platform that allows
for many other ways of DoS attacks — this is an attack that is not possible for a
normal TPM, and some TPM-based protocols may assume it impossible.

One solution to this issue is for the 4TPM to collaborate with secure storage,
as specified by the TCG Storage Work Group [280]. In this case, the yTPM
only releases its internal memory once it receives an acknowledgement from its
counterpart in the hard disk that the memory content has successfully been
stored in a hard disk section that is unavailable for the operating system.

5.3.3 Security Considerations

Our approach attempts to stick closely to the original TPM attack model.
Nevertheless, the exposure of the internal TPM data does create small differences,
which in some applications may require extra care to prevent an attack.

Denial of Service

In our system, the attacker can delete the internal state of the TPM process,
and even its firmware. While the program code and data cannot be replaced by
something meaningful, such an attack may disable the TPM or force a reset
into its native state. This is a stronger attack than possible on a normal TPM,
where deletion of external data can only destroy key material stored under the
SRK, but no state information or functionality. We would argue though that in
practice, there is little difference between an attack on a yTPM and an attack
on a classical one. If a classical TPM looses all key blobs, most crucial state
information is lost as well, and an application using this TPM needs to find a
way to recover without opening other avenues of attack.

The only setting where a difference may occur is in a virtualized environment. It
must not be possible for one virtual environment to destroy state information of
the virtual TPM of another one. This means that each virtual TPM must have
a local copy of its relevant state information, and shared information must be
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stored by a trusted program (e.g., the hypervisor), where it cannot be deleted
by individual virtual machines.

Access Analysis

While our yTPM architecture protects TPM data from being read by an
attacker, the attacker may be able to see the encrypted internal state, or — for
example, by analyzing the cache of the pTPM or the untrusted storage — obtain
information about the last commands submitted to the pyTPM. While this does
not endanger security in most settings in which a TPM is used, this increased
visibility should be taken into account, and critical applications may need to
apply additional measures to hide the activity of the uTPM, for example by
adding fake encrypted state blocks and clearing all caches after usage.

Vendor Backdoor

One of the motivations for a more flexible, alternative TPM architecture was
verifiability of the TPM firmware. By storing the firmware outside the uTPM,
it can be publicly inspected by the community and therefore users can get
more assurance that the TPM functionality is implemented correctly and that
it does not contain any backdoor functionality. This implies that the firmware
developer makes the source code of the TPM implementation available as well
as the tools to compile the code to the binary firmware image.

However, in the case of signature-based property measurement, it is still possible
for the vendor to authorize TPM commands that are invisible to the user (i.e.,
not supplied with the original xTPM on delivery), but used later as a backdoor
to violate the security of the TPM. Consequently, in security settings where
the firmware developer is untrusted, the signature-based scheme must not be
used, or the user should sign the firmware with his own public key and thus
lock the original firmware developer out of the TPM.

5.4 Conclusion

We have shown that many of the current issues with TPM implementations
that stem from complexity and inflexibility can be overcome by redefining the
trust boundaries. By putting the firmware outside of the secure hardware and
securing it cryptographically, our architecture allows for simplified hardware,
while gaining flexibility in the supported command set and even allowing
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multiple secure coprocessors to share the same hardware. Our architecture
is largely compatible with the current specification, provided an additional
software layer is added between the classical T'SS and the yTPM; thus allowing
for the improved architecture without having to adapt the TCG specification.

More concretely, we introduced a novel flexible architecture for a secure
coprocessor, which we called yTPM. The yTPM architecture combines a number
of techniques that have been proposed in the literature. The firmware that
is executed on the pTPM, is stored externally, like in the XuP proposal of
Chevallier-Mames et al. [57]. However, whereas the XuP architecture only
runs code that is signed by the manufacturer (or by a trusted third party),
our architecture applies the trusted computing principle of executing arbitrary
code, but in a (remotely) verifiable way. We proposed a scheme for binary
measurement of the firmware integrity and one for delegation-based property
measurement. The ' TPM proposal supports multiprocessing in a similar way
as the JavaCard architecture.



Chapter 6

Reconfigurable Trusted
Computing

The implementation of a trusted module on reconfigurable hardware is beneficial
because it allows for updates of the firmware (like in Chapter 5) as well as updates
of the hardware of the trusted module (e.g., the cryptographic coprocessor)
after deployment in the field. However, SRAM-based FPGAs, which form
the majority of the FPGAs sold today, store their configuration bitstream in
external NVM in order to persist across power cycles. This requirement makes
the implementation of a trusted module on SRAM-based FPGAs challenging,
especially with respect to the storage of the persistent state.

In this chapter we discuss how the techniques from Chapter 4 can be used to
protect the persistent state of a trusted module on currently available FPGAs.
This research was published, in part, in [228]. We also describe a novel FPGA
architecture that defines a root of trust to measure and report the integrity of
partial bitstreams. This scheme, which we presented in [87], goes a step further
than the yTPM architecture of Chapter 5 as it allows to attest not only the
integrity of the TPM’s firmware, but also the integrity of the configuration
bitstream that represents the TPM’s hardware.

The research in [87] was started by the co-authors from the Ruhr-Universitét
Bochum and the author of this thesis contributed at a later stage by helping to
refine and improve the architecture.

141
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6.1 FPGA Security

In this chapter we focus on security aspects of FPGAs. The bulk of these
devices are SRAM-based FPGAs. The configuration program/bitstream that
defines their functionality is stored in non-volatile memory and loaded onto the
chip at start-up. Due to their flexibility and low cost, they are very attractive
for prototyping and developing new innovative applications. Although their
flexibility is one of their main advantages, it also poses one of the main threats
to the security of these devices. In this section we survey various protection
technologies for volatile SRAM-based FPGAs. For an extensive overview on
this topic we refer the reader to the survey paper of Wollinger et al. [305] and
the thesis of Drimer [79].

6.1.1 Attacker Objectives

The value of the products and applications in which FPGAs are used,
resides mainly in their functionality which is embedded in the bitstream.
Therefore, development houses like to protect their bitstream, as its functionality
represents a significant development investment or because it has certain security
requirements. Broadly speaking, an attacker can have two main objectives.

1. Stealing intellectual property. The attacker may have commercial
interests to steal the intellectual property (IP) contained in the bitstream.
This allows him to create a competing product derived from the original
at a reduced cost, either by making a one-to-one copy (i.e., cloning) or by
reverse engineering the functionality and reusing it in his own product.
In addition, the third party facility that manufactures or assembles the
product, may produce more devices than contractually agreed. This is
known as overbuilding. Observe that this last attack is usually very easy
to carry out from a technical point since the manufacturing facility usually
has all the information required to manufacture the products.

2. Obtaining security sensitive information. The adversary may want
to attack certain security functionality present in the bitstream. A common
threat is the extraction of a secret cryptographic key, that is, either a
symmetric key or the private key of an asymmetric key pair. In other
applications, the attacker may try to bypass an access control mechanism or
a license check. Another possible attack is to reverse engineer an obfuscated
cipher. Although not an FPGA application, the reverse engineering of the
Keeloq algorithm [88], the MIFARE Classic cipher [100], and the Hitag2



FPGA SECURITY 143

cipher [293], which led to the complete collapse of the system’s security,
illustrates the power and consequences of this type of attacks.

6.1.2 Attacks

Depending on the approach that the attacker takes, his objectives, and budget
we can identify the following attack strategies:

Bitstream Copying

Very often the configuration bitstream of an SRAM-based FPGA is stored
unprotected in external non-volatile memory. It is fairly easy for a competent
attacker to tap the bus over which the bitstream is loaded onto the FPGA
(see Chapter 3). As FPGAs are generic devices, the recorded bitstream can
be used to program any other FPGA of the same type and size. The attacker
can regard the FPGA as a black box and only needs to invest effort in copying
the printed circuit board on which the FPGA is mounted. This can be done
with reasonable effort and cost, since these boards consist usually of standard
components. Clearly, such a cloning attack is a serious vulnerability of today’s
volatile FPGAs.

Bitstream Readback

Readback is a debugging feature provided by some FPGA families. It allows to
retrieve the FPGA’s internal configuration memory, after start-up and while in
operation. The snapshot returned by a readback operation includes the FPGA
configuration and the contents of the Look-Up Tables (LUTs) and memory of
the FPGA. It differs slightly from the original bitstream. In particular, some
padding and header /footer information is missing from the readback version. If
an attacker can add this missing information, he has a copy of the bitstream
and he can clone the device.

In addition, the attacker can perform a readback difference attack to bypass an
IP protection or security mechanism [79]. He can for instance take multiple
snapshots to determine which internal signal activates a protected IP core.
The readback functionality also has security implications, as it can be used
to read secret information from the FPGA’s built-in RAM memory. In this
context, we can mention that experiments on personal computers have shown
that it is easy to identify cryptographic keys in memory because they have high
entropy [122, 239]. On the other hand, internal readback can also be used as a
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protection mechanism [278]. The design can verify a checksum or cryptographic
hash on its own configuration in order to detect tampering.’

Most FPGA manufacturers provide a mechanism to prevent readback. Xilinx
uses security bits inside the bitstream to disable external and/or internal
readback. However, these bits can be easily found and overwritten in the
external configuration memory. If the bitstream is stored in integrated non-
volatile memory though, these security bits cannot be modified. When
bitstream encryption (see below) is used on Lattice and Xilinx FPGAs,
readback is automatically disallowed; otherwise it could be used to get the
decrypted bitstream. Finally, Altera does not offer any readback capability and
consequently is not susceptible to this type of attacks.

Reverse Engineering of Bitstream

The attacks described thus far provide the attacker with access to the FPGA’s
bitstream. Next, he can try to transform the encoded bitstream into a logical
functional description, expressed as a netlist or in a Hardware Description
Language (HDL). This reverse engineering process is defined as full bitstream
reversal by Drimer [79]. In practice, the encoding of bitstream formats is
largely undocumented and obscure. In the 1990s NeoCAD reverse engineered
Xilinx’s bitstream generation software to generate compatible bitstreams, and
Clear Logic was able to program laser configured ASICs based on existing
Altera bitstreams. Since then, FPGAs have become more sophisticated and
no successful reverse engineering attacks have been reported. This suggests
that, given the size and complexity of modern FPGAs, full reversal of (large)
bitstreams is currently very difficult, time consuming, and (most probably) not
economically viable. Notice however that reverse engineering difficulty does not
correspond to “difficult” in the cryptographic sense (e.g., exponentially small in
some security parameter) but rather to a very large engineering effort.

Partial bitstream reversal, which is defined as decoding the look-up tables and
initial RAM content from bitstreams, is much easier. The Debit project? of Note
and Rannaud [203] aimed at full netlist recovery from closed FPGA bitstream
formats, but it was only able to decode LUTs and RAM contents from Xilinx
bitstreams before the project was discontinued in 2008. In August 2012 Benz
et al. [23] presented a tool called Bitfile Interpretation Library (BIL)? that
improves upon the Debit work and that can reverse certain sections of a Virtex-5

IThe interface that is used for internal readback, can often also be used for dynamic
reconfiguration. If the FPGA supports this functionality, a part of the design can be
decrypted and loaded using the internal reconfiguration interface [318].

2http://code.google.com/p/debit/

Shttp://florianbenz.github.com/bil/


http://code.google.com/p/debit/
http://florianbenz.github.com/bil/

FPGA SECURITY 145

bitstream. However, the authors conclude that full bitstream reversal remains
infeasible for the time being.

Given the existence of tools for partial bitstream reversal, hiding cryptographic
keys inside the bitstream (as LUTs or RAM content) should be avoided.
Similarly, executable code of a soft microprocessor can be extracted from
the bitstream. The knowledge gained from a partial bitstream reversal can be
used to make targeted modifications to the bitstream; e.g., to replace program
code, a root public key or a substitution box of a block cipher [149].

Side-Channel Attacks

Side-channel attacks exploit the fact that a physical implementation of a
cryptographic algorithm leaks unwanted information while processing secret
data (see also Section 3.4). The physical leakage, including timing [154], power
consumption [155] and EM radiation [2, 219], can be measured externally and
used to recover the secret keys with statistical methods. In recent years, various
side-channel analysis attacks have been demonstrated on FPGA implementations
of cryptographic algorithms and protocols [41, 43, 67, 68, 204, 211, 253, 254,
255, 256, 257, 258|.

A lot of research has been done to strengthen hardware implementations against
these attacks. For example, the execution time of the algorithm has to be
made data independent to prevent timing analysis. For most cryptographic
algorithms this is relatively easy. However, power and EM analysis are much
harder to prevent and the development of effective countermeasures is still
ongoing research. In general, the approaches can be divided into software
and hardware countermeasures. Software-based countermeasures adapt the
algorithm such that the occurrence of predictable intermediate results is avoided.
Typically, the data representation of secret information is masked with random
values. These algorithmic countermeasures can be easily applied to FPGA
implementations. Hardware-based countermeasures include noise generation (to
decrease the signal-to-noise ratio of the measurements) and special logic styles
that make the power consumption of the circuit constant. Only some logic level
changes can be implemented on FPGAs [274, 275, 315, 316]. Cryptographic
implementations can also be attacked by the injection of faults (e.g., glitch in
power or clock supply [6], EM radiation) during the computation. Such fault
attacks can be applied to FPGAs.
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Physical Invasive Attacks

Finally, an attacker can remove the package of the FPGA and attack the chip
physically. He can attempt for instance to read data on internal buses with
microprobes, inspect the fuses that store the bitstream encryption key with a
microscope, or (re-)enable readback with a fault injection. Given the feature
size! and the complexity of state-of-the-art FPGAs, the cost of such physical
attack will be very high. Currently, no reports are available on a successful
(semi-)invasive attack against volatile FPGAs.

6.1.3 Defenses

As illustrated with the attacks previously described, the configuration bitstream
is the most common and possibly, the simplest attack target. An adversary can
copy it to make a clone, analyze it to learn secret information (e.g., a key or
a proprietary algorithm) or alter it to modify the functionality of the design.
FPGA vendors acknowledge this threat and have extended some of their devices
with defense mechanisms. Firstly, the bitstream can be protected by storing it
externally in an encrypted form or by storing it in internal non-volatile memory
that is not accessible from the outside. Finally, node locking prevents cloning
and overbuilding by binding the bitstream (and its embedded IP) to a unique
FPGA.

The theft of intellectual property can also be retroactively detected with
bitstream watermarking and fingerprinting [45, 140, 143, 144, 145, 166, 167,
168, 169, 170, 317, 321, 322]. These countermeasures do not actively prevent
the theft, but provide digital evidence in a court case against a fraudster. Some
of the proposed schemes are not robust and can be circumvented after a partial
bitstream reversal, as shown by Van Le and Desmedt in [291].

Bitstream Encryption

Bitstream encryption is a mechanism that provides confidentiality of the
bitstream while binding it at the same time to the platform. The bitstream is
encrypted with a user-defined key that is stored in on-chip non-volatile memory
on the FPGA. When the encrypted bitstream is loaded onto the FPGA, it
is first fed to a decryption module. The decrypted bitstream is then used to
configure the FPGA. If the attacker eavesdrops on the communication bus to
the external non-volatile memory, he obtains an encrypted bitstream, which he

4For instance, the Xilinx Virtex-7 family is produced in 28 nm CMOS technology.
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cannot reverse engineer nor use in another device (because he does not know
the correct decryption key).

If the cleartext bitstream contains redundancy checks, tampering of the
encrypted bitstream will be detected by the FPGA to some extent. Academic
researchers have proposed to explicitly protect the integrity and authenticity
of the bitstream with a MAC [78] or an AE scheme [208]. Modern high-end
Xilinx FPGAs, starting from the Virtex 6 family, support HMAC-SHA256-based
bitstream authentication, in combination with AES-based bitstream encryption.

This defense mechanism requires on-chip non-volatile memory for secret key
storage. Originally Xilinx relied on battery backed RAM, which complicates
(semi-)invasive attacks to recover the secret decryption key, but poses
maintenance problems if the battery fails [272, 286]. In Lattice’s volatile
FPGAs the key is stored with one-time-programmable fuses. Altera supports
both battery backed volatile storage and non-volatile storage with polyfuses.®
The programming of fuses generally requires higher voltages. Due to the
necessity of this persistent key storage, the cost of these FPGAs is higher than
that of the pure volatile FPGAs. Therefore, this countermeasure is mainly
present in high-end FPGA families. Since the Virtex-6 family, Xilinx FPGAs
also offer the option to store the bitstream encryption keys with eFuse technology
as an alternative for battery backed RAM.

In 2011 Moradi et al. demonstrated the real-world feasibility of a side channel
analysis on Xilinx’s bitstream decryption engine. In [200] they describe a
successful power attack on the 3DES engine of Virtex II Pro FPGAs and
in [201] they outline a power attack on the AES engine of the Virtex 4, Virtex
5 and Spartan 6 family. It is reasonable to assume that similar attacks can also
be mounted the products of other FPGA vendors. Independent security test
laboratories have also demonstrated practical power and EM attacks on the
bitstream decryption engine of commercial FPGAs.

Node Locking

The basic idea of node locking is that the bitstream is bound to the platform by
an identifier that cannot be modified by an attacker. This identifier is stored
either in an external chip (such as the Dallas/Maxim Secure EEPROM |[3, 14])
or internally as a unique serial number (e.g., Xilinx’s Device DNA [245]) or a
PUF [117, 118, 119]. In order to activate an IP core or the full FPGA design,

5An extra fuse can be programmed to put the device into a “tampering protection” mode.
From this moment on, the FPGA can only be configured with encrypted bitstreams. In
contrast, Xilinx FPGAs will always accept unencrypted bitstreams, even if a bitstream
decryption key has been programmed in the device.



148 RECONFIGURABLE TRUSTED COMPUTING

an activation code is computed based on the device identifier and it is written to
the external non-volatile memory, which also stores the bitstream. Afterwards
the design can determine whether it runs on the expected device or not, by
verifying if the external activation code corresponds with its device identifier.

The security requirements for the generation of the activation code differ
depending on the identifier used. Device serial numbers such as the Device
DNA of Xilinx FPGAs can be read by anyone (e.g., over JTAG) and hence
the generation algorithm has to be based on some secret (i.e., a proprietary
algorithm, a secret symmetric key, or a private key). When a PUF is used and
its response cannot be read externally,® the algorithm can be kept public.” The
verification algorithm is part of the bitstream and consequently it is a potential
attack target. This is why the security of node locking strongly depends on
the obscurity of the bitstream encoding to thwart reverse engineering and the
ability to prevent or harden readback difference attacks.

The combination of partial reconfiguration, bitstream encryption and a device
identifier allows for novel IP protection schemes. For instance, in [183] we
presented a pay-per-use licensing scheme for hardware IP on modern SRAM-
based FPGAs that support this combination of features. In our scheme a
bootstrapping bitstream loads encrypted partial bitstreams that represent IP
cores of different providers, and a remote activation protocol is used to acquire
a license key for the different IP bitstreams.

Non-Volatile FPGAs

The configuration of a non-volatile FPGA is inherently protected as it is
stored in internal non-volatile memory. As a result, bitstream cloning, reverse
engineering and tampering are only feasible with expensive physical attacks. A
number of manufacturers produce devices of this kind. Microsemi (formerly
Actel) produces OTP antifuse-based FPGAs and reprogrammable Flash-based
FPGAs [1]. The non-volatile devices manufactured by Lattice [174] and Xilinx
are hybrid Flash/SRAM-based FPGAs: on startup the content of the SRAM
cells is loaded from Flash memory that is integrated on die or in package,
respectively.

6 A separate enrollment bitstream should be used to read out the PUF response.

"In the simplest case, the PUF response is used directly as activation code. The bitstream
just has to check if the response measured at a later time is sufficiently close to the response
during enrollment.
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6.2 Trusted Computing on Commercial FPGAs

In this section we will study how a TPM can be implemented on commercial
FPGAs that are available today, whereas in Section 6.3 we will propose a novel
FPGA architecture with built-in support for trusted computing.

More specifically, we will investigate how the techniques from Chapter 4 can
be combined with PUF-based key storage to protect the TPM’s non-volatile
state on different FPGA types. Since volatile FPGAs do not have non-volatile
memory on board, we propose to extract the secret keys that are used in the
state protection scheme, from an intrinsic PUF. Our solution only relies on the
complexity of full bitstream reversal and can hence be realized with current
low-end FPGA technology which does not have any additional built-in security
mechanisms. This difficulty is not exactly measurable and does not achieve
nowadays cryptographic standards, but this approach is superior to embedding
the keys directly in the configuration bitstream. Clearly, the security of our
proposal can be strengthened if the FPGA supports bitstream encryption or if
the configuration bitstream can be stored internally in the FPGA.8

The fact that a reconfigurable system-on-chip design is stored as a configuration
bitstream, enables field upgrades of the trusted module. In this section we will
also cover how this can be done securely.

6.2.1 Protection of Non-Volatile State

In Chapter 4 we analyzed how a trusted module can be integrated in computing
platforms that lack on-chip NVM and, more specifically, we provided solutions
to protect the persistent state in external non-volatile memory. The solutions
typically encrypt and authenticate the externalized state with a symmetric key
that is embedded in the trusted module. The main challenge, however, is the
detection of state replay as this requires a source of freshness within the trusted
module.

In [228] we showed that PUFs are well suited to embed a secret key in the
configuration bitstream of an FPGA and hence we are convinced that PUFs
are an important enabling technology to achieve secure persistent storage on
today’s commercial FPGAs. In order to detect state replay we made use of
external authenticated NVM, which is included in the security perimeter of
the trusted module with a minimal cryptographic protocol. The concept of
extending the trusted module’s security perimeter was also covered in detail in
Section 4.4.

8In this scenario it is not strictly necessary to derive the secret keys from a PUF.
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Internal NVM with Bitstream Restriction

Reprogrammable non-volatile FPGAs store their configuration bitstream in
integrated Flash memory. This removes the need for an external configuration
NVM chip and it improves the security of the device by eliminating the possibility
of a bitstream interception. Often a dedicated part of the internal non-volatile
memory can be used by the FPGA application as persistent storage. This makes
these devices highly suited for reconfigurable trusted computing. However, not
all Flash-based FPGAs offer the same security level.

Modern Lattice and Microsemi FPGAs have advanced options to limit the
reconfigurability [1, 174]:

e The device can be temporarily locked with a password such that it can
only be unlocked and reprogrammed by providing the correct password.

e A permanent lock disables reconfiguration, effectively turning it into a
one-time-programmable FPGA.

¢ When bitstream encryption is enabled, only bitstreams encrypted with
the correct key will be loaded.

The protection of the state of a (reconfigurable) trusted module is straightforward
on this type of devices. Firstly, reprogramming of the FPGA has to be restricted,
either with the locking mechanism or with the bitstream encryption functionality.
The latter approach facilitates upgrades of the trusted module in the field.
Secondly, the persistent state 7 can be stored directly (in plain) into the
application accessible NVM. If the size of the NVM is too small to fit the whole
persistent state, 7 can be stored externally, albeit encrypted and authenticated
with the techniques described in Section 4.2. In this case, only the state
protection key k7 and (optionally) a replay detection nonce ny have to be
stored in the FPGA’s internal NVM.

Internal NVM without Bitstream Restriction

The Xilinx Spartan-3AN is an example of a hybrid SRAM/Flash-based FPGA,
that consists of a volatile Spartan-3 FPGA and a Flash memory chip integrated
in the same device.” The integrated NVM is primarily attractive for cost
saving, as there is no need for a separate off-chip NVM for the storage of the

9The FPGA chip and the Flash memory chip are bundled in the same package and not
integrated on the same die.
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Figure 6.1: Trusted computing on non-volatile FPGAs without configuration
locking.

configuration bitstream. The embedded NVM can also be used by the design
that is programmed on the FPGA, to persistently store state information.

However, unlike the non-volatile FPGAs mentioned above, the Spartan-3AN
does not support any mechanism to restrict its configuration: it does not provide
a locking mechanism for the configuration bitstream, nor does the Spartan-3
family support bitstream encryption [311]. Consequently the security level
offered by this product is limited.

Xilinx FPGAs support different configuration modes and the selection of the
mode is done with external pins. There are security bits inside the bitstream
to disable readback and (partial) reconfiguration, but these restrictions are
only enforced once the bitstream has been loaded onto the FPGA. An attacker
can always put the device into a different mode (e.g., Joint Test Action Group
(JTAG) configuration) with the external FPGA pins and subsequently load a
malicious bitstream that reads out and/or overwrites the content of the user
Flash memory.

This signifies that an FPGA application — in our case a reconfigurable trusted
module — must not store sensitive information in the internal NVM without an
appropriate state protection scheme. Figure 6.1 illustrates a possible solution
that relies on PUF-based key storage and that protects the state 7 in the
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following manner:

e The trusted module’s persistent state T is encrypted and authenticated
with the Enc() algorithm.

e The secret key k7 is derived from a PUF that is embedded in the bitstream
Bsoc. The challenge ¢t to the PUF, which is not shown explicitly in
Figure 6.1, is also embedded in the bitstream. Alternatively, the key k
can be derived with a secret algorithm from the FPGA’s serial number.

e The associated helper data wy is also stored in the internal NVM. This
allows the trusted module to reconstruct the key ks from the noisy PUF
response 77 with the Rep algorithm of the fuzzy extractor.

e In order to detect state replay, a monotonic counter n is included in the
encrypted state and stored in the integrated Flash memory.

The nonce ny must not be kept secret and therefore it can be read unrestrictedly.
However, it is essential that the nonce is protected against replay (i.e., decreasing
the counter to an earlier, lower value). We propose to protect the monotonicity
of the counter with the sector lockdown mechanism of the integrated Flash
memory.'? This functionality permanently and irreversibly protects the contents
of an individual Flash sector against program and erase cycles. Every time
the state T is changed, the counter ny is incremented and a new sector of the
NVM is locked down, effectively emulating the blowing of a fuse.

Sector lockdown is a very expensive operation because valuable Flash memory is
rendered unusable. However, it does make sense when implementing the MTM
bootstrap counter, which is used to detect firmware rollback. This counter
is only 5 bit long and thus it can be implemented with 31 sector lockdown
operations.

Authenticated External NVM

In Section 4.4 we proposed two protocols to extend the security perimeter
of the trusted module to the external NVM module. The first realizes an
authenticated memory interface and the second an encrypted memory interface.
In both protocols a secret key (kautn and kg respectively) is shared between the
trusted module and the external memory, and this key is programmed during a
paring phase. The read operation is protected against replay with a nonce that

10The integrated Flash memory also has a security register, which contains a 64-byte
unique identifier and a 64-byte user-defined field. The complete user-defined field can only be
programmed once. Therefore it is not suited to realize a counter.
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Figure 6.2: Trusted computing on volatile FPGAs with authenticated external
NVM.

is generated randomly by the trusted module, and the write operation with a
monotonic counter that is stored persistently in the external memory.

Most FPGAs that are sold today, are truly volatile and have no internal
reprogrammable non-volatile memory. Devices that support bitstream
encryption, do contain some memory to store a bitstream decryption key,
but this memory is often only one-time-programmable and can never be used
as persistent storage for the FPGA application. In [228] we proposed to realize
a reconfigurable trusted module on standard volatile FPGAs by combining a
memory authentication protocol with PUF-based key storage.

Figure 6.2 gives a schematic overview of the resulting solution. The following
components can be identified:

o The state T is encrypted and (optionally) authenticated with a secret
key k7. For efficiency reasons, we propose to use AES in an AE mode as
encryption algorithm Enc, even though this symmetric cipher is not part
of the TCG specifications (see Section 4.2.3).
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o The state encryption key kr is stored with a PUF that is embedded inside
the bitstream Bgoc.

e The corresponding helper data wy is stored in the external NVM such
that k7 can be reliably reconstructed from a noisy PUF response 7.

e A challenge-response protocol guarantees the freshness of an interaction
between the trusted module and the external NVM chip. The trusted
module uses a random challenge ny when reading for the NVM and the
monotonic counter nyyy prevents replay of previous write operations. We
propose to use the HMAC algorithm for H since this is already present in
a TCG compliant trusted module. Another option is a MAC algorithm
based on a block cipher (e.g., AES), since we also propose to implement
the AES algorithm in the trusted module for encryption of the state T.

e On the trusted module the secret key k.utn used in the memory
authentication protocol is derived from a PUF response 7, ., while on
the NVM module it is stored internally in its non-volatile memory. This
shared authentication key must be programmed in both devices during a
pairing phase.

Even though two PUF's are shown in Figure 6.2, the secret keys k1 and kauin
can be derived from the same PUF by applying different challenges. In this
case, the two challenges ¢ and cautn are embedded in the bitstream Bgoc or
they are stored separately in the external NVM. The PUF guarantees that,
given the challenges, its responses are still unpredictable.

Security Assumptions

The security of the three schemes presented above relies on a number of
assumptions:

e The system designer who creates the configuration bitstream Bgoc has
to be trusted. This entity can always generate a malicious bitstream
to extract sensitive data protected by the trusted module or include a
backdoor in the original bitstream.

o Full bitstream reversal is practically infeasible. If an adversary can
successfully reverse engineer the bitstream, he will precisely know the
type and exact location of the PUF in the reconfigurable logic. With
this knowledge he can make a malicious bitstream (containing the same
PUF) that outputs the PUF responses (r/- and r, ., ), the secret keys (ks
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and kauen) or the decrypted state 7. Note that this assumption is not
necessary when the bitstream is encrypted or stored in internal NVM.

o Readback is not supported or disabled. This prevents attacks that directly
read the unencrypted state or the secret keys directly from the FPGA’s
memory.

e The attacker does not perform physical attacks. Otherwise he could for
instance re-enable readback or read/modify the content of the internal as
well as the authenticated external NVM. We argue that (semi-)invasive
attacks are expensive on modern FPGAs. In addition, observe that the
TPM and MTM are not required to withstand hardware attacks.

o Appropriate countermeasures are taken in the implementation of the
cryptographic algorithms Enc and H and the fuzzy extractor in order to
resist side-channel attacks.

Enrollment Phase

In order to use a PUF to generate keys, an enrollment phase has to be carried out.
During this phase the PUF is challenged for the first time with the challenges
cr and Cautn and the responses 7 and r,u¢n are measured. The Gen function
of the fuzzy extractor is used to generate the keys kt and k,un for the first
time together with their accompanying helper data ws and waun. The helper
data are then stored in the non-volatile memory. We note that in the case of
authenticated external NVM this phase can be carried out during the pairing
phase of the memory authentication protocol.

The system designer can choose to create a separate enrollment bitstream Bpuyw
that contains the same PUF as the bitstream Bg,c, that will be deployed
afterwards.

6.2.2 Protection of the Bitstream

The bitstream Bg,c contains the system-on-chip design including the trusted
module. The following security requirements should be considered:

1. Design integrity: Unauthorized modification of the system-on-chip
design must be impossible. More specifically the integrity of a number
of components should be guaranteed: the trusted module, especially its
firmware, the main processor, the CRTM code, and the communication
interface between the trusted module and the CPU.
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2. Design confidentiality: The design can contain cores whose intellectual
property has to be protected. Additionally, the cryptographic keys that
are embedded in the trusted module, must remain secret.

3. Design freshness: Reconfigurable hardware allows field upgrades of the
design. It must not be possible to replay an older and insecure version of
the design.

The bitstream is stored in the configuration memory of the FPGA. This
memory is internal NVM, in the case of a non-volatile FPGA or an SRAM-
based FPGA with integrated Flash memory, and external NVM, for of a truly
volatile FPGA. In the latter case, the regular memory interface must be used,
because commercial FPGAs do not support the memory authentication protocol
and because there exists no standard for authenticated NVM.

Bitstream Obfuscation

On low-end reconfigurable devices where the configuration bitstream can be
intercepted, we can only rely on the reverse engineering complexity of the
bitstream encoding for security purposes. According to the above mentioned
literature, this gives a decent level of assurance that IP cores cannot easily be
reverse engineered and that directed modification of the logic is difficult.

An adversary can extract the challenge ¢ and cuy, from the bitstream, but
due to the unpredictability of the PUF responses, this knowledge is insufficient
to learn any information about the keys k7 and k,usn. In order to be successful,
he must perform a full bitstream reversal and create a malicious design with
exactly the same PUF as Bgoc to output the secret keys. According to the
state of the art [79], this is currently infeasible.

Embedded ROMs

If the CRTM code and the trusted module’s firmware are embedded inside the
bitstream Bgoc, partial bitstream reversal will possibly reveal the contents of
these embedded ROMs, which we denote with Mgron. This is a serious threat
as this could enable an attacker to create a bitstream with a modified TPM
firmware or CRTM, and circumvent the TCG chain of trust or to extract the
persistent state.

The easiest way to overcome this problem is by storing these embedded ROMs
in the authenticated non-volatile memory. The system-on-chip design needs to
be extended with some extra logic that performs the cryptographic protocol to
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Table 6.1: Content of external NVM.

name type description
Bsoc regular FPGA bitstream containing SoC design
wy regular helper data for state encryption key ks
Wauth regular helper data for NVM authentication key kautn

Ency(7) | authenticated | encrypted persistent state T
Mgrowm authenticated | trusted module firmware ROM and CRTM
PKgrom | authenticated | public key to verify signed ROM updates

access the authenticated NVM. This logic has to have access to kausn, that is
stored with the intrinsic PUF.

Bitstream Encryption

On high-end FPGAs bitstream encryption can be used to obtain better design
confidentiality. Additionally, it is difficult to make meaningful modifications
to the design if the bitstream is encrypted. Typically the plain bitstream
contains redundancy checks (e.g., CRC), so bit flips get detected. Ideally,
the bitstream should be cryptographically authenticated as well, for instance
with an additional MAC algorithm or by using an AE scheme. Modern
commercial FPGA hardware, such as Xilinx Virtex-6 and Virtex-7, support this
functionality.

Bitstream encryption support does not necessarily imply that the design
freshness requirement is satisfied. Even if the bitstream is encrypted in the
configuration memory, an attacker can revert a field update by overwriting the
encrypted bitstream with an older version.

6.2.3 Field Updates

The TCG specifications define the TPM_ FieldUpgrade command, but the
implementation is free. Typically this command is used to update the firmware
of the trusted module. However, the advantage of an FPGA is the possibility to
also update the hardware implementation of the TPM. Hence two type of field
updates can be distinguished, namely firmware updates and bitstream updates.

We proposed to use the authenticated external NVM in order to implement a
trusted module on a purely volatile FPGA. Table 6.1 summarizes the content
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of the external non-volatile memory and which memory interface is used to
access the data. The firmware of the trusted module is stored in authenticated
NVM as Mrowm, whereas the trusted module’s hardware is stored separately in
regular NVM as part of the bitstream Bgoc.

Firmware Updates

Firmware updates are fairly straightforward as we can rely on the authenticated
memory interface of the external NVM. The trusted module must offer an extra
command to verify a signed firmware image signg ... (Mgoy). We propose to
store the public key PKRrowm, which will be used to verify the digital signature
on the firmware update, in authenticated NVM in order to protect its integrity.
Once the trusted module has verified the digital signature, it can overwrite
Mgrowm with the authenticated memory interface.

In order to protect against rollback,'' a version number vgony needs to be
included in the firmware ROM: vgom C Mgrowm. The trusted module has to
check whether the version of the new firmware is higher than its own version:

/
VROM -~ UROM-

Alternatively, the update key PKrowm and the firmware version vgronm can be
stored inside 7. The version number should be included explicitly in the firmware
update: signg .o, (MiomllVrow)- With both approaches, the authenticated
memory interface assures that only the trusted module can update its firmware.

Bitstream Updates

In some situations (e.g., to replace a cryptographic coprocessor), it might be
necessary to update the FPGA bitstream Bgoc, instead of only the firmware
image Mrowm. It is crucial that the new bitstream includes exactly the same PUF.
Otherwise, the secret keys k,un and k7 become inaccessible and consequently
the trusted module can no longer access its persistent state.

Because Bgoc is stored in regular external NVM, it can always be overwritten
by an older version. A possible solution to prevent this is to bind the bitstream
Bsoc to the firmware Mrowm. Every bitstream update will then be accompanied
by a firmware update. The binding mechanism has to assure that the new
firmware MﬁOM does not function correctly with the old bitstream Bgoc. For
instance, some extra logic in Bgoc checks whether an expected identifier is
present in Mgom and halts the design if this is not the case. Like the node

HVersion rollback could be desirable because updates can cause issues.
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locking schemes described in Section 6.1, this solution relies on the difficulty of
bitstream reversal.

6.3 Trusted FPGA Architecture

As illustrated in the Section 6.1, manufacturers are aware of the security issues
of volatile FPGAs and they are slowly adding more security functionalities.
In [87] we proposed a novel FPGA architecture for realizing trusted computing
functionalities in reconfigurable hardware.

The research started from the existing concept of having a small security engine
in the static FPGA fabric to decrypt and authenticate the bitstream before it is
configured on the reconfigurable logic. We went a step further by transforming
this security engine into a TCG-like root of trust that can attest the loaded
bitstream and seal and unseal sensitive data when a specific bitstream has been
configured on the FPGA. With our trusted FPGA architecture we can realize
a reconfigurable TPM that can include its own hardware implementation (i.e.,
the bitstream) in the TCG chain of the trust.

A possible extension to our architecture would be to make the security engine
responsible for binding (partial) bitstreams to specific FPGAs based on a
license, and thus allowing more elaborate pay-per-use IP licensing schemes.
Such extension is elaborated in the TinyTPM work [97] of Feller et al.

6.3.1 Underlying Model

The main parties involved are FPGA manufacturers, hardware IP developers
(e.g., developing the application logic synthesized to a bitstream), software
IP developers who implement software that runs on the loaded bitstream on
the FPGA, system developers who integrate hardware and software IP onto
an FPGA platform and the user who employs the device. All parties trust
the FPGA hardware manufacturer since there is no publicly known efficient
mechanism to verify an ASIC implementation for correctness or potential
trapdoors. However, IP developers have only limited trust in systems developers,
and users have only limited trust in IP and system developers. It is obvious
that the entity issuing the update (usually the TPM designer) needs to be
trustworthy, or the TPM implementation is subject to certification by some
trusted organization.

We assume an adversary who can eavesdrop and modify all external
communication lines of the FPGA, eavesdrop and modify all memories external
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to the FPGA, arbitrarily reconfigure the FPGA, but cannot eavesdrop or modify
internal states of the FPGA. Particularly, we exclude invasive attacks such as
glitch attacks, microprobing attacks or attacks using laser or FIB to gain or
modify FPGA internals. Precautions against other physical attacks such as side
channel attack or non-invasive tampering must be taken when implementing
the TPM. Furthermore, we do not consider any destructive adversaries which
are focusing on denial-of-service attacks, destroying components or the entire
system.

6.3.2 Basic Idea and Design

The basic idea is to include the hardware configuration bitstream(s) of the
FPGA in the chain of trust. The main security issue, besides protection of
the application logic, is to protect the TPM against manipulations, replays
and cloning (see security requirements in Section 6.2.2). Hence, appropriate
measures are required to securely store and access the sensitive TPM state 7T .

In the following we denote a hardware configuration bitstream as By with
X € {TPM, App} such that Brpy denotes a TPM bitstream and Bap, an
application bitstream. We further define Fx as the encryption of Bx using
a symmetric encryption algorithm and a symmetric encryption key k$'¢ such
that Ex = Encpge (Bx). We define Ax as an authenticator of a bitstream

Bx with Ax = Authaue (Bx) where Authpauen could be for instance a MAC

based on the key k3**®. We denote the corresponding verification algorithm
of an authenticator Ax with Verify;aum (Bx,Ax). If a bitstream has been
encrypted to preserve design confidentiality, Bx is replaced by Ex. Thus, the
corresponding authenticator Ax becomes Ax = Authpaun (Ex). As already
mentioned in Section 4.2.3, such an Encrypt-then-MAC scheme provides the
strongest security (with respect to the two other possible schemes MAC-
then-Encrypt and Encrypt-and-MAC).!? We finally define Cx as an unique
representative of Bx’s configuration, e.g., a cryptographic hash value which can
be based on a block cipher [30, 171, 218, 222, 251]. If Crpy is a hash value,
it represents a measurement that conforms to the TCG approach. However,
alternative approaches may use for C'rpy, €.g., a property certificate about
Brpy signed by a trusted third party that is included within the corresponding
authenticator.

Figure 6.3 shows our high-level reconfigurable architecture. The bitstreams
Bapp and Brpwy of the application and the TPM core (without any state 7)
respectively are stored authenticated (and encrypted) in the external (untrusted)
memory. The FPGA control logic allows partial hardware configuration of the

12Xilinx on the other hand uses the MAC-then-Encrypt option in the Virtex-6 family.
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Figure 6.3: Trusted FPGA architecture.

FPGA fabric to load the TPM and the application independently using the
Load and Configure interfaces.

The Bitstream Trust Engine (BTE) provides means to decrypt and verify the
authenticity and integrity of bitstreams using the Decrypt and Verify interfaces,
which are already present in modern high-end FPGAs. Furthermore, the
BTE includes a protected and non-volatile key storage to store the keys for
bitstream decryption and authentication. Finally, the BTE provides a volatile
memory location called Hardware Configuration Registers (HCRs) to store the
configuration information of loaded bitstreams. These registers are used later
on by the TPM to set up its internal PCRs. In the following we define two
stages in our protocol, the setup and the operational phase.

6.3.3 Setup Phase

To enable an FPGA with trusted computing functionality, a TPM issuer
designs a TPM and synthesizes it to a (partial) bitstream Brpy for use on an
FPGA. Furthermore, we assume that an application designer provides a trusted
computing enabled FPGA application delivered as partial bitstream Bap, which
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can interact with the TPM architecture using a well-defined interface. Of course,
particularly when using an open TPM implementation, it is possible that both
components are developed by a single party, e.g., by the system developer itself.

1. The system developer verifies the authenticity of Brpy and Bapp, encrypts
Bapp to Eapp and then creates bitstream authenticators Arpy and Aapp
using the keys k33 and k"mth respectively. Note that if TPM bitstream

Brpy is also provided by the system integrator itself, he can choose
kauth kauth

TPM — “App "
2. The TPM bitstream Brpy, its authenticator Arpy, the encrypted
application bitstream Eapp, and its authenticator Ay, are stored in
the external memory.

3. The system developer writes the appropriate authentication keys k?}‘{}f/[

and k3% (and the encryption key k<)) to the key store of the BTE.

6.3.4 Operational Phase

Remember that on each power-up the FPGA needs to reload its hardware
configuration from the external memory. Hence, for loading a trusted computing
enabled application, the following steps need to be accomplished:

1. On device startup the FPGA controller reads the TPM bitstream Brpm
and the corresponding authentication information Apy; from the external
memory. BTE verifies the authenticity and integrity of Brpy based
on the authenticator Arpy by using Verlfyk.duth (Brpm, ATpm).  After
successful verification, BTE computes the conﬁguratlon value Cpy of
the TPM bitstream and writes C'rpy into the first Hardware Configuration
Register (HCR) before the FPGA’s fabric is finally configured with Brpy.

2. The TPM requires exclusive access to a non-volatile memory location to
store its sensitive state 7. Furthermore, the access to this storage location
is protected by the BTE which provides access to sensitive data only
when a specific bitstream (i.e., the TPM) is loaded. This access control
function is equivalent to TCG sealed storage. For full flexibility, the BTE
implements an interface with which a currently configured bitstream can
request a reset (and implicitly, a clear) of the non-volatile memory to
reassign the access to the storage for its own exclusive use. The access
authorization to the memory for a loaded bitstream X can easily be
performed by BTE by checking its C'x stored in the first HCR.
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This step necessitates on-chip NVM, which, as discussed earlier, in practice
is rarely available in volatile FPGA. However, this restriction can be
overcome with the state protection techniques described in Chapter 4,
e.g., by extending the security perimeter to the external NVM (see also
Section 6.2).

3. After the TPM has been loaded onto the fabric, the application bitstream
Eapp and its authenticator Aapp are read from the external memory,
verified and decrypted in the same way. The BTE stores the configuration
value Capp of the verified application in the second HCR register.

4. After the application bitstream has been configured in the fabric, the
first call of the application to use the trusted computing functionality
will initialize the TPM as follows. Based on the content of the two
HCR registers, the TPM initializes its own PCRs. It reads the recorded
bitstream configurations (Crpm, Capp) and extends them in the PCRs.
In this way the (unique) configurations of all bitstreams can be included
in the chain of trust. This is similar to the initialization of a desktop TPM
via CRTM. However, now the PCR includes the hardware measurement
results of the TPM itself.

After loading the hardware configuration of the TPM and the application
into the FPGA, the chain of trust can be extended by the measurements of
other specific platform components such as the operating system and high-level
application software. This allows to bind any higher level application (of the IP
provider) to the underlying FPGA by binding the application (or its data) using
the subset of the PCR registers that contain the corresponding measurements
of the underlying FPGA.

6.3.5 TPM Updates

The update of the current TPM; to another TPMy on an FPGA is quite easy
when the sensitive state 7 does not need to be migrated. The TPM; needs to
be loaded and will obviously not be able to access the BTE’s protected storage
containing 7 of TPM; (since TPMy cannot provide Crpy, ). Hence, TPMs
reassigns the protected storage to be able to create and store its own 7. With
the reset of the protected storage, the previous 7 in the non-volatile memory
is cleared so that no confidential information of TPM; will be accessible for
TPM,. To prevent denial-of-service attacks against 7, BTE can additionally
implement a mechanism such that TPM; has to clear its T before TPM; is
able to reassigns the protected storage for its own 7.



164 RECONFIGURABLE TRUSTED COMPUTING

However, for migrating 7 from TPM; to TPM, without loss of T, we
propose to extend existing TPM implementations by a migration function'®
Migrate(Aypdate,; CTPM,) Where Aypdate 1S an update authenticator and Crpu,
a unique reference to the corresponding TPM,. For a TPM update, a system
developer (who has set k3332 for the corresponding FPGA) generates an update

authenticator
Aupdate = SigNgK 1 (CTPM,, Prom)

where SKypdate denotes an update signing key. TPM; trusts the corresponding
update verification key PKypdate, €.8., as it is pre-installed in TPMj;.

Thus TPM; knows a set of trusted update authorities (the system developer,
etc.) who are allowed to perform the migration of 7 for use with TPMs. Prpym
denotes a reference to the class of TPMs that provides a certain (minimum)
set of security properties. Note that Prpy can also be replaced by individual
update signing keys each representing a single security property.

When the user requests a TPM update, he invokes the migration function of
TPM,; using the parameters Aypdate and Crpu, received from the corresponding
system developer (over an untrusted channel). Then, the migration function
Migrate(Aypdate; CpMm,) of TPM; performs the following steps:

1. It verifies A,pdate using the update verification key PKypdate and checks
whether Prpy, provides the same (minimum) set of security properties
as ft)TpM1 .

2. After successful verification, it reassigns the BTE’s protected storage,
which contains 7, for use with TPMs. The BTE needs to grant TPMs
access to the protected NVM without erasing its content. More precisely,
the BTE provides an interface so that only TPM; can associate the
protected storage with Crpwn,. After reassignment of the protected
memory, only the new TPM, is able to access T.

After the migration function has terminated, the application (or manually, the
user) overwrites TPM; stored in the external memory with Brpy, and the
corresponding authenticator Arpy,. Now, the user restarts the FPGA to reload
the updated TPM and application.

13Note, our migration functionality does not replace the TCG mechanisms for migrating
internals called TPM__Migration and TPM__Maintenance.
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6.3.6 Discussion
Advantages

Enhancing an FPGA with trusted computing mechanisms in reconfigurable
logic can provide the following benefits.

Enhancing the Chain of Trust. As explained in Section 2.1, TPM-enabled
systems establish the chain of trust by starting from the CRTM, which is
currently part of the BIOS. For FPGA hosted TPMs, the BTE can begin with
the hardware configuration of the application and even with the TPM itself.
Therefore, the chain of trust can include the underlying hardware as well as the
TPM hardware configuration, i.e., the chain of trust paradigm can be moved to
the hardware level.

Flexible Usage of TPM Functionality. The developer may also utilize the
basic functionality of the TPM in his application which can make the
development of additional cryptographic units obsolete. This includes the
generation of true random numbers, the asymmetric cryptographic engine as well
as protected non-volatile memory. Furthermore, a flexible FPGA design allows
to use only the specific TPM functionality that is required for the application,
yielding a smaller and consequently easier to certify implementation.

Flexible Update of TPM Functionality,. A TPM implemented in reconfig-
urable logic of an FPGA can easily be adapted to new requirements or versions.
For example, if the default hash function turns out to be not secure enough,
an FPGA hosted TPM could include a self-modification feature which updates
the corresponding hash function component, in particular no new hardware
design is needed. Moreover, patches fixing potential implementation errors or
changes/updates enhancing interoperability could be applied quickly and very
easily.

Improved Communication Security. The integration of CPU, ROM, RAM
and TPM into a single chip enhances the protection of communication
links between these security critical components from being intercepted or
manipulated. Having the boot ROM and RAM integrated on the FPGA chip,
makes the injection of malicious boot code or RAM manipulations more difficult.
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Vendor Independence. Platform owners can select which TPM implemen-
tation is operated on their platforms. This allows even the usage of fully
vendor independent open TPM implementations providing more assurance
regarding trapdoors and Trojans. Moreover, since we can easily implement
a TPM soft core into hardware, a multitude of vendors can offer a variety of
TPM implementations. Thus, users are not only restricted to a few TPM ASIC
manufacturers as today, they even can implement their own TPM instances
and have it certified for TCG compliance by a trustworthy authority. In this
scenario the users do not have to trust any external entity, except for the FPGA
manufacturer.

Implementation Aspects

Our trusted FPGA architecture uses a number of features that are already
present in some commercial FPGAs: partial reconfiguration, bitstream
authentication, bitstream encryption and embedded Flash memory. This
suggests that a practical implementation of our proposal is technically feasible
today. The main components of the BTE that are currently missing, are the
hardware configuration registers and the access control mechanism for the
embedded NVM.

In order to realize the former, the FPGA controller must be extended to
measure and record the loaded bitstreams and an interface must be provided
to the reconfigurable logic to read the content of the HCRs. Xilinx FPGAs
already have a so-called Internal Configuration Access Port (ICAP) primitive
that provides the reconfigurable user logic access to the FPGA’s configuration
interface and that enables internal readback and (partial) self-reconfiguration.
It seems natural to expose the HCRs using this ICAP interface.

The protected storage on the other hand requires a more tight integration of
the embedded Flash memory and the FPGA controller. Access to the memory
addresses that are used to store the persistent state 7 must only be granted if
the expected bitstream Brpy has been recorded in the HCR register.

6.4 Conclusion

In Chapter 4 we explained that it is sometimes desirable to embed a trusted
computing module in a hardware component that lacks reprogrammable non-
volatile memory. One of the examples that we gave, is trusted computing on
reconfigurable hardware. In this chapter we explored this example in more
detail and we investigated how a trusted module can be implemented on modern
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FPGASs, mainly focussing on the protection of the trusted module’s persistent
state.

We first provided a brief overview of the attacks on FPGAs, such as bitstream
cloning and reverse engineering, and of the defense mechanisms that are presently
available in commercial FPGA products. Most security problems arise from
the fact that the configuration bitstream of volatile FPGAs, which contains
intellectual property or security sensitive information, is stored in external
NVM, and that it is consequently possible to read and/or modify the bitstream
that is loaded on the FPGA. The most popular defense mechanism are schemes
to bind the bitstream to a unique device and the encryption of the bitstream.
The latter requires some embedded non-volatile memory, typically fuses or
battery-backed RAM, to store the bitstream decryption key.

Next we discussed how to protect the persistent state when implementing
a trusted module on commercial FPGAs. The state protection schemes,
which we described in Chapter 4, require the storage of a secret key and
a source of freshness inside the trusted module. We observed that PUFs can
uniquely fingerprint an FPGA and hence that they are well suited to derive the
secret key(s) of the state protection scheme. In our discussion we postulated
that it is complex to extract a PUF-derived key by reverse engineering a
configuration bitstream. If the underlying FPGA supports bitstream encryption,
this assumption must not be made. The detection of state replay proves
challenging on a volatile FPGA that does not have embedded non-volatile
memory and the only proper solution is to extend the security perimeter to the
external NVM with a cryptographic protocol.

Finally, we described a trusted FPGA architecture that improves upon solutions
for bitstream encryption and bitstream authentication which are present in
today’s commercial FPGAs. We defined a bitstream trust engine that acts as
a root of trust to measure and report the integrity of partial bitstreams. The
scheme goes a step further than the yTPM architecture that was described in
the previous chapter, as it allows to attest not only the integrity of the TPM’s
firmware, but also the integrity of the configuration bitstream that represents
the TPM’s hardware.






Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis deals with the analysis and design of trusted computing platforms. In
our analysis we focussed primarily on the TCG specifications, which introduced
the concept of a trusted computing platform that supports remote attestation
and sealed storage. Trusted computing technology is considered as a promising
enabling technology to improve the trustworthiness of computing platforms.

More than 600 million PCs and laptops have been sold equipped with a TPM,
but enterprises have yet to embrace the technology on a large scale. One of the
reasons for this limited success is the lack of adequate operating system support.
This situation might changed drastically with the arrival of Windows 8. In earlier
versions of Windows, the TPM was only used by BitLocker drive encryption to
record the integrity of the early boot process (i.e., BIOS and bootloader) and
to unseal the disk encryption key. Windows 8 goes much further: it records the
integrity of all boot components (including bootloader, kernel, device drivers,
and anti-malware software), it supports remote attestation, it offers TPM-based
certificate storage, it enables the TPM to acts like a permanently inserted smart
card, and it has TPM provisioning software.

The MTM specification of the TCG tried to adapt the TPM to requirements
of the mobile phone platform and it can be seen as an attempt to standardize
secure boot on mobile phones. This specification has been far less successful
than the TPM standard, and it has not been adopted by manufacturers. We
believe that there are two main reasons for the failure of this attempt. On the
one hand, the mobile phone market is a lot more competitive than the PC world
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where Intel and Microsoft define the platform. Various processor manufacturers
and multiple operating systems (e.g., Android, iOS, Windows Phone, Blackberry
OS) exist, which presumably makes it more difficult to agree on a common
specification. On the other hand, smart phone platforms are more modern and
hence hampered less by backward compatibility requirements. Many mobile
phone manufacturers already implement a secure boot mechanism without an
MTM, e.g., in order to restrict the phone to a specific mobile operator or to
exercise strict control on the applications that get executed on the phones. iOS
is the prime example of a mobile ecosystem that relies heavily on code signing.
Apple wants that all third party applications are installed through its App
Store. A bonus of its closed model is that very few malware exists for the iOS
platform.

In Chapter 2 we explained that the TCG’s binary attestation approach has
some inherent shortcomings. First, it is hard to manage on a large scale because
a large number of valid platform configurations could exist and because every
software update will yield a different integrity measurement. Second, it only
provides assurance about software components that get loaded at boot time, and
consequently the platform can still be compromised at runtime. In Chapter 2 we
also described an alternative attestation scheme that combines the computation
of a runtime memory checksum with the timestamping functionality of the
TPM. This scheme requires minimal software support as it only relies on a
TPM device driver and optionally a trusted bootloader.

Chapter 3 dealt with the resilience of trusted computing platforms against
hardware attacks. Although the TCG specifications only consider software
attacks, most TPM implementations are based on a secure microcontroller series
and hence apply countermeasures against physical attacks. In this chapter, we
investigated which operations, at least in theory, can be targeted with a side
channel attack in order to extract the TPM’s internal secrets. It remains to
be seen how difficult this type of attacks is in practice, but it is clear that any
cryptographic implementation can be attacked with sufficient resources. The
main conclusion of this chapter, however, is that the communication interface of
the TPM is a more attractive attack target. Physical attacks on this interface
are not that difficult to perform and require relatively inexpensive equipment,
yet they have severe security implications. For instance, cryptographic keys can
be captured on the communication bus when they are unsealed, or a TPM reset
attack can be used to circumvent the static CRTM. An effective countermeasure
against this type of attacks is the integration of the TPM in the chipset, like
done by Intel, since it is much more difficult to access and monitor the front-side
bus of a PC.

In Chapter 4 we addressed one of the main challenges for integrated TPMs and
MTMs, namely the secure storage of its persistent state in external non-volatile
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memory. We proposed to encrypt and authenticate the externalized state with a
secret key that is embedded inside the trusted module. In addition, we proposed
to detect replay of older versions of the state either by including a nonce in the
state or by updating the secret key. With either approach, the trusted module
still needs a small amount of on-chip reprogrammable non-volatile memory.
Since Flash memory can often not be embedded in a cost effective manner, the
required on-chip NVM must be implemented with another technology. Battery-
backed SRAM is a popular choice; this option is for instance used in IBM secure
coprocessor products and in FPGAs with bitstream encryption support. If the
expected number of state updates is finite and rather small, fuses can be used
to implement a monotonic counter; this option is for instance used in game
consoles to prevent software downgrading. In Chapter 4 we introduced two
alternative solutions that do not require embedded reprogrammable NVM. The
first solution derives an updatable state protection key from a reconfigurable
PUF, whereas the second extends the security perimeter of the trusted module
to the external NVM chip with a cryptographic protocol. For the time being, the
first approach remains theoretical in nature, because good practical realizations
of the RPUF concept have yet to be found.

The TPM enables novel functionalities such as remote attestation and sealed
storage, but it can also be used as a traditional cryptographic coprocessor, e.g.,
to generate RSA signatures, to maintain a monotonic counter or to generate
random numbers. On most platforms third-party software can access the TPM
using a Public Key Cryptography Standards (PKCS)#11 interface and with
Microsoft Crypto API. For some applications, however, it would be useful if
the platform had a secure coprocessor that is freely programmable and that can
host multiple applications. In Chapter 5 we introduced the ' TPM architecture
for a secure coprocessor. The proposed architecture is inspired by the JavaCard
framework, particularly with regard to its multiprocessing support. It can be
used to implement a conventional TPM, but it can also run arbitrary security
tasks. Two important features differentiate the yTPM architecture from the
JavaCard architecture. First, the program code of the yTPM is stored in
external NVM and gets loaded in internal RAM when needed. In order to keep
the size of the embedded RAM small, we propose to split the TPM firmware into
different code fragments, each operating on a shared state, and to only load one
fragment at once. Second, the yTPM architecture adopts the trusted computing
principle of measured boot. The uTPM can execute arbitrary program code,
but the integrity of code gets measured and it can be reported afterwards.

FPGA devices have become big enough to implement complex reconfigurable
SoC designs that contain a softcore processor (e.g., MicroBlaze) and that
are capable of hosting an operating system such as Linux. In Chapter 6 we
investigated how a TPM or MTM can be integrated into a reconfigurable SoC
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design. With an FPGA implementation of the TPM standard, it is possible
to upgrade the TPM firmware as well as its hardware. Two main topics
were covered in this chapter: the protection of the persistent state and the
protection of the configuration bitstream on commercially available FPGAs.
Since SRAM-based FPGAs typically lack on-chip non-volatile memory, the
techniques of Chapter 4 were used to securely externalize the trusted module’s
persistent module. Furthermore, we introduced PUFs as a technology to derive
cryptographic keys on an FPGA, instead of embedding them directly in the
configuration bitstream. Finally, we also designed a trusted FPGA architecture
that adopts the TCG principle of measured boot and sealed storage.

7.2 Directions for Future Research

The publication of the TCG specifications has lead to an active research
community in the field of trusted computing. Significant contributions have been
made in this research domain, including the analysis of the TCG specifications,
applications of trusted computing technology, alternative approaches for remote
attestation, improvements to the DAA protocol, software support for trusted
computing, etc. In this thesis we covered a number of research topics in the
area of trusted computing, most of which deal with hardware aspects. We see
that there are still some open research questions and interesting directions for
future research.

Attacks on Trusted Computing Platforms. In Chapter 3, we did a theoretical
analysis of side channel attacks on the TPM. It remains to be investigated
how difficult these attacks are in practice on existing TPM implementations.
The experiments Kovah et al. [159] with the TPM tick stamping functionality
indicate that the Broadcom TPM might be vulnerable to timing attacks. Of
course the question can be raised whether the scientific community should
perform a security analysis of commercial products. However, this analysis can
provide users more confidence in trusted computing technology in general and
in specific solutions.

The TCG is currently working on specifications for a next generation of trusted
modules, namely for a TPM 2.0 and for an MTM 2.0. In October 2012 a
draft of the TPM 2.0 specification has been published for public review. As
pointed out in Chapter 3, some minor flaws were found in the TPM 1.1b and
1.2 specifications. So it is essential that the 2.0 specification gets scrutinized by
the community.
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Lightweight Trusted Computing. The TCG specifications and the accompa-
nying extensions to the x86 processor enable new security features such as
measured boot, remote attestation and sealed storage on the PC platform.
Even though the MTM specification has not been adopted, mobile phone
manufacturers are starting to include hardware support (e.g., ARM TrustZone,
TI M-Shield, embedded SE) for a trusted execution environment. The TCG
Embedded Systems Work Group has yet to release any specifications, but, in
the meantime, manufacturers are offering TPM variants with a communication
interface (i.e., 12C or SPI) that is more suited for non-PC platforms.

We believe that there is a need for a more minimal root of trust for embedded
systems. It is not viable to add a TPM, which in essence is a microcontroller
with a RSA coprocessor, to a low-end embedded device. Several software-based
remote attestation schemes (e.g., [238]) have been proposed for embedded
systems, but they are vulnerable to simple hardware attacks (e.g., increasing the
microcontroller’s clock frequency) and to the proxy attack that was described
in Chapter 2. However, with minor hardware changes, better schemes can
be devised. For instance, Schulz et al. [232, 233] constructed a lightweight
solution that combines software-based attestation with a PUF. Other promising
approaches are the self-protecting modules of Strackx et al. [261, 262] and the
SMART scheme of El Defrawy et al. [70], which both use a program-counter
dependent memory access control model.

Physical Unclonable Functions. In this thesis, we repeatedly used PUFs to
derive cryptographic keys. PUF-based key storage is interesting for cost reasons,
as it provides an alternative for OTP NVM technology, and from a security
respective, because the key is not present when the device is powered off. Various
PUF constructions have been proposed in the literature. However, an thorough
security analysis of these PUF constructions, in particular regarding their
resilience to physical attacks, is missing. Initial work on side channel analysis
of PUFs and fuzzy extractors has been presented by Merli et al. [197, 198], but
more elaborate research efforts are needed. One concrete idea that is worth
investigating, is to verify whether the frequency injection techniques that have
been proposed by Markettos and Moore [189] and by Bayon et al. [17] to attack
ring oscillator based TRNGs can also be applied on ring oscillator PUF's.

We believe that there is a need for more research on PUFs that are intrinsically
present in existing platforms. Intrinsic PUF's are for instance useful to derive a
secret key for a software TPM or to bind software to a specific platform. Memory
based PUFs (e.g., SRAM PUF) have been found in existing platforms. Holcomb
et al. [132, 133] used the SRAM startup state to derive a fingerprint on the
microcontroller of an RFID tag. In September 2012 the PUFFIN project, which
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looks for PUFs in standard computer components, announced! that SRAM
PUFs can be found in graphics cards of computers. Other interesting new results
are the work on extracting a fingerprint from Flash memory [217, 295] and the
microprocessor-intrinsic PUF construction of Maiti and Schaumont [186].

In Chapter 4 we introduced the concept of a reconfigurable PUF and we
illustrated how this new security primitive can be used to protect the persistent
state of a trusted module in external NVM. Practical realizations of this
theoretical concept, preferably in silicon, remain an open issue. One possible
approach could be to exploit transistor aging. Logically reconfigurable PUFs
are a good emulation from a behavioral perspective, but they do not achieve the
strong security properties of a physically reconfigurable PUF and they require
embedded NVM to store an internal state.

FPGA Security. In Chapter 6, we assumed that it is practically infeasible to
reverse engineer a PUF from a configuration bitstream. This assumption is
motivated by the fact that existing bitstream reversal tools such as Debit [203]
and BIL [23] can only reverse engineer bitstreams partially. Full bitstream
reversal remains an open problem.

In general, more research is needed to evaluate the security of PUF-based key
storage on FPGAs. Reverse engineering of the bitstream in order to determine
the type and location of the PUF in the reconfigurable logic is one attack
scenario. In his thesis [79] Drimer described how internal state changes can be
observed with the FPGA’s readback functionality. Perhaps this active readback
difference attack can be used to read the PUF response or the derived key.
Finally, as mentioned above, the PUF and the fuzzy extractor can also be
targeted with a side channel attack.

Ihttp://puffin.eu.org/20120927 . html
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