KU LEUVEN ARENBERG DOCTORAL SCHOOL
Faculty of Engineering

Algorithms for analyzing
biological sequences

Eduardo de Paula Costa

Dissertation presented in partial
fulfillment of the requirements for the
degree of Doctor in Engineering

July 2013






Algorithms for analyzing biological sequences

Eduardo DE PAULA COSTA

Supervisory Committee: Dissertation presented in partial
Prof. dr. ir. J. Vandewalle, chair fulfillment of the requirements for
Prof. dr. ir. H. Blockeel, supervisor the degree of Doctor

Prof. dr. ir. J. Ramon, supervisor in Engineering

Prof. dr. ir. M. Bruynooghe
Prof. dr. ir. L. De Raedt
Prof. dr. K. Marchal
Prof. dr. ir. P. Geurts
(Université de Liege, Belgium)
Dr. E. Danchin
(Institut ~ National de la  Recherche
Agronomique, France)

July 2013



© KU Leuven — Faculty of Engineering
Celestijnenlaan 200A, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2013/7515/84
ISBN 978-94-6018-698-1



Abstract

In 1995, scientists achieved the first complete genetic map of a free living
organism, the bacterium Haemophilus influenzae. Since then, a huge amount
of genomic and proteomic data has been generated due to the developments
in biological and computer sciences. This availability of data has led to a new
challenge, namely, the analysis and interpretation of this data. These involve
many tasks such as: the identification of genes, regulatory regions, and repetitive
elements; phylogenetic analysis; identification of proteins and peptides expressed
in an organism, cell or tissue; and protein function prediction.

In this thesis, we investigate computational methods for analyzing nucleotide
and amino acid sequences. We do it in the context of three biological problems:
phylogenetic tree reconstruction, protein subfamily identification, and peptide
identification using mass spectrometry data.

In phylogenetic tree reconstruction, one is interested in inferring the most likely
tree topology that explains the evolutionary history of genes and organisms. We
propose a method that, given a set of nucleotide or amino acid sequences, builds
a phylogenetic tree in a top-down way. Our method is based on a conceptual
clustering method that extends the well-known decision tree learning approach.
We start from a single cluster containing all sequences and repeatedly divide it
into subclusters until all sequences form a different cluster. We assume that a
split can be described by referring to particular polymorphic positions of the
multiple sequence alignment and propose a heuristic to choose the best split
at each iteration. This allows us to identify important mutations that might
have given rise to different evolutionary lineages. The trees generated by our
method are therefore more informative than the ones generated by standard
methods. Moreover, we show that our method is comparable to standard ones
in terms of accuracy of the produced phylogenetic tree.

In protein subfamily identification, given a set of sequences belonging to
a protein family, the goal is to identify subgroups of functionally closely



ii ABSTRACT

related proteins. This can be done by using evolutionary information. We
propose a method that first uses the phylogenetic tree reconstruction method
described in the previous paragraph, and then cuts the tree to extract clusters
(subfamilies) of sequences. We show that the proposed method yields good
results with advantages over those produced by a state-of-the-art method. More
specifically, it identifies subfamily-specific positions that might be important
for the function(s) associated to the subfamily, and it allows easy classification
of new sequences into one of the identified subfamilies.

Finally, we consider the problem of inferring the peptide identification of mass
spectrometry data. In mass spectrometry, an unknown peptide undergoes
fragmentation, and its fragment masses are registered in a fragmentation
spectrum. Then, computational methods infer the peptide sequence from
its spectrum. We propose a method that does this by searching for the peptide
identification in the six-frame translation of the genome. Differently from other
methods that allow a similar search, it does not use a filtering procedure to
limit the computation of the scoring function to a small subset of sequences
that are likely to obtain a high score. Instead, it performs an exhaustive scan of
the genome translation. We show that our strategy can identify more peptides
than a non-exhaustive search.

As an additional contribution of this thesis, we consider a problem purely
computational, namely, the problem of estimating the certainty of a prediction
given by a decision tree. We propose a method that uses a transductive
procedure to tackle this task. We show that our method improves the certainty
estimates given by standard decision trees, and is especially suitable for ranking
estimation. The ideas we use in our method can be easily generalized to other
machine learning techniques, as well as combined with existing methods for
prediction certainty estimation.



Beknopte samenvatting

In 1995 slaagden wetenschappers er voor het eerst in om het volledige genoom
van een levend organisme, de bacterie Haemophilus influenzae, in kaart
te brengen. Sindsdien werd een enorme hoeveelheid aan gegevens uit het
genoom en het proteoom gegenereerd dankzij de ontwikkelingen in de biologie
en computerwetenschappen. Deze beschikbaarheid aan gegevens heeft tot
een nieuwe uitdaging geleid, namelijk de analyse en interpretatie van deze
gegevens. Dit proces bestaat uit meerdere taken zoals de identificatie van
genen, regulerende gebieden en repetitieve elementen, fylogenetische analyse,
de identificatie van proteinen en peptides die in een organisme, cel of weefsel
voorkomen, en de voorspelling van genfuncties.

In deze thesis onderzoeken we computationele methoden voor de analyse
van nucleotide- en aminozuursequenties. We doen dit in de context van
drie biologische problemen: de reconstructie van fylogenetische bomen, de
identificatie van proteinedeelamilies en de identificatie van peptides op basis
van massaspectrometriegegevens.

Bij de reconstructie van fylogenetische bomen is men geinteresseerd in het vinden
van de meest plausibele boomtopologie die de evolutionaire geschiedenis van
genen en organismen verklaart. We stellen een methode voor die, gegeven een
verzameling van nucleotide- of aminozuursequenties, een fylogenetische boom
bouwt op een top-down manier. Onze methode is gebaseerd op conceptuele
clustering die op zich een uitbreiding is op het leren van beslissingsbomen.
We beginnen met een cluster die alle sequenties bevat en splitsen deze cluster
recursief in deelclusters tot alle sequenties een verschillende cluster vormen.
We veronderstellen dat een splitsing beschreven kan worden door de specifieke
polymorfe posities van de sequentiealiniéring en stellen een heuristiek voor om
de beste splitsing te kiezen tijdens iedere iteratie. Dit zorgt ervoor dat we
belangrijke mutaties kunnen identificeren die potentieel geleid hebben naar
verschillende evolutionaire takken. De bomen die geleerd werden met onze
methode zijn dus informatiever dan de bomen geleerd door standaardmethodes.



iv BEKNOPTE SAMENVATTING

Bovendien tonen we aan dat onze methode fylogenetische bomen leert die
vergelijkbaar accuraat zijn met bestaande methodes.

Bij de identificatie van deelfamilies van proteinen is de invoer een verzameling
van sequenties die tot een proteinefamilie behoren en het doel de identificatie van
deelgroepen van functioneel gerelateerde proteinen. Dit is mogelijk door gebruik
te maken van evolutionaire informatie. We stellen een methode voor die eerst
fylogenetische bomen reconstrueert (aan de hand van de methode beschreven in
de vorige paragraaf) en vervolgens de boom knipt om clusters (deelfamilies) van
sequenties te bekomen. We tonen aan dat de methode goede resultaten behaalt
en ook andere voordelen heeft t.0.v. van een state-of-the-art methode. Meer
specifiek identificeert onze methode specifieke posities die belangrijk kunnen
zijn voor de functies geassocieerd aan de deelfamilie, en laat ze classificatie toe
van nieuwe sequenties m.b.t. één van de geidentificeerde deelfamilies.

Tenslotte beschouwen we de identificatie van peptides uit massaspectrometriege-
gevens. In massaspectrometrie ondergaat een ongekende peptide fragmentatie,
waarbij de massa’s van de verschillende fragmenten weergegeven worden in
een fragmentatiespectrum. Vervolgens infereren computationele methodes de
peptidesequentie uit dit spectrum. We stellen een methode voor die zoekt naar
de peptide-identificatie in de vertaling van het genoom voor de zes leesramen. In
tegenstelling tot andere methodes die een gelijkaardige zoekruimte doorzoeken,
gebruikt onze methode geen filterprocedure, die als doel heeft om de berekening
van de scorefunctie te beperken tot een klein aantal sequenties die een hoge
kans hebben op een hoge score. In plaats daarvan doorzoekt ze de vertaling
van het genoom exhaustief. We tonen aan dat deze strategie meer peptides kan
identificeren dan een niet-exhaustief zoekproces.

Een bijkomende bijdrage van deze thesis is een puur computationeel probleem,
namelijk de schatting van de zekerheid van een predictie gegeven door een
beslissingsboom. We stellen een methode voor die een transductieve procedure
gebruikt om dit probleem aan te pakken. We tonen aan dat onze methode
de zekerheidsschattingen van standaard beslissingsbomen verbetert, en in het
bijzonder bruikbaar is voor het schatten van rankings. De ideeén die we voor
deze methode gebruiken kunnen gemakkelijk veralgemeend worden naar andere
leertechnieken; tevens kunnen ze gecombineerd worden met bestaande methodes
voor de schatting van de zekerheid van voorspellingen.



Acknowledgments

I am about to finish my Ph.D. journey. A journey that started five years ago
when T moved to Belgium, leaving behind my home country (Brazil), my family,
friends, and the “world” I knew so far. A journey that has been full of challenges,
adventures and excitement, and deep in learning. A journey that is composed
of an inseparable mixture of personal and academic experiences. A journey that
has changed me in so many different ways that I am sure that my decision to
pursue a Ph.D. at the KU Leuven was one of the best decisions I have made in
my life.

When I look back at everything that has happened since my first day in Belgium,
my heart becomes full of gratitude for all those people that helped me somehow
along the way. And I would like to take this opportunity to thank some of
them.

First of all, T would like to thank my supervisor Hendrik Blockeel. T feel
privileged to have been given the opportunity to work with him. I have learned
a lot with him and I am very grateful for every compliment, critical remark and
suggestion I received from him during these years. I would also like to thank
Jan Ramon and Maurice Bruynooghe, who were involved in the supervision of
my Ph.D. as well and who were always ready to help me out.

Apart from Hendrik, Jan and Maurice, I also want to thank the other members
of my Ph.D. jury for reading and evaluating my thesis, and for their suggestions
to improve the text: Luc De Raedt, Kathleen Marchal, the external members
Pierre Geurts and Etienne Danchin, and the chairman Joos Vandewalle.

As 1 was involved in different research tasks during my Ph.D., I had the
opportunity to work with different people and I am very grateful for all their
help and great contribution to this thesis. First of all, I would like to give a
huge thank you to Celine Vens, who is by far the person with whom I spent
most of my working hours. She was involved in most of the research tasks I
have worked on, and I am very thankful for her daily guidance during all these



vi ACKNOWLEDGMENTS

years. I would like to thank Kurt De Grave for all his help and meticulousness
in the work involving mass spectrometry data analysis. I also want to thank
Gerben Menschaert and Walter Luyten for their time in providing biological
data and answering my doubts about mass spectrometry. I also want to thank
Sicco Verwer for his ideas and discussions in the work we did together.

I would like to give a special thanks to Leander and Tias, two colleagues who
have also become good friends. They were always ready to encourage me during
the difficult times, both for Ph.D. and personal matters. They were always
there to enjoy and celebrate the good moments with me as well. They also
helped me in revising parts of this thesis and in providing feedback about my
work. And, of course, I cannot forget our weekly running sessions during lunch
break, which were always very welcome.

I want to thank Karin, Denise and Inge, who helped me out several times
with administrative procedures involving my Ph.D. I gratefully acknowledge
the project “Learning from data originating from evolution”, funded by the
Research Foundation - Flanders (FWO-Vlaanderen), which provided me with
financial support during my Ph.D. studies.

I would like to thank all my “kotgenootjes” (residence mates), who played a
fundamental role in my adaptation to Belgian life. They have seen me during
relaxed and stressful periods, and were especially supportive in the last phase
of my thesis writing. A special thanks to three of them, who have become very
good friends: Mieke, Thomas and Sophie.

I would like to thank the incredible people that I have met in the different
organizations/communities which I joined at some point during my stay in
Belgium: Ichtus, ICEL (International Church of Evangelicals in Leuven), the
Brazilian group in Leuven, HRC (Hagelandse Running Club), and Omkadering.
A special thanks to my good friends Alejandra, Hanna, Sarah, Suzana and
Gabriel, who were always very interested in knowing about the progress of my
Ph.D. studies and have even been volunteers for some of my try-out presentations.
Their friendship and companionship have also made my days more joyful and
meaningful.

A special thanks to my good friend Philip and all his family, who welcomed me
in their lives as part of the family. I cannot describe in words how important
it was for me to have a family here. I am also grateful to four other families
that also welcomed me in their homes on different occasions: Mieke’s family,
Thomas’ family, Sarah’s family and Hanna’s family. This meant a lot to me.

I am very grateful to my friends in Brazil who were very supportive during
this period and helped me in many different ways. A special thanks to Cinthia,
César, Ray, Carol, Ivan, Camila, Magda, Gabi, Mariana, Cerri, Olga and Fischer.



ACKNOWLEDGMENTS vii

A special thanks to my friend Liam, from England, who was always ready for a
Skype chat during my breaks while I was writing my thesis. That made the
writing phase less lonely, especially in the late evenings. He has also helped me
with some English corrections.

Finally, I would like to thank my family in Brazil. Even being so far away, they
were very present in every step of my Ph.D. studies and my adaptation/life in
Belgium. They were always there for words of encouragement and have always
supported and believed in me. And I would like to thank God for sustaining and
guiding me in so many different ways that I cannot even grasp or understand.

Eduardo de Paula Costa
Heverlee, June 2013






Contents

Abstract i
Contents ix
List of Figures XV
List of Tables Xix
Abbreviations xxiii
1 Introduction 1
1.1 Context . . . . . . . . . . e 1
1.1.1 Machine learning . . . . . . . ... ... L. 1

1.1.2 Bioinformatics . . . .. ... ... ... ... ...... 3

1.2 Motivations and contributions . . . . . . ... ... ... .... 4
1.3 Structure of the thesis . . . . . ... ... ... ... ...... 6

2 Background 7
2.1 Biological sequences . . . . . . .. ... e 7
2.1.1 A cell and its genetic information . . . . . . .. ... .. 7

2.1.2  From DNA to proteins . . . . . . . ... ... ...... 9



CONTENTS

2.1.3 Peptides . . . . . ..o 11
2.1.4 Evolutionary mechanisms and phylogenetic analysis . . . 11
2.1.5  Genome annotation . . . ... ... .. ... ... ... 13
2.2 Machine learning . . . . . . ... oL oL 14
2.2.1 Learning from experience . . . ... ... .. ... ... 14
2.2.2 Typesoflearning . . . . . . . ... .. ... ... .... 15
2.2.3 Evaluating the learning performance . . . . . . ... .. 19
2.3 Summary . ... .. 22
Top-down induction of phylogenetic trees 23
3.1 Imtroduction . . . . . . .. ... ... 23
3.2 Background and related work . . . . .. ... ... L. 25
3.2.1 Phylogenetic tree reconstruction . . . . .. .. ... .. 25
3.2.2 C(Classical approaches . . . . . ... ... ... .. .... 26
3.2.3 PTDC - Phylogeny by Top-Down Clustering . . . . .. 30
3.2.4 Comparing phylogenetic trees . . . . . . . ... ... .. 30
3.3 Proposed method . . . . . ... ..o 31
3.4 Empirical evaluation . . . .. ... .. ... 0L 35
3.41 Realdatasets . . . .. ... ... ... ... 35
3.4.2 Synthetic datasets . . . . ... ... L L. 36
3.4.3 Comparison to PTDC . . . . ... ... ... ...... 42
3.5 Conclusions . . . . . ... ... 42

Using top-down induced clustering trees for protein subfamily

identification 45
4.1 Introduction. . . . . . . . . . .. .. ... 45
4.2 Background and related work . . . ... ... o0 46

421 SCI-PHY . ... ... . 48



CONTENTS xi

4.3 Proposed method . . . . . . .. ... 49
4.4 Evaluation measures . . . . . . .. ... ..o 53
4.4.1 'Tree topology evaluation. . . . . . ... ... ... ... 53
4.4.2 Clustering evaluation. . . . . ... ... ... ... ... 56
4.5 Empirical evaluation . . . .. ... ... o000 58
4.5.1 Datasets . . . . . ... 58
4.5.2 Testing the usability of polymorphic positions for cluster-
ing protein subfamilies . . . . . ... ..o 59
4.5.3 Evaluating the tree topology . . . .. ... .. .. ... 60
4.5.4 Evaluating the cluster predictions . . .. .. ... ... 63
4.5.5 Evaluating the classification performance . . ... . .. 66
4.5.6  Analyzing the identified positions . . . . . . . .. .. .. 68
4.6 Conclusions . . . . . . .. . Lo 71
5 Peptide identification using mass spectrometry data 73
5.1 Imtroduction. . . . . . . ... ... 73
5.2 Background and related work . . . . ... ... oL 75
5.2.1 Peptide identification in peptidomics and proteomics . . 75
5.2.2 MS and MS/MS experiments . . . . ... ... ..... 75
5.2.3 lon fragmentation . ... ... ... ... ... .. 76
5.2.4 MS/MS spectrum analysis . . . . . . ... ... ... .. 78
5.2.5 Search against the six-frame translation of the genome . 80
5.3 Proposed method . . . . . .. .. ... .. ... ... 82
5.3.1 Overview of the method . . . . . .. .. ... ... ... 82
5.3.2 Scoring functions . . . ... ..o 85
5.3.3 Pruning procedure . . . . . .. ... 86
5.3.4 Post-translational modifications . . . . . .. .. ... .. 87

5.3.5 Limitations of the method and possible solutions . . . . 88



CONTENTS

5.4 Empirical evaluation . . . . . ... ... 0oL 89
5.4.1 Experimental setup. . . . . .. ... ... L. 89
5.4.2 Comparing different scoring functions . . . .. ... .. 90
5.4.3 Searching for post-translational modifications . . . . . . . 91
5.4.4 Comparing the results with MS-GappedDictionary . . . 92
5.4.5 Evaluating the pruning procedure . .. ... ... ... 93

5.5 Conclusions . . . . . . . ... 95

Estimating prediction certainty in decision trees 97

6.1 Introduction . . . . . . .. ... . ... 97

6.2 Background and related work . . . .. ... 0oL 99
6.2.1 Prediction certainty in soft classifiers . . . . . . .. . .. 99
6.2.2 Decision trees and certainty estimates . . . .. ... .. 100

6.3 Proposed method . . . . . ... .. .o 106
6.3.1 Intuition of the proposed method . . . . . . .. ... .. 106
6.3.2 Description of the method . . . . . ... ... .. .... 109
6.3.3 Example of the calculations . . . . . .. ... ... ... 112

6.4 Empirical evaluation . . . ... .. .. ... 000 115
6.4.1 Experimental setup. . . .. .. ... .. ... ... ... 115
6.4.2 Evaluating the accuracy of the predictions . . . . . . .. 116
6.4.3 Evaluating probability estimation . . . . . . . .. .. .. 117
6.4.4 Evaluating ranking estimation . ... ... ... .. .. 118
6.4.5 Evaluating reliability estimation . . . . ... ... ... 119

6.5 Conclusions . . . . . . .. ... 121

Conclusions 123

7.1 Thesis summary . . . .. ... . ... 123

7.2 DIiSCusSion . . . . . . v 125



CONTENTS xiii

7.3 Possible improvements . . . . . .. ... oL 126
7.4 Further application opportunities . . . . . . .. ... ... ... 127
A Heuristic function used by Clus-¢ 129
A.1 Heuristic function to split the root node . . . . . ... .. ... 129
A.2 Heuristic function to split the other internal nodes . . . . . . . 132

A.3 Tllustration of the calculations performed by the Clus-¢ heuristic 135

B Protein subfamily identification - tree topologies 139
C List of datasets used in Chapter 6 145
Bibliography 149
List of publications 163

Curriculum vitae 167






List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1

3.2

3.3
3.4
3.5
3.6

3.7

DNA structure . . . . . . . . . ... 8

Iustration of the directionality of a double-stranded piece of DNA 9

General structure of an amino acid. . . . . . .. ... ... ... 10
Example of a amino acid chain encoded from a DNA fragment. 10
Example of a rooted and an unrooted phylogenetic tree . . .. 13
Example of a multiple sequence alignment. . . . .. ... ... 13
Example of a decision tree . . . . . . . ... ... ... .. 16
Pseudocode for the top-down induction of a decision tree . .. 16

Three phylogenetic trees with the same topology, but different
rooting definition . . . . . . ... oL oL o 25

Example of a tree that assumes a clock-like behavior of mutations
and a tree that allows different mutation rates across its branches 28

Ilustration of the NJ merging procedure . . . . . . . ... ... 28
Four possible unrooted trees that can be defined for four OTUs . 31
Pseudocode for the Clus-based approach. . . . ... ... ... 32

Tllustration of how our method uses polymorphic mutations to
induce a clustering tree in a top-down way. . . . ... ... .. 32

Split topologies considered during the top-down tree construction 33

XV



LIST OF FIGURES

3.8

3.9
3.10
3.11

4.1
4.2
4.3

4.4

5.1

5.2
5.3
5.4
9.5
5.6
5.7

6.1

6.2

6.3

6.4

Results for symmetric and random trees, in terms of quartet

distance . . . . . .. L 39
Tree topology with 40 steps from symmetry . . . ... ... .. 40
Running times for Clus-¢ and NJ; sequence length: 300 . . . . . 41
Running times for Clus-¢ and NJ; sequence length: 900 . . . . . 41
Pseudocode for the proposed post-pruning procedure . . . . . . 50
Example of a tree output by our method . . . . . . .. ... ... 51

Two trees with the same edited tree size, a smaller TBC error
for tree a, and a smaller number of subfamily changes for tree b 54

Identified polymorphic positions in first four levels of the Enolase
tree . . . L e 71

Tllustration of an MS experiment workflow and an MS/MS

experiment workflow . . . . . .. .. o000 76
Example of ion fragmentation. . . . ... ... .. ... .... 7
Example of de novo sequencing . . . . . . ... ... ... 78
Database search approach. . . . . . . ... ... ... 79

Pseudocode of PIUS for the analysis of a translated fragment T' 84
Pseudocode of the pruning procedure performed by PIUS. . . . 87

Evaluating the pruning procedure with different values for the
parameter a.. . . . ... Lo 94

Example of a misclassification with high prediction certainty for
the Irisdataset . . . . . . . .. ... .. .. .. .. ... ..., 107

Illustration of how the tests selected during the induction of a
decision tree can be dependent on the label of a single instance 108

Tllustration of how the tests selected during the induction of a
decision tree can be dependent on the label of a single instance -
example 2 . . ... Lo 109

Pseudocode to obtain the prediction for an instance x. . . . . . 112



LIST OF FIGURES xvii

6.5 Undesired effects of using a test instance when constructing
decision boundaries. . . . ... ... oL oL oL 113

6.6 Results in terms of accuracy: “Clus-TPCE vs. Clus-Orig” and
“Clus-TPCE vs. Clus-Ens” . . . ... .. ... ... ...... 116

6.7 Results in terms of the Brier score: “Clus-TPCE vs. Clus-Orig”
and “Clus-TPCE vs. Clus-Ens” . . . . . ... ... ... ... 117

6.8 Results in terms of AUC: “Clus-TPCE vs. Clus-Orig” and “Clus-
TPCE vs. Clus-Ens” . . . . . .. ... .. ... .. ....... 118

6.9 Results in terms of AUC reliability: “Clus-TPCE vs. Clus-Orig”,
“Clus-TPCE vs. Clus-Ens’, and “Clus-TPCE vs. Clus-K&K” . 120

A.1 Tlustration of the first split performed by Clus-p . . . . . . .. 130
A.2 Tllustration of the tree topology considered by Clus-p when
splitting non-root nodes. . . . . . .. ... 132
A.3 Example: tree topology. . . . . ... ... oL 135
B.1 Clus-y edited tree for the EXPERT dataset Enolase. . . . . . . 139
B.2 SCI-PHY edited tree for the EXPERT dataset Enolase. . . . . 140
B.3 NJ edited tree for the EXPERT dataset Enolase. . . . . .. ... 141
B.4 Clus-¢-ECC tree for the EXPERT dataset Enolase . . . . . . . 142

B.5 SCI-PHY tree for the EXPERT dataset Enolase . . . . .. .. 143






List of Tables

21

3.1
3.2
3.3
3.4

3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Confusion matrix for a binary classification problem . . . . .. 19

Results for real datasets in terms of quartet distance . . . . . . 36

Comparison of different heuristics for phylogeny tree reconstruction 37

Number of wins of NJ and Clus-¢ for synthetic datasets . . .. 38
Analysis of the effect of the symmetry of the tree on the

performance of NJ and Clus-¢ . . . . ... ... ... ... .. 39
Analysis of the influence of the number of sequences on the

performance of NJ and Clus-¢ . . . . ... .. ... ... ... 42
Protein subfamily datasets . . . . . . ... ... L. 59
Number of leaves in the classification trees . . . . . . . . .. .. 60
Edited tree size - choosing the test selection criterion . . . . . . 60
TBC error - choosing the test selection criterion. . . . . . . . .. 61

Number of subfamily changes - choosing the test selection criterion 61
Edited tree size - evaluating the Clus- topologies . . . . . .. 62
TBC error - evaluating the Clus-p topologies . . . . ... ... 62
Number of subfamily changes - evaluating the Clus-¢ topologies 63
Evaluation of the clustering predictions for the EXPERT datasets 64

4.10 Evaluation of the clustering predictions for the NucleaRDB datasets 65

Xix



XX

LIST OF TABLES

4.11 Category utility results . . . . . . ... ... Lo 67
4.12 Accuracy of the protein classification results . . . . . . . .. .. 69
4.13 Enolase subfamily definitions . . . . . ... ... ... .. 69
5.1 Comparing different scoring functions . . . . . . . .. ... ... 90

5.2 Analyzing PIUS (with MIWS and X;) for the case where PTMs
are allowed in the search. . . . . .. ... ... ... ... .. 91

5.3 Comparison between MS-GappedDictionary and PIUS . . . . . 93

6.1 Example calculations: class distribution of the leaf node
responsible for the prediction for the three induced trees. . . . 113

6.2 Example calculations: probability distribution after applying the

Laplace smoothing. . . . . . . .. .. ... oo 114
6.3 Example calculations: final predictions . . . . . . . .. ... .. 114
6.4 Comparison of the results in terms of accuracy . . . ... ... 116
6.5 Average accuracy for Clus-Orig, Clus-TPCE and Clus-Ens. . . 117
6.6 Comparison of the results in terms of the Brier score . . . . . . 117

6.7 Average Brier score for Clus-Orig, Clus-TPCE, and Clus-Ens. . 118

6.8 Comparison of the results in terms of AUC . . ... ... ... 119
6.9 Average AUC for Clus-Orig, Clus-TPCE, and Clus-Ens. . . . . 119
6.10 Comparison of the results in terms of AUC reliability . . . . . . . 121
6.11 Average AUC reliability for Clus-Orig, Clus-TPCE, Clus-Ens,

and Clus-K&K. . . . . . . .o 121
A.1 Example: Distance Matrix. . . . . ... ... ... ... .... 135
C.1 Datasets used for developing/fine-tuning Clus-TPCE. . .. .. 145

C.2 Datasets used for the evaluation presented in Section 6.4 (Chapter
6) o 146

C.3 Datasets used for the evaluation presented in Section 6.4 (Chapter
6)-Part IL. . . . . . . . 147



LIST OF TABLES

xxi

C.4 Datasets with separated test set.






Abbreviations

AUC

ECC

DNA

Ens

HMM

HTU

1G

MALDI
MaxAvgDist
MaxMinDist
MS

MSA
MS/MS

MIWS

Area under the ROC curve

Encoding cost

Dalton

Deoxyribonucleic acid

Ensemble

Hidden Markov model

Hypothetical taxonomic unit

Information gain

Matrix-assisted laser desorption/ionization
Maximization of the average inter-cluster distance
Maximization of the minimum inter-cluster distance
Mass spectrometry

Multiple sequence alignment

Tandem mass spectrometry

Multi-ions weighted SEQUEST

xxiii



XXiv ABBREVIATIONS

NJ Neighbor Joining

OTU Operational taxonomic units

PIUS Peptide Identification by Unbiased Search
PST Peptide sequence tag

PTDC Phylogeny by Top-Down Clustering

PTM Post-translational modification

RA Relative abundance of ions

RNA Ribonucleic acid

SHMM Subfamily hidden Markov model

TBC Tree-based classification

TOF Time-of-flight

TPCE Transductive prediction certainty estimation
UPGMA Unweighted pair group method with arithmetic mean

VI Variation of information



Chapter 1

Introduction

The goal of this thesis is to develop machine learning methods for analyzing
biological sequences. In this chapter, we give an overview of our work, describing
its context, motivations and contributions, and present the structure of the
thesis.

1.1 Context

This thesis is situated in the field of machine learning and in the application
domain of bioinformatics. We briefly describe these two research areas in this
section.

1.1.1 Machine learning

Broadly speaking, learning can be defined as the ability of an organism to adapt
its behavior as a result of interaction with the environment. This change of
behavior, which can be stimulated by different kinds of interactions, aims at
improving the performance in solving one or more tasks. In a pride of lions,
for example, the young members of the pride improve their hunting skills by
observing the behavior of the elder and more experienced members, and by
their own success and failure experiences.

Similarly, in the context of computer science, we can develop programs that
are able to automatically improve their own performance on a certain task.



2 INTRODUCTION

They do it by analyzing recorded data for that task. This data often consists
of observations of how instances of the task were performed in the past [13].
The experience given by these observations enables the program to “learn” how
to improve its performance. This leads to the following definition of learning
behavior:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E [94].

This artificial learning behavior is the subject of machine learning, which is one
of the main research branches within artificial intelligence. Next, we give an
example of a learning task.

Example 1. Consider the task of predicting if a certain drug will cause side
effects in patients under treatment for a particular disease. The performance of
a machine learning program tackling this task can be measured by the percentage
of patients for which the correct prediction is made. The experience used by the
program can be the history information of former patients that have undertaken
the same treatment, and how they reacted to the drug. If the program improves
its prediction for the new patients by using this experience, we say that the
program has the ability to learn.

The above example illustrates a predictive learning task. In this kind of learning,
the goal is to make predictions for new cases based on what has been previously
observed. What we want to predict is called the “target variable”, and the
observations are described in terms of “descriptive variables”. In Example 1, the
target variable indicates whether a patient showed side effects for the drug or not,
and the descriptive variables could be the information contained in the patients’
profiles, for example. To be able to make predictions, a predictive machine
learning builds a model or hypothesis that maps the descriptive variables (input)
to the target variable (output). Examples of predictive learning techniques
include learners of decision trees [17, 102], artificial neural networks [143], and
support vector machines [28].

Machine learning can also be used for descriptive purposes; we call this
descriptive learning. In this learning setting, the goal is to build a model that
captures properties (ideally, properties that are not trivially visible) of what has
been observed [13]. Examples of descriptive learning tasks are clustering [66],
frequent itemset discovery [2], and association rule mining [1]. K-means [84]
and Expectation Maximization (EM) [31] are examples of descriptive learning
techniques. Some originally predictive learning techniques have also been applied



CONTEXT 3

to descriptive tasks: top-down induced clustering trees [14] and self-organizing
maps (SOM) [74] are descriptive counter-parts of decision trees and artificial
neural networks, respectively. An example of a descriptive learning problem
follows.

Example 2. Consider the clustering task where, starting from a set of biological
sequences, the goal is to group sequences into clusters of similar sequences. To
determine which sequences should be grouped together, the clustering algorithms
use the values for the descriptive variables. In this case, these variables could
be features of the sequences such as its length, and molecular weight.

In this thesis we investigate both kinds of learning.

1.1.2 Bioinformatics

The origin of bioinformatics is usually associated to the time of the large-scale
genome projects and the development of the first large biological databases.
However, the roots of this interdisciplinary research area actually date back to
the early 1960s. By then, computers emerged as important tools in molecular
biology. This was possible due to three main factors [57]: (1) the development
of techniques to sequence proteins; (2) the increasing interest of scientists in the
information carried by these sequences; and (3) the availability of computers to
academic researchers. The term bioinformatics was used for the first time in
the early 1970s to define “the study of informatic processes in biotic systems”
[59]. By then, computational biologists had already developed a diverse set of
techniques for analyzing molecular structure, function and evolution [57].

Since those early years, bioinformatics has grown into a broad field, with a
large research community, and now plays added roles in biological and medical
research [95].

In its essence, bioinformatics can be defined as an interdisciplinary research area
that studies, develops and applies computational, statistical and mathematical
methods to solve biological problems. Among the large range of problems
tackled by bioinformatics methods, we can mention: genome sequencing, gene
finding, protein and peptide identification, sequence alignment, phylogenetic
tree reconstruction, protein function prediction, biological database design and
management, just to name a few. Next, we give a quick overview of each one of
these tasks.

Genome sequencing consists of determining the whole hereditary information of
an organism, which is encoded in DNA (deoxyribonucleic acid); in the case of
some viruses, the hereditary information is encoded in RNA (ribonucleic acid).



4 INTRODUCTION

The complete DNA sequence of an organism contains all necessary information
for its development and functioning. More specifically, this information is used
to produce proteins, which are responsible for almost all cellular activities
necessary for the functioning of an organism. The regions of the genome that
are used to produce proteins are called genes.! Thus, gene finding is the task of
determining those regions.

In protein identification, one is interested in identifying which proteins are
present in a certain organism, tissue or cell type. One technology that is
commonly used for this is mass spectrometry [54]. This technology is also used
for the identification of peptides, which are structurally very similar to proteins,
but shorter.

Sequence alignment involves arranging sequences in a way that it identifies
regions of similarity. These similar regions may be due to evolutionary reasons,
for example. Hence, such alignments are usually used in phylogenetic tree
reconstruction [112]. In this task, the goal is to reconstruct the evolutionary
history of organisms, species, or genes. Knowing how sequences are evolutionarily
related is important for protein function prediction, for example. Proteins that
are evolutionarily closer are more likely to be responsible for the same functions
in the biological system of an organism.?

Finally, all the data resulting from the aforementioned tasks needs to stored
in a structured way, so that data can be retrieved or updated, for example.
For this reason, biological database design and management [9, 8] is also an
important task in bioinformatics.

1.2 Motivations and contributions

In 1995, scientists achieved the first complete genetic map of a free living
organism, the bacterium Haemophilus influenza. Since then, many genomes
have been fully sequenced. These genomic developments were followed by
advances in proteomics, which can be defined as the large scale study of the
proteins produced by an organism.

The progress in both genomics and proteomics has led to an enormous increase
in the amount of publicly available data in biology [100, 105]. The availability
of biological data has, in turn, led to new challenges that involve how to make

IThere are also genes that do not code for proteins. For example, some genes that code
for subunits of the ribosome are made of RNA and are not translated into proteins. Some
genes also code for small RNAs that are involved in regulation of other genes.

2Phylogenetic analysis also has other applications such as the investigation of the
origin/history of epidemics and infectious disease contamination.



MOTIVATIONS AND CONTRIBUTIONS 5

sense out of all this data. It is in this context that data mining and machine
learning have been playing an important role as a source of new methods and
techniques to analyze biological data.

The overall goal of this thesis is the development of computational methods
for analyzing biological sequences (in particular, DNA and amino acids
sequences). We approach this goal in two different ways. First, we explore the
evolutionary information encoded in biological sequences to tackle two related
tasks: phylogenetic tree reconstruction and protein subfamily identification.
Second, we explore the information encoded in the genome to perform peptide
identification using mass spectrometry data.

The main contributions of this thesis can be summarized as follows:

The first contribution is the investigation of the use of divisive conceptual
clustering for phylogenetic tree reconstruction. In this context, we propose a
novel method based on a decision tree learner that builds the phylogenetic tree
in a top-down way. We show that, even though little investigated and used,
top-down clustering can produce results comparable to those of well-known
phylogenetic methods, which use a bottom-up approach.

The second contribution is a new method for protein subfamily identification.
In this problem, given a set of sequences belonging to a protein family, the
goal is to identify subgroups of functionally closely related proteins. Our
proposed method does it by analyzing the evolutionary relationship among the
protein sequences. It first uses our aforementioned method for phylogenetic tree
reconstruction. Then, it cuts the resulting tree to extract clusters (subfamilies)
of sequences. We show that the proposed method yields good results with
advantages over those produced by a state-of-the-art method.

The third contribution is a new method for peptide identification. The pro-
posed method infers the peptide identification from tandem mass spectrograms
by searching against the six-frame translation of the genome. Differently from
other methods that allow a similar search, it does not limit the analysis to a
small subset of candidate sequences. Instead, it performs an exhaustive scan
of the translation of the six reading frames of the complete genome. We show
that our strategy can identify more peptides than a non-exhaustive search.

As an additional contribution of this thesis, we introduce a new procedure
to calculate prediction certainty for decision trees. This research topic was
motivated by the work in phylogenetic tree reconstruction and protein subfamily
identification, which uses decision tree learning. We show that our method
improves the certainty estimates given by standard decision trees, and is
especially suitable for ranking estimation.



6 INTRODUCTION

1.3 Structure of the thesis

The remainder of this text is structured as follows. Chapter 2 presents the
background and basic concepts needed for the other chapters. The next four
chapters present the methods we propose for the tasks investigated in this thesis.
For each one of them, we indicate the key paper on which the chapter is based.

e Chapter 3 presents our conceptual clustering method for phylogenetic
tree reconstruction.

— Celine Vens, Eduardo P. Costa, and Hendrik Blockeel, Top-down
induction of phylogenetic trees. European Conference on Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics.
Lecture Notes in Computer Science, volume 6023, pages 62-73, 2010.

e Chapter 4 presents our method for protein subfamily identification.

— Eduardo P. Costa, Celine Vens, and Hendrik Blockeel, Top-
down clustering for protein subfamily identification. Evolutionary
Bioinformatics, volume 9, pages 185-202, 2013.

e Chapter 5 presents our method for peptide identification using mass
spectrometry data.

— Eduardo P. Costa, Gerben Menschaert, Walter Luyten, Kurt De
Grave, and Jan Ramon, PIUS: Peptide Identification by Unbiased
Search, Bioinformatics - application notes, doi: 10.1093/bioinformat-
ics/btt298, 2013.

e Chapter 6 presents our alternative method for prediction certainty
estimation in decision trees.

— Eduardo P. Costa, Sicco Verwer, and Hendrik Blockeel, Estimating
prediction certainty in decision trees. Submitted to the 12th
International Symposium on Intelligent Data Analysis. Submitted
in May 2013.

Finally, Chapter 7 summarizes our work, and presents the main conclusions
and final considerations.



Chapter 2

Background

This chapter introduces basic concepts that will be used in this thesis, both
from the biological and computational points of view. As such, we organize the
chapter in two parts. In the first part, we introduce concepts from molecular
biology, which together give a clearer context to the bioinformatics problems
we consider. In the second part, we introduce some machine learning concepts
related to the methods we present in the remaining of the thesis.

2.1 Biological sequences

As the goal of this thesis is the computational analysis of biological sequences, we
focus on the biological aspects related to nucleotide and amino acid sequences.

2.1.1 A cell and its genetic information

All living organisms are constituted by one or more cells. A cell is the smallest
structural unit of an organism that is capable of independent functioning. For
this reason, cells are often mentioned as the “building blocks” of life. Cells are
involved in all vital functions of an organism, such as absorption of nutrients
and water, reproduction and growth. Cells also store the instructions necessary
for the development and functioning of the organism, which are referred to as
the genetic information of the organism. This information is passed from one
cell generation to the next when cells make copies of themselves. Moreover, the
genetic information of an organism is also transferred to its offspring.



8 BACKGROUND

The genetic information is found in a cell in the form of DNA (deozyribonucleic
acid).* Most DNA molecules are formed by two strands of nucleotides that are
held together in a double helix (Figure 2.1). Each nucleotide is formed by a
chemical base (purine or pyrimidine base) attached to a sugar molecule and
a phosphate molecule; the two purine bases in the DNA are guanine (G) and
adenine (A), and the two pyrimidine bases are thymine (T) and cytosine (C).
In the double helix structure, DNA bases pair up with each other (A with T,
and C with G).

Adenine  Thymine

—

Guaning Cytosine

Sugar phosph
backbone

Figure 2.1: DNA structure [126].

DNA strands have a directionality, which is determined by how the the sugar
molecules of the nucleotides are joined to one another. The ends of a DNA
strand are called the 5’ (five prime) and 8’ (three prime) ends. Conventionally,
the 5" and 3’ ends are called the upstream and downstream ends, respectively.
The strands in the DNA double helix have opposite directions, as illustrated in
Figure 2.2. The direction of a strand is important for the chemical reactions
involving DNA. For example, DNA replication is carried out in the 5’ to 3’
direction.

In the cell, the DNA molecule is packaged into structures called chromosomes.
Human cells, for example, have either (a) 23 chromosomes, in the case of germ
cells, which are the cells used for reproduction of an organism, or (b) 23 pairs

1Some viruses contain RNA (ribonucleic acid) instead of DNA. However, viruses do not
have an organized cell structure. As a result, they need to enter a cell of a living organism to
be able to replicate. For this reason, viruses are not considered living organisms.



BIOLOGICAL SEQUENCES 9

upstream downstream
i —————

downstream upstream

Figure 2.2: Tllustration of the directionality of a double-stranded piece of DNA.
Adapted from [139].

of chromosomes (giving a total of 46 chromosomes), in the case of the somatic
cells, which are all the other cells of an organism. The number of nucleotides in
the human chromosomes range from 46 to 247 million base pairs of nucleotides,
and the whole human genome is around 3 billion base pairs long. The DNA
information encoded in all chromosomes of an organism corresponds to its
genome.

2.1.2 From DNA to proteins

The genome encodes the information necessary to produce proteins, which
are macromolecules consisting of one of more chains of units called amino
acids. There are 20 amino acids that can be encoded by the genome of all
organisms. They are called standard amino acids. However, not all of them
can be synthesized by all organisms. The human body, for example, can only
synthesize 11 of the 20 standard amino acids. When an amino acid cannot
be synthesized by an organism, it is called an essential amino acid of that
organism, and it needs to be obtained from other organisms via feeding for
example. Leucine and lysine are examples of essential amino acids in humans.

The common structure of amino acids (Figure 2.3) consists of a central carbon
atom to which an amino group (-NH2), a carboxyl group (-COOH), a hydrogen
atom, and a side chain (or R-group) are attached. The side chain is specific to
each amino acid.

Distinct proteins have not only distinct amino acid sequences, but also distinct
three-dimensional shapes, which determine their activity. Proteins perform many
important functions within living organisms. For example, keratin, collagen, and
elastin are structural proteins that provide support to tissues; and enzymes are
proteins responsible to speed up chemical reactions. The study of all proteins
expressed at a certain time in a certain organism, tissue, or cell type is the
subject of proteomics; this entire set of proteins is called proteome.



10 BACKGROUND

amino carboxyl
group

H,N

Figure 2.3: General structure of an amino acid.

Proteins are produced by specific fragments of the genome called genes; a gene
usually has the instructions to produce a certain protein, but it can also regulate
the operation of other genes. The instructions to produce the protein sequence
are encoded in the nucleotide sequence of the gene. Each triplet of nucleotides,
called a codon, codifies for one amino acid. Figure 2.4 depicts an example of
how DNA is encoded into an amino acid chain.? There are two main steps in
this encoding process. First, the information in the DNA strand is copied into
RNA; this is known as transcription. Second, the information stored in RNA
is used to produce the amino acid chain; this is known as translation. It is
between transcription and translation that introns are removed from the RNA
strand. In the example shown in Figure 2.4 we do not consider introns.

minoaca ([D-(aD-En)—-Ged-(rd-©9-G
O I

RNA [Acc]lGuG|[AcA]lAuG]|cGClluGC]|GAA]

S (S

Codon 1 Codon2 Codon3 Codon4 Codon5 Codon6 Codon7

oNna - 5'[ACC|[GTG||ACA|ATG||CGC|[TGC]|GAA]3'

Figure 2.4: Example of a amino acid chain encoded from a DNA fragment. The
notation 5’ and 3’ indicate the direction in which the fragment is translated. For the
sake of simplicity, we omit the complementary strand of the DNA fragment being
translated.

During this process, not the complete nucleotide sequence of the gene will
be translated into amino acids. Some parts of the gene are responsible to
regulate the translation procedure (e.g., to indicate the nucleotide position

2As a codon is formed by three nucleotides, and there are four different kinds of nucleotides
in the DNA, there are 64 distinct codons. Some of them codify for the same amino acid; they
are called synonymous codons. Note that, in the example depicted in Figure 2.4, two different
codons codify for the amino acid Threonine (Thr).



BIOLOGICAL SEQUENCES 11

where the translation will start). Other parts called introns are located inside
the fragment that will be translated into amino acids, but they are removed
from the translation process and do not end up producing amino acids. The
fragments of the gene that do produce amino acids are called exons. The sum
of the exons of a gene is called coding region or coding sequence.

As amino acids are coded by triplets of nucleotides, the position at which the
translation begins determines which triplets/codons will be used. In fact, the
same DNA sequence can produce three different sequences of nucleotide triples.
In this case we talk about different reading frames. If we consider the two
strands of DNA, which are oriented in opposite directions, there are six possible
ways in which the same DNA fragment can be translated: three for each strand.

After translation, chemical modifications can occur in the amino acids of a
protein; they are called post-translational modifications (PTMs). PTMs create
modified versions of the standard amino acids, increasing the range of proteins
that can be produced by the genes. These modifications thus contribute for
function diversity in the proteome. They can occur in vivo or in vitro (e.g.,
during sample preparation in proteomics studies).

2.1.3 Peptides

When a chain of amino acids has a short length (conventionally, fewer than 50
amino acids), it is called a peptide. Peptides are thus structurally similar to
proteins but shorter. They are known to have a key role in many physiological
processes, such as blood pressure regulation, feeding behavior, water balance,
analgesia, and glucose metabolism. Endogenous peptides (i.e., those originated
from within an organism) are typically generated from a precursor protein
through cleavage by various types of processing enzymes [36, 47]. The study
of all endogenous peptides expressed at a certain time in a certain organism,
tissue, or cell type is the subject of peptidomics.

2.1.4 Evolutionary mechanisms and phylogenetic analysis

New cells are produced by a process called cell division. In this process, a
parent cell divides itself into two (or more) daughter cells. Each resulting cell
will carry the genetic information of its parent cell, or half of this information,
in the case of germ cells.®> To that aim, DNA (or RNA, in the case of some

3The cell division that produces germ cells is called meiosis. The division that produces
somatic cells is called mitosis.



12 BACKGROUND

viruses) in the parent cell first needs to be duplicated to then be transmitted to
the resulting cells.

In this duplication process, errors can occur. To prevent these errors to be
transmitted to daughter cells, the cell has repair mechanisms that identify and
correct damage to the DNA molecules. However, errors can escape these repair
mechanisms, giving rise to point mutations in the genome. A point mutation can
correspond to the replacement of one nucleotide by another one, or the insertion
or deletion of a nucleotide. Another form of mutation is that originated by the
recombination of different strands of DNA. These mutations can have major
effects on the associated function of a gene. Mutations can also be caused by
transposable elements. These elements are fragments of DNA that have the
ability of changing their location in the chromosome or generating copies of
themselves that will be inserted in other locations of the chromosome. In the
latter case, there is an enlargement of the genome.

When mutations occur in a germ cell, they can be transmitted to the descendants
of the organism. The accumulation of such mutations can cause the division
of a single species into two or more distinct ones. This evolutionary process is
called speciation and is usually a result of geographical separation of individuals
of the same species. Mutations in the somatic cells are only transmitted to the
daughter cells of the mutated ones.

The investigation of the evolutionary history of genes and organisms is called
phylogenetic analysis. In this context, evolutionary relationships are illustrated
by a tree-shaped structure called a phylogenetic tree [112]. The topology of
a phylogenetic tree shows which genes (or organisms) are more evolutionarily
closely related. Moreover, branch lengths can be used to add more information
to the tree. More specifically, branch lengths in phylogenetic trees indicate
either evolutionary time or the number/proportion of changes (mutations) that
have occurred in the branch. In the phylogenetic trees considered in this thesis,
the branch lengths are calculated based on mutations.

A phylogenetic tree can be rooted (Figure 2.5.a) or unrooted (Figure 2.5.b). In
a rooted tree, the direction of evolution goes from the root down to the leaf
nodes, while in the unrooted tree the direction of evolution is not known.

Phylogenetic methods usually start from a multiple sequence alignment (MSA)
to build phylogenetic trees, as we discuss in more detail in Chapter 3. In an
MSA, each sequence corresponds to one organism (alternatively, to one gene or
protein), and similar sequence fragments (conserved regions) are aligned under
one another. In this process, gaps can be inserted when positions of one or
more sequences cannot be aligned well with the other sequences. Figure 2.6
shows an example of an MSA.



BIOLOGICAL SEQUENCES 13

—A D E
B
- F
D
root E
F B A
(a) (b)

Figure 2.5: Example of (a) a rooted and (b) an unrooted phylogenetic tree.

ATTCGATCGAACCTC---AATATG
ATTCGATCGAACCTA---AC-TTG
CTTCGATCGACCCTATAC-AGTTG
CTTCGATCGAACCTA-ACACATTG
CTTCGATCGAACCTATA-ATAATG
ATTCGATCGAACC - - - - - ATAATG

TRgQEZ

Figure 2.6: Example of a multiple sequence alignment.

2.1.5 Genome annotation

Phylogenetic analysis is one of the many strategies used by biologists for genome
annotation. The annotation of an organism’s genome aims at identifying key
features of the genome [121]. It comprises the identification of genes, regulatory
regions, and repetitive elements such as transposable elements; identification of
proteins and peptides expressed in the organism; protein function prediction;
etc.

In protein function prediction, for example, biologists commonly start by
dividing the proteins being studied in smaller groups of related proteins (protein
families/subfamilies). This classification is intended to group together sequences
which are potentially functionally related. One approach to form such groups is
using phylogenetic information, as we discuss in Chapter 4.

Mass spectrometry (MS) is another technique commonly used in genome
annotation. This technique measures the mass of molecules (and molecule
fragments) as a means of identifying which molecules are expressed in a certain
cell, tissue or organism. MS is commonly used for protein/peptide identification,
as we discuss in Chapter 5.



14 BACKGROUND

By identifying key features of the genome of an organism, genome annotation
helps biologists in the process of bridging the gap between the sequence
information and the biology of the organism [121].

2.2 Machine learning

In Chapter 1 we defined artificial learning as the ability of a computer program
to use experience about a certain task to improve its own performance on that
task, given a performance measure. In this section, we explain the concepts
related to this definition in more detail. In particular, we focus on the concepts
that will be used in this thesis.

2.2.1 Learning from experience

In a learning task, the experience related to the execution of a certain task is
the extra information that the computer has with respect to that task. This
experience can be observations of how the task was executed in the past and
what the outcome of each execution was. This experience will prove to be useful
if it gives the program enough information to improve its performance in solving
the task.

To make a parallel with a daily situation where experience is also used, consider
the case where a patient goes to a doctor in search for a treatment for a certain
disease. In order to prescribe the right treatment, the doctor uses his experience
(or the experience of his peers) about how previous patients with a similar
medical history reacted to that treatment, for example.

Note that this example is very similar to Example 1 (see Chapter 1), in terms
of the experience used to solve the problem. In that example, we described the
task where a computer program needs to predict if a certain drug will cause
side effects in patients under treatment for a certain disease. However, the way
this information is represented in both cases might be considerably different.
While a doctor does not necessarily need this information to be organized
in a structured way, a computer does. The most common way to represent
the input knowledge used by a computer is to use the attribute-value format.
This representation can be seen as a table where every row corresponds to one
observation (or one instance) and every column corresponds to some kind of
description of that observation.

Example 3. A multiple sequence alignment can be seen as an erample of
attribute-value data. Each sequence of the alignment corresponds to one instance,



MACHINE LEARNING 15

and each column corresponds to a descriptive feature of that sequence, namely,
which nucleotide or amino acid is present at that specific sequence position.

2.2.2 Types of learning

Regarding the goal of the learning process, we can have two main kinds of
learning: predictive learning and descriptive learning. In the former, we are
interested in making predictions for new instances based on previously observed
ones. In the latter, on the other hand, we are interested in building a model
that captures properties of what has been observed.*

Next, we describe how decision trees can be used for predictive learning. Then,
we discuss top-down induced clustering trees, which are decision trees learned
in the context of descriptive learning. We finish the section with a note on the
decision tree learner Clus, which can be used to learn predictive and clustering
trees. We focus on decision trees because this is the machine learning technique
that will be considered throughout this thesis.

Decision trees for predictive learning

A decision tree is a tree-shaped predictive model that maps instances from an
input domain X to some output domain Y. In this model, each internal node
contains a Boolean test (e.g., <, >, ==, €). These tests compare a constant
value with an attribute value® defined for elements from X, or a set of values in
the case of the operator €. Each leaf node, on the other hand, is associated with
a value y € Y. The mapping of an instance x € X to a value y is obtained by
sorting it down the tree from the root to some leaf node, consistently with the
tests in the internal nodes (e.g., ‘yes’ go left, ‘no’ go right). In the classification
context, decision trees are used to map an instance x to a nominal value y,
usually called a class; we denote the set of classes C = {¢1, ..., cx }. Figure 6.1
shows an example of a classification decision tree. When z is mapped to a
numerical value y instead, we talk about regression.

Most decision tree learners use a top-down approach to grow the tree. This is
known as top-down induction of decision trees [103]; see pseudocode in Figure
2.8. In this approach, the initial tree contains only one leaf node (i.e., the root
of the tree) containing all data. Then the data is iteratively partitioned by
selecting a leaf node and replacing it by a new internal node with two new leaves
as children (which is called splitting). Which node to replace and what test to

4For a more detailed explanation of predictive and descriptive learning, see Section 1.1.1.
5Decision trees can handle both continuous and discrete valued attributes.



16 BACKGROUND

petal-length > 1.9

2N

es no
petal-width > 1.7
no
petal-length > 5.0
Iris
versicolor

Figure 2.7: Example of a decision tree. This tree was induced for the Iris dataset
[7].

yes

introduce is decided using criteria from information theory such as information
gain. This procedure continues until a stop criterion is reached (e.g., when the
tree has reached a pre-defined maximum depth or when the tree is completely
grown). Once the tree model has been constructed, pruning may be applied to
eliminate some sections of the tree in order to reduce the risk of overfitting.

GrowTree

// Input: Data to be partitioned D
// Output: Decision tree built on D

if stopping criterion has not been reached then
For each possible test t do
Partition the data according to ¢
Calculate the heuristic for the resulting partition
Choose the test with the best heuristic value
Partition the data according to this test

Run GrowTree on each resulting subset

Figure 2.8: Pseudocode for the top-down induction of a decision tree. Note that
GrowTree is called recursively.

Decision tree learning uses a symbolic machine learning paradigm. The main



MACHINE LEARNING 17

characteristic of this kind of learning is that the learned model is represented in
a symbolic language which can be easily understood and interpreted in natural
language. The decision tree in Figure 2.7, for example, expresses classification
rules for the dataset Iris in a way that can be easily understood by a non-machine
learning expert.

Information gain

As we come back to the definition of information gain in Chapters 3 and 6, we
briefly discuss its definition next. This explanation is based on the one provided
by Blockeel [13].

In information theory, there is the notion of “missing information” or uncertainty
about a variable. This notion is quantified by a measure called entropy. A high
entropy for a variable means that we have very little certainty (or knowledge)
about which value that variable might assume. Given a set of instances S, the
entropy of a variable V' is defined as

Hy(S) = —Zp(vils) log, p(vilS),

where ¢ ranges over every value v; that V' can assume, and p(v;|S) is the
probability of a random instance from S has value v;. In the classification
context, we calculate the entropy for the target variable C, by ranging over all
possible classes ¢;:

He(S) = - Zp(ciIS) log, p(ci] S).

If we split S into subsets S;, we can obtain the entropy of the resulting partition
S by calculating the weighted average of the entropies of each subset:

He(8) =~ Y 'Ssj' S ples| 1) log, p(eil ),
l 1

where |S] is the cardinality of S and p(¢;]S;) is the probability that a random
element from S; has class c;.

Finally, we define the information gain resulting from a split as the difference
between the entropies before and after the split:

1G(S.8) = Ho(S) — He(S).

When inducing a decision tree, we can choose the best test at each iteration by
selecting the one which gives the largest information gain.



18 BACKGROUND

Top-down induced clustering trees

Clustering is a descriptive learning task that aims at finding subgroups (called
clusters) of similar instances within a group of instances. Blockeel et al. [14]
discusses how a simple extension of decision tree learning leads to a divisive
conceptual clustering algorithm. More specifically, they point out that each
node of a tree can be viewed as a cluster and that the tree as whole defines
a hierarchy of clusters. Using this viewpoint, they show that the top-down
induction approach of decision trees discussed in the last section can also be
used for clustering. To that aim, the splitting procedure takes into account
the distance between the resulting clusters (or alternatively, the intra-cluster
similarity) given by the descriptive attributes. For example, the criterion to
split a node can be the maximization of the inter-cluster distance between the
two child nodes. As for classification trees, we can also use information gain
as the splitting criterion in this top-down clustering procedure. We can do it
by calculating the entropy for every descriptive attribute and averaging the
resulting entropy values. We discuss other heuristics for inducing clustering
trees in Chapters 3 and 4.

The clustering tree (hierarchy of clusters) resulting from this procedure is
a conceptual clustering because the tree explicates not only the hierarchical
structure of the data but also the clusters, which are described by the tests in the
internal nodes of the tree. This conceptual property is one of the main features
that differ top-down induced clustering trees from agglomerative clusterings (i.e.,
clusterings originating from iteratively merging instances in a bottom-up way).

Clus - unifying predictive learning and clustering

Clus [30] is an open source decision tree learner that can be used for both
predictive learning and clustering. Clus is based on the ideas discussed in
the last section, which unifies these two learning tasks in the decision tree
framework.

With the right choices of parameters, Clus works similarly to decision tree
learners such as C4.5 [17] or CART [102]. We use Clus in this way to build
classification trees in Chapter 6. The use of Clus for building conceptual
clustering trees is exploited in Chapter 3 and 4.

Clus can also be used for other learning settings such as multi-task learning,
multi-label classification and semi-supervised learning. Furthermore, it can also
be used for rule learning. These settings are, however, outside the scope of the
work presented in this thesis.



MACHINE LEARNING 19

2.2.3 Evaluating the learning performance

Several criteria may be used to evaluate the performance of a learned model.
Different measures evaluate different characteristics of the model. Furthermore,
different kinds of learning tasks often require different evaluation measures
which take into account the specificities of the task into consideration. For
example, to evaluate a predictive model, we need different measures than to
evaluate a descriptive model.

We briefly discuss evaluation in the context of classification and clustering,
which are the learning tasks considered in this thesis.

Evaluation of classification models

In the context of classification, evaluation measures are often defined from a
so-called confusion matriz, which contains the numbers of examples correctly
and incorrectly classified for each class. Table 2.1 shows the confusion matrix
for a binary classification problem (i.e., classification problem with only two
classes - positive and negative). The FP, FN, TP and TN concepts may be
described as:

o Fulse positives (FP): examples incorrectly predicted as belonging to the
positive class.

o Fualse negatives (FN): examples incorrectly predicted as belonging to the
negative class.

o True positives (TP): examples correctly predicted as belonging to the
positive class.

e True negatives (TN): examples correctly predicted as belonging to the
negative class.

Table 2.1: Confusion matrix for a binary classification problem.

Predicted class

Actual class | Positive | Negative
Positive |TP] |FN]|
Negative |FP| |TN|




20 BACKGROUND

Accuracy (ACC) is the most straightforward measure to evaluate the predictive
performance of a classifier. It calculates the percentage of correct predictions.
Equation 2.1 shows how ACC is computed.

|TN|+|TP|

ACC =
ITN|+|TP| +|FN| + [FP|

(2.1)

Other measures that are often used to evaluate classifiers are recall, precision,
and specificity, whose calculations are shown in equations 2.2, 2.3, and 2.4,
respectively. Recall (also known as sensitivity or true positive rate) is the
proportion of positive examples which were correctly predicted as positive;
specificity is the proportion of negative examples correctly predicted as negative;
and precision is the proportion of positive predictions which were correctly
predicted.

|TP|

Recall = ————— 2.2
T ITP+ [FN] 22)
S ty = ————— 2.3
peci ficity TN+ FP| (2.3)

. TP
P = 2.4
recision TP+ FP| (2.4)

The previous measures require a fixed discrimination threshold to determine
the predicted class. For example, in a binary problem this fixed threshold is
0.5. Thus, a decision tree will classify an instance as positive if more than
50% of the instances in the leaf responsible for the prediction are positive.
However, in some situations it is of interest to evaluate a classifier regardless
of its threshold. It may be desirable, for example, to change the threshold
in response to changing class or cost distributions [43]. In this context, it is
common to use ROC (Receiver Operating Characteristics) analysis to evaluate
classifiers.

A ROC curve is a plot where the discrimination threshold is varied. The x-axis
of this curve corresponds to the specificity and the y-axis corresponds to the
recall. ROC analysis is suitable, in particular, to evaluate the ranking ability of
a classifier, as we discuss in Chapter 6. A quantitative way to compare classifiers
based on their ROC curves consists of comparing the area under their ROC
curves (AUC). This area estimates the probability that a randomly selected
positive instance is ranked before a randomly selected negative instance. A
perfect rank has an AUC equal to 1.



MACHINE LEARNING 21

Clustering evaluation

Clustering evaluation can be performed in two main scenarios: (1) when a
reference clustering (i.e., the true clustering or a gold standard solution) is
given; (2) when no reference clustering is given. In the former case, the quality
of the predicted clustering is calculated by comparing it to the reference one.
In the latter case, the quality of the clustering is usually calculated based on
the gain in information provided by the predicted clustering.

Rand index [104] is an example of a clustering evaluation measure for the case
where a reference clustering is given. This measure considers that every pair of
instances in a clustering defines a clustering decision: the pair is either clustered
together or not. If a pair of instances is clustered together (or separately)
in both the clustering being evaluated and in the reference clustering, the
clustering decision is considered to be correct. Conversely, if a pair of instances
is clustered together in one clustering but not in the other one, the clustering
decision is considered to be incorrect. The rand index of a clustering is obtained
by dividing the number of correct clustering decisions by the total number of
decisions made (i.e., the total number of pairs of instances). Note that this is
the same idea used in the accuracy calculation. In Chapter 4, we introduce other
measures that can be used to compare clusterings. We use them to evaluate
protein subfamily clusterings.

Category utility (CU) [53] is a clustering evaluation measure for the case where no
reference clustering is given. It computes the improvement of the predictability
of attributes given the clustering, in comparison with the situation in which no
clustering is defined. For example, clustering adult persons according to their
continent of origin gives us more homogeneous groups in terms of the physical
characteristics height, hair color, and eye color, than in the situation where
everyone was part of one big group. In this case we can say that we improve the
overall predictability of the attributes height, hair color, and eye color, given
the clustering. While, if we would cluster the same group of people according
to their age, we would have little or no improvement in the predictability of
those same attributes.

The definition of category utility is given by Equation 2.5, where Pred(A|C)
(Equation 2.6) measures the predictability of the descriptive attributes A giving
the clustering C', Pred(A) (Equation 2.7) measures the predictability of A when
no clustering is defined, and k is the number of clusters. Note that the division
by the number of clusters is important to have a trade-off between improvement
of the predictability of attributes and the number of clusters.

_ Pred(A|C) — Pred(A)
N k

cuU(C) (2.5)



22 BACKGROUND

Pred(A|C) = ZPr () ZZPT (A; = ai|Cy)? (2.6)

Pred(A Z Z Pr(A; = a;;)? (2.7)

In Equation 2.6, Pr(C)) is the probability of an arbitrary instance to belong
to cluster Cj, i ranges over the instance attributes, j ranges over the possible
values for each attribute A;, Pr(A; = a,;|C;) is the probability that attribute
A; has value a;; - given that the instance belongs to cluster C;. In Equation
2.7, Pr(A; = a;j) is the probability that A; has value a;; when no clustering is
defined.

2.3 Summary

In this chapter, we explained basic concepts from biology and machine learning
that will be used in the rest of this thesis. More specifically, we introduced the
main concepts related to nucleotide and amino acid sequences, defined the role
of these sequences in an organism, and gave few examples of biological tasks
that involve sequence analysis. Additionally, we explained artificial learning
and the main concepts related to its definition. We also introduced decision
trees, which is the machine learning technique we focus on.

Concepts that are specific to only one of the chapters of the thesis are introduced
in the chapter itself.



Chapter 3

Top-down induction of
phylogenetic trees

This is the first of two chapters where we use a divisive conceptual clustering
approach to partition a set of biological sequences. In this chapter!, we do
it in the context of phylogenetic tree reconstruction. In the next chapter, we
consider it in the context of protein subfamily identification.

3.1 Introduction

In phylogenetic tree reconstruction, one is interested in deriving from a set
of aligned DNA or amino acid sequences the most likely phylogenetic tree.
Many methods have been proposed for this. One popular approach consists of
computing a dissimilarity measure between each pair of sequences, and then
using the resulting matrix to infer the tree. Methods that use this approach are
called distance based methods, and are represented by the well-known Neighbor
Joining (NJ) [111, 122] algorithm.

NJ is essentially a so-called agglomerative hierarchical clustering algorithm:
starting from one cluster per sequence, it iteratively merges clusters of sequences
until a single cluster is obtained. While agglomerative clustering algorithms are
among the most popular ones for clustering, many other clustering algorithms
exist. Among these algorithms, one can distinguish extensional and conceptual

1Based on the paper “Top-down induction of phylogenetic trees” [Vens, Costa and Blockeel
2010].

23



24 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

clustering algorithms. In extensional clustering, a cluster is described by
enumerating its elements, whereas in conceptual clustering, a cluster is described
by listing properties of the cluster’s elements, using a particular description
language. In the context of phylogenetic analysis, a natural conceptual language
would be one that refers to polymorphic locations (i.e., positions that have more
than one amino acid residue); for instance, one cluster might be described as
“all sequences having a C at position 72 and A at position 31”.

If we assume that it must be possible to describe clusters using a particular
language, the space of all possible clusterings is greatly reduced. This enables us
to use a divisive clustering approach which starts from a single cluster containing
all sequences and repeatedly divides it into subclusters until all sequences form a
different cluster. Normally, given a set of N sequences, there are % — 1 distinct
ways to split it into two non-empty subsets. But if we assume that the split
can be described by referring to a particular polymorphic location, the number
of splits is linear in the length of the sequences, and constant in the size of the
set, making such a divisive method computationally feasible, and potentially
faster than agglomerative methods. A similar observation was made by Arslan
and Bizargity [6], who were the first to propose a top-down clustering method
for phylogenetic tree reconstruction. Differences between their algorithm and
our work are described in the related work section.

Blockeel et al. [14] discuss how a simple extension of decision tree learning leads
to a (general-purpose) divisive conceptual clustering algorithm (see Section
2.2.2). In this chapter we address the question to what extent this approach
lends itself to phylogenetic tree reconstruction. If it works well, that is, if
it yields phylogenetic trees with an accuracy comparable to that of existing
methods, such an approach would have a number of important advantages over
existing methods. First, as just argued, it may be faster than methods based
on agglomerative clustering. Second, as each division into subclusters is defined
by polymorphic locations, the resulting tree immediately gives an evolutionary
trace. Third, by using an adequate stopping criterion or pruning procedure,
the divisive method can be used not only to reconstruct complete phylogenetic
trees, but also to identify subfamilies of genes or proteins; we investigate this in
Chapter 4.

In order to study the top-down conceptual clustering approach in the context
of phylogenetic tree reconstruction, we propose a method that is strongly based
on the decision tree learner Clus [30]; the only change made to it is the heuristic
used for splitting nodes.

The remainder of the chapter is organized as follows. Section 3.2 describes the
phylogenetic tree reconstruction problem and discusses related work. Section
3.3 presents the proposed method. We thoroughly evaluate this new method



BACKGROUND AND RELATED WORK 25

with respect to accuracy and efficiency in Section 3.4; the results show that our
method builds trees with comparable accuracy to those produced by existing
methods, with a tendency to perform better for highly symmetric trees, and
somewhat worse for highly asymmetric trees. We conclude in Section 3.5.

3.2 Background and related work

We start this section by describing the phylogenetic tree reconstruction problem.
Then, we present the classical approaches for this problem and briefly describe
three well-known phylogenetic methods. Next, we discuss a top-down clustering
method which is related to the one we propose. We finish the section with a
short note on comparing phylogenetic trees.

3.2.1 Phylogenetic tree reconstruction

In phylogenetic tree reconstruction, one is interested in inferring the evolutionary
relationships among genes and organisms by constructing a tree-shaped structure
called a phylogenetic tree (see Figure 3.1). In this structure, the leaf nodes
(called operational taxonomic units, or OTUs) correspond to the objects of the
study of the phylogenetic analysis (e.g., the species for which we want to build
the phylogenetic tree). The internal nodes are hypothetical progenitors of the
leaf nodes, and are called hypothetical taxonomic units (HTUs). In the trees
shown in Figure 3.1, A is an OTU and X is an HTU, for example. The root of
the tree defines the direction of evolution. When the root place is not defined
(Figure 3.1.a), the direction of evolution is unknown. Branch lengths can also
be used to indicate the estimated evolutionary distance between nodes/units
of the tree (OTUs and/or HTUs) : the larger the branch length connecting to
units of the tree is the more evolutionarily distant these units are.

F root

c D C DE F C DE F
(a) (b) (c)
Figure 3.1: Three phylogenetic trees with the same topology, but different rooting

definition: (a) undefined root; (b) root between HTUs X and Y; and (c) root between
OTU A and HTU X.



26 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

Phylogenetic trees can be constructed based on morphological characteristics or
molecular data (sequence data). We focus on phylogenetic tree reconstruction
using sequence data.

3.2.2 Classical approaches

Phylogenetic methods can be grouped into two approaches according to the
format of the data they use: character-state and distance based methods.

Character-state methods use any set of discrete characters, such as morphological
characters, physiological properties, or sequence data [129]. In the case of
sequence data, each column (position) of the multiple sequence alignment
(MSA) correspond to a “character” and the nucleotides (or amino acids) at that
position are “states”. The algorithm looks for the tree that best represents the
input data in a search space that can contain all theoretically possible trees
or a subset of them (in the case of a heuristic search). For every tree being
analyzed, the algorithm reconstructs the character-states of the internal nodes;
the characters are usually considered independently. The idea is to select the
topology for which the state of the internal nodes are as compatible as possible
with those of the leaf nodes. In this section, we see one example of such a
method: maximum parsimony [42].

Distance based methods, on the other hand, are specific to sequence data. They
start by converting the aligned sequences into a matrix of distances between
each pair of sequences. The idea is to compute a matrix that approximates
the true genetic distance between the sequences. This is an approximation
because every state of the alignment can be a result of multiple events, such as
subsequent mutations at the same site. An accurate approximation is crucial
for a good phylogenetic inference [127]. Once the pairwise distances have
been calculated, different methods can be used to infer the tree. We see two
examples: unweighted pair group method with arithmetic mean (UPGMA)
[118] and neighbor joining (NJ) [111].

As distance based methods do not use the sequences directly, they are much more
efficient than character-state methods. On the other hand, they lose evolutionary
information by converting the sequences into a matrix. For example, as they
do not retain the character-state of each position, they cannot reconstruct the
state of internal nodes during the tree construction.



BACKGROUND AND RELATED WORK 27

Maximum Parsimony

Maximum parsimony [42] searches for the tree (or alternatively, a set of trees)
that requires the least number of character-state changes to explain the input
sequence data. This idea is based on the principle of minimum evolution [21],
which prefers simple evolutionary explanations to more complicated ones.

This analysis can be divided into two subproblems: (1) the small parsimony
problem and (2) the large parsimony problem. The first corresponds to the
question “given a tree topology T', what is the minimum number of character-
state changes for T'?”. This question is answered by looking for an optimal way
to label the internal nodes, which is usually performed by the so-called Fitch
algorithm [42]. The second subproblem corresponds to searching for an optimal
tree. This can be done by an exhaustive search (i.e., checking all possible trees)
or by using approximate methods.

Unweighted pair group method with arithmetic mean

Unweighted pair group method with arithmetic mean (UPGMA) [118] is a
simple agglomerative clustering method. At the beginning of the procedure,
every sequence corresponds to an independent cluster. Then, it iteratively
merges the two closest clusters until only one cluster is left. To calculate the
distance between two clusters, the algorithm averages all pairwise distances
between sequences from the two clusters. The tree returned by UPGMA is
rooted and is determined by the order in which the clusters were merged.

The main drawback of this method is that it is assumes a clock-like behavior
of mutations (i.e., that the mutation rate is constant over all branches of the
tree). This makes UPGMA extremely sensitive to unequal substitution rates
in different lineages [119]. For an example of this behavior, consider the two
trees shown in Figure 3.2; the numbers indicate the branch lengths. The left
tree assumes a clock-like behavior. As a result, all OTUs are equally distant
from the root. This behavior is not assumed by the right tree. Consider OTUs
A and B, for example. The branch that connects A to its parent node is longer
than the one which connects B to the same node.

Neighbor joining

The neighbor joining (NJ) algorithm [111] is one of the most widely used
methods for phylogenetic tree reconstruction. It is a heuristic estimation of the
minimum evolution tree, which is the tree with minimal sum of branch lengths.



28 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

root root

2
IO (FVRR A —
Ll L o
m m g O w >
=
=
i
RG]
O

(

Figure 3.2: Example of (a) a tree that assumes a clock-like behavior of mutations
and (b) a tree that allows different mutation rates across its branches.

Similarly to UPGMA, it uses an agglomerative clustering approach. However,
it does not assume a clock-like behavior.

The algorithm starts with a fully unresolved star tree (Figure 3.3.a). Then, it
computes the total branch length of the tree for every possibility of joining two
OTUs (see Figure 3.3.b, for an example). The pair that yields the smallest total
branch length is then merged to make a combined OTU. This operation results
in a new star tree (Figure 3.3.c), which has one OTU less than the previous
tree. After the distance matrix has been updated with the pairwise distances
between the new OTU and the remaining ones, the whole process starts again.
The algorithm stops when there are only three OTUs left. It then returns the
fully resolved tree, which is by definition an unrooted tree.

A
H B H
BC
G C G
F D F D
E E
(@) (b) (c)

Figure 3.3: Illustration of the NJ merging procedure: (a) fully unresolved star tree;
(b) tree resulting from merging OTUs B and C; (c) star tree considered by the NJ
algorithm in the next iteration.

As our proposed method uses a heuristic function which is a generalization of
the one used by NJ, we explain the latter next. This explanation is based on
the one presented by Saitou and Nei [111].



BACKGROUND AND RELATED WORK 29

When deciding which pair of OTUs to merge, the NJ algorithm needs to estimate
the total branch length of trees with a structure similar to the one shown in
Figure 3.3.b (i.e., a star tree with a branch that separates two sequences - the
ones being merged - from the other ones). Consider, for example, the tree T in
Figure 3.3.b. To compute its total branch length (TBL(T)), we can divide T
in three parts and make the calculations separately: (1) the branch between X
and Y; (2) the subtree containing the two sequences being merged (B and C);
and (3) the subtree containing the remaining OTUs (we call it T7).

The calculation of the branch length between X and Y (Lxy) is given by
Equation 3.1, where |T| is the number of OTUs in T, and D,,,, is the distance
between OTUs o; and o;. The first term within brackets sums all distances that
include Lxy, and the other two terms exclude the irrelevant branch lengths
that are added by the first term. We divide by 2(|T| — 2) because Lxy was
added that many times in the sum.

Ly = gu =gyl 2 Poiz + Do) = (11 =D(Dpe) =2 3 Lox] (D)

|T|
o0, €T’ o0; €T’

The total branch length of the subtree containing B and C corresponds to Dpc.
Finally, we use Equation 3.2 to calculate the total branch length of T”. Since
each branch length is counted |T”| — 1 times when all distances are added, we
divide the sum by that factor.

1
TBL(T') = 1 > Do, (3.2)
0;,0;€T’
i<

Adding Lxy, Dpc, and TBL(T') together, and performing the right
substitutions, we obtain the formula given by Equation 3.3.

1

TBL(T) = TEED)

Z(DOBJ’_DOC)J’_ DBC+ Z DooJ (33

0, €T’ 05,0, €T’
1<J

The algorithm we have just described has a complexity O(N?) [49]. However,
Studier and Keppler [122] have presented an alternative version, which is



30 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

O(N?3). This makes NJ one of the most efficient algorithms for phylogenetic
tree reconstruction [112].

3.2.3 PTDC - Phylogeny by Top-Down Clustering

Another efficient method, and among all methods the one that most closely
resembles ours, is the PTDC (Phylogeny by Top-Down Clustering) algorithm
[6]. This algorithm shares with our proposal the idea of recursively partitioning
clusters. The main differences are: (1) our approach makes the link to the
decision tree learning framework, which allows us to exploit the highly developed
state-of-the-art in that area; (2) PTDC’s heuristic maximizes the average of
all pairwise distances between sequences of different clusters, making it similar
to the UPGMA algorithm, from which it inherits the sensitivity to unequal
substitution rates in different lineages, whereas our method uses a heuristic
that approximates the NJ criterion; (3) while PTDC splits clusters based on
equality of subsequences, our approach creates splits based on a single, most
informative, position; this gives it an efficiency advantage.

3.2.4 Comparing phylogenetic trees

As different methods can infer different phylogenetic trees, it is important to
have an objective way to compute differences between trees [108]. For this
reason, many metrics to compare phylogenetic trees have been proposed in the
literature [108, 35, 136]. These measures are also particularly important for
the case where we want to compare the results of a method to a gold standard
solution (e.g., for synthetic datasets, where the true phylogenetic tree is known).
Next, we briefly describe the quartet distance [35], which we use in the empirical
evaluation presented in this chapter.

A group of four OTUs is the smallest group for which there is more than one
possible unrooted tree topology (see Figure 3.4). Based on this observation,
Estabrook et al. [35] proposed the quartet distance, which is the number of
quartets (subtrees induced by four leaves) that have a different topology in the
two trees being compared.

To obtain the quartets of a tree, we consider every set of four OTUs, and for
each one of them we eliminate all branches that are not part of a path between
two of the four OTUs. Examples of the quartets that can be obtained from the
tree in Figure 3.1.a are: [AB|CD], [AB|DE], and [BC|EF].



PROPOSED METHOD 31

A: :C A: :B A: :B A><C
B D C D D C B D

[AB|CD] [AC|BD] [AD|BC] [ABCD]

(a) (b) (c) (d)

Figure 3.4: Four possible unrooted trees that can be defined for four OTUs. Note
that, within binary trees, only the topologies (a)-(c) can be obtained. Topology (d) is
obtained when multifurcation is allowed.

3.3 Proposed method

The proposed method is built on top of the decision tree learner Clus [30], which
we introduced in Section 2.2.2. We call the new method Clus-¢.

Following the Clus-based approach (see pseudocode in Figure 3.5), Clus-¢
starts from a single cluster containing all sequences (which are given as input
in the form of an MSA), and recursively splits clusters up to the level of
single sequences. Each split is determined by a test of the form “p = a”, or
more generally “p € S”, with p a location, a a character-state (amino acid or
nucleotide), and S a set of character-states. For example, the test “p6 = R”
checks for the occurrence of amino acid R at position 6, and splits the set of
sequences in two subsets, one containing all sequences with an R at position 6
and one containing all other sequences (see Figure 3.6). Similarly, the test “p15
€ {P,G}” creates one subset containing all sequences with a P or G at position
15, and one containing all other sequences.?

To choose which split to use at each iteration of the tree growing procedure,
the algorithm tries all possible tests. More specifically, it tentatively splits the
current cluster according to each test, evaluates this split (according to a certain
heuristic), and remembers the best one. It finally splits the set according to the
best test encountered.

The only question that remains, then, is how to determine which is the “best
split” to choose at each iteration (i.e, the heuristic function). Intuitively, one
could argue that an “old" mutation, i.e., one that occurred a long time ago in
evolutionary history, is more likely to have led to two different branches that by

2Gaps are treated as an extra nucleotide/amino acid. Tests that check for sets of nucleotides
are treated differently than those that check for sets of amino acids. For the former, as there
are only four nucleotides, all possible combinations of nucleotides are tested. For the latter,
we use a greedy strategy for the sake of computation efficiency: first all amino acids are
considered individually, then iteratively the best one is expanded with all possible amino
acids, until no improvement is obtained.



32 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

GrowTree

// Input: Data to be partitioned D
// Output: Phylogenetic tree built with sequences in D

For each possible test t of form p; € S do

Partition the data according to ¢

Calculate the heuristic for the resulting partition
Choose the test with the best heuristic value
Partition the data according to this test

Run GrowTree on each non-singleton subset

Figure 3.5: Pseudocode for the Clus-based approach. This pseudocode is an
instantiation of the one we showed in Figure 2.8 (Section 2.2.2). Note that GrowTree
is called recursively. In the end, the first call of GrowTree will return the completely
resolved tree.

S1 VIYEERNGVA...CCY
S2 VIYEEPNGVA...SRY
S3 VIYEERNGVA...CRY
S4 VIYEEPNGVE...SRS
S5 VIYEERNGVA...CRS

51 S2
S3 4
S5

Figure 3.6: Illustration of how our method uses polymorphic mutations to induce a
clustering tree in a top-down way.

now have grown far apart, than a more recent mutation. As we are building
a rooted tree, where we hope to find older mutations nearer to the root, we
should prefer tests that create subsets that are far apart. A natural heuristic for
selecting tests is then simply: compute the average distance between elements
from different subsets induced by the test; choose the test that maximizes that
average distance. This is the heuristic that Arslan et al. use [6]. Alternatively,
one could use an extension of the information gain heuristic that is commonly
used for classification trees. This extension consists of looking for the split that
maximizes the average information gain with respect to the descriptive attributes



PROPOSED METHOD 33

(i-e., the sequence positions) at each iteration of tree induction procedure.

These standard heuristics, however, do not take into account the particular
setting of phylogenetic tree reconstruction. Using the average distance heuristic,
one essentially gets the top-down counterpart of the UPGMA algorithm and
inherits its main drawback (sensitivity to unequal substitution rates in different
lineages). The heuristic used by NJ, on the other hand, uses a more advanced
calculation for deciding which two clusters to merge, and this yields better
results. This raises the question whether a top-down counterpart of NJ’s
heuristic can be developed. Such a heuristic would have to estimate the total
branch length of the tree that will finally be constructed. We introduce this
fuction next. See Appendix A for a more detailed explanation.

(@) (b)

Figure 3.7: Split topologies considered during the top-down tree construction: (a)
Clus-¢ (root); (b) Clus-¢ (non-root).

Using the same reasoning used in the NJ’s calculations (see Section 3.2.2), we
can define an equivalent heuristic function for splitting the root node:

1 1 1
TBLT{T1, Tr}) = = Y Doy, + d " Doyt D Doyeys (B:4)
|TL||Tr| T 3| TR| %

0, €TY, 04,0, €T, 0i,0;€TR
2 €TR i< i<j

where Ty, and Tg denote the set of OTUs (sequences) in the left and right
subtrees of the split, respectively, in tree T'. This formula computes the total
branch length of a “double star”-shaped topology (see Figure 3.7.a), which
is an upper bound for the actual total branch length of the final tree. It is
a generalization of the NJ heuristic (Equation 3.2), which has |T| = 2 and
|Tr| = |T| — 2, with |T| the number of OTUs in the tree for which we want to
calculate the total branch length.?

3Note that the first term of Equation 3.4 corresponds to the calculation of the heuristic
that maximizes the average inter-cluster distance. It might look counter-intuitive that the
Clus-¢ heuristic, which is a minimization function, uses the same calculation performed by a
maximization function in its formula. However, there is a trade-off between the first term of
the heuristic function and the other two terms, as we explain in Section A.3 (Appendix A).



34 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

The previous equation can be rewritten into a more efficient formulation,

1
TBL(T{Ty,T, = Dy, (|Tr] - 1) D,,
(TTLTrY) = o D Doy +(Tal=1) 3 Dosoy +

04,0, €ETLUTR 0;,0;€TL

i<j i<j
(Tel=1) Y Dosoy);

oi,o]-GTR

i<j

where the first summation is constant for the node to be split. Therefore, this
summation only needs to be calculated once for each node.

For splitting the other internal nodes, a more complex heuristic function is
needed, since the particular split influences the length of other branches in the
tree, and hence, the total branch length (Figure 3.7.b). Again, using a similar
reasoning as applied by Saitou and Nei [111], it can be verified that the function
to minimize is given by

1
TBL(T{TL7TR,TO}) = m( E Doio.j + (Q‘TR‘ - 1) E Doioj +
05,0, €T, UTR 0;,05€TY,
i<j i<j
2 : |Tr| |Tw 2 :
@|Tc] - 1) Doo +@ Dij To| Doin)+
0i:05€TR 0, €T 0, €T
i<j oj €Ty, oj ETR
1 D
ol 2 Do
0;,0;€TO
i<j

with Tp denoting the set of other OTUs in the tree (i.e., not in T U T7L).
The first summation is constant for the node being split and only needs to be
calculated once. The last summation is also constant. As it is multiplied by ﬁ,
which is also constant, this summation can be dropped from the calculation
when choosing the best split.

When this heuristic is used, a modification is needed in the pseudocode we
showed in Figure 3.5. More specifically, an extra input parameter is needed.
As, at each iteration of the tree building, the heuristic needs the information



EMPIRICAL EVALUATION 35

about all the sequences to estimate the total branch length of the current tree,
the recursive calls of GrowTree need to be given two input parameters: (1) the
original data (i.e., data containing all sequences); (2) the data to be partitioned
D for that call of the procedure (i.e., data containing the sequences in the node
to be split).

The computational complexity of a decision tree learning method is O(aN log N)
with a the number of tests and N the number of elements in the original dataset,
under the assumption that a reasonably symmetric tree is built (the depth of
which is logarithmic in the number of leaves) and the evaluation of a single test
takes linear time in the size of the dataset (this is the case of the information
gain heuristic, for example). This scales much better in N than agglomerative
methods, which have complexity O(N?) [122]. As such, such a divisive method
may be much more efficient when analyzing large sets of sequences. Our proposed
heuristic is, however, quadratic, rather than linear, in the number of sequences,
which increases the overall complexity of the method to O(aN?log N). If we
use Clus with the heuristic that maximizes the average inter-cluster distance,
we obtain a computation complexity of O(aN?).

3.4 Empirical evaluation

We evaluate our alternative method for phylogenetic tree construction on a
number of datasets. In all experiments, we use the Jukes-Cantor correction
formula [70] to compute the genetic distance between two DNA sequences, and
the Jones-Taylor-Thornton matrix [69] for amino acid sequences. We measure
differences between trees using the quartet distance (see Section 3.2.4). To that
aim, we use the tool QDist [86].

3.4.1 Real datasets

In a first set of experiments, we check how much Clus-¢ trees differ from the
ones returned by NJ. As a reference point, we include the difference between
parsimony methods and NJ.# To construct the NJ and parsimony trees we used
the programs neighbor and dnapars/protpars from the Phylip software package
[37], respectively.

Table 3.1 reports the quartet distance for 11 datasets used in [112]. While the
trees generated by Clus-¢ are very similar to those generated by NJ for some
datasets (for datasets Chimp and hivALN, Clus-¢ and NJ generated identical

4When parsimony analysis returns multiple trees, we report the average difference.



36 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

Table 3.1: Results for real datasets in terms of quartet distance. The quartet
distances are shown in the last two columns of the table. The remaining columns
show information about the datasets.

Datasets Seq Nb | Alignment NJ vs. | NJ vs.
type seq | length (bp) | Clus-p Pars
Chimp DNA 5 896 0 2
cynmix DNA 32 3080 11680 16543
Primates DNA 21 1500 184 632
SIV DNA 41 6042 21350 10608
hivALN DNA 14 2352 0 156
InvertebrateEF DNA 16 1050 200 152
mtDNA DNA 17 1998 218 26
VertebrateMtCOI DNA 8 1509 178 31
g3pdh Protein 14 313 180 65.33
gpd Protein 12 234 52 18
gdpAA Protein 12 422 57 97.50

phylogenetic trees), there are larger differences for other datasets. However,
this variation is comparable to the variation between the parsimony method
and NJ.

The question is then whether, in those cases where NJ and Clus-¢ differ, any of
them is more likely to be correct than the other one. To check this, we tested
Clus-¢ on a number of synthetic datasets, where the correct tree is known.
These experiments are discussed in the next section.

3.4.2 Synthetic datasets

The synthetic datasets were generated by simulating an evolutionary process,
using the coding sequence simulation program EvolveAGene3 [58], with a
randomly generated DNA sequence as input. By default, this software produces
symmetric trees, i.e., binary trees that have all leaves at the same depth.
However, also random tree topologies can be produced. We set all parameters
of EvolveAGene3 to their default values, except for the average branch length,
which has no default value. We arbitrarily set it to 0.05 in all experiments,
meaning that each branch has an average mutation rate of 5%.

First, we evaluate our proposed heuristic. Second, we compare the results of
Clus-¢ with those of NJ. Finally, we investigate the influence of the number of
sequences on quartet distance and computational cost for both NJ and Clus-.



EMPIRICAL EVALUATION 37

Analysis of the heuristic

To evaluate our proposed heuristic, we compare trees constructed using our
heuristic with trees constructed using other heuristics for decision trees. The
first heuristic is based on the average information gain with respect to the
sequence positions; we call this implementation Clus-IG. The second heuristic
is similar® to the one used in the PTDC algorithm [6]. It recursively splits the
data by looking, in each step, for the two subclusters with the largest average
inter-cluster distance. We call this implementation Clus-MaxAvgDist.

In order to perform this experiment, we generated 400 synthetic datasets: 200
based on symmetric topologies and 200 based on random topologies, with an
input sequence length of 250 (200 datasets) and 900 (200 datasets), each dataset
containing 128 sequences. Table 3.2 presents a summary of the results, in terms
of the number of wins/losses of Clus-¢ in the comparison with Clus-IG and
Clus-MaxAvgDist, according to the quartet distance from the inferred trees to
the true tree. As can be seen from the results, Clus-¢ presents a higher number
of wins than Clus-IG, and is better than Clus-MaxAvgDist for all datasets. It
shows that, in the context of phylogenetic tree reconstruction, the new heuristic
yields better results than standard heuristics for decision trees.

Table 3.2: Comparison of different heuristics for phylogeny tree reconstruction. We
show the number of wins/losses of Clus-¢’s heuristic compared to information gain
(Clus-IG) and inter-cluster distance (Clus-MaxAvgDist).

Clus-p vs Clus-1G | Clus-¢ vs Clus-MaxAvgDist
Symmetric 113/78 (9 ties) 200/0
Random 113/87 200/0

Comparison between Clus-¢ and NJ in terms of similarity to
the true tree topology

We now compare the similarity with the true tree for NJ and Clus-p. We
generated 100 synthetic datasets based on symmetric topologies and 100 datasets
based on random topologies, containing 128 sequences and using an input
sequence of length 900. A summary of the results, in terms of the number of
datasets for which each method presents the best performance, is shown in

5The only difference between our implementation and the one discussed in [6] is that we
create splits based on a single position instead of based on subsequences.

6As insertions and deletions are allowed in EvolveAGene3, the final sequence length is
usually larger than the input sequence length, e.g. for an input sequence of length 900, the
length of the final sequences is around 1000.



38 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

Table 3.3; the numbers in boldface represent the largest number of wins for each
line. On average, NJ performs slightly better than Clus-p; however the table
shows a large difference in the results for symmetric and random tree topologies.
For symmetric trees, the Clus-p tree is in general closer to the true tree than
the tree produced by NJ. For the random tree topologies, on the other hand,
Clus-¢ is closer to the true tree in only 5 cases. We observed that Clus-¢ tends
to build more symmetric topologies, which explains its inferior performance for
random trees.

Interestingly, we noted that in a few cases, the trees produced by Clus-¢ are
identical to the true topologies; this occurred for 5 out of 100 cases for the
datasets generated from symmetric topologies. For NJ, that is never the case.
The probability of observing at most 0 correct predictions for NJ and at least
5 for Clus-¢, under the null hypothesis that both have the same probability p
of making a correct prediction, depends on p but is always less than 0.01; this
implies that the hypothesis that Clus-¢ does not have a higher probability of
predicting the correct tree than NJ for symmetric topologies is rejected at the
1% significance level.

Table 3.3: Number of wins of NJ and Clus-¢ for synthetic datasets.

NJ | Clus-¢
Symmetric | 32 68
Random 95 )

In Figure 3.8 we show the quartet distance for 12 datasets of each kind, in
order to analyze the results in more detail. We can see that for random trees
the differences between the two methods are larger. The graphs also show
the strong variation of tree quality with the dataset: the dataset has a larger
influence on the overall performance than the choice of method.

From the results shown in Table 3.3 and Figure 3.8 we can conclude that Clus-¢
tends to perform better for symmetric tree topologies, while NJ tends to perform
better for random topologies.” In a sense, these settings are at both ends of
a spectrum. The question is then how the results differ for datasets based on
trees that are neither perfectly symmetric nor completely random, which is
what we expect to occur in nature.

7Experiments considering the parsimony method (using the program protpars from the
Phylip software package [37]) revealed similar results: Clus-¢ also tends to perform better
than the parsimony method for symmetric tree topologies, and worse for random topologies.
Compared to NJ, the parsimony method presents better results for random topologies and
worse results for symmetric topologies.



EMPIRICAL EVALUATION 39

1.66+06
14e+06 | B NJ
o 120406 H Clus¢
T les |
3 800000 |
ko]
§ 600000
& 400000 |-
51 02 D3 D4 D5 D6 D7 D8 D9 DIO DIL DI % 513 D14 DIS D16 DI7 DIS DIS D20 D2L D22 D23 D24
Datasets Datasets
D1 | D2|D3| D4 | D5 | D6 D13 | D14 | D15 | D16 | D17 | D18
0.91 | 0.24 | 0.16 0.00 0.01 0.98 0.96 1.42 1.39 4.20 19.88 1.52
D7 | D8 | D9 | D10 | D11 | D12 D19 | D20 | D21 | D22 | D23 | D24
1.57 | 0.02 | 1.60 | 17.63 0.87 0.59 2.20 0.40 0.83 1.64 4.25 2.80

Figure 3.8: Results for symmetric (left) and random (right) trees, in terms of quartet
distance. Graphs: absolute values; Tables: quartet distance of Clus-¢ relative to that
of NJ.

Table 3.4: Analysis of the effect of the symmetry of the tree on the performance of
NJ and Clus-¢p, according to the quartet distance.

Dataset NJ | Clus-¢ Dataset | NJ | Clus-¢
Symmetric | 32 68 35 steps | 65 35
5 steps 56 44 40 steps | 66 34
10 steps 56 44 45 steps | 77 23
15 steps 53 47 50 steps | 76 24
20 steps 68 32 55 steps | 77 23
25 steps 65 35 60 steps | 81 19
30 steps 63 37 Random | 95 5

To investigate this question, we generated datasets based on a series of tree
topologies, starting from a perfectly symmetric tree, and gradually adding more
random tree structure. More precisely, we considered a tree operation that
takes two subtrees, one consisting of a single leaf, and another one consisting
of one internal node and two leaves, and switches them. Table 3.4 reports the
results for an experiment that counts the number of wins for NJ and Clus-¢ on
100 datasets with an increasing number of operations. Each dataset again has
128 sequences generated from a DNA input sequence of 900 positions.

As can be seen from the results, the performance of Clus-y, compared to NJ,
decreases with the increase of the number of modifications in the symmetric
tree. However, it is important to notice that this decrease of the performance
of Clus-p occurs gradually, which means that it presents good results not only



40 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

for completely symmetric trees, but also for almost symmetric trees: up till 40
steps, Clus-¢ finds a better approximation of the true tree in one out of three
datasets. As an illustration, Figure 3.9 shows a topology with 40 steps from
symmetry.

Figure 3.9: Tree topology with 40 steps from symmetry.

Analysis of the influence of the number of sequences on quartet
distance and computational cost

In this section, we analyze the effect of the number of sequences on the
performance of the algorithms, both in terms of tree reconstruction, and
computational cost. For this analysis, we use datasets based on symmetric tree
topologies.

To analyze how NJ and Clus-p scale in the number of sequences, we generated
a number of synthetic datasets containing sequences of the same length,® but
with an increasing number of sequences.

Figure 3.10 shows run times for datasets with 300 nucleotides. Each point in
the curve shows the average run times over 20 datasets of the specified size. As
we can see, between 1024 and 2048 sequences, the run times of Clus-¢ become
smaller than those of NJ. For 8000 sequences, Clus-p is about 5 times faster.

Figure 3.11 shows the run times for datasets with 900 nucleotides. In this case,
NJ is more efficient than Clus-¢. However, the relative run time difference

8To ensure an equal dataset length, we disabled insertions and deletions here.



EMPIRICAL EVALUATION 41

fe ]
g
5
o

2000 | 7 NJ 1 —— NJ
oo —e— Clus-p A10° —e— Clus-p
ésooo— éso—
8 4000 [ 8 eof
[] (4]
£ [ Eal

1000 [ / 2r

0 - ! . . . 0 . .

0 1000 2000 3000 4000 5000 6000 7000 8000 0 500 1000 1500 2000
Nb of sequences Nb of sequences

Figure 3.10: Running times for Clus-¢ and NJ; the right graph zooms in on the
interval 0-2048 of the left graph. Sequence length: 300.

1600 9
e
1400 8 NJ
1200 7
8 B 6
£ 1000 c
I=} g 51
4w N
g a0 Eal
[ (S
400 oL ]
200 1 *
o v o ‘ e ]
0 500 1000 1500 2000 2500 3000 3500 4000 0 100 200 300 400 500
Nb of sequences Nb of sequences

Figure 3.11: Running times for Clus-¢ and NJ; the right graph zooms in on the
interval 0-512 of the left graph. Sequence length: 900.

between both methods decreases, and we expect Clus-¢ to be faster than NJ
from a certain dataset size on.”

We also computed the quartet distance of the trees produced by NJ and Clus-¢
to the true tree for the datasets with 900 nucleotides (see Table 3.5). It can be
noted that Clus-¢ obtains better results than NJ for datasets with few sequences.
However, between 128 and 256 sequences, the results change, making NJ the
best method for a large number of sequences. The reason for this is related
to the relatively small sequence length: in order to generate 256 sequences or
more with only 900 nucleotides, each branch having on average 45 mutations, a
lot of nucleotide positions are likely to have many mutations. This negatively
influences Clus-¢, because it cannot find the right splits anymore.

91t is infeasible to generate datasets with more than 4000 sequences of length 900 with
EvolveAGene3.



42 TOP-DOWN INDUCTION OF PHYLOGENETIC TREES

Table 3.5: Analysis of the influence of the number of sequences on the performance
of NJ and Clus-¢p, according to the quartet distance. We show the number of wins of
NJ and Clus-¢ for synthetic datasets with sequences of length 900 (Figure 3.11).

nb Sequences | NJ | Clus-¢ | Ties
8 0 1 19
16 2 7 11
32 2 9 9
64 5 13 2
128 6 14 0
256 11 9 0
512 13 7 0
1024 13 7 0
2048 18 2 0
4096 15 5 0

3.4.3 Comparison to PTDC

As a last experiment, we compare Clus-¢ to PTDC [6]. The authors have used
a single dataset to evaluate their method and report the resulting tree in their
article. The dataset was prepared by Rennert et al. [107] and corresponds
to an alignment of amino acid sequences from the Runt domain of RUNX
genes from a set of species. Rennert et al. [107] who also report a maximum
likelihood tree for the alignment, which we use as reference tree. For this
experiment, both PTDC and Clus-¢ calculate pairwise protein distances using
the PAM1 substitution matrix [29]. Given that the reference tree in [107] is not
binary (it contains a node with six branches), it is impossible!® to calculate the
quartet distance. Therefore, for this experiment, we compare the trees using
the symmetric difference measure. The symmetric difference between two trees
is the number of binary node partitions that are found in one tree and not in
the other. The symmetric difference to the reference tree is 11 for PTDC, and
10 for Clus-p. We conclude that our method finds a slightly better tree.

3.5 Conclusions

In this chapter, we proposed Clus-p, a novel method for reconstruction of
phylogenetic trees. The method differs strongly from classical phylogenetic

10The tool QDist [86], which we used to calculate the quartet distance between trees, only
supports binary trees.



CONCLUSIONS 43

methods (such as maximum parsimony and NJ), both from an algorithmic point
of view and from the point of view of the information it uses.

Clus-¢ is based on a conceptual clustering method that extends the well-known
decision tree learning approach. Starting from a single cluster, it repeatedly
splits the sequences into subclusters until all sequences form a different cluster.
To define the best split, our method uses a criterion that is close to NJ’s
optimization criterion, namely, constructing a phylogenetic tree with minimal
total branch length.

Our method assumes that a split can be described by referring to particular
polymorphic locations, which makes such a divisive method computationally
feasible, and at the same time provides an evolutionary trace for the resulting
tree topology.

We have shown that: (a) the heuristic used by Clus-¢ gives better results than
when standard heuristics for decision tree learning are used; (b) Clus-¢ is close
to the performance of NJ with respect to quality of the produced trees; (c)
Clus-¢ has a larger tendency to produce the correct tree than NJ for the cases
where this tree is symmetric.

We propose Clus-¢ not as a substitute for NJ or other standard methods for
phylogeny reconstruction, but as a method to be used complementarily to these
methods. As argued by Vandamme [129], there are no uniquely correct methods
for inferring phylogenies. The fact that Clus-¢ behaves differently than NJ
shows that their results can be used to complement one another.






Chapter 4

Using top-down induced
clustering trees for protein
subfamily identification

In this chapter!, we consider the divisive clustering approach we presented in
the previous chapter in the context of protein subfamily identification.

4.1 Introduction

In protein subfamily identification, given a set of sequences that belong to one
protein family, the goal is to identify subsets of functionally closely related
sequences (called subfamilies). This is in essence a clustering task. Most current
methods for subfamily identification use a bottom-up clustering method to
construct a cluster hierarchy, then cut the hierarchy at the most appropriate
locations to obtain a single partitioning. Such approaches rely on the assumption
that functionally similar proteins have sequences with a high overall similarity,
but do not exploit the fact that these sequences are likely to be highly conserved
at particular positions. This raises the question to what extent clustering
procedures can be improved by making them exploit this property.

!Based on the paper “Top-down clustering for protein subfamily identification” [Costa,
Vens and Blockeel 2013].

45



46 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

We propose and evaluate a method that does exactly this. The proposed method
uses the divisive clustering procedure described in Chapter 3 to build the cluster
hierarchy, and then applies a post-pruning procedure to extract clusters from
the hierarchy. This approach differs from bottom-up clustering methods in that
it forms clusters whose elements do not only have high overall similarity, but also
have particular properties in common. In the case of subfamily identification,
these properties can be the amino acids found at particular positions.

Apart from possibly yielding higher quality clusterings, this approach has the
advantage that it automatically identifies functionally important positions, and
that new sequences can be classified into subfamilies by just checking those
positions.

The remainder of this chapter is organized as follows. Section 4.2 describes
the protein subfamily identification problem and discusses existing methods in
this context. Section 4.3 presents the proposed method. Before experimentally
comparing the new method with a state-of-the-art method, we review evaluation
measures for subfamily identification in Section 4.4, leading to the introduction
of two new measures. Section 4.5 presents an empirical evaluation of our method
over 11 datasets. Our results show that: splits based on polymorphic positions
are highly discriminative between protein subfamilies; using such splits to guide
a clustering procedure improves protein subfamily identification; the identified
positions yield accurate classification of new sequences; the resulting clustering
tree identifies functionally important sites. We conclude in Section 4.6.

4.2 Background and related work

Whereas an entire protein family may be associated with many functions, on the
subfamily level usually one or a small set of functions are retained. Therefore,
being able to identify subgroups of functionally closely related sequences is an
important aspect of protein function prediction.

Protein subfamilies can be identified by phylogenomic analysis [33], i.e., by
using phylogenetic information. In particular, a hierarchical or phylogenetic
tree is constructed over the entire family, starting from a multiple sequence
alignment (MSA); then, subfamilies are extracted from the tree. Phylogenomic
analysis avoids some of the problems associated with more traditional, homology
based, approaches towards protein function prediction [20], such as database
annotation error propagation [52].

Bayesian evolutionary tree estimation (Béte) [115] was the first algorithm to
automatically decompose a protein family into subfamilies. The method was



BACKGROUND AND RELATED WORK 47

later extended to include a module for classification of novel sequences into
subfamilies, and is better known under the name SCI-PHY [20]. We discuss
SCI-PHY in detail below, since it will be used in the experimental comparison
in Section 4.5.

Secator [137] is another phylogenomic method that automatically predicts
subfamilies. It first constructs a phylogenetic tree using the BIONJ algorithm
[48]. The tree is then cut based on a sequence dissimilarity measure. The idea
behind this post-pruning procedure is that tree nodes should be iteratively
merged as long as the sequence dissimilarity within the resulting cluster is below
an automatically calculated threshold.

Albayrak et al. [3] proposed a method that, in contrast to the aforementioned
methods, does not start from an MSA. Instead, it uses a relative complexity
measure (RCM) to construct a pairwise distance matrix, and constructs a NJ
tree with it. The authors do not extract clusters from the tree, but rather
evaluate the tree topology. The results were comparable to those given by NJ
trees using MSA.

GeMMA [79] was designed to deal with large and diverse protein families,
where an accurate global MSA becomes infeasible. It applies a bottom-up
clustering procedure, and after each merging step recomputes an MSA for the
sequences in the newly generated cluster. In order to decide which clusters to
merge, a comparison score between alignments is computed. The scores are
also thresholded to obtain a stopping criterion. The performance of GeMMA
was shown to be comparable to SCI-PHY [79].

Whereas all mentioned methods build the hierarchical tree using bottom-
up clustering, the method we propose performs top-down clustering. Top-
down clustering approaches have rarely been used in biological applications.
Varsharvsky et al. [130] point out three reasons for this: there is much more
software available for bottom-up clustering; bottom-up clustering has an intuitive
appeal; and it tends to generate topologies with high reliability at the more
specific levels. On the other hand, Varsharvsky et al. [130] show that top-down
clustering can be successfully applied to biological data.

Our idea of using conserved positions to define subfamilies is similar to the work
of Bickel et al. [11]. Their main goal is to identify functionally related sites in
an MSA. To that aim, they first enumerate all possible protein subfamilies that
are defined by having at least two positions with subfamily-specific residues.
Afterwards, they prune the list of potential functional sites and corresponding
protein subfamilies by assessing the degree of association between these sites
for each subfamily.

The main difference between the method proposed by Bickel et al. [11] and ours is



48 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

that our method constructs a tree (i.e., finds a complete and non-overlapping set
of subfamilies), whereas Bickel et al. [11] discover each subfamily independently,
possibly resulting in an incomplete or overlapping set of subfamilies.

An alternative strategy to the use of phylogenetic tree reconstruction for protein
subfamily identification consists of clustering sequences based on pairwise
sequence comparison to find clusters of homologs.? More specifically, most of
the methods based on this approach look for orthologs. The idea behind this
approach is that orthologous genes/proteins are likely to have the same/similar
function(s). INPARANOID [106] is one method that is representative of this
approach. This method first compares pairs of sequences originating from
two different species, and then identify clusters of orthologs and in-paralogs.
However, the input data expected by INPARANOID is different from the
input data expected by our method. More specifically, (1) INPARANOID
expects input sequences from only two species, while our method does not
have constraints on the origin of the input sequences; (2) INPARANOID uses
species information in its strategy (i.e., it needs to know from which species
each sequence comes), while our method uses only sequence information; (3)
INPARANOID expects to have the complete set of genes or proteins of the
species being analyzed, while our method expects an alignment of similar?
sequences. Another method that follows a similar approach as INPARANOID
is OrthoMCL [23]. One of the main differences between INPARANOID and
OrthoMCL is that the latter can consider multiple species.

As argued by the authors of SCI-PHY [20], the species information required
by methods that find orthologs restricts their application to data where this
information is available. In environmental sequence analysis [131], for example,
this information might not be available.

4.2.1 SCI-PHY

To identify protein subfamilies, SCI-PHY [20] first builds a hierarchical tree
bottom-up. It then extracts clusters from the tree, which are output as the
predicted subfamilies.

The tree construction process starts with each sequence being a separate cluster.
Then, for each cluster a profile is defined, which gives the expected amino acid

2Homologs are genes are that have a common ancestor in evolution. Homologs are divided
in orthologs and paralogs. Orthologs are genes found in different species that originated
from the same gene in the last common ancestor of those species [106]. Paralogs are genes
resulted of gene duplication. When the gene duplication occurs before a given speciation
event, paralogs are called out-paralogs; otherwise, they are called in-paralogs.

3The similarity of the sequences should allow an alignment of good quality.



PROPOSED METHOD 49

probabilities for each position, based on the observed amino acid distribution
and a Dirichlet mixture density [10]. Next, using relative entropy [76] to estimate
the distance between the profiles, the two closest profiles are merged, and a
profile for the new cluster is created. This merging procedure is repeated until
all sequences are part of the same cluster. Finally, the resulting tree topology is
given as input to a post-pruning procedure.

In this procedure, the best way to prune the tree is searched using a measure
called encoding cost (see Section 4.3), which can be interpreted as the cost to
encode a clustering given the number and homogeneity of the clusters. SCI-PHY
returns the stage in the clustering procedure with minimal encoding cost.

Once the protein subfamilies have been predicted, SCI-PHY can classify new
protein sequences into one of these subfamilies, by subfamily hidden Markov
model (SHMM) construction [19]: a SHMM is built for each subfamily and the
best match with the query sequence is predicted.

We use SCI-PHY in our experimental comparison (Section 4.5), because it has
been extensively evaluated: it was compared to several methods, and was shown
to give comparable or superior results [20] [79]. To our knowledge, no other
method has been shown to give better results.

4.3 Proposed method

Sequences within a protein subfamily are not only similar to each other, they
are also characterized by a small set of conserved amino acids at particular
locations, which distinguishes them from sequences in other subfamilies. The
method we propose exploits this property. It creates clusters in which sequences
are not only globally similar, but, additionally, identical in particular locations.
These locations are discovered by the clustering process as it goes.

Using the same top-down approach described in Chapter 3 (see pseudocode
in Figure 3.5, Section 3.3), the method starts with a set of sequences, which
is given as an MSA,* and tries to split it into subsets such that (1) sequences
within a subset are similar, and (2) the split is defined by a test of the form
p = a, or more generally p € S, with p a location, a an amino acid, and S a set

40ur method assumes that the size and diversity of the sequences allow an alignment of
good quality. If this does not hold (due to high subfamily diversity, for example), it might be
the case that the conserved positions within subfamilies are not well aligned; as a result, our
method might not be able to find the appropriate splits to identify the subfamilies. A possible
solution is to reconstruct the alignment after each split in a similar way as the GeMMA
algorithm [79], mentioned in Section 4.2. However, this complicates classification of new
sequences and functional site analysis.



50 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

of amino acids. After dividing a set into two subsets, the same principle can
be used to further subdivide the subsets, up to the level of singletons (subsets
with only one sequence). This yields a hierarchical tree. For the purpose of
subfamily identification, the tree is cut at particular locations and the resulting
clusters are assumed to form subfamilies.

We propose the following pruning procedure (see pseudocode in Figure 4.1) to
cut the tree. In a single pruning step, a pair of sibling leaves is pruned, turning
their parent into a leaf. Which pair is pruned is determined by a pruning
heuristic. This step is continued until the whole tree is reduced to a single
node. Each tree encountered in the process defines a clustering, the leaves of
the tree being the clusters. Among all the trees thus found, the one with the
highest-quality clustering is returned as the final result.

PruneTree

// Input: T': tree to be pruned
// Output: Tg : tree with the highest quality encountered during pruning

Tg =T
‘While T has more than one node do
For each pair of sibling leaves (I;,1;) do
Tentatively prune the leaves
Calculate the quality of the resulting tree
Let T' be the highest-quality tree among all tentatively pruned versions of T
If T’ has a better quality than T then
Tg =T’
T:=T

Figure 4.1: Pseudocode for the proposed post-pruning procedure.

The resulting clusters, which correspond to the predicted protein subfamilies,
are then output along with the underlying tree, which explicates how the clusters
were split and which tests were used. We show an example of such a tree in
Figure 4.2. Note that the internal nodes typically contain multiple tests. This
indicates that there are equivalent tests for that stage of the clustering process;
tests are equivalent when they yield the same outcome for all the sequences.

Apart from identifying subfamilies, the tree has two additional advantages.
First, it allows for easy classification of new sequences into a subfamily. Starting
at the root node, a new sequence is moved down the tree according to the
outcome of the tests, until it is classified into one of the predicted subfamilies.



PROPOSED METHOD 51

| p159=H, p250€{A S}, p325€{DR}, ...|

yes no

|Subfam 3| |p349=D, p377€{H,P}, ... |

yes no

| p16=W, p250=H....|

yes no

Figure 4.2: Example of a tree output by our method.

When not all tests in a node agree (which is impossible for the sequences used
to build the tree, but may happen for other sequences), the majority decides.

Second, the identified tests result in a candidate list of functionally important
sites, i.e., positions that are likely to play a role in the subfamily-specific
functions. Protein functional site prediction is an important step in the
functional analysis of new proteins (e.g. [11][24][16]). As biological validation is
costly, providing a first selection of potential sites is an important advantage of
our method.

Important parameters of the method are the heuristics used during tree growing
(to select the best test to split the data at each step) and pruning (to evaluate
the quality of a tree). We now discuss these in detail. We will end this section
with a note on the computational complexity of the method.

Test selection heuristics

In the experimental section, we explore three test selection heuristics. Two of
them are standard for hierarchical tree learners: maximization of the average
inter-cluster distance, and maximization of the minimum inter-cluster distance.
We call the versions of Clus that use these heuristics Clus-MaxAvgDist and
Clus-MaxMinDist, respectively.

These heuristics, however, do not take into account the particular requirements
of the phylogenomic context, which is based on phylogenetic analysis. Therefore,



52 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

we also consider the NJ-based heuristic we introduced in Section 3.3. Clus with
this heuristic is named Clus-¢.

The proposed selection heuristics make use of distances between pairs of amino
acid sequences. Our method computes distances based on the Jones-Taylor-
Thornton matrix [69], which is a model of amino acid substitution widely used
for phylogenetic inference. Alternatively, we allow the user to give a pairwise
distance matrix as input.

Extracting clusters from the hierarchical tree

The quality measure used during pruning is encoding cost [116][20], which can
be interpreted as the cost to encode a clustering given the homogeneity of the
clusters and the number of clusters. Ideally, one wants to achieve two goals: to
have as few clusters as possible, and to have maximally homogeneous clusters.
There is a trade-off between these two goals, as having fewer clusters implies
larger clusters, which are less likely to be homogeneous. The encoding cost
(Equation 4.1) combines these two goals.

k
EncodingCost = N log k — Z Zlog Pr(n;|a) (4.1)

=1 1

The first component of the equation is the cost associated to the number of
subfamilies; the second component is the cost to encode each subtree alignment
for a certain clustering. More specifically, IV is the number of sequences, k is the
number of clusters, and Pr(n;|«) is the probability of nj; - which is the count
vector of observed amino acids for subfamily [ at column 4, under a Dirichlet
mixture density «. Dirichlet mixture densities [10] contain prior information
about amino acids and, when combined with observed amino acid frequencies,
provide estimates of expected amino acid probabilities [116].

Computational complexity

The computational complexity of the proposed method is O(aN?log N), with a
the alignment length and N the number of sequences. We obtain this complexity
by adding the complexity of the tree building and post-pruning procedures, as
described next.

The complexity to construct the tree is O(aN?log N), if we consider that the
NJ-based heuristic is used (see Section 3.3 for detailed discussion). In order
to extract subfamilies from the tree, every pruning step and every merging
candidate requires calculating Equation 4.1. In two subsequent calculations,



EVALUATION MEASURES 53

most of the clusters remain the same, and therefore most of the . log Pr(n;|«)
terms do not change. We can avoid recomputing these values by calculating
them only once for every node (cluster), and storing them. As a (complete) tree
with IV sequences contains 2N — 1 nodes, and the computation of Equation 4.1
has a complexity O(aN), the resulting complexity of the cluster extraction is
O(aN?), leading to an overall complexity of O(aN?log N) for the complete
method.

4.4 Evaluation measures

In Section 4.5 we evaluate the subfamilies output by Clus and SCI-PHY on a
number of datasets, for which the true subfamilies (reference clustering) are
known. We evaluate both the tree topology from which clusters are extracted,
and the clusters themselves. The reason for evaluating also the tree topology
is threefold. First, as the authors of SCI-PHY also point out, the definition
of the “right” clusters is somewhat arbitrary, since subfamilies can be defined
on several levels of granularity. By evaluating the tree topology, which defines
clusterings on multiple levels, we can analyze how the reference clustering is
represented in the tree. Second, we can evaluate the results regardless of the
quality of the pruning procedure. Third, the tree is often interesting in itself, as
it can help biologists to interpret the predicted clustering, and obtain insights
in how the clusters are related.

4.4.1 Tree topology evaluation

We evaluate tree topologies using two measures we propose - edited tree size
and number of subfamily changes, and an existing one - tree-based classification
error [78].

Edited tree size

The edited tree size indicates how compact the smallest possible pure clustering,
derived from the tree, is. It is calculated by repeatedly merging sibling leaves
that belong to the same subfamily until such merging is no longer possible.

Consider the two trees shown in Figure 4.3, for example. They have five
sequences, three of which belong to subfamily 1 (S1), and two of which belong
to subfamily 2 (52). The edited tree for tree a would merge the S2 sequences,
resulting in an edited tree size of 4. The edited tree for tree b would merge the



54 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

two S1 sequences connected by branches r7 and rg, also resulting in an edited
tree size of 4.

(a)

Figure 4.3: Two trees with the same edited tree size, a smaller TBC error for tree a,
and a smaller number of subfamily changes for tree b. Branches are labeled to make
the explanation easier.

Tree-based classification error

Similarly to the edited tree size, the tree-based classification (TBC) error [78]
evaluates to which extent the tree places sequences from the same subfamily
in the same subtree. While the former considers clusters that are pure and as
large as possible, the TBC error considers clusters that minimize the number of
“classification errors” in the derived clustering, as follows.

A subtree is said to be “good” for a subfamily F' if more than half of its sequences
belong to F', and more than half of F’s sequences belong to the subtree. Given
a set of disjoint good subtrees, a sequence is considered correctly classified if it
occurs in a good subtree for its subfamily, and incorrectly classified otherwise.
Moreover, a sequence that does not occur in any good subtree is also considered
a misclassified sequence. The TBC error is defined as the smallest number of
incorrectly classified sequences in any set of disjoint good subtrees.

Tree a in Figure 4.3 defines two good subtrees: a cut in branch I5 yields a good
subtree for S2, and the complete tree is a good subtree for S1. As these subtrees
are not disjoint, each one of them defines a set of disjoint subtrees containing a
single subtree. The set defined by the subtree obtained by the cut of I5 results
in three classification errors: the three sequences S1 are not classified in any
good subtree. The set defined by the complete tree results in two classification



EVALUATION MEASURES 55

errors: the two sequences S2 are classified in a good subtree for S1. As this set
gives the smallest number of incorrectly classified sequences, the TBC error for
this tree is 2. Tree b defines three good subtrees. A cut in r1 (or rg) yields two
disjoint good subtrees: a good subtree for S2 at the left, and a good subtree
for S1 at the right. This set of subtrees results in one classification error: one
sequence S1 is classified in the good subtree for S2 (subtree at the left). The
complete tree is again a good subtree for S1, with two classification errors: the
two sequences S2 are classified in a good subtree for S1. Hence, the TBC error
for this tree is 1. Lazareva-Ulitsky et al. [78] provide a algorithm to compute
the TBC error.

The subtrees defined by the TBC error are more permissive than the ones
defined by the edited tree size in the sense that clusters are not required to be
pure; on the other hand, TBC error is stricter in the case where sequences from
the same subfamily are spread over two or more subtrees.

Both measures are dependent on the place of the tree root. If the root of tree a
would be in branch I5, for example, the edited tree size would be 2, instead of
4; and the TBC error would be 0, instead of 2. Although evaluating the rooted
tree is important, because the root influences the possible ways in which the
tree can be cut, we also propose a measure that is independent of the place of
the root.

Number of subfamily changes

If we associate a subfamily (or alternatively, a molecular function) to each
internal node of the tree, then we say that a subfamily change occurs for each
branch connecting two nodes with different associated subfamilies. For instance,
if we associate subfamily 1 to the root of tree a in Figure 4.3, there is one change
to subfamily 2 in branch 5. The right tree, however, requires two subfamily
changes (branches ro and 7).

Counting the minimal number of subfamily changes corresponds to counting
mutations in parsimony analysis [123], where one prefers the phylogenetic tree
that requires the least evolutionary change to explain some observed data.
Therefore, we can directly apply the Fitch parsimony algorithm [42] to count
the number of subfamily changes.

Note that, in contrast to the previous two measures, this measure does not
penalize a tree for having a ladder-like shape. That is why tree a has a smaller
number of subfamily changes, while having the same edited tree size and a



56 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

higher TBC error as tree b.°> However, it important to note that the shape of
the tree does influence the possible ways to cut it. Therefore, we use the three
measures, as they provide complementary information to one another.

4.4.2 Clustering evaluation

We evaluate clusters using three measures earlier used for SCI-PHY [20] (purity,
edit distance, and variation of information distance) and two additional ones:
the percentage of sequences in pure clusters, and category utility. The first four
measures compare the predicted clustering to the reference clustering, while
the latter evaluates the quality of the predicted clustering itself, regardless of a
given reference clustering.

We have introduced category utility in Section 2.2.3. The other four measures
are described next.

Purity

Purity is defined as the fraction of clusters in a given clustering that contain
instances of only one reference cluster. It assesses the ability of the method to
cluster instances of different kinds in different clusters. However, as it does not
penalize if instances of one kind are spread over many pure clusters, perfect
purity can be achieved when every instance corresponds to a single cluster.
Therefore, singletons are not included in the calculation.

Percentage of examples in pure clusters

To complement the information given by purity, we also report the percentage
of examples in pure clusters (denoted further as PctExPureClusters). Again,
singleton clusters are discarded.

Edit distance

The edit distance between two clusterings is the number of merge and/or split
operations required to transform one clustering into the other one. For example,

5For an example with larger trees, consider Figures B.1 and B.2, in Appendix B. The tree
in Figure B.1 has an edited tree size of 12, a TBC error of 11, and 9 subfamily changes; while
the tree in Figure B.2 has an edited tree size of 28, a TBC error of 64, and 11 subfamily
changes. The larger difference between the trees in their edited tree size and TBC error is
due to the ladder-like shape of the tree in Figure B.2.



EVALUATION MEASURES 57

if instances of three kinds - A, B, and C - are clustered in only one cluster, we
need two split operations to separate the three groups of instances. The higher
the edit distance is, the more different the clusterings are.

The formal definition of edit distance is given by Equation 4.2 [20], where
Edit(C,0?) is the edit distance to transform clustering C! into clustering C*
(or the other way around), k¥’ is the number of clusters in C!, k" is the number
of clusters in C2, and r(C},, C?) is equal to 1 if clusters C}, and C2 have items
in common, and equal to 0 otherwise.

/ k)//
Edit(C,C?%) = 2 ( ZZ (CL,C?)) — K" (4.2)

m=1n=1

Edit distance penalizes more strongly clusterings for which clusters are too
small. For this reason, this measure can be used to counter-balance purity.

Variation of information distance distance

The variation of information distance (VI distance) measures the amount of
information that is not shared between two clusterings. The formula to calculate
the VI distance is given by Equation 4.3 [20], where H(C') (Equation 4.4) is the
entropy of clustering C!, and I(C!, C?) (Equation 4.5) is the mutual information
between clusterings C! and C?. In Equation 4.4, |Cy| is the number of instances
in cluster C, |C| is the total number of instances in the clustering, and k is the
number of clusters in C.

VI(C', C?) = H(CY) 4+ H(C?) -2+ 1(C',C?%) (4.3)
“lal, |l
H(C)=) —log -— 4.4
(@) l; Tellcre] (4.4)
1 2 1 2
e - Y 3 1% ol iog [ (15)
m=1n=1

In Equation 4.5, |CL, N C2| is the number of overlapping instances between
clusters Cl, and C2, k' and k” are the number of clusters in C! and C2,
respectively.



58 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

4.5 Empirical evaluation

We empirically evaluate, first, the soundness of the assumptions underlying our
method, and second, the method’s capacity to respectively propose a meaningful
tree topology, identify subfamilies, classify new sequences, and identify functional
sites.

4.5.1 Datasets

We use two groups of datasets. The first group consists of the five EXPERT
datasets used by Brown et al. [20] to evaluate SCI-PHY. The second group
consists of six datasets extracted from NucleaRDB [61], which contains protein
data for Nuclear Hormone Receptor (NHR) families. These eleven datasets were
chosen because for each of them a reliable subfamily identification is provided
for every sequence, which gives us a gold standard to evaluate the results.

Each dataset consists of the MSA for one protein family. The EXPERT datasets
contain sequences from the families Enolase, Crotonase, Secretin, Aminergic
(Amine), and NHR. The NucleaRDB datasets contain sequences from the
families thyroid hormone like (Thyroid), estrogen like (Estrogen), nerve growth
factor IB-like (Nerve), HNF4-like (HNF4), fushi tarazu-F1 like (Fushi), and
DAX like (DAX). To construct the NucleaRDB datasets, we used MSAs for
each family as provided by NucleaRDB, with replicate sequences removed.

For Amine, NHR, Thyroid, Estrogen, and HNF4, subfamilies are provided at
more than one level of granularity. Thus, two sequences can be associated to
the same subfamily z in one dataset, but to different subfamilies x.1 and x.2 in
the other dataset.

Some of the datasets are very unbalanced, complicating the subfamily
identification task. For instance, Enolase contains a subfamily consisting of 60%
of the sequences. The number of sequences in the subfamilies Crotonase and
NHRI ranges from 1 to 212 (=58%) and 139 (=34%), respectively.

In Table 4.1 we report, for each dataset, the number of subfamilies, the number of
sequences, the MSA length, the average pairwise distance between all sequences
within the family, and the overall average distance within the subfamilies®. We
calculated the sequence distances based on the Jones-Taylor-Thornton model.

SWe first calculate the average pairwise distance for each subfamily, and then we report
the average value over all subfamilies.



EMPIRICAL EVALUATION 59

Table 4.1: Protein subfamily datasets,

Datasets Nb Nb Align | Avg dist | Avg dist

subfam | seq | length | (family) | (subfam)
Enolase 8 472 431 2.229 1.041
Crotonase 10 365 264 1.842 0.728
Secretin 15 153 263 1.885 0.485
Amine 1 7 358 344 1.467 1.075
Amine 2 31 358 344 1.467 0.442
NHR 1 8 412 183 2.124 0.945
NHR 2 27 412 183 2.124 0.547
NHR 3 77 409 183 2.116 0.263
Thyroid 1 8 799 239 1.771 0.708
Thyroid 2 24 799 239 1.771 0.375
Estrogen 1 3 482 226 1.041 0.498
Estrogen 2 10 482 226 1.041 0.301
HNF4 1 5 448 229 1.276 0.619
HNF4 2 22 448 229 1.276 0.404
Nerve 5 76 219 0.429 0.260
Fushi 4 117 227 0.756 0.369
DAX 2 40 133 0.867 0.397

4.5.2 Testing the usability of polymorphic positions for clus-
tering protein subfamilies

In this experiment, we verify our assumption that splits based on polymorphic
positions can indeed discriminate protein subfamilies. To that aim, we add the
subfamily information to the data and build a classification tree using Clus (i.e.,
we performed supervised learning), without pruning, i.e., up to the point where
all leaves are pure. Table 4.2 shows the number of leaves in the resulting tree
for each dataset.

The results show that subfamilies can be perfectly separated from one another
using compact trees containing slightly more leaves than the number of
subfamilies in the datasets. For five of the datasets - Enolase, Secretin, Nerve,
Fushi and DAX - the classification tree has the same number of leaves as the
number of subfamilies. From this we conclude that polymorphic positions are
indeed highly discriminant for protein subfamily identification.

The fact that a good clustering tree exists does not imply it will be found by
our learner. The above trees are built with the subfamily information, but in a



60 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

Table 4.2: Number of leaves in the classification trees (CTs).

Datasets Nb subfam | Nb leaves H Datasets Nb subfam ‘ Nb leaves ‘

Enolase 8 8 Thyroid 1 8 13
Crotonase 10 11 Thyroid 2 24 38
Secretin 15 15 Estrogen 1 3 4
Amine 1 7 14 Estrogen 2 10 15
Amine 2 31 34 HNF4 1 5 7
NHR 1 8 11 HNF4 2 22 36
NHR 2 27 30 Nerve 5 5

NHR 3 7 79 Fushi
DAX 2 2

real situation, this will not be the case. In the next sections we evaluate our
unsupervised learning method.

4.5.3 Evaluating the tree topology

We first compare the three variants of our method (Clus-¢, Clus-MaxAvgDist
and Clus-MaxMinDist) on the EXPERT datasets. The results are shown in
Tables 4.3, 4.4 and 4.5. We indicate the best results per row in boldface.
As the results show a better performance for Clus-p, the version adapted to
phylogenetic data, we focus on this version for the remainder of the chapter.

Table 4.3: Edited tree size - choosing the test selection criterion.

Datasets ‘ Clus-p ‘ Clus-MaxAvgDist ‘ Clus-MaxMinDist ‘

Enolase 12 51 25
Crotonase 33 111 25
Secretin 19 32 21
Amine 1 30 54 33
Amine 2 49 75 48
NHR 1 22 49 36
NHR 2 43 68 41
NHR 3 920 139 107

We now evaluate the tree topologies produced by Clus-¢ in comparison to SCI-
PHY, for all datasets. For the sake of completeness, we include the phylogenetic
tree produced by the neighbor joining (NJ) algorithm [111] in the comparison.
To report the edited tree size and TBC error for NJ, we have to define a tree



EMPIRICAL EVALUATION 61

Table 4.4: TBC error - choosing the test selection criterion.

Datasets ‘ Clus-¢ ‘ Clus-MaxAvgDist | Clus-MaxMinDist

Enolase 11 90 64
Crotonase 41 99 27
Secretin 8 30 11
Amine 1 178 161 217
Amine 2 41 80 56
NHR 1 36 105 257
NHR 2 24 80 38
NHR 3 42 108 70

Table 4.5: Number of subfamily changes - choosing the test selection criterion.

Datasets ‘ Clus-¢p ‘ Clus-MaxAvgDist | Clus-MaxMinDist

Enolase 9 14 9
Crotonase 11 37 9
Secretin 15 15 14
Amine 1 16 26 19
Amine 2 37 49 38
NHR 1 10 24 16
NHR 2 29 48 32
NHR 3 78 97 83

root - since NJ trees are unrooted. The most direct way to do that is to root
the tree according to the order in which the sequences were merged by the
NJ algorithm. As NJ merges three subtrees in its last step, we root the tree
according to each of these subtrees and report the average results. Tables 4.6,
4.7, and 4.8 show the edited tree size, the TBC error, and the number of protein
subfamily changes, respectively. For illustration, the (edited) tree topologies
for dataset Enolase for the three algorithms are shown in Figures B.1, B.2, and
B.3, in Appendix B.

Throughout the chapter, we report the results of pairwise comparisons as
wins/ties/losses. An asterisk (*) indicates that a two-tailed sign test rejects
the hypothesis that the methods being compared present equally good results,
according to the evaluation measure into consideration, at significance at 5%.

In terms of edited tree size (Table 4.6), Clus-¢ obtains 13/2/2* wins/ties/losses
in comparison to SCI-PHY, and 12/0/5 wins/ties/losses in comparison to NJ.
The edited tree size for Clus-p, SCI-PHY, and NJ is, on average, 2.6, 3.3, and



62 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

Table 4.6: Edited tree size - evaluating the Clus-¢ topologies.

Datasets | Clus-p | SCLPHY | NJ || Datasets | Clus-p [ SCLPHY | NJ |
Enolase 12 28 37.7 Thyroid 1 34 28 34.7
Crotonase 33 70 26 Thyroid 2 74 86 103.7
Secretin 19 22 18.7 Estrogen 1 10 13 19.7
Amine 1 30 36 29.7 Estrogen 2 36 44 52.7
Amine 2 49 52 54.7 HNF4 1 14 21 29.7
NHR 1 22 30 21.7 HNF4 2 83 111 136.7
NHR 2 43 38 38.7 Nerve 10 10 23.7
NHR 3 90 105 104.7 Fushi 10 11 16.7
DAX 3 3 8.7

Table 4.7: TBC error - evaluating the Clus-¢ topologies.

Datasets | Clus-p | SCLPHY | NJ || Datasets | Clusp | SCLPHY | NJ |
Enolase 11 64 189 Thyroid 1 17 117 55
Crotonase 41 50 137.3 Thyroid 2 54 130 116
Secretin 8 13 12.3 Estrogen 1 2 12 234
Amine 1 178 242 164 Estrogen 2 27 44 161
Amine 2 41 96 59 HNF4 1 4 67 152
NHR 1 36 269 133 HNF4 2 89 202 161
NHR 2 24 34 85 Nerve 11 11 28
NHR 3 42 58 79 Fushi 24 29 53
DAX 3 4 7

3.9 larger than the number of subfamilies.

Table 4.7 shows that Clus-¢ obtains a smaller TBC error than NJ for all cases
but one case (Amine 1, for which NJ has a smaller TBC error)*, and a smaller
TBC error than SCI-PHY for all but one case (Nerve, for which there is a tie)*.
On average, the Clus-p tree has a TBC error 48.5% smaller than the SCI-PHY
tree, and 60.7% smaller than the NJ tree.

Regarding the number of protein subfamily changes (Table 4.8), Clus-¢ obtains
13/4/0* wins/ties/losses in comparison to SCI-PHY, and 4/2/9 wins/ties/losses
in comparison to NJ. On average, the numbers of subfamily changes for Clus-¢p,
SCI-PHY, and NJ are, respectively, 1.6, 2.0, and 1.5 times larger than the
minimum possible number of changes.

Summarizing, Clus-¢ outperforms both other systems in terms of edited tree size
and TBC error, but outperforms only SCI-PHY, not NJ, in terms of subfamily



EMPIRICAL EVALUATION 63

Table 4.8: Number of subfamily changes - evaluating the Clus-¢ topologies.

Datasets | Clus-p | SCLPHY | NJ || Datasets | Clus-p [ SCLPHY | NJ |

Enolase 9 11 8 Thyroid 1 16 17 9
Crotonase 11 16 9 Thyroid 2 39 58 42
Secretin 15 15 14 Estrogen 1 4 6 5
Amine 1 16 22 12 Estrogen 2 19 27 20
Amine 2 37 42 35 HNF4 1 6 11 6
NHR 1 10 12 7 HNF4 2 50 67 51
NHR 2 29 29 26 Nerve 5
NHR 3 78 82 77 Fushi
DAX

changes. As the number of subfamily changes does not depend on the position
of the root, this can be taken as confirmation that NJ is good at creating
evolutionary trees (unsurprisingly), but does not aim at creating rooted trees
from which subfamilies can easily be extracted. Visual inspection of the trees
(see Figures B.1, B.2, and B.3 in Appendix B) further reveals that NJ and
SCI-PHY tend to produce trees with a more ladder-like shape, while Clus-¢
produces more symmetrical trees. Ladder-like trees usually result in clusterings
with over-splitting of subfamilies and/or large impure clusters.

These results together show that Clus-¢ has the potential to yield good
subfamilies, provided that an adequate pruning criterion is used.

4.5.4 Evaluating the cluster predictions

In this section, we evaluate the cluster predictions given by Clus-¢ using the
post-pruning method based on encoding cost discussed in Section 4.3; we call
this variant of our method Clus-p-ECC. For illustration, we show the Clus-¢-
ECC and SCI-PHY trees for Enolase in Figures B.4 and B.5 (Appendix B),
respectively. For this evaluation, we use the measures described in Section 4.4.2.
The results for the EXPERT and NucleaRDB datasets are shown in Tables
4.9 and 4.10, respectively. Note that in the rows corresponding to purity we
also display, in parentheses, the number of pure non-singletons followed by the
total number of non-singletons. This gives some additional purity information.
Further, as the number of clusters is also given, we can obtain the number of
singletons present in the clustering.

The results show that, in general, both Clus-¢-ECC and SCI-PHY present
a very good purity. In comparison to SCI-PHY, Clus-¢-ECC obtains 4/1/3



64 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

Table 4.9: Evaluation of the clustering predictions for the EXPERT datasets.

l Datasets [ Eval. Measure [ Clus-p-ECC [ SCI-PHY ‘
Enolase Purity 0.97 (30/31) 1.00 (26/26)
PctExPureC 0.951 0.890
VI Distance 1.676 1.374
Edit Distance 42 70
# Clusters 48 78
Crotonase Purity 0.97 (31/32) 0.94 (15/16)
PctExPureC 0.729 0.521
VI Distance 1.580 1.048
Edit Distance 29 32
# Clusters 37 38
Secretin Purity 0.89 (17/19) 0.88 (14/16)
PctExPureC 0.758 0.673
VI Distance 0.467 0.565
Edit Distance 12 15
7# Clusters 21 22
Amine 1 Purity 0.96 (45/47) 0.97 (36/37)
PctExPureC 0.966 0.950
VI Distance 1.870 1.548
Edit Distance 46 38
# Clusters 49 43
Amine 2 Purity 0.87 (41/47) 0.86 (32/37)
PctExPureC 0.852 0.701
VI Distance 0.831 0.898
Edit Distance 38 36
# Clusters 49 43
NHR 1 Purity 1.00 (40/40) | 1.00 (29/29)
PctExPureC 0.981 0.959
VI Distance 1.984 1.620
Edit Distance 40 38
# Clusters 48 46
NHR 2 Purity 0.95 (38/40) 0.97 (28/29)
PctExPureC 0.954 0.932
VI Distance 0.708 0.357
Edit Distance 25 21
# Clusters 48 46
NHR 3 Purity 0.62 (25/39) 0.38 (11/29)
PctExPureC 0.518 0.152
VI Distance 0.610 0.949
Edit Distance 44 54
# Clusters 45 43




EMPIRICAL EVALUATION

l Datasets [ Eval. Measure [ Clus-¢-ECC [ SCI-PHY ‘
Thyroid 1 Purity 0.80 (28/35) 1.00 (31/31)
PctExPureC 0.937 0.974
VI Distance 1.443 1.225
Edit Distance 42 44
# Clusters 36 52
Thyroid 2 Purity 0.63 (22/35) 0.77 (24/31)
PctExPureC 0.655 0.645
VI Distance 0.691 0.647
Edit Distance 47 47
# Clusters 36 52
Estrogen 1 Purity 1.00 (19/19) 1.00 (15/15)
PctExPureC 0.994 0.967
VI Distance 1.624 1.232
Edit Distance 19 28
# Clusters 22 31
Estrogen 2 Purity 0.79 (15/19) 0.73 (11/15)
PctExPureC 0.666 0.521
VI Distance 0.835 0.552
Edit Distance 24 33
# Clusters 22 41
HNF4 1 Purity 0.93 (27/29) 1.00 (19/19)
PctExPureC 0.971 0.951
VI Distance 1.471 1.049
Edit Distance 32 36
# Clusters 33 41
HNF4 2 Purity 0.59 (17/29) 0.47 (9/19)
PctExPureC 0.422 0.156
VI Distance 1.086 1.249
Edit Distance 53 55
# Clusters 33 41
Nerve Purity 0.25 (1/4) 0.60 (3/5)
PctExPureC 0.224 0.263
VI Distance 0.541 0.600
Edit Distance 5 7
# Clusters 4 8
Fushi Purity 0.875 (7/8) 0.667 (4/6)
PctExPureC 0.949 0.367
VI Distance 0.583 0.774
Edit Distance 6 6
# Clusters 8 6
DAX Purity 1.00 (4/4) 1.00 (4/4)
PctExPureC 1.000 1.000
VI Distance 0.608 0.633
Edit Distance 2 2
# Clusters 4 4

65

Table 4.10: Evaluation of the clustering predictions for the NucleaRDB datasets.



66 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

wins/ties/losses for the EXPERT datasets; and 3/2/4 for the NucleaRDB
datasets. Even though these results are quite comparable, an argument in favor
of Clus-p-ECC is that it generally achieves a higher percentage of examples in
pure clusters; for only two cases - Thyroid 1 and Nerve - the SCI-PHY clustering
has a larger value for this measure. The only dataset for which Clus-o-ECC
presents a very poor purity is Nerve. However, the same dataset seems to
present a difficult task for SCI-PHY as well, which is witnessed by the small
number of examples in pure clusters for the SCI-PHY results. Additionally,
SCI-PHY presents a poor purity for datasets NHR 3 and Fushi, which contrasts
with the considerably better results obtained by Clus-p-ECC for the same
datasets.

Regarding the edit distance, Clus-¢-ECC obtains 4/0/4 win/ties/losses for the
EXPERT datasets, and 7/2/0* wins/ties/losses for the NucleaRDB datasets.
The superior performance of Clus-o-ECC in terms of edit distance for most
the NucleaRDB datasets reflects, in part, the large number of singletons in the
SCI-PHY clustering for those datasets. As stated by the authors of SCI-PHY
[20], the edit distance penalizes over-division of subfamilies proportionally more
than joining a few subfamilies into large clusters. For the VI distance, the
results are mixed: Clus-p-ECC obtains 3/0/5 wins/ties/losses, in comparison to
SCI-PHY, for the EXPERT datasets; and 4/0/5 for the NucleaRDB datasets.

These results show that Clus-p-ECC predicts clusters of at least equal quality as
SCI-PHY, but with fewer singleton clusters and more instances in pure clusters.

The measures in Tables 4.9 and 4.10 depend on the reference clustering, the
choice of which is somewhat arbitrary. Table 4.11 reports the category utility
of the clusterings, which is independent of this. Again, the results favor Clus-¢-
ECC (9 wins, versus 3 for SCI-PHY).

4.5.5 Evaluating the classification performance

In this section, we evaluate the ability of the tree generated by Clus-¢-ECC
to classify new sequences into one of the predicted protein subfamilies. For
this evaluation, we divided each dataset into ten subsets, keeping the original
subfamily distribution for all subsets. Then, we performed a cross-validation
procedure where, at each iteration, (1) nine subsets were used to identify protein
subfamilies, and (2) the resulting tree was used to classify the sequences from
the remaining subset; each subset was used exactly once to test the classification
performance of the tree. To evaluate the correctness of each prediction, we verify
if the actual subfamily of the sequence corresponds to the majority subfamily
in the leaf node responsible for the prediction. We then report the accuracy of



EMPIRICAL EVALUATION 67

Table 4.11: Category utility results. As NHR 3 has less sequences than NHR 1 and
NHR 2, its clustering differs from the ones obtained for the latter. For this reason,
NHR 3 is displayed on a separate row.

Datasets Clus-¢-ECC | SCI-PHY
Enolase 3.597 2.229
Crotonase 2.225 1.797
Secretin 5.640 5.177
Amine 1 /2 3.138 3.198
NHR 1/ 2 2.029 1.919
NHR 3 2.154 2.040
Thyroid 1 / 2 3.117 2.150
Estrogen 1 / 2 3.838 2.506
HNF41 /2 2.704 2.131
Nerve 6.789 4.363
Fushi 7.687 8.874
DAX 8.345 8.465

the predictions, i.e., the fraction of the sequences whose subfamily membership
was correctly predicted.

We compare these results with those using profile hidden Markov model (HMM)
construction [32] on the clustering given by SCI-PHY;” we denote it SCI-
PHY+HMM. We built the profile HMMSs using the tool HMMER? version
3.0; and, for each query sequence, we predicted the subfamily for which the
profile HMM best matched the sequence. The results are obtained using the
cross-validation procedure described in the previous paragraph, with the same
subsets.

The first two columns of Table 4.12 show the results for these two classification
strategies, in terms of average accuracy over the ten subsets. We can observe
that both strategies generally produce a high accuracy. When we compare
their results, SCI-PHY+HMM obtains a larger number of wins: 11/0/6
wins/ties/losses. On the other hand, we can see that their accuracy values are
comparable for most datasets; for two datasets (HNF4 2 and Fushi) we observe
a large accuracy difference, both times in favor of the Clus-¢-ECC tree. A
two-sided Wilcoxon signed-rank test does not indicate any difference (p-value
of 0.88).

"These results are not necessarily equivalent to those which would be produced by the
classification module of SCI-PHY, since the latter uses profile SHMMs [19] instead of profile
HMDMs. The classification module of SCI-PHY was not used because it is no longer supported.

8http://hmmer.org



68 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

With these results we can conclude that the tests identified by our method
provide an accurate way to classify new sequences, with the advantage that no
extra computation is required.

Note that the previous results are obtained from different clusterings. To
evaluate the performance independent of the clustering, we compared the
predictions of Clus-p-ECC tree with those of profile HMMs built on the Clus-
p-ECC clustering; we denote it Clus-p-ECC+HMM. The results are shown in
the last column of Table 4.12.

The results show that, for 15 out of 17 cases, using the Clus-p-ECC tree produces
slightly less accurate results than Clus-p-ECC+HMM. These results are not
entirely unexpected, since profile HMMs use much more information than the
Clus-p-ECC tree in the classification process; the former uses information about
every position of the MSA to perform the classification, while the latter uses
only a set of tests on certain positions. The fact that the tree’s classification
performance approaches that of profile HMMs shows that the tests identified
by the tree capture most of the information needed for classification, but not
all of it.

Finally, we compare the classification results of Clus-o-ECC+HMM with those
of SCI-PHY+HMM. The former obtains 9/3/4 wins/ties/losses in comparison
with the latter. A two-sided Wilcoxon signed-rank test gives a p-value of 0.02,
indicating that Clus-p-ECC+HMM performs statistically significantly better
than SCI-PHY+HMM.

4.5.6 Analyzing the identified positions

Our method identifies at which positions in the alignment the predicted clusters
differ. To gain more insight in these identified positions, we took one dataset -
Enolase - and examined its tree in detail. In particular, for all known annotations
of a certain kind, we check whether they occur in the tree. Part of the Enolase
tree was depicted in Figure 4.2 of Section 4.3 to illustrate the output of our
method. For ease of notation, we abbreviate the Enolase subfamilies, as shown
in Table 4.13.

We queried all Enolase sequences in Uniprot [8] and retrieved all sequence
positions with active site annotations. Mapping those to the sequence alignment
resulted in a list of six positions. For four of them, the annotations are restricted
to one or two subfamilies. We discuss whether and where they occur in the
Clus-p-ECC tree. For the other two positions, the annotations are found in
sequences of various subfamilies, making the discussion more difficult.



EMPIRICAL EVALUATION 69

Table 4.12: Accuracy of the protein classification results given by Clus-¢-ECC tree,
profile HMMs built on the Clus-¢-ECC clustering, and profile HMMs profiles built on
the SCI-PHY clustering.

Datasets Clus-¢p- SCI-PHY Clus-MinLth-

ECC (tree) + HMM ECC + HMM
Enolase 0.987 0.994 0.985
Crotonase 0.975 0.995 0.989
Secretin 0.948 0.882 0.948
Amine 1 0.969 0.975 0.989
Amine 2 0.894 0.846 0.908
NHR 1 0.973 0.998 0.998
NHR 2 0.932 0.985 0.976
NHR 3 0.628 0.633 0.660
Thyroid 1 0.965 0.996 0.991
Thyroid 2 0.842 0.812 0.860
Estrogen 1 0.994 0.996 0.996
Estrogen 2 0.917 0.890 0.936
HNF4 1 0.980 0.998 0.998
HNF4 2 0.672 0.511 0.652
Nerve 0.766 0.829 0.791
Fushi 0.974 0.846 0.983
DAX 0.975 1.000 1.000

Table 4.13: Enolase subfamily definitions.

Subfamily 1 | chloromuconate cycloisomerase

Subfamily 2 | dipeptide epimerase

Subfamily 3 | enolase

Subfamily 4 | galactonate dehydratase

Subfamily 5 | glucarate dehydratase

Subfamily 6 | methylaspartate ammonia-lyase

Subfamily 7 | muconate cycloisomerase

Subfamily 8 | o-succinylbenzoate synthase

Position 159 (H) is annotated as an active site for one sequence, which belongs to
subfamily 3. It is one of the seven equivalent tests that occur in the root node of
our tree; the root splits subfamily 3 (consisting of 283 of the 472 sequences) from
the rest of the family. Looking at the Uniprot annotations, we observed that
position 159 actually is annotated as a binding site in 176 sequences of subfamily



70 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

3 (and does not have any annotations in sequences from other subfamilies).

Position 211 (E) is annotated as an active site for 176 sequences of subfamily
3 (the same sequences where 159 (H) is a binding site). Surprisingly, it does
not occur in our tree, although this mutation is present for each sequence in
subfamily 3. It turns out that this mutation is also present in one sequence of
subfamily 8, which explains why it is not present in the root node that separates
subfamily 3 from the rest.

Position 250 (H) is an active site for six members of subfamily 4. Interestingly,
in the tree, it occurs in the node that splits off subfamily 4, indicating that it
could be an active site for all 22 members of this subfamily. It also occurs in a
node that splits off one sequence of subfamily 8.

Position 377 (H), finally, is annotated as an active site for 6 members of subfamily
4, and 3 members of subfamily 5. Among the 5 tests in the node that splits off
all members of subfamilies 4 and 5, our tree contains a test “p377 € {H,P}”.

Of course, one should also take into account the number of (equivalent) tests
at the tree nodes. The more tests are present, the more likely it is that a
particular annotation will be among them. Figure 4.4 shows the positions in the
alignment that appear at the first four levels of the tree; each line corresponds
to one node, and each node is numbered as indicated in the tree in Figure B.4
(Appendix B). The number of tests is generally small, ranging from 1 to 12,
except for two nodes, which contain much more tests. The node corresponding
to line 12 in the figure splits off one sequence from a set of 23 sequences, and
hence lists all positions where this single sequence differs from the set. Line 7
corresponds to the node that separates all sequences of subfamily 4 from all
sequences of subfamily 5. There are 98 positions where these two subfamilies
differ (i.e., the intersection of the sets of amino acid residues occurring in
both subfamilies is empty). Further inspection revealed that 18 of these 98
positions refer to insertions or deletions in the alignment, and 39 positions refer
to proper mutations with a conserved amino acid residue in at least one of the
two subfamilies (11 of them have a conserved residue in each of the subfamilies).
As a side note, disregarding these two discussed lines of Figure 4.4, we see
that several lines contain groups of very close positions, which could indicate
functional regions.

To summarize, we have observed that many of the active site annotations in
Uniprot for the Enolase dataset are present in prominent positions in our tree.
Moreover, the tree makes suggestions for new annotations on two levels: it
identifies possible new active sites, and it identifies new sequences that contain
a known active site. We estimate that both types of information can be valuable
for biological analysis.



CONCLUSIONS 71

CoNAU B W~

Figure 4.4: Identified polymorphic positions in first four levels of the Enolase tree.
The line numbers refer to the numbering of the tree nodes in Figure B.4 in Appendix
B.

4.6 Conclusions

In this chapter, we investigated the use of a divisive conceptual clustering
algorithm for protein subfamily identification. The proposed method clusters
protein sequences not only based on their overall similarity, but also based on
the presence of conserved amino acid residues. It first builds a hierarchical
tree using the divisive clustering method described in Chapter 3, which uses
tests based on polymorphic positions to split the sequences. Then, it uses a
post-pruning procedure to extract the predicted subfamilies from the tree. The
polymorphic positions used to split the sequences result in a candidate list
of functionally important sites. Moreover, new family members can easily be
classified into one of the predicted clusters, by sorting them down the tree and
checking the corresponding internal node tests.

We evaluated the proposed method on 11 datasets, and we compared its results
with those of the phylogenomic method SCI-PHY. Next to analyzing the
predicted clusters we also analyzed the underlying tree, for which we proposed
two intuitive measures. Furthermore, we compared the classification results
given by the tree output by our method with those given by profile hidden
Markov models; and we compared the mutations that occur in the tree to known
functional site annotations for one dataset.

We have shown that: (1) using splits based on polymorphic positions results in
trees that are highly discriminating between subfamilies; (2) the tree topologies
produced by our method have a better quality than the SCI-PHY trees; (3)
our method produces a protein subfamily clustering at least as good as the
ones predicted by SCI-PHY, and with the advantage of having in general a
lower number of singleton clusters and a larger percentage of sequences in pure
clusters; (4) the underlying decision tree classifies new sequences nearly as good
as profile hidden Markov models; (5) there is evidence that the tree can identify
active sites.



72 _ USING TOP-DOWN INDUCED CLUSTERING TREES FOR PROTEIN SUBFAMILY IDENTIFICATION

All these results are arguments in favor of using the proposed method for
automated protein subfamily identification.



Chapter 5

Peptide identification using
mass spectrometry data

In the previous two chapters, we explored the evolutionary information encoded
in biological sequences for two related tasks: phylogenetic tree reconstruction
and protein subfamily identification. To that aim, we compared sequences
originating from different organisms/genes. In this chapter!, we explore the
information encoded in a DNA sequence in a different way. We use the full
translation of the genome of an organism to obtain peptide sequences that
would be potentially produced by that organism. We then use this information
to assist peptide identification using mass spectrometry data.

5.1 Introduction

The study of all peptides expressed at a certain time in a certain organism,
tissue, or cell type is the subject of peptidomics [96, 110, 51, 98, 64]. In this
context, tandem mass spectrometry (MS/MS) is commonly used for peptide
identification?. More precisely, an unknown peptide undergoes fragmentation,
and its fragment masses are registered in a so-called peptide fragmentation
spectrum (also called peptide mass spectrum or MS/MS spectrum). Then,
computational methods infer the peptide sequence from its spectrum [120, 92].

1Based on the technical report published as supplementary material of the paper “PIUS:
Peptide Identification by Unbiased Search” [Costa et al. 2013].
2MS/MS is also used in the context of proteomics, as we discuss in Section 5.2.1.

73



74 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

Currently, most researchers use database search methods for fragmentation
spectrum analysis [34, 26, 27]: for each protein sequence in the database,
potential fragments are predicted along with their theoretical fragmentation
spectrum; a scoring function then measures how well these calculated spectra
match the experimentally determined one, returning the top scoring solutions.
This approach is commonly preferred over de novo sequencing because the
success of the latter crucially depends on the quality of the MS/MS data. De
novo sequencing methods infer the amino acid sequence from the mass differences
between neighboring peaks in the fragmentation spectrum. However, from
spectra of moderate quality these methods cannot extract enough information
to unambiguously infer the complete amino acid sequence.

The database search approach also has its limitations. First, if the correct
fragment is not derived from one of the proteins in the database, the
search cannot provide the correct peptide identification. Second, considering
post-translational modifications (PTMs)3 [87] can drastically increase the
computational cost associated with the search. And third, as peptide
fragmentation [120] is a complex process which is not yet completely understood,
designing scoring functions that represent it with high fidelity is still a challenge.

We introduce a new method that tackles the first limitation (incomplete search
space). The main motivation for this work is that in peptidomics research there
are still many fragmentation spectra of good quality that remain unidentified,
presumably at least in part due to an incomplete search space [91, 44]. The
proposed method, which we call Peptide Identification by Unbiased Search
(PIUS), performs peptide identification from MS/MS spectra using the six-
frame translation of the complete genome.

The novelty of PIUS lies in three aspects. First, a larger search space is
considered than in related studies that have performed genome-wide peptide
searches in the context of proteogenomics. Second, PIUS is designed for naturally
occurring peptide identification rather than protein identification or gene/protein
discovery. Third, it performs an exhaustive genome-wide search, which differs
from the search strategy used by existing peptidomics methods. We will discuss
these aspects in more detail later.

The remainder of the text is organized as follows. Section 5.2 gives an overview
of how mass spectrometry data can be used for peptide identification, and
discusses related work. Section 5.3 describes PIUS. Section 5.4 presents our
experiments and results. They show that, for the mass spectrometry data used

3PTMs are chemical modifications that occur after the translation of nucleotides into amino
acids (see Section 2.1.2). In this work, we will not distinguish between in vivo PTMs and
chemical modifications that occur in vitro as they are both observed by the mass spectrometer
as amino acids with an anomalous mass.



BACKGROUND AND RELATED WORK 75

in our evaluation, the unbiased scan performed by PIUS yields top-scoring
sequences identical to an accepted “gold standard” much more frequently than
a non-exhaustive method. We conclude in Section 5.5.

5.2 Background and related work

Mass spectrometry (MS) can be defined as a technology that “weighs” unknown
molecules. To that aim, the molecules are first ionized and then their mass over
charge (m/z) is measured based on their trajectory inside the MS equipment.*
The idea behind this strategy is that the information about the mass of a
molecule can help in its identification. Tandem mass spectrometry (MS/MS)
is a variant of this strategy. It combines two (or more) stages of MS. This
combination allows further analysis of fragments of interest, facilitating the
identification of the molecules being analyzed [15]. MS/MS is the technology
commonly used for peptide identification.

5.2.1 Peptide identification in peptidomics and proteomics

Peptide identification using MS (or MS/MS) data is used in the context of
both peptidomics and proteomics. Although the techniques and protocols
used for both contexts have common features, they have prominent differences
[15]. While in peptidomics the final goal is to identify naturally occurring
peptides, in proteomics peptide identification is used as a means to obtain
protein identification. As a result, for the former it is important to have a high
recall rate in terms of identified peptides, while for the latter it generally suffices
to identify some of the peptides originated from a genomic region to make a
gene/protein prediction. Another difference is that in peptidomics proteins are
digested into peptides in vivo (for example, by proconvertases [60]) at sites that
are difficult to predict reliably, while in proteomics the protein digestion occurs
in vitro at predictable cleavage sites.

As PIUS is designed for the identification of naturally occurring peptides, we
discuss MS from the point of view of peptidomics.

5.2.2 MS and MS/MS experiments

A typical MS experiment (see Figure 5.1.a) for peptide identification starts
by extracting peptides from the biological sample being analyzed (a brain

4The mass over charge is the mass of the ionized molecule divided by its charge.



76 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

tissue, for example). The peptide mixture is then separated in smaller samples.
This can be done based on hydrophobicity by means of liquid chromatography
(HPLC, high performance liquid chromatography), for example. This sample
separation is necessary to reduce the complexity of the sample, since a mass
spectrometer can only analyze a limited amount of ions within a certain time
interval. After this stage, the samples are ready to be given as input, one at a
time, to the mass spectrometer. The peptides are then ionized and their m/z is
measured by a mass detector. This process results in an MS spectrum, which is
a two-dimensional graph that displays the relative abundance (RA) of the ions
(also called ion intensity) on the Y axis, and their m/z on the X axis.

MS spectrum

" (a)
== Sample
g B se ti
i para ion
QP == Ionlzatlon
SRR O
Peptide
mixture lon
fragmentation
RA —_— RA (b)

m/z m/z

MS spectrum MS/MS spectrum

Figure 5.1: Illustration of (a) an MS experiment workflow and (b) an MS/MS
experiment workflow.

The MS/MS experiment (see Figure 5.1.b) goes one step further. Namely, ions
of interest are selected and subjected to fragmentation through collision. These
ions are called precursor ions. The fragment ions (or product ions) generated
from each precursor ion are then measured by a mass detector, resulting in an
MS/MS spectrum. An MS/MS spectrum is similar to an MS spectrum, with
the difference that in the former the peaks correspond to fragment ions of a
peptide, instead of complete peptide ions.

5.2.3 lon fragmentation

During ion fragmentation, the precursor ion typically breaks in two parts,
generating one fragment containing the N-terminus of the original peptide



BACKGROUND AND RELATED WORK 7

sequence and a complementary fragment containing the C-terminus.> The
resulting fragments will only be detected if they carry at least one charge.

According to the standard nomenclature used for peptide fragment ions that
arise from MS/MS [12, 109], ions are indicated with the letters a, b or ¢, if the
charge is retained on the N-terminal fragment, and with the letters z, y or z, if
the charge is retained on the C-terminal fragment. These letters are used with
a subscript that indicates the number of residues in the fragment. Figure 5.2
shows an example of ion fragmentation using this nomenclature. Note that the
distinction between a, b and ¢ ions (and between z, y and z ions) lies in the
place where the peptide bond is cleaved.b

a; by ¢y a, b, ¢, a; by ¢, H,N
. .
o R, o R, H
N
H N JL /k H OH R, ©
\N/ N
H H
R, 0 R, 0
I s . e e .es O R
Xz Y3 Zg X, Yo Zp X4 Yy Z4 4
N
H OH
N
H
y
2 R e}

Figure 5.2: Example of ion fragmentation.

As several copies of the same precursor ion undergo fragmentation, different
kinds of product ions can be produced (and then recorded in the MS/MS
spectrum), as well as product ions of the same kind with different lengths (i.e.,
with different numbers of residues). In the last case we speak of an ion series.
Figure 5.2 depicts three ions for each ion series. For example, ions b; and b
belong to ion series b, and their length differs in one amino acid.

Variants of the aforementioned ion series can also be observed. For example,
ions may lose an ammonia molecule (reducing their mass by ca. 17 Da). These
ions are indicated by the superscript “*”: b*, y*, etc. Ions that lose a water

5The N-terminus refers to the start of the peptide/protein sequence and the C-terminus
refers to its end.

6 Apart from the ions retaining the N-terminus or the C-terminus, other types of ions can
be produced during fragmentation, e.g. immonium ions and ions with partial side chain loss.
Immonium ions are produced by the combination of a and y type cleavages and have just a
single side chain.



78 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

molecule (reducing their mass by ca. 18 Da) are indicated by the superscript
«0», bO 0
: 07, yY, ete.

5.2.4 MS/MS spectrum analysis

The information contained in an MS/MS spectrum can be used to identify
the peptide sequence it originated from. This task is called MS/MS spectrum
analysis or interpretation. As this is a laborious task to be performed manually,
computational methods are used to assist peptide identification [120, 92]. In this
context, there are two distinct computational approaches: de novo sequencing
and database search. Some methods combine both approaches in a hybrid
strategy. They use de novo sequencing to guide/assist the database search. We
briefly describe these approaches next.

De novo sequencing

De novo sequencing methods try to identify a peptide using no other information
than its mass spectrum. More specifically, they infer the peptide sequence from
the mass differences between neighboring peaks of the same ion series; the idea
behind this strategy is that if the difference between the mass of two product
ions of the same ion type is equal to the mass of one amino acid, there is
evidence that that amino acid is part of the peptide sequence. Figures 5.3
illustrates the de novo sequencing of the peptide FDKPRP. In this example,
the sequence is obtained by calculating the mass differences from both b and
y ion series. Examples of de novo sequencing methods are PepNovo [45] and
Peaks [85].

b ions

y ions

RA

m/z

Figure 5.3: Example of de novo sequencing. The peptide is sequenced by calculating
the mass differences between neighboring peaks from the same ion series.



BACKGROUND AND RELATED WORK 79

The main limitation of de novo sequencing methods is that they can only
identify a peptide completely if the generated MS/MS spectrum is of high
quality. If a number of product ions are not detected by the MS equipment,
these methods cannot extract enough information to unambiguously infer the
complete sequence. Moreover, the presence of multiple and redundant fragment
ion series is also a challenge for de novo sequencing [5]. In many cases, de novo
sequencing is only able to identify short fragments of the sequence.

Database search

In the database search approach, for each protein sequence stored in the database,
potential fragments are predicted along with their theoretical MS/MS spectrum.
A scoring function then measures how well these calculated spectra match the
experimentally determined peptide spectrum. The result is a list containing
the top scoring solutions. Figures 5.4 illustrates the database search procedure.
Examples of methods that implement this approach are: X!Tandem [27], MS-fit
[68], OMSSA [50], Mascot”, and SEQUEST [34].

Experimental RA
MS/MS spectrum f
m/z

Matching scoring
(scoring function) ) solutions

Top

Theoretical
Theoretical

fragments MS/MS spectra
Protein RA
database )
m/z

Figure 5.4: Database search approach.

However, as mentioned earlier, the success of this approach relies on the presence
of the solution in the database used in the search: if the correct fragment is
not derived from one of the proteins in the database, the search cannot provide
the correct peptide identification. This may result from incorrect prediction
of protein sequences from genomic DNA due to e.g. underprediction of short
open reading frames, or errors in exon boundary prediction. A solution for
this limitation is to consider the six-frame translation of the entire genome, as
discussed in Section 5.2.5.

Thttp:/ /www.matrixscience.com/search_ form_ select.html



80 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

Hybrid methods

Hybrid methods combine elements of the two aforementioned approaches. They
use de novo sequencing in a first stage to generate peptide sequence tags (PSTs).
The resulting tags are then used to filter protein databases, reducing the number
of potential candidates in the database search. Inspect [46] and MS-Blast [114]
are examples of hybrid methods. In the next section, we discuss three other
hybrid methods, which have been proposed for genome-wide searches.

5.2.5 Search against the six-frame translation of the genome

To tackle the limitation of database search methods related to the incomplete
search space, recent studies have pointed out the importance of considering the
six-frame translation of the entire genome in the database search [39, 67, 92].

Although this idea has been investigated in the context of proteogenomics,?

these studies were restricted to a limited search space, as we discuss in more
detail in this section. Moreover, the final goal of these studies was protein/gene
discovery and not peptide identification (see the discussion about differences
between proteomics and peptidomics analyses in Section 5.2.1).

Recently, three peptidomics methods have been proposed for genome-wide
searches: MS-Dictionary [73], MS-GappedDictionary [67], and IggyPep [91].
The three methods, which follow a hybrid approach, are briefly discussed in
this section.

Proteogenomic studies

Yates et al. [140] were the first to demonstrate the benefit of considering peptide
search against the complete translation of genomic data to improve genome
annotation. Due to the unavailability of sequenced genomes at the time, this
pioneering work used EST (expressed sequence tag) databases instead of raw
genomic data.

Since then, this strategy has been applied to raw genomic data from several
organisms. However, most of these studies considered small genomes, due to
the computational cost of such a search, as argued by Kim et al. [73]. They
mainly used genomes from bacteria [65, 134, 56, 55, 113], but also genomes
from fungi [135, 99] and some plants [4, 113] were used. Moreover, many of

8 Proteogenomics investigates the use of proteomic data (usually mass spectrometry data)
to improve genomic annotation (gene prediction, correction of DNA sequencing errors, etc.).



BACKGROUND AND RELATED WORK 81

these studies [77, 25, 71, 117, 4, 113] considered only tryptic peptides (peptides
produced by cleavage by the enzyme trypsin) when searching the translation of
the genome, which reduces the number of candidates to be analyzed considerably.
Furthermore, some studies [56, 55, 124] limited the number of candidates to be
analyzed by using PSTs to filter the search space. One other study [4] applied
the same idea but with complete de novo reconstructions. Wang et al. [134]
reduced the search space by considering only regions of the genome predicted
by a gene-finding program.

In contrast to the aforementioned studies, Fermin et al. [39] did not apply any
strategy to reduce the search space and considered a large genome (human
genome). They performed standard database search using a cluster of computers.

Peptidomics methods for genome-wide searches

Sangtae et al. [73] proposed MS-Dictionary, an efficient method for peptide
identification that allows searching against the six-frame translation of the
genome. The method first creates a set of peptide reconstructions with high
probability of containing the correct solution (called a spectral dictionary).
This dictionary is then used to search against the database or the complete
translation of the genome. However, as pointed out by Jeong et al. [67], this
method has two main limitations. First, it is less efficient if MS/MS data derived
from long peptide sequences is considered, since the number of reconstructions
contained in the dictionary grows too much. Second, results from the search
against the human genome showed that the method fails to identify many
peptides [67].

To overcome these limitations, Jeong et al. [67] proposed MS-GappedDictionary,
which builds a so-called “gapped spectral dictionary” before searching a database
(or the complete translation of the genome). The idea is similar to the one used
for MS-Dictionary, with the difference that a gapped spectral dictionary allows
reconstructions with gaps. The gaps are generated for the positions for which
the sequence reconstruction procedure is uncertain about which amino acids
should be inserted. This change results in much smaller spectral dictionaries
than those produced by MS-Dictionary, and in a larger number of correct
peptide identifications [67].

IggyPep [91] queries the full genome translation using complete de novo recon-
structions or PSTs. In contrast to MS-Dictionary and MS-GappedDictionary,
IggyPep does compute the de novo reconstructions internally, but uses the
output of a de novo sequencing method as input.



82 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

5.3 Proposed method

We introduce a new method that tackles the limitation related to the incomplete
search space in the database search approach, discussed in Section 5.2.4. The
proposed method, which we call Peptide Identification by Unbiased Search
(PIUS), performs peptide identification from MS/MS spectra using the six-frame
translation of the complete genome. PIUS differs from peptide genome-wide
searches performed in the context of proteogenomics (see Section 5.2.5) in two
aspects. First, PIUS considers a larger search space, since it is not limited to
small genomes and does not make prior assumptions to reduce the search, such
as assumptions about enzymatic cleavages. Second, the goal of PTUS is peptide
identification while in the case of proteogenomics studies the goal is protein/gene
discovery. In contrast to the peptidomics methods MS-Dictionary [73], MS-
GappedDictionary [67], and IggyPep [91] that also allow a search against large
genomes, PIUS does not limit the analysis of the genome to a small set of
sequences that match a list of de novo reconstructions or PSTs. Instead, it
performs an exhaustive scan of the translation of the six reading frames of
the complete genome. Therefore, this search is not biased towards a subset of
candidates, and eliminates the need for good-quality de novo reconstructions or
PSTs.

In the next sections, we describe PIUS in more detail using the following notation.
During a standard sequence fragmentation, ions retaining the N-terminus or the
C-terminus of the original peptide sequence are produced. We call the former
prefix fragment ions, and the latter suffix fragment ions. We also use the word
prefix to denote a fragment of a candidate sequence containing its N-terminus.

5.3.1 Overview of the method

PIUS works as follows. Given an MS/MS spectrum and a specific genome as
input, it analyzes how well each of the translated genomic sequences matches the
spectrum. To investigate these sequences, the outermost loop of the algorithm
iterates over all starting positions of each translated reading frame, and for
each starting position PIUS considers the sequences in the order of increasing
length. It moves to the next starting position when the calculated mass of
the sequence exceeds the measured mass of the intact peptide that generated
the experimental spectrum. This order of traversing the search space avoids
iteration over candidates of which the mass is too large, and allows for ions
detected in a prefix to be reused in the analysis of its extensions. Furthermore,
this traversal order is also used for pruning, as discussed later in this chapter.



PROPOSED METHOD 83

During the search, PIUS keeps a running list of the top k scoring solutions,
where k is set by the user.

When analyzing a candidate sequence, PIUS first checks its calculated mass. If
this matches the mass of the measured peptide, given a certain error tolerance,
then the candidate is eligible to enter the top k solutions depending on its score.
If the mass of the candidate is too small, PIUS evaluates whether the sequence
can be a prefix of the correct solution. If not, it can prune from consideration
all its extensions.

To calculate the quality of a prefix, we calculate all ion matches that can be
analyzed up to that point,? including suffix fragment ions, and give a score to
the prefix using the selected scoring function. The masses of the suffix fragment
ions are calculated using the mass of the parent ion and the masses of the
prefix fragment ions.'® By calculating the masses of the suffix fragment ions
in advance, we do not need to wait for the sequence to be complete to start
verifying them. Having this information gives a better evaluation of the prefix,
which benefits the pruning procedure (Section 5.3.3). If only prefix fragment
ions were used in the prefix evaluation, our pruning procedure would be biased
towards the presence of these ions in the candidate peptides.

Figure 5.5 shows the described search strategy in pseudocode. More specifically,
it shows how PIUS analyzes a translated fragment of the genome. We consider
a translated fragment an amino acid sequence without stop codons. PIUS
output the top k list when all possible translated fragments of the genome have
been analyzed. When AnalyzeTranslatedFragment is first called, the top k list
is empty.!! PruneSearch is the pruning procedure implemented in PIUS; we
discuss it in Section 5.3.3.

9The contribution of all ion matches found in shorter prefixes is reused, so only few ions
per prefix have to be evaluated.

10For single charged ions, for example, the mass of a suffix fragment ion is calculated by
subtracting the mass of the corresponding prefix ion from the mass of the parent ion, plus
the mass of a hydrogen atom. This calculation assumes that the final sequence, which has
the current sequence as a prefix, will have a total mass that matches the mass of the parent
peptide.

11 The top k list contains the candidates with the k highest scores found until that moment in
the search, along with the score of the prefixes for each candidate in the list. The information
about the prefixes will be used in the pruning procedure described in Section 5.3.3.



84 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

AnalyzeTranslatedFragment

// Input: Mass spectrum M, translated fragment T
// Output: Top k list: list containing the top scoring candidates

Starting position P := beginning of T’
Lenght of the current candidate Ls := 1
while end of T" has not been reached do
S is a subsequence of T" that starts in P and has length L
if mass of S > mass of the intact peptide given by M then
P:=P+1
Ls:=1
else
Look for ion series matches between S and M
V(S) := calculate score of S
if mass of S matches that of the intact peptide then

UpdateTopkList
P:=P+1
Ls =1

else
if PruneSearch then

P:=P +1
Ls:=1

else
Ls:=Ls+1

UpdateTopkList

// Input: Current top k list, candidate sequence S
// Output: List after update

if top k list is not full yet then
Insert S into the list
else
if V(S) is larger than the lowest score of the list then
Delete the lowest scoring solution
Insert S into the list

// When S is inserted to the list, the scores of its prefixes are stored as well.

// This information is going to be used in the procedure PruneSearch.

Figure 5.5: Pseudocode of PIUS for the analysis of a translated fragment 7. We
discuss the pruning procedure - PruneSearch - in Section 5.3.3.



PROPOSED METHOD 85

5.3.2 Scoring functions

The default scoring function in PIUS is derived from the one used in SEQUEST
[34]. While the latter only considers ion series b and y, PIUS considers prefix
fragment ion series b, b*, b, a, a*, and a°, as well as suffix fragment ion series
y, y*, and 30 (see Section 5.2.3 for more details about ion fragmentation.). We
assign a weight to each ion series to give more importance to abundant ions. To
define the weights, we measured the relative frequency of each ion series in a
distinct dataset which we used only for this purpose and for which the correct
identifications were known. The user can reuse our weights, define his own
weights derived from a chosen training procedure, or enter frequencies obtained
from the literature. We call the default scoring function MIWS (multi-ions
weighted SEQUEST). It is defined as:

(2321 wj * Slf;u-) * Mg x (L+6) % (14 p)

ny

MIWS =

(5.1)

where j iterates over the nine ion series considered; SI7 ; is the sum of the
intensities of matched ions'? for ion series j; and n,,; is the total number of
the matched ions. Correction factor 1+ 3 increases the score when successive
ions in an ion series are found. ( is initially zero and is increased by 0.075 for
each sequential ion in a series. Similarly, 1 4+ p is a correction factor for the
occurrence of certain immonium ions.'® Specifically, if an immonium ion for
the amino acids His, Tyr, Trp, Met, or Phe is present in the spectrum along
with the associated amino acid in the sequence under consideration, then p,
which is initially zero, is increased by 0.15. If the amino acid is not present in
the evaluated sequence, then p is decreased by 0.15.4 Finally, n, is the total
number of predicted sequence ions.

Alternatively, the user can select four other scoring functions. One of them is the
original SEQUEST scoring function, which corresponds to Equation 5.1 when
only the b and y series are considered, and the weights are set to 1. The other
three functions are derived from the functions X;, X 7, and X ;; proposed by

12 A matched ion is an ion whose mass corresponds to the mass of one of the peaks in the
mass spectrum, within a certain error tolerance.

13We consider the same set of immonium ions as in the original SEQUEST function. For a
definition of immonium ions, see Footnote 6 in Section 5.2.3.

14The idea behind considering immonium ions in the scoring function is explained with
following example. Consider that the mass of the immonium ion for the amino acid Trp is
found in the spectrum. In this case, it is likely that Trp is present in the sequence of the
peptide we are trying to identify. Therefore, in our example, the scoring function will penalize
candidates that do not have that amino acid, and reward those containing it. If the mass of
that immonium ion is not present in the spectrum, there is no reward (or penalization) for
the occurrence (or absence) of Tpr in the sequence.



86 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

Feny6 and Beavis [38]. As the only change that we performed was to consider
more ion series than the original formulation (we consider the same nine ion
series that we consider for MIWS), we keep the original names for the functions.
We show the formulae for X7, X;;, and X;rr in Equations 5.2, 5.3, and 5.4,
respectively. In the equations, n’ . is the total number of matched ions for ions

me

series j.
9 .
Xp=Y Sh, (5.2)
j=1
9 .
X=X * H nl | (5.3)
j=1
Xrrr = X * eXp(Z nl ) (5.4)
j=1

5.3.3 Pruning procedure

When evaluating a prefix sequence, we use a pruning procedure that compares
the score calculated for that sequence to the lowest score obtained by a prefix of
the same length in the top k list. If the current score is lower than « times the
lowest prefix score, then the current sequence is not extended and we move the
starting position pointer one position downstream. The parameter o determines
the eagerness to prune; 0 < a < 1. Since a very short prefix is unlikely to
contain sufficient statistical evidence to decide between pruning a sequence or
not, pruning is only allowed after the prefix has reached a user-defined minimum
length Lj,;. Moreover, pruning is only enabled once the top k list is full.

More formally, let V(.S) be the score of the sequence S and let S(1: p) be the
prefix of S with length L. Then, given that we want to compose a good top k
of full sequences, we prune those sequences S for which the following condition
is observed

3L > La: V(S(1: L)) < (i1 * @), (5.5)

where t,, is the lowest score among the prefixes of length p of all solutions present
in the top k list. Figure 5.6 shows this procedure in pseudocode.

Note that for any a # 0 PIUS does not compute the exact score of all
possible candidate sequences. However, PIUS still exhaustively considers every
starting position of the genome and it computes for all candidates at least an



PROPOSED METHOD 87

PruneSearch

// Input: Top k list, V(S): score of the current candidate S, Ls: length of S
// Output: “Prune” or “Do not prune”

Ly is the minimum length allowed for pruning
if Ls < Ljs or top k list is not full yet then
Return “Do not prune”
else
tr g := lowest score among the prefixes of length L in the top k list
« is the parameter that defines the eagerness to prune
if V(S) < trg * a then
Return “Prune’
else

Return “Do not prune”

Figure 5.6: Pseudocode of the pruning procedure performed by PIUS.

approximation of the scoring function: the score of a prefix of at least Ly
amino acids.

5.3.4 Post-translational modifications

The user can ask PIUS to search in an even far larger search space than
the one we have just described, namely, that of sequences containing PTMs.
If this option is enabled, PIUS searches for (combinations of) modifications
that are commonly observed in peptides, in particular: amidation, N-terminal
pyroglutamate, acetylation, methylation, dimethylation, trimethylation, half of
a disulfide bridge, sodium cation, deamidation, diacetylation, phosphorylation,
oxidation, and dioxidation. Additionally, a 12 Da or 24 Da mass shift is allowed
for the N-terminus of the peptide and the amino acids K, R, H, C, Y, W, and F,
to account for possible reactions with formaldehyde, a contaminant in some of
the solutions used for peptidomics. Additionally, the user can specify his own
choice of arbitrary PTMs.

PIUS considers a modified amino acid residue as it was an additional residue.
Thus, when PTMs are considered, two or more amino acid residues can be
produced from the same codon of the genome: the unmodified amino acid and
the modified one(s). PTUS investigates each one of these possibilities.

Of course, searching for combinations of PTMs has a large computational



88 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

cost, and the search space enlargement raises the probability to obtain false
positives. How to deal with these issues is an interesting venue for future
research. Currently, these issues are mitigated by offering to the user the option
to limit the number of PTMs considered per candidate.

5.3.5 Limitations of the method and possible solutions

Even though PIUS addresses the incomplete search space limitation to a great
extent (by considering the full translation of the genome), there are still cases
that are not covered by our current search strategy. We discuss three cases
next.

PIUS can search for modified amino acid sequences given a list of PTMs specified
by the user. However, if the experimental peptide suffered a modification that
is not specified in this list, PIUS cannot find the correct solution. One idea to
solve this limitation is to apply strategies that can generate a list of potential
PTMs for the spectra being analyzed, and give this list as input to PIUS. For
example, sample-specific PTMs can be identified based on clustering approaches
as described by Menschaert et al. [93]. Subsequently, these identified PTMs can
be included in the PIUS search.

Another limitation is related to polymorphism. This phenomenon is
characterized by the occurrence of two or more versions of a sequence or
a set of sequences in the genome of an organism. As PIUS does not account for
this, polymorphic peptides might not be in the search space it considers. One
possibility to deal with this limitation is to allow PIUS to get, as input, genomes
encoding polymorphic information, and to try all polymorphic translations.
However, depending on the amount of polymorphism in the genome, this
solution might be too computationally expensive, apart from increasing the
rate of false positives. Another possibility is to deal with polymorphism in a
peptidomics workflow in the spirit of the one proposed by Menschaert et al.
[92]. This workflow would start with a conventional database search. Then, the
spectra that remained unidentified after the first phase would be checked for
polymorphism in a new database search. This search would take into account
known information about polymorphism in the proteome (e.g., complement
the database with different polymorphic versions of proteins). Then, the still
remaining unidentified spectra would be given as input to PIUS, which would
be the last resource in the workflow. By doing so, the spectra given as input to
PIUS would have already been checked for polymorphism earlier in the workflow.
Of course, this is a partial solution, in the sense that it would not account for
unknown polymorphisms, nor for polymorphisms outside the known proteome
of the species.



EMPIRICAL EVALUATION 89

Finally, PIUS does not consider peptides originating from splicing processes.
This limitation could be mitigated by giving to PIUS known information about
splicing of coding regions in the genome, so that this information could be
used in the genome translation. Of course, this solution relies on the current
annotation of the genome, and can thus insert bias in the search.

5.4 Empirical evaluation

We start the evaluation by comparing the different scoring functions implemented
in PIUS. Next, we evaluate the results returned by PIUS when PTMs are
considered in the search. We then compare PIUS with the tool MS-Gapped-
Dictionary [67]. Finally, we evaluate our pruning procedure.

5.4.1 Experimental setup

We evaluate PIUS on a subset of 109 spectra from a set of peptide mass
spectra from a combined set of peptide mass spectra from different mouse tissue
and cell line samples produced by MALDI-TOF-TOF [128], [unpublished
data'®]. The subset was obtained as follows. Following the same idea discussed
by Menschaert et al. [90], we used a combination of two search algorithms
(X!Tandem and OMSSA) within SearchGuil” to obtain the peptide identification.
This search was performed against the protein sequence database SwissProt [8],
without specifying any enzymatic cleavage, with precursor mass tolerance 0.8 Da,
fragment mass tolerance 0.6 Da, and allowing the following PTMs: N-terminal
acetylation, C-terminal amidation, oxidation on M, and pyroglutamination
on N-terminal Q. We then analyzed the results with Peptide-Shaker'® and
retained only those with a confidence level of 100%, allowing us to use them as
a gold standard. Among the 109 spectra, 6 spectra have a PTM: 1 spectrum
with C-terminal amidation, 1 spectrum with N-terminal pyroglutamination,
and 4 spectra with N-terminal acetylation. The size of our dataset is typical
for peptidomics studies, in contrast to proteomics studies, where datasets are
typically larger.

ISMALDI-TOF-TOF is MS/MS by matrix-assisted laser desorption/Ionization with time-
of-flight selection followed by fragmentation and time-of-flight measurement.

16Qut of the 109 spectra used in the experiments, 19 spectra are part of a set of unpublished
spectra from the SBO grant IWT-50164 of the Institute for the Promotion of Innovation by
Science and Technology in Flanders (IWT).

17SearchGUI is a graphical user interface for configuring and running X!Tandem and
OMSSA simultaneously. http://code.google.com/p/searchgui/.

18PeptideShaker is a search engine platform for visualization of peptide and protein
identification results from multiple search engines. http://code.google.com/p/peptide-shaker/.



90 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

Table 5.1: Comparing different scoring functions .

Sequest | MIWS | X7 | X5 | Xrrr

Top 1 85 85 22 95 82
Top 2 3 3 3 1 5
Top 10 3 8 14 4 10
Top 50 8 4 14 2 2
Top 100 2 1 1 0 0
Top 200 0 0 5 0 2
Top 500 1 0 4 1 0
Top 1000 0 2 2 0 1
Top 2000 1 0 2 0 0
Top 5000 0 0 6 0 0
Top 10000 0 0 5 0 0
Not found 0 0 25 0 1

In our experiments, we verify if PIUS can identify these gold standard solutions
in the search space provided by the six-frame translation of the mouse genome.
This translation contains approximately 200 times more amino acids than the
mouse proteome in SwissProt. We use PIUS with an error tolerance of 0.5
Da for both peptide and fragment mass, which is large enough to account for
measurement errors in MALDI-TOF-TOF data. We arbitrarily set & = 10000,
a=0.8,and L =5.

5.4.2 Comparing different scoring functions

In this experiment, we compare the different scoring functions implemented in
PIUS: the original SEQUEST function, MIWS, X;, X;;, and X;;;. The results
are presented in Table 5.1, which shows the position in the top k list occupied
by the gold standard solutions. The perfect identification would be if the gold
standard solution for all spectra would be placed as the top 1 solution. The
numbers displayed in the table are not cumulative.

All scoring functions yield good results, except X;. This scoring function ranks
many gold standard solutions in low ranking positions, and misses 21 gold
standard solutions at all. The poorer performance for this scoring function is
not unexpected, since it encodes less information about the matched ions than
the other functions.

The function X;; returns the gold standard solution at the top of the candidate
list for a few more cases than functions MIWS and SEQUEST. This is surprising,



EMPIRICAL EVALUATION 91

since the former does not use some of the information used by the two latter
functions, namely, the match of immonium ions and consecutive ions within
ion series. The function X;;; also presents good results, but misses one gold
standard solution.

These results show that, provided an adequate scoring function, PIUS obtains
comparable results to those of conventional database search methods while
considering a substantially larger search space. In the remaining experiments,
we focus on the scoring functions MIWS and X;.

5.4.3 Searching for post-translational modifications

We now evaluate PIUS for the case where PTMs are considered in the search.
We consider the same PTMs used to obtain the gold standard solutions, and
we restrict the number of PTMs per sequence to at most one. The results are
summarized in Table 5.2. We show the results for the spectra with and without
PTMs separately.

Table 5.2: Analyzing PIUS (with MIWS and X;;) for the case where PTMs are
allowed in the search.

Spectra with no PTM | Spectra with PTMs

MIWS X1 MIWS Xrir
Top 1 82 90 5 6
Top 2 5 6 0 0
Top 10 5 2 1 0
Top 50 5 4 0 0
Top 100 2 0 0 0
Top 200 1 0 0 0
Top 500 0 0 0 0
Top 1000 1 1 0 0
Top 2000 1 0 0 0
Top 5000 0 0 0 0
Top 10000 0 0 0 0
Not found 1 0 0 0

For the 6 spectra with PTMs, PIUS used with MIWS finds the gold standard
solution as the top 1 solution for 5 cases, and as top 3 solution for 1 case. When
the function X;; is used, PIUS finds the gold standard solution as the top
1 solution for all cases. For the 103 spectra without PTMs, PIUS used with
MIWS finds the gold standard solution as the top 1 solution for 82 cases, as



92 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

the top 2 solution for 5 cases, in top 10 of solutions for 5 cases, and in a lower
ranking position for 11 cases. In this experiment, 1 gold standard solutions is
missed due to search space pruning. With X;;, the results are again slightly
better than when MIWS is used: PIUS finds the gold standard solution as
the top 1 solution for 90 cases, as the top 2 solution for 6 cases, in top 10 of
solutions for 2 cases, and in a lower ranking position for 5 cases.

Note that these results for the 103 spectra with no PTM are slightly worse than
for the case where the search is performed without PTMs (Table 5.1). This is
not unexpected, since the search space is enlarged by also considering modified
sequences, increasing the likelihood of returning false positives. However, for
a large majority of the cases, the gold standard solution is still returned as
the top-scoring solution. Moreover, PIUS successfully identifies the modified
peptide in the 6 spectra with PTMs. These results together show that PIUS
has a high recall rate even when PTMs are considered.

5.4.4 Comparing the results with MS-GappedDictionary

We now compare PIUS with the tool MS-GappedDictionary [67], using the
parameters recommended by its authors. In particular, the charge range
parameter of MS-GappedDictionary is set to 1, no enzymatic cleavage was
specified, and all other parameters are left at their default values. In addition
to using MS-GappedDictionary with its default value for error tolerance of 2.0
Da, we also test MS-GappedDictionary with the tolerance used by PIUS (0.5
Da). As this tool does not consider PTMs in the search, we only consider the
spectra without PTMs. The results are summarized in Table 5.3. Note that
the results we show for PIUS are for the case where we do not consider PTMs
in the search.

With its default error tolerance, MS-GappedDictionary finds the gold standard
solution for only 50 out of the 103 spectra. Out of these 50 cases, the gold
standard solution is the top 1 solution for 48 cases and the top 2 solution
for 2 cases. Among the 53 remaining spectra, there are 3 cases for which
MS-GappedDictionary does not return any hits and 50 cases for which the gold
standard solution is not among the returned solutions. With the error tolerance
set to 0.5 Da, the gold standard solution is the top 1 solution for 57 cases, the
top 2 solution for 2 cases, and in the top 10 of solutions for 1 case. There are 3
cases for which MS-GappedDictionary does not return any hits and 40 cases
for which the gold standard solution is not among the returned solutions.

The large number of unidentified spectra returned by MS-GappedDictionary
contrast sharply with the good results reported by Jeong et al. [67]. A possible
explanation for this inferior performance is the source of the mass spectra.



EMPIRICAL EVALUATION 93

Table 5.3: Comparison between MS-GappedDictionary and PIUS. We show results
for MS-GappedDictionary with error tolerance 2.0 Da (default value) and with error
tolerance 0.5 Da (default value in PIUS), and for PIUS (with MIWS and X;;).

MS-GappedDictionary PIUS
error tol. 2.0 Da | error tol. 0.5 Da | MIWS | X;;
Top 1 48 57 85 95
Top 2 2 2 3 1
Lower ranked 0 1 15
Not found 53 43 0

Jeong et al. [67] used only mass spectra produced by an LTQ linear ion trap
tandem MS and an LCQ ion trap MS using ESI, which are generally more
accurate than MALDI-TOF-TOF spectra.

From these experimental results we can conclude that PIUS has a higher recall
rate than MS-GappedDictionary, at least for MALDI-TOF-TOF spectra.

5.4.5 Evaluating the pruning procedure

In this experiment, we evaluate the pruning procedure of PIUS. We used PIUS
with the function MIWS, without considering PTMs.

In Figure 5.7, we display how many candidates are evaluated by PIUS when
searching against the complete translation of the genome. The number of
analyzed candidates according to their sequence length. We display this analysis
for different values for the parameter a.

Note that for a = 0, the pruning procedure is not used. The reason why the
curve goes down even for @ = 0 is because PIUS does not extend a candidate
when its mass is larger than the mass of the precursor ion and also due to the
occurrence of stop codons in the genome translation.

We found that even the maximum « = 1 produced results practically equal to
« = 0 for our dataset in terms of which candidates were output at the end of
the search. The comparison between the resulting top k lists (with & = 10000)
for PIUS with @« = 1 and o = 0 revealed that PIUS with « = 1 pruned, on
average, 15 solutions which were output by PIUS without pruning. However,
these pruned solutions were not among the best solutions in the list: for all
spectra analyzed, the top 100 solutions of the two top k lists were the same;
and for 61 out of 103 cases, the top 1000 solutions of the lists were the same.
This shows that the pruning procedure does not affect the top scoring solutions.



94 PEPTIDE IDENTIFICATION USING MASS SPECTROMETRY DATA

6.c+07
— alpha=0
— alpha=0.6
— alpha=0.7
— alpha=0.8
alpha = 0.9
— alpha=1.0

5.e+07

4.e+07

3.e+07

2.e+07

Number analyzed candidates

1e+07

5 10 15 20 25 30 35 40 45 50
Candidate length

Figure 5.7: Evaluating the pruning procedure with different values for the parameter
a.

However, if PIUS finds hundreds of false positives with a better score than the
correct solution (given the scoring function in use), then there is the risk that
this solution might be pruned away from the search space. A close analysis
of the results revealed that this, in fact, happens for one of the 103 spectra:
the gold standard solution, which is ranked at position 606 with no pruning,
ends up being pruned away when o = 1 is used. This is the same gold standard
solution which is pruned away when PTMs are considered in the search (Table
5.2).

We also evaluate the computational cost for « = 0 and a = 0.8. Due to the
computational work necessary to investigate all the candidates produced by the
translation of the full genome (with o = 0), the current C implementation has a
throughput of 1.2 spectra per hour on an Intel Core i7-2600 when searching the
21 mouse chromosomes; when we apply the pruning procedure with a = 0.8,
the implementation has a throughput of 2 spectra per hour.

Taking into account the computational cost associated with the search performed
with PIUS, we recommend to use PIUS in a layered peptidomics workflow [92]
in case of large scale experiments. Using a similar idea as the one we discuss
in Section 5.3.5, this workflow would first search databases in a conventional
manner, and afterwards call on PIUS for the remaining unidentified high quality
spectra. In case this step would become a bottleneck in the workflow, the
algorithm can easily be parallelized to increase throughput.



CONCLUSIONS 95

5.5 Conclusions

In this chapter, we introduced a new method for peptide identification using
MS/MS data. We call the proposed method Peptide Identification by Unbiased
Search (PIUS). PIUS tackles the limitation related to the incomplete search
space in the database search approach by considering the six-frame translation
of the complete genome.

We evaluated PIUS on a set of 109 MS/MS spectra from a combined set of
peptide mass spectra from different mouse tissue and cell line samples produced
by a MALDI-TOF-TOF instrument. We compared our results with those of MS-
GappedDictionary, which performs a non-exhaustive search against the genome,

on the same dataset. We also evaluated the pruning procedure implemented in
PIUS.

From the experimental results we can draw the following conclusions: (1) PIUS
is very often able to reproduce successful identifications by conventional database
search methods, even though it searches a much larger space; (2) PIUS has a
higher recall rate than MS-GappedDictionary, at least for MALDI-TOF-TOF
spectra; and (3) the pruning procedure partially mitigates the computational
cost associated with the exhaustive genome-wide search, without deteriorating
the quality of the results.

These results argue in favor of using PIUS for peptide identification. In
particular, we recommend to use PIUS as a last resource tool to analyze
spectra of good quality that cannot be identified by conventional database
search methods.






Chapter 6

Estimating prediction
certainty in decision trees

In Chapters 3 and 4, we considered two descriptive learning tasks which were
solved using top-down clustering trees. In this chapter!, we consider decision
trees in the context of predictive learning. More specifically, we propose and
investigate a method for estimating prediction certainty in classification decision
trees.

6.1 Introduction

In classification, it is often useful to have classifiers that not only have high
accuracy, but can also tell us how certain they are about their predictions.
Classifiers that output some kind of reliability, likelihood or numeric assessment
of the quality of each prediction are usually called soft classifiers [40]. The most
common example of a soft classifier is a probability estimator, which estimates
the probability that a data instance belongs to a certain class. Rankers and
reliability estimators are other forms of soft classifiers.

The standard way of turning decision trees into soft classifiers consists of
inferring the certainty of a prediction from the class distribution in the leaf
responsible for the prediction. For example, if an instance z is classified in a
leaf node with 90% of positive examples, we say that that  has 90% probability

!Based on the paper “Estimating prediction certainty in decision trees” [Costa, Verwer
and Blockeel 2013, submitted].

97



98 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

of being positive. However, it has been shown that these proportions can be
misleading: the smaller the leaf is, the more likely the proportion is accidental,
and not inherent to the population distribution in the leaf [101, 141]; and, as
decision tree learners try to make the leaves as pure as possible, the observed
frequencies are systematically shifted towards zero and one [141].

In this chapter, we propose an alternative method to estimate prediction
certainty in decision trees. Assume that, given data set D and k classes
C1,...,CL, we want to make a prediction for an unseen instance x. Suppose
that we learn a tree T that predicts with high “certainty” (according to leaf
proportions) that z has class ¢;. Logically speaking, if we would give the learner
the prior knowledge that x has class ¢; (by simply adding (x,¢1) to D), the
learner should not return a tree T,, that predicts with less certainty that the
class of = is ¢;. If it does, there is a logical contradiction, in the sense that more
evidence about some fact being true leads to less certainty about it. Moreover,
if we add (z,¢2) to D, and it turns out that the tree learned from the new
dataset T., makes a different prediction than 7¢,, also with high certainty, then
we, as observers, know that there is actually high uncertainty about the class.

More specifically, our method works as follows. Given an unseen instance z, we
can, for i = 1,...,k, add (,¢;) to D, giving a dataset D; from which a tree
T,, is learned, and look at the prediction 7; makes for z. If all T;, predict the
same class ¢, we can be quite certain that c is the correct class. If multiple
trees predict different classes, each with high certainty, we must conclude that
these predictions are highly uncertain. We also propose a way to combine the
predictions of the resulting trees.

We perform an extensive evaluation of the proposed method on 48 randomly
selected UCI datasets. We compare our results to those of a standard decision
tree learner and a standard ensemble method. The results show that our method
tends to produce (1) better ranking and reliability estimates, (2) comparable
accuracy, (3) better probability estimates than the standard decision tree learner,
and (4) comparable probability estimates to the ensemble method. Additionally,
compared to a closely related method for reliability estimation, we show that
our method produces better reliability estimates.

The remainder of the chapter is organized as follows. In Section 6.2 we discuss
basic concepts related to prediction certainty in soft classifiers, and discuss
related work. In Section 6.3 we describe our new method in detail. In Section
6.4 we present experiments and results, and in Section 6.5 we conclude.



BACKGROUND AND RELATED WORK 99

6.2 Background and related work

We start this section by discussing prediction certainty estimations in soft
classifiers; we discuss three different ways of interpreting prediction certainty
and how to evaluate them. Then, we briefly recall how decision trees estimate
prediction certainty, and discuss existing methods for improving their estimates.

6.2.1 Prediction certainty in soft classifiers

The notion of certainty associated to soft classifiers has been defined in different
ways in the literature. We discuss three of them: probability, ranking and
reliability estimations. For each one of them we present a measure to evaluate
it; we use these measures to evaluate our method in the experimental section.

We say that a soft classifier is a probability estimator when it estimates for
every possible class the true probability that a random instance with the given
attribute values belongs to that class. Probability estimations are usually
evaluated with the Brier score [18] (Equation 6.1), which is also called mean
squared error. In the equation, j iterates over all the IV predictions, i iterates
over all the k classes, t(c;|z;) is the true probability that instance x; belongs
to class ¢;, and p(c;|z;) is the estimated probability. When the true label of a
prediction is given but its true probability is unknown, ¢(c;|x;) is defined to be
1 if the true label of z; is ¢;, and 0 otherwise.

SN S (teilwy) — pleilr)))?

Brier score =
N

(6.1)

A ranking estimator orders the instances from high to low expectation that the
instance belongs to a certain class c. For every pair of instances (z1,z3), the
ranking defines if x; is more likely, equally likely or less likely to belong to ¢
than zo. With this information for all pairs of sequences together, the ranking
defines a total order. As ranking estimation is defined in terms of pairs of
sequences, we can say that this is a relative estimation. Probability estimation,
on the other hand, is an absolute certainty estimation, since the estimation for
each prediction can be interpreted on its own.

The ranking ability of a classifier is usually assessed using ROC analysis (see
Section 2.2.3), by calculating the area under the ROC curve (AUC). When the
classification is multi-class, one solution is to calculate the ROC curve for each
class separately, and report the average AUC.



100 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

Finally, Kukar and Kononenko [75] use the term “reliability” to define the
probability that a prediction is correct. This is, in principle, the same as
probability estimation for the predicted class. However, Kukar and Kononenko
[75] consider reliability in a more general way. They consider a prediction to be
more “reliable” when it is has a higher probability to be correct, and evaluate
the reliability skill of a classifier by assessing how well it can distinguish between
correct and incorrect predictions based on the calculated reliability for each
prediction. This is in fact a ranking evaluation where the predictions define only
one rank over all classes together (in terms of correct and incorrect predictions),
instead of internally to each class, as for standard ranking evaluation.

Kukar and Kononenko [75] evaluate this ranking of reliability scores in terms
of information gain (we introduced information gain in Section 2.2.2). More
specifically, they look at the predictions in the rank as a new dataset with two
possible classes {correct predictions, incorrect predictions} and with a single
numeric attribute {reliability-estimation}. For this new dataset, they verify
which reliability score yields the best information gain when used to split the
predictions in two populations. Then, they report the best information gain.

However, we argue that returning the information gain for the threshold that
gives the best results does not give a global view of the reliability estimates of the
classifier. Even though this procedure might be useful for automatically selecting
a threshold to be used in the prediction of unseen examples, reporting results on
the same instances used to choose the threshold only gives us information about
the optimal cut-off for estimates. This evaluation might thus give an optimistic
evaluation of the results. We therefore propose to use AUC to evaluate reliability
estimates; we call it AUC reliability to avoid confusion with the aforementioned
AUC calculation for evaluating ranking estimates. The advantage of using AUC
is that it yields an evaluation that is independent of a fixed threshold.

In this modified evaluation framework, the best evaluated situation would be
the one in which all correct predictions have a higher reliability score than the
incorrect prediction (AUC reliability equal to 1). A smaller AUC reliability is
obtained when (a number of) incorrect predictions have higher reliability scores
than correct predictions.

6.2.2 Decision trees and certainty estimates

Standard decision tree learners estimate a classification’s certainty by using
the class distribution in the leaf responsible for the prediction. However, it is
well-known that standard decision tree learners do not yield very good certainty
estimates [101, 141]. Especially for small leaves, the sample class distribution
can significantly deviate from the population class distribution, and it typically



BACKGROUND AND RELATED WORK 101

deviates towards lower class entropy (or higher purity), due to the learning bias
of the tree learner. Moreover, decision trees assign the same prediction certainty
estimates for instances falling into the same leaf, and do not exploit the fact that
even inside the same leaf node there might be prediction certainty differences.
For example, it would be reasonable to assume that a borderline prediction in a
leaf is more likely to be a misclassification than the other predictions in that
leaf.

Several methods have been proposed in the literature to improve estimates
in decision trees. One approach is to apply a smoothing correction (e.g., the
Laplace or m-estimate smoothing) to unpruned trees [101, 40]. Another group
of methods either modify the decision tree learning (e.g., by learning fuzzy [63]
or lazy decision trees [88, 82]) or the way in which the predictions are made
(e.g., by propagating the test instances across multiples branches of the tree
and combining estimates from different leaf nodes [83], or by using internal
nodes to make predictions [141]). Other methods use alternative probability
calculations, e.g., by combining the class distribution from different nodes in
the path taken by the test instance [133]. We discuss these methods in more
detail in this section.

In contrast to these methods, which either develop a new type of decision tree
learner or use different probability estimations, we propose a new way of using
the results that can be obtained using any traditional decision tree learner. We
do this by learning multiple trees, and combining their predictions. In contrast
to ensemble methods, which also learn multiple trees, we modify the training
data in a very restricted and controlled way to obtain different trees. We do this
by just complementing the training data with a labeled version of the instance
to be classified.

Our method is similar to the transductive method for reliable classification
proposed by Kukar and Kononenko [75]. We discuss the main difference between
their method and ours at the end of this section.

Smoothings

Prediction certainty estimates in decision trees are often improved using the
Laplace or m-estimate smoothing [22]. These corrections are used to avoid
extreme estimates? (i.e, extremely certain predictions): they shift the prediction
certainty towards the uniform probability (0.5, in the case of binary problems)
according to the size of the leaf, so that this effect will be larger in smaller

2A prediction certainty of 1 or 0 is never obtained when a smoothing procedure is applied,
although the estimates might converge to those values in extremely large leaves.



102 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

leaves; the idea is to attribute less certainty to small leaves, since they tend to
be less trustworthy than large leaves.

Equation 6.2 shows the m-estimate smoothing to calculate the probability p,(c)
that = belongs to class ¢, where p(c) is the prior estimate of the probability
we want to determine, L is the leaf responsible for the prediction, |L(c)]| is the
number of instances that belong to class ¢ in L, and m is a parameter that
determines the weight of p(c) in the calculation. Equation 6.3 shows the Laplace
smoothing calculation, where o determines the weight of the smoothing. Note
that the two equations give the same estimates when a = 1, m = k and an
uniform prior probability is assumed.

| L(c)| + m *p(c)

pw(c) = |L| +m (62)
L)+«
pu(c) = IL[+axk (6.3)

Provost and Domingos [101] show that the Laplace smoothing applied to
unpruned trees improves ranking estimation; these results are confirmed by
other studies [40, 62, 63]. In terms of probability estimation, Zadrozny and Elkan
[141] recommend the use the m-estimate smoothing (also in combination with
not pruning) and argues that the Laplace smoothing yields little improvement
in the estimates. Fierens et al. [41] show that the Laplace smoothing applied
to unpruned trees yield poor probability estimates but relatively good rankings,
especially when the number of classes is high. Fierens et al. [41] argue that the
poor probability estimates result from poor calibration given the large size of
the unpruned trees.

Ferri at al. [40] proposed a new smoothing method called m-branch. This
smoothing takes the history of the samples during the splitting procedure to
estimate prediction certainty. Namely, it combines the class distribution of
all nodes from the root until the leaf node responsible for the prediction. In
this procedure, the nodes that are closer to the leaf are given more weight.
The results presented by Ferri at al. [40] were evaluated in terms of ranking
estimation. They show that this smoothing yields better rankings than the
Laplace and m-estimate smoothings. The disadvantage is that it requires
more calculations than the other corrections, and it is, as a consequence, less
straightforward to use.



BACKGROUND AND RELATED WORK 103

Pruning procedures

Pruned trees have been shown to give worse ranking estimates than unpruned
trees when the latter are used in association with a smoothing procedure
[101, 40, 62, 63]. These observations were drawn from experiments with different
kinds of pruning procedures, including classical pre-pruning and post-pruning
methods [40], and a pruning procedure especially designed to improve probability
estimates [101]. The results by Ferri et al. [40] showed that (1) when smoothing
is disabled, pruning might be beneficial in some cases; (2) pruning associated
with smoothing degrades the quality of the results; (3) the better the smoothing
procedure is the worse the effect of pruning will be. In the context of probability
estimation, Zadrozny and Elkan [141] also recommend the use of unpruned trees
associated with some regularization method such as smoothing or curtailment,
which we also introduce in this section.

Splitting criteria

Ferri et al. [40] compare the ranking estimates of different splitting criteria. The
results revealed that the differences in the estimates were negligible. Zadrozny
and Elkan [141] also show that changing the splitting criteria has little effect
for probability estimation.

Ensemble methods

Provost and Domingos [101] show that bagging substantially improves ranking
estimates, even more effectively than it does for accuracy estimates. They also
show that when bagging is used, the use of pruning or smoothing makes little
difference. In the results reported by Zadrozny and Elkan [141], the use of
bagging is not as effective for probability estimation.

The two main drawbacks of this approach is the increase in computational cost
and the decrease in comprehensibility of the results.

Curtailment

Zadrozny and Elkan [141] argue that unpruned trees might have some leaves
with too few instances to yield good probability estimates, even when smoothing
is applied. To solve this problem, they iteratively eliminate small leaves until
the point where all leaves have v or more instances, where v is a parameter of
the method; this procedure is called curtailment. Note that curtailment will



104 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

produce a tree in which the internal nodes have either one or two child nodes.
As a result, nodes with only one child node will work either as a leaf or as an
internal node, depending on the attribute values of the instance being classified.

Based on their experimental results, Zadrozny and Elkan [141] recommend the
combination of curtailment with smoothing. They argue that this combination
produces relatively small trees, which favors comprehensibility, while still giving
good probability estimates.

Fuzzy decision trees

Hiillermeier and Vanderlooy [63] investigate the ranking ability of fuzzy decision
trees. In this special kind of trees, the tests located in the internal nodes yield
soft splits instead of hard splits. In a soft split, an instance is classified into the
left child node with a membership degree u(x) in the interval [0,1], and into the
right child node with degree 1 — pu(z). This membership degree is calculated
in a way that it tends to 0.5 the closer the attribute value is of the threshold
chosen for the test. At the end, the instance can be classified into different
leaves, and for each leaf a support value is calculated based on the membership
degrees on the path followed by the instance from the root to the leaf. Then
the class with the highest overall support is returned.

Hiillermeier and Vanderlooy [63] argue that the resulting estimates are not
necessarily good probability estimates, but that they yield a good ordering in
terms of confidence, resulting in a good ranking performance. This good ordering
is given by the “tie breaking effect” that comes along with an increased number
of scores resulting from a fuzzy classification: while in a standard decision tree
learner there can be at most as many different scores as the number of leaves,
in fuzzy decision trees there can be as many different scores as the number of
test instances.

Combining predictions of all leaf nodes

Ling and Yan [83] propose a method that propagates a test instance along
multiple paths simultaneously: for each internal node, the test instance is
propagated along both branches emerging from the node, but with a smaller
weight for the branch that does not satisfy the test. As a result, the instance
will end up in all leaf nodes of the tree. The final probability for the instance
being classified is a weighted average of the contribution of all leaves.

Note that the idea of propagating sequences along multiple branches of the tree
is similar to the one used in fuzzy decision trees. One of the main differences



BACKGROUND AND RELATED WORK 105

between the two methods is that for the latter the tree induction procedure is
modified, while the method by Ling and Yan [83] uses a standard procedure.
The estimates are also calculated in a different way.

Shrinkage and weighted probability estimation

Wang and Zhang [133] investigate two procedures to improve prediction certainty
estimates - shrinkage and weighted probability estimation (WPE), which can
be used independently or combined.

Shrinkage, which was first proposed in the context of text classification [89],
is a procedure that calculates the probability distribution of a leaf node by
combining the probabilities from different nodes in the path taken by the test
instance. A weight is assigned to each node of the path. Wang and Zhang [133]
provide an algorithm to determine the weights. Note that this procedure is
related to the m-branch smoothing proposed by Ferri at al. [40].

WPE is an instance-based procedure proposed by Wang and Zhang [133] that
allows instances falling into the same leaf node to have different probability
estimates. When an instance is classified into a leaf node, the probability
distribution is calculated based on the similarity of the instance with the
training instances present in that leaf.

Wang and Zhang [133] evaluate both procedures in terms of ranking estimation,
and show that a combination of both outperforms all the following methods: m-
branch smoothing, Ling and Yan’s method [83], bagging, and Laplace smoothing
applied to unpruned trees.

Transductive procedure for reliability estimation

All the aforementioned methods were proposed and evaluated in terms of
probability and ranking estimations. Kukar and Kononenko [75] propose a
procedure that is aimed to improve reliability estimation, which we defined in
Section 6.2.1.

Their method estimates a reliability score for each prediction based on a two-
step approach: first a standard inductive learning step is performed, followed
by a transductive learning® step. These reliability scores can then be used to
distinguish between unreliable and reliable predictions.

3In transductive learning [142], given a dataset and one or more specific unlabeled instances,
the goal is to generate a classifier that makes predictions for that/those instance(s). In this
case, it is not required that a generally applicable classifier is learned, as for inductive learning.



106 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

More specifically, given an unseen instance z, the method makes a prediction
for x using a standard machine learning method (a decision tree learner, for
example); this is the inductive step. The output of this step is then used as
input to the transductive step: x is labeled with the predicted label ¢ given by
the inductive step; the instance (z, ¢) is added to the training data D; and a
new classifier is learned. Finally, the probability distributions output by both
steps are compared in order to infer the reliability of predicting = as belonging
to class c. The idea behind this reliability estimation is that the more different
the probability distributions are, the less reliable the prediction is. This idea is
based on the theory of randomness deficiency [81, 132].

Once a reliability score has been calculated for every prediction, the predictions
are ranked according to their reliability, and a threshold is defined to separate
the predictions into two populations: unreliable and reliable predictions. Kukar
and Kononenko [75] propose a supervised procedure to find this threshold
automatically.

Note that this method is similar to the one we propose in the sense that they
are both based on a transductive strategy. Moreover, they both make one
prediction at a time. The main difference is that we measure the sensitivity of
the learned model with respect to all possible labels, instead of only using the
label which is believed (predicted) to be the correct one. Our hypothesis is that
measuring this sensitivity is crucial to obtaining good certainty estimates for
decision trees.

6.3 Proposed method

In this section, we introduce our proposed method for improving prediction
certainty in decision trees. We start by giving the intuition of our method.
Then, we describe its algorithm. Finally, we illustrate its calculations with one
example.

6.3.1 Intuition of the proposed method

Consider, for example, the decision tree represented in Figure 6.1. This tree
was generated for an iteration of the leave-one-out validation procedure for
the well-known Iris dataset [7]. The test instance x; belongs to class Iris-
virginica, but it ends up being classified in leaf 3, where 98% of the training
instances belong to class Iris-versicolor. This high confidence misclassification
happens because x; is a “border case” (i.e, x; is somewhere in the border



PROPOSED METHOD 107

between classes Iris-versicolor and Iris- Virginica) and is therefore difficult to
be correctly classified.

petal length > 1.9 |

| petal-width > 1.7 | Leaf 3
Class distribution:
yes no . .

Iris-setosa: 0
Leaf 4

Iris-virginica: 1

| petal-length > 5.0 | Iris-versicolor: 48
es no
Leaf 1
Iris Instance x,
e true class:
versicolor jue crass
Iris-virginica

Leaf 2 Leaf 3

Figure 6.1: Example of a misclassification with high prediction certainty for the Iris
dataset. This prediction was obtained from an iteration of a leave-one-out validation
procedure.

The same problem occurs for the other six misclassified instances of Iris (which
has 150 instances in total). All of them are misclassified with a similar prediction
certainty as the correctly classified instances. This illustrates how the prediction
certainty given by decision trees may be overconfident and, consequently,
untrustworthy.

One idea to overcome this problem is to identify instances that might present
some difficulties to be correctly classified, and to attribute some uncertainty
to their prediction. This can be achieved by introducing small changes in the
training data and checking how this affects the outcome of the decision tree;
the underlying idea being that these changes should not have a strong effect on
the outcome of the decision tree, unless we are dealing with cases for which the
classification is more challenging, such as border cases.

In our method, the idea is to analyze the effect of changing the label of a
single instance in the resulting decision tree model. In particular, we want
to investigate the following questions with respect to the instance we want to
classify: (1) “If we add the test instance to the training set with a different label
than the correct one, will the decision tree learner find a tree that is consistent
with this instance according to the wrong label?”; (2) “How certain will the



108 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

tree be about this prediction?”; (3) “How does this situation compare to the
one where the instance is added to the training set with the correct label?”.

Our method is therefore based on the idea that the learned decision tree can
be dependent on the label of a single instance. This effect is illustrated in
Figure 6.2. The two trees shown in the figure were learned for the same data
used in Figure 6.1, with the difference that the test instance x; was included
in the training data. For the left tree, 1 was included with the correct label,
Iris-virginica, while for the right one, x1 was included with label Iris-versicolor.
Note that the trees make different predictions based on the pre-defined label
for x1. The difference in the prediction is due to the change of the threshold
value for the test “petal-lenght > 5.0”. By adding the label Iris-virginica to x1,
this value is affected.

petal-length > 1.9 petal-length > 1.9

n

o yes no
@ petal-width > 1.7 @
yes no

yes
petal-width > 1.7
yes no

Leaf 4 Leaf 4
petal-length > 4.9 petal-length > 5.0
yes no
Leaf 1 Leaf 1
Iris Iris
versicolor versicolo
!t Leaf 2 Leaf 3 Leaf 2 Leaf 3 ¢
Instance X, Instance X,
labeled as Iris-virginica Leaf 2 Leaf 3 labeled as Iris-versicolor
Class distribution: Class distribution:
Iris-setosa: 0 Iris-setosa: 0
Iris-virginica: 4 Iris-virginica: 1
Iris-versicolor: 2 Iris-versicolor: 49

Figure 6.2: Illustration of how the tests selected during the induction of a decision
tree can be dependent on the label of a single instance. The decision trees were
built for the same data used in Figure 6.1, with the difference that the test instance
was included in the training data. Left: z; was included with the correct label,
Iris-virginica. Right: x1 was included with the wrong label Iris-versicolor. For both
cases the learned decision tree predicts the instance with the same label that we
pre-define it.

But the effect of changing the label of one instance may also be more global
and influence the choice of features for different nodes of the tree. One example



PROPOSED METHOD 109

petal-length > 1.9 petal-length > 1.9

no
Leaf 5
versicolor) T
Leaf 4

Leaf 2 Leaf 3 Leaf 2 Leaf 3
Leaf 1 Leaf 4
Class distribution: Class distribution:
e ISTANCE X Iris-setosa: 0 Iris-setosa: 0 Instance x, -
labeled as Iris-virginica P N labeled as Iris-versicolor
Iris-virginica: 47 Iris-virginica: 2
Iris-versicolor: 1 Iris-versicolor: 47

Figure 6.3: Illustration of how the tests selected during the induction of a decision
tree can be dependent on the label of a single instance - example 2. The two trees
were built for the same instance (z2) of the Iris dataset. Left: x2 was included in
the training data with the correct label, Iris-virginica. Right: x2 was included with
the wrong label Iris-versicolor. For both cases the learned decision tree predicts the
instance with the same label that we pre-define it.

of this situation can be seen in Figure 6.3, which shows two decision trees built
to classify another instance (x3), also from the Iris dataset. Again, we learned
the left tree with the correct label and the right tree with the wrong label. For
both cases, the tree predicts the pre-defined label with a very high certainty.

These two examples show situations where the learned decision tree is dependent
on the label of the instance we want to classify. Intuitively, we cannot be very
certain about the predicted label when the prediction model itself depends on
the label we give to the instance. This uncertainty is not reflected in a certainty
measure based only on leaf proportions.

6.3.2 Description of the method

Using the intuition just described, the proposed method estimates the prediction
certainty by comparing trees generated for the test instance x using different
labels. As the correct label of x is not known to the method, we try all
possibilities. More specifically, to classify an instance x, the method builds &



110 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

trees, where k is the number of possible labels for the target attribute. For
each label, we insert x in the training set with that label and induce a decision
tree. In the end, the final prediction and its certainty for x are obtained by
combining the prediction of all the trees.

To combine the predictions, different strategies can be used. The one evaluated
in this chapter (Equation 6.4) first calculates the prediction estimations for each
tree by applying the Laplace smoothing (with oz = 1) on the class distribution;
and then averages over the predicted values. With this smoothing procedure,
we avoid that small leaves have too much effect in the final prediction, by
adding some weight in the way we combine the trees’ predictions. In Equation
6.4, Pred(c) is the prediction for (probability of) class ¢, L; is the leaf node
responsible for the prediction in tree T,, |T'| is the number of trees (note that
|T| equals the number of classes), |L;(c)| is the number of instances belonging
to class ¢ within L;, and |L;(—c¢)| is the number of instances belonging to a
different class within L;.

Z\T\ |Li(c)|+1

Pred(c) = == 'L*C)";"Ll(w)'”ﬂ (6.4)

Alternatively to the aforementioned strategy, one could simply average the
prediction of the different trees without applying the Laplace Smoothing
(Equation 6.5). Another possible strategy (Equation 6.6) could be to first
combine the leaf nodes responsible for the prediction, considering all trees,
and then calculate the prediction certainty based on the class distribution in
the combined leaf. In fact, during the development and fine-tuning of our
method, we have investigated the three aforementioned strategies to combine
the predictions. To that aim, we used 6 UCI datasets that we separated for
validation purposes.* As the strategy that uses the Laplace smoothing presented
the best results on the validation datasets, we chose it to be further evaluated
on the 48 datasets used in the evaluation.

7| |Li(o)]
2z L@ L]
T

Pred'(c) = (6.5)

SV |Li(0)]
S ILi(e)] + | Li(=e)]

4These are different datasets than those considered in the experimental section of this
chapter. For a list of all datasets used in the development/fine-tuning and evaluation of our
method, see Appendix C.

Pred”(c) = (6.6)




PROPOSED METHOD 111

The validation of our method also showed that our combination strategy benefits
from pruning. In our strategy, pruning is important to avoid predictions from
very small leaves. These leaves might be created to cover the test instance
for the cases where it receives a wrong label. Thus, we can say that pruning
avoids “overfitting” on the wrong label. This conclusion is, however, based on
experiments where only one pruning procedure was considered. More specifically,
we used the default pruning procedure in the decision tree learner Clus (see
Section 2.2.2), on top of which we implemented our method. This pruning
procedure is an implementation of the procedure used by the decision tree learner
C4.5 [102]. The investigation of the effect of different pruning procedures in
our strategy is an interesting venue for future work.

Pseudocode

The following pseudocode shows the described algorithm. More specifically,
for every possible label ¢ € C, it calculates the estimated expectation that an
instance = belongs to that class. Note that, as we have a double loop in the
procedure CombinePredictions, we need two variables (i and j) to iterate over
the k possible labels in C. We use the variable j in the outer loop so that the
formula to combine the trees’ predictions is consistent with the one we showed
in Equation 6.4.

This procedure works fine in many cases, but sometimes an additional
modification of the tree induction procedure LearnTree is needed. Trees typically
handle continuous attributes by comparing them with a threshold (see, e.g.,
Figure 6.2). This threshold is put between two values belonging to instances
with different class values. If we add a test instance to the training set, this
introduces an additional possible threshold. This can have undesired effects, as
shown in Figure 6.5. In this example, the instance x, which is represented in
the figure as a circle, is a positive instance. As can be seen in the figure, z is
far enough from the negative class (so that a standard decision tree would not
have problems classifying it correctly), but, among all the positive instances, =
is the closest to the negative ones. If we allow our method to use the attribute
values of x, it will always choose a decision boundary that perfectly separates
the instances depending on the label attributed to x (as shown in Figures 6.5.b
and 6.5.c). This would lead our method to conclude that z is a difficult case to
be classified, while actually it is not. To avoid this, the attribute values of x are
not used when the learning method determines the possible split (test) values.
However, they are still used when determining the heuristic value (information
gain) of these possible splits.



112 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

ObtainPrediction

// Input: Training data D, set of possible classes C, test instance z
// Output: Vector (preds,...,predy), with k the number of classes and
// pred; € [0,1] forall 1 < i < k

for each possible class ¢; € C do

Add labeled instance (z,¢;) to D

Learn decision tree T,, on the resulting data
CombinePredictions of T = (T¢;,Tey,...,Te;, )

CombinePredictions

// Input: Learned trees T, set of possible classes C
// Output: Vector (preds,...,predy), with k the number of classes and
// pred; € [0,1] forall1 < i < k

for each possible class c; € C' do
Pred(c;) := 0.0
for each tree 7., € T do
L; is the leaf in T¢,; responsible for the prediction of x
|L;i(cj)| is the number of instances in L; that belong to c;

|L;(—c;)| is the number of remaining instances in L;
) ) [Li(ej)l+1
Pred(es) = Pred(6s) + L. eI
Pred(c;) := 'jT(lcf)

Figure 6.4: Pseudocode to obtain the prediction for an instance x.

6.3.3 Example of the calculations

In this section, we illustrate the calculations performed by our method, step by
step; we consider the same example we used in Section 6.3.1 (see Figure 6.2),
where we want to classify instance x;, whose actual class is Iris-virginica.

To perform the prediction certainty calculations for x1, we induce three decision
trees, since Iris has three possible classes: Iris-setosa, Iris-versicolor, and Iris-
virginica. For each one of the trees that we will induce, z; will be labeled with
one of the class values. For example, to induce the tree for which x; is labeled
as Iris-setosa, we do the following. We first labeled z; as belonging to class



PROPOSED METHOD 113

A
++ ++ +
++0O ++® + 30
+ + + + + +
+ + +

Figure 6.5: Undesired effects of using a test instance when constructing decision
boundaries.

Iris-setosa, add it to the training example and induce the tree. Then, we check
the class distribution of the leaf node where x; is placed. Table 6.1 shows the
class distribution of the leaf node responsible for the prediction of x; for the
three trees.

Table 6.1: Example calculations: class distribution of the leaf node responsible
for the prediction of instance z; for the three induced trees. Each row of the table
corresponds to one leaf node.

Given label

Class distribution

Iris-setosa

Iris-versicolor

Iris-virginica

Iris-setosa 1 2 3
Iris-versicolor 0 49 1
Iris-virginica 0 2 4

Now we need to combine the prediction of the different trees. To that aim, we
apply the combination procedure represented in Equation 6.4. As this procedure
uses probabilities corrected with the Laplace smoothing, we first illustrate the
smoothing calculation: we show the Laplace smoothing calculation for the first
tree (i.e., the one for which we labeled xz; as Iris-setosa) next. The notation
pz(c1]|(z, c2)) refers to the probability that = has label ¢1, given that the tree
was induced with z labeled as cs; for ease of notation we abbreviate Iris-setosa,
Iris-versicolor, and Iris-virginica as SE, VE and VI, respectively. The resulting
probabilities for all trees are shown in Table 6.2.

1+1
o (SE|(21, SE)) = —— = 0.222



114 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

2+1

Pay (VE|(21, SE)) = i 0.333
341

oy (VI(21, =_—— =044

Pay (VI|(21, SE)) 513 0.445

Table 6.2: Example calculations: probability distribution for the leaves shown in
Table 6.1 after applying the Laplace smoothing.

Given label Class distribution
Iris-setosa | Iris-versicolor | Iris-virginica
Iris-setosa 0.222 0.333 0.445
Iris-versicolor 0.019 0.943 0.038
Iris-virginica 0.111 0.333 0.556

To obtain the final predictions, we combine the probabilities corrected with
the Laplace smoothing for every class (Equation 6.4). We show the calculation
for class Iris-setosa next; note that the calculation corresponds to averaging
the column corresponding to Iris-setosa in Table 6.2. The final predictions are
shown in Table 6.3.

Pred(sE) = Lr(SEl(@1, 5B)) +pm(SE|;x1, VE)) + pay (SE|(a1, V1) _

0.222 +0.019 + 0.111

=0.117
3

Table 6.3: Example calculations: final predictions

Iris-setosa | Iris-versicolor | Iris-virginica

0.117 0.537 0.346




EMPIRICAL EVALUATION 115

Note that according to the class distribution displayed in Table 6.3, Iris-
Versicolor is the predicted class. Even though the prediction is not correct, our
procedure was able to assign more uncertainty to this prediction. As shown in
Figure 6.1, a standard decision tree learner assigns a very high certainty to this
wrong prediction (98%).

6.4 Empirical evaluation

In this section, we present an extensive evaluation of the proposed method, which
we implemented as an extension of the decision tree learner Clus (see Section
2.2.2); we call it Clus-TPCE (transductive prediction certainty estimation).

6.4.1 Experimental setup

In total we use 48 randomly selected UCI datasets [7] in the experiments. For
the datasets with no pre-defined test set, we use leave-one-out validation. For
the list of datasets used in the experiments, see Appendix C.

With these experiments we want to answer the following question: “Does the
proposed method yields better prediction certainty estimates than a standard
decision tree”; for this comparison we use the original version of Clus, which we
refer to as Clus-Orig. One could argue, however, that this comparison is not
entirely fair since our method uses multiple trees to make the final prediction,
and it is known that ensembles tend to yield better estimates than single trees
[101]. Therefore, to ensure that an improvement of Clus-TPCE is not simply
due to “ensemble effects”, we also compare to standard bagging (Clus-Ens) with
the same number of trees as we use for Clus-TPCE. For all methods, we use
information gain as the splitting criterion. For Clus-TPCE and Clus-Orig we
use pruning. As ensemble methods often do not use pruning, we use unpruned
trees for Clus-Ens.

As discussed in Section 6.2.1, prediction certainty can be interpreted and
evaluated in different ways. For this reason, we evaluate the experimental
results as (a) probability estimates, (b) ranking estimates, and (c¢) reliability
estimates. For the sake of completeness, we also report the accuracy of the
results.

For the reliability estimation evaluation, we include the results for the procedure
proposed by Kukar and Konenko [75], which was described in Section 6.2.2;
we implemented this procedure to calculate the reliability estimation of the
predictions given by the original version of Clus, and we call it Clus-K&K.



116 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

For each comparison, additionally to the results themselves, we also report
the p-value of a two-sided Wilcoxon signed-rank. With this test we verify the
hypothesis that the method with the largest number of wins, in terms of the
evaluation measure in consideration, is statistically superior to the other one.

6.4.2 Evaluating the accuracy of the predictions

We first evaluate the accuracy of the predictions. The results are shown in
Figure 6.6 and summarized in Tables 6.4 and 6.5.

T T T
0.2 0.4 06

ACC (Clus-Orig)

T
0.8

ACC (Clus-TPCE)
0.6
;
ACC (Clus-TPCE)
0.6
;

T T
04 06 0.

ACC (Clus-Ens)

T T
8 10

Figure 6.6: Results in terms of accuracy: “Clus-TPCE vs. Clus-Orig” (left) and
“Clus-TPCE vs. Clus-Ens” (right).

Table 6.4: Comparison of the results in terms of accuracy. We show the number
of wins for each method in the pairwise comparisons “Clus-TPCE vs. Clus-Orig”
and “Clus-TPCE vs. Clus-Ens”, along with the p-value resulting from a two-sided
Wilcoxon signed-rank test.

Clus-TPCE vs. Clus-Orig

Clus-TPCE vs. Clus-Ens

Clus-TPCE

Clus-Orig

Ties

Clus-TPCE

Clus-Ens

Ties

22

23

3

23

25

0

p-value = 0.8026

p-value = 0.5892

Regarding accuracy, Clus-TPCE obtains 22/3/23 wins/ties/losses compared to
Clus-Orig, and 23/0/25 wins/ties/losses compared to Clus-Ens. The average
accuracy is very similar for the three methods, with Clus-TPCE being slightly
better than Clus-Orig and slightly worse than Clus-Ens. These results show
that the proposed method yields equally accurate results.



EMPIRICAL EVALUATION 117

Table 6.5: Average accuracy for Clus-Orig, Clus-TPCE and Clus-Ens.

Accuracy
Clus-Orig | Clus-TPCE | Clus-Ens
0.773 0.777 0.780

6.4.3 Evaluating probability estimation

In this section, we evaluate the results in terms of probability estimation using

the Brier score. The results are shown in Figure 6.7 and summarized in Tables
6.6 and 6.7.

0.2 03
I I

Brier score (Clus-TPCE)
B

0.1

Brier score (Clus-TPCE)
2
o

0.0
I

03

Brier score (Clus-Orig) Brier score (Clus-Ens)
Figure 6.7: Results in terms of the Brier score: “Clus-TPCE vs. Clus-Orig” (left),
and “Clus-TPCE vs. Clus-Ens” (right).

Table 6.6: Comparison of the results in terms of the Brier score. We show the number
of wins for each method in the pairwise comparisons “Clus-TPCE vs. Clus-Orig”
and “Clus-TPCE vs. Clus-Ens”, along with the p-value resulting from a two-sided
Wilcoxon signed-rank test.

Clus-TPCE vs. Clus-Orig Clus-TPCE vs. Clus-Ens

Clus-TPCE

Clus-Orig

Ties

Clus-TPCE

Clus-Ens

Ties

36

12

0

21

27

0

p-value < 0.0001

p-value = 0.5686

Clus-TPCE obtains 36/0/12 wins/ties/losses compared to Clus-Orig, and a
smaller average Brier score. When compared to Clus-Ens, Clus-TPCE obtains



118 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

Table 6.7: Average Brier score for Clus-Orig, Clus-TPCE, and Clus-Ens.

Brier score
Clus-Orig | Clus-TPCE | Clus-Ens
0.109 0.087 0.096

a smaller number of wins (21 wins against 27 wins for Clus-Ens), but has a
smaller average Brier score. Interestingly, for the cases where both Clus-TPCE
and Clus-Ens have a larger Brier score, the advantage is always in favor of
Clus-TPCE (see Figure 6.7). For the cases with low scores, the results are in
favor of Clus-Ens, but with a smaller difference. This explains why Clus-TPCE
has a smaller average Brier score, even though it has a smaller number of wins.

6.4.4 Evaluating ranking estimation

We now compare the methods regarding their ranking ability. We generate a
ROC curve for each class against all the other ones and calculate the AUC
for that curve; then, we average all AUC values to obtain the final AUC. The
results are shown in Figure 6.8 and summarized in Tables 6.8 and 6.9.

AUC (Clus-TPCE)
X 0
|
°

AUC (Clus-TPCE)

0.4 05 06 07 0.8 0.9 1.0 05 06 07 0.8 0.9 1.0

AUC (Clus-Orig) AUC (Clus-Ens)

Figure 6.8: Results in terms of AUC: “Clus-TPCE vs. Clus-Orig” (top left), and
“Clus-TPCE vs. Clus-Ens” (right).

The results show that Clus-TPCE has a better ranking ability than the other
methods. Tt obtains 37/3/8 wins/ties/losses compared to Clus-Orig and 29/1/18
wins/ties/losses compared to Clus-Ens. Note that these results are more in
favor of Clus-TPCE than for the probability estimation evaluation. This



EMPIRICAL EVALUATION 119

Table 6.8: Comparison of the results in terms of AUC. We show the number of
wins for each method in the pairwise comparisons “Clus-TPCE vs. Clus-Orig” and
“Clus-TPCE vs. Clus-Ens”, along with the p-value resulting from a two-sided Wilcoxon
signed-rank test.

Clus-TPCE vs. Clus-Orig Clus-TPCE vs. Clus-Ens
Clus-TPCE | Clus-Orig | Ties || Clus-TPCE | Clus-Ens | Ties
37 8 3 29 18 1
p-value < 0.0001 p-value = 0.1706

Table 6.9: Average AUC for Clus-Orig, Clus-TPCE, and Clus-Ens.

AUC
Clus-Orig | Clus-TPCE | Clus-Ens
0.814 0.868 0.849

is not completely unexpected. Clus-TPCE tends to shift the probability
distribution output for some instances away from 1 (or 0), and towards the
uniform probability (0.5, in case of a binary problem). This effect is stronger
for the cases for which the method finds evidence that there is a high degree of
uncertainty associated to their predictions. However, as the Brier score assumes
that the method should ideally report a probability of 1 for the true class and 0
for the other classes, having a number of predictions with probabilities closer to
the uniform probability will have a negative effect on the final Brier score.

With these results, we can conclude that ranking estimation is a better
application of our method than probability estimation.

6.4.5 Evaluating reliability estimation

Finally, we evaluate how well Clus-TPCE estimates the reliability of a prediction.
To that aim, we consider the probability output for the predicted class as the
reliability that the prediction is correct. We apply the same procedure for
Clus-Orig and Clus-Ens. For Clus-K&K, we use the procedure proposed by
Kukar and Kononenko [75].

To evaluate the reliability estimates of the four methods, we use the same
evaluation framework used by Kukar and Kononenko [75], with the difference
that we use AUC instead of information gain; we call it AUC reliability (see



120 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

Section 6.2.1). The results are shown in Figure 6.9 and summarized in Tables
6.10 and 6.11.

AUC reliability (Clus-TPCE)
0.7 .
|
°
°
AUC reliability (Clus-TPCE)

T T T T T T T T
0.4 05 06 07 0.8 0.9 1.0 0.5 0.6 07 0.8 0.9 1.0

AUC reliability (Clus-Orig) AUC reliability (Clus-Ens)

AUC reliability (Clus-TPCE)

05 06 0.7 0.8 09 1.0
AUC reliability (Clus-K&K)

Figure 6.9: Results in terms of AUC reliability: “Clus-TPCE vs. Clus-Orig” (top
left), “Clus-TPCE vs. Clus-Ens” (top right), and “Clus-TPCE vs. Clus-K&K?”
(bottom).

Clus-TPCE outperforms the other three methods in terms of reliability
estimation: it obtains 39/3/6 wins/ties/losses compared to Clus-Orig, 33/1/14
wins/ties/losses compared to Clus-Ens, and 33/2/13 wins/ties/losses compared
to Clus-K&K. Furthermore, Clus-TPCE obtains the largest average AUC
reliability, and the statistical tests indicate that the difference in the results
is statistically significant. These results confirm the good performance of our
method in ranking probabilities.



CONCLUSIONS 121

Table 6.10: Comparison of the results in terms of AUC reliability. We show the
number of wins for each method in the pairwise comparisons “Clus-TPCE vs. Clus-
Orig”?, “Clus-TPCE vs. Clus-Ens”, and “Clus-TPCE vs. Clus-K&K”, along with the
p-value resulting from a two-sided Wilcoxon signed-rank test.

Clus-TPCE Clus-TPCE Clus-TPCE
vs. Clus-Orig vs. Clus-Ens vs. Clus-K&K
Clus- | Clus- | Ties || Clus- | Clus- | Ties || Clus- | Clus- | Ties
TPCE | Orig TPCE | Ens TPCE | K&K
39 6 3 33 14 1 33 13 2
p-value < 0.0001 p-value = 0.0209 p-value = 0.0001

Table 6.11: Average AUC reliability for Clus-Orig, Clus-TPCE, Clus-Ens, and
Clus-K&K.

AUC reliability
Clus-Orig | Clus-TPCE | Clus-Ens | Clus-K&K
0.6498 0.7969 0.7681 0.6836

6.5 Conclusions

In this chapter, we proposed a method for estimating prediction certainty. The
new method was implemented as an extension of the decision tree learner Clus,
but the ideas investigated in this chapter can also be applied to other machine
learning methods, in particular those where the label of a single example can
influence the learned model.

Our new method builds a decision tree for an input data consisting of the
training data plus the instance to be classified, which is labeled with one of the
possible class values. This procedure is repeated for every class, and in the end
all induced trees are compared. This comparison allows us to identify instances
that might present difficulties to be correctly classified, and to attribute some
uncertainty to their predictions. We evaluated our method on 48 UCI datasets,
and compared it to the original Clus and to standard bagging. The results
showed that the new method yields better ranking and reliability estimates than
the other methods. Regarding probability estimation, the proposed method
yields better estimates than the original method and comparable estimates
to the ensemble method. We also compared to the method by Kukar and
Kononenko [75] with respect to reliability estimation, and show that our method
produces better estimates.



122 ESTIMATING PREDICTION CERTAINTY IN DECISION TREES

Since our method is complementary to the other methods suggested in the
literature (see Section 6.2.2), they can be easily combined: simply use those
methods instead of Clus to learn multiple trees for different versions of the test
instances.

Note that our method makes predictions for only one instance at a time, which
increases its computational cost. This raises the question if the method can
be extended in order to be able to perform the whole process once for a whole
batch of unseen instances. A straightforward extension of the method consists
of generating the same number of trees as the number of possible labels (once
for all instances), where for every tree each instance to be classified receives
a random label, with the constraint that the same instance will never receive
the same label in two or more trees. This constraint assures that each instance
receives each possible label once, allowing us to apply the same strategy to
combine predictions used in this chapter. However, as each generated tree is
not only subject to the influence of the labeling of a single instance (but a batch
of instances instead), it is not trivial to analyze if the prediction obtained for
an instance is a result of how that instance was labeled, and/or how the other
instances were labeled. In fact, we have performed preliminary experiments
with this extended method to test its ranking ability, and the results showed
that it produces better results than a standard tree learner, but slightly worse
results than standard bagging. Therefore, the extension of the proposed method
remains for future research.



Chapter 7

Conclusions

In this chapter, we first summarize and discuss the most important results and
contributions of this thesis. We then point out possible improvements in the
methods we proposed. Finally, we discuss further application opportunities.

7.1 Thesis summary

The overall goal of this thesis is the development of algorithmic solutions for
bioinformatics problems that involve analyzing biological sequences. We focused
on the use of machine learning techniques to do so.

We first considered the phylogenetic tree reconstruction problem in
Chapter 3. This problem involves inferring the most likely phylogenetic tree
that explains the evolutionary history for a set of sequences. To tackle this
problem, we proposed a method which is built on top of an existing decision
tree learner (Clus). The method, which we call Clus-g, builds a conceptual
clustering tree using tests based on polymorphic positions of the aligned input
sequences. To select the tests used in the tree building process, we designed a
heuristic oriented to the phylogenetic context. One important feature of the
phylogenetic trees generated by this strategy is that the identified tests give
an evolutionary trace. This additional information can be used to investigate
which mutations gave rise to different evolutionary lineages in the tree. We have
shown that (1) our proposed heuristic is more suitable for phylogenetic tree
reconstruction than standard decision tree heuristics, and (2) Clus-¢ produces
results with comparable quality to existing phylogenetic methods.

123



124 CONCLUSIONS

Second, we considered the protein subfamily identification problem in
Chapter 4. In this problem, one is interested in finding subgroups of functionally
closely related sequences within a protein family. This can be achieved by looking
for clusters which are evolutionarily closely related. Therefore, this problem
is related to the phylogenetic tree reconstruction problem of Chapter 3. To
tackle this problem, we proposed a method that first builds a phylogenetic tree
using Clus-p and then extracts clusters from this tree by using a post-pruning
procedure. We have shown that this strategy produces results comparable with
those of a state-of-art method, with the advantage that it provides additional
information about the predicted subfamilies. More specifically, the polymorphic
positions used to build the tree provide a candidate list for functional sites, and
can be used to classify new sequences into one of the predicted subfamilies.

The work presented in Chapter 3 and 4 points out the advantages of using
top-down conceptual clustering in the context of biological applications, where
bottom-up clustering strategies are predominantly used.

Third, we considered the problem of inferring peptide identification of mass
spectrometry data in Chapter 5. To tackle this problem, we proposed a
method called PIUS (Peptide Identification by Unbiased Search). PIUS searches
for peptides against the full translation of a genome and it is specially suitable
for the identification of naturally occurring peptides. In contrast to peptidomics
methods that also allow a genome-wise search, PIUS does not reduce its search
space based on de novo reconstructions. Instead, it exhaustively scans the
genome. We have shown that this strategy produces better results than a
non-exhaustive method. The main contribution of these results is that they
point out the importance of alternative strategies (such as exhaustive search) to
the filtering of the search space provided by de movo reconstructions. However,
in the case of exhaustive search, the improvement in the results comes at a
price, that is, the increase in computational cost. For this reason, in case of
large scale experiments, we recommend PIUS to be used as a last resource tool,
for spectra of good quality that cannot be identified by conventional database
search methods.

Finally, as an additional contribution to the thesis, we considered a machine
learning problem involving prediction certainty estimation in decision
trees in Chapter 6. We presented a transductive procedure to estimate the
certainty of a prediction. We have evaluated our proposed procedure under
different definitions of prediction certainty. The results have shown that this
procedure is more suitable for ranking and reliability estimation than for
probability estimation. One extra contribution of this study is the detailed
discussion of related work of prediction certainty estimation for decision trees
that we presented in this chapter.



DISCUSSION 125

7.2 Discussion

The three biological problems that we investigated in this thesis illustrate how
biological sequence analysis can be used to bridge the gap between the molecular
information of an organism and its biology. In the context of mass spectrum
interpretation, for example, we have shown that the analysis of the six-frame
translation of the genome can be used to assist peptide identification.

If we compare the first two problems - phylogenetic tree reconstruction and
protein subfamily identification - with the peptide identification problem, we can
notice that they have different specificities, such as their final goal and the kind
of data that is typically available for the task. Also, the computational methods
that we propose are different. Indeed, in bioinformatics, computational solutions
can differ considerably from one problem to another. Our method for peptide
identification, PIUS, is one example of a solution that is specifically designed for
a particular problem. On the other hand, some methods can be adapted to solve
related problems. In the case of phylogenetic tree reconstruction and protein
subfamily identification, we have shown that an extension of the clustering
method proposed for the former led to a method for the latter.

Computational solutions not only differ from one task to another. We can also
have a variety of methods to solve the same problem. One important advantage
of considering machine learning methods is that they can automatically
find/select interesting information in the data that is given as input for a
certain task. In the case of protein subfamily identification, for example, our
proposed method finds which positions are the most suitable, according to a
certain criterion, to partition a protein family into subfamilies. Moreover, when
we use symbolic learning, such as decision tree learning, the resulting model (or
hypothesis) can be easily understood and validated by a domain expert. This
allows biologists to understand the reasoning behind the output of such a model,
instead of considering it as a “black box” that simply outputs predictions when
data is given as input.

While the proposed methods for the phylogenetic tree reconstruction and protein
subfamily identification problems fit the machine learning framework, the same
does not hold entirely for our method for peptide identification. This method
is in its essence a search algorithm, even though we can look at its pruning
procedure as a learning process that automatically acquires information to
recognize potentially good candidates based on their prefix sequences. In the
next section, we discuss one example of how this method could benefit from
machine learning,.



126 CONCLUSIONS

7.3 Possible improvements

We have argued that conceptual clustering methods can infer informative cluster
hierarchies of biological sequences by using polymorphic positions. Our method
for protein subfamily identification exploits this important advantage to identify
a candidate list of functionally important sites. Combined with the good results
in terms of predicted subfamilies, this feature provides an important argument
in favor of the use of our method. One possibility to exploit this feature further
is to incorporate (to the method) a user-friendly interface for the visual analysis
of candidate functional sites along with the clustering results. A direct benefit
of such a visualization tool would be to encourage the use of our method by
domain experts. Moreover, this could also open opportunities to improve the
method itself by using, for example, visual analytics. This can be defined as
“the science of analytical reasoning supported by interactive visual interfaces’
[125, 72]. This kind of reasoning has been shown to be useful in many domains,
including biological data analysis (e.g., [97]).

)

We have shown that PIUS can be used as a last resource tool for the identification
of naturally occurring peptides. However, there are certain cases that would
be missed by PIUS in its current version. First, as PIUS only considers
modified peptides that can be derived from a user-defined set of post-translation
modifications (PTMSs), it does not support discovery of PTMs of unknown mass.
Second, PIUS does not consider solutions originating from splicing processes.
Third, it does not account for polymorphism in the genome (i.e., that there
could be peptides generated from a slightly different genome than the one used
in the translation). Dealing with these issues is challenging, since it affects
the computational cost of the search and increases the likelihood of returning
false-positive solutions. One idea to deal with false positives, for example, is to
consider genomic information (such as codon usage and conservation rate) to
disregard part of the solutions. This strategy can, however, introduce some bias
in the results, since it is based on what is currently known about genomes, and
eliminate a potentially correct solution from the list of candidates. Another
idea is to use machine learning techniques to learn fragmentation patterns from
known naturally occurring peptides and use this information to design a more
discriminative scoring function.

Machine learning can also be used to define the sets of PTMs to be considered in
the search performed by PIUS. As we mentioned in Section 5.3.5, clustering can
be used in this context to identify sample-specific PTMs. Conceptual clustering
can thus also be used to tackle this task, provided that an adequate descriptive
language for mass spectra is used. One idea could be to enumerate all possible
peak values occurring in the spectra to be clustered, and use these values as
binary descriptive features, where a spectrum has value one for a feature when



FURTHER APPLICATION OPPORTUNITIES 127

it has a peak that matches (within an error tolerance) the peak value of that
feature, and zero otherwise. This strategy would allow us to look for the most
discriminative peaks when clustering the spectra.

Regarding our alternative procedure for estimating prediction for decision trees,
one limitation is the computational cost associated to making predictions for
one sequence at a time. Ideally, one would like to be able to obtain estimates
for several instances at once. The extension of our procedure in that direction
is therefore a possible improvement of our procedure in terms of computational
efficiency. Moreover, the combination of our procedure with existing ones could
also lead to improvement in the quality of the results.

7.4 Further application opportunities

In bioinformatics, there are many problems involving sequence analysis that can
benefit from the quality and comprehensibility of the results provided by machine
learning strategies such as predictive decision trees and conceptual clustering.
Consider, for example, the problem of identifying transposable elements (TEs),
which are DNA sequences that can move and duplicate, autonomously or with
the assistance of other elements, within genomes.

TEs make up a large portion of the DNA in eukaryotic organisms and are
responsible for the many variations within and across species. These DNA
sequences are classified in a hierarchical system that includes (in hierarchical
order) the levels of class, subclass, order, superfamily, family and subfamily
[138].

In an on-going project between our research group at the KU Leuven and
researchers from two universities in Brazil - Sdo Paulo State University and
University of Sao Paulo, we are currently investigating the use of predictive
decision trees to identify TEs and to classify them on the superfamily level.

Classification of TEs on more specific levels is, however, more challenging [80]. A
strategy to tackle this problem consists of exploiting evolutionary relationships
among TEs. This offers an interesting application opportunity for the divisive
clustering approach we used for protein subfamily identification.






Appendix A

Heuristic function used by
Clus-¢

In this appendix, we provide more details about the calculation of the heuristic
function used by Clus-¢, our method for phylogenetic tree reconstruction
presented in Chapter 3. This function is used to guide the top-down induction
of the tree and its goal is to minimize the final total branch length of the tree.

As explained in Section 3.3, we need two different formulations for this function:
one for splitting the root node and one for splitting the other internal nodes.
We explain these two formulations in the first two sections of this appendix,
respectively. We finish the appendix with an example that illustrates the
calculations performed by Clus-¢ when choosing the best split.

A.1 Heuristic function to split the root node

Clus-¢ starts from a single cluster containing all sequences for which we want
to infer the phylogenetic tree. Using the same reasoning as for the neighbor
joining algorithm (see Section 3.2.2), we can consider this initial stage as a fully
unresolved star-shaped tree (Figure A.l.a). When the root node is split, we
obtain a tree such as the tree T' shown in Figure A.1.b.

To calculate the total branch length of T', we need to calculate the total branch
length of the subtree in the left (77), the branch length Lxy, and the total
branch length of the subtree in the right (Tg).

129



130 HEURISTIC FUNCTION USED BY CLUS-¢

/ \ / i
F D F D
E E
(a) (b)

Figure A.1l: Illustration of the first split performed by Clus-¢: (a) fully unresolved
star-shaped tree; (b) tree given by the split of the root node.

Tp, and Tg are both a star-shaped topology. As we showed in Chapter 3, the
total branch length of a star-shaped tree T can be calculated by the following
formula:

. 1
TBL(T*) = =T E Dojo,- (A1)

04,0, €T*
i<j

The calculation of Lxy is given by

1
L = — E Do.o. —|T E Lo, x —|T E Ly.y].
XY ‘TLHTRl[ 005 ‘ R‘ 0; X ‘ Ll o,/Y]

0 €Ty, o,€Ty, 0,ETR
o;€TR

This formula is a generalization of the one showed in Equation 3.1 (Section
3.2.2), which has [Ty | = 2, |Tg| = |T| — 2, and |T'| the number of sequences in
the tree for which we want to calculate the total branch length.

To be able to calculate the second and third summations of the formula, we
need to replace the branch lengths L,, x (with o; € T1,) and L,y (with o; € Tr)
by the pairwise distances D,,,; between the sequences within Ty, and within
TR, respectively; these distances are given by the distance matrix. We can do it
. 1

by replacing ZoieTL Lo,x by e Zoi,ojeTLKj Dy,0;, and ZoieTR Loy

bY (71 Do 0,ernicj Doo;- With these substitutions, we can rewrite the
calculation of Lxy as follows:



HEURISTIC FUNCTION TO SPLIT THE ROOT NODE 131

1 |Tr| \TL
Lxy = ——| Doyo; — Doy, D.,
|TL||Tr| [Trl—1 |TR\—1
0,ETE, 0;,0;ETL, 0;ETR
0;€ETR i<j i<j

Adding the calculations for TBL(T), TBL(TR), and Lxy together, and making
the right rearrangements, we obtain the following function:

1 1
TBL(T{T., Tr - Do.o. + —— Doy, (A2)
(PP To) = fe D Possy + 1y O Possy + [y D i
0 €T, 0j,0;E€TY, 0,0;€TR
oj€TR i<j i<j

We can eliminate unnecessary calculations from this formula by using the
following equality:

E Dy.o. = E Dy o. — E Do o. — E Do.o. (A.3)
i0j i9j 1935 i9j

0, €T, 0;,0;€TLUTR 05,0;€T, 0;,0;€TR
0;E€ETR i<j i<j i<j

More specifically, we replace the first summation of Equation A.2 by the right
side of Equation A.3. With the right rearrangements, we obtain the following
formula:

1
TBL(T{TL,Tr}) = m( E Dojo; + (ITrl — 1) E Dojo; +
0; €T UTR 0j,0;€TY,
i<j i<
(lTL‘ - 1) g Doio]-)-
0i.0;€TR
i<j

This formula is more efficient than the previous one because its first summation
is constant for the node being split. This allows us to calculate this summation
only once when choosing the best split for a node.



132 HEURISTIC FUNCTION USED BY CLUS-¢

A.2 Heuristic function to split the other internal
nodes

For splitting the other internal nodes, a more complex heuristic function is
needed, since the particular split influences the length of other branches in the
tree, and hence, the total branch length. In Figure A.2, we give an example
of such a split, where the sequences directly connected to X are split into two
subtrees. To keep the same notation that we used in the previous section, we
use the symbols T7, and Tk to denote the two resulting subtrees. The subtree
containing the remaining sequences is denoted by Tp.

Figure A.2: Illustration of the tree topology considered by Clus-¢ when splitting
non-root nodes.

To calculate the total branch length of the tree T' in Figure A.2, we need to
calculate the total branch length of the three star-shaped trees (T7,,Tr, and
To), and the branch lengths Lxw, Lxz, and Lxy. For the star-shaped trees,
we use the same calculation we used in the previous section (see Equation A.1).
Next, we show the calculations for the branch lengths Lxw, Lxz, and Lxy.

To calculate the sum of Lxw, Lxz, and Lxy, we calculate the sum of the
branch lengths Ly z, Ly z, and Ly, and divide the result by two, as follows:



HEURISTIC FUNCTION TO SPLIT THE OTHER INTERNAL NODES

1
Lxw + Lxz + Lxy = E(LWZ +Lyz+Lyw) =

SN |Tal

7(7[ D0i0j7

2 |TL||Tr| [Tr|—1
0, €T,

0;E€ETR

1
— E D,
|To||Tr|
To

%%
0 €T

1
[ Z DO
|TL||Tol
o0, €Ty,
0 €ETO

1
s D P
2|TL||Tr|

o0, €T,
0j€TR

T 2
2|Tol|Tr|

0, €T
0 ETR

05 T

1
[TL|(|Te| = 1) Z

E Doo;
J

03,05 €Ty,
1<j

__|Tr| }: D
i9j |To| —1 °i%j

0,95 €To
1<j

0,05 €Ty,
i<.7

oj €Ty,
i<j

1
Do o; — E
7 |Tol(ITol - 1)

05,0, €TO

i<j

133

|Tc| } :
©|Tr| -1

Dojo,] +

0;,0;€TR
i<j

_|To|
D, o
T 2 T

04,05 €TR
i<j

_|Tol Te|
05 = 2 E Doo; — L E D,
[To| -1 [To| -1

04,05 €To
7‘,<j

1
Dy.oy — ——F—F— E Dy.o. +
7 |TrI(ITRI - 1) o

04,05 €ETR
i<j

1
o; Y Do.o. .
‘3+2|TLHTO\ Z v

0, €T,
0;E€TO

The total branch length of T is obtained by adding this calculation to the total
branch length of the three star-shaped trees, as shown next:

TBL(T{T.,Tr,To}) = Lxw + Lxz + Lxy + TBL(Tr) + TBL(Tr) + TBL(To) =

T
2|TL||Tr|

0, €T, 0j,0;€T,
0;€ETR i<_7‘
1

1
—_— Dojo; = E Do
2|Tol|Tr| Z 7 |Tol(ITol = 1) o

0,€To

0;,0;€To
0;€TR i<j
1 Z
T 1 Do,o; + 5
[Tl -1 7 TRl -1
0;,0;€TY, 0,0;ETR
i< i<y

1
Do m — E Dojo, — o § Do.o. +
v \TLI(ITLI—l % |Tr|(|Tr| — 1) v

04,05 €ETR
i<j

1
Ry E Dojo; +
2|Te||Tol o

0,€TY,
0 €TO

1
_ Do.o. -
T 2 P

05,0, €TOH
i<j



134 HEURISTIC FUNCTION USED BY CLUS-¢

Making the right rearrangements, we obtain the following formula:

TBL(T{TL,Tr,To}) =

1 1 1
_— D,.,. _— D,.,. _— D,.,.
ST D Dot amonmr D Poies * amym) D Deies *

0, €Ty, 0, €T 0, €T,
0;€ETR o;€TR 0;€To
1 1 1
— § Do.o. + — E Do.o. + — E Do.o. .
i 397 i
[T 7 |Trl el ’
05,05 €T, 0;,0;€TR 0i,0;€To
i<j i<j i<j

Using the equality shown in Equation A.3, we obtain the following formula:

TBL(T{T.,Tr,To}) =

1 1
R — Dy.o. — ————— E Dy.o. —
2|TL || Tr| Z ?1%  2|TL||Tr| 2%

oi,OjETLUTR OivojETL
i<j i<j
1 D n 1 D I 1 D n
2|TL||Tr| Z %1% 1 2|To||Tr| Z 7% T 2|TL||To] Z °1%
oi,oJ'ETR 0, €ETo 0, €Ty,
i<j o;€TR 0;€TO
! E D ! E D ! E D
ITz] o,ioj“‘r@ 040 +@ 050
04,05 €TL, 0j,0;€TR 0;,0;€TO
1<j i<j i<j

Making the right rearrangements, we obtain the following formula:

TBL(T{Ty,Tr,To}) = ! ( E Do,o; + (2|Tr| — 1) E Do,o, +
L, IR, loy) = 2T Trl 050, R 050,
0,0 €T UTR 04,05 €TL,
1<j i<j
} : |Tr| } : T | } : 1 2 :
(2[Te| - 1) Do,;oj- + m Do,;o_j + ITol Doin) + m Doio]»-
0;,0;€TR 0; €T 0, €T 0i,0;€To

i<j o; €Ty, 0;€TR i<j



ILLUSTRATION OF THE CALCULATIONS PERFORMED BY THE CLUS-¢ HEURISTIC 135

As for the formula we derived in the previous section, the first summation of
this formula is constant for the node being split and only needs to be calculated
once. The last summation is also constant for the node being split, and as it
is multiplied by a factor which is also constant (i.e., ‘T—lo‘), we do not need to
compute this summation when choosing the best split.

A.3 lllustration of the calculations performed by
the Clus-¢ heuristic

In this section, we illustrate the calculations performed by the Clus-¢ heuristic
function with an example. We show the calculations for the split of the root
node.

Consider the hypothetical tree topology shown in Figure A.3, which illustrates
the evolutionary relationships among six sequences (A, B, C, D, E, and F), and
its corresponding distance matrix, shown in Table A.1. The numbers in the
figure correspond to branch lengths and they reflect the information given by
the distance matrix.!

A|/B|C|D|E
B| 6
C| 8|10
D |15 |17 |15
E|15(17|15] 8
F|17|19|17|10]| 4

Figure A.3: Example: tree topology. = Table A.1l: Example: Distance Matrix.

Suppose that, in the first step of the tree reconstruction process, Clus-¢
has to decide between splitting the set of sequences in two different ways:
{(A,B,C),(D,E,F)}, which corresponds to the correct split according to the tree
in Figure A.3, and {(AE,F),(B,C,D)}. To be able to decide which split is
the best one, Clus-¢ uses its heuristic function to estimate the total branch
length of the tree that would be generated by each one of the splits. We show
the heuristic calculation for the two splits. For the sake of simplicity, we use
Equation A.2, instead of its more efficient formulation.

The total branch length of the tree generated by the split {(A,B,C),(D,E,F)} is:

In the scope of this thesis, we consider branch lengths as being proportional to the amount
of character change between the nodes of the tree.



136 HEURISTIC FUNCTION USED BY CLUS-¢

TBL({(A,B,C),(D,E,F)}) =

! E D ! E D ! E D =
9 0505 + 3 0405 + 3 005 =

0,€{A,B,C} 0;,0;€{A,B,C} 0;,0;€{D,E,F}
o0j€{D,E,F} i<j i<j

16.37 + 8 + 7.33 = 31.66.

The total branch length of the tree generated by the split {(A,E,F),(B,C,D)} is:

TBL({(A,E,F),(B,C,D)}) =

! E D ! E D ! E D =
9 050; + 3 0405 + 3 0405 =

0, €E{A,E,F} 0,0;€{A,E,F} 0;,0;€{B,C,D}
0;€{B,C,D} i<j i<j

12.78 + 12 + 14 = 38.78.

As Clus-¢ aims at minimizing the total branch length of the tree that will
be finally obtained, it chooses the split that gives the smallest total branch

length at each iteration. Therefore, in our example, Clus-¢ chooses the split
{(A,B,C),(D,E,F)}.

Note that the first term of Equation A.2 corresponds to the calculation performed
to maximize the average inter-cluster distance, which is one of the heuristics
that we investigated in Chapter 3. At a first glance, it might look counter-
intuitive that the Clus-¢ heuristic, which is a minimization heuristic function,
uses the same calculation performed by a maximization heuristic function in
its formula. Thus, one could wrongly deduce that Clus-¢ tries to minimize the
average inter-cluster distance, which would be a bad strategy to obtain a good
clustering. However, a partition that gives a small value for the first term of the
heuristic function can have subsets with a large intra-cluster difference,? leading
to a large total branch length. This is the case for the second split we tested in
our example - {(AE,F),(B,C,D)}. This split gives a smaller value for the first
term of the function in comparison with the first split (12.78 vs. 16.37); however,
the larger values given by the other two terms lead to a larger total branch

2The second and the third terms of the heuristic function calculate intra-cluster differences.



ILLUSTRATION OF THE CALCULATIONS PERFORMED BY THE CLUS-¢ HEURISTIC 137

length than the one given by the first split. There is, therefore, a trade-off
between the value resulting for the first term of the Clus-¢ heuristic function
and the values resulting for the other two terms.






Appendix B

Protein subfamily
identification - tree topologies

In this appendix, we show the tree topologies generated for the EXPERT
dataset Enolase, in the context of protein subfamily identification (Chapter 4).
Figures B.1, B.2, and B.3 show the edited tree topologies' obtained from the
Clus-¢, SCI-PHY, and neighbor joining (NJ) trees, respectively. Figures B.4
and B.5 show the trees (after pruning) output by Clus-p-ECC and SCI-PHY,
respectively. For the ease of notation, we abbreviate the Enolase subfamilies
as shown in Table 4.13 (Section 4.5.6), and we omit the tests identified for the
internal nodes of the Clus-¢ trees. For each tree leaf, we indicate the number
of sequences per subfamily. Each color corresponds to a different subfamily.

— 283 x Subfam3

57 x Subfam8

3 xsubfam?_|

—420 x Subfam?7

——— 8 x Subfamé

30 x Subfam2

—-l___ 8 x Subfam8
15 x Subfam2

—:22 x Subfam4
23 x Subfam5

Figure B.1: Clus-¢ edited tree for the EXPERT dataset Enolase.

1We defined edited trees in Section 4.4.1.

139



PROTEIN SUBFAMILY IDENTIFICATION - TREE TOPOLOGIES

140

Tweans X vy

e X

8uwieygns x T

8wieygns x g

CECECEE
owES AT

8uweyqns x 1

[Bweians T
8wieygns x T

EWeyqns x £8¢

Figure B.2: SCI-PHY edited tree for the EXPERT dataset Enolase.



141

PROTEIN SUBFAMILY IDENTIFICATION - TREE TOPOLOGIES

LWejans X €
LWejans X 0z

cuejgns X €1
Tweyans x zg

oweyqns X 8
gwejans X 1

EWBygns X T
gweygns X 1
gwejgns X 1

E€Weyqns X 8¢
gweygns X g

gweygns X 1
gweqns x £
EWeJgns X 6T

gweygns x z
gueyqns x v
Ewelqgns x €

NJ edited tree for the EXPERT dataset Enolase.

Figure B.3



142 PROTEIN SUBFAMILY IDENTIFICATION - TREE TOPOLOGIES

10 x Subfam3
{ 4) 19 x Subfam3

13 x Subfam3
® _:: 105 s>
10 x Subfam3

28 x Subfam3
45 x Subfam3

16 x Subfam3
37 x Subfam3
4 x Subfam8

1 x Subfam8

_|:|: 1 x Subfams
2 x Subfamg
[—— 1 xSubfam8
L 4 xsubfams

——— 8 x Subfamg

1 x Subfam8
1 x Subfam8
@ 1 x Subfam8
] @ 2 x Subfam8
1 x Subfam8
_E: 1 x Subfam8
1 x Subfam8
1 x Subfam8

(6) 19 x Subfam8

ﬁ
3 X Subfamé

@ -2 x Subfamé
,—‘ 1 x Subfam6

L— 2 xsubfame

1 x Subfam2
4 x Subfam2

@ 6 x Subfam2

19 x Subfam2

1 x Subfam8
1 x Subfam8

6 x Subfam8

T 5 x Subfam2
6 x Subfam2

1 x Subfam2
_|:: —
2 x Subfam2

——— 22 x Subfam4.

@ 1 x Subfam5

_EZZXSubfamS

Figure B.4: Clus-p-ECC tree for the EXPERT dataset Enolase. The numbers

associated with the internal nodes at the first four levels of the tree refer to the
numbering in Figure 4.4 (Section 4.5.6).




PROTEIN SUBFAMILY IDENTIFICATION - TREE TOPOLOGIES 143
T X Subfam3
7 x Subfam3
1 x Subfam3 126 x Subfam3
{6 x Subfam2]
2 x Subfam?]
3 x Subfam2]

Figure B.5: SCI-PHY tree for the EXPERT dataset Enolase.






Appendix C

List of datasets used in
Chapter 6

In this appendix, we provide the list of the UCI datasets [7] that were used to
develop/fine-tune and evaluate our method for estimating prediction certainty
in decision trees (Clus-TPCE), which presented in Chapter 6. For each dataset,
we report the total number of instances, the attribute types, the number of
descriptive attributes, and the number of classes. Table C.1 lists the datasets
used for developing/fine-tuning Clus-TPCE. Tables C.2 and C.3 list the datasets
used in the evaluation we reported in Section 6.4. In the tables, N and C stand
for numeric and categorical, respectively.!

Table C.1: Datasets used for developing/fine-tuning Clus-TPCE.

Dataset Nb Attribute | Nb descriptive Nb
instances Types attributes classes
Annealing 898 N, C 38 5
Iris 150 N 4 3
Congressional Voting Records 435 C 16 2
Connectionist Bench 208 N 60 2
(Sonar, Mines vs. Rocks)
Statlog (Vehicle Silhouettes) 846 N 18 4
Z0oo 101 N, C 17 7

LFor the dataset Japanese Vowels (Table C.2), we used its version (kdd_ JapaneseVowels)
available in the repository http://repository.seasr.org/Datasets/UCI/arff/ (last visit:
24 June 2013), since it was already converted to the format (arff) used by our method. This
version has, however, 3 more attributes than the original version, and a larger number of
instances. For the other datasets, we considered their original versions.

145


http://repository.seasr.org/Datasets/UCI/arff/

146 LIST OF DATASETS USED IN CHAPTER 6

Table C.2: Datasets used for the evaluation presented in Section 6.4 (Chapter 6).
List continues in Table C.3.

Dataset Nb Attribute | Nb descriptive Nb
instances Types attributes classes
Abalone 4177 N, C 8 28
Adult 48842 N, C 14 2
Arrhythmia 452 N, C 279 13
Balance Scale 625 N 4 3
Balloons 20 C 4 2
Breast Cancer 286 C 9 2
Breast Cancer Wisconsin (Original) 699 N 9 2
Car Evaluation 1728 C 6 4
Chess (King-Rook vs. King-Pawn) 3196 C 36 2
Connectionist Bench 990 N 10 11
(Vowel Recognition - Deterding Data)
Contraceptive Method Choice 1473 N, C 9 3
Credit Approval 690 N, C 15 2
Dermatology 366 N, C 34 6
Diabetes 768 N 8 2
Ecoli 336 N 7 8
Glass Identification 214 N 9 6
Haberman’s Survival 306 N,C 3 2
Hayes-Roth 160 4 3
Hepatitis 155 N, C 19 2
Hill-Valley (without noise) 1212 N 100 2
Tonosphere 351 N 34 2
Japanese Vowels 9970 N 14 9
Labor Relations 57 N, C 16 2
Letter Recognition 20000 N 16 26
Lung Cancer 32 C 56 3
Lymphography 148 N, C 18 4
Molecular Biology 106 C 57 2
(Promoter Gene Sequences)
Molecular Biology 3190 C 60 3
(Splice-junction Gene Sequences)
Mushroom 8124 C 22 2
Nursery 12960 C 8 5
Optical Recognition of 5620 N 64 10
Handwritten Digits
Page Blocks Classification 5473 N 10 5
Pen-Based Recognition 10992 N 16 10
of Handwritten Digits
Pittsburgh Bridges 105 N, C 11 6
Post-Operative Patient 90 C 8 3
PrimaryTumor 339 C 17 21




LIST OF DATASETS USED IN CHAPTER 6 147

Table C.3: Datasets used for the evaluation presented in Section 6.4 (Chapter 6) -
Part II.

Dataset Nb Attribute | Nb descriptive Nb
instances Types attributes classes
Solar Flare (flare.data2) 1066 C 10 8
Spambase 4601 N 57 2
SPECTF Heart 267 N 44 2
Statlog (German Credit Data) 1000 N,C 20 2
Statlog (Heart) 270 N 13 2
Statlog (Image Segmentation) 2310 N 19 7
Statlog (Landsat Satellite) 6435 N 36 6
Teaching Assistant Evaluation 151 N, C 5 3
Thyroid Disease (version allbp) 3772 N, C 29 3
Tic-Tac-Toe Endgame 958 C 9 2
Wine 178 N 13 3
Yeast 1484 N 8 10

Twelve of the datasets listed in Tables C.2 and C.3 are separated in training
and test set. Tables C.4 lists these datasets along with their total number of
instances, number of training instances, and number of test instances. For the
remaining datasets, we performed the experiments with leave-one-out validation.

Table C.4: Datasets with separated test set.

Dataset Total nb | Nb training | Nb test
instances | instances | instances
Adult 48842 32561 16281
Connectionist Bench 990 528 462
(Vowel Recognition - Deterding Data)
Hayes-Roth 160 132 28
Hill-Valley (without noise) 1212 606 606
Japanese Vowels 9970 4274 5696
Letter Recognition 20000 16000 4000
Optical Recognition of 5620 3823 1797
Handwritten Digits
Pen-Based Recognition 10992 7494 3498
of Handwritten Digits
SPECTF Heart 267 80 187
Statlog (Landsat Satellite) 6435 4435 2000
Statlog (Image Segmentation) 2310 210 2100
Thyroid Disease (version allbp) 3772 2800 972







Bibliography

[1]

AGRAWAL, R., IMIELINSKI, T., AND SwAMI, A. N. Mining association
rules between sets of items in large databases. In Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data,
Washington D.C., USA, May 26-28 (1993), ACM Press, pp. 207-216.

AGRAWAL, R., SRIKANT, R., ET AL. Fast algorithms for mining
association rules. In Proceedings of the 20th International Conference on
Very Large Databases (VLDB), Santiago de Chile, Chile, September 12-15
(1994), vol. 1215, Morgan Kaufmann, pp. 487-499.

ALBAYRAK, A., OTu, H., AND SEZERMAN, U. Clustering of protein
families into functional subtypes using relative complexity measure with
reduced amino acid alphabets. BMC Bioinformatics 11 (2010), 428.

ALLMER, J., MARKERT, C., STAUBER, E., AND HIPPLER, M. A new
approach that allows identification of intron-split peptides from mass
spectrometric data in genomic databases. FEBS Letters 562, 1 (2004),
202-206.

ALTELAAR, A. M., NAVARRO, D., BOEKHORST, J., VAN BREUKELEN,
B., SNEL, B., MOHAMMED, S., AND HECK, A. J. Database independent
proteomics analysis of the ostrich and human proteome. Proceedings of
the National Academy of Sciences 109, 2 (2012), 407-412.

ARsLAN, A. N., AND BizARGITY, P. Phylogeny by top down clustering
using a given multiple alignment. In Proceedings of the 7th IEEE
International Conference on Bioinformatics and Bioengineering (IEEE
BIBE), Boston, MA, USA, October 14-17 (2007), IEEE, pp. 809-814.

BacHE, K., AND LicHMAN, M. UCI machine learning repository
[http://archive.ics.uci.edu/ml], 2013. University of California, Irvine,
School of Information and Computer Sciences.

149



150

BIBLIOGRAPHY

8]

[9]

[10]

[17]

18]

[19]

BAIROCH, A., AND BOECKMANN, B. The SWISS-PROT protein sequence
data bank. Nucleic Acids Research 19, Suppl (1991), 2247-2249.

BeENnson, D. A., BoGguski, M. S., LipMAN, D. J., AND OSTELL, J.
Genbank. Nucleic Acids Research 25,1 (1997), 1-6.

BERGER, J. Statistical Decision Theory and Bayesian Analysis. Springer,
1985.

BickeL, P., KECHRIS, K., SPECTOR, P., WEDEMAYER, G., AND
GLAZER, A. Finding important sites in protein sequences. Proceedings of
the National Academy of Sciences 99, 23 (2002), 14764-14771.

BiEMANN, K. Appendix 5. Nomenclature for peptide fragment ions
(positive ions). Methods in Enzymology 193 (1990), 886-887.

BLOCKEEL, H. Machine Learning and Inductive Inference. ACCO, 2010.

BLOCKEEL, H., DE RAEDT, L., AND RAMON, J. Top-down induction
of clustering trees. In Proceedings of the 15th International Conference
on Machine Learning (ICML), Madison, Wisconsin, USA, July 24-27
(1998), Morgan Kaufmann, pp. 55-63.

BooneNn, K., Lanbuyr, B., BAGGERMAN, G., Husson, S. J.,
HUYBRECHTS, J., AND SCHOOFS, L. Peptidomics: The integrated
approach of MS, hyphenated techniques and bioinformatics for
neuropeptide analysis. Journal of Separation Science 31, 3 (2008), 427—
445.

Bray, T., CHAN, P., BOUGOUFFA, S., GREAVES, R., DoIG, A., AND
WARWICKER, J. Sitesldentify: A protein functional site prediction tool.
BMC Bioinformatics 10 (2009), 379.

BrEIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A., AND STONE, C. J.
Classification and Regression Trees. Wadsworth, Belmont, 1984.

BRIER, G. W. Verification of forecasts expressed in terms of probability.
Monthly Weather Review 78, 1 (1950), 1-3.

BrowN, D., KRISHNAMURTHY, N., DALE, J., CHRISTOPHER, W., AND
SJOLANDER, K. Subfamily HMMs in functional genomics. In Pacific
Symposium on Biocomputing (PSB), Hawaii Island, USA, January 4-8
(2005), vol. 10, Citeseer, pp. 322-333.

BrROWN, D., KRISHNAMURTHY, N., AND SJOLANDER, K. Automated
protein subfamily identification and classification. PLOS Computational
Biology 3, 8 (2007), e160.



BIBLIOGRAPHY 151

[21]

[22]

23]

[24]

CAVALLI-SFORZA, L. L., AND EDWARDS, A. W. Phylogenetic analysis.
models and estimation procedures. American Journal of Human Genetics
19 (1967), 233-257.

CESTNIK, B. Estimating probabilities: A crucial task in machine learning.
In Proceedings of the 9th European Conference on Artificial Intelligence
(ECAI), Stockholm, Sweden, August 6-10 (1990), Pitman, pp. 147-149.

CHEN, F., MAcCKEY, A. J., VERMUNT, J. K., AND Roos, D. S.
Assessing performance of orthology detection strategies applied to
eukaryotic genomes. PloS One 2, 4 (2007), e383.

CHENG, G., QIAN, B., SAMUDRALA, R., AND BAKER, D. Improvement
in protein functional site prediction by distinguishing structural and
functional constraints on protein family evolution using computational

design. Nucleic Acids Research 33, 18 (2005), 5861-5867.

CHOUDHARY, J., BLACKSTOCK, W., CREASY, D., AND COTTRELL, J.
Interrogating the human genome using uninterpreted mass spectrometry
data. Proteomics 1,5 (2001), 651-667.

COTTRELL, J., AND LONDON, U. Probability-based protein identification
by searching sequence databases using mass spectrometry data.
FElectrophoresis 20, 18 (1999), 3551-3567.

CRAIG, R., AND BEAvIS, R. Tandem: Matching proteins with tandem
mass spectra. Bioinformatics 20, 9 (2004), 1466-1467.

CRISTIANINI, N., AND SHAWE-TAYLOR, J. An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

DAYHOFF, M., AND SCHWARTZ, R. A model of evolutionary change in
proteins. In Atlas of Protein Sequence and Structure, M. O. Dayhoff, Ed.
National Biomedical Research Foundation, 1978.

DECLARATIVE LANGUAGES AND ARTIFICIAL INTELLIGENCE GROUP (KU
LEUVEN) AND DEPARTMENT OF KNOWLEDGE TECHNOLOGIES (JOZEF
STEFAN INSTITUTE). Clus: A predictive clustering system. Available
from https://dtai.cs.kuleuven.be/clus/.

DEMPSTER, A. P., LAIRD, N. M., AND RuBIN, D. B. Maximum
likelihood from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society. Series B (Methodological) (1977), 1-38.

EpDY, S. Profile hidden Markov models. Bioinformatics 14, 9 (1998),
755-763.



152

BIBLIOGRAPHY

[33]

[34]

EisEN, J. Phylogenomics: Improving functional predictions for
uncharacterized genes by evolutionary analysis. Genome Research 8,
3 (1998), 163-167.

Eng, J., McCORMACK, A., AND YATES, J. An approach to correlate
tandem mass spectral data of peptides with amino acid sequences in a

protein database. Journal of the American Society for Mass Spectrometry
5, 11 (1994), 976-989.

ESTABROOK, G. F., MCMORRIS, F., AND MEACHAM, C. A. Comparison
of undirected phylogenetic trees based on subtrees of four evolutionary
units. Systematic Biology 34, 2 (1985), 193-200.

FAuTH, M., SKOLD, K., SVENSSON, M., NIiLssoN, A., FENYO, D.,
AND ANDREN, P. Neuropeptidomics strategies for specific and sensitive
identification of endogenous peptides. Molecular € Cellular Proteomics 6,
7 (2007), 1188-1197.

FELSENSTEIN, J. Phylip (phylogeny inference package) version 3.68.
Distributed by the author. Department of Genetics, University of
Washington, Seattle (WA) (2008).

FENYO, D., AND BEAvVIS, R. A method for assessing the statistical
significance of mass spectrometry-based protein identifications using
general scoring schemes. Analytical Chemistry 75, 4 (2003), 768-774.

FErRMIN, D., ALLEN, B., BLACKWELL, T., MENON, R., ADAMSKI, M.,
Xu, Y., ULiNTZ, P., OMENN, G., ET AL. Novel gene and gene model
detection using a whole genome open reading frame analysis in proteomics.
Genome Biology 7, 4 (2006), R35.

FERRI, C., FLACH, P., AND HERNANDEZ-ORALLO, J. Improving the
AUC of probabilistic estimation trees. In Proceedings of the 14th Furopean
Conference on Machine Learning (ECML), Cavtat, Croatia, September
22-26, vol. 2837 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2003, pp. 121-132.

FI1ERENS, D., RAMON, J., BLOCKEEL, H., AND BRUYNOOGHE, M. A

comparison of pruning criteria for probability trees. Machine Learning
78, 1 (2010), 251-285.

Firca, W. Toward defining the course of evolution: Minimum change of
specified tree topology. Systematic Zoology 20 (1971), 406-416.

FracH, P., AND MATSUBARA, E. T. On classification, ranking, and
probability estimation. In Probabilistic, Logical and Relational Learning -



BIBLIOGRAPHY 153

[50]

[54]

A Further Synthesis (2008), no. 07161 in Dagstuhl Seminar Proceedings,
Internationales Begegnungs-und Forschungszentrum fiir Informatik (IBFI),
Schloss Dagstuhl, Germany.

FrRANK, A. A ranking-based scoring function for peptide-spectrum
matches. Journal of Proteome Research 8, 5 (2009), 2241-2252.

FRANK, A., AND PEVZNER, P. PepNovo: De novo peptide sequencing
via probabilistic network modeling. Analytical Chemistry 77, 4 (2005),
964-973.

FrRANK, A., TANNER, S., BAFNA, V., AND PEVZNER, P. Peptide

sequence tags for fast database search in mass-spectrometry. Journal of
Proteome Research 4, 4 (2005), 1287-1295.

FRICKER, L. Neuropeptide-processing enzymes: Applications for drug
discovery. The AAPS Journal 7, 2 (2005), 449-455.

GAscUEL, O. BIONJ: An improved version of the NJ algorithm based
on a simple model of sequence data. Molecular Biology and Evolution 14,
7 (1997), 685-695.

GASCUEL, O., ET AL. A note on Sattath and Tversky’s, Saitou and
Nei’s, and Studier and Keppler’s algorithms for inferring phylogenies from
evolutionary distances. Molecular Biology and Evolution 11, 6 (1994),
961-963.

GEER, L., MARKEY, S., KowaLAk, J., WAGNER, L., Xu, M.,
MAYNARD, D., YANG, X., SHI, W., AND BRYANT, S. Open mass
spectrometry search algorithm. Journal of Proteome Research 8, 5 (2004),
958-964.

GELMAN, J., WARDMAN, J., BHAT, V., G0zz0, F., AND FRICKER,
L. Quantitative peptidomics to measure neuropeptide levels in animal
models relevant to psychiatric disorders. Methods in Molecular Biology
829 (2012), 487-503.

GiLks, W., AubpiT, B., DE ANGELIS, D., TsokA, S., AND Ouzounis, C.
Percolation of annotation errors through hierarchically structured protein
sequence databases. Mathematical Biosciences 193, 2 (2005), 223-234.

GLUCK, M., AND CORTER, J. E. Information, uncertainty and the utility
of categories. In Proceedings of the 7th Annual Conference on Cognitive
Science Society (CogSci), Irvine, CA, USA, August 15-17 (1985), pp. 283—
287.

GROSS, J. Mass Spectrometry: A Textbook. Berlin: Springer, 2011.



154

BIBLIOGRAPHY

[55]

[61]

[62]

[63]

[65]

GupTa, N., BENHAMIDA, J., BHARCAVA, V., GOODMAN, D., KAIN, E.,
KERMAN, 1., NGUYEN, N., OLLIKAINEN, N., RODRIGUEZ, J., WANG, J.,
ET AL. Comparative proteogenomics: Combining mass spectrometry and
comparative genomics to analyze multiple genomes. Genome Research 18,
7 (2008), 1133-1142.

GuprTA, N., TANNER, S., Jarroy, N., Apkins, J., LipToN, M.,
EpwaArDS, R., ROMINE, M., OSTERMAN, A., BAFNA, V., SMITH,
R., ET AL. Whole proteome analysis of post-translational modifications:
Applications of mass-spectrometry for proteogenomic annotation. Genome
Research 17,9 (2007), 1362-1377.

HAGEN, J. B. The origins of bioinformatics. Nature Reviews - Genetics
1 (2000), 231-236.

HarLr, B. G. Simulating DNA coding sequence evolution with evolveagene
3. Molecular Biology and Evolution 25, 4 (2008), 688-695.

HOGEWEG, P. The roots of bioinformatics in theoretical biology. PLOS
Computational Biology 7, 3 (2011), e1002021.

Hook, V., FUNKELSTEIN, L., Lu, D., BARK, S., WEGRZYN, J., AND
HwaNG, S. Proteases for processing proneuropeptides into peptide
neurotransmitters and hormones. Annual Review of Pharmacology and
Tozicology 48 (2008), 393.

HorN, F., VRIEND, G., AND COHEN, F. Collecting and harvesting
biological data: The GPCRDB and NucleaRDB information systems.
Nucleic Acids Research 29, 1 (2001), 346-349.

Huang, J., AND LinG, C. X. Using AUC and accuracy in evaluating
learning algorithms. IFEEE Transactions on Knowledge and Data
Engineering 17, 3 (2005), 299-310.

HULLERMEIER, E., AND VANDERLOOY, S. Why fuzzy decision trees
are good rankers. IEEE Transactions on Fuzzy Systems 17, 6 (2009),
1233-1244.

Husson, S., CLYNEN, E., BOONEN, K., JANSSEN, T., LINDEMANS, M.,
BAGGERMAN, G., AND SCHOOFS, L. Approaches to identify endogenous
peptides in the soil nematode caenorhabditis elegans. Methods in Molecular
Biology 615 (2010), 29-47.

JAFFE, J., BERG, H., AND CHURCH, G. Proteogenomic mapping as a
complementary method to perform genome annotation. Proteomics 4, 1
(2004), 59-77.



BIBLIOGRAPHY 155

[66]

[67]

[71]

[72]

[76]

JAIN, A. K., AND DUBES, R. C. Algorithms for Clustering Data. Prentice-
Hall, Inc., 1988.

JEONG, K., KiM, S., BANDEIRA, N., AND PEVZNER, P. Gapped spectral
dictionaries and their applications for database searches of tandem mass
spectra. In Proceedings of the 14th Annual International Conference
on Research in Computational Molecular Biology (RECOMB), Lisbon,
Portugal, August 12-15 (2010), Springer, pp. 208-232.

JiveENEZ, C. R., HuaNG, L., Qru, Y., AND BURLINGAME, A. L.
Searching sequence databases over the internet: Protein identification
using MS-tag. Current Protocols in Protein Science (2001), 16.6.1-16.6.7.

JonNEs, D. T., TAYLOR, W. R., AND THORNTON, J. M. The rapid
generation of mutation data matrices from protein sequences. Computer
Applications in the Biosciences 8 (1992), 275-282.

Jukgs, T. H., AND CANTOR, C. R. Evolution of protein molecules. In
Mammalian Protein Metabolism, H. Munro, Ed. Academic Press, 1969,
pp. 21-132.

KarLuMmE, D.; PERI, S., REDDY, R., ZHONG, J., OKULATE, M., KUMAR,
N., AND PANDEY, A. Genome annotation of anopheles gambiae using
mass spectrometry-derived data. BMC Genomics 6, 1 (2005), 128.

Keimm, D. A., Bak, P., BErRTINI, E.; OELKE, D., SPRETKE, D., AND
ZIEGLER, H. Advanced visual analytics interfaces. In Proceedings of the
International Conference on Advanced Visual Interfaces (AVI), Rome,
Ttaly, May 25-29 (2010), ACM, pp. 3-10.

KM, S., GupTA, N., BANDEIRA, N., AND PEVZNER, P. Spectral
dictionaries integrating de novo peptide sequencing with database search
of tandem mass spectra. Molecular & Cellular Proteomics 8, 1 (2009),
53-69.

KoHONEN, T. Self-organized formation of topologically correct feature
maps. Biological Cybernetics 43, 1 (1982), 59-69.

KUkAR, M., AND KONONENKO, I. Reliable classifications with machine
learning. In Proceedings of the 13th European Conference on Machine
Learning (ECML), Helsinki, Finland, August 19-23 (2002), Springer,
pp. 1-8.

KuLLBACK, S. Information Theory and Statistics. Dover Publications,
1997.



156

BIBLIOGRAPHY

[77]

[78]

[79]

[80]

KusTER, B., MORTENSEN, P., J.S., A., AND MANN, M. Mass
spectrometry allows direct identification of proteins in large genomes.
Proteomics 1, 5 (2001), 641-650.

LAZAREVA-ULITSKY, B., DIEMER, K., AND THOMAS, P. On the quality
of tree-based protein classification. Bioinformatics 21, 9 (2005), 1876—
1890.

Lee, D., RENTZSCH, R., AND ORENGO, C. Gemma: Functional
subfamily classification within superfamilies of predicted protein structural
domains. Nucleic Acids Research 38, 3 (2010), 720-737.

LErRAT, E. Identifying repeats and transposable elements in sequenced
genomes: How to find your way through the dense forest of programs.
Heredity 104, 6 (2009), 520-533.

Li, M., AND VITANYI, P. An Introduction to Kolmogorov Complexity
and its Applications. Springer Verlag, 1997.

LiaNG, H., AND YAN, Y. Improve decision trees for probability-based
ranking by lazy learners. In Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), Washington D.C.,
USA, November 13-15 (2006), IEEE Computer Society, pp. 427-435.

Ling, C. X., AND YAN, R. J. Decision tree with better ranking. In
Proceedings of the 20th International Conference on Machine Learning
(ICML), Washington D.C., USA, August 21-2/ (2003), Morgan Kaufmann,
pp- 480-487.

LLovD, S. Least squares quantization in PCM. IFEFE Transactions on
Information Theory 28, 2 (1982), 129-137.

Ma, B., Zuang, K., HENDRIE, C., LiaNG, C., Li, M., DOHERTY-
KirBY, A., AND LAJOIE, G. Peaks: Powerful software for peptide de
novo sequencing by tandem mass spectrometry. Rapid Communications
in Mass Spectrometry 17, 20 (2003), 2337-2342.

MAILUND, T., AND PEDERSEN, C. N. Qdist-quartet distance between
evolutionary trees. Bioinformatics 20, 10 (2004), 1636-1637.

MANN, M., JENSEN, O., ET AL. Proteomic analysis of post-translational
modifications. Nature Biotechnology 21, 3 (2003), 255-261.

MARGINEANTU, D. D.; AND DIETTERICH, T. G. Improved class
probability estimates from decision tree models. In Nonlinear Estimation
and Classification; Lecture Notes in Statistics, D. D. Denison, M. H.



BIBLIOGRAPHY 157

[90]

[91]

Hansen, C. C. Holmes, B. Mallick, and B. Yu, Eds., vol. 171. Springer-
Verlag, 2001, pp. 169-184.

McCaLruM, A., ROSENFELD, R., MircHeELL, T., Na, A. Y.,
ET AL. Improving text classification by shrinkage in a hierarchy of
classes. In Proceedings of the 15th International Conference on Machine
Learning (ICML), Madison, Wisconsin, USA, July 24-27 (1998), Morgan
Kaufmann, pp. 359-367.

MENSCHAERT, G., VAN CRIEKINGE, W., NOTELAERS, T., KOCH, A.,
CRAPPE, J., GEVAERT, K., AND VAN DAMME, P. Deep proteome
coverage based on ribosome profiling aids MS-based protein and peptide
discovery and provides evidence of alternative translation products
and near-cognate translation initiation events. Molecular & Cellular
Proteomics (2013).

MENSCHAERT, G., VANDEKERCKHOVE, T., BAGGERMAN, G., LANDUYT,
B., SWEEDLER, J., SCHOOFS, L., LUYTEN, W., AND VAN CRIEKINGE,
W. A hybrid, de novo based, genome-wide database search approach
applied to the sea urchin neuropeptidome. Journal of Proteome Research
9, 2 (2010), 990-996.

MENSCHAERT, G., VANDEKERCKHOVE, T., BAGGERMAN, G.,; SCHOOFS,
L., LuyTEN, W., AND CRIEKINGE, W. Peptidomics coming of age: A
review of contributions from a bioinformatics angle. Journal of Proteome
Research 9, 5 (2010), 2051-2061.

MENSCHAERT, G., VANDEKERCKHOVE, T., LANDUYT, B., HAYAKAWA,
E., ScHOOFS, L., LUYTEN, W., AND VAN CRIEKINGE, W. Spectral
clustering in peptidomics studies helps to unravel modification profile
of biologically active peptides and enhances peptide identification rate.
Proteomics 9, 18 (2009), 4381-4388.

MiTcHELL, T. M. Machine Learning. Burr Ridge, IL: McGraw Hill,
1997.

MounTt, D. W. Bioinformatics: Sequence and Genome Analysis. CSHL
Press, 2004.

NEUPERT, S., JOHARD, H., NAssEL, D., AND PREDEL, R. Correction
to single cell peptidomics of drosophila melanogaster neurons identified by
gald-driven fluorescence. Analytical Chemistry 84, 11 (2012), 5164-5164.

NIeLsSEN, C. B., JACKMAN, S. D.; BiroL, I., AND JONES, S. J. Abyss-
explorer: Visualizing genome sequence assemblies. IEEFE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 881-888.



158

BIBLIOGRAPHY

[98]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

NiLssoN, A., STROTH, N., ZHANG, X., Q1, H., FALTH, M., SKOLD, K.,
HOYER, D., ANDREN, P., AND SVENNINGSSON, P. Neuropeptidomics of
mouse hypothalamus after imipramine treatment reveal somatostatin as
a potential mediator of antidepressant effects. Neuropharmacology 62, 1
(2011), 347-357.

OsHIRO, G., WODICKA, L., WASHBURN, M., YATES, J., LOCKHART, D.,

AND WINZELER, E. Parallel identification of new genes in saccharomyces
cerevisiae. Genome Research 12, 8 (2002), 1210-1220.

Popr, M., AND SALZBERG, S. L. Bioinformatics challenges of new
sequencing technology. Trends in Genetics 24, 3 (2008), 142-149.

ProvosTt, F., AND DOMINGOS, P. Tree induction for probability-based
ranking. Machine Learning 52, 3 (2003), 199-215.

QUINLAN, J. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

QUINLAN, J. R. Induction of decision trees. Machine learning 1, 1 (1986),
81-106.

RAND, W. M. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association 66, 336 (1971), 846-850.

REEVES, G. A., TALAVERA, D., AND THORNTON, J. M. Genome
and proteome annotation: Organization, interpretation and integration.

Journal of the Royal Society Interface 6, 31 (2009), 129-147.

REMM, M., STORM, C. E., SONNHAMMER, E. L., ET AL. Automatic
clustering of orthologs and in-paralogs from pairwise species comparisons.
Journal of Molecular Biology 314, 5 (2001), 1041-1052.

RENNERT, J., COFFMAN, J. A., MUSHEGIAN, A. R., AND ROBERTSON,
A. J. The evolution of Runx genes I. A comparative study of sequences
from phylogenetically diverse model organisms. BMC' Evolutionary Biology
3 (2003), 4.

RoBiNsoON, D., AND FouLps, L. R. Comparison of phylogenetic trees.
Mathematical Biosciences 53, 1 (1981), 131-147.

ROEPSTORFF, P., AND FoHLMAN, J. Proposal for a common
nomenclature for sequence ions in mass spectra of peptides. Biomedical
Mass Spectrometry 11, 11 (1984), 601.

Romanova, E., LEE, J., KELLEHER, N., SWEEDLER, J., AND GULLEY,
J.  Comparative peptidomics analysis of neural adaptations in rats
repeatedly exposed to amphetamine. Journal of Neurochemistry (2012).



BIBLIOGRAPHY 159

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Sartou, N., AND NEI, M. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution 4,
4 (1987), 406-425.

SALEMI, M., AND VANDAMME, A. The phylogenetic Handbook: A
Practical Approach to DNA and Protein Phylogeny. Cambridge Univ
Press, 2003.

SAVIDOR, A., DONAHOO, R., HURTADO-GONZALES, O., VERBERKMOES,
N., SHAH, M., LAMOUR, K., AND McDONALD, W. Expressed peptide
tags: An additional layer of data for genome annotation. Journal of
Proteome Research 5, 11 (2006), 3048-3058.

SHEVCHENKO, A., SUNYAEV, S., LOBODA, A., SHEVCHENKO, A., BORK,
P., Ens, W., AND STANDING, K. G. Charting the proteomes of
organisms with unsequenced genomes by maldi-quadrupole time-of-flight
mass spectrometry and blast homology searching. Analytical Chemistry
73,9 (2001), 1917-1926.

SJOLANDER, K. Bayesian evolutionary tree estimation. In Proceedings
of the 11th International Conference on Mathematical and Computer
Modelling and Scientific Computing (ICMCM & SC) - Computational
Biology Section, Washington D.C., USA, March 31 - April 3 (1997).

SJOLANDER, K., KArpPLUS, K., BROWN, M., HUGHEY, R., KROGH,
A., MiaAN, I., AND HAUSSLER, D. Dirichlet mixtures: A method for
improved detection of weak but significant protein sequence homology.
Computer Applications in the Biosciences 12, 4 (1996), 327-345.

SMITH, J., NORTHEY, J., GARG, J., PEARLMAN, R., AND Siu, K.
Robust method for proteome analysis by MS/MS using an entire translated
genome: Demonstration on the ciliome of Tetrahymena thermophila.
Journal of Proteome Research 4, 3 (2005), 909-919.

SOKAL, R., AND MICHENER, C. A statistical method for evaluating
systematic relationships. University of Kansas Science Bulletin 38 (1958),
1409-1438.

SOURDIS, J., AND KRIMBAS, C. Accuracy of phylogenetic trees estimated
from DNA sequence data. Molecular Biology and Evolution 4, 2 (1987),
159-166.

STEEN, H., AND MANN, M. The abc’s (and xyz’s) of peptide sequencing.
Nature Reviews Molecular Cell Biology 5, 9 (2004), 699-711.

STEIN, L., ET AL. Genome annotation: From sequence to biology. Nature
Reviews Genetics 2, 7 (2001), 493-503.



160

BIBLIOGRAPHY

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

STUDIER, J. A., KEPPLER, K. J., ET AL. A note on the neighbor-joining
algorithm of saitou and nei. Molecular Biology and Evolution 5, 6 (1988),
729-731.

SWOFFORD, D. Phylogenetic Analysis Using Parsimony. Sinauer
Associates, 1998.

TANNER, S., SHEN, Z., NG, J., FLOREA, L., Guicd, R., BRIGGS,
S., AND BAFNA, V. Improving gene annotation using peptide mass
spectrometry. Genome Research 17, 2 (2007), 231-239.

TaowMmAS, J. J., AND Cook, K. A. [lluminating the Path: The Research
and Development Agenda for Visual Analytics. IEEE Computer Society
Press, 2005.

U.S. NATIONAL LIBRARY OF MEDICINE. Genetics home reference
[internet]. [updated April 22, 2013; cited April 27, 2013]; Available
from http://ghr.nlm.nih.gov/handbook/basics/dna.

VAN DE PEER, Y., AND SALEMI, M. Phylogeny inference based on
distance methods. In The Phylogenetic Handbook: A Practical Approach
to DNA and Protein Phylogeny, M. Salemi and A. Vandamme, Eds. Oxford
University Press, 2003.

VAN Duck, A., HAvyaAkawa, E., LaNDUYT, B., BAGGERMAN, G.,
VAN Dam, D., LUYTEN, W., ScHOOFs, L., AND DE DEVYN, P.
Comparison of extraction methods for peptidomics analysis of mouse
brain tissue. Journal of Neuroscience Methods (2011), 231-237.

VANDAMME, A. Basic concepts of molecular evolution. In The
Phylogenetic Handbook: A Practical Approach to DNA and Protein
Phylogeny, M. Salemi and A. Vandamme, Eds. Oxford University Press,
2003.

VARSHAVSKY, R., HORN, D., AND LINIAL, M. Global considerations in
hierarchical clustering reveal meaningful patterns in data. PLoS ONE 3,
5 (2008), e2247.

VENTER, J. C., REMINGTON, K., HEIDELBERG, J. F., HALPERN, A. L.,
RuscH, D., Eisen, J. A., Wu, D., PAUuLSEN, I., NELSON, K. E.,
NELSON, W., ET AL. Environmental genome shotgun sequencing of the
Sargasso Sea. Science 304, 5667 (2004), 66-74.

Vovk, V., GAMMERMAN, A., AND SAUNDERS, C. Machine-learning
applications of algorithmic randomness. In Proceedings of the 16th
International Conference on Machine Learning (ICML), Bled, Slovenia,
June 27-30 (1999), Morgan Kaufmann, pp. 444-453.



BIBLIOGRAPHY 161

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

WaNG, B., AND ZHANG, H. Improving the ranking performance of
decision trees. In Proceedings of the 17th Furopean conference on Machine
Learning (ECML), Berlin, Germany, September 18-22 (2006), Springer-
Verlag, pp. 461-472.

WAaNG, R., PRINCE, J., AND MARCOTTE, E. Mass spectrometry of the

M. smegmatis proteome: Protein expression levels correlate with function,
operons, and codon bias. Genome Research 15, 8 (2005), 1118-1126.

WASHBURN, M., WOLTERS, D., YATEs III, J., ET AL. Large-scale

analysis of the yeast proteome by multidimensional protein identification
technology. Nature Biotechnology 19, 3 (2001), 242-247.

WATERMAN, M. S., AND SMITH, T. F. On the similarity of dendrograms.
Journal of Theoretical Biology 73, 4 (1978), 789-800.

WICKER, N., PERRIN, G., THIERRY, J., AND PocH, O. Secator:
A program for inferring protein subfamilies from phylogenetic trees.
Molecular Biology and Evolution 18, 8 (2001), 1435-1441.

WICKER, T., SABOT, F., HUA-VAN, A., BENNETZEN, J. L., CAPY, P.,
CHALHOUB, B., FLAVELL, A., LEROY, P., MORGANTE, M., PANAUD,
O., ET AL. A unified classification system for eukaryotic transposable
elements. Nature Reviews Genetics 8, 12 (2007), 973-982.

WIKIMEDIA COMMONS (USER: KELVINSONG). Simple illustration of
upstream and downstream on a double-stranded piece of DNA [internet].
[updated December 15, 2012; cited June 27, 2013]; Available from
http://upload.wikimedia.org/wikipedia/commons/5/5d/Upstream_
and_downstream.svg.

Yates 111, J., EnG, J., AND McCORMACK, A. Mining genomes:
Correlating tandem mass spectra of modified and unmodified peptides to
sequences in nucleotide databases. Analytical Chemistry 67, 18 (1995),
3202-3210.

ZADROZNY, B., AND ELKAN, C. Obtaining calibrated probability
estimates from decision trees and naive bayesian classifiers. In Proceedings
of the 18th International Conference on Machine Learning (ICML),
Williamstown, MA, USA, June 28 - July 1 (2001), Morgan Kaufmann,
pp. 609-616.

Zuu, X., GOLDBERG, A. B., BRACHMAN, R., AND DIETTERICH,

T. Introduction to Semi-Supervised Learning. Morgan and Claypool
Publishers, 2009.



162 BIBLIOGRAPHY

[143] ZURrADA, J. M. Introduction to Artificial Neural Systems. West St. Paul,
Minn., 1992.



List of publications

Journal Articles

e E. P. Costa, C. Vens, and H. Blockeel, Top-down clustering for protein
subfamily identification. Evolutionary Bioinformatics, volume 9, pages
185-202, 2013.

e E. P. Costa, G. Menschaert, W. Luyten, K. De Grave, and J. Ramon,
PIUS: Peptide Identification by Unbiased Search, Bioinformatics -
application notes, doi: 10.1093/bioinformatics/btt298, 2013, [two-page
article, supplementary material: 23-page technical report].

Conference Papers

e C. Vens, E. P. Costa, H. Blockeel. Top-down induction of phylogenetic
trees, European Conference on Evolutionary Computation, Machine
Learning and Data Mining in Bioinformatics (EvoBIO), Istanbul, Turkey,
7-9 April 2010, Lecture Notes in Computer Science, volume 6023, pages
62-73, Springer.

e C. Vens, E. P. Costa, H. Blockeel. Top-down phylogenetic tree
reconstruction, Pattern Recognition in Bioinformatics (PRIB), Sheffield,
United Kingdom, 7-9 September 2009, [short paper: six pages].

Posters and Presentations at Miscellaneous Events

e« E. P. Costa, S. Verwer, H. Blockeel. New procedure for estimating
prediction certainty in decision trees, Belgian-Dutch Conference on

163



164

LIST OF PUBLICATIONS

Machine Learning, Ghent, 24-25 May 2012, Proceedings of the 21st
Belgian-Dutch Conference on Machine Learning (BENELEARN), page
60, [one-page abstract].

E. P. Costa, C. Vens, H. Blockeel. Protein Subfamily Identification using
Clustering Trees, Belgian Dutch Conference on Machine Learning, The
Hagge, 20 May 2011, Proceedings of the 20th Belgian-Dutch Conference
on Machine Learning (BENELEARN), pages 105-6, [two-page abstract,
poster].

E. P. Costa, C. Vens, H. Blockeel. Identification and classification
of protein subfamilies using top-down phylogenetic tree reconstruction,
European Conference on Computational Biology (ECCB), Vienna, 17-19
July 2011, [half-page abstract, poster].

E. P. Costa, C. Vens, H. Blockeel. Evaluating the use of clustering trees
for protein subfamily identification, BeNeLux Bioinformatics Conference
(BBC), Luxembourg, 12-13 December 2011, [one-page abstract, poster].

E. P. Costa, C. Vens, H. Blockeel. Reconstructing phylogenetic trees from
clustering trees, European Conference on Computational Biology (ECCB),
Ghent, Belgium, 26-29 September 2010, [half-page abstract, poster].

E. P. Costa, C. Vens, H. Blockeel. Top-down phylogenetic tree
reconstruction: a decision tree approach, International Workshop on
Machine Learning in Systems Biology (MLSB), Ljubljana, Slovenia, 5-6
September 2009, [one-page abstract, poster].

E. P. Costa, C. Vens, H. Blockeel. Top-down phylogenetic tree
reconstruction, Benelux Bioinformatics Conference, Liege, 14-15 December
2009, [one-page abstract, poster].

Submitted

e E. P. Costa, S. Verwer, and H. Blockeel, Estimating prediction certainty

in decision trees. Submitted to the 12th International Symposium on
Intelligent Data Analysis (IDA). Submitted in May 2013.



LIST OF PUBLICATIONS 165

e T. Fannes, E. P. Costa, J. Ramon et al., Machine learning in proteomics.
Submitted to the Nectar Track of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
2013 (ECMLPKDD 2013). Submitted in June 2013.

e E. P. Costa, L. Schietgat, R. Cerri, C. Vens, C. N. Fischer, C. M. A.
Carareto, J. Ramon, H. Blockeel, Annotating transposable elements in
the genome using relational decision tree ensembles. Submitted to the
23rd International Conference on Inductive Logic Programming (ILP).
Submitted in July 2013, [short paper: six pages].






Curriculum vitae

Eduardo de Paula Costa graduated in computer science at the Sdo Paulo
State University (UNESP), Brazil, in December 2005. He then joined the
master program in computer science and computational mathematics from the
University of Sdo Paulo (USP), Brazil, in February 2006. He obtained his
master title in March 2008. His master thesis was entitled “Investigation of
hierarchical classification techniques for bioinformatics problems”.

In May 2008, he joined the Declarative Languages and Artificial Intelligence
group at the KU Leuven, Belgium, as a pre-doctoral student. After being
approved in the pre-doctoral program, he started his doctoral studies in January
2009. His Ph.D. research, entitled “Algorithms for analyzing biological sequences”
was supervised by Hendrik Blockeel and Jan Ramon.

167









FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

DECLARATIVE LANGUAGES AND ARTIFICIAL INTELLIGENCE
Celestijnenlaan 200A

B-3001 Heverlee




	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Context
	Machine learning
	Bioinformatics

	Motivations and contributions
	Structure of the thesis

	Background
	Biological sequences
	A cell and its genetic information
	From DNA to proteins
	Peptides
	Evolutionary mechanisms and phylogenetic analysis
	Genome annotation

	Machine learning
	Learning from experience
	Types of learning
	Evaluating the learning performance

	Summary

	Top-down induction of phylogenetic trees
	Introduction
	Background and related work
	Phylogenetic tree reconstruction
	Classical approaches
	PTDC - Phylogeny by Top-Down Clustering
	Comparing phylogenetic trees

	Proposed method
	Empirical evaluation
	Real datasets
	Synthetic datasets
	Comparison to PTDC

	Conclusions

	Using top-down induced clustering trees for protein subfamily identification
	Introduction
	Background and related work
	SCI-PHY

	Proposed method
	Evaluation measures
	Tree topology evaluation
	Clustering evaluation

	Empirical evaluation
	Datasets
	Testing the usability of polymorphic positions for clustering protein subfamilies
	Evaluating the tree topology
	Evaluating the cluster predictions
	Evaluating the classification performance
	Analyzing the identified positions

	Conclusions

	Peptide identification using mass spectrometry data
	Introduction
	Background and related work
	Peptide identification in peptidomics and proteomics
	MS and MS/MS experiments
	Ion fragmentation
	MS/MS spectrum analysis
	Search against the six-frame translation of the genome

	Proposed method
	Overview of the method
	Scoring functions
	Pruning procedure
	Post-translational modifications
	Limitations of the method and possible solutions

	Empirical evaluation
	Experimental setup
	Comparing different scoring functions
	Searching for post-translational modifications
	Comparing the results with MS-GappedDictionary
	Evaluating the pruning procedure

	Conclusions

	Estimating prediction certainty in decision trees
	Introduction
	Background and related work
	Prediction certainty in soft classifiers
	Decision trees and certainty estimates

	Proposed method
	Intuition of the proposed method
	Description of the method
	Example of the calculations

	Empirical evaluation
	Experimental setup
	Evaluating the accuracy of the predictions
	Evaluating probability estimation
	Evaluating ranking estimation
	Evaluating reliability estimation

	Conclusions

	Conclusions
	Thesis summary
	Discussion
	Possible improvements
	Further application opportunities

	Heuristic function used by Clus-
	Heuristic function to split the root node
	Heuristic function to split the other internal nodes
	Illustration of the calculations performed by the Clus- heuristic

	Protein subfamily identification - tree topologies
	List of datasets used in Chapter 6
	Bibliography
	List of publications
	Curriculum vitae

