
The Design and Analysis of Message Authentication
and Authenticated Encryption Schemes

Atul LUYKX

Examination committee:
Prof. dr. ir. Pierre Verbaeten, chair
Prof. dr. ir. Bart Preneel, supervisor
Dr. Elena Andreeva
Prof. dr. ir. Luc Van Eycken
Prof. dr. ir. Vincent Rijmen
Prof. dr. ir. Joan Daemen
(ST Microelectronics, Belgium, and

University of Nijmegen, the Netherlands)
Dr. Martijn Stam
(University of Bristol, UK)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor in Engineering
Science: Electrical Engineering

June 2016

© 2016 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Atul Luykx, Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

Any type of success I might have had throughout the years is only due to the
help of many people, some of whom I thank below.

First I would like to thank the Flanders Innovation and Entrepreneurship agency
(IWT) for their financial support which made this thesis possible.

I would also like to thank my adviser, Bart Preneel, for giving me the opportunity
to freely perform research in an excellent environment, and for his advice along
the way. Then, Vincent Rijmen for the nice conversations we had and for his
very useful advice as well. Joan Daemen I would like to thank not only for
being on my jury, but also for the discussions throughout the years. I would
also like to express my gratitude to Luc Van Eycken and Martijn Stam for
providing valuable feedback on my thesis and attending my defences, and Pierre
Verbaeten for chairing the jury. Finally, Elena I am very grateful to for being
there since the beginning, giving me good feedback, and always looking out for
me.

Bart Mennink also guided me from the beginning. He taught me what real
work ethic is, and I learned a lot from his expertise. I am grateful to him for
the many collaborations and papers we wrote together, for keeping me sharp,
and his mentorship.

My PhD started by collaborating with a large group of people, which included
Andrey Bogdanov, Nicky Mouha, and Kan Yasuda. I would like to thank
Andrey for sharing his insight into finding significant research, and for also
inviting me to DTU. Nicky I have always had great and interesting conversations
with, which lead to fruitful collaboration. Nicky’s advice and guidance helped
me a lot throughout my PhD. Then there is Kan, whose amazing insight and
guidance pushed me to think beyond what I normally would have. I doubt my
PhD would have succeeded without his mentorship.

I would like to thank my co-authors Begül Bilgin, Philipp Jovanovic, Alan

i

ii PREFACE

Szepieniec, Elmar Tischhauser, and Laura Winnen for their collaboration and
insight. Guy Barwell, Stefan Köbl, Martin Lauridsen, and Tyge Tiessen I would
like to thank for the nice discussions we had at the various conferences and
summer schools throughout my PhD.

I am very grateful to NTT and Abe-san for providing me with the opportunity
to experience working in Japan with the many wonderful people over there.
And of course, Ryan, for giving us a great time while living there.

Orr I would like to thank for giving me a great opportunity in Haifa, and for
collaborating with me; I felt very welcome in Israel, especially with Muhammad
showing me around. I am also very grateful to Tomer and Michal for taking
care of me, not just during my stay in Israel, but also throughout my PhD.
Tomer has always kept me on my toes, and made sure that I was strong.

Within COSIC I would like to thank first and foremost Péla, Wim, and Elsy who
helped me through the non-research aspects of my PhD. Furthermore, I would
like to thank my office-mates who provided pleasant environments allowing me
to keep my sanity: András, Bing Sun, Nikos, Qingju, Victor, Yoni, Zhiqiang,
and Nikos’s plant. And I sincerely apologize to all the other people in COSIC
whom I did not include here, but made my stay wonderful via the many alma
lunches, barbeques, Friday beers, and karting trips.

I am very grateful that Eva joined me halfway through my PhD, making the
second half of my PhD fun, and more meaningful. Arun, Uncle Rakesh, and
Uncle Ranjan I am grateful to for getting me interested in mathematics and
programming, and for guiding me throughout the years, and Aditi for looking
out for me and being patient with me. Finally, I am eternally grateful to my
parents.

Atul Luykx
Leuven, June 2016

Abstract

Awareness of the significance of securing communication and data has increased
dramatically due to the countless examples showing that systems with little or no
protection can and will be attacked. Lack of adoption, or improper use of strong
cryptographic techniques could be attributed to the fact that cryptographic
solutions are not efficient enough, impose impractical constraints on their use,
or their analysis does not align with how they are used in practice. This thesis
studies message authentication and authenticated encryption algorithms, which
are symmetric-key solutions to providing data integrity and confidentiality.
A formal study is performed of how security degrades when authenticated
encryption algorithms are implemented in environments where theoretical
assumptions might not be met, the so-called nonce abuse and release of unverified
plaintext settings. Designs for authenticated encryption schemes are analyzed,
including our designs COPA and COBRA, while keeping efficiency constraints
in mind. Additionally, limits imposed by constrained environments, which
commonly appear in applications for the internet of things, are considered, and
discussed in the context of message authentication algorithms. A new design
is introduced, LightMAC, which enables keys to be used longer than typically
possible, and an existing construction, PMAC, is analyzed in depth for its
potential to provide more security than what was commonly thought.

iii

Beknopte samenvatting

Het besef van het belang van data- en communicatie-beveiliging is sterk
toegenomen vanwege het stijgend aantal aanvallen op systemen met weinig
of geen bescherming. Gebrek aan, of foutief gebruik van sterke cryptografische
algoritmes kan te wijten zijn aan het feit dat bestaande oplossingen niet
efficiënt genoeg zijn, onpraktische beperkingen hebben, of het feit dat hun
analyse niet overeenkomt met gebruik in de praktijk. Deze thesis bestudeert de
symmetrische-sleutel algoritmes om integriteit en vertrouwelijkheid van data
te verzekeren, namelijk, bericht-authenticatie en geauthenticeerde encryptie-
schemas. De manier waarop de beveiliging van geauthenticeerde encryptie-
schema’s degradeert wanneer ze geïmplementeerd worden in omgevingen waar
theoretische veronderstellingen niet noodzakelijk gerespecteerd worden, de
zogenaamde nonce-misbruik en release of unverified plaintext omgevingen, wordt
formeel bestudeerd. Ontwerpen van geauthenticeerde encryptie-algoritmes
worden geanalyseerd met oog op efficiëntie. Verder worden beperkingen van
bericht-authenticatie algoritmes in omgevingen met implementatie-beperkingen,
zoals gevonden in toepassingen van de internet of things, besproken. Een nieuw
ontwerp dat sleutels langer kan gebruiken dan standaard algoritmes, LightMAC,
wordt geïntroduceerd, en een uitgebreide veiligheidsanalyse toont aan dat een
bestaande constructie, PMAC, meer beveiliging zou kunnen aanbieden dan
oorspronkelijk gedacht.

v

Contents

Abstract iii

Contents vii

List of Figures xi

1 Introduction 1

1.1 Communication Challenges . 1

1.2 Connecting to Facebook . 2

1.3 Transport Layer Security . 2

1.4 Breaking TLS . 3

1.5 Goals . 4

1.6 Contributions . 5

1.7 Outline . 6

2 Preliminaries 9

2.1 Notation . 9

2.2 Binary Fields . 10

2.3 Algorithms, Adversaries, and Success Measures 10

2.4 Reductions . 12

vii

viii CONTENTS

2.5 Efficiency . 13

2.6 Properties of ∆ . 13

2.7 Ideal Primitives . 14

3 Basic Security Definitions 17

3.1 Confidentiality . 18

3.1.1 Syntax: Encryption Schemes 18

3.1.2 Security Definition . 19

3.1.3 Adversarial Capabilities 20

3.1.4 Leaking Repetition . 21

3.2 Integrity . 21

3.3 Combining Confidentiality and Integrity 24

4 Initial Values 27

4.1 Describing Randomness and State with IVs 28

4.2 IV Abuse . 29

4.3 Online Encryption . 31

4.4 Implications . 33

5 Building Blocks 35

5.1 Block Ciphers and Modes of Operation 35

5.2 Tweakable Block Ciphers . 41

5.3 Variable Length Tweakable Ciphers 43

5.4 Online Ciphers . 44

5.5 Universal Hash Functions . 47

5.6 Pseudorandom Functions . 50

6 Constructions 53

6.1 Efficiency Heuristics . 53

CONTENTS ix

6.2 MAC Algorithms . 55

6.2.1 Nonce IV . 55

6.2.2 Deterministic MACs . 57

6.3 Encryption Schemes . 57

6.3.1 Nonce and Random IV 57

6.3.2 Abused IV . 60

6.3.3 Avoiding Ciphertext Expansion 62

6.4 AE Schemes . 65

6.4.1 Generic Composition . 65

6.4.2 Dedicated Nonce-IV AE 66

6.4.3 Abused-IV AE . 67

7 Breaking Basic Security Assumptions 71

7.1 Subtle Security Definitions . 73

7.2 Is It Safe to Use Subtly Secure Schemes? 74

7.3 Releasing Unverified Plaintext 77

7.3.1 RUP Insecurity . 78

7.3.2 RUP-Secure Constructions 80

8 Bound Tightness 83

8.1 Introduction . 83

8.2 MAC Bounds . 84

8.3 LightMAC . 89

8.3.1 Design . 90

8.3.2 Specification . 91

8.3.3 Security . 92

8.3.4 Collision Probability of F 94

8.4 PMAC’s Message Length Dependence 95

x CONTENTS

8.4.1 PMAC . 97

8.4.2 PHASH Collision Probability 98

8.4.3 Necessary Conditions For a Collision 101

8.4.4 Finding Evenly Covered Sets 109

9 Conclusion 117

9.1 Review . 117

9.2 Open Problems . 118

A COBRA ciphertext stealing 121

A.1 ` > 1, |M2`−1| = n, and 0 < |M2`| < n 121

A.2 ` > 2 and 0 < |M2`−1| ≤ n . 122

A.3 |M | ≤ 3n . 122

B Basic Graph Theoretic Definitions 125

C BQF-t is NP-complete 127

Bibliography 131

CV 151

Publications 157

List of Figures

1.1 Each group of algorithms serves as the tools with which the next
group is constructed. 6

4.1 Implications between basic security definitions. Dotted arrows
mean that there is security loss in the reduction. 33

5.1 CTR mode operating on a 4-block plaintext P = P1P2P3P4,
where |P4| is not necessarily equal to the block size. Truncation
to |P4| bits is indicated with a trapezium. 37

5.2 CBC mode encryption and decryption for a 4-block plaintext
P = P1P2P3P4 and ciphertext C = C1C2C3C4. 38

5.3 Simplified OCB encryption on a plaintext P = (P1, P2, P3, P4).
The tweak corresponding to the tweakable block cipher call is
written under EK . 42

5.4 Illustration of prefix-preserving URPs. For the inverse, reverse
the solid arrows. 45

5.5 The TC3 online cipher with modification by Fleischmann et
al. [76, 77]. Tweaks are written underneath EK . Tweaks that
depend on previous outputs are written (·). 47

5.6 Tweakable online cipher COPE. 48

5.7 Processing plaintext. The value L is generated using the output
of a block cipher call tweaked by the nonce. 50

xi

xii LIST OF FIGURES

6.1 A Wegman-Carter construction with universal hash UH and
primitive π. The tagging algorithm is on the left and the
verification algorithm on the right. 56

6.2 OTR encryption on four blocks of plaintext. 58

6.3 CBC mode with ciphertext stealing. 64

6.4 COPE decryption. The value V is computed as in Figure 5.6. . 64

6.5 Encrypt-then-MAC. 65

6.6 Add an integrity check to TC3. 68

6.7 Adding an integrity check to COPE. The resulting scheme is
called COPA. 69

6.8 Computing the tag in COBRA. The outputs of the block cipher
calls, ρi and σi, are XORed together and passed through two
additional block cipher calls with different tweaks. 69

8.1 A plot of message block lengths per key versus the number of
queries that can be made in order to achieve the threshold success
probability of 2−20. In other words, if (x, y) is a point on the
graph, then x · y represents the number of blocks that can be
processed per key. The block size is set to 32 bits. 88

8.2 LightMAC evaluated on a message M1M2M3M4
n−s←−−−M . The

rounded squares represent block cipher calls and the trapezium
is truncation to t bits. 91

8.3 PHASH evaluated on a message m = (m1,m2,m3,m4). 98

8.4 A set of four points evenly covered by the slopes 0 and (x1 +
x2)−1. The x-coordinates of the points are x1 and x2, and the
y-coordinates are 0 and 1. 102

8.5 A set of points evenly covered by the slopes u, v, and w. Each
point is accompanied by another point with the same x-coordinate.
The x-coordinates of the pairs are indicated below the lower points.104

8.6 A set of points evenly covered by the slopes u, v, and w. None
of the points are accompanied by another point with the same
x-coordinate. The points are labelled by their x-coordinates. . . 105

8.7 Illustration of loops with three slopes. 106

LIST OF FIGURES xiii

8.8 Non-trivial example of a set with 12 points evenly covered by
three slopes. Horizontal points lie on the same y-coordinate, and
vertical points on the same x-coordinate. Since there are six
points on a line with slope u, the natural graph is not regular. . . 111

8.9 The diagram from Figure 8.8 converted into an associated graph.
The slopes u, v, and w induce a natural 1-factorization of the
graph. 111

8.10 A reduced, symmetric, unipotent Latin square of order eight
corresponding to the Cayley table of the abelian 2-group of order
eight. 113

A.1 Messages where the last block is not of full length, i.e. 0 <
|M2`| < n. Here M∗ is “stolen” from ciphertext block C2`−2 and
used in the input to the final fragment. 122

A.2 Messages where the last fragment is of length less than or equal
to n, i.e. 0 < |M2`−1| ≤ n. Here M∗ is stolen from ciphertext
block C2`−4 and used in the input to the final fragment together
with ciphertext fragment C2`−2. 123

Chapter 1

Introduction

1.1 Communication Challenges

Nineteenth-century Flemings faced a world going through significant changes.
A recent revolution had created the country of Belgium in which they now
lived, a potato disease running through Europe was destroying crops resulting
in thousands of deaths, and the industrial revolution was forcing people to
re-evaluate how labour was done. On the list of major concerns for the
typical Fleming, privacy would not have ranked high. The speed and scope of
communication simply would not have exposed privacy threats far beyond his
or her immediate surroundings, since the vast majority of communication would
have been face-to-face, and the most advanced technology, the telegraph, would
have seen little use by the Fleming.

Twenty-first-century Flemings might not have developed intuition beyond the
nineteenth century concerning privacy, and assume that information travels only
to the intended recipient, with little leakage otherwise. However, this intuition
could not be further from the truth. Basic mobile-phone usage broadcasts all
communication wirelessly over a large range, allowing people with an antenna
to intercept, and even impersonate providers. Sending emails is more akin to
sending postcards written in pencil: anyone can read the contents, and modify
the text without detection. Connecting to bank websites could pose significant
threats, with impersonation a real possibility.

Furthermore, these methods of communication only scratch the surface of
information that could be compromised. The increasing prevalence of devices
connected to the internet, more commonly known as the internet of things,

1

2 INTRODUCTION

further exposes a wealth of information to interested parties, by connecting
home printers, medical devices, and even baby monitors to the internet.

Although some people might argue they have nothing to hide, most people,
when given the option, would rather not have exposure similar to a reality-TV
show.

1.2 Connecting to Facebook

Consider, for instance, a user connecting to the online social network Facebook
via a browser. As recently as 2010 the connection would have been mostly
performed using the Hypertext Transfer Protocol, or HTTP, a method of
retrieving websites from a server. After requesting the Facebook login page, the
user would type in her information, which would be formatted appropriately so
that the server can interpret the login request. The data would be passed to
the user’s internet service provider, and subsequently a path of nodes would
be found through the internet, enabling delivery of the data to its destination.
Upon receipt of the correct login information, the server sends back the home
page of the user’s Facebook account.

HTTP is simply a language in which the user’s browser and Facebook’s server
communicate, and therefore its goal is to be as unambiguous as possible. In
particular, it makes no guarantees of whether the information received by the
server actually comes from the user, nor does it make any claims of whether the
information was exposed to all the intermediate nodes over the internet. In fact,
in 2010, Tunisian internet service providers exploited these properties to inject
malicious code which captured users’ Facebook login information [17]. This was
during the height of the Tunisian revolution, a period in which Facebook, and
social media in general, were being used by protesters to spread uncensored
news and organize themselves. Facebook received anecdotal reports of accounts
being compromised, but the attacks were otherwise undetected.

1.3 Transport Layer Security

Once Facebook determined the cause of the attacks, they pushed the use of
HTTPS, which wraps Transport Layer Security (TLS) around HTTP. TLS is a
protocol which attempts to provide confidentiality, or the inability of adversaries
to determine the contents of the communication, and authenticity, or the inability
of adversaries to impersonate, modify, or inject new data during communication.
To achieve these goals, TLS uses tools developed within cryptography, the study

BREAKING TLS 3

of efficient methods to ensure that processing and communication of information
is only done by authorized entities.

TLS breaks communication down into two parts: the handshake protocol and the
record layer protocol. The handshake protocol uses asymmetric cryptography to
establish initial contact between two communicating parties. Two parties, A and
B, that wish to communicate using asymmetric cryptography, each establish
public keys, which can be released publicly, and private keys, which are kept
hidden. When A wants to send B a message, A looks up B’s public key, which
it uses to encrypt the message, and sends the result to B. When B receives the
encrypted data, it is able to recover the original message using its private key.
If the scheme is secure, then no-one besides B will be able to decrypt what B
receives.

The strength of asymmetric cryptography is that it allows two parties to
communicate securely using only public knowledge, which means it can be
used to initiate communication. In fact, TLS really only needs asymmetric
cryptography to enable secure communication between users and Facebook.
But it is costly to communicate with asymmetric cryptography, which is
why the handshake protocol only establishes a shared secret among A and
B. This shared secret is then used by the record layer protocol to perform
the bulk of the communication. For this, symmetric cryptography is used,
which provides security assuming that the communicating parties have a shared
secret. Symmetric cryptography is not able to establish initial contact, but it is
significantly more efficient than asymmetric cryptography.

1.4 Breaking TLS

The use of TLS seemed to stop the Tunisian internet service providers, but more
determined adversaries might have used one of the many vulnerabilities present
in TLS; see Table 1.1. Guaranteeing the security of the entire TLS protocol is
difficult. Various points of failure have been taken advantage of in the attacks
against TLS, which could occur in the implementation, the specification or
standard, as protocol flaws, or even as cryptographic design flaws. All of these
levels need to be secure to guarantee that a particular implementation of TLS
is secure.

Often the underlying cryptography is assumed to be the last point of failure,
however occasionally cryptographic schemes have been attacked, and when
they are compromised, the results can have detrimental effects. An example
is the Flame malware: undetected for up to five years, it infected private
individuals, government organizations, and educational institutions [85]. Flame

4 INTRODUCTION

Table 1.1: Some attacks against TLS.

Year Name Reference
2002 Padding oracle attack [170]
2009 Renegotiation attack [148]
2012 Alert attack [1]
2013 Lucky13 [8]
2014 Triple handshake attack [41]
2015 Logjam [4]
2016 SLOTH (Transcript collision attack) [42]

DROWN [18]

uses a weakness in the cryptographic algorithm MD5 to forge a Microsoft
certificate. Attacks on MD5 had been studied extensively by the cryptographic
community [46,173], but Flame used a new attack [2].

Another example is the insecurity of the IEEE 802.11 WEP protocol, used for
wireless networks. When WEP was developed, there were cryptographic schemes
providing confidentiality and authenticity separately, but none addressed the
issue of combining the two. As a result, WEP provided its own solution. In 2001
it was shown that WEP attained neither confidentiality nor authenticity [16,55],
and the protocol was exploited in 2007 to steal personal data from over 450 000
customers from a retail store [19].

Although both MD5 and the algorithm underlying WEP were known to be
weak in the literature, their continued use in practice highlights the importance
of designing efficient algorithms which address the needs of users.

1.5 Goals

Motivated by the lack of adoption of strong cryptographic algorithms in practice,
we seek new designs, formalizations, and analysis that not only push the limits
of efficiency and longevity of cryptographic schemes, but also add robustness so
that security is maintained as much as possible in environments which might
not have been accounted for in theory. Our research focuses on the design
and analysis of symmetric cryptographic algorithms, more specifically, message
authentication schemes, which seek to provide data authenticity, also called
integrity, and authenticated-encryption (AE) schemes, which aim for both
confidentiality and integrity.

CONTRIBUTIONS 5

Both message authentication and AE schemes form the backbone of security
for many different environments. In settings where confidentiality is not
necessary, message authentication algorithms provide the most efficient method
of ensuring data integrity. Robust message authentication algorithms already
exist, making them suitable for many different environments, however efficiency
constraints, especially in constrained environments, limit their usability. Our
goal is to investigate what the fundamental limits are of how efficient message
authentication algorithms can be, and whether new designs can improve upon
the state-of-the-art.

AE schemes provide integrity as well, and are necessary anytime confidentiality
is needed. However, designing efficient and robust AE schemes is not as
straightforward as with message authentication schemes. It is not obvious what
type of security definitions are necessary to analyze AE schemes in environments
where basic assumptions are broken. Here our goal is to meaningfully model
extended security settings in which AE schemes can be tested and proven secure.
Then, we aim to explore the efficiency and design constraints that these models
impose in order to create algorithms which are robustly secure, while being as
efficient as possible.

1.6 Contributions

With respect to message authentication schemes we focus on one class of easily
parallelizable algorithms. We introduce the scheme LightMAC, which is a
simple and efficient message authentication algorithm able to process data
significantly longer than what is typically possible. Then we analyze PMAC,
an existing competitor to LightMAC, in order to understand how its longevity
compares. This involves finding attacks against PMAC to illustrate its security
limits. However, in our exploration we find that determining PMAC’s limits is
a non-trivial theoretical problem, which we are able to formalize. Nevertheless,
we show that one version of PMAC does have an attack, meaning this version’s
security limits are significantly lower than LightMAC’s.

With respect to AE schemes, we investigate known extensions of the basic
security model, nonce misuse resistance. We point out that existing definitions
of nonce misuse resistance do not align with intuition, and give a new definition
which more accurately models what one would expect to happen to security.
Furthermore, we introduce a new setting, called the release of unverified plaintext
(RUP) setting, which models scenarios that till now have not been accounted for
in the literature. Schemes which are designed to be RUP-secure could be used
in many applications to increase the robustness of the system. Finally, various

6 INTRODUCTION

block cipher, tweakable block cipher, PRF

block cipher, tweakable block cipher,
tweakable online cipher, tweakable cipher,
PRF, VIL-PRF, universal hash function

encryption scheme, authenticator (MAC, AE)

Primitives

Building Blocks

Constructions

Figure 1.1: Each group of algorithms serves as the tools with which the next
group is constructed.

efficient designs are discussed which provide more robustness than conventional
AE schemes, including three new designs, COPE, COPA, and COBRA.

1.7 Outline

Chapter 3 reviews basic definitions for confidentiality and integrity. Conventional
integrity definitions deal with message authentication schemes and AE schemes
separately, but we combine these definitions into one. Chapter 4 then discusses
an extension of the basic definitions to describe what happens when a basic
assumption about the schemes is no longer met in practice, that is, the so-called
nonce misuse setting. The necessary formalization is introduced to describe the
setting, followed by a more natural nonce misuse security definition than what
is present in the literature. Finally an overview is provided of the connection
between the conventional and misuse definitions.

In Chapter 5, tools are presented with which algorithms will be constructed
achieving the security definitions of Chapters 3 and 4. All algorithms discussed
in the thesis can be categorized as either a primitive, a building block, or a
construction, as illustrated in Figure 1.1. Primitive design is a complicated
matter and remains out of the scope of this thesis, but years of experience in
the cryptographic community has given confidence in the security of primitives
such as the Advanced Encryption Standard [67]. These primitives can either
be used as building blocks themselves, or to construct more advanced building
blocks. Included in the advanced building blocks are the algorithms COPE
and COBRA, from our publications published in Asiacrypt 2013 [13] and FSE
2013 [14], respectively, which, at their time of publication, presented the state
of the art in efficient algorithms with some resistance to nonce misuse.

OUTLINE 7

The building blocks from Chapter 5 in turn enable us to build constructions
which achieve data confidentiality and integrity, as discussed in Chapter 6.
Contributions include drawing connections between the different design decisions
made for various constructions, and a new application of ciphertext stealing to
COPE in order to deal with ciphertext expansion. Furthermore, the algorithm
COPA from Asiacrypt 2013 [13] is introduced.

Besides nonce misuse, part of our research also discusses other failures that
could happen in practice when implementing authenticated encryption schemes,
called the releasing unverified plaintext setting [12]. Chapter 7 places the results
from our paper [12] in the context of the framework introduced by Barwell et
al. [21], in order to gain insight into the setting.

The thesis is concluded with Chapter 8, which discusses our work on message
authentication, and how the improvement of security bounds can have practical
impact. This chapter consists mainly of text from our publications on
LightMAC [121, 122] and security bounds for PMAC [119, 120], where the
works are presented nearly in their entirety with little modification. The
emphasis of this chapter is on longevity of schemes as opposed to efficiency or
added robustness.

Chapter 2

Preliminaries

In this chapter we describe the basic mathematical definitions necessary for the
thesis, and outline some of the most important concepts in order to understand
our approach. After covering notation and binary fields, we describe the
elements necessary for our security definitions, namely algorithms, adversaries,
and success measures. Then we place our approach to security in context by
describing reductions, and then efficiency measures. The chapter is concluded
with some technical definitions necessary for the proofs.

2.1 Notation

For a set X, Xn is the set of n-length sequences of elements of X, X≤n is the set
of sequences of length not greater than n, X+ is the set of finite-length sequences
of length at least one, and X∗ is X+ along with the “empty” sequence, usually
denoted ε. If X ∈ X∗, then |X| denotes its length. For X ∈ X and Y ∈ Y, X‖Y
and XY interchangeably denote the element (X,Y) ∈ X×Y. Given an element
X = (X1, X2, . . . , Xn) ∈ Xn and an integer t ≤ n, then bXct denotes the first t
components of X, that is, (X1, X2, . . . , Xt).

The set of arbitrary length bit-strings is {0, 1}∗. The symbol ⊕ denotes the
bitwise XOR operation of two strings. The symbol 0n represents the n-bit string
consisting of only zeros. Given a block length n, concatenation of 10∗ to a string
means appending a one followed by the minimum number of zeros to make the
total string length a multiple of n bits.

Throughout, P denotes a probability measure. We write P
[
A
∣∣ B
]
to denote

9

10 PRELIMINARIES

the probability of event A given B. By K
$← K we mean that K is chosen

uniformly at random from the set K, where K is implicitly assumed to be finite.

We will use the following result throughout the thesis.

Lemma 1. Say that A and B are independent random variables over a finite
group G. If A is uniformly distributed, then A+B is uniformly distributed.

2.2 Binary Fields

The set {0, 1}n of bit strings can be identified with the finite field GF(2n)
consisting of 2n elements. The elements of GF(2n) can be represented
as polynomials of degree less than n over the field GF(2). The string
an−1an−2 · · · a1a0 ∈ {0, 1}n is then identified with the polynomial an−1xn−1 +
an−2xn−2 + · · · + a1x + a0 ∈ GF(2n). Addition in {0, 1}n is just addition of
polynomials over GF(2), which is bitwise XOR, ⊕. Multiplication is done by
fixing an irreducible polynomial f(x) of degree n over the field GF(2). Given two
elements a(x), b(x) ∈ GF(2n), their product is defined as a(x)b(x) mod f(x)—
polynomial multiplication over the field GF(2) reduced modulo f(x). We simply
write a(x)b(x) and a(x) · b(x) to mean the product in the field GF(2n).

The set {0, 1}n can be also be identified with the set of integers ranging from
0 through 2n − 1: strings an−1an−2 · · · a1a0 ∈ {0, 1}n are mapped to integers
an−12n−1 +an−22n−2 + · · ·+a12+a0. Often elements of GF(2n) will be written
as integers, by first mapping them to strings, and subsequently to integers. For
example, “2” means x, “3” means x+1, and “7” means x2+x+1. Multiplications
such as 2 · 3 and 72 correspond to those in the field GF(2n).

2.3 Algorithms, Adversaries, and Success Measures

Algorithms. We assume the reader generally understands what an “algorithm”
is. Throughout the text, we describe stateful, randomized, and deterministic
algorithms. A stateful algorithm computes its output based on its input and
current state. A randomized algorithm can “flip coins”, i.e. generate randomness,
each time it is invoked and then use the coins to compute its output. A
deterministic, stateless algorithm always returns the same output given the
same input.

The interface to an algorithm is the set of valid inputs to the algorithm and
set of possible outputs the algorithm might make. Interfaces are generally
denoted using function notation. For example, an algorithm’s interface might

ALGORITHMS, ADVERSARIES, AND SUCCESS MEASURES 11

be described as K×M→ C, meaning it accepts inputs from K×M and provides
outputs in C.

Adversaries and Oracles. An adversary A is a randomized and stateful
algorithm with access to an oracle O. An oracle is an algorithm itself,
which could represent a cryptographic scheme being analyzed. The interaction
between the adversary A and the oracle O, denoted AO, generates a transcript,
which is a sequence of O-inputs, x1, x2, . . . , xq, with corresponding O-outputs,
O(x1),O(x2), . . . ,O(xq). The O-inputs xi are constructed sequentially by the
adversary A using its previously received O-outputs O(x1), . . . ,O(xi−1).

Adversarial and oracle interfaces are assumed to be compatible, meaning that
adversaries always generate oracle inputs which lie in the oracle’s input domain.
The interfaces of two oracles O1 and O2 are also said to match if the input
domains and the output domains of the oracles are the same.

Games. Adversarial success measures are defined in settings called games. In
event-based games, adversaries must trigger an event defined with respect to
the transcript generated from the oracle interaction. In this case, adversarial
success probability, or the adversary’s advantage, is measured as the probability
the event is satisfied. An example of an event-based game can be found in
Section 3.2.

Another game type is indistinguishability. Here adversaries are given access
to an oracle which could be one of two algorithms. The task of the adversary
is to say which of the two algorithms it is interacting with. An example of
an indistinguishability game is given in Section 3.1.2. The indistinguishability
advantage of adversary A in distinguishing algorithm f from g is

∆
A

(f ; g) def=
∣∣∣P [Af = 1

]
−P

[
Ag = 1

]∣∣∣ , (2.1)

where the notation AO = 1 is the event that A outputs 1 when interacting
with oracle O. The probabilities are defined over the probability spaces of A
and O. An adversary which can reliably distinguish between f and g will have
indistinguishability advantage close to one. The ∆ notation can be generalized
to any class of adversaries A as follows,

∆
A

(f ; g) def= sup
A∈A

∣∣∣P [Af = 1
]
−P

[
Ag = 1

]∣∣∣ , (2.2)

which is the supremum of the distinguishing advantages over all adversaries in
A.

12 PRELIMINARIES

Multiple oracles are separated by a comma, for example ∆(f1, f2 ; g1, g2) denotes
distinguishing (f1, f2) from (g1, g2). If A is distinguishing (f1, f2, . . . , fk) from
(g1, g2, . . . , gk), then Oi denotes the ith oracle that A can access, that is, either
fi or gi depending upon the oracle sequence it is interacting with. In particular,
the order in which the oracles are written is important: ∆(f1, f2 ; g1, g2) is not
the same as ∆(f2, f1 ; g1, g2). The oracle sequence O1,O2, . . . ,On can always
be identified with the oracle O(i, x) def= Oi(x), hence any statement involving a
single oracle can be applied to a sequence of oracles as well.

2.4 Reductions

A systematic approach to investigating an algorithm’s security involves looking
for attacks, and in the absence thereof, attempting to prove security. Proving
that efficient algorithms are secure is generally considered infeasible, therefore
the main method of analyzing algorithms is to search for resistance against as
many attacks as possible; this approach is usually called cryptanalysis.

However, if an algorithm is built using a building block, then one might be
able to reduce the security of the algorithm in question to some property of
the building block; this approach is commonly called the standard model, and
is the main method of analyzing security in this thesis. Such a reduction
converts an adversary attacking the algorithm to an adversary attacking the
underlying building block, and if the building block is secure, meaning there are
no efficient adversaries attacking it, then, using the reduction, we know there
are no adversaries attacking the original algorithm.

The advantage to the standard model is that one can formally reason about
why security is preserved without having to resort to relying on the absence of
attacks for security. However, the standard model always requires some building
block to start with, making cryptanalysis indispensable.

Another approach to reasoning about security is to idealize the underlying
building blocks, meaning, instead of reducing the algorithm’s security to its
building block, one replaces the building block with an ideal mathematical
object; this is called the ideal model. Such an approach is used if there is no
obvious theoretical connection between the algorithm’s security and any property
of the building block; see for example our publications on permutation-based
cryptography [11,105,129].

Using the ideal model one can no longer claim that an attack against the
algorithm can be reduced to an attack against the building block. However,
analysis performed in the ideal model still excludes so-called generic attacks,

EFFICIENCY 13

that is, ones which do not use any property of the underlying building block.
Despite the lack of a theoretical connection, for practice there does not seem to
be an issue in idealizing the building block, assuming the actual building block
used does not contain any weaknesses.

2.5 Efficiency

All algorithms and adversaries throughout the text are considered to be
“efficient”, where picking the right definition of efficiency is outside the scope of
the text. See Bernstein and Lange [40] for a discussion on the issues surrounding
efficiency of adversaries. The reductions used in the text are also assumed to
be efficient, although we do not explicitly measure their efficiency. We list the
most commonly used reductions in the text, which should be “efficient” using
any reasonable definition.

Definition 2.5.1. Consider an adversary A interacting with a single oracle.
Define A(f◦) to be the adversary which interacts with oracle O as follows:
A(f◦) runs A and simulates an oracle for A by responding to an A-query x
via f(O(x)), where f is simulated using A(f◦)’s own randomness. When A
terminates, A(f◦) uses A’s output as its own. Similarly, let A(◦f) be the
adversary which runs A, simulates A’s oracle queries using O ◦ f , and forwards
A’s output.

Definition 2.5.2. Let A be an adversary interacting with two oracles O1
and O2. Define A(f, ·) to be the adversary interacting with oracle O, which
simulates f with its own randomness, runs A, and when A makes an O1-query
x returns f(x), and returns O(x) when A makes an O2-query x. When A
terminates, A(f, ·) forwards A’s output. Define A(·, f) similarly.

The above reductions can be combined to create more advanced reductions,
such as A(◦f, ·), which composes f to one oracle, and forwards the second
oracle to A.

2.6 Properties of ∆

Let f , g, and h be oracles with matching interfaces, and let A be an adversary
compatible with f .

14 PRELIMINARIES

Proposition 2.6.1.

∆
A

(f ; g) = ∆
A

(g ; f) (symmetry) (2.3)

∆
A

(f ; h) ≤ ∆
A

(f ; g) + ∆
A

(g ; h) (triangle inequality) . (2.4)

Proof. Both properties follow from the fact that the absolute value is used in
the definition of ∆. �

Proposition 2.6.2. Say that f is independent of g and h, then

∆
A

(f ◦ g ; f ◦ h) ≤ ∆
A(f◦)

(g ; h) (2.5)

∆
A

(g ◦ f ; h ◦ f) ≤ ∆
A(◦f)

(g ; h) . (2.6)

Proof. Since f is independent of g and h, A(f◦) can simulate f ◦ g and
f ◦ h perfectly, which means A’s distinguishing game is simulated perfectly.
In particular, if A succeeds in distinguishing f ◦ g from f ◦ h, then A(f◦)
succeeds. �

Proposition 2.6.3. Say that f is independent of g, h and e, and that e is
independent of g, h, and f , then

∆
A

(f, g ; f, h) ≤ ∆
A(f,·)

(g ; h) (2.7)

∆
A

(f, g ; h, e) ≤ ∆
A(f,·)

(g ; e) + ∆
A(·,e)

(f ; h) . (2.8)

The proof is identical to the one for Proposition 2.6.2.

2.7 Ideal Primitives

Often the quality of cryptographic algorithms will be measured with how well
they approximate ideal mathematical objects, also called ideal primitives. We
list some of the most commonly used ideal primitives in the thesis.

1. A uniformly distributed random function (URF) from X to Y is a uniformly
distributed random variable over the set of all functions from X to Y,
where X and Y are assumed to be finite.

IDEAL PRIMITIVES 15

2. A uniformly distributed random permutation (URP) over X is a uniformly
distributed random variable over the set of all permutations on X, where
X is assumed to be finite.

3. A uniformly distributed random beacon (URB) [123,147] π : X→ Y is a
family of URFs {πi}i≥0, where πi : X→ Y is a URF, and if X is the ith
input to π, then π(X) = πi(X).

All of the above primitives also have a length-preserving variant π operating
on domain X∗, where for X ∈ X∗, π(X) = π|X|(X), where {πi}i≥0 is a family
of primitives with πi operating on Xi. For example, a length-preserving URB
π : X∗ → Y∗ is a family of URBs {πi}i≥0, where πi : Xi → Yi is a URB, and
π(X) = π|X|(X) for X ∈ X∗.

Furthermore, all primitives also have a tweakable variant π, where given a tweak
set A, π(A, ·) def= πA(·), where {πA}A∈A is some publicly available primitive
family. Tweak-access will usually be denoted with superscripts, so π(A, ·) =
πA(·).

The following result, commonly known as the PRP-PRF switching lemma [35,96],
computes the distance between a URP and a URF.

Lemma 2. Let π be a URP over X and ϕ a URF from X to X, then for any
adversary A making at most q queries,

∆
A

(π ; ϕ) ≤ q(q − 1)
2 |X| . (2.9)

See, for example, Chang and Nandi [60] for a proof.

Chapter 3

Basic Security Definitions

We consider a setting in which two parties wish to communicate securely over
a channel where adversaries may intercept, modify, and inject data. Assume
both parties share a common secret, a key. Two aspects to providing security
in this so-called symmetric-key setting are considered:

1. data confidentiality, or the extent to which adversaries are not able to
determine data content when intercepting, and

2. data integrity, or the extent to which adversaries are not able to modify
or inject data without the change being detected by the receiver.

Establishing both data confidentiality and integrity might not lead to sufficient
security since other vulnerabilities not captured by the above model might be
present, such as inundating the channel to mount denial-of-service attacks, or
even leaking the fact that party A is communicating with party B. Providing
security against other attacks is beyond the scope of this thesis.

This chapter describes formalizations of data confidentiality and integrity,
which consist of three parts: scheme descriptions, adversary descriptions, and
adversarial success measures. All three parts combine to describe a security
model in which schemes can be tested, and potentially proved, for security.

17

18 BASIC SECURITY DEFINITIONS

3.1 Confidentiality

3.1.1 Syntax: Encryption Schemes

In its most basic form, a symmetric-key protocol which attempts to achieve
data confidentiality, called an encryption scheme, consists of three algorithms:

1. a randomized key generation algorithm, which outputs a key K ∈ K,

2. an encryption algorithm Enc : K× P→ C, which takes a key K ∈ K and
a plaintext P , to return a ciphertext C ∈ C:

Enc(K,P) = C or EncK(P) = C , (3.1)

and

3. a decryption algorithm Dec : K× C→ M, which takes a key K ∈ K and a
ciphertext C ∈ C and returns some plaintext P ∈ P:

Dec(K,C) = P or DecK(C) = P . (3.2)

Two parties wishing to communicate confidentially first agree upon a key K
using the key generation algorithm, which generally consists of choosing K
uniformly at random from K, written as K $← K. Anytime a plaintext P is
to be communicated, the sender encrypts P using Enc with key K to produce
ciphertext C = EncK(P). The receiver decrypts C using Dec and K to produce
P . In order for the communication to work, the encryption scheme must be
correct, meaning for any key K ∈ K and plaintext P ∈ P, encrypting and then
decrypting P always results in P :

DecK(EncK(P)) = P.

A priori, the encryption and decryption algorithms in encryption schemes can
be stateful, randomized, or neither, although we will see that the distinction is
important for security.

Example 3.1.1 (One-Time-Pad). One of the simplest examples of a stateful
encryption scheme is the one-time-pad [171]. Let K = {0, 1}k, P = {0, 1}≤p,
and C = {0, 1}≤c. The one-time-pad maintains state representing a bit position
in the key, initially set to the first bit. It then takes a plaintext P as input and
selects a part of the key, K ′, of length |P | starting from the bit position it has
stored, and then performs a bitwise XOR of the plaintext and key to produce
the ciphertext: C = P ⊕K ′. It then advances the bit position to be past the
portion of the key it has used. The decryption algorithm does the same as the
encryption algorithm, but uses the ciphertext instead of the plaintext. J

CONFIDENTIALITY 19

3.1.2 Security Definition

A confidentiality definition needs to somehow capture the idea that no
information can be extracted about the plaintext given the ciphertext.
Goldwasser and Micali [83] approach this by saying that an encryption scheme
provides confidentiality if

whatever is efficiently computable about the [plaintext] given the
[ciphertext], is also efficiently computable without the [ciphertext].

Bellare, Desai, Jokipii, and Rogaway [25] discuss several formalizations of the
above concept, of which we use real-or-random confidentiality.

Real-or-random confidentiality describes adversarial success probability via an
indistinguishability game in which adversaries must distinguish the encryption
of an input they generate themselves, from the encryption of a randomization
of the input. For example, an adversary testing the confidentiality of the one-
time-pad would either get access to the one-time-pad itself, or the one-time-pad
where the plaintexts are randomized. If the adversary is unable to distinguish
the two situations, then it cannot tell whether its plaintexts are actually being
encrypted by the one-time-pad, or whether its plaintexts are first converted to
nonsense, and then encrypted.

Formally, adversary A’s advantage in breaking an encryption scheme’s
confidentiality is as follows.

Definition 3.1.2 (Confidentiality). Let P = X∗, and $: P → P a length-
preserving URB. Then the CPA-advantage of adversary A against encryption
scheme (Enc,Dec) is given by

CPA(A) def= ∆
A

(EncK ; EncK ◦ $) , (3.3)

where K $← K.

Randomization of the input is represented via composition with the URB: if
the URB gets an input of length `, then its output will be some uniformly
distributed random value over all plaintexts of length `. Usually X is defined to
be {0, 1}, so that X∗ = {0, 1}∗ is the set of all arbitrary-length strings.

Using this definition, encryption schemes do not need to hide the plaintext
length. Consider the one-time-pad again. The encryption algorithm XORs a
secret random value to each plaintext, which can be written as $′(P)⊕P , where
$′ is a length-preserving URB independent of the game’s URB $. If you pass P

20 BASIC SECURITY DEFINITIONS

through the game’s URB $, you get

$′($(P))⊕ $(P) , (3.4)

which is identically distributed to $′(P)⊕ P (see Lemma 1). Hence, the one-
time-pad provides confidentiality according to the above definition, yet it leaks
the plaintext length. In most cases encryption schemes will leak plaintext
length, however there are applications where hiding the plaintext length is
important; see for example Boldyreva, Degabriele, Paterson, and Stam [50,53]
for a formalization of the setting.

3.1.3 Adversarial Capabilities

Definition 3.1.2 does not correspond exactly to the intuition provided by
Goldwasser and Micali, since adversaries are given access to the encryption
oracle which means they already know the plaintexts being encrypted. This
is called the chosen plaintext attack (CPA) scenario, where adversaries may
choose plaintexts and see the corresponding ciphertexts. Alternatively, one
can consider models in which adversaries are given less power, such as known
plaintext attacks, where adversaries lose access to the encryption oracle and
are given a list of plaintexts with corresponding ciphertexts, or ciphertext-only
attacks, where adversaries are only given a list of ciphertexts, and the plaintexts
are generated randomly according to some distribution.

In some situations the weaker settings might be sufficient, yet there are scenarios
in practice in which adversaries are able to inject plaintext during encryption,
and then intercept the ciphertext. From an attacker’s viewpoint, finding
ciphertext-only attacks is very useful, because they can be applied everywhere.
But from a designer’s viewpoint, it is better to create schemes which are secure
against the largest class of attacks possible without sacrificing efficiency, which
is why we focus on the CPA scenario.

To this end, we also consider an even stronger setting, in which adversaries are
given access to the decryption oracle as well; this might happen if adversaries
obtain access to the decryption device, a plausible scenario nowadays given the
amount of devices connected to the internet. Such attacks are called chosen
ciphertext attacks (CCA), with corresponding confidentiality formalization as
follows.

Definition 3.1.3 (CCA Confidentiality). Let P = X∗, and let $: P → P be
a length-preserving URB. Then the CCA-advantage of adversary A against
encryption scheme (Enc,Dec) is given by

CCA(A) def= ∆
A

(EncK ,DecK ; EncK ◦ $,DecK) , (3.5)

INTEGRITY 21

where K $← K, and A may not use the output of an O1 query as the input to
an O2 query.

Note the restriction on the adversary’s queries: it may not encrypt a plaintext
and then decrypt it. Such a query sequence would allow the adversary to trivially
distinguish, since encryption scheme correctness requires that the decryption of
an encryption must return the original plaintext, which is unlikely to happen
when interacting with (EncK ◦ $,DecK).

3.1.4 Leaking Repetition

An aspect of confidentiality which might not be obvious at first, is that repeated
plaintexts must result in different ciphertexts. For example, say that a sender
repeatedly communicates either a “yes” or “no”, and that “yes” always encrypts
to the same ciphertext, and so does “no”. Then not only will the number of
“yes” and “no” plaintexts be leaked, but adversaries can also see when the
sender is making different decisions, just based on the ciphertext. Going back to
Goldwasser and Micali’s intuition, adversaries in such a situation would be able
to determine plaintext properties which are impossible to determine without
the ciphertext.

Such attacks are captured in the CPA definition as follows. Let P1 and P2 be
two different plaintexts, and let O be the adversary’s oracle. The adversary first
queries O(P1) = C1, and then again O(P1) = C2. If C1 = C2, the adversary
guesses that it is interacting with EncK , and otherwise it guesses EncK ◦ $. If
EncK always outputs the same ciphertext with the same plaintext, then C1 will
always equal C2 when interacting with just EncK , but when interacting with
EncK ◦ $, the URB will convert P1 and P2 into two distinct plaintexts with
high probability, which means C1 = EncK ◦ $(P1) will most likely not equal
C2 = EncK ◦ $(P2). Therefore encryption schemes must be either randomized
or stateful.

3.2 Integrity

Ensuring integrity concerns two aspects. One is being able to distinguish
communication received from the intended sender versus communication received
from adversaries. The other, related, aspect is being able to determine when
the communication has been modified or tampered with.

22 BASIC SECURITY DEFINITIONS

Conventional approaches to integrity either limit treatment to schemes which
provide no confidentiality, as for example presented by Bellare, Kilian, and
Rogaway [28], or only consider schemes which also provide confidentiality, as
done by Bellare and Namprempre [32] and Katz and Yung [108]. We merge
both approaches into a single definition and abstract away details which would
only be necessary to provide confidentiality. Furthermore, we allow for the
possibility of multiple verification failures to be output, an issue addressed by
Boldyreva, Degabriele, Paterson, and Stam [51].

A symmetric-key protocol attempting to provide integrity we call an
authenticator, and consists of three algorithms:

1. a randomized key generation algorithm, which outputs a key K ∈ K,

2. a tagging algorithm Tag : K ×M → C, which takes a key K ∈ K and a
message M ∈ M, to return an output C ∈ C:

Tag(K,M) = C or TagK(M) = C , (3.6)

and

3. a verification algorithm Ver : K × C → S ∪ F, which takes a key K ∈ K
and an input C ∈ C and returns an element of S ∪ F:

Ver(K,C) ∈ S ∪ F or VerK(C) ∈ S ∪ F . (3.7)

The sets S and F are disjoint, corresponding to the “success” symbols and
“failure” symbols, respectively.

Two parties wishing to add integrity to their communication first agree upon a
key K using the key generation algorithm. Then, whenever a message M is to
be communicated, the sender processes M using Tag with key K to produce
output C = TagK(M). The receiver verifies the communication C using Ver;
verification succeeds if the Ver output is in S, otherwise verification fails. An
authenticator is correct if verification of the tagging algorithm output always
succeeds, meaning for all K ∈ K and M ∈ M,

VerK(TagK(M)) ∈ S . (3.8)

The goal of an authenticator is to ensure that any input not generated using
TagK is rejected, that is, without access to K one should not be able to produce
an element C ∈ C such that VerK(C) ∈ S. As a result, any communication that
is tampered with or new communication that is inserted should be rejected by
Ver. These ideas are formalized via the following event-based game.

INTEGRITY 23

Definition 3.2.1 (Integrity). Let K $← K. Let A be an adversary interacting
with (TagK ,VerK), producing q TagK inputsM1,M2, . . . ,Mq and v VerK inputs
C1, C2, . . . , Cv. Let C ′i and Bj denote the output of TagK(Mi) and VerK(Cj),
respectively. Then the Int advantage of adversary A is given by

Int(A) def= P
[
∃j s.t. Bj ∈ S and Cj 6= C ′i for i = 1, . . . , q

]
. (3.9)

For full generality we allow F to consist of more than one symbol, however
when designing schemes there is little reason to do so. If F consists of a
single symbol, say ⊥, then Int-advantage can be characterized in terms of the
indistinguishability game

∆(TagK ,VerK ; TagK ,⊥) , (3.10)

where ⊥ is an algorithm that always outputs ⊥ and the adversaries are restricted
from using the output of TagK as the input to the second oracle. This is because
an adversary which is able to construct a forgery will not be able to do so when
interacting with ⊥, and can guess that it is interacting with (TagK ,VerK) if it
is able to successfully construct the forgery. Conversely, any adversary which
is able to distinguish (TagK ,VerK) and (TagK ,⊥) must force VerK to output
something other than ⊥, which is exactly a forgery in the Int-game.

Let B〈·〉 denote the reduction which takes an Int-adversary A and converts
it into indistinguishability adversary B〈A〉 by running A, responding to A’s
oracle requests with its own oracles, and outputting 1 if A successfully forges,
and outputting 0 otherwise. Similarly, let C〈·〉 denote the reduction which takes
a distinguisher A and converts it into Int-adversary C〈A〉 by running A using
(TagK ,VerK).
Proposition 3.2.1. Let (Tag,Ver) be an authenticator with F = {⊥}, then for
any Int-adversary A

Int(A) = ∆
B〈A〉

(TagK ,VerK ; TagK ,⊥) , (3.11)

where K $← K and ⊥ is an algorithm which always outputs ⊥. Conversely, for
any distinguisher A,

∆
A

(TagK ,VerK ; TagK ,⊥) ≤ Int(C〈A〉) . (3.12)

Proof. Since

∆
B〈A〉

(TagK ,VerK ; TagK ,⊥) def=

∣∣∣P [B〈A〉TagK ,VerK = 1
]
−P

[
B〈A〉TagK ,⊥

]
= 1
∣∣∣ , (3.13)

24 BASIC SECURITY DEFINITIONS

and

P
[
B〈A〉TagK ,VerK = 1

]
= P

[
B〈A〉TagK ,VerK = 1 | A succeeds

]
P
[
A succeeds

]
(3.14)

+ P
[
B〈A〉TagK ,VerK = 1 | A fails

]
P
[
A fails

]
(3.15)

= 1 · Int(A) + 0 ·P
[
A fails

]
, (3.16)

and also

P
[
B〈A〉TagK ,⊥ = 1

]
= P

[
B〈A〉TagK ,⊥ = 1 | A succeeds

]
P
[
A succeeds

]
(3.17)

+ P
[
B〈A〉TagK ,⊥ = 1 | A fails

]
P
[
A fails

]
(3.18)

= 1 · 0 + 0 · 1 , (3.19)

we have our desired result for the first part.

The second part follows from the fact that if A succeeds in distinguishing,
then it must have constructed a forgery, hence C〈A〉 succeeds as well, and the
distinguishing advantage is at most Int(C〈A〉). �

3.3 Combining Confidentiality and Integrity

In practice, just confidentiality or integrity on their own are often not sufficient
for security: not only should data be hidden, but the origin and integrity of
the communication must be ensured. Confidentiality provides no integrity
since, for example, the one-time-pad has optimal confidentiality, but no
integrity: attackers can XOR any value to the ciphertext, and the one-time-pad’s
decryption would not have any method of detecting the changes. Likewise,
schemes which provide integrity do not necessarily provide confidentiality.

Authenticated encryption (AE) schemes target both confidentiality and integrity
simultaneously. They take as input a key, message, and so-called associated
data, which only needs to be checked for integrity. Formally, an AE scheme
(Aenc,Adec) is an authenticator where

1. the message space is M def= A× P, with A the associated data and P the
plaintexts,

COMBINING CONFIDENTIALITY AND INTEGRITY 25

2. the success symbols are the plaintexts, S def= P, and

3. the failure symbols are restricted to one pre-defined error symbol, ⊥,
meaning F def= {⊥}.

We will write AencAK(P) for Aenc(K,A,P). Furthermore, for each A ∈ A, the
AE scheme (Aenc,Adec) specifies the encryption scheme (AencA,Adec), which
is correct for all A ∈ A, meaning for all K ∈ K and P ∈ P,

AdecK(AencAK(P)) = P . (3.20)

Note that Adec does not depend on A, which means that the output of AencA
should contain sufficient information so that Adec can reconstruct A. This could
be done simply by outputting A itself.

Since AE schemes specify a family of encryption schemes, it makes sense to
apply the CPA and CCA security definitions to AE schemes, with the additional
detail that adversaries have access to a public family of encryption schemes as
opposed to a single scheme.

Definition 3.3.1 (AE CPA Confidentiality). Let P = X∗, and $: P → P a
length-preserving URB. Then the CPA-advantage of adversary A against AE
scheme (Aenc,Adec) is given by

CPA(A) def= ∆
A

(Aenc(·)
K ; Aenc(·)

K ◦ $) , (3.21)

where K $← K, and access to a family member A ∈ A is specified by the
superscript (·).

Definition 3.3.2 (AE CCA Confidentiality). Let P = X∗, and let $: P→ P
be a length-preserving URB. Then the CCA-advantage of adversary A against
AE scheme (Aenc,Adec) is given by

CCA(A) def= ∆
A

(Aenc(·)
K ,DecK ; Enc(·)

K ◦ $,DecK) , (3.22)

where K $← K, the superscript (·) has the same meaning as in Definition 3.3.1,
and A may not use the output of an O(·)

1 query as the input to an O2 query.

Note that an AE scheme with A a singleton set is exactly an encryption scheme,
hence Definitions 3.3.1 and 3.3.2 are consistent with Definitions 3.1.2 and 3.1.3.

Since an AE scheme should achieve both confidentiality and integrity, its security
must be measured via the definitions already given, namely Int and CCA. In fact,

26 BASIC SECURITY DEFINITIONS

it turns out that an AE scheme satisfying both Int and CPA will already satisfy
CCA, as shown by Bellare and Namprempre [32] and Katz and Yung [107]. We
restate the result here, with accompanying proof for completeness.

Theorem 1. Let A be a CCA-adversary with respect to the authenticated
encryption scheme (Aenc,Adec), then

CCA(A) ≤ Int
(

A
)

+ Int
(

A(◦$, ·)
)

+ CPA
(

A(·,⊥)
)
, (3.23)

where $ is the URB from the (Aenc,Adec) CPA-definition.

Proof. Using the definition of CCA, and applying the triangle inequality, we
get

CCA(A) = ∆
A

(Aenc(·)
K ,AdecK ; Aenc(·)

K ◦ $,AdecK) ≤

∆
A

(Aenc(·)
K ,AdecK ; Aenc(·)

K ,⊥)︸ ︷︷ ︸
(1)

+ ∆
A

(Aenc(·)
K ,⊥ ; Aenc(·)

K ◦ $,⊥)︸ ︷︷ ︸
(2)

+ ∆
A

(Aenc·K ◦ $,⊥ ; Aenc(·)
K ◦ $,AdecK)︸ ︷︷ ︸

(3)

. (3.24)

By Proposition 3.2.1, term (1) is simply the Int-advantage of A with respect to
(Aenc,Adec). Similarly, term (3) is equal to the Int-advantage of A with respect
to (Aenc(·)

K ◦ $,AdecK), which is equal to the Int-advantage of A(◦$, ·).

By Proposition 2.6.3, term (2) is equal to

∆
A(·,⊥)

(Aenc(·)
K ; Aenc(·)

K ◦ $) , (3.25)

which is the CPA-advantage of A(·,⊥) with respect to (Aenc,Adec). As a result,
we have our desired bound. �

Chapter 4

Initial Values

The formalizations provided in Chapter 3 make no explicit reference to the
underlying state or randomness of the algorithms. This might be a useful
abstraction from the point of view of an end-user sending messages through a
texting program, but in practice, it is the implementers who come in contact
with cryptography, and who need to ensure that state or randomness is properly
maintained. In particular, one could assume that implementers are aware of the
subtleties involved in maintaining security, and focus on designing cryptography
independently. However, such an assumption might not always hold, especially
when an implementer is more concerned with efficiency rather than security.

Another approach is to cater cryptography to the implementers, which was
taken by Rogaway [154], who extracted state and randomness into an additional
input to the encryption scheme: the IV. Then, the encryption and decryption
algorithms can be made deterministic and stateless, and the requirements on
state or randomness can be made explicit via the IV input. Although this
approach sacrifices generality, it allows one to describe many more scenarios
where implementations might fail, as opposed to the more abstract model.

In this chapter we describe the algorithms from Chapter 3 with explicit IVs.
Formalization of the security definitions will be done with respect to the real-or-
random definitions given in Chapter 3, as opposed to using indistinguishability
from random bits, to be discussed later. We then look at the abused IV setting,
where IVs may be repeated, which is where the advantage of the real-or-random
over the random bits definitions appears. We consider what happens in the
abused IV setting to online encryption schemes, which are schemes that can
output ciphertext as they receive plaintext. Finally we summarize all security
definitions presented so far by showing how they relate to each other.

27

28 INITIAL VALUES

4.1 Describing Randomness and State with IVs

Each of the schemes introduced in the previous section can be formalized with
respect to IVs as follows: all “forward” algorithms, Enc,Aenc, and Tag, receive
an additional input N from the space IV, which parametrizes the algorithms,
like associated data for AE schemes.

An IV encryption scheme is a triplet of algorithms, with a key gener-
ation algorithm, and a family of deterministic and stateless algorithms,{

(EncN ,Dec)
}
N∈IV

, where for each N ∈ IV, (EncN ,Dec) is an encryption
scheme. In particular, the correctness condition states that for allK ∈ K, N ∈ IV,
and P ∈ P,

DecK(EncNK(P)) = P . (4.1)

Similarly, an IV authenticator is a family of deterministic and stateless
authenticators

{
(TagN ,Ver)

}
N∈IV

, and an IV AE scheme is a family of

deterministic and stateless AE schemes
{

(AencN ,Adec)
}
N∈IV

. In the case
of AE schemes, syntactically there is no difference between the associated data
and the IVs.

Since the encryption and decryption algorithms in an IV encryption scheme are
stateless and deterministic, they cannot satisfy the CPA definition, because of
the attack explained in Section 3.1.4. The way to get around this is to restrict
the adversary’s IV input. In the case of schemes which use randomness to
provide security, the IV-input must be a uniformly, randomly generated value
for each new encryption; we call this the random IV setting. For schemes which
use state, one could require the IV to be a counter which increments for each
encryption. Yet Rogaway [154] noticed that one can create encryption schemes
where the only requirement on the IV is that it does not repeat, resulting in a
more powerful security definition since adversaries are given more freedom; we
call this the nonce IV setting. Both the random and nonce IV settings can be
considered for authenticators and AE schemes as well.

The formal definitions of CPA and CCA security for the random and nonce IV
settings are identical to Definition 3.1.2 and Definition 3.1.3, respectively, except
the adversaries are additionally restricted in the IV-input. For the random IV
setting, adversaries must always use a uniformly, randomly generated value as
IV-input for Enc, and similarly, in the nonce IV setting adversaries must always
use unique IVs for each Enc input. There is no restriction on Dec input. We
distinguish these definitions by prepending a ‘r’ or ‘n’ to indicate the random
or nonce IV setting, respectively: r-CPA, r-CCA, r-Int, and n-CPA, n-CCA, and
n-Int. Naturally, IV-based schemes can always be measured using the CPA,

IV ABUSE 29

CCA, and Int definitions if the schemes are wrapped in a construction which
generates the appropriate IV.

When the IV is needed for decryption, it must be communicated somehow
between the sender and receiver. Often the IV can be a simple counter, in which
case the sender and receiver could be synchronized and the IV does not need to
be explicitly communicated. If the sender and receiver cannot be synchronized,
then the IV should be able to be communicated in the clear without loss of
security. In our definition, communication of the IV is implicitly done via the
ciphertext space C, which will be IV × Y for some space Y.

4.2 IV Abuse

An advantage to the IV approach is that one can also explore what happens
if the IV requirements are not met. In particular, one can look at the abused
IV setting, where adversaries may repeat IVs. Such IV repetition can occur in
practice, as discussed by Fleischmann, Forler, and Lucks [76]. Examples of IV
repetition are flawed implementations [55,57,110,114,175], bad management
of nonces by the user, and backup resets or virtual machine clones when the
nonce is stored as a counter.

The abused IV setting was first formalized by Rogaway and Shrimpton [156], who
determined that the best possible confidentiality one could hope for if IVs were
repeated, was that only the repetition would leak and nothing else. Although
they focus on AE schemes, we can consider variants of their definitions for just
confidentiality. Their approach is to compare the output of the encryption
scheme with a “random bits” oracle, as introduced by Rogaway [154]. Concretely,
they define the indistinguishability advantage of an adversary A in the abused
IV setting via

∆
A

(Enc(·)
K ; $(·)) , (4.2)

where $ is a family of URFs with the property that for all N , K, and P ,∣∣$N (P)
∣∣ =

∣∣∣EncNK(P)
∣∣∣. The advantage to designing schemes with this property

is that their outputs will look uniformly random, which is useful for many
applications. Yet, as a definition of confidentiality, it does not capture all
possible attacks.

In fact, the statement that nothing but equality is leaked can be misleading,
and in the abused IV setting there is little security when messages have low
entropy. For example, if an adversary knows all but one byte of the plaintext
P corresponding to a given ciphertext C, then if it is able to query the 256
potential plaintexts P1, P2, . . . , P256 and receive the corresponding ciphertexts

30 INITIAL VALUES

C1, C2, . . . , C256, it can determine P by comparing C with Ci for all i. Hence,
the abused IV setting cannot offer confidentiality.

Nevertheless, the above attack cannot be captured in the random bits definition
from Equation (4.2). Furthermore, Rogaway and Shrimpton [156] show that
there are schemes which have good bounds relative to Equation (4.2). This would
indicate that the random bits definition is not a good measure of confidentiality
in the abused IV setting. Instead, we depart from their formalization, and use
definitions which stay closer to intuition.

The IV-based CPA and CCA definitions cannot be used directly when IVs are
repeated since the plaintexts are randomized using a URB, which always outputs
a new random value regardless of the input. However, if the URB is replaced
by a tweakable URF with tweak set IV, then repeated IVs will result in the
same URF being used, which models the fact that repetition of ciphertexts is
allowed, but nothing else besides repetition of plaintexts is leaked.

Definition 4.2.1 (Abused IV CPA). Let P = X∗ and let $: IV × P→ P be a
tweaked, length-preserving URF. Then the a-CPA advantage of an adversary A
against encryption scheme (Enc,Dec) is given by

a-CPA(A) def= ∆
A

(Enc(·)
K ; Enc(·)

K ◦ $(·)) , (4.3)

where K $← K, and the superscript (·) indicates that adversaries have direct
access to the IV input. Note that the same IV is used for both Enc(·)

K and $(·)

in the oracle Enc(·)
K ◦ $(·).

The corresponding CCA definition adds access to DecK and prohibits adversaries
from using the output of the first oracle as input to DecK . Furthermore, note
that IV can be extended to include associated data, which means that AE
schemes are covered by the definition as well.

The following theorem illustrates the limits that the a-CPA definition imposes on
encryption schemes: their confidentiality is low when the encrypted plaintexts
are short, and increases relative to the plaintext length.

Theorem 2. Let (Enc,Dec) be an encryption scheme defined over plaintexts
P = X∗, then there exists an a-CPA-adversary A making q queries of length at
least ` ≥ 1 such that

a-CPA(A) ≥ q2

|X|`+1 , (4.4)

where q < |X|`/2.

ONLINE ENCRYPTION 31

Proof. The adversary fixes an IV, and makes all queries under the same IV. It
then generates q distinct plaintexts P1, P2, . . . , Pq of length `. If A is interacting
with EncK , then by injectivity of EncK the q Pi get mapped to q different
ciphertexts. If A is interacting with EncK ◦ $, then the probability that there is
a collision among the $(Pi) is at least q2/ |X|`+1. If there is such a collision, then
two ciphertexts will collide, and A can distinguish with probability one. �

The above result shows that one must either restrict attention to adversaries
which make sufficiently long queries or have X be sufficiently large in order to
get meaningful results in the abused IV setting. Such a generic attack is not
possible in Rogaway and Shrimpton [156]’s formalization, indicating that a-CPA
might lie closer to the intuition behind abused IV security.

Little changes for integrity when IVs are repeated, hence the definition of a-Int
is the same as for r-Int and n-Int, but with no restrictions on the adversaries.
In fact, it is possible to achieve full integrity in the abused IV setting.

4.3 Online Encryption

Observe that the n-CPA and r-CPA definitions make explicit the fact that Enc
must sufficiently “mix” the entire input plaintext P , since the URB outputs
independent values for different plaintexts. An important class of highly efficient
encryption schemes does not mix the input completely, and relies on random
IVs or nonce IVs to provide “fresh” information each time a new plaintext is
input. Such schemes are often referred to as online encryption schemes, which
can encrypt “on-the-fly”: as they receive plaintext, they can produce ciphertext
nearly immediately without seeing the full plaintext. Many online schemes have
been implemented in practice, and it is useful to understand how their security
degrades in the abused IV setting.

For example, consider an encryption scheme (Enc,Dec) where

EncK(N,P1P2) = f1
K(N,P1)f2

K(N,P1, P2) , (4.5)

meaning the ciphertext is made of two parts: one which depends only on N and
P1, and one which depends on everything. Then it cannot satisfy a-CPA because
an adversary could distinguish by keeping N and P1 constant, and querying
(N,P1, P2) and (N,P1, P

′
2) where P ′2 6= P2. If such an adversary is interacting

with Enc(·)
K , then it sees that the first part of the ciphertext is the same for

both (N,P1, P2) and (N,P1, P
′
2), whereas if the adversary is interacting with

Enc(·)
K ◦ $(·), then it is very unlikely that the first part of the ciphertext remains

constant because $N (P1, P2) and $N (P1, P
′
2) are independent, random values.

32 INITIAL VALUES

From the example it is clear that the a-CPA definition does not allow one to
describe online encryption scheme security, since all security is lost regardless of
the plaintext length. Instead, a weakening of a-CPA is necessary. By changing
$ from a family of length-preserving URFs to one which also preserves prefixes,
one can describe a “best possible” security goal for online encryption schemes.

Definition 4.3.1 (Prefix-Preserving URF). A prefix-preserving URF π from
X∗ to Y∗ is a family of URFs {πi}i≥0 with πi : Xi → Y, such that

π(X) = (π1(X1), π2(X1, X2), . . . , π|X|(X1, . . . , X|X|)) (4.6)

for X ∈ X∗.

Definition 4.3.2 (Online Abused IV). Let P = X∗, and let $ be a tweakable
prefix-preserving URF from P to P with tweak set IV. Then the oa-CPA
advantage of an adversary A against encryption scheme (Enc,Dec) is given by

oa-CPA(A) def= ∆
A

(Enc(·)
K ; Enc(·)

K ◦ $(·)) , (4.7)

where K $← K and the superscript (·) indicates that adversaries have direct
access to the IV input. Note that the same IV is used for both Enc(·)

K and $(·)

in the oracle Enc(·)
K ◦ $(·).

Like encryption schemes, AE schemes can also be online, in which case the
above definition also holds. As with a-CCA, oa-CCA adds access to DecK with
the restriction that outputs of the first oracle cannot be used as inputs to DecK .

As is the case with non-online schemes, the abused IV setting guarantees
no confidentiality. Furthermore, the low-entropy attack from the previous
section can be extended to messages for which only a prefix of the message
is known to be low-entropy, as described by Hoang, Reyhanitabar, Rogaway,
and Vizár [93]. Whereas previous security definitions of online abused IV
confidentiality [11,13,76] would allow schemes to achieve good advantage, we
see that oa-CPA places stronger limits.

Theorem 3. Let (Enc,Dec) be an encryption scheme defined over plaintexts
P = X∗, then there exists an oa-CPA-adversary A making q queries of length at
least ` ≥ 1 such that

oa-CPA(A) ≥ q2

|X|2
, (4.8)

where q < |X|1/2.

Proof. The adversary fixes an IV, and makes all queries under the same IV.
It then generates q distinct elements X1, X2, . . . , Xq ∈ X, and a plaintext P of

IMPLICATIONS 33

a-CCA oa-CCA n-CCA r-CCA CCA

a-CPA oa-CPA n-CPA r-CPA CPA

Abused Online Abused Nonce Random

+a-Int +a-Int +n-Int +r-Int +Int

a-Int n-Int r-Int Int

Provides Confidentiality

Provides Integrity

Figure 4.1: Implications between basic security definitions. Dotted arrows mean
that there is security loss in the reduction.

length `− 1. It queries the plaintexts PXi for i = 1, . . . , q. If A is interacting
with EncK , then by injectivity of EncK the q PXi get mapped to q different
ciphertexts. If A is interacting with EncK ◦ $, then the probability that there
is a collision among the $(PXi) is at least q2/ |X|2, since the first `− 1 blocks
of $(PXi) do not change. If there is such a collision, then two ciphertexts will
collide, and A can distinguish with probability one. �

As can be seen by the theorem, the situation for oa-CPA is worse than for a-CPA
since the lower bound is independent of the query length that the adversary is
forced to make.

4.4 Implications

In this section we show how the security definitions relate to each other, as
displayed in Figure 4.1. Note that it does not make sense to compare the non-IV
with the IV-based definitions. The definitions which guarantee confidentiality
and integrity are indicated, while the remaining definitions indicate “best
possible” security when in the given scenarios.

The implications from CCA to CPA security are straightforward, since the
reductions just ignore the decryption oracle. The fact that CPA + Int implies
CCA was proven in Theorem 1. The proof of Theorem 1 can be extended

34 INITIAL VALUES

to any IV setting, which give all the vertical arrows. The nonce-IV settings
directly imply the random-IV settings with a loss of q2/ |IV| to account for the
probability that an IV repeats in the random-IV setting.

The fact that the abused IV confidentiality definitions imply the nonce IV
confidentiality definitions is because the $ used in the definition of the abused
IV settings is indistinguishable from the $ used in the nonce IV settings as long
as the IV is unique. Similarly, the reduction from n-Int to a-Int is immediate. All
that remains is proving the connection between the abused and online abused
IV settings.

Theorem 4. Let (Enc,Dec) be an encryption scheme with P = X∗, let $a denote
the randomization function used in the a-CPA definition, and $oa the one used
in the oa-CPA definition, then for any oa-CPA-adversary A making at most q
queries,

oa-CPA(A) ≤ a-CPA(A) + a-CPA(A(◦$oa)) + q2

|X| . (4.9)

Proof. By the triangle inequality,

∆
A

(Enc(·)
K ; Enc(·)

K ◦ $(·)
oa) ≤ ∆

A
(Enc(·)

K ; Enc(·)
K ◦ $(·)

a) (4.10)

+ ∆
A

(Enc(·)
K ◦ $(·)

a ; Enc(·)
K ◦ $(·)

a ◦ $(·)
oa) (4.11)

+ ∆
A

(Enc(·)
K ◦ $(·)

a ◦ $(·)
oa ; Enc(·)

K ◦ $(·)
oa) . (4.12)

The first and third terms in the sum are a-CPA(A) and a-CPA(A(◦$oa)),
respectively. The second term is bounded above by ∆($a ; $a ◦ $oa), which is at
most q2/ |X|. �

Similar reasoning establishes the same bound for a-CCA and oa-CCA.

Chapter 5

Building Blocks

In this chapter we present the main tools with which the schemes of Chapter 6
will be constructed. These building blocks say nothing of how to achieve
either confidentiality and integrity, and their significance lies in their ability to
approximate ideal mathematical objects, even though in some cases only minor
modifications are necessary to achieve security.

In order to illustrate how the building blocks could be used in actual
constructions, throughout the chapter examples will illustrate how to create
higher-level building blocks and schemes which achieve confidentiality and
integrity. These constructions will be frequently referred to in Chapter 6. Mixed
in with the examples are also two of our constructions, COPE and COBRA,
published in Asiacrypt 2013 [13] and FSE 2013 [14].

5.1 Block Ciphers and Modes of Operation

The main tool used in this thesis to achieve confidentiality and integrity is the
block cipher. A block cipher is a function E : K× X → X where for every key
K ∈ K, E(K, ·) is a permutation with inverse denoted D(K, ·). Usually we will
write the keys as subscripts, EK and DK . Here the sets K and X are finite, and
generally consist of the set of strings of a particular length.

Since block ciphers are used in a wide variety of cryptographic algorithms, they
have an equally wide variety of quality measures. The most basic quality measure
considers a setting in which the block cipher is keyed with a uniformly random
value, and compared with a URP over X. The idea is that the block cipher

35

36 BUILDING BLOCKS

allows one to randomly choose a permutation from a small family indexed by
keys in K in such a way that the choice is computationally indistinguishable from
randomly choosing a permutation over a large set, the set of all permutations.

Definition 5.1.1 (PRP). Let E : K × X → X be a block cipher. Then the
pseudorandom permutation (PRP) advantage of adversary A against E is

PRP(A) def= ∆
A

(EK ; π) , (5.1)

where K $← K and π is a URP over X.

In the above definition adversaries are only given access to the “forward” oracle,
and not D. The following stronger requirement on the block cipher gives
adversaries access to the inverse.

Definition 5.1.2 (SPRP). Let E : K × X → X be a block cipher. Then the
strong pseudorandom permutation (SPRP) advantage of adversary A against E
is

SPRP(A) def= ∆
A

(EK ,E−1
K ; π, π−1) , (5.2)

where K $← K and π is a URP on X.

The PRP and SPRP measures on their own say little about how the block
cipher can be used to achieve confidentiality and integrity. Furthermore, X
is in practice often small. For example, the Advanced Encryption Standard
(AES) [67] block cipher only processes strings of length 128 bits.

In order to achieve security, block ciphers are usually used in so-called modes
of operation, which are constructions that make use of block ciphers as a black
box.

Example 5.1.3 (CTR Mode). A simple mode to achieve confidentiality is
counter mode (CTR). CTR mode uses a block cipher with X def= {0, 1}n to
achieve confidentiality for plaintexts of length up to 2s · n bits, where s is some
predefined integer not greater than n.

Given a key K ∈ K, a plaintext P , and a nonce of length n− s bits, CTR mode
divides P into as many complete n-bit blocks as possible P1, P2, . . . , P`−1, and
a final block of length at most n bits, P`. Then it generates “counter” values
1s, 2s, . . . , `s, each s bits long, with the property that is 6= js if i 6= j. Each
counter value is concatenated with the nonce and used as input to the block
cipher to generate the following outputs:

Xi
def= EK(N‖is) . (5.3)

BLOCK CIPHERS AND MODES OF OPERATION 37

EK EK EK EK

N 1s N 2s N 3s N 4s

+ + + +P1 P2 P3 P4

C1 C2 C3 C4

|P4|

Figure 5.1: CTR mode operating on a 4-block plaintext P = P1P2P3P4, where
|P4| is not necessarily equal to the block size. Truncation to |P4| bits is indicated
with a trapezium.

The resulting sequence of outputs X1, X2, . . . , X` can be viewed as a long
key, much like the one-time-pad. Each block Xi is then XORed with the
corresponding plaintext block Pi to generate the ciphertext, with the last block
X` appropriately truncated to match the size of P`. Much like the one-time-pad,
decryption is exactly the same as encryption. Figure 5.1 displays a diagram of
CTR mode. J

Example 5.1.4 (CBC Mode). Another simple mode to achieve confidentiality
is the cipher block chaining (CBC) mode [139]. Like CTR, it uses a block cipher
with X def= {0, 1}n. We describe it for plaintexts which are a concatenation
of blocks, (P1, P2, . . . , P`) ∈ X+. CBC takes a random IV R and generates
block cipher input by XORing the previous block cipher output with the next
plaintext block:

C0 = R (5.4)

Ci = EK(Pi ⊕ Ci−1) for i = 1, . . . , ` . (5.5)

Decryption reverses the above process:

C0 = R (5.6)

Pi = DK(Ci)⊕ Ci−1 for i = 1, . . . , ` . (5.7)

Figure 5.2 depicts CBC mode encryption and decryption. J

If the modes use the block cipher inverse, then the block cipher needs to have
good SPRP quality, otherwise PRP suffices. For example, CTR mode only uses
forward block cipher calls, whereas CBC mode uses both forward and inverse,

38 BUILDING BLOCKS

EK EK EK EK

P1 P2 P3 P4

+ + + +R

C1 C2 C3 C4

EK EK EK EK

C1 C2 C3 C4

+ + + +R

P1 P2 P3 P4

Figure 5.2: CBC mode encryption and decryption for a 4-block plaintext
P = P1P2P3P4 and ciphertext C = C1C2C3C4.

hence CTR mode only relies on the PRP quality of a block cipher, whereas CBC
mode on the SPRP quality. In some cases just unpredictability of the block cipher
is necessary, which measures how well adversaries are able to predict the outputs
of block ciphers which are not already known, a strictly weaker requirement
than PRP. See for example the work done for authenticators [68, 71–73, 124]
and on the AE scheme OCB [15].

The way security is proved for modes of operation is by reducing the mode’s
security to the block cipher’s quality. Such a reduction provides a way of
converting an attack against the mode into an attack against, for example, the
PRP-quality of the block cipher. For all modes in this thesis, the reduction works
as follows. Let A be an adversary attacking the security of the mode. Reduction
B〈·〉 attacking the PRP quality of the block cipher is given access to an oracle
O, which could either be EK or π. Adversary B〈A〉 runs A, and responds
to A’s oracle queries by constructing the mode with O. For example, with
CTR mode B〈A〉 would generate the inputs to the block cipher calls and then
XOR the output of the resulting O calls to the plaintext it receives. In general,
when referring to a scheme’s mode reduction, we refer to the construction B〈·〉
corresponding to the given mode.

BLOCK CIPHERS AND MODES OF OPERATION 39

Using the triangle inequality we get that the mode insecurity with EK is less
than the mode insecurity with π, plus the difference in insecurity between the
mode with EK and the mode with π, or in formula form,

EK-Mode-Insecurity(A) ≤ π-Mode-Insecurity(A) + ∆
B〈A〉

(EK-Mode ; π-Mode) .

(5.8)
The rightmost term, that is, the comparison of the mode using EK with the
mode using π, is simply the the PRP quality of EK , hence the mode’s insecurity
using EK has been reduced to EK ’s PRP quality and the mode insecurity using
π.

Note that the mode insecurity has not been perfectly reduced to that of the block
cipher using the above argument: computing π-Mode-Insecurity still remains.
The majority of the work in arguing that modes provide security relies on
computing this last term.

The above argument and the following example can all be found in the paper
by Bellare, Desai, Jokipii, and Rogaway [25]

Example 5.1.5 (CTR Mode Reduction). We provide an example of a mode
reduction by proving that CTR mode achieves n-CPA confidentiality assuming
the underlying block cipher is a good PRP and CTR mode using a URP is
secure.

Theorem 5. Let (Enc[E],Dec[E]) denote CTR mode with block cipher E. Then
for any n-CPA-adversary A against (Enc[E],Dec[E]),

n-CPA(Enc[E],Dec[E])(A) ≤ PRP(B〈A〉)+PRP(B〈A〉(◦$))+n-CPA(Enc[π],Dec[π])(A) ,
(5.9)

where B〈·〉 is the CTR mode reduction.

The above theorem allows one to focus on the n-CPA-advantage of A against
(Enc[π],Dec[π]), that is, CTR mode using a URP.

Proof. The triangle inequality in this case can be written as follows:

∆
A

(Enc[EK](·) ; Enc[EK](·) ◦ $(·)) ≤ ∆
A

(Enc[EK](·) ; Enc[π](·)) (5.10)

+ ∆
A

(Enc[π](·) ; Enc[π](·) ◦ $(·)) (5.11)

+ ∆
A

(Enc[π](·) ◦ $(·) ; Enc[EK](·) ◦ $(·)) . (5.12)

40 BUILDING BLOCKS

The first and third terms are the (EK-Mode vs. π-Mode) term from Equa-
tion (5.8). Writing B as shorthand for B〈A〉, we get

∆
A

(Enc[EK](·) ; Enc[π](·)) ≤ ∆
B

(EK ; π) = PRP(B) (5.13)

∆
A

(Enc[π](·) ◦ $(·) ; Enc[EK](·) ◦ $(·)) ≤ ∆
B(◦$)

(π ; EK) = PRP(B(◦$)) . (5.14)

As a result,

∆
A

(Enc[EK](·) ; Enc[EK](·) ◦ $(·)) ≤ PRP(B) + PRP(B(◦$)) (5.15)

+ ∆
A

(Enc[π](·) ; Enc[π](·) ◦ $(·)) , (5.16)

where the last term is the n-CPA-advantage of A versus (Enc[π],Dec[π]). �

Computing the n-CPA of CTR mode with URP π is trivial. The following
theorem combined with the previous one complete the reduction of CTR mode’s
n-CPA bound to the PRP bound of the underlying block cipher, with a loss in
reduction of σ2/2n.
Theorem 6. Let (Enc[π],Dec[π]) denote CTR mode with URP π. Then for any
n-CPA-adversary A against (Enc,Dec) querying at most σ blocks of plaintext,

n-CPA(A) ≤ σ2

2n . (5.17)

Proof. Let ρ be a URF from X to X, then

∆
A

(Enc[π](·) ; Enc[π](·) ◦ $(·)) ≤ ∆
A

(Enc[π](·) ; Enc[ρ](·)) (5.18)

+ ∆
A

(Enc[ρ](·) ; Enc[ρ](·) ◦ $(·)) (5.19)

+ ∆
A

(Enc[ρ](·) ◦ $(·) ; Enc[π](·) ◦ $(·)) (5.20)

≤ 2 · σ2

2n+1 + ∆
A

(Enc[ρ](·) ; Enc[ρ](·) ◦ $(·)) , (5.21)

where the last inequality follows from Lemma 2. Using a URF ρ, CTR mode
always outputs independent, uniformly distributed values, regardless of what
its input is, or in other words

∆
A

(Enc[ρ](·) ; Enc[ρ](·) ◦ $(·)) = 0 . (5.22)

�

J

TWEAKABLE BLOCK CIPHERS 41

5.2 Tweakable Block Ciphers

A useful generalization of block ciphers is tweakable block ciphers [116]. A
tweakable block cipher is a function E : K× A× X→ X where EK(A, ·) = EAK(·)
is a permutation with inverse DK(A, ·) = DAK(·) for all K ∈ K and A ∈ A. Here
X is finite, and A is the set of tweaks, which might consist of variable-length
strings.

Whereas block ciphers only give access to a single permutation per key, tweakable
block ciphers give access to an entire family, with the requirement that each
member of the family looks uniform and independent of all other members.
Therefore, the idealization of a tweakable block cipher is a tweakable URP, with
tweaks from A. Formally, the quality of a tweakable block cipher is measured
as follows.

Definition 5.2.1 (PRP for Tweakable Block Ciphers). Let E : K× A× X→ X
be a tweakable block cipher. Then the pseudorandom permutation (PRP)
advantage of adversary A against E is

PRP(A) def= ∆
A

(E(·)
K ; π(·)) , (5.23)

where K $← K and π is a tweakable URP with tweak set A.

As with block ciphers, the adversaries can also gain access to the inverse
operation, resulting in a stronger quality requirement. We denote access to the
inverse permutations via D(·)

K and π−1(·).

Definition 5.2.2 (SPRP for Tweakable Block Ciphers). Let E : K×A×X→ X
be a tweakable block cipher. Then the strong pseudorandom permutation
(SPRP) advantage of adversary A against E is

SPRP(A) def= ∆
A

(E(·)
K ,D

(·)
K ; π(·), π−1(·)) , (5.24)

where K $← K and π is a tweakable URP with tweak set A.

The above definitions are consistent with Definitions 5.1.1 and 5.1.2 since a
block cipher can be viewed as a tweakable block cipher with a single tweak.
Furthermore, modes of operation for tweakable block ciphers are analogous to
modes of operation for block ciphers.

Example 5.2.3 (Simplified OCB). A simple confidentiality mode for tweakable
block ciphers is the encryption scheme underlying OCB [111,153, 155], which is
an AE scheme. We describe a simplified version of it here.

42 BUILDING BLOCKS

EK
(N,1)

EK
(N,2)

EK
(N,3)

EK
(N,4)

P1 P2 P3 P4

C1 C2 C3 C4

Figure 5.3: Simplified OCB encryption on a plaintext P = (P1, P2, P3, P4). The
tweak corresponding to the tweakable block cipher call is written under EK .

The simplified OCB encryption scheme uses a tweakable block cipher E :
K × A × X → X, where A def= IV × N, and operates on plaintexts of the form
P def= X+. Given a nonce N ∈ IV and a plaintext P = (P1, P2, . . . , P`) the
resulting ciphertext is

Ci = E(N,i)
K (Pi) for i = 1, . . . , ` . (5.25)

Figure 5.3 depicts a diagram of the process.

With the abstraction to tweakable block ciphers, the argument for why this
mode provides confidentiality becomes very simple: each block of plaintext is
given its own tweak since nonces are not repeated, and the plaintext is therefore
encrypted using an independent, uniformly generated permutation. As a result,
the ciphertext blocks will be uniformly distributed and independent of each
other. J

Examples of tweakable block cipher primitives are the Threefish cipher [75],
the TWEAKEY framework [101], and the Hasty Pudding Cipher [161]. An
alternative to using the primitives, is to build a tweakable block cipher using a
block cipher. Popular methods of turning a block cipher into a tweakable block
cipher are XE and XEX by Rogaway [153].

Example 5.2.4 (XE and XEX [153]). Let X = {0, 1}n. Given a block cipher
E : K× X→ X and a secret mask ∆ ∈ X, define

E1
K,∆(X) def= EK(X ⊕∆) (5.26)

E2
K,∆(X) def= EK(X ⊕∆)⊕∆ . (5.27)

As long as ∆ is nonzero, E1
K,∆ and E2

K,∆ will behave roughly independently of
EK , assuming adversaries may only make forward queries to E1. Consider a set

VARIABLE LENGTH TWEAKABLE CIPHERS 43

of secret masks {∆i}i∈A, with A the set of tweaks. Then define the tweakable
block ciphers XE : K× A× X→ X and XEX : K× A× X→ X by setting

XEAK(X) def= E1
K,∆A(X) , (5.28)

and
XEXAK(X) def= E2

K,∆A(X) . (5.29)

The doubling method [153] provides a way to produce many different masks ∆
from a single secret value L def= EK(0). Identifying X with GF(2n) as described
in the preliminaries (Chapter 2), the masks are produced as

∆α,β,γ = 2α3β7γ · L . (5.30)

In order to maximize the number of indices α, β, and γ such that ∆ is distinct,
the irreducible polynomial f(x) needs to be chosen carefully. First, f(x) needs
to be primitive, meaning that 2 generates the whole multiplicative group of
X. Second, log2 3 and log2 7 must both be large. Third, log2 3 and log2 7
should be “apart enough” (modulo 2n − 1). These conditions ensure that
the values 2α3β7γ do not collide or become equal to 1, a property needed for
security with the XEX. For example, when n = 128, the irreducible polynomial
f(x) = x128 + x7 + x2 + x + 1 satisfies these requirements, making the values
2α3β7γ all distinct and not equal to 1 for α ∈ [−2108, 2108] and β, γ ∈ [−27, 27],
except for (α, β, γ) = (0, 0, 0).

As long as the secret masks are distinct, XE and XEX have reasonably good
PRP and SPRP quality. As shown by Rogaway [153], the PRP advantage of
XE is bounded above by the PRP advantage of E plus 4.5q2/2n, where q is the
number of queries made by the adversary. Similarly, XEX’s SPRP advantage is
upper bounded by the SPRP advantage of E plus 9.5q2/2n.

J

5.3 Variable Length Tweakable Ciphers

Both block cipher and tweakable block cipher primitives have the disadvantage
that they generally operate on small sets X, such as the set of 128 bit strings.
The corresponding objects which operate on much larger sets are called ciphers
and tweakable ciphers.

Let P = X∗. A tweakable cipher is a function E : K × A × P → P where
EK(A, ·) = EAK(·) is a permutation with inverse DK(A, ·) = DAK(·) for all K ∈ K

44 BUILDING BLOCKS

and A ∈ A. We furthermore require that E preserves plaintext length, meaning∣∣EAK(P)
∣∣ = |P |. A cipher is a tweakable cipher with a single tweak. As a result,

all results and definitions on tweakable ciphers can be applied to ciphers as well.

The quality of tweakable ciphers is measured in the same way as tweakable
block ciphers. Both the PRP and SPRP definitions can be applied directly to
tweakable ciphers, with π modified to be a tweakable, length-preserving URP.

Definition 5.3.1 (PRP for Tweakable Ciphers). Let E : K× A× P→ P be a
tweakable cipher. Then the pseudorandom permutation (PRP) advantage of
adversary A against E is

PRP(A) def= ∆
A

(E(·)
K ; π(·)) , (5.31)

where K $← K and π is a tweaked, length-preserving URP with tweak space A.

Definition 5.3.2 (SPRP for Tweakable Ciphers). Let E : K × A × P → P
be a tweakable cipher. Then the strong pseudorandom permutation (SPRP)
advantage of adversary A against E is

SPRP(A) def= ∆
A

(E(·)
K ,D

(·)
K ; π(·), π−1(·)) , (5.32)

where K $← K and π is a tweaked, length-preserving URP with tweak space A.

As we will see in the coming sections, tweakable ciphers are very robust objects,
and can provide confidentiality and integrity via simple modifications. But
tweakable ciphers are rarely constructed as primitives, and are instead defined
as modes of operation for block ciphers or tweakable block ciphers. At least
two layers of block cipher calls are necessary in order to construct a tweakable
cipher. Examples of tweakable ciphers are the TCT constructions [165], the
mode underlying AEZ [92], and Fmix [43].

5.4 Online Ciphers

The downside to tweakable ciphers is that they must mix the entire plaintext
sufficiently in order to make every bit of ciphertext depend on every bit of
plaintext. This requires internal state which is large enough to store data which
is approximately the size of the plaintext, for example, a plaintext which is 1024
bits long will require state that can fit at least 1024 bits. To alleviate the internal
state requirement, weaker ciphers can be used, namely online ciphers [24] and
tweakable online ciphers.

ONLINE CIPHERS 45

π1
π2
(·)

π3
(·)

π4
(·)

P1 P2 P3 P4

C1 C2 C3 C4

π4
(·)

π3
(·)

π2
(·)π1

Figure 5.4: Illustration of prefix-preserving URPs. For the inverse, reverse the
solid arrows.

A tweakable online cipher is a tweakable cipher where the first ` blocks of
ciphertext only depend on the first ` blocks of plaintext, that is

bEAK(X1X2)c` = EAK(X1) , (5.33)

where X1, X2 ∈ X∗ and |X1| = `. As a result, tweakable online ciphers cannot
satisfy the PRP and SPRP definitions: when querying two two-block messages
(X1, X2) and (X1, X

′
2) to an online cipher, the resulting outputs will have

the same prefix, which is not the case for length-preserving URPs. Instead,
tweakable online ciphers are compared with tweakable prefix-preserving URPs.

Definition 5.4.1 (Prefix-Preserving URP). A prefix-preserving URP π on X∗
is a family of independent, tweakable URPs {πi}i≥0 with πi : Xi−1 × X→ X a
URP on X with tweak set Xi−1, such that

π(X) = (π1(X1), πX1
2 (X2), . . . , πX1,...,X`−1

` (X`)) , (5.34)

where X ∈ X∗ and |X| = `.

Definition 5.4.2 (Online PRP). Let E : K×A× P→ P be a tweakable cipher.
Then the online pseudorandom permutation (o-PRP) advantage of adversary A
against E is

o-PRP(A) def= ∆
A

(E(·)
K ; π(·)) , (5.35)

where K $← K and π is a tweakable, prefix-preserving URP with tweak space A.

Definition 5.4.3 (Online SPRP). Let E : K × A × X → X be a tweakable
cipher. Then the online strong pseudorandom permutation (o-SPRP) advantage
of adversary A against E is

o-SPRP(A) def= ∆
A

(E(·)
K ,D

(·)
K ; π(·), π−1(·)) , (5.36)

where K $← K and π is a tweakable, prefix-preserving URP with tweak space A.

46 BUILDING BLOCKS

Since tweakable online ciphers are able to process plaintext and output ciphertext
which only depend on preceding plaintext blocks, they will often have internal
state which is a fixed amount regardless of the plaintext length, and significantly
smaller than with tweakable ciphers. Nevertheless, by composing online ciphers
and re-introducing sufficient mixing between the online cipher calls, ciphers can
be constructed [10,44].

Example 5.4.4. An example of an online cipher is TC3 [158], which is given
as a mode of operation for a tweakable block cipher E : K× V × X→ X, with
X = {0, 1}n. We describe the tweakable variant by Fleischmann et al. [76,77],
operating on plaintexts P = X∗ and tweaks A = X∗, for some set X. First, the
tweak is processed to produce values Vi as follows:

V0 = 0n (5.37)

Vi = EVi−1
K (Ai−1)⊕Ai−1 for i = 1, . . . , ` (5.38)

The remaining plaintext is processed similarly:

Ci = EV`+i−1
K (Pi) for i = 1, 2, . . . (5.39)

V`+i = Ci ⊕ Pi . (5.40)

An illustration of tweakable TC3 can be found in Figure 5.5. Rogaway and
Zhang [158] prove that TC3 with tweaks is o-SPRP with bound 1.5σ2/2n, with
σ an upper bound on the number of blocks the adversary queries. Fleischmann
et al. [76, 77] prove similar bounds for the tweakable extension. J

The issue with TC3 is that it is inherently serial: in order to process a plaintext
block, the outputs of the previous tweakable block cipher calls are needed.
Many online ciphers suffer from similar limitations, with the exceptions being
COPE [13], the cipher underlying COBRA [14], and POE [3]. We introduce
COPE in this section, and COBRA in the next.

Example 5.4.5. COPE was first introduced as an online cipher. Here we take
elements from its counterpart COPA to create the tweakable version of COPE.
COPE is illustrated in Figure 5.6 as a mode of operation for tweakable block
ciphers; in the original paper the XE and XEX constructions are used to create
the tweakable block cipher. The tweaks to the block cipher calls can be split
into four different classes: those used to process intermediate tweak values, (·, 1),
final tweak values, (·, 2), a first pass over the plaintext, (·, 3), and a second pass
over the plaintext, (·, 4).

The tweakable block cipher calls can be called in parallel per layer. Although
COPE uses two tweakable block cipher calls per plaintext block versus TC3’s

UNIVERSAL HASH FUNCTIONS 47

EK
0

EK
(·)

EK
(·) V

A1 A2 A3

+ + +

(a) Processing the tweak.

EK
V

EK
(·)

EK
(·)

EK
(·)

P1 P2 P3 P4

+ + +

C1 C2 C3 C4

(b) Processing the plaintext.

Figure 5.5: The TC3 online cipher with modification by Fleischmann et al. [76,
77]. Tweaks are written underneath EK . Tweaks that depend on previous
outputs are written (·).

single call, the tweaks used in COPE only depend on the plaintext block position,
and can therefore be precomputed, making each tweakable block cipher call
significantly cheaper. J

5.5 Universal Hash Functions

All ciphers described in the previous sections preserve input length and provide
an inverse operation. Sometimes the inverse operation is not necessary, and
compression is more important. A commonly used tool to compress data is the
universal hash function, F : K×M→ Y, which takes keys in K and messages
in M to produce outputs in Y. The most important property characterizing
a universal hash function is its collision resistance, which is measured via the
following definitions.

Definition 5.5.1 (Collision Bound). The collision bound of a keyed function
F : K×M→ Y is

CBF
def= max

M 6=M ′
P [F(M) = F(M ′)] . (5.41)

48 BUILDING BLOCKS

EK
1,1

EK
2,1

EK
3,1

A1 A2 A3 A4

+ + +

EK
4,2

V

(a) Processing the tweak.

EK
1,3

EK
2,3

EK
3,3

EK
4,3

P1 P2 P3 P4

+ + + +

EK
1,4

EK
2,4

EK
3,4

EK
4,4

C1 C2 C3 C4

V

(b) Processing plaintext.

Figure 5.6: Tweakable online cipher COPE.

The following definition places a stronger collision resistance requirement on
the universal hash function.

Definition 5.5.2 (Additive Collision Bound). Let Y be a group with operation
+ and let F : K×M→ Y be a keyed function. The additive collision bound of F
is

ACBF
def= max

M 6=M ′,Y ∈Y
P [F(M) = F(M ′) + Y] . (5.42)

Example 5.5.3. Say that M = X≤` and K = X with X a finite field, then one
can construct a universal hash function F : K×M→ X by mapping a message
(M1,M2, . . . ,M`) ∈ M and key K ∈ K to the value

M1K
` +M2K

`−1 + · · ·+M`K , (5.43)

UNIVERSAL HASH FUNCTIONS 49

which is a polynomial in K. The probability that F(M) = F(M ′) + Y is the
probability that

(M1 −M ′1)K` + (M2 −M ′2)K`−1 + · · ·+ (M` −M ′`)K − Y = 0 , (5.44)

where M = (M1,M2, . . . ,M`) and M ′ = (M ′1,M ′2, . . . ,M ′`). Since the above is
a polynomial with degree at most `, there are at most ` solutions in K satisfying
the above equation, hence the probability of a collision is at most `/ |K|, which
establishes that

ACBF ≤
`

|K| . (5.45)

J

Polynomial-based universal hash functions are often used in practice. Examples
include poly1305 [39] and GHASH [125]. The COBRA [14] online cipher uses
polynomial-based hashing to create dependency upon preceding plaintext blocks.

Example 5.5.4. The COBRA cipher uses one finite field multiplication and
one tweakable block cipher call per plaintext block. COBRA is depicted in
Figure 5.7. COBRA replaces COPE’s parallelization procedure with a two-
round Feistel structure in order to avoid use of the inverse block cipher call.
Using functions F1 and F2 from X to X with X = {0, 1}n, the Feistel structure
generates an invertible mapping from X2 to X2, two rounds of which operate as
follows:

Y1 = F1(X1)⊕X2 (5.46)

Y2 = F2(Y1)⊕X1 , (5.47)

with the output being (Y1, Y2) ∈ X2. The inverse of the operation does not
require the inverse of F1 or F2:

X1 = F2(Y1)⊕ Y2 (5.48)

X2 = F1(X1)⊕ Y1 . (5.49)

When considered together, the finite field multiplications form a polynomial-
based hash function. By preventing collisions, the universal hash in a sense
“tweaks” the tweakable block cipher calls in order to create dependency upon
preceding plaintext blocks.

J

50 BUILDING BLOCKS

EK
N,1,1

EK
N,1,2

EK
N,2,1

EK
N,2,2

EK
N,3,1

EK
N,3,2

+

+

+

+

+

+

+ + + + + +

M1 M2 M3 M4 M5 M6

C1 C2 C3 C4 C5 C6

× × × × ×L
L L L L L

Figure 5.7: Processing plaintext. The value L is generated using the output of
a block cipher call tweaked by the nonce.

5.6 Pseudorandom Functions

A useful inverse-less counterpart to the block cipher is the pseudorandom
function (PRF), F : K × X → Y, which maps keys and elements of X into
elements of Y; we assume that the sets K, X, and Y are finite. The quality of
a PRF when keyed with a secret, uniformly generated value is measured by
comparing it with a URF from X to Y.

Definition 5.6.1 (PRF). Let F : K×X→ Y be a PRF. Then the pseudorandom
function (PRF) advantage of adversary A against F is

PRF(A) def= ∆
A

(FK ; π) , (5.50)

where K $← K and π is a URF from X to Y.

Note that we follow convention by using the term “PRF” to describe both a
quality measure and a functionality. Hence a PRF is a function designed to
have good PRF quality, and even though a block cipher is not designed to be a
PRF, it could be used as one, and its quality as a PRF can be measured.

Proposition 5.6.1. Let E : K × X → X be a block cipher, then for any PRF-
adversary A making at most q queries,

PRF(A) ≤ q(q − 1)
2 |X| + PRP(A) . (5.51)

PSEUDORANDOM FUNCTIONS 51

The proposition follows from an application of Lemma 2. Likewise, one could
measure the PRP quality of a PRF and get the same bound, but measuring
the SPRP quality of a PRF is meaningless since the PRF does not provide any
inverse operation.

Example 5.6.2. A simple way of constructing a universal hash function using
a PRF is by XORing outputs together, as described by Bellare, Guérin, and
Rogaway [26]. Say that X = {0, 1}n+s and Y = {0, 1}m, and let F be a URF
from X to Y; in the actual construction the URF is replaced by a PRF. Then a
message (M1,M2, . . . ,M`) ∈ X∗ is mapped to the value

FK(1sM1)⊕ FK(2sM2)⊕ · · · ⊕ FK(`sM`) . (5.52)

Two messages M = (M1,M2, . . . ,M`) and M ′ = (M ′1,M ′2, . . . ,M ′`) collide only
if (

FK(1sM1)⊕ FK(1sM ′1)
)
⊕ · · · ⊕

(
FK(`sM`)⊕ FK(`sM ′`)

)
= 0 . (5.53)

Since M 6= M ′ there exists an i such that Mi 6= M ′i , hence the above equation
contains a term of the form FK(isMi)⊕FK(isM ′i) which is uniformly distributed,
and independent of all other values, meaning the above equation will equal 0
with probability at most 1/ |Y|. J

Often block ciphers are also used to construct PRFs, either directly, or by
truncating the block cipher output, or by XORing two independently keyed
block ciphers [30, 89, 118]. Conversely, PRFs can be used to construct block
ciphers, via use of multiple rounds of a Feistel network [117].

PRFs also have a counterpart which explicitly allows for variable input lengths,
VIL-PRFs. VIL-PRFs compress input just like universal hash functions, but
also provide functionality beyond collision resistance. Their quality measure
is identical to those of PRFs, except their ideal counterpart is extended to a
family of URFs indexed by message length.

Definition 5.6.3 (VIL-PRF). A variable-input-length URF π : X∗ → Y is a
family of URFs {πi}i≥0 where πi : Xi → Y and π(X) = π|X|(X) for X ∈ X∗.

Definition 5.6.4 (VIL-PRF Advantage). Let F : K×M→ X be a VIL-PRF.
Then the variable-input-length pseudorandom function (VIL-PRF) advantage of
adversary A against F is

VIL-PRF(A) def= ∆
A

(FK ; π) , (5.54)

where K $← K and π is a VIL-URF.

52 BUILDING BLOCKS

Example 5.6.5. Besides its use as an encryption scheme, CBC mode has also
been used as a VIL-PRF, by fixing the random IV input to 0, suppressing
intermediate output, and only using the last ciphertext block as output. The
resulting mode is referred to as CBC-MAC: given a message M1M2 · · ·M` ∈ X∗,
it computes

V0 = 0n (5.55)

Vi = EK(Mi ⊕ Vi−1) for i = 1, . . . , ` , (5.56)

and outputs V`. Yet, CBC-MAC is not secure as a PRF, which can be seen
with the following attack: query M ∈ X and receive V , then query V ∈ X to
receive V ′, finally check to see if the output resulting from query (M, 0n) is
V ′. This property is true for CBC-MAC, but not for a VIL-URF. Nevertheless,
CBC-MAC works as a VIL-PRF if none of the messages share any prefixes [143],
or all messages are of equal length [27]. J

A common way of creating a VIL-PRF is using hash-then-encrypt, which
composes a universal hash function F : K × M → X with either a PRF E :
K′ × X→ Y, to form EK1 ◦ FK2 , where K1

$← K′ and K2
$← K are independent.

Distinguishing the composition from a VIL-PRF amounts to either distinguishing
E from a URF, and if E is indistinguishable from a URF, then finding a collision
in F, which results in finding a collision for E ◦ F.

Proposition 5.6.2. Let F : K × M → X be a universal hash function and
E : K′ × X→ Y a PRF, and let A be a VIL-PRF adversary against E ◦ F, then

VIL-PRF(A) ≤ CBF + PRFE(A(◦F)) . (5.57)

Subsequent application of Proposition 5.6.1 gives the bound for when E is a
block cipher.

Example 5.6.6. A way of fixing CBC-MAC is by using it in the hash-then-
encrypt construction; when composed with a block cipher the resulting VIL-PRF
is sometimes called EMAC [36]. J

Example 5.6.7. One can use the PRF XOR universal hash from Example 5.6.2
to construct a parallelizable VIL-PRF, however the resulting construction would
use two independent keys. An alternative is to use the same key for all PRF
calls, but then to use a different counter value for the final PRF call instead
of an independent key, as is done for the protected counter sum [37]. If the
PRF is replaced with a tweakable block cipher, then the resulting construction
corresponds to the VIL-PRF used to process tweaks in COPE, also known as
PMAC [153]; see Figure 5.6a. J

Chapter 6

Constructions

In this chapter we discuss constructions which are able to achieve integrity,
confidentiality, or both. The tools used to create them were introduced in
Chapter 5.

We start the chapter by discussing methods of estimating the efficiency of
the schemes, which will be necessary to discuss why certain schemes are more
efficient than others. We see how choosing stronger security requirements
decreases efficiency. Furthermore, we discuss how the efficiency with which
integrity can be added to an encryption scheme to form an AE scheme depends
on the encryption scheme’s security, which in turn affects its efficiency as well.
In Section 6.3.3 we discuss how to avoid the issue of ciphertext expansion with
COPE, and in Section 6.4.3 we explain how to efficiently add integrity to COPE
in order to form COPA.

6.1 Efficiency Heuristics

The only way to know a scheme’s efficiency is to implement and test it.
Nevertheless, understanding efficiency at a heuristic level gives designers goals
to achieve. Focusing on modes of operation simplifies the measurements, since
there are few objects that need to be taken into account. At the level of
abstraction of a mode there are three useful measures: the number and types of
operations, the parallelizability of the operations, and the state size.

53

54 CONSTRUCTIONS

Operations. The most commonly used operations in modes are XORs, finite
field arithmetic, and calls to the underlying primitive, such as a block cipher.
Out of these, the heaviest are the primitive calls and finite field multiplication.
Measuring the number of heavy operations per unit plaintext, also known as
the rate, can give an indication of how efficient the resulting scheme will be,
relative to the efficiency of the heavy operations.

Finite field multiplication and primitive calls are treated as being equally
expensive, since in practice, either could be more expensive than the other.
For example, the operations differ in efficiency on different generations of Intel
CPUs. On Nehalem and Sandy Bridge, finite field multiplication over GF(2128)
runs slower than AES [111], whereas on Haswell, the opposite is true [87], when
using the AES instruction sets.

Finally, the number of different operations used by a scheme can give an
indication as to how large its implementation will be in hardware. For example,
a scheme using both a primitive and its inverse will most likely be larger in
hardware implementation size than a scheme not using the inverse primitive.

Parallelizability. A scheme is parallelizable if it can perform many of its
primitive calls and multiplications independently. Some schemes have a certain
amount of operations which must be performed serially; for example, when the
input to one block cipher call is the output of another as in TC3 (Example 5.4.4).
If a significant amount of these operations must be performed serially, then we
do not call the scheme parallelizable.

Parallelizability can lead to a significant increase in efficiency. If the underlying
primitive is AES, then the AES-NI instruction set on Intel and AMD CPUs
enables significant parallelization, sometimes allowing for an improvement of a
factor three or more; see, for instance, the difference between CBC encryption
and decryption [5].

State Size. The state size of a scheme is the maximum amount of data that
an algorithm would need to keep in memory as it is processing messages. In the
worst case, schemes would need to keep data which is at least as large as the
input. In the best case, schemes are able to process the input using a constant
state size, assuming they may output data as they receive it; such schemes are
called online. Note that in conventional AE, it is difficult for the decryption
algorithm to be online, since decrypted plaintext should not be released until
verification is complete in order to ensure security.

MAC ALGORITHMS 55

6.2 MAC Algorithms

Message Authentication Code (MAC) algorithms are authenticators which
output the message in the clear, and generate a tag with which integrity is
checked. The TagK algorithm of a MAC uses some function ρ to compress the
message into a tag T , and outputs both the message and tag:

TagK(M) def= (M,ρK(M)) . (6.1)

The verification algorithm receives a message-tag pair, and checks validity of
the pair by using the message and key to regenerate a tag with ρ, and compares
ρ’s output with the given tag:

VerK(M,T) def=
{

1 if ρK(M) = T

0 otherwise .
(6.2)

In this case S = {1} and F = {0}.

6.2.1 Nonce IV

The Wegman-Carter construction for MACs [174] uses a universal hash function
to compress long messages into a short output, which is then XORed with the
output of a primitive call, such as a block cipher or PRF. The primitive uses a
different key than the universal hash function, and the primitive’s input is a
nonce; see Figure 6.1 for a diagram.

If the primitive is a PRF, then the outputs of the Wegman-Carter construction
are independent and uniformly distributed (Lemma 1). In particular,
constructing a forgery without using the PRF’s output will result in low
forgery probability. Consider for example the forgery attempt (N ′,M ′, T ′),
then VerK(N ′,M ′) = 1 only if

UHK1(M ′)⊕ πK2(N ′) = T ′ . (6.3)

If N ′ has never been queried to π before, then π’s output is independent and
uniformly distributed, meaning the above equation will be satisfied with low
probability. If N ′ = N for some previous query (N,M) with output T , then
VerK(N ′,M ′) = 1 only if

UHK1(M ′)⊕ UHK1(M) = T ′ ⊕ T , (6.4)

As as long as M 6= M ′, this is exactly the additive collision bound of the
universal hash function. If M = M ′, then T cannot equal T ′, which means that
the forgery fails anyway.

56 CONSTRUCTIONS

M

Y

+

T

N

UHK1

πK2

TagK1K2

M T

Y

+N

?
=

0/1

UHK1

πK2

VerK1K2

Figure 6.1: A Wegman-Carter construction with universal hash UH and primitive
π. The tagging algorithm is on the left and the verification algorithm on the
right.

The above argument holds for PRPs or block ciphers as well. The following
theorem by Bernstein [38, Theorem 5.1] reduces the security of Wegman-Carter
MACs to the additive collision bound of the universal hash, and the so-called
maximum q interpolation probability of the primitive, which is

max
X∈Xq,Y ∈Yq

P
[
πK2(X1) = Y1, πK2(X2) = Y2, . . . , πK2(Xq) = Yq

]
. (6.5)

Theorem 7 ([38]). Consider a Wegman-Carter construction with universal
hash UH : M → Y and primitive π : IV → Y. Say that |IV| ≤ |Y| and that π
has maximum q-interpolation probability at most δ/ |Y|q and maximum (q + 1)-
interpolation probability at most δ · ACBρ/ |Y|q. Let A be an n-Int-adversary
making at most q tagging queries and v verification queries, then

n-Int(A) ≤ v · δ · ACBρ . (6.6)

Many Wegman-Carter constructions use polynomial-based universal hash
functions. The XOR MAC [26] can be viewed as a type of Wegman-Carter
construction using a PRF: it uses the XOR universal hash construction from
Example 5.6.2, but instead of keying the primitive πK2 with an independent
key, it uses the same PRF from the universal hash, but with a different counter,
allowing one to use Bernstein’s theorem.

ENCRYPTION SCHEMES 57

Repeating the IV could result in an attack against Wegman-Carter constructions,
as described by Handschuh and Preneel [90] and Joux [103].

6.2.2 Deterministic MACs

As explained in Chapter 3, achieving Int-security in the abused IV setting is
possible. In fact, many MAC algorithms are deterministic and do not require
an IV input. The advantage that such deterministic MACs have over nonce IV
MACs is that there is no IV to send, thereby reducing communication costs.
However, dropping the IV comes at the cost of a slight loss in security, as
explained in Chapter 8.

Deterministic MACs usually use VIL-PRFs as their basic building block, meaning
the function ρ in Equations (6.1) and (6.2) is a VIL-PRF. The best bound for
the hash-then-encrypt constructions from Section 5.6 using a PRP as primitive
was published by Dodis and Pietrzak [70, Proposition 1].

Theorem 8 ([70]). Consider the hash-then-encrypt construction with the
primitive a PRP and universal hash function F : M → Y. Let A be an Int-
adversary making no more than q tagging queries and v verification queries. If
CBF ≥ 1/(|Y| − q), then

Int(A) ≤ CBF · (q2 + v) . (6.7)

In terms of efficiency, deterministic and nonce IV MACs are roughly equivalent.
Generally, MACs only use one heavy operation per plaintext block, although
more might be needed if better security is required; see Chapter 8. Although
popular deterministic MACs, such as ECBC, are serial, it is possible to construct
parallelizable ones, such as PMAC. Many nonce IV MACs are parallelizable,
including the polynomial-based ones.

6.3 Encryption Schemes

6.3.1 Nonce and Random IV

Some of the conceptually simplest modes are those which only provide CPA
confidentiality in the nonce and random IV settings. Chapter 5 contains three
examples, namely CTR mode, CBC mode, and simplified OCB encryption. Out
of the three, CBC mode has the least overhead, using only XOR in addition
to the block cipher calls. CTR mode requires an additional counter to be

58 CONSTRUCTIONS

EK
N,1,f

EK
N,1,s

EK
N,2,f

EK
N,2,s

+

+

+

+

P1 P2 P3 P4

C1 C2 C3 C4

Figure 6.2: OTR encryption on four blocks of plaintext.

generated, but has the advantage of being completely parallelizable in both
encryption and decryption. Furthermore, CTR mode only uses forward calls
to the block cipher, allowing its implementation size in hardware to be smaller
and reducing the block cipher quality requirements.

Like CTR mode, OCB encryption is parallelizable in both encryption and
decryption, yet it adds extra overhead via its use of tweakable block
ciphers, which are implemented using the XEX construction (Example 5.2.4).
Furthermore, like CBC, OCB requires the use of both forward and inverse block
cipher calls. Hence OCB encryption does not seem to improve upon CTR mode
encryption, yet later we will see that adding integrity to OCB encryption can
be done much more efficiently than with CTR mode.

The encryption of OTR mode [127] removes use of the inverse block cipher call
by using a Feistel network, as depicted in Figure 6.2, while still maintaining
parallelizability of the block cipher calls. However, in comparison with OCB,
the parallelizability is reduced since two blocks must be processed sequentially.
Like OCB, it adds overhead over CTR mode, but, again, it is much simpler to
add integrity.

None of the above schemes achieve CCA-security. For the nonce-based schemes,
simply pick an IV N and ciphertext C, decrypt it, and then encrypt it: when
interacting with (EncK ,DecK) you get EncNK(DecK(N,C)) = C, whereas when
interacting with (EncK ◦ $,DecK), you get

EncNK($(DecK(N,C))) , (6.8)

which equals C with low probability.

ENCRYPTION SCHEMES 59

For CBC, the same attack cannot be applied because Enc always receives an
independent, uniformly generated IV, and in fact, in the random IV setting
the attack would not work for CTR, OCB, and OTR encryption. However, a
different attack applies to CBC. One can pick a two-block plaintext P1P2, and
encrypt it to receive C1C2, and the IV R. Then, one decrypts the ciphertext
C1 with IV R and C2 missing. Since C1 does not equal C1C2, it is a valid
ciphertext, which decrypts to P1. When interacting with CBC one always
receives P1, whereas when interacting with EncK ◦ $, one does not receive P1
with high probability. Even in the random IV setting similar attacks will apply
to CTR, OCB encryption, and OTR encryption.

A straightforward way of achieving CCA-security is by using a tweakable cipher.
One might try to convert the tweakable cipher E into an encryption scheme
(Enc,Dec) by tweaking the cipher with a nonce, and encrypting the plaintext
using the given permutation:

EncNK(P) def= (N,ENK(P)) (6.9)

DecK(N,C) def= DNK(C) . (6.10)

However the construction (Enc,Dec) does not achieve CCA-security for the
same reason that the CTR mode does not achieve CCA-security: decrypting
and encrypting should result in the same ciphertext, which it does not when
interacting with Enc ◦ $. The issue is that every ciphertext will decrypt to some
plaintext with the known property that encryption of that plaintext should
result in the original ciphertext.

A simple way of breaking this property is by adding redundancy, commonly
known as encode-then-encipher [34]. The redundancy can be as simple as
including a constant block of plaintext P0 ∈ Xn:

EncNK(P) def= (N,ENK(P, P0)) (6.11)

DecK(N,C) def= DNK(C) . (6.12)

Using a SPRP cipher, one achieves n-CCA-security since adversaries would have
to find a ciphertext C such that DNK(C) is of the form (P, P0). The reduction
from n-CCA-adversary A to SPRP adversary B simply consists of converting
A’s queries to (Enc,Dec) to E-queries via Equations (6.11) and (6.12). Define
B′ to be B which also prepends $(·) to any Enc query.

Theorem 9. Let (Enc,Dec) be the construction defined above using tweakable
cipher E. Then for any n-CCA-adversary A against (Enc,Dec) making at most

60 CONSTRUCTIONS

d queries to Dec, we have

n-CCA(Enc,Dec)(A) ≤ SPRPE(B) + SPRPE(B′) + 2d
|X|n − d

. (6.13)

Proof. Let (Enc[π],Dec[π]) denote (Enc,Dec) with (E,D) replaced by the
tweakable URP (π, π−1). Using the triangle inequality we get

n-CCAEnc,Dec(A) def= ∆
A

(Enc(·)
K ,DecK ; Enc(·)

K ◦ $(·),DecK) (6.14)

≤ ∆
A

(Enc(·)
K ,DecK ; Enc(·)

K [π],DecK [π]) (6.15)

+ ∆
A

(Enc(·)
K [π],DecK [π] ; Enc(·)

K [π] ◦ $(·),DecK [π]) (6.16)

+ ∆
A

(Enc(·)
K [π] ◦ $(·),DecK [π] ; Enc(·)

K ◦ $(·),DecK) . (6.17)

The first term is bounded by SPRP(B) and the third by SPRP(B′). We focus
on the second term.

The only way A will successfully distinguish is by making O1 queries, since O2
is the same on both sides. Consider a query ON1 (P). When interacting with
both Enc[π] and Enc[π] ◦ $, the query gets converted to πN (P ′, P0), where P ′ is
either P or $(P). In the latter case, since N is never repeated for any encryption
queries, πN (P ′, P0) will always output independent, uniformly distributed values,
unless (P ′, P0) = π−1N (C) for some query DecK(N,C). Finding a DecK(N,C)
query which contains P0 in its right half can be done with probability at most
d/(|X||P0| − d) by fixing N and query different ciphertexts.

Similarly, since N is never repeated, πN (P, P0) always outputs independent,
uniformly distributed values, unless (P, P0) = π−1N (C) for some query
DecK(N,C), which occurs with probability at most 1/(|X||P0| − d). Therefore
the distinguishing advantage of any adversary making at most d decryption
queries, is bounded above by

2d
|X|n − d

. (6.18)

�

6.3.2 Abused IV

Neither CTR, CBC, OCB, nor OTR encryption modes achieve CPA security
in the abused-IV setting. Repeating the IV in CTR mode means receiving

ENCRYPTION SCHEMES 61

S⊕P1 and S⊕P2 as ciphertexts, where S is the stream of block cipher outputs.
By XORing together the ciphertexts one gets P1 ⊕ P2 which is a breach of
confidentiality. Repeating the IV in OCB encryption means that repeated
blocks of plaintext will show up as repeated blocks of ciphertext, another
breach of confidentiality. Similar attacks can be applied to CBC and OTR, and
Fleischmann et al. [77] discuss others.

The tweakable cipher construction discussed in Equations (6.11) and (6.12)
actually achieves a-CCA security: repeating the IV results in picking the same
permutation, and doing so leaks repetition of the plaintext, and nothing else.

Theorem 10. Let (Enc,Dec) be the construction defined in Equations (6.11)
and (6.12) with tweakable cipher E over plaintexts X∗. Then for any a-CCA-
adversary A against (Enc,Dec) making at most q encryption queries of length
at least ` and at most d decryption queries,

a-CCAEnc,Dec(A) ≤ SPRPE(B) + SPRPE(B′) + q2

|X|`
+ 2d
|X|n − d

, (6.19)

where B and B′ are the same reductions as from Theorem 9.

Proof. The first part of the proof is identical to the proof of Theorem 9, hence
we focus on

∆
A

(Enc(·)
K [π],DecK [π] ; Enc(·)

K [π] ◦ $(·),DecK [π]) . (6.20)

In contrast with the proof of Theorem 9, the IV is no longer unique for every
encryption. In particular, ONK(P) is independent of ON ′K (P ′) for every (N ′, P ′)
with N 6= N ′, but if N is repeated, then we know that

EncNK(P) = (N,ENK(P, P0)) 6= (N,ENK(P ′, P0)) = EncNK(P ′) (6.21)

for P 6= P ′, whereas with EncK ◦ $ this could occur with probability 1/ |X||P |
if |P | = |P ′|. Since the distribution of EncNK is identical to the distribution
of EncNK ◦ $N , as long as $(P) 6= $(P ′) for two different queries P 6= P ′, and
(P, P0) 6= DecK(N,C), we have that the advantage of any adversary is bounded
above by the advantage of causing either of those two events, which is at most

q2

|X|`
+ 2d
|X|n − d

. (6.22)

The downside to using tweakable ciphers when implemented as modes of
operation, is that they usually require several calls to the underlying block

62 CONSTRUCTIONS

cipher per plaintext block. Furthermore, they require multiple passes over the
plaintext, which means a sufficiently large state is needed in order to store data
which is roughly as long as the plaintext.

At the cost of achieving the comparatively weaker oa-CPA security, tweakable
online ciphers provide an efficient alternative to using tweakable ciphers. By
incorporating a nonce into the tweak, a tweakable online cipher E : K× P→ C
can be converted into an encryption scheme (Enc,Dec) via

EncNK(P) def= (N,ENK(P)) (6.23)

DecK(N,C) def= DNK(C) . (6.24)

Theorem 11. Let (Enc,Dec) denote the encryption scheme constructed from
the tweakable online cipher E over X∗, then for any adversary A,

oa-CPAEnc(A) ≤ o-PRPE(A) + q2

|X| . (6.25)

Proof.

oa-CPAEnc(A) def= ∆
A

(Enc(·)
K ; Enc(·)

K ◦ $(·)) (6.26)

= ∆
A

(E(·)
K ; E(·)

K ◦ $(·))) (6.27)

≤ ∆
A

(E(·)
K ; π(·)) + ∆

A
(π(·) ; π(·) ◦ $(·)(·)) (6.28)

= o-PRPE(A) + ∆
A

(π(·) ; π(·) ◦ $(·)) . (6.29)

Since π(·) is indistinguishable from π(·) ◦ $(·) with loss q2/ |X|, we have our
result. �

6.3.3 Avoiding Ciphertext Expansion

Encryption schemes which map plaintexts to ciphertexts of the same length
are desirable, since they do not increase the amount of data that needs to be
communicated. So far CTR mode is the only encryption scheme which was
presented as being length-preserving. Avoiding so-called ciphertext expansion
is easy to do in CTR mode since the block cipher outputs just need to be

ENCRYPTION SCHEMES 63

truncated to match the plaintext length. Preserving length in other modes is
non-trivial.

Take CBC mode for example. In Chapter 5, Example 5.1.4, CBC mode was
only presented as operating on plaintexts which were made of full blocks. So
a four-block plaintext P = P1P2P3P4 is encrypted to four-block ciphertext
C = C1C2C3C4 using random IV R via

C0 = R (6.30)

Ci = EK(Ci−1 ⊕ Pi) , (6.31)

and decryption works via

C0 = R (6.32)

Pi = DK(Ci)⊕ Ci−1 . (6.33)

Since decryption works by calling the inverse block cipher on each ciphertext
block, truncating ciphertext blocks is not possible without making decryption
impossible. A trick used to get around this restriction is ciphertext stealing [64],
which works as follows. If P4 is not a complete block, then pad P4 with zeros
until it is, to create P ′4. Proceed by encrypting P1P2P3P

′
4, with resulting

ciphertext C1C2C3C4. Truncate C3 to be the same length as P4, resulting in C ′3,
and send the ciphertext C1C2C

′
3C4. Then decryption works as usual for C1 and

C2, and before C ′3 is decrypted, DK(C4) = P ′4⊕C3 is computed, which contains
the missing part of C ′3 necessary to complete the decryption. The encryption
process is depicted in Figure 6.3. Rogaway, Wooding, and Zhang [157] provide
a formal analysis of why ciphertext stealing preserves security.

Ciphertext stealing works for CBC mode because each ciphertext block can be
processed independently of the others during decryption. Applying ciphertext
stealing to the tweakable online cipher TC3 does not work since ciphertext block
Ci is necessary in order to decrypt ciphertext block Ci+1. COPE’s decryption
on the other hand, only needs pairs of ciphertext blocks in order to decrypt
a plaintext. Specifically, knowing just ciphertext blocks C3 and C4, one can
determine plaintext P4 via

P4 = D(4,3)
K

(
D(3,4)
K

(
C3
)
⊕ D(4,4)

K

(
C4
))

; (6.34)

see also Figure 6.4. As a result, ciphertext can be “stolen” from C2 in order to
pad P4. Since COPE must work when IVs are repeated, the last tweakable block
cipher calls must be tweaked differently from the case when the last block is
full. A similar trick can be applied to COBRA, although the process is slightly
more involved; see Appendix A for a description.

64 CONSTRUCTIONS

EK EK EK EK

P1 P2 P3 P4 0

+ + + +R

C1 C2 C3 C4

|P4|

C ′
3

Figure 6.3: CBC mode with ciphertext stealing.

DK
1,4

DK
2,4

DK
3,4

DK
4,4

C1 C2 C3 C4

V + + + +

DK
1,3

DK
2,3

DK
3,3

DK
4,3

P1 P2 P3 P4

Figure 6.4: COPE decryption. The value V is computed as in Figure 5.6.

Nevertheless, ciphertext stealing for COPE only works with plaintexts which
are at least two blocks long. An alternative is to use a tweakable cipher which
works on {0, 1}≤3n, although the construction of such ciphers is non-trivial.
One example is XLS [149], which, given a cipher that can process plaintexts
of length l, can expand the input to plaintexts of length l + s bits for any
s < n. However, XLS was shown not to be SPRP by Nandi [135], resulting in
an attack against COPA [137], an extension of COPE used to handle integrity
(see Section 6.4.3). An alternative is THEM [182], which uses a combination of
block cipher calls and finite field multiplications.

AE SCHEMES 65

P

C0

C

EncK1

TagK2

C

F C0

P

VerK2

DecK2

Figure 6.5: Encrypt-then-MAC.

6.4 AE Schemes

6.4.1 Generic Composition

One of the first methods developed to achieve AE is generic composition [32],
which combines the use of a MAC together with an encryption scheme. Let
(Tag,Ver) be a MAC and (Enc,Dec) an encryption scheme, then the Encrypt-
then-MAC construction (Aenc,Adec) first encrypts plaintext using EncK1 under
key K1, then processes the resulting ciphertext using TagK2 with key K2:

C0 = EncK1(P) (6.35)

C = TagK2(C0) . (6.36)

Decryption first checks whether VerK2(C) ∈ F, and if it is not, then it outputs
DecK2(VerK(C)). Figure 6.5 displays a diagram of the process. As shown
by Bellare and Namprempre [32], if K1 and K2 are independent, the MAC
is Int-secure, and the encryption scheme CPA-secure, then the resulting AE
scheme is Int-secure and CCA-secure.

Bellare and Namprempre [32] discuss several other natural constructions, and
conclude that Encrypt-then-MAC is the only way to generically ensure that
the resulting construction is secure. However, their approach uses the most
general formalization of encryption schemes and authenticators. In contrast,
Namprempre, Rogaway, and Shrimpton [130] explore what possible constructions
there are when looking at random and nonce-IV based schemes, and discover
many other ways of generically constructing secure AE schemes.

66 CONSTRUCTIONS

6.4.2 Dedicated Nonce-IV AE

The advantage to using generic composition is that it combines two constructions
which are well-understood in order to achieve AE. Furthermore, on a theoretical
level it establishes that there is nothing more to AE than composing a scheme
that offers confidentiality with a scheme that offers integrity. Yet generic
composition does not take advantage of any possible efficiency gains there might
be from building an AE scheme using simpler components. Furthermore, it
requires the use of two independent keys, whereas it might be possible to create
AE schemes which only require one.

The Galois Counter Mode, or GCM, combines a polynomial-based Wegman-
Carter MAC with CTR mode into a scheme which uses a single block cipher
key. It can be viewed as an “encrypt-then-MAC” style AE scheme: first GCM
encrypts the plaintext using CTR mode, and then it passes the ciphertext
together with the associated data through the Wegman-Carter MAC.

Yet, other than the reduction in key size, GCM does not offer a big advantage
over generic composition in terms of efficiency. Rather than adding a separate
MAC, one could try to add integrity in a more efficient way to CTR mode. But
doing so is not obvious. CTR mode is, in a sense, “too efficient”, since there do
not seem to be any extra values generated during the encryption process which
could be used for an integrity check: the block cipher outputs are generated
using the counter values which are independent of the plaintext, making them
unsuitable, and all there is besides the block cipher outputs is the ciphertext,
which would end up being an encrypt-then-MAC approach.

In contrast, OCB is able to add integrity by simply XORing together the
plaintext blocks and passing it through a tweakable block cipher call. This is
surprising since passing the XOR of message blocks through a tweakable block
cipher call would not work as a MAC, since one could always swap message
blocks to create a forgery, even in the nonce IV setting. The reason it works for
OCB is because OCB’s decryption algorithm will only output the right plaintext
blocks if the right nonce is used and the ciphertext blocks are in their correct
relative positions, otherwise one of the plaintext blocks will be the output of a
arbitrary tweakable block cipher call, which means the resulting XOR will be
unpredictable. OTR works similarly, and in fact only requires the XOR of half
of the message blocks due to the use of the Feistel network.

AE SCHEMES 67

6.4.3 Abused-IV AE

GCM and OCB fail to provide security when the IV is repeated, since
confidentiality breaks down as pointed out in Section 6.3.2. Generic composition
also only provides security if the underlying encryption scheme and MAC are
secure in the abused IV setting.

One could compose a tweakable cipher as an encryption scheme with a
deterministic MAC to get abused-IV security via the above result. Yet there is
a more efficient way of adding integrity to a tweakable cipher, namely via the
encode-then-encipher approach:

AencNK(P) = (N,ENK(P, P0)) (6.37)

AdecK(N,C) =
{

DNK(C) if DNK(C) = (P, P0)
⊥ otherwise.

(6.38)

Both Bellare and Rogaway [34] and Shrimpton and Terashima [165] analyze
a more general version of the construction where the padding is replaced by
an encoding function. Integrity is achieved since it is difficult to find a new
ciphertext and nonce where decryption leads to the last plaintext block equaling
P0.

Achieving abused-IV AE with a tweakable cipher is straightforward, but not the
most efficient method. Schemes such as SIV [156], BTM [99], and HBS [100] do
so without using tweakable ciphers. As with tweakable ciphers, the downside
to these schemes is that they require internal state large enough to fit data
roughly the size of the plaintext.

Alternatively, one could attempt to add an efficient integrity check to encryption
schemes built using online ciphers. Bellare et al. [24] give a few generic
transformations to turn an online cipher into a secure authenticated encryption
scheme, but their solutions require randomness. The McOE family [76] modifies
Bellare et al.’s approach to efficiently add a deterministic integrity check to TC3.
By appending the output of the IV encryption to the plaintext, an additional
ciphertext block is produced, which can be viewed as a tag. If an adversary
wants to create a forgery, then it must change an intermediate ciphertext block,
which changes the tweaks used, and results in an unpredictable tag. The trick
can be generalized to any online cipher that is o-SPRP secure, and can therefore
be applied to POE as well, resulting in the construction POET [3].

However, the McOE trick only works with online ciphers that are o-SPRP
secure, and does not work when attempting to add integrity to COPE since
decryption of a plaintext block in COPE only depends on two ciphertext blocks

68 CONSTRUCTIONS

EK
V

EK
(·)

EK
(·)

EK
(·)

N P2 P3 τ

+ + +

τ C2 C3 C4

Figure 6.6: Add an integrity check to TC3.

(see Figure 6.4), and a change in the IV in decryption would not propagate to
the end of the ciphertext processing.

Yet the OCB trick does work, namely computing the XOR of the plaintext and
passing the result through extra block cipher calls. The tag T is computed
by keeping an XOR checksum of the message blocks Σ def= M1 ⊕ · · · ⊕M` and
computing

T ← E(`,6)
K

(
E(`,5)
K (Σ)⊕ S

)
,

with S def= V` denoting the last intermediate value in COPE’s block chaining, as
in Figure 5.6. The tweaks (·, 5) and (·, 6) are used to distinguish tag computation
from encryption; see Figure 6.7. Tag verification occurs by checking if

E(`,6)
K

(
S ⊕ E(`,5)

K (Σ)
)

= T,

where the tag is rejected if the equality is not true. The resulting scheme is
called COPA [13].

One might conjecture that the OCB trick works for any o-PRP, yet it actually
relies on the fact that block ciphers “destroy” relationships among plaintext
blocks. Consider applying an OCB-type trick to the COBRA cipher, namely
using an integrity check similar to OTR and ManTiCore [9]; see Figure 6.8. The
trick works in the nonce IV setting, but once IVs can be abused, relationships
among decrypted plaintext can be created to construct a forgery, as shown
by Nandi [132–134]. Part of the reason why this attack works for COBRA
and not for COPE is because COBRA uses finite field multiplication to create
dependency upon preceding plaintext blocks in encryption, whereas COPE uses
block cipher calls.

AE SCHEMES 69

EK
(4,5)

M1 ⊕M2 ⊕M3 ⊕M4

+

EK
(4,6)

S

T

Figure 6.7: Adding an integrity check to COPE. The resulting scheme is called
COPA.

EK
N,1,1

EK
N,1,2

EK
N,2,1

EK
N,2,2

+

+

+

+

+ + + +

M1 M2 M3 M4

C1 C2 C3 C4

× × ×L
L L L

ρ1

σ1

ρ2

σ2

ρ1 ⊕ ρ2 ⊕ σ1 ⊕ σ2

EK
(N,2,3)

+N

EK
(N,2,4)

T

Figure 6.8: Computing the tag in COBRA. The outputs of the block cipher
calls, ρi and σi, are XORed together and passed through two additional block
cipher calls with different tweaks.

Chapter 7

Breaking Basic Security
Assumptions

As seen in Chapter 3, security definitions might not initially reflect the actual
environments in which schemes are used. The IV and online encryption
extensions allow one to understand the worst- and best-case scenarios in less-
than-ideal environments. For AE in particular, implementations in practice
occur in environments which deviate slightly from those considered in the
conventional security definitions, resulting in a violation of integrity, CCA, or
even CPA security.

For example, the definitions in Chapter 3 assume that ciphertexts are output
in one piece, whereas on-the-fly ciphertext output, where ciphertext fragments
are output as plaintext is received, is common in practice. For example, SSH
BPP processes fragmented ciphertexts which enables an attack recovering the
first 32 bits of plaintext using only ciphertext [7], despite having undergone
formal security analysis [29]. Extensions of the standard security definition to
model these scenarios includes the so-called blockwise adaptive definitions, where
chosen plaintext attacks surface [104] and combining CPA security with integrity
no longer guarantees CCA security [78], and the formalization of Boldyreva et
al. [50,53], where they also deal with boundary hiding and fragmentation-enabled
denial-of-service attacks.

Besides omitting fragmented ciphertexts, the definition of AE from Chapter 3
also assumes that faulty verification must result in a single error message, and
that plaintext coming from decryption can only be output upon successful
verification. Yet, deviations from both of these requirements occur as well.

71

72 BREAKING BASIC SECURITY ASSUMPTIONS

By outputting multiple error messages, adversaries can determine plaintext
properties, which happens, for example, in Vaudenay’s padding oracle
attacks [170], where error messages or lack of acknowledgment indicate whether
the unverified plaintext is correctly padded. Canvel et al. [58] show how to
mount a padding oracle attack on the then-current version of OpenSSL by
exploiting timing differences in the decryption processing of TLS. As shown
by Paterson and AlFardan [8, 142] for TLS and DTLS, it is difficult to prevent
attackers from learning decryption failure causes.

Boldyreva et al. [51,52] study what happens to the security definitions when
decryption oracles can output multiple failure events. As in the blockwise
adaptive setting, combining integrity and CPA security does not give CCA
security. Instead, resistance against ciphertext validity attacks (CVA), where
multiple error symbols are taken into account, is required. Then, to re-establish
CCA security, CVA security and integrity under multiple error messages are
needed.

Boldyreva et al. conclude that designers ideally should “consider the possibility
that their schemes might leak more than simple decryption failures.” In other
words, allowing multiple decryption failures also jeopardizes the requirement that
plaintext only be output on successful verification. Aside from unintentionally
being leaked via error symbols, there are settings where releasing plaintext
before verification is desirable. For example, it is necessary if there is not enough
memory to store the entire plaintext [78] or because real-time requirements would
otherwise not be met [49, 169]. Even beyond these settings, using dedicated
schemes secure against the release of unverified plaintext can increase efficiency.
For instance, to avoid releasing unverified plaintext into a device with insecure
memory [168], the two-pass Encrypt-then-MAC composition can be used: a
first pass to verify the MAC, and a second to decrypt the ciphertext. However,
a single pass AE scheme suffices if it is secure against the release of unverified
plaintext.

In this chapter we explore definitions for AE security when releasing unverified
plaintext (RUP) is inevitable. We present the results from our paper at Asiacrypt
2014 [12] within the subtle AE framework of Barwell et al. [21] from IMACC
2015, where any type of leakage from the decryption oracle is modelled. Relative
to Barwell et al. [21] and Boldyreva et al. [51,52], RUP sacrifices some generality
to be able to focus on what happens to the constructions presented in Chapter 6,
although the definitions in this chapter are presented in full generality.

SUBTLE SECURITY DEFINITIONS 73

7.1 Subtle Security Definitions

As is the case in the conventional setting, AE schemes should ideally provide
both confidentiality and integrity when the decryption oracle leaks. Security
when the decryption oracle leaks information can be naturally defined by giving
adversaries access to a leakage function

Λ : K× IV × C→ {>} ∪ L , (7.1)

where L and {>} are disjoint, and Λ is fixed to be deterministic and stateless.

We distinguish the conventional settings from the so-called subtle setting with
the postfix “Λ”. The subtle security definitions are identical to the conventional
security definitions, except the adversaries are given access to Λ. We give Λ-CCA
as an example.

Definition 7.1.1 (Subtle CCA Confidentiality). Let P = X∗ and let $: P→ P
be a tweakable length-preserving URB with tweak space IV. Then the Λ-CCA-
advantage of an adversary A against AE scheme (Aenc,Adec) is given by

Λ-CCA(A) def= ∆
A

(Aenc(·)
K ,AdecK ,ΛK ; Aenc(·)

K ◦ $(·),AdecK ,ΛK) , (7.2)

where K $← K, and A may not use the output of an O1 query as the input to
an O2 query.

We skip the formality of writing down explicitly what happens in each IV setting,
which can be done analogously to the conventional setting, as in Chapter 4.

All of the subtle definitions imply their conventional counterparts. Depending
upon Λ, the reverse implications might not be true: if Λ leaks nothing, then
the conventional definitions coincide with the subtle definitions, but if Λ leaks,
for example, the key, then there is a clear separation between the two.

As explained by Barwell et al. [21], combining Λ-CPA confidentiality and Λ-Int
integrity achieves Λ-CCA confidentiality.

Theorem 12. Let (Aenc,Adec) be an AE scheme with leakage function Λ. Then
for any Λ-CCA-adversary A

Λ-CCA(A) ≤ Λ-Int
(

A
)

+ Λ-Int
(

A(◦$, ·, ·)
)

+ Λ-CPA
(

A(·,⊥, ·)
)
, (7.3)

where $ is the URB from the (Aenc,Adec) Λ-CPA-definition.

The proof is identical to the proof of Theorem 1 with ΛK added to all the
distinguishing bounds, and holds in all IV settings.

74 BREAKING BASIC SECURITY ASSUMPTIONS

The definitions presented here differ in some ways from those of Barwell et
al. [21]. We do not assume that the schemes are tidy, meaning that encryption
and decryption are inverses of each other. Furthermore, our ideal oracles follow
the real-or-random style, rather than the random bits style.

7.2 Is It Safe to Use Subtly Secure Schemes?

It is clear that if a subtly secure scheme is used in the conventional setting,
without leakage, then security is maintained. Furthermore, from an abstract
point of view the subtle security definitions provided in Section 7.1 seem natural,
since they are just the conventional security definitions with the addition of
Λ. Yet it remains difficult to judge whether the subtle security definitions
correspond to what one would consider security when the decryption oracle
leaks, since there is little connection with intuition. Extending Goldwasser and
Micali’s confidentiality intuition to the subtle scenario, what one would like to
have is the following:

whatever is efficiently computable about the plaintext given the
ciphertext and leakage function, is also efficiently computable
without the ciphertext and leakage function.

In other words, the leakage function should not contribute to the adversary’s
advantage, which is not immediately clear from the Λ-CCA and Λ-CPA
definitions.

One way of formalizing this intuition is to have adversaries attempt to distinguish
Aenc and Λ from Aenc and a dummy algorithm, Sim. The task of Sim is to
mimic the behavior of Λ, without access to the key nor Aenc. If there exists
such a Sim, then whatever advantage the adversary gets by interacting with
Aenc and Λ, it could get by interacting with Aenc and Sim. Since Sim is as
useless as an adversary without the key, Λ is useless as well.

This definition can be formalized via what we call leakage simulatability1,
capturing the idea that it is possible to simulate the leakage function Λ without
access to the key.
Definition 7.2.1 (Leakage Simulatability). Let Sim be an algorithm, called
a Λ-simulator, which is allowed to maintain state across invocations. The
LS-advantage of adversary A relative to Sim and (Aenc,Λ) is

LSSim(A) def= ∆
A

(AencK ,AdecK ,ΛK ; AencK ,AdecK ,Sim) , (7.4)

1Note that this definition is not related to the study of leakage resilience [74].

IS IT SAFE TO USE SUBTLY SECURE SCHEMES? 75

where K $← K.

As Barwell et al. [21] observe, if Λ is simulatable, then the Λ-simulator does not
have to be anything special: it can be implemented via Λ using an independent
key. Concretely, LS is equivalent to leakage independence, meaning encryption
and leakage under the same key are only related to each other as much as
encryption and leakage under different keys. The corresponding definition by
Barwell et al. [21] is called error simulatability.

Definition 7.2.2 (Leakage Independence). Let A be a distinguisher accepting
two oracles, then the LI advantage of A relative to (Aenc,Λ) is

LI(A) def= ∆
A

(AencK ,AdecK ,ΛK ; AencK ,AdecK ,ΛL) , (7.5)

where K,L $← K are independent.

The following two theorems establish equivalence of leakage simulatability and
leakage independence.

Theorem 13 (Leakage Simulatability Implies Independence). Let (Aenc,Adec)
be an AE scheme with leakage function Λ and Λ-simulator Sim. Let A be an
LI-adversary, then

LI(A) ≤ LSSim(A) + LSSim(A(AencK ,AdecK , ·)) . (7.6)

Proof. By the triangle inequality,

LI(A) = ∆
A

(AencK ,AdecK ,ΛK ; AencK ,AdecK ,ΛL) (7.7)

≤ ∆
A

(AencK ,AdecK ,ΛK ; AencK ,AdecK ,Sim) (7.8)

+ ∆
A

(AencK ,AdecK ,Sim ; AencK ,AdecK ,ΛL) . (7.9)

The first term is LSSim(A). Furthermore, note that extractor Sim and ΛL are
independent of (AencK ,AdecK), hence applying Proposition 2.6.3

∆
A

(AencK ,AdecK ,Sim ; AencK ,AdecK ,AdecL) ≤ ∆
A(AencK ,AdecK ,·)

(Sim ; AdecL) .

(7.10)
Since A(AencK ,AdecK , ·) can be viewed as an LS-adversary,

∆
A(AencK ,AdecK ,·)

(Sim ; DecL) ≤ LSSim(A(AencK ,AdecK , ·)) , (7.11)

76 BREAKING BASIC SECURITY ASSUMPTIONS

therefore
LI(A) ≤ LSSim(A) + LSSim(A(AencK ,AdecK , ·)) . (7.12)

�

Theorem 14 (Leakage Independence Implies Simulatability). Let (Aenc,Adec)
be an AE scheme with leakage function Λ. Then for the Λ-simulator Sim def= ΛL
with L $← K it is the case that for any LS-adversary A,

LSSim(A) = LI(A) . (7.13)

Proof. The equality follows by definition:

LSSim(A) = ∆
A

(AencK ,AdecK ,ΛK ; AencK ,AdecK ,ΛL) = LI(A) . (7.14)

�

If a scheme is leakage independent and CCA-secure, then it is Λ-CCA-secure,
as shown in the following theorem. The reason this is true is that a Λ-CCA-
adversary A against a leakage independent scheme could be viewed as a CCA-
adversary A(·, ·,ΛL) which simply simulates the leakage independently and
runs the Λ-CCA adversary.

Theorem 15. Let (Aenc,Adec) be an AE scheme with leakage function Λ, then
for any Λ-CCA-adversary A

Λ-CCA(A) ≤ CCA(A(·, ·,ΛL)) + LI(A) + LI(A(◦$, ·, ·)) . (7.15)

Proof. Using the triangle inequality we get

Λ-CCA(A) = ∆
A

(AencK ,AdecK ,ΛK ; AencK ◦ $,AdecK ,ΛK) (7.16)

≤ ∆
A

(AencK ,AdecK ,ΛK ; AencK ,AdecK ,ΛL) (7.17)

+ ∆
A

(AencK ,AdecK ,ΛL ; AencK ◦ $,AdecK ,ΛL) (7.18)

+ ∆
A

(AencK ◦ $,AdecK ,ΛL ; AencK ◦ $,AdecK ,ΛK) . (7.19)

The first term is exactly LI(A), the second term is CCA(A(·, ·,ΛL)), and the
third term is LI(A(◦$, ·, ·)) . �

The converse is not true: if the AE scheme and leakage function both leak one
bit of a large key, then they will most likely maintain confidentiality, whereas it

RELEASING UNVERIFIED PLAINTEXT 77

will be easy to determine if the AE scheme and leakage are independent or not.
This means that even if a scheme is Λ-CCA-secure, the leakage function could
actually help the adversary. In order for a scheme to achieve confidentiality as
described by the intuition provided in the beginning of the section, it should
satisfy leakage independence on its own.

7.3 Releasing Unverified Plaintext

The leakage function Λ in the subtle AE framework models is left unspecified,
allowing one to model a wide range of scenarios. We focus on the case where Λ
releases unverified plaintext when Adec returns ⊥. In other words, we assume
there exists an algorithm Λ : K × IV × C → {>} ∪ P with > 6∈ P, where if
AdecK(C) = P ∈ P then ΛK(C) = >, and if AdecK(C) = ⊥, then ΛK(C) = P
for some P ∈ P which would have been output if AdecK(C) did not output
its error symbol. Depending upon the scheme, such a Λ might not make
sense, although many practical AE schemes can be viewed as having separate
encryption and authentication processes, allowing one to extract such a Λ.
Example 7.3.1 (GCM in RUP Setting). GCM is an encrypt-then-MAC style
AE scheme, which means it looks like

AencNK(P) = TagNK(EncNK(P)) (7.20)

AdecK(N,C) =
{

DecK(N,C) if VerK(N,C) = 1
⊥ otherwise .

(7.21)

The encryption scheme (Enc,Dec) is CTR mode, and the authenticator (Tag,Ver)
is a polynomial-based MAC. In the conventional setting GCM outputs only ⊥
if verification is faulty. In the RUP setting adversaries are also given access to
Λ, which for the case of GCM is defined as

ΛK(N,A,C) =
{
> if VerK(N,A,C) = 1
DecK(N,C) otherwise ,

(7.22)

meaning decryption occurs anyway if verification fails. J

Example 7.3.2 (Encode-then-Encipher). The encode-then-encipher construc-
tion from Section 6.4.3, which uses a tweakable cipher to achieve AE, checks
integrity to see if decryption results in a plaintext with a particular constant
appended. Its leakage function releases the decrypted plaintext regardless of
whether the decoding succeeded or not:

ΛK(N,C) =
{
> if DNK(C) = (P, P0)
DNK(C) otherwise .

(7.23)

78 BREAKING BASIC SECURITY ASSUMPTIONS

J

7.3.1 RUP Insecurity

Since Λ outputs the decryption of the ciphertext regardless of verification, by
giving adversaries access to AdecK and ΛK , they effectively have access to the
decryption part of the underlying encryption scheme. Most AE schemes are
designed to only satisfy CPA as an encryption scheme, since combining CPA with
Int allows one to achieve CCA-security, and in the interest of efficiency, many
AE schemes only satisfy CPA-security making them immediately vulnerable in
the Λ-CCA setting. For example, GCM in the RUP setting effectively turns into
CTR mode, allowing one to mount the CCA-attack described in Chapter 5.

Even if the underlying encryption scheme is CCA-secure, one might not achieve
RUP security if authentication is done separately from decryption. This is,
for example, the case in AE schemes where the ciphertext is computed using
some length-preserving bijective function, and then a “tag” is appended to
the ciphertext. Such schemes achieve AE security because the tag prevents all
ciphertexts from being valid, but if the tag is no longer checked, then RUP
confidentiality cannot be achieved. Concretely, if (Aenc,Adec) is an AE scheme
such that

AencNK(A,P) = ENK(A,P) ‖ FNK(A,P) , (7.24)

where EK is length-preserving, i.e.
∣∣ENK(A,P)

∣∣ = |P |. Then one can always
encrypt arbitrary (A,P) receiving C1‖C2 with |C1| = |P |, modify C2, which is
the part corresponding to FNK(A,P), thereby creating a ciphertext C1‖C ′2,
and ask for ΛK(N,C1‖C ′2). When interacting with AencK the output of
ΛK(N,C1‖C ′2) will have P as a prefix, and when interacting with AencK ◦ $,
the output of ΛK will be independent of P , resulting in a distinguishing attack.

For integrity, there are no obvious ways that constructions could fail to provide
security in the RUP setting. Nevertheless, several AE schemes become insecure
if unverified plaintext is released. In Proposition 7.3.1, we demonstrate an
attack against OCB [155].

The strategy of the attack is similar to that of Bellare and Micciancio on the
XHASH hash function [31]. The attack works by first querying the encryption
oracle under nonce N to get a valid ciphertext and tag pair. Then, two
decryption queries are made under the same nonce N . Using the resulting
plaintexts a system of linear equations is set up, which when solved will give a
forgery with high probability.

RELEASING UNVERIFIED PLAINTEXT 79

Proposition 7.3.1. For OCB, for all ` ≥ n there exists an adversary A such
that

Λ-Int(A) ≥ 1− 2n−` , (7.25)

where A makes one encryption query and two decryption queries, each consisting
of ` blocks of n bits. Then, the adversary solves a system of linear equations in
GF (2) with n equations and ` unknowns.

Proof. We start by describing OCB for messages which have a length which is
a multiple of the block size. For our purposes it suffices to describe OCB in
terms of a tweakable URP, since the attack is independent of the underlying
block cipher.

Let Π = (Aenc,Adec) denote OCB operating only on full message blocks.
Let {αNi , βNi , γNi } be a family of URPs over {0, 1}n with tweaks given by the
subscript i and superscript N , then OCB is defined as

AencK(N,M1M2 · · ·M`) = (N,C1C2 · · ·C`, T) , (7.26)

where

Ci = αNi (Mi) for 1 ≤ i < ` , (7.27)

C` = βN` (len(n))⊕M` , (7.28)

T = γN`

(
M1 ⊕ · · · ⊕M`

)
, (7.29)

and len(n) is the number n represented as an n-bit string.

Given a valid plaintext-ciphertext pair, A makes two queries to the decryption
oracle, and then solves a system of linear equations in GF (2) in order to obtain
a forgery.

Let ` ≥ n. First, A queries AencK(N,M) = (N,C, T) whereM = M1M2 · · ·M`

consists of ` blocks of n bits, and N is some fixed value. Let C = C1C2 · · ·C`
and let Z = M1 ⊕ · · · ⊕M`.

If A can create another plaintext M ′ with the same checksum Z by changing
the message blocks M1,M2, ...,M`, it has constructed a forgery because the
checksum Z and therefore the tag T will be the same. The adversary is not
allowed to query two encryptions under the same nonce N . However, we now
show that it is possible to construct a forgery by querying the decryption oracle
twice with the same nonce N and observing the unverified plaintext.

The adversary chooses C0 = C0
1C

0
2 · · ·C0

` T
0 and C1 = C1

1C
1
2 · · ·C1

` T
1 uniformly

at random such that for each i, C0
i , C1

i , Ci are all distinct. The corresponding

80 BREAKING BASIC SECURITY ASSUMPTIONS

unverified plaintexts are ΛK(N,C0, T 0) = M0
1M

0
2 · · ·M0

` and ΛK(N,C1, T 1) =
M1

1M
1
2 · · ·M1

` . To construct a plaintext M ′ = Mx1
1 Mx2

2 · · ·M
x`
` with the same

checksum as M , the adversary has to find x1, x2, · · · , x` ∈ GF(2) such that

Z = ⊕`i=1
(
M0
i xi ⊕M1

i (xi ⊕ 1)
)
, (7.30)

where xi = 1 corresponds to selecting M0
i , and xi = 0 to selecting M1

i as the
ith message block of M ′. This expression can be converted into n equations,
one for every bit j:

Z[j] = ⊕`i=1
(
M0
i [j]xi ⊕M1

i [j](xi ⊕ 1)
)

for j = 0, 1, . . . , n− 1 , (7.31)

where X[j] selects jth bit of X, with j = 0 corresponding to the least significant
bit.

This is a system of linear equations in GF (2) with n equations and ` unknowns,
for which a solution can be found using Gaussian elimination. The probability
that this system of equations has a solution, is at least 1− 2n−` [31, App. A].
Because AencK(N,M ′) = (N,C ′, T) with C ′ = Cx1

1 Cx2
2 · · ·C

x`
` and C ′ 6= C,

the adversary can output (N,C ′, T) as a forgery. �

7.3.2 RUP-Secure Constructions

Currently, the only known method of achieving a RUP-secure scheme is to
use the encode-then-encipher approach with a tweakable cipher, such as the
solutions presented by Bellare and Rogaway [34], Desai [69], and Shrimpton
and Terashima [165]. These constructions are already CCA-secure without an
integrity check, meaning even if ΛK outputs plaintext, adversaries will not
gain any useful information to perform a confidentiality attack. Furthermore,
tweakable ciphers have strong decryption algorithms, which means that
decrypting an arbitrary ciphertext will result in plaintext that is computationally
indistinguishable from random. In particular, it is very unlikely that the
decryption of an arbitrary ciphertext will result in a plaintext which conforms
to the proper encoding, meaning integrity will be preserved as well. These
arguments are formalized by Shrimpton and Terashima [165] and Hoang, Krovetz,
and Rogaway [92].

Achieving just integrity in the RUP setting is possible without resorting to
tweakable ciphers. Starting with any IV-based encryption scheme one can
add a VIL-PRF to construct a scheme which is Λ-Int-secure, using a technique
similar to MAC-then-Encrypt [32]. The idea behind the PRF-to-IV method
is to evaluate a VIL-PRF over the input to the scheme and then to use the
resulting output as an IV for the IV-based encryption scheme. Let Π =

RELEASING UNVERIFIED PLAINTEXT 81

(Enc,Dec) be an IV-based encryption scheme taking IVs from {0, 1}n, and let
F : K × {0, 1}∗ × {0, 1}∗ → {0, 1}n be a VIL-PRF, then define (Aenc,Adec) as
follows:

AencNK1,K2
(P) def= (N,N ′,EncN

′

K2
(P)) (7.32)

where N ′ = FK1(N,P) (7.33)

AdecK1,K2(N,N ′, C) def=
{
P if FK1(N,P) = N ′

⊥ otherwise ,
(7.34)

where P = DecN
′

K2
(C) . (7.35)

In this case Λ simply outputs DecN
′

K2
(C) in the “otherwise” case of Adec.

Proposition 7.3.2. Let (Aenc,Adec) be the PRF-to-IV method described above
with corresponding leakage function Λ. Let A be an INT-RUP adversary
for (Aenc,Adec) making at most v forgery attempts, and let B be a VIL-PRF
adversary against F which runs A, generates a random key K2, and simulates
(EncK ,DecK) using K2 and its own oracle, and outputs 1 if A succeeds in
constructing a forgery, and 0 otherwise. Then

Λ-Int(A) ≤ VIL-PRFF(B) + v

2n . (7.36)

Proof. A only succeeds in constructing a forgery if it is able to predict the
output of F, which it can only do with probability at most v/2n, assuming F
approximates a VIL-URF well. �

Chapter 8

Bound Tightness

Aside from the introduction, the contents of this chapter are from our
publications on LightMAC [122] and the analysis of PMAC [119]. The author
of this thesis is also the main author of the two publications and, except for
Appendix C, all text included here was written by the author of this thesis.

8.1 Introduction

When searching for optimal cryptographic schemes, security bounds provide
an important tool for selecting the right parameters, like the key size, tag size,
or block size. Security bounds capture the concept of explicitly measuring the
effect of an adversary’s resources on its success probability in breaking the
scheme, relative to the chosen parameters. They enable one to determine how
intensively a scheme can be used in a session. Therefore, reducing the impact
of an adversary’s resources from, say, a quadratic to a linear term, can mean an
order of magnitude increase in a scheme’s lifetime. Conversely, finding attacks
which confirm an adversary’s success rate, relative to its allotted resources,
prove claims of security bound optimality.

As discussed in Chapter 5, Section 5.1, the security bound for a mode of
operation using a primitive can be split into two components: the primitive’s
quality, and the mode’s insecurity when used with an ideal primitive. Taking
the CTR mode example, Theorem 5 establishes that the n-CPA-advantage of
any adversary A against CTR mode is bounded above by

PRP(B〈A〉) + PRP(B〈A〉(◦$)) + n-CPA(Enc[π],Dec[π])(A) , (8.1)

83

84 BOUND TIGHTNESS

where B〈·〉 is the CTR mode reduction. This means that there are only two
ways of attacking CTR mode with a block cipher: either attack the block cipher,
or attack (Enc[π],Dec[π]), which is CTR mode with the ideal primitive π. To
be able to make concrete guarantees on how extensively CTR mode can be used,
estimates need to be given on both the PRP quality of the underlying block
cipher, and the maximum n-CPA advantage possible against (Enc[π],Dec[π]).

Estimating the PRP quality of block ciphers, and the quality of any primitive
in general, is a non-trivial problem. With any new primitive design the initial
hypothesis is that no attack is significantly better than “brute force”, where every
possible key in K is tested against a known input-output pair. The hypothesis
can only be tested through years of research, thereby adding evidence to its
veracity, or possibly weakening the hypothesis. The duration for which a
primitive can be used under a single key is determined via the most up-to-date
hypothesis. For example, for the Advanced Encryption Standard block cipher
using 128 bit keys, it is generally accepted that adversaries will have to take
roughly 2127 time on average to break its PRP quality.

In contrast, estimating mode insecurity with an ideal primitive can be done more
precisely. For example, Theorem 6 establishes that for any n-CPA-adversary A
querying at most σ plaintext blocks,

n-CPA(Enc[π],Dec[π])(A) ≤ σ2

2n . (8.2)

The theorem describes A’s advantage purely in terms of the amount of data
it sees, and ignores running time. This contrasts with finding attacks against
well-designed primitives, where the best known attacks barely improve as a
function of data, and running time is the dominant factor.

Using a combination of the primitive hypothesis and the mode security bound,
one can estimate the maximum length of time and amount of data for which one
can use a scheme until it becomes vulnerable to attacks. Designing primitives
is out of the scope of this thesis, therefore henceforth we will assume that there
exist well-designed primitives which can be used in modes of operation, and we
do not take into account attacks against the primitive. Instead, we will look at
the impact of security bounds of modes using ideal primitives.

8.2 MAC Bounds

MAC algorithms provide a good example of schemes which have been studied
extensively to determine optimal bounds. A MAC’s security bound is measured
as a function of the number of tagging queries, q, and the largest message

MAC BOUNDS 85

length, `, used before a first forgery attempt is successful. The impact of an
adversary’s resources, q and `, on its success probability in breaking a MAC is
then described via an upper bound of the form f(q, `) · ε, where f is a function,
often a polynomial, and ε is a quantity dependent on the MAC’s parameters.
The maximum number of queries qmax with length `max one can make under a
key is computed by determining when f(qmax, `max)·ε is less than some threshold
success probability. For example, if one is comfortable with adversaries which
have a one in a million chance of breaking the scheme, but no more, then one
would determine qmax and `max via

f(qmax, `max) · ε ≤ 10−6 . (8.3)

Given that qmax and `max depend only on f , it becomes important to find the
f which establishes the tightest upper bound on the success probability.

The optimality of f depends on the environment in which the MAC operates, or
in other words, the assumptions made on the MAC. For instance, nonce-based
MACs, such as the Wegman-Carter construction [174], can achieve bounds
independent of q and `. In this case, an adversary’s success remains negligible
regardless of q and `, as long as the construction receives nonces. Therefore,
determining qmax and `max for Wegman-Carter MACs amounts to solving ε� 1,
which is true under the assumption that IVs are unique. Similarly, XOR
MAC [26] with nonces achieves a security upper bound of ε = 1/2τ , with τ
the tag length in bits, which is the optimal bound for any MAC. Randomized,
but stateless MACs can achieve bounds similar to stateful MACs, as shown by
Minematsu [126].

In contrast, deterministic and stateless MACs necessarily have a lower bound
of q2/2n, where n is the inner state size, due to a generic attack by Preneel and
van Oorschot [146]. This means that for any f ,

f(q, `) · ε ≥ q2

2n , (8.4)

hence any deterministic, stateless MAC must use fewer than 2n/2 tagging queries
per key.

Given this lower limit on f , one would perhaps expect to find schemes for which
the proven upper bound is q2/2n. Yet many deterministic, stateless MACs
have upper bounds including an `-factor. Block cipher based MACs, such as
CBC-MAC [27], OMAC [98], and PMAC [47], were originally proven with an
upper bound on the order of q2`2/2n, growing quadratically as a function of `
relative to a fixed block size n. Much effort went to improving the bounds to a
linear dependence on `, resulting in bounds of the form q2`/2n; see Table 8.1
for a list of modes with their dependence on `.

86 BOUND TIGHTNESS

Table 8.1: The table below contains the coefficients of the powers of ` contained
in the security bounds for adversaries making q queries of length `, with block
size n bits. References are to papers proving the bounds. In the bound for
EMAC, the function d′(`) has been replaced by `.

Mode 1 ` `2 `3 `4

3kf9 [183] 4q
2n + 4q3

22n
4q
2n + 4q3

22n
2q3

22n
4q3

22n

CBC-MAC [33] 12q2

2n
64q2

22n

EMAC [33] q2

2n
32q2

22n

OMAC [131] 5q2

2n
8q2

22n

PMAC [138] −3.5q2

2n
5q2

2n

PMAC_Plus [179] 3q
2n

27q3

22n

PMACX
(m=14,l=12)

[185] 72+1.5q2

2n + 576q2

22n
576q2

22n
144q2

22n

PMAC with Parity [180] q2

2n
q2

22n

Sum of CBCs [178] 12q3

22n

The dependence on ` and the block size n can create issues when n is small. As
shown in Table 8.2, block sizes range from 128 down to 32 bits. With a 32 bit
block size and a guarantee that adversaries do not forge with probability more
than one in a million, one gets a restriction of the form

q2`

232 ≤
1

220 or q2` ≤ 212 , (8.5)

meaning 64 one-block messages can be tagged under the same key. But what
if the messages are longer than one block? With conventional MACs only 32
four-block messages can be tagged, corresponding to 32 · 22 · 32 = 212 bits, or
512 Bytes of data per key. If the messages are sixteen blocks long, only 16
messages can be tagged, which is 16 · 24 · 32 = 213 bits, or 1 KiB of data per
key. Figure 8.1 displays how much data the various modes from Table 8.1 can
process per key, when the threshold success probability is set to 1/220.

MAC BOUNDS 87

Table 8.2: Supported block sizes are often small, and can be as low as 32 bits.

Block size (bits) 32 48 64 80 96 128 256
3DES [20] ×
AES [66] ×
CLEFIA [163] ×
DESLX [113] ×
Fantomas [86] ×
HIGHT [95] ×
ITUbee [106] ×
KLEIN [84] ×
KATAN [56] × × ×
LBlock [176] ×
LED [88] ×
LEA [94] ×
mCrypton [115] ×
Mysterion [102] × ×
Noekeon [65] ×
Piccolo [162] ×
PRESENT [48] ×
PRIDE [6] ×
PRINCE [54] ×
RC5 [151] × × ×
Rectangle [184] ×
Rijndael [66] × ×
RoadRunneR [22] ×
Robin [86] ×
SEA [166] ×
SIMECK [177] × × ×
Simon [23] × × × × ×
Speck [23] × × × × ×
TWINE [167] ×
XTEA [140] ×
Zorro [82] ×

For certain deterministic, stateless schemes the dependence on ` has been
proven to be necessary. Dodis and Pietrzak [70] point out that this is the case
for polynomial based MACs, and try to avoid the dependence by introducing
randomness. Pietrzak [144] notes that the EMAC bound must depend on `.
Gazi, Pietrzak, and Rybár [80] give an attack on NMAC showing its dependence
on `. Nevertheless, there are no known generic attacks establishing a lower

88 BOUND TIGHTNESS

10 20 30 40 50 60

21

24

27

210

213

216

219

222

1 64
20

214
LightMAC

PMAC with Parity

PMACX

Sum of CBCs

PMAC Plus
3kf9

EMAC

PMACOMAC
CBC-MAC

Number of queries — q

M
es
sa
ge

B
lo
ck

L
en
gt
h
P
er

K
ey

—
`/
#

k
ey
s

Figure 8.1: A plot of message block lengths per key versus the number of queries
that can be made in order to achieve the threshold success probability of 2−20.
In other words, if (x, y) is a point on the graph, then x ·y represents the number
of blocks that can be processed per key. The block size is set to 32 bits.

LIGHTMAC 89

bound of the form `ε/2n for any ε > 0.

In certain cases the bounds in Table 8.1 can be improved. For example, for
EMAC, Pietrzak [144] proved that if ` ≤ 2n/8 and q ≥ `2, then the bound’s
order of growth is independent of `. The proven bound is

128 · q
2`8

22n + 16 · q
2

2n + q(q − 1)
2n+1 . (8.6)

Note that the condition on ` means that EMAC’s bound is not truly independent
of `. For the sum of CBCs, Yasuda [178] also showed that if ` ≤ 22n/5, the
advantage becomes 40`3q3

22n . Rogaway [153] has shown that the dependence on `
disappears if you consider a version of PMAC with an ideal tweakable block
cipher.

8.3 LightMAC

We present a MAC mode, LightMAC, which enables one to tag much longer
messages than typically possible. LightMAC is depicted in Figure 8.2 and
Algorithm 1.

The security upper bound for LightMAC is

(1 + ε) · q
2

2n where ε ∈ O
(

1
2n/2 − 1

)
, (8.7)

which is independent of the message length (see Section 8.3.3). In other words,
with a 32 bit block size, and setting the message-length parameter s to 16,
roughly 64 messages can be tagged with length up to 215 blocks. Note that
keys are used most efficiently when the messages are as long as possible: up to
64 · 215 · 32 = 226 bits, or 8 MiB of data can be tagged per key. LightMAC uses
two independent keys, but even after normalizing by the number of keys, the
amount of data processed per key is still 4 MiB, a significant improvement over
1 KiB.

Figure 8.1 compares LightMAC to the other published modes from Table 8.1.
The figure shows that LightMAC starts with a factor 24 improvement over many
of the modes, which grows to roughly 210 as the number of queries increases.
Modes such as PMAC with Parity and PMACX were designed to handle long
message lengths and offer competitive bounds, at the cost of increased design
complexity. LightMAC’s advantage over these modes is its simplicity and low
overhead.

90 BOUND TIGHTNESS

Like PMAC [47], LightMAC allows block cipher calls to be made in parallel, but
unlike PMAC, LightMAC is based on Bernstein’s protected counter sum [37],
and hence should not suffer from patent issues (PMAC patent [152]).

A disadvantage of LightMAC is that its rate is low. In order to tag messages of
length up to 2n/2−1 blocks, n/2 bits of the block must be sacrificed for a counter,
hence two block cipher calls must be called per block of data. However, the rate
can be improved: if the maximum message length that will be communicated
is known to be less than 2s(n− s) bits, then the rate can be set to (n− s)/n
blocks per block cipher call. For example, using a 32 bit block cipher, if the
message lengths are less than 29 blocks, then the rate can be set to 2/3 blocks
per call. Therefore, unlike other modes, LightMAC can be optimized according
to the application: the shorter the messages, the more efficient LightMAC is,
while allowing the same number of message to be queried.

8.3.1 Design

Yasuda [180] explained the basic idea for LightMAC in his paper’s introduction,
which can be viewed as an adaptation of Bernstein’s protected counter sum [37]
using block ciphers. Recall from Example 5.6.7 that the protected counter sum
maps M1,M2, . . . ,M` using a PRF ϕ : K×N× X→ Y to

ϕK

(
0 ,

⊕̀
i=1

ϕK(i,Mi)
)
. (8.8)

Due to its use of PRFs, the protected counter sum achieves a security bound
which is independent of the message length, since the XOR of independent,
uniformly distributed random variables is still uniformly distributed.

However, trying to use a block cipher in the protected counter sum, one runs
into difficulties. If one were to use a block cipher directly as a PRF, then the
security bound would incur a loss of q2`2/2n+1 due to a necessary application of
the PRP-PRF switch (Lemma 2). Alternatively one could construct a PRF from
a block cipher and then use it in the protected counter sum, by, for example,
truncating the block cipher output or XORing together two block cipher calls
per PRF call. Yet truncating the output of a 32 bit block cipher would result in
an incredibly small output, thereby increasing chances of constructing a forgery,
and XORing together two block cipher calls would result in an inefficient scheme.

Instead, LightMAC uses an independent key for the last block cipher call,
and we prove directly that using a block cipher results in a bound which is
independent of the message length.

LIGHTMAC 91

EK1 EK1 EK1

1s M1 2s M2 3s M3 M4 10
∗

+ + + EK2 t T

Figure 8.2: LightMAC evaluated on a message M1M2M3M4
n−s←−−− M . The

rounded squares represent block cipher calls and the trapezium is truncation to
t bits.

8.3.2 Specification

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a block cipher. Let s and t be integers not
greater than n/2 and n, respectively. For an integer 1 ≤ i ≤ 2s, let is represent
some s-bit constant with the property that if 1 ≤ i < j ≤ 2s then is 6= js. For
example, is could be an s-bit representation of the integer i, or the ith s-bit
Gray code. LightMAC accepts two independent and uniformly generated keys
K1 and K2 from {0, 1}k, and a message M of length at most 2s(n − s) bits.
LightMAC produces an output of length t bits.

Figure 8.2 and Algorithm 1 depict how the output is produced. In Figure 8.2
and Algorithm 1, M1M2 · · ·M`

r←−M represents splitting M into r-bit blocks
with the length of the last block, M`, being anywhere from zero to r − 1 bits.
Also, given a block length n, concatenation of 10∗ to a string means appending
a one followed by the minimum number of zeros to make the total string length
a multiple of n bits.

LightMAC can be used as either a VIL-PRF or a MAC. When used as a VIL-
PRF, LightMAC is fully described by Algorithm 1. When used as a MAC, tags
are generated using Algorithm 1, and verification of a message-tag pair (M,T)
is done by comparing LightMAC (M) with T : if the two are equal, verification
succeeds, otherwise not.

The parameters of LightMAC are the integers s and t, the representation of is,
and the block cipher E, which implicitly fixes k and n. The parameters must
be agreed upon before a session starts, and remain constant during.

92 BOUND TIGHTNESS

Algorithm 1: LightMAC K1,K2(M).

Input: K1,K2 ∈ {0, 1}k, M ∈ {0, 1}≤2s(n−s)

Output: T ∈ {0, 1}t
1 V ← 0n ∈ {0, 1}n

2 M1M2 · · ·M`
n−s←−−−M

3 for i = 1 to `− 1 do
4 V ← V ⊕ EK1

(
isMi

)
5 V ← V ⊕ (M` 10∗)
6 T ← bEK2(V)ct
7 return T

8.3.3 Security

The theorems in this section assume that EK1 and EK2 have been replaced by
independent URPs π1 and π2 as discussed in Chapter 5.

LightMAC as a VIL-PRF.

Theorem 16. Let A be a VIL-PRF-adversary against LightMAC making at
most q queries of length at most 2s(n− s) bits, then

VIL-PRFLightMAC(A) ≤
(

1 + 1
2n/2 − 1

+ 1
2(2n/2 − 1)2

)
· q

2

2n , (8.9)

where n is the block size in bits.

Proof. We replace π2 with a URF φ using Lemma 2, at a cost of q2/2n+1 in
advantage. The VIL-PRF we are left with is

Φ(M) = φ

(
M`10∗ ⊕

`−1⊕
i=1

π1(isMi)
)
, (8.10)

which is LightMAC instantiated with π1 and φ, and

VIL-PRFLightMAC(A) ≤ VIL-PRFΦ(A) + q2

2n+1 . (8.11)

Let F denote the function contained in the call to φ in Equation (8.10). Then,
as long as F ’s outputs are distinct, each input to φ is unique, meaning Φ will

LIGHTMAC 93

be indistinguishable from a VIL-URF. In other words,

VIL-PRFΦ(A) ≤
∑
i<j

P
[
F (M i) = F (M j)

]
≤ q2

2 max
Mi 6=Mj

P
[
F (M i) = F (M j)

]
,

(8.12)
where M i for i = 1, . . . , q are the messages queried by A. The maximum on
the right hand side is computed in Section 8.3.4, resulting in the bound

VIL-PRFΦ(A) ≤ q2

2 ·
1

2n − 2s+1 + 1 . (8.13)

Therefore, using the fact that s ≤ n/2, we have

VIL-PRFLightMAC ≤
q2

2n+1 + q2

2 ·
1

2n − 2s+1 + 1 (8.14)

≤ q2

2n

(
1 + 1

2n/2 − 1
+ 1

2(2n/2 − 1)2

)
, (8.15)

giving us our desired bound. �

LightMAC as a MAC.

Theorem 17. The a-Int-advantage against LightMAC of any adversary A
making at most q tagging queries and v verification queries of length at most
2s(n− s) bits, is bounded above by(

1 + 2
2n/2 − 1

+ 1
(2n/2 − 1)2

)
·
(
q2

2n + v

2t

)
, (8.16)

where n is the block size in bits.

Proof. As a MAC, LightMAC follows the hash-then-encrypt paradigm with
the function F from Section 8.3.4 as the “hash” part, hence applying Theorem 8
we get an upper bound of(

1 + 2
2n/2 − 1

+ 1
(2n/2 − 1)2

)
·
(
q2

2n + v

2t

)
. (8.17)

�

94 BOUND TIGHTNESS

8.3.4 Collision Probability of F

Proposition 8.3.1. Let m = 2s(n − s). Let M1M2 · · ·M`
n−s←−−− M for M ∈

{0, 1}≤m, and define F to be

F (M) = M`10∗ ⊕
`−1⊕
i=1

π(isMi) , (8.18)

where π is a URP over {0, 1}n, then the probability that two distinct messages
M1,M2 ∈ {0, 1}≤m collide is

P
[
F (M1) = F (M2)

]
≤ 1

2n − `1 − `2 + 1 , (8.19)

where `i is the length of M i in (n− s)-bit blocks rounded up.

Proof. The equation F (M1) = F (M2) can be rewritten as

`1⊕
i=1

π(isM1
i)⊕

`2⊕
i=1

π(isM2
i) = M1

`1
10∗ ⊕M2

`2
10∗ . (8.20)

Since M1 6= M2 there are two cases:

1. `1 = `2, M1
`1

10∗ 6= M2
`2

10∗, and M1
i = M2

i for all i, or

2. either `1 6= `2 or there exists an i such that M1
i 6= M2

i .

In the first case there is no collision, hence we focus on the second case. Without
loss of generality we can assume that M1

i 6= M2
i for all i, and we can simplify

the problem to calculating the probability that

⊕̀
i=1

π(xi) = c , (8.21)

where ` = `1 + `2, c = M1
`1

10∗ ⊕M2
`2

10∗, and xi 6= xj for i 6= j.

Let N = 2n, then P
[⊕`

i=1 π(xi) = c
]
equals

1
N !

∣∣∣∣∣
{
y1, . . . , yN

∣∣∣∣∣ ⊕̀
i=1

yi = c and yi 6= yj for i 6= j

}∣∣∣∣∣ . (8.22)

By Lemma 3 we have that the probability is bounded above by 1/(N − `+ 1),
giving us our desired result. �

PMAC’S MESSAGE LENGTH DEPENDENCE 95

Lemma 3. Let c ∈ {0, 1}n and let N = 2n. The number of sequences
(y1, y2, . . . , yN) ∈ ({0, 1}n)N with yi 6= yj for i 6= j such that

⊕̀
i=1

yi = c , (8.23)

is not greater than N !/(N − `+ 1).

Proof. We start by fixing y1, for which there are N possibilities. Since y2
cannot equal y1, there are N − 1 possibilities for y2. Continuing this way, we
have that there are N − i possibilities for yi+1, with i ≤ `− 2. For y` there is
at most one possibility, namely c⊕ y1 ⊕ y2 ⊕ · · · y`−1. All yj for j > ` must be
distinct from all preceding yi, hence in total there are at most

N · (N − 1) · · · · · (N − `+ 2) · (N − `)! = N !
N − `+ 1 (8.24)

possible sequences. �

8.4 PMAC’s Message Length Dependence

In contrast with CBC-MAC, EMAC, and LightMAC, the PMAC construc-
tion [47] stands out as having received little analysis showing the necessity of `
in the bound. It follows the protected counter sum design, and replaces PRF
calls with tweakable block cipher calls. As a result, one would expect PMAC’s
security bound to be independent of the message length, which it is, if security
is reduced to the PRP security of the tweakable block cipher. However, PMAC’s
tweakable block cipher is instantiated with an XE construction (Example 5.2.4),
and the XE construction has a PRP advantage of 4.5q2/2n, meaning a reduction
to the PRP of the underlying tweakable block cipher would result in a quadratic
message length dependence when using the XE construction. Nevertheless,
Minematsu and Matsushima [128] were able to show that PMAC’s security
bound can be sharpened to `q2/2n, showing that PMAC’s message length
dependence is in the worst case linear.

No attacks are known which establish the linear dependence on message length
in PMAC’s security bound, hence it is not clear whether Minematsu and
Matsushima’s bound can be improved further. Furthermore, PMAC’s basic
structure lends itself to high-security extensions, such as PMAC-Plus [179],
PMAC-with-Parity [180], and PMACX [185], where the latter two are designs
which specifically minimize message length dependence as displayed in Figure 8.1
and Table 8.1.

96 BOUND TIGHTNESS

In this section we study PMAC’s message length dependence. We start by
abstracting away details of PMAC in order to focus on its basic structure. We
do so by considering generic PMAC, which is a generalized version of PMAC
accepting an arbitrary block cipher and constants, and with an additional
independent key. We prove that one of the following two statements is true:

1. either there are infinitely many instances of generic PMAC for which there
are no attacks with success probability greater than 2q2/2n,

2. or finding an attack against generic PMAC with success probability greater
than 2q2/2n is computationally hard.

The second statement relies on a conjecture which we explain below.

Then we focus on an instantiation of generic PMAC, namely PMAC with Gray
codes, introduced by Black and Rogaway [47]. We show that PMAC with Gray
codes is an instantiation which does not meet the optimal bound of 2q2/2n, by
finding an attack with success probability (2k−1−1)/2n with ` = 2k, establishing
a dependence on ` for every power of two.

Approach. Proving the above results requires viewing the inputs to PMAC’s
block cipher calls in a novel way: as a set of points P lying in a finite affine
plane. Keys are identified as slopes of lines in the affine plane. A collision is
guaranteed to occur under a specific key w if and only if each line with slope w
covers an even number of points in P; in this case we say that w evenly covers
P.

Maximizing the collision probability means finding a set of points P for which
there is large set of slopes W evenly covering P. But finding such a set W is
non-trivial: the x-coordinates of the points in P must either contain a subset
summing to zero, or satisfying some quadratic form.

Finding a subset summing to zero is the subset sum (SS) problem, which is
known to be NP-complete. The second problem we call the binary quadratic
form (BQF) problem (see Definition 8.4.8), and there is reason to believe this
problem is NP-complete as well (see Appendix C, which contains a proof by
Alan Szepieniec). As a result, we conjecture that finding solutions to the union
of the two problems is computationally hard.

By reducing SS and the BQF problem to finding slopes W evenly covering points
P, we establish our results.

PMAC’S MESSAGE LENGTH DEPENDENCE 97

Notation. If X is a set then X is its complement. For this section, elements of
Xq are denoted ~x, with coordinates (x1, x2, . . . , xq). If f : X→ Y then define
f̃ : X+ → Y+ to be the mapping

f̃(x1, . . . , xq) = (f(x1), . . . , f(xq)) . (8.25)

If ~a ∈ X` and µ ≤ `, then ~a≤µ
def= (a1, a2, . . . , aµ). If X is a field, then for

~a ∈ X`, ~1 · ~a =
∑`
i=1 ai. Furthermore, when considering elements (x, y) of

X2, we call the left coordinate of the pair the x-coordinate, and the other the
y-coordinate.

8.4.1 PMAC

PMAC is a VIL-PRF-based MAC, which means we can focus on the underlying
VIL-PRF. Throughout this section we identify PMAC with its VIL-PRF.
Furthermore, we focus on PMAC defined with a URP rather than a block
cipher.

The original PMAC specifications [47, 153] have as message space the set of
arbitrary length strings. Since our results focus on the dependency of PMAC
on message length, it suffices to consider strings with length a multiple of some
block size in order to illustrate how the security bounds evolve as a function
of message length. With this in mind, we define PHASH, first introduced by
Minematsu and Matsushima [128]. Figure 8.3 depicts a diagram of PHASH.

Definition 8.4.1 (PHASH). Let X be a finite field of characteristic two with N
elements. Let M def= X≤N and let ~c ∈ XN be a sequence containing all elements
of X. Let π be a URP over X. Let ω = π(0), then PHASH : M→ X is defined
to be

PHASH(~m) def= ~1 · π̃ (~m+ ω~c≤`) , (8.26)

where ~m has length `.

PHASH maps messages to a single block. PMAC sends this block through a
last transformation, whose output will be the tag. We describe two different
generic versions of PMAC, one in which the last transformation is independent
of PHASH, and one in which it is not.

Definition 8.4.2 (PMAC). Consider PHASH : M → X with URP π and let
c∗ denote the last element of ~c. If y is the output of PHASH under message ~m,
PMAC evaluated on ~m is π(y + c∗ω).

98 BOUND TIGHTNESS

0 m1 m2 m3 m4

+ + + +

π π π π π

c1ω c2ω c3ω c4ω

ω + + + PHASH(m)

Figure 8.3: PHASH evaluated on a message m = (m1,m2,m3,m4).

Definition 8.4.3 (PMAC*). Consider PHASH : M → X with URP π. Let
φ : X→ X be an independent URF. Then PMAC* is the composition of PHASH
with φ.

Although PMAC* is defined with an independent outer URF instead of a URP,
all the results in the section hold with slight modifications to the bounds if a
URP is used.

The two specifications of PMAC define the sequence ~c differently. Our attack
against PMAC applies to the specification with Gray codes [47], which we will
define in Section 8.4.4. As pointed out by Nandi and Mandal [138], in order to
get a PRF-advantage upper bound of the form q2`/N , the only requirement on
~c is that each of its components are distinct.

8.4.2 PHASH Collision Probability

Definition 8.4.4. The collision probability of PHASH is

max
~m1,~m2∈M,~m1 6=~m2

P
[
PHASH(~m1) = PHASH(~m2)

]
. (8.27)

PHASH’s collision probability is closely linked with the security of PMAC and
PMAC*. In particular, if an adversary finds a collision in PHASH, then it is
able to distinguish PMAC and PMAC* from a URF. The converse is true for
PMAC*, which is a well-known result; see for example Dodis and Pietrzak [70].
Concluding that a distinguishing attack against PMAC results in a collision
found for PHASH has not been proven and is outside of the scope of the thesis,
although we conjecture that the statement holds. In either case, understanding
the effect of the message length on PHASH’s collision probability will give us a
good understanding of PMAC’s message length dependence.

PMAC’S MESSAGE LENGTH DEPENDENCE 99

In this section we compute bounds on the collision probability for PHASH.
Minematsu and Matsushima [128] prove an upper bound for the collision
probability of PHASH. We use their proof techniques and provide a lower bound
as well.

Throughout this section we fix two different messages ~m1 and ~m2 in M of length
`1 and `2, respectively, and consider the collision probability over these messages.
Let ~m = ~m1‖~m2 and ~d = ~c≤`1‖~c≤`2 .

If there exists i such that m1
i = m2

i , then these blocks will cancel each other
out in equation (8.27) and will not affect the collision probability, hence we
remove them. Let i1, i2, . . . , ik denote the indices of the blocks for which ~m1

equals ~m2, then define ~m∗ to be ~m with the entries indexed by i1, i2, . . . , ik and
i1 + `1, i2 + `1, . . . , ik + `1 removed; ~d∗ is defined similarly and `∗ denotes the
length of ~m∗ and ~d∗.

Let ~xw def= ~m∗ + w~d∗ for w ∈ X. The vector ~xw represents the inputs to
the permutation π when π(0) equals w, meaning the equality PHASH(~m1) =
PHASH(~m2) can be written as

~1 · π̃ (~xw) = 0 , (8.28)

given that π(0) = w. If there is a component of ~xw which does not equal any of
the other components, then equation (8.28) will contain a π-output which is
roughly independent of the other outputs, thereby making a collision unlikely
when π(0) = w. For example, say that ~xw = (a, b, c, b), then equation (8.28)
becomes π(a) + π(b) + π(c) + π(b) = π(a) + π(c), which equals 0 with negligible
probability.

Similarly, if there are an odd number of components of ~xw which equal each
other, but do not equal any other components, then they will not cancel out,
resulting again in an unlikely collision. For example, if ~xw = (a, a, a, b, b), then
equation (8.28) becomes π(a). In fact, a collision is only guaranteed under a
given key w when each component of ~xw is paired with another component so
that each pair cancels each other out in equation (8.28). Bounding the collision
probability in equation (8.27) amounts to determining how many keys w there
are for which each component of ~xw is paired.

We formalize these “equality classes” of components of ~xw as follows. Define
I to be the set of integers from 1 to `∗, {1, . . . , `∗}, then the components of
~xw = (xw1 , xw2 , . . . , xw`∗), induce the following equivalence relation on I: i is
equivalent to j if and only if xwi = xwj . For i ∈ I, let [i] denote i’s equivalence
class, and #[i] the number of elements in [i]. Let Rw denote the set of equivalence
class representatives where each representative is the smallest element of its
class. Let Rwe be those i ∈ Rw such that #[i] is even, and Rwo the complement

100 BOUND TIGHTNESS

of Rwe in Rw. Taking the example ~xw = (c, c, c, b, b, b, b, a), then Rw would equal
{1, 4, 8} and Rwe is {4}.

Define W to be the set of w ∈ X such that Rwo is empty. In other words, the
set W is the set of keys w for which ~m1 and ~m2 are guaranteed to collide.

Proposition 8.4.1. Let F = PHASH, then

|W|
N
≤ P

[
F (~m1) = F (~m2)

]
≤ |W|

N
+ 1
N − `∗ + 1 . (8.29)

Proof. Let Π be the set of permutations on X. Let δw be the number of distinct
components in 0‖~xw and let Sw be the set of ~y such that ~1 · ~y = 0 and w‖~y
matches 0‖~xw, where two sequences ~a and ~b of the same length match if ai = aj
if and only if bi = bj , for all i, j. We have that

P
[
F (~m1) + F (~m2) = 0

]
= P

[
~1 · π̃(~xω) = 0

]
(8.30)

= 1
N ! ·

∣∣∣{p ∈ Π
∣∣∣ ~1 · p̃(~xp(0)

)
= 0
}∣∣∣ (8.31)

= 1
N ! ·

∑
w∈X

∑
~y∈Sw

∣∣{p ∈ Π
∣∣ p̃(0‖~xw) = w‖~y

}∣∣ .
(8.32)

Note that for all w and ~y ∈ Sw,∣∣{p ∈ Π
∣∣ p̃(0‖~xw) = w‖~y

}∣∣ = (N − δw)! , (8.33)

hence we get

P
[
F (~m1) = F (~m2)

]
= 1
N ! ·

∑
w∈X

(N − δw)! · |Sw| . (8.34)

Let ~y be such that w‖~y matches 0‖~xw. Note that yi = yj if and only if i is
equivalent to j, and for any i ∈ Rw,

∑
j∈[i]

yj =
{

0 if #[i] is even
yi otherwise .

(8.35)

Then ~y ∈ Sw if and only if w‖~y matches 0‖~xw and
∑
i∈Rwo

yi = 0.

Let w be such that xwi 6= 0 for all i. The number of ~y such that w‖~y matches
0‖~xw and

∑
i∈Rwo

yi = 0 can be counted as follows. Consider ~y = (y1, . . . , y`∗)

PMAC’S MESSAGE LENGTH DEPENDENCE 101

satisfying the requirements, and enumerate the values in Rwe : i1, i2, . . . , ik.
By fixing yi1 , yi2 , . . . , yik , we determine all components of ~y contained in the
equivalence classes of Rwe . Since yi1 , yi2 , . . . , yik is a sequence of k distinct
values, all different from w, there are (N − 1)!/(N − k − 1)! possibilities for
yi1 , yi2 , . . . , yik . If Rwo 6= ∅, then we enumerate the elements of Rwo : j1, j2, . . . , jl.
Similar to Rwe , by determining yj1 , yj2 , . . . , yjl we will determine the remaining
components of ~y. The sequence yj1 , yj2 , . . . , yjl contains l distinct values, all
different from yi1 , yi2 , . . . , yik and w, and such that yj1 + yj2 + · · · + yjl = 0,
resulting in at most (N −k−1)!/(N −k− l)! possibilities. Putting this together,
and observing that k+ l = |Rwe |+ |Rwo | = δw−1, we get |Sw| ≤ (N−1)!

(N−δw+1)! when
Rwo 6= ∅ and xwi 6= 0 for all i. If Rwo = ∅, then |Sw| = (N−1)!

(N−δw)! .

By following similar reasoning, we get that if w is such that there exists xwi = 0,
|Sw| ≤ (N−1)!

(N−δw+1)! when R
w
o 6= ∅, and |Sw| =

(N−1)!
(N−δw)! otherwise.

Putting the above together, we have

P
[
F (~m1) = F (~m2)

]
≤ |W|

N
+ 1
N

∑
w∈W

1
N − δw + 1 , (8.36)

and since the computation of |Sw| is exact when Rwo = ∅, we get

|W|
N
≤ P

[
F (~m1) = F (~m2)

]
. (8.37)

�

8.4.3 Necessary Conditions For a Collision

This section provides a geometric interpretation of the set W which facilitates
finding necessary conditions for W to contain more than two elements.

Evenly Covered Sets. Recall that an element w of X is in W only if Rwo = ∅,
meaning #[i] is even for all i ∈ Rw. Two components xwi and xwj of ~xw are
equal if and only if

w =
m∗i −m∗j
d∗j − d∗i

, (8.38)

since the points such that (di,mi) = (dj ,mj) were removed earlier when forming
~m∗ from ~m. In particular, equation (8.38) says that xwi equals xwj if and only if
the points (d∗i ,m∗i) and (d∗j ,m∗j) lie on a line with slope w. Since #[i] is even,
we know that there are an even number of points on the line through (d∗i ,m∗i)
with slope w, which motivates the following definition.

102 BOUND TIGHTNESS

x1 x2

0

1 (x1 + x2)
−1

0

Figure 8.4: A set of four points evenly covered by the slopes 0 and (x1 + x2)−1.
The x-coordinates of the points are x1 and x2, and the y-coordinates are 0 and
1.

Definition 8.4.5. Let P ⊂ X2 be a set of points. A line evenly covers P if it
contains an even number of points from P. A slope w ∈ X evenly covers P if all
lines with slope w evenly cover P. A subset of X evenly covers P if all slopes in
the subset evenly cover P.

We let P denote the set of points (di,mi) for 1 ≤ i ≤ `. Applying the above
definition together with equation (8.38), we get the following proposition.
Proposition 8.4.2. An element w ∈ X is in W if and only if w evenly covers
P.

Using this geometric interpretation, we obtain the upper bound proved by
Minematsu and Matsushima [128] for the collision probability of PHASH.
Proposition 8.4.3.

|W| ≤ `∗ − 1 (8.39)

Proof. Given a point p0 ∈ P, all possible slopes connecting p0 to another point
in P can be generated from the lines connecting the points. This results in
at most |P| − 1 different slopes covering P, hence an upper bound for |W| is
|P| − 1 = `∗ − 1. �

It is easy to construct sets evenly covered by two slopes. Consider P def=
{(x1, 0), (x1, 1), (x2, 0), (x2, 1)}, depicted in Figure 8.4. The possible slopes are
0 and (x1 + x2)−1. Throughout the section we do not consider ∞ to be a slope,
since such a slope would only be possible if d∗i = d∗j in equation (8.38), which
happens only if m∗i = m∗j . The lines with slope 0, from (x1, 0) to (x2, 0) and
from (x1, 1) to (x2, 1), evenly cover P. Similarly, the lines with slope (x1 +x2)−1,
from (x1, 0) to (x2, 1) and from (x1, 1) to (x2, 0), also evenly cover P. Therefore
P is evenly covered by

{
0, (x1 + x2)−1}.

The above set can be converted into two messages: ~m1 = (0, 0) and ~m2 = (1, 1).
Setting x1 = c1 and x2 = c2, then we know that the collision probability of ~m1
and ~m2 is at least 2/N .

PMAC’S MESSAGE LENGTH DEPENDENCE 103

Proposition 8.4.4. There exist messages ~m1 and ~m2 such that |W| ≥ 2.

Note that P constructed from ~m∗ contains at most two points per x-coordinate.

Properties of Evenly Covered Sets. Although Proposition 8.4.3 gives a good
upper bound for the collision probability of PHASH, it does not use any of the
structure of evenly covered sets. In this section we explore various properties of
evenly covered sets, allowing us to relate their discovery to NP-hard problems
later.

The following lemma shows that removing an evenly covered subset from an
evenly covered set results in an evenly covered set.

Lemma 4. Let P ⊂ X2 and let W ⊂ X be a set evenly covering P. Say that P
contains a subset P′ evenly covered by W as well, then P \ P′ is evenly covered
by W.

Proof. Let Q def= P \ P′. The set W evenly covers Q if and only if every every
line with slope w ∈W contains an even number of points in Q. Let p ∈ Q and
w ∈W and consider the line λ with slope w through point p. By hypothesis, λ
evenly covers P and P′. By removing P′ from P, an even number of points are
removed from λ, resulting in λ evenly covering Q. �

If a set P is evenly covered by at least two slopes u and v, then all the points in
the set lie in a loop.

Definition 8.4.6. Let P ⊂ X2 be evenly covered by W ⊂ X. A (u, v)-loop in
(W,P) is a sequence of points (p1, p2, . . . , pk) with two different slopes u, v ∈W
such that pi and pi+1 (mod k) lie on a line with slope u for i odd, and on a line
with slope v otherwise.

The set from Figure 8.4 contains (0, (x1 +x2)−1)-loops. In fact, there are always
at least four points in any (u, v)-loop. Note that there must be at least three
points since there are two distinct slopes. If there are only three points then p1
is connected to p2 via u, p2 is connected to p3 via v, and p3 must be connected
to p1 via u, resulting in all three lying on the same line with slope u, but also
p2 lying on a line with slope v with p3, resulting in a contradiction. Figure 8.5
shows a set with more complicated loops, including two which loop over all
points in the set.

Lemma 5. Let P ⊂ X2 be evenly covered by W ⊂ X. Let u, v ∈W, then every
point in P is in a (u, v)-loop starting with slope u and ending with slope v.

104 BOUND TIGHTNESS

0 a

b c
u

v

w

Figure 8.5: A set of points evenly covered by the slopes u, v, and w. Each point
is accompanied by another point with the same x-coordinate. The x-coordinates
of the pairs are indicated below the lower points.

Proof. Let p0 ∈ P, then by hypothesis there is another point p1 in P lying on
a line with slope u connecting to p0. Similarly, there is a point p2 different from
p0 and p1 lying on a line with slope v connected to p1. Continuing like this, we
can create a sequence of points p0, p1, . . . , pk until pk+1 = pi for some i ≤ k,
with the property that adjacent points in the sequence are connected by lines
alternating with slope u and v.

If i = 0, then we are done. Otherwise, consider pi−1, pi, pi+1, and pk. Say that
pi−1 is connected to pi via a line with slope u, so that pi is connected to pi+1
via a line with slope v. If pk is connected to pi via a line with slope v, then
there are three points on the same line with slope v: pi, pi+1, and pk. This
means there is a fourth point p∗ on the same line. Since pk is connected to
pi+1 via v, the sequence pi+1, pi+2, . . . , pk forms a (u, v)-loop. We remove the
(u, v)-loop from P, which is evenly covered by u and v, resulting in a set evenly
covered by u and v, and we continue by induction. Similar reasoning can be
applied when pk is connected to pi via u. �

Proposition 8.4.5. The sum of the x-coordinates in a (u, v)-loop must be zero.

Proof. Say that (x1, y1), (x2, y2), . . . , (xk, yk) are the points in the loop. Then

yi + yi+1 = δi(xi + xi+1 (mod k)) , (8.40)

where δi is u if i is odd, and v otherwise. Since

(y1 + y2) + (y2 + y3) + · · ·+ (yk−1 + yk) + (yk + y1) = 0 , (8.41)

we have that

u(x1 + x2) + v(x2 + x3) + u(x3 + x4) + · · ·

+ u(xk−1 + xk) + v(xk + x1) = 0 , (8.42)

PMAC’S MESSAGE LENGTH DEPENDENCE 105

0 a

b c
u

v

w

Figure 8.6: A set of points evenly covered by the slopes u, v, and w. None of
the points are accompanied by another point with the same x-coordinate. The
points are labelled by their x-coordinates.

therefore

(u+ v)(x1 + x2 + · · ·+ xk) = 0 . (8.43)

Since u 6= v, it must be the case that x1 + x2 + · · ·+ xk = 0. �

Adversaries can only construct sets P where there are at most two points per
x-coordinate. Therefore, either all loops only contain points (x, y) for which
there is exactly one other point (x, y′) with the same x-coordinate, or there
exists a loop with a point which is the only one with that x-coordinate. For
example, Figure 8.4 and Figure 8.5 depict evenly covered sets where every loop
always contains all x-coordinate pairs. If we consider the only loop in Figure 8.4,
then we get

0 ·(x1 +x2)+(x1 +x2)−1(x2 +x1)+0 ·(x1 +x2)+(x1 +x2)−1(x2 +x1) , (8.44)

which trivially equals zero. All loops in Figure 8.5 also trivially sum to zero. In
contrast, Figure 8.6 depicts an evenly covered set in which we get a non-trivial
sum of the x-coordinates:

u · a+ v(a+ c) + u(c+ b) + v · b = (u+ v)(a+ b+ c) = 0 , (8.45)

hence such a set only exists if a+ b+ c = 0.

Therefore, Proposition 8.4.5 only poses a non-trivial restriction on the x-
coordinates if there is a loop which contains a point without another point
sharing its x-coordinate. If the loop contains all pairs of points with the same
x-coordinates, then the x-coordinates will trivially sum to zero. This is why in
the case of Figure 8.4 there are no restrictions on the x-coordinates, other than
the fact that they must be distinct, resulting in the existence of sets evenly
covered by two slopes.

In the case of Figure 8.5 however, there are additional restrictions on the x-
coordinates. Consider the two points at x-coordinate 0. Then there is part

106 BOUND TIGHTNESS

0 a

b c

0 a

b c
u

v

w

Figure 8.7: Illustration of loops with three slopes.

of a (u, v)-loop connecting them, and part of a (u,w)-loop connecting them,
and combining both parts we get a full loop using all three slopes; see the
left hand side of Figure 8.7. A similar loop involving all three slopes can be
constructed around the points with x-coordinate b. Using these two loops, we
get the following equations. From the left hand side of Figure 8.7 we have

ua+ va = wb+ u(b+ c) + w(a+ c) + ua (8.46)

(u+ v)a = (w + u)(a+ b+ c) . (8.47)

From the right hand side of Figure 8.7 we have

(u+ v)(b+ c) = wb+ ua+ w(a+ b) (8.48)

(u+ v)(b+ c) = (w + u)a . (8.49)

Combining both, we get the following:

a+ b+ c

a
= a

b+ c
(8.50)

a2 + b2 + c2 + ab+ ac = 0 . (8.51)

The last equation above can be described as a so-called quadratic form. A
quadratic form over X is a homogeneous multivariate polynomial of degree two.
In our case, the quadratic form can be written as ~xTQ~x, where ~x ∈ Xn is the
list of variables, and Q ∈ {0, 1}n×n is a matrix with entries in {0, 1}. We say
that ~x∗ is a solution to Q if ~xT∗Q~x∗ = 0, and the quadratic form Q is non-trivial
if there exists ~x 6= 0 such that ~xTQ~x 6= 0.

So the evenly covered set from Figure 8.5 only exists if the x-coordinates satisfy
some non-trivial quadratic form. The same is true for any evenly covered set
where all loops always contain pairs of points with the same x-coordinate.

Proposition 8.4.6. Let P ⊂ X2 be evenly covered by W ⊂ X with W ≥ 3. Say
that all loops in P contain only pairs of points with the same x-coordinates.

PMAC’S MESSAGE LENGTH DEPENDENCE 107

Then there exists a subset S of k x-coordinates, and a non-trivial quadratic
form described by a matrix Q ∈ {0, 1}k×k over k variables, such that when the
k elements of S are placed in a vector ~x∗ ∈ Xk, ~xT∗Q~x∗ = 0.

Proof. Pick three slopes, u, v, w in W. We know that there are at least four
points in P. Pick two pairs of points with the same x-coordinates: (p, p′) and
(q, q′). Consider the (u, v)-loop starting at p. By hypothesis it must contain p′.
We let ~a = (a1, a2, . . . , aka) denote the sequence of x-coordinates of the part of
the (u, v)-loop from p to p′. Note that a1 equals aka since p and p′ have the
same x-coordinates. Similarly, the (u, v)-loop starting at q must contain q′, and
we denote the sequence of x-coordinates of the part of the (u, v)-loop from q to
q′ by ~b = (b1, b2, . . . , bkb). The same holds for the (v, w)-loops containing p and
q, and we define the x-coordinate sequences ~e and ~f similarly.

Let y denote the difference in the y-coordinates of p and p′. For ~a we have the
following:

u(a1 + a2) + v(a2 + a3) + · · ·+ δ(u, v)ka(aka−1 + aka) = y , (8.52)

where δ(u, v)ka is u if ka is even and v otherwise. Collecting the terms, if ka is
even, we get

u(a1 + a2 + · · ·+ aka−1 + aka) + v(a2 + · · ·+ aka−1) = y , (8.53)

and since a1 = aka , we know that

(u+ v)(a2 + · · ·+ aka−1) = y . (8.54)

If ka is odd, then we get

(u+ v)(a1 + a2 + · · ·+ aka−1) = y . (8.55)

Note that it cannot be the case that
∑
ai = 0, since y 6= 0.

Similar reasoning applied to ~b gives

(v + w)(b2 + · · ·+ bkb−1) = y if kb is even
(v + w)(b1 + · · ·+ bkb−1) = y otherwise . (8.56)

Regardless of ka and kb’s parities, setting both equations equal to each other
results in the following equation:

u+ v

v + w
=
∑
bi∑
ai
. (8.57)

Applying the same result to ~e and ~f , we get

u+ v

v + w
=
∑
fi∑
ei
. (8.58)

108 BOUND TIGHTNESS

As a result, we have(∑
bi

)(∑
ei

)
+
(∑

ai

)(∑
fi

)
= 0 , (8.59)

which is the solution to a quadratic form. �

Computational Hardness As shown in Proposition 8.4.5 and Proposition 8.4.6,
either there is a loop where the x-coordinates non-trivially sum to zero, or there
is a subset of the x-coordinates which form the solution to some non-trivial
quadratic form. The former is Subset Sum (SS), whereas the latter we name
the binary quadratic form (BQF) problem.

Definition 8.4.7 (Subset Sum Problem (SS)). Given a finite field X of
characteristic two and a subset S ⊂ X, determine whether there is a subset
S0 ⊂ S such that

∑
x∈S0

x = 0.

Definition 8.4.8 (Binary Quadratic Form Problem (BQF)). Given a finite
field X of characteristic two and a subset S ⊂ X, determine whether there is a
non-trivial quadratic form Q ∈ {0, 1}k×k with a solution ~x∗ made up of distinct
components from S.

SS is know to be NP-complete. In Appendix C it is shown that BQF-t,
a generalization of BQF, is NP-complete as well; the proof is due to Alan
Szepieniec. The problem of finding either a subset summing to zero or a
non-trivial quadratic form we call the SS-or-BQF problem.

Conjecture 1. There do not exist polynomial time algorithms solving SS-or-
BQF.

Definition 8.4.9 (PHASH Problem). Given a finite field X of characteristic
two and a sequence of masks ~c, determine whether there is a collision in PHASH
with probability greater than 2/N , where N = |X|.

Given a collision in PHASH one can easily find a solution to SS-or-BQF. The
converse does not necessarily hold, which means SS-or-BQF cannot be reduced
to the PHASH problem in general, although we can conclude the following.

Theorem 18. One of the following two statements holds.

1. There are infinitely many input sizes for which the PHASH problem does
not have a solution, but SS-or-BQF does.

2. For sufficiently large input sizes, SS-or-BQF can be reduced to the PHASH
problem.

PMAC’S MESSAGE LENGTH DEPENDENCE 109

Proof. Both the PHASH and SS-or-BQF problems are decision problems, so
the output of the algorithms solving the problems is a yes or a no, indicating
whether the problems have a solution or not. Note that the inputs to both
problems are identical. The reductions consist of simply converting the input
to one problem into the input of the other, and then directly using the output
of the algorithm solving the problem.

We proved that a yes instance for PHASH becomes a yes instance for SS-or-BQF:
if you have an instance of SS-or-BQF, then you can convert it into a PHASH
problem, and if you are able to determine that PHASH has a collision with
sufficient probability, then SS-or-BQF has a solution. Similarly, a no instance
for SS-or-BQF means a no instance for PHASH.

The issue is when there exists a no instance for PHASH and a yes instance
for SS-or-BQF for a particular input size. If there are finitely many input sizes
for which there is a no instance for PHASH and a yes instance for SS-or-BQF
simultaneously, then there exists an r such that for all input sizes greater than
r a no instance for PHASH occurs if and only if a no instance for SS-or-BQF
occurs, and a yes instance for PHASH occurs if and only if a yes instance for
SS-or-BQF occurs. Therefore, an algorithm which receives a no instance for
PHASH can say that the corresponding SS-or-BQF problem is a no instance,
and similarly for the yes instances, which is our reduction. Otherwise there are
infinitely many input sizes for which PHASH is a no instance, and SS-or-BQF is
a yes instance. �

If statement 1 holds, then there are infinitely many candidates for an
instantiation of PMAC* with security bound independent of the message length.
If statement 2 holds, and we assume that SS-or-BQF is hard to solve, then
finding a collision for generic PHASH is computationally hard.

8.4.4 Finding Evenly Covered Sets

The previous section focused on determining necessary conditions for the
existence of evenly covered sets, illustrating the difficulty with which such
sets are found. Nevertheless, finding evenly covered sets becomes feasible in
certain situations. In this section we provide an alternative description of evenly
covered sets in order to find sufficient conditions for their existence.

Distance Matrices Let (x1, y1), (x2, y2), . . . , (xn, yn) be an enumeration of the
elements of P ⊂ X2. If w ∈ X covers P evenly, then the line with equation
y = w(x − x1) + y1 must meet P in an even number of points. In particular,

110 BOUND TIGHTNESS

there must be an even number of xi values for which w(xi − x1) + y1 = yi, or
in other words, the vector

w · (x1 − x1, x2 − x1, . . . , xn − x1) (8.60)

must equal
(y1 − y1, y2 − y1, . . . , yn − y1) (8.61)

in an even number of coordinates. The same must hold for the lines starting
from all other points in P.

Let ∆~x be the matrix with (i, j) entry equal to xi − xj and ∆~y the matrix
with (i, j) entry equal to yi − yj . We write A ∼ B if matrix A ∈ Xn×n equals
matrix B ∈ Xn×n in an even number of entries in each row. Then, following the
reasoning from above, we have that w ∈ X covers P evenly only if ∆~y ∼ w∆~x.

The matrices ∆~x and ∆~y are so-called distance matrices, that is, symmetric
matrices with zero diagonal. Entry (i, j) in these distance matrices represents
the “distance” between xi and xj , or yi and yj . In fact, starting from distance
matrices M and D such that M ∼ wD we can also recover a set P evenly
covered by w: interpret the matrices M and D as the distances between the
points in the set P. This proves the following lemma.

Lemma 6. Let k ≤ n− 1 and let W ⊂ X be a set of size k. There exist n by n
distance matrices M and D such that M ∼ wD for all w ∈ W if and only if
there exists P with |P| = n and W evenly covers P.

From the above lemma we can conclude that the existence of P ⊂ X2 evenly
covered by W ⊂ X is not affected by the following transformations:

1. Translating the set P by any vector in X2. This also preserves the set W.

2. Subtracting any element w0 ∈W from the set W.

3. Scaling the set P in either x or y-direction by a non-zero scalar in X.

4. Scaling the set W by any non-zero element of X.

Connection with Graphs Let P ⊂ X2 be evenly covered by W ⊂ P. The pair
(P,W) has a natural graph structure with vertices P and an edge connecting
two vertices p1 and p2 if and only if the line connecting them has slope in
W. Figure 8.4 and Figure 8.5 provide diagrams which can also be viewed as
examples of the natural graph structure. In this section we connect the existence
of evenly covered sets with so-called factorizations of a graph. See Appendix B
for a review of the basic graph theoretic definitions used in this section.

PMAC’S MESSAGE LENGTH DEPENDENCE 111

u

v

w

Figure 8.8: Non-trivial example of a set with 12 points evenly covered by three
slopes. Horizontal points lie on the same y-coordinate, and vertical points on
the same x-coordinate. Since there are six points on a line with slope u, the
natural graph is not regular.

u

v

w

Figure 8.9: The diagram from Figure 8.8 converted into an associated graph.
The slopes u, v, and w induce a natural 1-factorization of the graph.

Each vertex in the natural graph has at least |W| neighbours, and if there are
two points per line in P, then the graph is |W|-regular. Vertices have more than
|W| neighbours only if they are on a line with more than two points. Since we
are not interested in the redundancy from connecting a point with all points on
the same line, we only consider graphs without the additional edges.

Definition 8.4.10. A graph associated to (P,W) is a |W|-regular graph G with
P as its set of vertices and an edge between two vertices p1 and p2 only if the
line connecting p1 with p2 has slope in W.

Any graph associated to (P,W) is a subgraph of the natural graph structure
described above, and there could be multiple associated graphs, depending upon
what edges are chosen to connect multiple points lying on the same line. For
example, Figure 8.8 depicts an evenly covered set with twelve points, six of
which lie on the same line. As depicted in Figure 8.9, it can easily be converted
into an associated graph.

The following definition allows us to describe another property that associated
graphs have.

Definition 8.4.11. A k-factor of a graph G is a k-regular subgraph with the
same vertex set as G. A k-factorization partitions the edges of a graph in
disjoint k-factors.

112 BOUND TIGHTNESS

Associated graphs have a 1-factorization induced by W, where each 1-factor is
composed of the edges associated to the same slope in W. See Figure 8.9 for an
example.

We know that every pair (P,W) has an associated |W|-regular graph with 1-
factorization. In order to determine the existence of evenly covered sets we need
to consider when a k-regular graph with 1-factorization describes the structure
of some pair (P,W) with |W| = k. By first fixing a graph with a 1-factorization,
it is possible to set up a system of equations to determine the existence of
distance matrices M and D, and slopes W such that M ∼ wD for all w ∈W.
Then, by applying Lemma 6, we will have our desired pair (P,W).

Definition 8.4.12. Let G be a regular graph with vertices (v1, . . . , vn) and
a 1-factorization, and let Xn×n denote the set of matrices over X. Define
SG ⊂ Xn×n to be the matrices where entry (i, j) equals entry (k, l) if and only
if the edges (vi, vj) and (vk, vl) are in the same 1-factor of G.

Proposition 8.4.7. There exists a set P ⊂ X2 with n elements evenly covered
by W ⊂ X with |W| = k if and only if there exists a k-regular graph G of order
n with a 1-factorization such that there is a solution to

M = S ◦D , (8.62)

where S ∈ SG, M,D ∈ Xn×n are distance matrices, and ◦ denotes elementwise
multiplication.

Therefore by picking a regular graph with a 1-factorization and solving a system
of equations, we can determine the existence of pairs (P,W) for various sizes, in
order to determine a lower bound for PHASH’s collision probability.

Latin Squares and Abelian Subgroups In this section we consider what
happens when we solve equation (8.62) with a 1-factorization of the complete
graph of order n. Since we look at complete graphs, finding a solution would
imply the existence of sets with n points evenly covered by n− 1 slopes, the
optimal number as shown by Proposition 8.4.3. We describe a necessary and
sufficient condition on the matrix D from equation (8.62), which in turn becomes
a condition on the x-coordinates of the evenly covered sets.

As described by Laywine and Mullen [112, Sect. 7.3], 1-factorizations of a
complete graph G of order n, with n even, are in one-to-one correspondence
with reduced, symmetric, and unipotent Latin squares, that is, n by n matrices
with entries in N such that

1. the first row enumerates the numbers from 1 to n,

PMAC’S MESSAGE LENGTH DEPENDENCE 113

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
7 8 5 6 3 4 1 2
8 7 6 5 4 3 2 1

Figure 8.10: A reduced, symmetric, unipotent Latin square of order eight
corresponding to the Cayley table of the abelian 2-group of order eight.

2. the matrix is symmetric, that is, entry (i, j) equals entry (j, i),

3. the diagonal consists of just ones,

4. and each natural number from 1 to n appears just once in every row and
column.

An example of such a Latin square can be found in Figure 8.10.

The correspondence between 1-factorizations of complete graphs and Latin
squares works by identifying row i and column i with a vertex in the graph,
labelling the 1-factor containing edge (1, i) with i, and then setting entry (i, j)
equal to the label of the 1-factor containing edge (i, j). This is exactly the
structure of the matrices in SG.

Let n be a power of two. The abelian 2-group of order n is a commutative group
in which every element has order two, that is, a+ a = 0 for all elements a in
the group. The Cayley table of the abelian 2-group of order n can be written
as a reduced, symmetric, and unipotent Latin square. Fig. (8.10) provides an
example of such a Cayley table, where 1 is identified with the identity of the
group.

Definition 8.4.13. The (i, j) entry of the Cayley table of the abelian 2-group
with ` elements is denoted γ(i, j).

Lemma 7. γ(i, γ(i, j)) = j.

Proof. The Cayley table represents the operation of the abelian 2-group, where
if x+ y = z, then x+ z = y. �

Proposition 8.4.8. Let G denote the complete graph of order n, where n is
a power of two, with 1-factorization induced by the Cayley table of the abelian
2-group of order n. Then Eq. (8.62) has a solution if and only if the first row
of D forms an additive subgroup of X of order n.

114 BOUND TIGHTNESS

The above proposition shows that the graph structure corresponding to the
abelian 2-group induces the same additive structure on the x-coordinates of the
evenly covered set. This transfer of structure only works with this particular
1-factorization of the complete graph. In general, reduced, symmetric, and
unipotent Latin squares do not even correspond to the Cayley table of some
group: associativity is not guaranteed. Furthermore, 1-factorizations of non-
complete graphs do not necessarily even form Latin squares; see for example
Figure 8.8.

Proof. Denote the first row of S by s1, s2, . . . , sn, and the first row of D by
d1, . . . , dn. Note that D is entirely determined by its first row, since the (i, j)
entry of D is di + dj , and since S follows the form of γ, it is entirely determined
by its first row as well. In particular, the (i, j) entry of S is sγ(i,j), where γ(i, j)
is the (i, j) entry of the Cayley table.

We need to determine the conditions under which S ◦D is a distance matrix,
as a function of s1, . . . , sn and d1, . . . , dn. This happens if and only if the (i, j)
entry of S ◦D is equal to sidi + sjdj :

sidi + sjdj = sγ(i,j)(di + dj) . (8.63)

Furthermore, it must be the case that

sidi + sγ(i,j)dγ(i,j) = sj(di + dγ(i,j)) , (8.64)

since γ(i, γ(i, j)) = j. Therefore

sjdj + sγ(i,j)dγ(i,j) = sγ(i,j)(di + dj) + sj(di + dγ(i,j)) (8.65)

(sj + sγ(i,j))(di + dj + dγ(i,j)) = 0 . (8.66)

Since S must follow the Latin square structure, the first row of S must consist
of n distinct entries, hence sj 6= sγ(i,j) and so di + dj + dγ(i,j) = 0. Therefore,
d1, . . . , dn satisfies the equations of the Cayley table, hence they form an additive
subgroup of X.

Continuing, we have the following equations:

sidi + sjdj + sγ(i,j)dγ(i,j) = 0 . (8.67)

In order for these equations to be satisfied, s1d1, . . . , sndn must form an additive
subgroup of X as well. In particular, there must exist an isomorphism φ mapping
di to sidi, which can be written as d−1

i φ(di) = si for i > 1. The only requirement
for the existence of such an isomorphism is that x−1φ(x) must map to distinct
values. Picking x 7→ x2 as the isomorphism, we have our desired result. Note
that the di must be distinct, otherwise the si are not distinct, contradicting the
fact that S follows the Latin square structure. �

PMAC’S MESSAGE LENGTH DEPENDENCE 115

Application to PMAC Before we present an attack, we first need the following
lemma.

Lemma 8. Let P and P′ be disjoint subsets of X2 evenly covered by W ⊂ X.
Then P ∪ P′ is evenly covered by W.

Proof. Let λ be a line with slope w ∈W. Then λ contains an even number of
points from P and an even number of points from P′, and since P and P′ are
disjoint, λ contains an even number of points from P ∪ P′. �

A collision in PHASH with probability (`− 1)/N can be found as follows. Take
~c and let k be the smallest index such that ~c≤k contains a subsequence ~c ′ of
length ` such that the elements {c′1 + c′1, c

′
1 + c′2, . . . , c

′
1 + c′`} form an additive

subgroup of X. Let µ be the mapping which maps indices of ~c ′ onto indices of
~c, so that c′i = cµ(i).

Let D be a distance matrix in X`×` such that its first row is equal to (c′1 +
c′1, c

′
1 + c′2, . . . , c

′
1 + c′`); recall that a distance matrix is completely determined

by its first row. Let G be the complete graph of order ` with 1-factorization
determined by the abelian 2-group of order `. Solve equation (8.62), that is,
find a distance matrix M such that there exists S ∈ SG where

M = S ◦D . (8.68)

Let ~m1 denote the first row of M , and let W denote the elements making
up the first row of S, without the first row element. Then the set P def={

(c′1,m1
1), . . . , (c′`,m1

`)
}
is evenly covered by W, which contains `− 1 slopes.

By translating P vertically by some constant, say 1, construct the disjoint set
P′, which is also evenly covered by W. Therefore, by Lemma 8, the union of P
and P′ is evenly covered by W. Let ~m2 denote the y-coordinates of P′.

Define ~m1 to be the vector of length k where for all i ≤ `, m1
µ(i) = m1

i , and
for all i not in the range of µ, m1

i = 0. Define ~m2 similarly. Then ~m1 and ~m2

collide with probability (`− 1)/N .

For sufficiently large k, ~c≤k will always contain additive subgroups. In particular,
one can find such subgroups in PMAC with Gray codes [47], where ~c is defined
as follows. In this case X def= {0, 1}ν is the set of ν-bit strings, identified in some
way with a finite field of size 2ν . We define the following sequence of vectors λν :

λ1 = (0, 1) (8.69)

λν+1 = (0‖λν1 , 0‖λν2 , . . . , 0‖λν2ν , 1‖λν2ν , . . . , 1‖λν2 , 1‖λν1) . (8.70)

116 BOUND TIGHTNESS

Note that λν contains all strings in X. Then ~c is λν without the first
component, meaning ~c contains all strings in X without the zero string. Similarly,
the sequence (c1, . . . , c2κ) contains all strings starting with ν − κ zeros, i.e.
0ν−κ‖ {0, 1}κ, excluding the zero string. Note that c1 = 0ν−11. The sequence
(c1 + c1, c1 + c2, . . . , c1 + c2κ) contains all strings in 0ν−κ‖ {0, 1}κ except for
c1, meaning it contains an additive subgroup of order 2κ−1. This results in an
attack using messages of length k = 2κ with success probability (2κ − 1)/2ν .

Chapter 9

Conclusion

9.1 Review

In Chapter 3 we reviewed the basic concepts and definitions on achieving
confidentiality and integrity. Encryption schemes were reviewed, which aim to
provide confidentiality, and authenticators introduced, a definition focusing on
the details necessary to achieve integrity. Authenticators describe both MAC
algorithms and AE schemes. AE schemes were subsequently introduced in
Chapter 3 as being the constructions which aim for both confidentiality and
integrity.

In Chapter 4 we reviewed the IV-based extensions of all the definitions from
Chapter 3. For integrity the IV-formalization does not make a difference, but we
saw that confidentiality falls apart in the abused IV setting. We provided new
definitions of abused IV confidentiality which align more closely to intuition,
since they show that security is never achieved in the abused IV setting.

Chapter 5 covered all the necessary building blocks to construct encryption
schemes, MAC algorithms, and AE schemes. In this chapter the tweakable
online cipher variants of COPE and COBRA were introduced, and compared
with the tweakable online cipher variant of TC3. Many of the examples in the
chapter were given as modes of operation for tweakable block ciphers, even if
they were introduced as a mode of operation for block ciphers.

Chapter 6 discussed how to achieve integrity and confidentiality in all the IV
settings using the building blocks from Chapter 5. The issue of ciphertext
expansion was discussed, along with a new application of ciphertext stealing to

117

118 CONCLUSION

COPE in order to preserve length. The many ways of adding an integrity check
to an encryption scheme were discussed, including the OCB trick, which was
applied to COPE in order to construct COPA.

Chapter 7 discussed the issues of how implementations of AE schemes in practice
might not align with the assumptions made in theory. The Subtle AE framework
was reviewed, which describes all possible forms of implementation leakage that
could occur in practice. The releasing unverified plaintext definitions were then
viewed as a special case of the subtle AE framework. The reasons for why many
AE schemes do not achieve RUP security were discussed, and solutions were
presented as well. For integrity in the RUP setting, the PRF-to-IV construction
was reviewed, as well as the attack on OCB.

Finally, in Chapter 8 we discussed what the security loss in reductions means to
practice. In the case of lightweight block ciphers, we saw that their small block
sizes could impose impractical limits on how much data could be processed
under a single key. To alleviate the problem, we introduced LightMAC, a simple
MAC algorithm whose security bound does not degrade as a function of the
message length. Then PMAC was analyzed, a known MAC algorithm. Its
dependence on message length had not been explored before, and we showed
how it depended on the masks used for PMAC’s block cipher calls. If the masks
are Gray codes, then we illustrated an attack establishing a dependence on
message length.

9.2 Open Problems

Design. Both COBRA and POET were originally published with faulty
security proofs and subsequently attacked [133], and COPA originally used
the XLS construction to deal with ciphertext expansion, which was shown to
be weak as well [135], resulting in a worse integrity bound for COPA [137].
Faulty proofs tend to have a detrimental effect on security, since the difference
between a secure and an insecure scheme can be small, and often non-intuitive.
Furthermore, increased design complexity and the push for greater efficiency
means that proving the security of algorithms will not become simpler in the
future.

Other than the issue of faulty proofs, the current design approach uses intuition
and trial and error to search for optimally efficient schemes. However, the search
space for secure and efficient schemes is large, and there is no reason to believe
that human intuition will be able to find the best schemes in this large space.

One promising approach is to explore what the limits are of the search space:

OPEN PROBLEMS 119

how many block cipher calls must a tweakable cipher have in order to provide
security, how efficient can the intermediate operations be, and is it possible to
efficiently avoid ciphertext expansion? Although Nandi [136] has made some
progress in this direction by considering the efficiency of encryption modes of
operation with linear intermediate functions, little progress has been made in
characterizing the entire search space for encryption modes, let alone any of
the other building blocks.

An alternative is to automate the search for secure schemes, an approach taken
by Hoang, Katz, and Malozemoff [91], who automate the search for secure AE
modes of operation for tweakable block ciphers. They consider a restricted class
of modes, but are able to discover interesting variants of known modes. Further
automation might even obviate the need for proofs if the search is able to prune
insecure schemes.

Subtle AE and RUP. The RUP setting seems to place strict limits on the
efficiency of the schemes, since all known solutions use tweakable ciphers. Are
there more efficient constructions? Alternatively, is there a way to meaningfully
weaken the Λ-function so as to provide sufficient RUP-security with known
constructions?

Message Length. LightMAC was introduced as a simple construction with
an `-free bound, and it performs favourably in comparison with other MACs
providing `-free bounds, namely PMAC-with-Parity [180] and PMACX [185].
However, the question of what the most efficient possible construction is remains
open. Some instantiation of PMAC could be a contender, although it is unclear
what PMAC’s security bound looks like when other masks are used. In particular,
the security of PMAC’s other variant, with powering up masks [153], is still
open, since it is not clear when they form an additive subgroup, nor is it clear
what other sufficient conditions there are for finding evenly covered sets. Finally,
Chapter 8 also shows beyond-birthday bound constructions like 3kf9 [183],
PMAC_Plus [179], and the Sum of CBCs [178], which are able to process
many more messages than the square root of the block size (but not very long
messages). Note that they are easily identified in Figure 8.1 by the fact that
their graphs do not go to zero on the right hand side of the figure. An obvious
question is how to efficiently construct a beyond-birthday bound MAC algorithm
which provides minimal dependence on the message length.

Appendix A

COBRA ciphertext stealing

Let M be a message where M1M2 · · ·M2`−1M2` = M and |Mi| = n for 1 ≤ i <
2`− 1.

A.1 ` > 1, |M2`−1| = n, and 0 < |M2`| < n

We start by computing the ciphertext of M1 · · ·M2`−2 as is usually done in
COBRA, resulting in C1 · · ·C2`−2. Let M∗ denote the rightmost |M2`| bits of
C2`−2, and we write C2`−2 = C ′2`−2M

∗. Then we compute the final ciphertext
fragment C2`−1C2` using M2`−1M2`M

∗ as our “new” final message fragment,
using different tweaks for the final block cipher calls. The resulting ciphertext is

C1 · · ·C2`−3C
′
2`−2C2`−1C2`. (A.1)

Figure A.1 shows a diagram of the process. Note that we can recover M∗ with
just knowledge of C2`−1 and C2`:

M2`M
∗ =

[
C2` ⊕ E(N,`,4)

K (C2`−1)
]
⊕([

E(N,`,3)
K

(
C2` ⊕ E(N,`,4)

K (C2`−1)
)
⊕ C2`−1

]
⊗ L

)
.

121

122 COBRA CIPHERTEXT STEALING

EK
N,`−1,1

EK
N,`−1,2

EK
N,`,3

EK
N,`,4

+

+

+

+

+ + + +

M2`−3 M2`−2 M2`−1 M2` M∗

C2`−3 C ′2`−2 M∗ C2`−1 C2`

× × ×

σ1 σ2

ρ1 ρ2

L L L

Figure A.1: Messages where the last block is not of full length, i.e. 0 < |M2`| < n.
Here M∗ is “stolen” from ciphertext block C2`−2 and used in the input to the
final fragment.

A.2 ` > 2 and 0 < |M2`−1| ≤ n

When there is no last block M2`, we replace it with the preceding ciphertext
block, C2`−2. Then we steal ciphertextM∗ of length |M2`−1| from the ciphertext
block C2`−4 such that C2`−4 = C ′2`−4M

∗. The rest of the computation is similar
to the previous case (Section A.1) and is depicted in Figure A.2.

A.3 |M | ≤ 3n

The above methods only work for messages of length greater than 3n (otherwise
there is no ciphertext to steal from). We need to use different techniques in
order to deal with shortest messages.

For 2n < |M | ≤ 3n we can use a technique similar as to what is used in COPA.
Instead of using XLS [150] which uses the inverse block cipher and was shown
to be insecure, we can use HCH [59] in order to compute the output as follows:

C1C2T
′ ← E(M1M2) (A.2)

C3T ← HCH(M3T
′), (A.3)

|M | ≤ 3N 123

EK
N,`−2,1

EK
N,`−2,2

EK
N,`−1,1

EK
N,`−1,2

EK
N,`,3

EK
N,`,4

+

+

+

+

+

+

+ + + + + +

M2`−5 M2`−4 M2`−3 M2`−2 M2`−1 M∗ C2`−2

C2`−5 C ′2`−4 M∗ C2`−3 C2`−2 C2`−1 C2`

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

L L L L L

Figure A.2: Messages where the last fragment is of length less than or equal
to n, i.e. 0 < |M2`−1| ≤ n. Here M∗ is stolen from ciphertext block C2`−4 and
used in the input to the final fragment together with ciphertext fragment C2`−2.

where E denotes COBRA and the final output of the scheme is C1C2C3T .

Appendix B

Basic Graph Theoretic
Definitions

1. A neighbour of a vertex v in a graph G is a vertex with an edge connecting
it to v.

2. A graph G is said to be k-regular if every vertex of G has exactly k
neighbours.

3. A subgraph of a graph G is a graph with vertex set and edge set subsets
of G’s vertex and edge sets, respectively.

4. A complete graph is a graph in which every vertex is connected to every
other vertex via an edge.

125

Appendix C

BQF-t is NP-complete

This appendix is due to Alan Szepieniec.

Definition C.0.1 (BQF-t). Given a finite field X with characteristic 2 and a
vector x∗ ∈ Xk and a target element t ∈ X, determine if there is a non-trivial
binary quadratic form Q ∈ {0, 1}k×k such that xT∗Qx∗ = t.

Note. The word ‘binary’ in our use of the term ‘binary quadratic form’ refers
to the coefficients of the quadratic form matrix Q and not to the number of
variables.

Proposition C.0.1. BQF-t ∈ NP

Proof. Given a BQF-t yes-instance (X,x∗, t) of (k + 2)× ` bits, there exists a
certificate of k2 × ` bits that proves it is a yes-instance, namely the matrix Q
such that xT∗Qx∗ = t. Moreover, the validity of this certificate can be verified by
computing xT∗Qx∗ and testing if it is indeed equal to t. This evaluation requires
(n+ 1)× n multiplications and the same number of additions in the finite field
X. After testing equality, the non-triviality of Q is verified by testing whether
QT +Q 6= 0, costing another n2 finite field additions and as many equality tests.
Thus, for every yes-instance of BQF-t, there exists a polynomial-size certificate
whose validity is verifiable in polynomial time. Hence, BQF-t ∈ NP.

Proposition C.0.2. BQF-t is NP-hard.

127

128 BQF-T IS NP-COMPLETE

Proof. We show that BQF-t is NP-hard by reducing the subset-sum problem
SS, another NP-hard problem, to it. In particular, we show that SS ≤ BQF-t
under deterministic polynomial-time Karp reductions.

Given an instance (X, S) of SS, the goal is to find a subset S0 ⊂ S such that∑
x∈S0

x = 1. Note the target of SS can be changed without loss of generality.
We transform this problem instance to an instance (X′,x∗, t) of BQF-t as follows.

Let k = #S, the number of elements in S and let each unique element si of S
be indexed by i ∈ {1, . . . , k}. Choose a degree 2k + 1 irreducible polynomial
ψ(z) ∈ X[z] and define the extension field X′ = X[z]/〈ψ(z)〉. Then define the
vector x∗ as follows:

x∗ =



z1s1
z2s2
...

zksk
z−1

z−2

...
z−k


.

The BQF-t instance is (X′,x∗, 1). It now remains to be shown that 1) this
transformation is computable in polynomial time; 2) if the SS problem instance
is a yes-instance, then the BQF-t problem instance is yes-instance; 3) conversely,
if the SS problem instance is a no-instance, then the BQF-t problem instance is
a no-instance.

1. It is known to be possible to deterministically select an irreducible
polynomial over a finite field of small characteristic in polynomial
time [164]. After selecting the polynomials, the inverse of z is computed
using the polynomial-time extended GCD algorithm and all the necessary
powers of z and z−1 are found after two times k multiplications. Lastly,
the proper powers of z are combined with the si elements using k
multiplications for the construction of the first half of the vector x∗;
the second half of this vector has already been computed. So since this
transformation consists of a polynomial-number of polynomial-time steps,
its total running time is also polynomial.

2. If the SS instance is a yes-instance, then there exist k binary weights
wi ∈ {0, 1} for all i ∈ {1, . . . , k} such that

∑k
i=1 wisi = 1. The existence

of these weights imply the existence of the matrix Q, as defined below.
This matrix consists of four k × k submatrices and only the diagonal of

BQF-T IS NP-COMPLETE 129

the upper right submatrix is nonzero. In fact, this diagonal is where the
weights wi appear.

Q =



w1
. . .

wk


(C.1)

Indeed, the BQF-t instance is guaranteed to be a yes-instance as

xT∗Qx∗ =
k∑
i=1

zisiwiz
−i = 1

if and only if
k∑
i=1

wisi = 1 ,

which is the solution to the SS problem. Also, Q is non-trivial if there
exists at least one nonzero weight wi.

3. If the SS instance is a no-instance, then no set of weights wi such that∑k
i=1 wisi = 1 exists. Consequently, no Q satisfying xT∗Qx∗ = 1 can exist.

The reason is that all the elements of the Q-matrix except for the upper
right diagonal are multiplied with higher or lower powers of z, which make
them linearly independent from 1. Hence, neither the upper right diagonal
nor any other set of nonzero elements in Q can make the total quadratic
form equal to one.

Corollary 1. BQF-t is NP-complete.

Bibliography

[1] The Alert attack. https://www.mitls.org/pages/attacks/Alert. Date
accessed 2016.03.03.

[2] CWI cryptanalyst discovers new cryptographic attack variant in Flame
spy malware. http://www.cwi.nl/news/2012/cwi-cryptanalist-
discovers-new-cryptographic-attack-variant-in-flame-spy-
malware, June 2012. Date accessed 2016.03.04.

[3] Abed, F., Fluhrer, S. R., Forler, C., List, E., Lucks, S.,
McGrew, D. A., and Wenzel, J. Pipelineable On-line Encryption. In
Cid and Rechberger [61], pp. 205–223.

[4] Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green,
M., Halderman, J. A., Heninger, N., Springall, D., Thomé, E.,
Valenta, L., VanderSloot, B., Wustrow, E., Zanella-Béguelin,
S., and Zimmermann, P. Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In 22nd ACM Conference on Computer and
Communications Security (Oct. 2015).

[5] Akdemir, K., Dixon, M., Feghali, W., Fay, P., Gopal, V.,
Guilford, J., Erdinc Ozturk, G. W., and Zohar, R. Breakthrough
AES Performance with Intel AES New Instructions. Intel white paper,
January 2010.

[6] Albrecht, M. R., Driessen, B., Kavun, E. B., Leander, G., Paar,
C., and Yalçin, T. Block Ciphers - Focus on the Linear Layer (feat.
PRIDE). In Garay and Gennaro [79], pp. 57–76.

[7] Albrecht, M. R., Paterson, K. G., and Watson, G. J. Plaintext
Recovery Attacks against SSH. In IEEE Symposium on Security and
Privacy (2009), IEEE Computer Society, pp. 16–26.

131

https://www.mitls.org/pages/attacks/Alert
http://www.cwi.nl/news/2012/cwi-cryptanalist-discovers-new-cryptographic-attack-variant-in-flame-spy-malware
http://www.cwi.nl/news/2012/cwi-cryptanalist-discovers-new-cryptographic-attack-variant-in-flame-spy-malware
http://www.cwi.nl/news/2012/cwi-cryptanalist-discovers-new-cryptographic-attack-variant-in-flame-spy-malware

132 BIBLIOGRAPHY

[8] AlFardan, N. J., and Paterson, K. G. Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols. In IEEE Symposium on Security
and Privacy (2013), IEEE Computer Society, pp. 526–540.

[9] Anderson, E., Beaver, C. L., Draelos, T., Schroeppel, R.,
and Torgerson, M. ManTiCore: Encryption with Joint Cipher-
State Authentication. In ACISP (2004), H. Wang, J. Pieprzyk, and
V. Varadharajan, Eds., vol. 3108 of Lecture Notes in Computer Science,
Springer, pp. 440–453.

[10] Andreeva, E., Barwell, G., Page, D., and Stam, M. Turning
Online Ciphers Off. Cryptology ePrint Archive, Report 2015/485, 2015.

[11] Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B.,
Mouha, N., and Yasuda, K. APE: authenticated permutation-based
encryption for lightweight cryptography. In Cid and Rechberger [61],
pp. 168–186.

[12] Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha,
N., and Yasuda, K. How to Securely Release Unverified Plaintext in
Authenticated Encryption. In Sarkar and Iwata [160], pp. 105–125.

[13] Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B.,
Tischhauser, E., and Yasuda, K. Parallelizable and Authenticated
Online Ciphers. In Sako and Sarkar [159], pp. 424–443.

[14] Andreeva, E., Luykx, A., Mennink, B., and Yasuda, K. COBRA: A
Parallelizable Authenticated Online Cipher Without Block Cipher Inverse.
In Fast Software Encryption, FSE 2014 (London,UK, 2014), C. Cid and
C. Rechberger, Eds., Lecture Notes in Computer Science, Springer-Verlag,
p. 16.

[15] Aoki, K., and Yasuda, K. The Security of the OCB Mode of Operation
without the SPRP Assumption. In ProvSec 2013 (2013), W. Susilo and
R. Reyhanitabar, Eds., vol. 8209 of Lecture Notes in Computer Science,
Springer, pp. 202–220.

[16] Arbaugh, W., Shankar, N., Wan, Y., and Zhang, K. Your 80211
wireless network has no clothes. Wireless Communications, IEEE 9, 6
(2002), 44–51.

[17] Atlantic, T. The Inside Story of How Facebook Responded to Tunisian
Hacks. http://www.theatlantic.com/technology/archive/2011/
01/the-inside-story-of-how-facebook-responded-to-tunisian-
hacks/70044/, January 2011. Date accessed 2016.03.06.

http://www.theatlantic.com/technology/archive/2011/01/the-inside-story-of-how-facebook-responded-to-tunisian-hacks/70044/
http://www.theatlantic.com/technology/archive/2011/01/the-inside-story-of-how-facebook-responded-to-tunisian-hacks/70044/
http://www.theatlantic.com/technology/archive/2011/01/the-inside-story-of-how-facebook-responded-to-tunisian-hacks/70044/

BIBLIOGRAPHY 133

[18] Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel,
M., Steube, J., Valenta, L., Adrian, D., Halderman, J. A.,
Dukhovni, V., Käsper, E., Cohney, S., Engels, S., Paar, C., and
Shavitt, Y. The DROWN Attack. https://drownattack.com/. Date
accessed 2016.03.03.

[19] Bangeman, E. Blame for record-breaking credit card data theft laid
at the feet of WEP. http://arstechnica.com/security/2007/05/
blame-for-record-breaking-credit-card-data-theft-laid-at-
the-feet-of-wep/, May 2007. Date accessed 2016.03.04.

[20] Barker, W. C., and Barker, E. Recommendation for the triple
data encryption algorithm (TDEA) block cipher. US Department of
Commerce, Technology Administration, National Institute of Standards
and Technology, 2004.

[21] Barwell, G., Page, D., and Stam, M. Rogue Decryption Failures:
Reconciling AE Robustness Notions. In Cryptography and Coding - 15th
IMA International Conference, IMACC 2015, Oxford, UK, December
15-17, 2015. Proceedings (2015), J. Groth, Ed., vol. 9496 of Lecture Notes
in Computer Science, Springer, pp. 94–111.

[22] Baysal, A., and Sahin, S. RoadRunneR: A Small And Fast Bitslice
Block Cipher For Low Cost 8-bit Processors. LightSec 2015, 2015. to
appear.

[23] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks,
B., and Wingers, L. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013.

[24] Bellare, M., Boldyreva, A., Knudsen, L. R., and Namprempre,
C. Online Ciphers and the Hash-CBC Construction. In CRYPTO (2001),
J. Kilian, Ed., vol. 2139 of Lecture Notes in Computer Science, Springer,
pp. 292–309.

[25] Bellare, M., Desai, A., Jokipii, E., and Rogaway, P. A Concrete
Security Treatment of Symmetric Encryption. In FOCS (1997), IEEE
Computer Society, pp. 394–403.

[26] Bellare, M., Guérin, R., and Rogaway, P. XOR MACs:
New Methods for Message Authentication Using Finite Pseudorandom
Functions. In Coppersmith [62], pp. 15–28.

[27] Bellare, M., Kilian, J., and Rogaway, P. The Security of Cipher
Block Chaining. In Advances in Cryptology - CRYPTO ’94, 14th Annual
International Cryptology Conference, Santa Barbara, California, USA,

https://drownattack.com/
http://arstechnica.com/security/2007/05/blame-for-record-breaking-credit-card-data-theft-laid-at-the-feet-of-wep/
http://arstechnica.com/security/2007/05/blame-for-record-breaking-credit-card-data-theft-laid-at-the-feet-of-wep/
http://arstechnica.com/security/2007/05/blame-for-record-breaking-credit-card-data-theft-laid-at-the-feet-of-wep/

134 BIBLIOGRAPHY

August 21-25, 1994, Proceedings (1994), Y. Desmedt, Ed., vol. 839 of
Lecture Notes in Computer Science, Springer, pp. 341–358.

[28] Bellare, M., Kilian, J., and Rogaway, P. The Security of the
Cipher Block Chaining Message Authentication Code. J. Comput. Syst.
Sci. 61, 3 (2000), 362–399.

[29] Bellare, M., Kohno, T., and Namprempre, C. Breaking and
Provably Repairing the SSH Authenticated Encryption Scheme: A
Case Study of the Encode-then-Encrypt-and-MAC Paradigm. ACM
Transactions on Information and System Security (2004), 206–241.

[30] Bellare, M., Krovetz, T., and Rogaway, P. Luby-Rackoff
Backwards: Increasing Security by Making Block Ciphers Non-invertible.
In Advances in Cryptology - EUROCRYPT ’98, International Conference
on the Theory and Application of Cryptographic Techniques, Espoo,
Finland, May 31 - June 4, 1998, Proceeding (1998), K. Nyberg, Ed.,
vol. 1403 of Lecture Notes in Computer Science, Springer, pp. 266–280.

[31] Bellare, M., and Micciancio, D. A New Paradigm for Collision-Free
Hashing: Incrementality at Reduced Cost. In EUROCRYPT (1997),
W. Fumy, Ed., vol. 1233 of Lecture Notes in Computer Science, Springer,
pp. 163–192.

[32] Bellare, M., and Namprempre, C. Authenticated Encryption:
Relations among Notions and Analysis of the Generic Composition
Paradigm. In ASIACRYPT 2000 (2000), T. Okamoto, Ed., vol. 1976 of
Lecture Notes in Computer Science, Springer, pp. 531–545.

[33] Bellare, M., Pietrzak, K., and Rogaway, P. Improved Security
Analyses for CBC MACs. In Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 14-18, 2005, Proceedings (2005), V. Shoup, Ed.,
vol. 3621 of Lecture Notes in Computer Science, Springer, pp. 527–545.

[34] Bellare, M., and Rogaway, P. Encode-Then-Encipher Encryption:
How to Exploit Nonces or Redundancy in Plaintexts for Efficient
Cryptography. In ASIACRYPT (2000), T. Okamoto, Ed., vol. 1976
of Lecture Notes in Computer Science, Springer, pp. 317–330.

[35] Bellare, M., and Rogaway, P. The Security of Triple Encryption
and a Framework for Code-Based Game-Playing Proofs. In Advances in
Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings (2006),

BIBLIOGRAPHY 135

S. Vaudenay, Ed., vol. 4004 of Lecture Notes in Computer Science,
Springer, pp. 409–426.

[36] Berendschot, A., Boly, J.-P., Bosselaers, A., Brandt, J.,
Chaum, D., Damgård, I., de Rooij, P., Dichtl, M., Fumy, W.,
Jansen, C. J. A., Landrock, P., Preneel, B., Roelofsen, G.,
van der Ham, M., and Vandewalle, J. Integrity Primitives for
Secure Information systems. Final Report of RACE Integrity Primitives
Evaluation (RIPE-RACE 1040), vol. 1007 of Lecture Notes in Computer
Science. Springer-Verlag, 1995.

[37] Bernstein, D. J. How to Stretch Random Functions: The Security of
Protected Counter Sums. J. Cryptology 12, 3 (1999), 185–192.

[38] Bernstein, D. J. Stronger Security Bounds for Wegman-Carter-Shoup
Authenticators. In Cramer [63], pp. 164–180.

[39] Bernstein, D. J. The Poly1305-AES Message-Authentication Code. In
Fast Software Encryption: 12th International Workshop, FSE 2005, Paris,
France, February 21-23, 2005, Revised Selected Papers (2005), H. Gilbert
and H. Handschuh, Eds., vol. 3557 of Lecture Notes in Computer Science,
Springer, pp. 32–49.

[40] Bernstein, D. J., and Lange, T. Non-uniform Cracks in the
Concrete: The Power of Free Precomputation. In Advances in Cryptology
- ASIACRYPT 2013 - 19th International Conference on the Theory and
Application of Cryptology and Information Security, Bengaluru, India,
December 1-5, 2013, Proceedings, Part II (2013), K. Sako and P. Sarkar,
Eds., vol. 8270 of Lecture Notes in Computer Science, Springer, pp. 321–
340.

[41] Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A.,
and Strub, P. Triple Handshakes and Cookie Cutters: Breaking and
Fixing Authentication over TLS. In 2014 IEEE Symposium on Security
and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014 (2014),
IEEE Computer Society, pp. 98–113. http://www.mitls.org/downloads/
tlsauth.pdf.

[42] Bhargavan, K., Leurent, G., Cadé, D., Blanchet, B.,
Paraskevopoulou, Z., Hriţcu, C., Dénès, M., Lampropoulos,
L., Pierce, B. C., Delignat-Lavaud, A., et al. Transcript
Collision Attacks: Breaking Authentication in TLS, IKE, and SSH. In
Network and Distributed System Security Symposium–NDSS 2016 (2016).
http://www.mitls.org/downloads/transcript-collisions.pdf.

http://www.mitls.org/downloads/tlsauth.pdf
http://www.mitls.org/downloads/tlsauth.pdf
http://www.mitls.org/downloads/transcript-collisions.pdf

136 BIBLIOGRAPHY

[43] Bhaumik, R., and Nandi, M. An Inverse-Free Single-Keyed Tweakable
Enciphering Scheme. In Iwata and Cheon [97], pp. 159–180.

[44] Bhaumik, R., and Nandi, M. Revisiting Turning Online Cipher Off.
Cryptology ePrint Archive, Report 2015/813, 2015.

[45] Biryukov, A., Ed. Fast Software Encryption, 14th International
Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007,
Revised Selected Papers (2007), vol. 4593 of Lecture Notes in Computer
Science, Springer.

[46] Black, J., Cochran, M., and Highland, T. A Study of the MD5
Attacks: Insights and Improvements. In FSE (2006), M. J. B. Robshaw,
Ed., vol. 4047 of Lecture Notes in Computer Science, Springer, pp. 262–
277.

[47] Black, J., and Rogaway, P. A Block-Cipher Mode of Operation for
Parallelizable Message Authentication. In Knudsen [109], pp. 384–397.

[48] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C.,
Poschmann, A., Robshaw, M. J. B., Seurin, Y., and Vikkelsoe,
C. PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings (2007),
P. Paillier and I. Verbauwhede, Eds., vol. 4727 of Lecture Notes in
Computer Science, Springer, pp. 450–466.

[49] Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., and
Tischhauser, E. ALE: AES-Based Lightweight Authenticated
Encryption. In FSE 2013 (2013), S. Moriai, Ed., vol. 8424 of Lecture
Notes in Computer Science, Springer, pp. 447–466.

[50] Boldyreva, A., Degabriele, J. P., Paterson, K. G., and Stam,
M. Security of Symmetric Encryption in the Presence of Ciphertext
Fragmentation. In EUROCRYPT 2012 (2012), D. Pointcheval and
T. Johansson, Eds., vol. 7237 of Lecture Notes in Computer Science,
Springer, pp. 682–699.

[51] Boldyreva, A., Degabriele, J. P., Paterson, K. G., and Stam,
M. On Symmetric Encryption with Distinguishable Decryption Failures.
In Fast Software Encryption - 20th International Workshop, FSE 2013,
Singapore, March 11-13, 2013. Revised Selected Papers (2013), S. Moriai,
Ed., vol. 8424 of Lecture Notes in Computer Science, Springer, pp. 367–
390.

BIBLIOGRAPHY 137

[52] Boldyreva, A., Degabriele, J. P., Paterson, K. G., and Stam,
M. On Symmetric Encryption with Distinguishable Decryption Failures.
Cryptology ePrint Archive, Report 2013/433, 2013.

[53] Boldyreva, A., Degabriele, J. P., Paterson, K. G., and Stam,
M. Security of Symmetric Encryption in the Presence of Ciphertext
Fragmentation. Cryptology ePrint Archive, Report 2015/059, 2015.

[54] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E. B.,
Knezevic, M., Knudsen, L. R., Leander, G., Nikov, V., Paar,
C., Rechberger, C., Rombouts, P., Thomsen, S. S., and Yalçin,
T. PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In Wang and Sako [172], pp. 208–225.

[55] Borisov, N., Goldberg, I., and Wagner, D. Intercepting mobile
communications: the insecurity of 802.11. In MOBICOM (2001), C. Rose,
Ed., ACM, pp. 180–189.

[56] Cannière, C. D., Dunkelman, O., and Knezevic, M. KATAN and
KTANTAN - A Family of Small and Efficient Hardware-Oriented Block
Ciphers. In Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September
6-9, 2009, Proceedings (2009), C. Clavier and K. Gaj, Eds., vol. 5747 of
Lecture Notes in Computer Science, Springer, pp. 272–288.

[57] Cantero, H. M., Peter, S., Bushing, and Segher. Console Hacking
2010 – PS3 Epic Fail. 27th Chaos Communication Congress, December
2010.

[58] Canvel, B., Hiltgen, A. P., Vaudenay, S., and Vuagnoux, M.
Password Interception in a SSL/TLS Channel. In CRYPTO (2003),
D. Boneh, Ed., vol. 2729 of Lecture Notes in Computer Science, Springer,
pp. 583–599.

[59] Chakraborty, D., and Sarkar, P. HCH: A New Tweakable
Enciphering Scheme Using the Hash-Counter-Hash Approach. IEEE
Transactions on Information Theory 54, 4 (2008), 1683–1699.

[60] Chang, D., and Nandi, M. A Short Proof of the PRP/PRF Switching
Lemma. Cryptology ePrint Archive, Report 2008/078, 2008.

[61] Cid, C., and Rechberger, C., Eds. Fast Software Encryption -
21st International Workshop, FSE 2014, London, UK, March 3-5, 2014.
Revised Selected Papers (2015), vol. 8540 of Lecture Notes in Computer
Science, Springer.

138 BIBLIOGRAPHY

[62] Coppersmith, D., Ed. Advances in Cryptology - CRYPTO ’95, 15th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 27-31, 1995, Proceedings (1995), vol. 963 of Lecture Notes
in Computer Science, Springer.

[63] Cramer, R., Ed. Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings (2005), vol. 3494 of Lecture Notes in Computer Science,
Springer.

[64] Daemen, J. Hash Function and Cipher Design: Strategies Based on
Linear and Differential Cryptanalysis. PhD thesis, Katholieke Universiteit
Leuven, Leuven, Belgium, 1995.

[65] Daemen, J., Peeters, M., Van Assche, G., and Rijmen, V. Nessie
Proposal: Noekeon. First Open Nessie Workshop, 2000.

[66] Daemen, J., and Rijmen, V. AES proposal: Rijndael. First Advanced
Encryption Standard (AES) Conference, 1998.

[67] Daemen, J., and Rijmen, V. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 2002.

[68] Datta, N., and Yasuda, K. Generalizing PMAC Under Weaker
Assumptions. In Information Security and Privacy - 20th Australasian
Conference, ACISP 2015, Brisbane, QLD, Australia, June 29 - July 1,
2015, Proceedings (2015), E. Foo and D. Stebila, Eds., vol. 9144 of Lecture
Notes in Computer Science, Springer, pp. 433–450.

[69] Desai, A. New Paradigms for Constructing Symmetric Encryption
Schemes Secure against Chosen-Ciphertext Attack. In CRYPTO (2000),
M. Bellare, Ed., vol. 1880 of Lecture Notes in Computer Science, Springer,
pp. 394–412.

[70] Dodis, Y., and Pietrzak, K. Improving the Security of MACs Via
Randomized Message Preprocessing. In Biryukov [45], pp. 414–433.

[71] Dodis, Y., Pietrzak, K., and Puniya, P. A New Mode of
Operation for Block Ciphers and Length-Preserving MACs. In Advances in
Cryptology - EUROCRYPT 2008, 27th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, April 13-17, 2008. Proceedings (2008), N. P. Smart, Ed., vol. 4965
of Lecture Notes in Computer Science, Springer, pp. 198–219.

BIBLIOGRAPHY 139

[72] Dodis, Y., and Steinberger, J. P. Message Authentication Codes
from Unpredictable Block Ciphers. In Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2009. Proceedings (2009), S. Halevi, Ed., vol. 5677
of Lecture Notes in Computer Science, Springer, pp. 267–285.

[73] Dodis, Y., and Steinberger, J. P. Domain Extension for MACs
Beyond the Birthday Barrier. In Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-
19, 2011. Proceedings (2011), K. G. Paterson, Ed., vol. 6632 of Lecture
Notes in Computer Science, Springer, pp. 323–342.

[74] Dziembowski, S., and Pietrzak, K. Leakage-resilient cryptography.
In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA (2008), IEEE
Computer Society, pp. 293–302.

[75] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M.,
Kohno, T., Callas, J., and Walker, J. The Skein Hash Function
Family, 2009. Submission to NIST’s SHA-3 competition.

[76] Fleischmann, E., Forler, C., and Lucks, S. McOE: A Family of
Almost Foolproof On-Line Authenticated Encryption Schemes. In FSE
(2012), A. Canteaut, Ed., vol. 7549 of Lecture Notes in Computer Science,
Springer, pp. 196–215.

[77] Fleischmann, E., Forler, C., Lucks, S., and Wenzel, J. McOE: A
Family of Almost Foolproof On-Line Authenticated Encryption Schemes.
Cryptology ePrint Archive, Report 2011/644, 2011.

[78] Fouque, P.-A., Joux, A., Martinet, G., and Valette, F.
Authenticated On-Line Encryption. In Selected Areas in Cryptography
(2003), M. Matsui and R. J. Zuccherato, Eds., vol. 3006 of Lecture Notes
in Computer Science, Springer, pp. 145–159.

[79] Garay, J. A., and Gennaro, R., Eds. Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I (2014), vol. 8616 of Lecture
Notes in Computer Science, Springer.

[80] Gaži, P., Pietrzak, K., and Rybár, M. The Exact PRF-Security of
NMAC and HMAC. In Garay and Gennaro [79], pp. 113–130.

[81] Gennaro, R., and Robshaw, M., Eds. Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,

140 BIBLIOGRAPHY

USA, August 16-20, 2015, Proceedings, Part I (2015), vol. 9215 of Lecture
Notes in Computer Science, Springer.

[82] Gérard, B., Grosso, V., Naya-Plasencia, M., and Standaert,
F. Block Ciphers That Are Easier to Mask: How Far Can We Go?
In Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th
International Workshop, Santa Barbara, CA, USA, August 20-23, 2013.
Proceedings (2013), G. Bertoni and J. Coron, Eds., vol. 8086 of Lecture
Notes in Computer Science, Springer, pp. 383–399.

[83] Goldwasser, S., and Micali, S. Probabilistic Encryption. J. Comput.
Syst. Sci. 28, 2 (1984), 270–299.

[84] Gong, Z., Nikova, S., and Law, Y. W. KLEIN: A New Family
of Lightweight Block Ciphers. In RFID. Security and Privacy - 7th
International Workshop, RFIDSec 2011, Amherst, USA, June 26-28, 2011,
Revised Selected Papers (2011), A. Juels and C. Paar, Eds., vol. 7055 of
Lecture Notes in Computer Science, Springer, pp. 1–18.

[85] Gostev, A. The Flame: Questions and Answers.
https://www.securelist.com/en/blog/208193522/
The_Flame_Questions_and_Answers, May 2012. Date accessed
2016.03.04.

[86] Grosso, V., Leurent, G., Standaert, F., and Varici,
K. LS-Designs: Bitslice Encryption for Efficient Masked Software
Implementations. In Cid and Rechberger [61], pp. 18–37.

[87] Gueron, S. AES-GCM software performance on the current high end
CPUs as a performance baseline for CAESAR competition. Directions in
Authenticated Ciphers (DIAC), 2013.

[88] Guo, J., Peyrin, T., Poschmann, A., and Robshaw, M. J. B. The
LED Block Cipher. In Preneel and Takagi [145], pp. 326–341.

[89] Hall, C., Wagner, D., Kelsey, J., and Schneier, B. Building PRFs
from PRPs. In Advances in Cryptology - CRYPTO ’98, 18th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 23-27, 1998, Proceedings (1998), H. Krawczyk, Ed., vol. 1462 of
Lecture Notes in Computer Science, Springer, pp. 370–389.

[90] Handschuh, H., and Preneel, B. Key-Recovery Attacks on Universal
Hash Function Based MAC Algorithms. In Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2008. Proceedings (2008), D. Wagner,
Ed., vol. 5157 of Lecture Notes in Computer Science, Springer, pp. 144–
161.

https://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers
https://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers

BIBLIOGRAPHY 141

[91] Hoang, V. T., Katz, J., and Malozemoff, A. J. Automated Analysis
and Synthesis of Authenticated Encryption Schemes. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-6, 2015 (2015), I. Ray, N. Li,
and C. Kruegel, Eds., ACM, pp. 84–95.

[92] Hoang, V. T., Krovetz, T., and Rogaway, P. Robust Authenticated-
Encryption: AEZ and the Problem that it Solves. IACR Cryptology ePrint
Archive 2014 (2014), 793.

[93] Hoang, V. T., Reyhanitabar, R., Rogaway, P., and Vizár, D.
Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance.
In Gennaro and Robshaw [81], pp. 493–517.

[94] Hong, D., Lee, J., Kim, D., Kwon, D., Ryu, K. H., and Lee, D.
LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors.
In Information Security Applications - 14th International Workshop, WISA
2013, Jeju Island, Korea, August 19-21, 2013, Revised Selected Papers
(2013), Y. Kim, H. Lee, and A. Perrig, Eds., vol. 8267 of Lecture Notes in
Computer Science, Springer, pp. 3–27.

[95] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee,
C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., and
Chee, S. HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In Cryptographic Hardware and Embedded Systems - CHES 2006,
8th International Workshop, Yokohama, Japan, October 10-13, 2006,
Proceedings (2006), L. Goubin and M. Matsui, Eds., vol. 4249 of Lecture
Notes in Computer Science, Springer, pp. 46–59.

[96] Impagliazzo, R., and Rudich, S. Limits on the Provable Consequences
of One-Way Permutations. In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton,
USA (1989), D. S. Johnson, Ed., ACM, pp. 44–61.

[97] Iwata, T., and Cheon, J. H., Eds. Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part II (2015),
vol. 9453 of Lecture Notes in Computer Science, Springer.

[98] Iwata, T., and Kurosawa, K. Stronger Security Bounds for OMAC,
TMAC, and XCBC. In Progress in Cryptology - INDOCRYPT 2003,
4th International Conference on Cryptology in India, New Delhi, India,
December 8-10, 2003, Proceedings (2003), T. Johansson and S. Maitra,
Eds., vol. 2904 of Lecture Notes in Computer Science, Springer, pp. 402–
415.

142 BIBLIOGRAPHY

[99] Iwata, T., and Yasuda, K. BTM: A Single-Key, Inverse-Cipher-Free
Mode for Deterministic Authenticated Encryption. In Selected Areas
in Cryptography (2009), M. J. Jacobson Jr, V. Rijmen, and R. Safavi-
Naini, Eds., vol. 5867 of Lecture Notes in Computer Science, Springer,
pp. 313–330.

[100] Iwata, T., and Yasuda, K. HBS: A Single-Key Mode of Operation for
Deterministic Authenticated Encryption. In FSE (2009), O. Dunkelman,
Ed., vol. 5665 of Lecture Notes in Computer Science, Springer, pp. 394–
415.

[101] Jean, J., Nikolic, I., and Peyrin, T. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II (2014), P. Sarkar and
T. Iwata, Eds., vol. 8874 of Lecture Notes in Computer Science, Springer,
pp. 274–288.

[102] Journault, A., Standaert, F.-X., and Varici, K. Improving the
Security and Efficiency of Block Ciphers based on LS-Designs. proceedings
of the 9th International Workshop on Coding and Cryptography, WCC
2015, 2015.

[103] Joux, A. Authentication Failures in NIST Version of GCM.
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
Joux_comments.pdf, 2006. Date accessed 2016.02.20.

[104] Joux, A., Martinet, G., and Valette, F. Blockwise-Adaptive
Attackers: Revisiting the (In)Security of Some Provably Secure Encryption
Models: CBC, GEM, IACBC. In Yung [181], pp. 17–30.

[105] Jovanovic, P., Luykx, A., and Mennink, B. Beyond 2 c/2 security in
sponge-based authenticated encryption modes. In Sarkar and Iwata [160],
pp. 85–104.

[106] Karakoç, F., Demirci, H., and Harmanci, A. E. ITUbee: A
Software Oriented Lightweight Block Cipher. In Lightweight Cryptography
for Security and Privacy - Second International Workshop, LightSec 2013,
Gebze, Turkey, May 6-7, 2013, Revised Selected Papers (2013), G. Avoine
and O. Kara, Eds., vol. 8162 of Lecture Notes in Computer Science,
Springer, pp. 16–27.

[107] Katz, J., and Yung, M. Complete characterization of security notions
for probabilistic private-key encryption. In Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, May 21-23,

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf

BIBLIOGRAPHY 143

2000, Portland, OR, USA (2000), F. F. Yao and E. M. Luks, Eds., ACM,
pp. 245–254.

[108] Katz, J., and Yung, M. Unforgeable Encryption and Chosen Ciphertext
Secure Modes of Operation. In Fast Software Encryption, 7th International
Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings
(2000), B. Schneier, Ed., vol. 1978 of Lecture Notes in Computer Science,
Springer, pp. 284–299.

[109] Knudsen, L. R., Ed. Advances in Cryptology - EUROCRYPT 2002,
International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002,
Proceedings (2002), vol. 2332 of Lecture Notes in Computer Science,
Springer.

[110] Kohno, T. Attacking and repairing the winZip encryption scheme. In
ACM Conference on Computer and Communications Security (2004),
V. Atluri, B. Pfitzmann, and P. D. McDaniel, Eds., ACM, pp. 72–81.

[111] Krovetz, T., and Rogaway, P. The Software Performance of
Authenticated-Encryption Modes. In FSE (2011), A. Joux, Ed., vol. 6733
of Lecture Notes in Computer Science, Springer, pp. 306–327.

[112] Laywine, C. F., and Mullen, G. L. Discrete mathematics using Latin
squares, vol. 49. John Wiley & Sons, 1998.

[113] Leander, G., Paar, C., Poschmann, A., and Schramm, K. New
Lightweight DES Variants. In Biryukov [45], pp. 196–210.

[114] Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung,
T., and Wachter, C. Public Keys. In CRYPTO (2012), R. Safavi-Naini
and R. Canetti, Eds., vol. 7417 of Lecture Notes in Computer Science,
Springer, pp. 626–642.

[115] Lim, C. H., and Korkishko, T. mCrypton - A Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors. In Information Security
Applications, 6th International Workshop, WISA 2005, Jeju Island, Korea,
August 22-24, 2005, Revised Selected Papers (2005), J. Song, T. Kwon,
and M. Yung, Eds., vol. 3786 of Lecture Notes in Computer Science,
Springer, pp. 243–258.

[116] Liskov, M., Rivest, R. L., and Wagner, D. Tweakable Block Ciphers.
In Yung [181], pp. 31–46.

[117] Luby, M., and Rackoff, C. How to Construct Pseudorandom
Permutations from Pseudorandom Functions. SIAM J. Comput. 17,
2 (1988), 373–386.

144 BIBLIOGRAPHY

[118] Lucks, S. The Sum of PRPs Is a Secure PRF. In Advances in
Cryptology - EUROCRYPT 2000, International Conference on the Theory
and Application of Cryptographic Techniques, Bruges, Belgium, May 14-
18, 2000, Proceeding (2000), B. Preneel, Ed., vol. 1807 of Lecture Notes
in Computer Science, Springer, pp. 470–484.

[119] Luykx, A., Preneel, B., Szepieniec, A., and Yasuda, K. On the
Influence of Message Length in PMAC’s Security Bounds. In Advances
in Cryptology - EUROCRYPT 2016 (Vienna,AT, 2016), J.-S. Coron and
M. Fischlin, Eds., Lecture Notes in Computer Science, Springer-Verlag,
p. 30.

[120] Luykx, A., Preneel, B., Szepieniec, A., and Yasuda, K. On the
Influence of Message Length in PMAC’s Security Bounds. Cryptology
ePrint Archive, Report 2016/185, 2016.

[121] Luykx, A., Preneel, B., Tischhauser, E., and Yasuda, K. A MAC
Mode for Lightweight Block Ciphers. Cryptology ePrint Archive, Report
2016/190, 2016.

[122] Luykx, A., Preneel, B., Tischhauser, E., and Yasuda, K. A MAC
Mode for Lightweight Block Ciphers. In Fast Software Encryption, FSE
2016 (Bochum,DE, 2016), Lecture Notes in Computer Science, Springer-
Verlag, p. 20.

[123] Maurer, U. M. Indistinguishability of random systems. In Knudsen [109],
pp. 110–132.

[124] Maurer, U. M., and Sjödin, J. Single-Key AIL-MACs from Any FIL-
MAC. In Automata, Languages and Programming, 32nd International
Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings
(2005), L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
Eds., vol. 3580 of Lecture Notes in Computer Science, Springer, pp. 472–
484.

[125] McGrew, D. A., and Viega, J. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In INDOCRYPT (2004),
A. Canteaut and K. Viswanathan, Eds., vol. 3348 of Lecture Notes in
Computer Science, Springer, pp. 343–355.

[126] Minematsu, K. How to Thwart Birthday Attacks against MACs via
Small Randomness. In Fast Software Encryption, 17th International
Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised Selected
Papers (2010), S. Hong and T. Iwata, Eds., vol. 6147 of Lecture Notes in
Computer Science, Springer, pp. 230–249.

BIBLIOGRAPHY 145

[127] Minematsu, K. Parallelizable Rate-1 Authenticated Encryption from
Pseudorandom Functions. In Nguyen and Oswald [141], pp. 275–292.

[128] Minematsu, K., and Matsushima, T. New Bounds for PMAC, TMAC,
and XCBC. In Biryukov [45], pp. 434–451.

[129] Mouha, N., and Luykx, A. Multi-key security: The even-mansour
construction revisited. In Gennaro and Robshaw [81], pp. 209–223.

[130] Namprempre, C., Rogaway, P., and Shrimpton, T. Reconsidering
Generic Composition. In Nguyen and Oswald [141], pp. 257–274.

[131] Nandi, M. Improved security analysis for OMAC as a pseudorandom
function. J. Mathematical Cryptology 3, 2 (2009), 133–148.

[132] Nandi, M. Forging Attack on COBRA. Cryptographic Competitions
Google Group, 2014.

[133] Nandi, M. Forging Attacks on Two Authenticated Encryption Schemes
COBRA and POET. In Sarkar and Iwata [160], pp. 126–140.

[134] Nandi, M. Forging Attacks on two Authenticated Encryptions COBRA
and POET. Cryptology ePrint Archive, Report 2014/363, 2014.

[135] Nandi, M. XLS is Not a Strong Pseudorandom Permutation. In Sarkar
and Iwata [160], pp. 478–490.

[136] Nandi, M. On the Optimality of Non-Linear Computations of Length-
Preserving Encryption Schemes. In Iwata and Cheon [97], pp. 113–133.

[137] Nandi, M. Revisiting Security Claims of XLS and COPA. IACR
Cryptology ePrint Archive 2015 (2015), 444.

[138] Nandi, M., and Mandal, A. Improved security analysis of PMAC. J.
Mathematical Cryptology 2, 2 (2008), 149–162.

[139] National Institute of Standards and Technology. DES Modes
of Operation. FIPS 81, December 1980.

[140] Needham, R. M., and Wheeler, D. J. Tea extensions, 1997.

[141] Nguyen, P. Q., and Oswald, E., Eds. Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings (2014), vol. 8441 of Lecture Notes in
Computer Science, Springer.

146 BIBLIOGRAPHY

[142] Paterson, K. G., and AlFardan, N. J. Plaintext-Recovery Attacks
Against Datagram TLS. In NDSS (2012), The Internet Society.

[143] Petrank, E., and Rackoff, C. CBC MAC for Real-Time Data Sources.
JOURNAL OF CRYPTOLOGY 13 (1997), 315–338.

[144] Pietrzak, K. A Tight Bound for EMAC. In Automata, Languages and
Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II (2006), M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, Eds., vol. 4052 of Lecture Notes in Computer
Science, Springer, pp. 168–179.

[145] Preneel, B., and Takagi, T., Eds. Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara,
Japan, September 28 - October 1, 2011. Proceedings (2011), vol. 6917 of
Lecture Notes in Computer Science, Springer.

[146] Preneel, B., and van Oorschot, P. C. MDx-MAC and Building
Fast MACs from Hash Functions. In Coppersmith [62], pp. 1–14.

[147] Rabin, M. O. Transaction protection by beacons. Journal of Computer
and System Sciences 27, 2 (1983), 256 – 267.

[148] Ray, M., and Dispensa, S. Renegotiating TLS. https://kryptera.se/
Renegotiating%20TLS.pdf. Date accessed 2016.03.03.

[149] Ristenpart, T., and Rogaway, P. How to Enrich the Message Space
of a Cipher. In Biryukov [45], pp. 101–118.

[150] Ristenpart, T., and Rogaway, P. How to Enrich the Message Space
of a Cipher. In FSE 2007 (2007), A. Biryukov, Ed., vol. 4593 of Lecture
Notes in Computer Science, Springer, pp. 101–118.

[151] Rivest, R. L. The RC5 Encryption Algorithm. In Fast Software
Encryption: Second International Workshop. Leuven, Belgium, 14-16
December 1994, Proceedings (1994), B. Preneel, Ed., vol. 1008 of Lecture
Notes in Computer Science, Springer, pp. 86–96.

[152] Rogaway, P. Method and apparatus for realizing a parallelizable variable-
input-length pseudorandom function, Sept. 5 2001. US Patent App.
09/948,084.

[153] Rogaway, P. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In ASIACRYPT (2004), P. J. Lee,
Ed., vol. 3329 of Lecture Notes in Computer Science, Springer, pp. 16–31.

https://kryptera.se/Renegotiating%20TLS.pdf
https://kryptera.se/Renegotiating%20TLS.pdf

BIBLIOGRAPHY 147

[154] Rogaway, P. Nonce-Based Symmetric Encryption. In FSE 2004 (2004),
B. K. Roy and W. Meier, Eds., vol. 3017 of Lecture Notes in Computer
Science, Springer, pp. 348–359.

[155] Rogaway, P., Bellare, M., Black, J., and Krovetz, T. OCB:
a block-cipher mode of operation for efficient authenticated encryption.
In ACM Conference on Computer and Communications Security (2001),
M. K. Reiter and P. Samarati, Eds., ACM, pp. 196–205.

[156] Rogaway, P., and Shrimpton, T. A Provable-Security Treatment of
the Key-Wrap Problem. In EUROCRYPT 2006 (2006), S. Vaudenay, Ed.,
vol. 4004 of Lecture Notes in Computer Science, Springer, pp. 373–390.

[157] Rogaway, P., Wooding, M., and Zhang, H. The Security of
Ciphertext Stealing. In FSE 2012 (2012), A. Canteaut, Ed., vol. 7549 of
Lecture Notes in Computer Science, Springer, pp. 180–195.

[158] Rogaway, P., and Zhang, H. Online Ciphers from Tweakable
Blockciphers. In Topics in Cryptology - CT-RSA 2011 - The
Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA,
USA, February 14-18, 2011. Proceedings (2011), A. Kiayias, Ed., vol. 6558
of Lecture Notes in Computer Science, Springer, Heidelberg, pp. 237–249.

[159] Sako, K., and Sarkar, P., Eds. Advances in Cryptology - ASIACRYPT
2013 - 19th International Conference on the Theory and Application of
Cryptology and Information Security, Bengaluru, India, December 1-5,
2013, Proceedings, Part I (2013), vol. 8269 of Lecture Notes in Computer
Science, Springer.

[160] Sarkar, P., and Iwata, T., Eds. Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I (2014), vol. 8873 of Lecture
Notes in Computer Science, Springer.

[161] Schroeppel, R. The Hasty Pudding Cipher, 1998. Submission to NIST’s
AES competition.

[162] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T.,
and Shirai, T. Piccolo: An Ultra-Lightweight Blockcipher. In Preneel
and Takagi [145], pp. 342–357.

[163] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., and Iwata, T.
The 128-Bit Blockcipher CLEFIA (Extended Abstract). In Biryukov [45],
pp. 181–195.

148 BIBLIOGRAPHY

[164] Shoup, V. New Algorithms for Finding Irreducible Polynomials over
Finite Fields. In 29th Annual Symposium on Foundations of Computer
Science, White Plains, New York, USA, 24-26 October 1988 (1988), IEEE
Computer Society, pp. 283–290.

[165] Shrimpton, T., and Terashima, R. S. A Modular Framework for
Building Variable-Input-Length Tweakable Ciphers. In Sako and Sarkar
[159], pp. 405–423.

[166] Standaert, F., Piret, G., Gershenfeld, N., and Quisquater, J.
SEA: A Scalable Encryption Algorithm for Small Embedded Applications.
In Smart Card Research and Advanced Applications, 7th IFIP WG
8.8/11.2 International Conference, CARDIS 2006, Tarragona, Spain,
April 19-21, 2006, Proceedings (2006), J. Domingo-Ferrer, J. Posegga,
and D. Schreckling, Eds., vol. 3928 of Lecture Notes in Computer Science,
Springer, pp. 222–236.

[167] Suzaki, T., Minematsu, K., Morioka, S., and Kobayashi, E.
TWINE : A Lightweight Block Cipher for Multiple Platforms. In
Selected Areas in Cryptography, 19th International Conference, SAC
2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers
(2012), L. R. Knudsen and H. Wu, Eds., vol. 7707 of Lecture Notes in
Computer Science, Springer, pp. 339–354.

[168] Tsang, P. P., and Smith, S. W. Secure Cryptographic Precomputation
with Insecure Memory. In ISPEC 2008 (2008), L. Chen, Y. Mu, and
W. Susilo, Eds., vol. 4991 of Lecture Notes in Computer Science, Springer,
pp. 146–160.

[169] Tsang, P. P., Solomakhin, R. V., and Smith, S. W. Authenticated
Streamwise On-line Encryption. Dartmouth Computer Science Technical
Report TR2009-640, 2009.

[170] Vaudenay, S. Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS ... In Knudsen [109], pp. 534–546.

[171] Vernam, G. Secret signaling system, July 22 1919. US Patent 1,310,719.

[172] Wang, X., and Sako, K., Eds. Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings (2012), vol. 7658 of Lecture Notes in Computer Science,
Springer.

[173] Wang, X., and Yu, H. How to Break MD5 and Other Hash Functions.
In Cramer [63], pp. 19–35.

BIBLIOGRAPHY 149

[174] Wegman, M. N., and Carter, L. New Hash Functions and Their Use
in Authentication and Set Equality. J. Comput. Syst. Sci. 22, 3 (1981),
265–279.

[175] Wu, H. The Misuse of RC4 in Microsoft Word and Excel. Cryptology
ePrint Archive, Report 2005/007, 2005.

[176] Wu, W., and Zhang, L. LBlock: A Lightweight Block Cipher. In
Applied Cryptography and Network Security - 9th International Conference,
ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings (2011), J. Lopez
and G. Tsudik, Eds., vol. 6715 of Lecture Notes in Computer Science,
pp. 327–344.

[177] Yang, G., Zhu, B., Suder, V., Aagaard, M. D., and Gong, G. The
Simeck Family of Lightweight Block Ciphers. In Cryptographic Hardware
and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-
Malo, France, September 13-16, 2015, Proceedings (2015), T. Güneysu
and H. Handschuh, Eds., vol. 9293 of Lecture Notes in Computer Science,
Springer, pp. 307–329.

[178] Yasuda, K. The Sum of CBC MACs Is a Secure PRF. In Topics
in Cryptology - CT-RSA 2010, The Cryptographers’ Track at the RSA
Conference 2010, San Francisco, CA, USA, March 1-5, 2010. Proceedings
(2010), J. Pieprzyk, Ed., vol. 5985 of Lecture Notes in Computer Science,
Springer, pp. 366–381.

[179] Yasuda, K. A New Variant of PMAC: Beyond the Birthday Bound.
In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings
(2011), P. Rogaway, Ed., vol. 6841 of Lecture Notes in Computer Science,
Springer, pp. 596–609.

[180] Yasuda, K. PMAC with Parity: Minimizing the Query-Length Influence.
In Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at
the RSA Conference 2012, San Francisco, CA, USA, February 27 - March
2, 2012. Proceedings (2012), O. Dunkelman, Ed., vol. 7178 of Lecture
Notes in Computer Science, Springer, pp. 203–214.

[181] Yung, M., Ed. Advances in Cryptology - CRYPTO 2002, 22nd Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 2002, Proceedings (2002), vol. 2442 of Lecture Notes in
Computer Science, Springer.

[182] Zhang, H. Length-Doubling Ciphers and Tweakable Ciphers. In Applied
Cryptography and Network Security - 10th International Conference,

150 BIBLIOGRAPHY

ACNS 2012, Singapore, June 26-29, 2012. Proceedings (2012), F. Bao,
P. Samarati, and J. Zhou, Eds., vol. 7341 of Lecture Notes in Computer
Science, Springer, pp. 100–116.

[183] Zhang, L., Wu, W., Sui, H., and Wang, P. 3kf9: Enhancing 3GPP-
MAC beyond the Birthday Bound. In Wang and Sako [172], pp. 296–312.

[184] Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., and
Verbauwhede, I. RECTANGLE: A Bit-slice Lightweight Block Cipher
Suitable for Multiple Platforms. Cryptology ePrint Archive, Report
2014/084, 2014.

[185] Zhang, Y. Using an Error-Correction Code for Fast, Beyond-Birthday-
Bound Authentication. In Topics in Cryptology — CT-RSA 2015,
K. Nyberg, Ed., vol. 9048 of Lecture Notes in Computer Science. Springer
International Publishing, 2015, pp. 291–307.

CV

Education

KU Leuven, Faculty of Engineering Science, Louvain, Belgium 2012 – 2016
PhD in Cryptography
Adviser: Bart Preneel
Funded by a Fellowship from IWT-Vlaanderen

Research Internship at NTT Secure Platform Laboratories, Japan
January – July 2015

Research Visit at University of Haifa, Israel
October – November 2015

Research Visit at DTU, Denmark
April 2016

Belgian expert delegate to the ISO/IEC JTC1/SC27/WG2
September 2015 – Present

KU Leuven, Faculty of Engineering Science, Louvain, Belgium 2010 – 2012
Master’s in Mathematical Engineering
Graduated magna cum laude
Thesis: The Scope Of Indifferentiability and An Application To BLAKE
Advisers: Bart Preneel and Vincent Rijmen

Cornell University, College of Arts and Sciences, Ithaca, NY 2006 – 2010
Bachelor’s in Mathematics
Graduated cum laude

151

152 CV

Teaching Experience

KU Leuven, Faculty of Engineering Science
TA for Linear Algebra Fall 2014, 2015
Supervision of Master student Laura Winnen Fall 2013 – Spring 2014
TA for Cryptography and Network Security Spring 2013, 2014, 2016
TA for Informatie-overdracht en -verwerking Fall 2012, 2013

Cornell University Mathematics Department
Tutor at the Mathematics Support Center Fall 2009

Cornell University Computer Science Department
TA for CS 2110 and 2111 Fall 2008 – Summer 2009
Consultant for CS 100 and 211 Spring 2007 – Spring 2008

Reviews

ACM Symposium on Theory of Computing (STOC) 2016
Australasian Conference on Information Security and Privacy (ACISP) 2015
Applied Cryptography and Network Security (ACNS) 2014
Asiacrypt 2013, 2014, 2015
Cryptology and Network Security (CANS) 2013
Crypto 2014, 2015, 2016
RSA Conference Cryptographers’ Track (CT-RSA) 2014, 2015
Eurocrypt 2015, 2016
Fast Software Encryption (FSE) 2013, 2014, 2016
Indocrypt 2014
Information Security Conference (ISC) 2014
International Workshop on Security (IWSEC) 2013
Selected Areas in Cryptography (SAC) 2015
Usenix 2015

CV 153

Talks

1. On the Influence of Message Length in PMAC’s Security Bounds
Eurocrypt 2016
http://ist.ac.at/eurocrypt2016/program.html

Vienna, Austria, May 11th, 2016

2. A MAC Mode for Lightweight Block Ciphers
Fast Software Encryption 2016
https://fse.rub.de/program.html

Bochum, Germany, March 21st, 2016

3. A MAC Mode for Lightweight Block Ciphers
COSIC Seminar
Leuven, Belgium, March 17th, 2016

4. Authenticated Encryption
School on Design for a Secure Internet of Things
https://www.cosic.esat.kuleuven.be/school-iot/index.shtml

Tenerife, Spain, January 27th, 2016

5. The Limited Power of Verification Queries in Message Authentication
and Authenticated Encryption
DIAC 2015: Directions in Authenticated Ciphers
http://www1.spms.ntu.edu.sg/~diac2015/

Singapore, September 29th, 2015

6. Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes
Asiacrypt 2014
http://des.cse.nsysu.edu.tw/asiacrypt2014/

Kaohsiung, Taiwan, December 8th, 2014

7. How to Securely Release Unverified Plaintext in Authenticated Encryption
Asiacrypt 2014
http://des.cse.nsysu.edu.tw/asiacrypt2014/

Kaohsiung, Taiwan, December 8th, 2014

http://ist.ac.at/eurocrypt2016/program.html
https://fse.rub.de/program.html
https://www.cosic.esat.kuleuven.be/school-iot/index.shtml
http://www1.spms.ntu.edu.sg/~diac2015/
http://des.cse.nsysu.edu.tw/asiacrypt2014/
http://des.cse.nsysu.edu.tw/asiacrypt2014/

154 CV

8. How to Securely Release Unverified Plaintext in Authenticated Encryption
DIAC 2014: Directions in Authenticated Ciphers
http://2014.diac.cr.yp.to/

Santa Barbara, CA, USA, August 22nd, 2014

9. Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes
Design and security of cryptographic algorithms and devices for real-world
applications
http://summerschool-croatia14.cs.ru.nl/index.shtml

S̆ibenik, Croatia, June 3rd, 2014

10. COBRA: A Parallelizable Authenticated Online Cipher Without Block
Cipher Inverse
Fast Software Encryption 2014
http://fse2014.isg.rhul.ac.uk/

London, UK, March 3rd, 2014

11. Parallelizable and Authenticated Online Ciphers
Asiacrypt 2013
http://www.iacr.org/conferences/asiacrypt2013

Bangalore, India, December 3rd, 2013

12. Parallelizable and Authenticated Online Ciphers
COSIC seminar
Leuven, Belgium, November 29th, 2013

13. APE(X): authenticated permutation-based encryption with extended
security features
DIAC 2013: Directions in Authenticated Ciphers
http://2013.diac.cr.yp.to/

Chicago, USA, August 12th, 2013

14. APE(X): Authenticated Permutation-Based Encryption with Extended
Misuse Resistance
COSIC seminar
Leuven, Belgium, August 9th, 2013

http://2014.diac.cr.yp.to/
http://summerschool-croatia14.cs.ru.nl/index.shtml
http://fse2014.isg.rhul.ac.uk/
http://www.iacr.org/conferences/asiacrypt2013
http://2013.diac.cr.yp.to/

CV 155

15. Nonce-free Authenticated Encryption with Permutations
Ice Break Summer School
http://ice.mat.dtu.dk/

Reykjavik, Iceland, June 6th, 2013

http://ice.mat.dtu.dk/

Publications

1. Luykx A., Preneel B., Szepieniec A., Yasuda K. On the Influence of
Message Length in PMAC’s Security Bounds. In Advances in Cryptology -
EUROCRYPT 2016, Lecture Notes in Computer Science, Springer-Verlag.
To appear.

2. Luykx A., Preneel B., Tischhauser E., Yasuda K. A MAC Mode for
Lightweight Block Ciphers. Fast Software Encryption, FSE 2016, Lecture
Notes in Computer Science, Springer-Verlag. To appear.

3. Mouha N., Luykx A., Multi-Key Security: The Even-Mansour Construc-
tion Revisited. Advances in Cryptology - CRYPTO 2015, Lecture Notes
in Computer Science, Springer-Verlag.

4. Luykx A., Mennink B., Preneel B., Winnen L. Two-Permutation-Based
Hashing with Binary Mixing. Journal of Mathematical Cryptology, 2015.

5. Andreeva E., Bogdanov A., Luykx A., Mennink B., Mouha N., Yasuda K.
How to Securely Release Unverified Plaintext in Authenticated Encryption.
Advances in Cryptology - ASIACRYPT 2014, Lecture Notes in Computer
Science, Springer-Verlag.

6. Jovanovic P., Luykx A., Mennink B. Beyond 2c/2 Security in Sponge-Based
Authenticated Encryption Modes. Advances in Cryptology - ASIACRYPT
2014, Lecture Notes in Computer Science, Springer-Verlag.

7. Andreeva E., Bilgin B., Bogdanov A., Luykx A., Mennink B., Mouha
N., Yasuda K. APE: Authenticated Permutation-Based Encryption for
Lightweight Cryptography. Fast Software Encryption, FSE 2014, Lecture
Notes in Computer Science, Springer-Verlag.

8. Andreeva E., Luykx A., Mennink B., Yasuda K. COBRA: A Parallelizable
Authenticated Online Cipher Without Block Cipher Inverse. Fast Software

157

158 PUBLICATIONS

Encryption, FSE 2014, Lecture Notes in Computer Science, Springer-
Verlag.

9. Andreeva E., Bogdanov A., Luykx A., Mennink B., Tischhauser E.,
Yasuda K. Parallelizable and Authenticated Online Ciphers. Advances
in Cryptology - ASIACRYPT 2013, Lecture Notes in Computer Science,
Springer-Verlag.

10. Andreeva E., Luykx A., Mennink B. Provable Security of BLAKE with
Non-Ideal Compression Function. Selected Areas in Cryptography, 19th
Annual International Workshop, SAC 2012, Lecture Notes in Computer
Science, Springer-Verlag.

