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Abstract. Cellular Automata (CA) have a long history being employed
as pseudo-random number generators (PRNG), especially for crypto-
graphic applications such as keystream generation in stream ciphers.
Initially starting from the study of rule 30 of elementary CA, multiple
rules where the objects of investigation and were shown to be able to
pass most of the rigorous statistical tests used to assess the quality of
PRNG. In all cases, the CA employed where of the classical, synchronous
kind. This assumes a global clock regulating all CA updates which can
be a weakness if an attacker is able to tamper it. Here we study how
much asynchrony is necessary to make a CA-based PRNG ineffective.
We have found that elementary CA are subdivided into three class: (1)
there is a “state transition” where, after a certain level of asynchrony,
the CA loses the ability to generate strong random sequences, (2) the
randomness of the sequences increases with a limited level of asynchrony,
or (3) CA normally unable to be used as PRNG exhibit a much stronger
ability to generate random sequences when asynchrony is introduced.

1 Introduction

Cellular Automata (CA) are one of the oldest nature-inspired computational
models in computer science [25,26]. Defined informally, CA are composed of
a lattice of identical finite state automata (or cells) all updating at the same
time according to their state and the state of their neighbours. CA have been
successfully employed in multiple fields, like for instance the modelling of physical
systems [5] such as fluids [4], natural ecosystems [1], traffic flows [13], and of
pedestrians in crowds [2]. Here, we mainly deal with the cryptographic applications
of CA. In particular, we consider the well-known problem of generating pseudo-
random sequences by exploiting the dynamical behaviour of CA. Pseudo-random
sequences play a fundamental role in cryptography, for example in keystream
generation for stream ciphers [14]. Differently from other studies, we do not try
to find new CA that works well as PRNG; instead, we study how asynchrony
influences the ability of a CA to produce pseudo-random sequences.
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In classical CA, all cells update at the same time (i.e., synchronously), the
underlying assumption being that there is a single, global clock regulating all
cells. This is, however, a strong assumption since real-world systems are usually
not synchronous. Once this assumption is dropped, there are multiple ways to
introduce asynchronous behaviours in CA. For example by using a probabilistic
activation [9,10,11], updating a cell at a time according to a given sequence [18],
having different areas of the CA update with different speeds [17,19], or even
more general updating schemes [28,8]. Here we deal with a simplified model of
asynchrony where the CA is partitioned in separate, contiguous sequences of cells,
all cells inside the same sequence update in parallel, but the sequences update
sequentially.

Our goal is to study what happens when the aforementioned assumption of
a global clock is broken not by design, but by a malicious actor who wants to
tamper with the PRNG. Since PRNG are used in cryptographic applications,
limiting the amount of damage that can be carried on by damaging them (or, at
least, the global clock governing their updates) is paramount. Here, in particular
we experimentally study how different levels of asynchrony impacts the generation
of pseudo-random sequences generated by elementary CA.

The paper is organised as follows: some necessary basic notions are recalled
in Section 2. Section 3 briefly reviews the state of the art in CA-based PRNG,
mostly focusing on the synchronous approach. Section 4 describes in the detail
experiments we performed. In particular, Section 4.1 explains all the experimental
settings used, while a general discussion of the experimental results is carried out
in Section 4.2. The discussion of the results, particularly the classification of the
observed behaviours in three broad classes, is given in Sections 4.3, 4.4 and 4.5.
Some further considerations and directions for future works are presented in
Section 5.

2 Basic Notions

In this section we recall some basic notions on CA, their properties, and how
they can be employed as PRNG.

Definition 1. A cellular automaton (CA) is a tuple (Σ, f, r) where Σ is a finite
alphabet, r ∈ N is the radius, and f : Σ2r+1 → Σ is the local function of the CA.
If the CA only has a finite number n ∈ N of cell, i.e., it is a finite CA, we say
that it is a CA of size n.

A CA is said to be an elementary CA (ECA) when its alphabet is {0, 1} and it
has radius 1. There are exactly 256 ECA, each one numbered with its Wolfram
code, a number between 0 and 255 whose binary expansion represents the output
column of the truth table defining the local function of the CA.

Here we only deal with CA of finite size with periodic boundary conditions,
that is, the cell adjacent to the n-th one is the first one and vice versa. In
the following we assume that the subscript denoting the cell position is to be
interpreted modulo n, the size of the CA.

2

https://doi.org/10.1007/978-3-319-99813-8_39


The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99813-8_39

The configuration of a cellular automaton (Σ, f, r) of size n is a vector
c = c0, . . . , cn−1 ∈ Σn. The CA updates its state using a global rule F : Σn → Σn

where each cell updates its state at the same time using the local rule, thus giving
the following global rule:

F (c)i = f(ci−r, . . . , ci, . . . , ci+r), for 0 ≤ i < n

Finite CA of length n with alphabet {0, 1} are usually employed as PRNG in
the following way [27]:

– A random seed of n bits is the initial configuration of the CA;
– To obtain an new pseudo-random bit the entire CA is updated and one cell

(usually the central one) is sampled.

Since CA update all cells in parallel and each cell requires only access to local
information, they can be easily parallelized and/or implemented in hardware [23].

2.1 The Asynchronous Model

While classical CA are inherently synchronous, in recent years multiple variations
of CA were defined with the addition of some kind of asynchronous behaviour.
In our work we deal with a very specific kind of asynchrony, where a finite CA of
length n has its set of cells {0, . . . , n− 1} partitioned into k contiguous segments
I0, . . . , In−1 with Ii =

{
ink , . . . , (i+ 1)n

k − 1
}

, where k is a divisor of n. At time
0 only the cells in the segment I0 are updated; at the successive time step only
the cells in the segment I1 are updated, and so on. In general, at the t-th time
step only the cells in the segment t mod k are updated.

This kind of asynchrony can be tuned by using the parameter k: when k = 1
there is only one segment and the update is synchronous, like in classical CA.
When k = n only one cell updates at each time step, mimicking the behaviour of
fully asynchronous CA [18]. It is also possible to obtain intermediate levels of
asynchrony: for example, with k = 2 the CA is effectively split into two parts
which update alternately.

In this paper we empirically study how increasing the value of k influences
the ability of a CA to produce robust pseudo-random sequences (i.e., which pass
rigorous statistical tests). To avoid the risk of sampling multiple times a cell
that still has not updated, we perform the sampling every k steps. In this case
for k = 1 the behaviour is the same as in classical CA and in all other cases we
ensure that the sampled cell has always been updated between two samplings.

3 Related Work

In this section, we give a brief historical overview of the literature concerning
pseudo-random sequence generation by means of cellular automata.

Wolfram [27] was the first to propose a PRNG based on a chaotic CA to
be employed in cryptographic applications. Specifically, he suggested to use a
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periodic CA equipped with rule 30, and to sample the value of a certain cell as
a pseudo-random sequence. Some years later, Damg̊ard [7] showed a concrete
construction of iterated hash function based on Wolfram’s PRNG.

Unfortunately, Wolfram’s PRNG later turned out to be very weak from a
cryptographic standpoint: Meier and Staffelbach [22] proved that it is vulnerable
to a known plaintext attack, unless the CA is composed of at least 1000 cells.
The attack exploits the quasi-linearity of rule 30, which allows to rewrite it in
an equivalent way where the initial seeds are not equiprobable. Analogously,
Daemen et al. [6] cryptanalysed Damg̊ard’s hash function, proving that it is
computationally feasible to generate collisions in it.

Sipper and Tomassini [24] proposed a cellular programming approach based
on a non-uniform CA, where the rule vector specifying which rule is applied
in each cell is evolved by a Genetic Algorithm (GA). The fitness of each cell is
evaluated by computing the entropy of the pseudo-random sequence generated by
its current rule for 4096 time steps, averaging the results over 300 initial random
configurations. The final rule vectors evolved through the cellular programming
algorithm were then further investigated by testing longer sequences with the
ENT statistical test suite.

A common trend that can be noticed in the CA-based PRNG literature
is that the cryptographic quality of the pseudo-random sequences is usually
assessed by means of statistical tests. A more refined approach which emerged
in the last years consists in analysing the cryptographic properties of the local
rules underlying the CA, by interpreting them as Boolean functions. Considering
Wolfram’s PRNG, it turns out that rule 30 is both balanced and nonlinear, but
it is not first order correlation-immune [21]. This is the reason why Meier and
Staffelbach’s attack proved to be successful. As a consequence, recent works
like Formenti et al. [12] and Leporati and Mariot [15,16] focused on the search
of local functions of radius 2 and 3 in order to find new rules with a better
trade-off of balancedness, nonlinearity and correlation-immunity, and which can
also pass stringent statistical tests (such as the NIST suite [3]) when plugged
into Wolfram’s PRNG model.

4 Experiments

4.1 Experimental Settings

For performing the experiments we considered only balanced ECA, meaning
that the truth table of the local rules is composed of an equal number of zeros
and ones. The reason behind this choice is that balancedness is a fundamental
cryptographic criterion, and CA with unbalanced rules have an inherent statistical
bias in their dynamics [16]. Hence, since our aim in this work is to investigate
the resilience against asynchrony of local rules which already yield good pseudo-
random sequences in the classical synchronous update scheme, we focused only
on the subset of balanced rules.

The initial random seed was chosen using https://random.org to obtain a
64 bit initial configuration for the CA. For each CA 1000 runs with different
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initial configurations were performed and 106 bits were generated in each run,
thus producing sequences of 109 bits. The values k governing the asynchrony of
the CA were all divisors of 64, the length of the CA configuration: 1 (synchronous
behaviour), 2, 4, 8, 16, 32, and 64 (fully asynchronous behaviour).

The randomness of each sequence was assessed using the NIST test suite [3],
consisting of 188 statistical tests. The quality of the pseudo-random sequences
generated is thus expressed using a value from 0 (no test passed) to 188 (all
tests passed). It is important to remember that, while not passing a large enough
number of statistical tests indicates a weakness, even passing them all does not
ensure that the PRNG employed is robust.

4.2 Experimental Results

We have experimentally observed three main behaviours depending on the level
of asynchrony in CA:

1. A “phase transition” happens when enough asynchrony is present. Before
the cutoff value the CA retains its ability to generate strong pseudo-random
sequences. After the cutoff value most of the statistical tests fail (Section 4.3).

2. The CA ability to generate strong pseudo-random sequences increases with
a limited amount of asynchrony and decreases with a large amount of it
(Section 4.4).

3. A CA that is usually unsuitable to be used as a PRNG generates sequences
with better pseudo-randomness once a limited amount of asynchrony is added
(Section 4.5).

We are excluding from this classification the CA that did not pass a high enough
level of statistical tests with any level of asynchrony. The subdivision of the
remaining balanced ECA rules in the three classes is presented in Table 1. In the
following we discuss the results obtained for each one of these classes.

Table 1. The subdivision in classes of balanced ECA.

Type 1 30, 45, 75, 86, 89, 101, 135, 149

Type 2 106, 120, 169, 225

Type 3 60, 90, 105, 150, 154, 165, 166, 180, 195, 210

4.3 Type 1 rules

Type 1 rules includes rule 30, which as remarked in Section 3 was among the first
employed as a PRNG, even if later it was found to have some weaknesses [22].
The results for this class of rules is shown in Figure 1.

It is possible to observe that most of the rules pass all or almost all the tests
when the parameter k is below 32, with 188 or 187 tests passed by each rule. The
first difference can be observed when k = 32:
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Fig. 1. The number of NIST test passed by type 1 rules with the change in asynchrony

– rules 86, 89, 101, and 149 still pass most of the tests (from a maximum of
188 for rule 101 to a minimum of 184 for rule 149);

– rules 30, 45, 75, and 135 have a sharp decrease in the number of tests passed,
which is 29.

In all cases, when full asynchrony is present, none of the rules in this class can
pass even one of the tests, showing that full asynchrony completely changes the
behaviour of the CA.

4.4 Type 2 rules

Type 2 rules are, in some sense, similar to the ones of type 1, as it can be observed
in Figure 2. With a high enough level of asynchrony (i.e., k = 32 or k = 64),
they are unable to pass any statistical test of the NIST suite. It is for small
levels of asynchrony that their behaviour differ. In fact, when updates happen
synchronously the rules of this class are not as good as the ones of type 1, with
the number of tests passed ranging from 167 (rule 169) to 172 (rules 106 and
120). When a small amount of asynchrony is added (k between 2 and 16) their
ability to generate strong pseudo-random sequences increases. This is a quite
interesting behaviour since it shows that asynchrony is not always an hindering
factor for using CA as PRNG, but can be also employed to strengthen them.

4.5 Type 3 rules

Possibly the most interesting class of rules is the one where asynchrony is an
essential factor in enabling the generation of strong pseudo-random sequences,
as it can be observed in Figure 3.

All of these rules have in common the fact that they pass none of the NIST
tests when the updates are synchronous. Once asynchrony is added the behaviour
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Fig. 2. The number of NIST test passed by type 2 rules with the change in asynchrony

changes drastically. As it is possible to observe in Table 2, the maximum number
of NIST statistical tests passed is, for most of the rules neat the maximum (188).
Among the rules considered, there are simple ones, like rule 90, the “traffic rule”,
whose behaviour is, in the synchronous case, extremely predictable since, after
n steps (in our case n = 64) an attacker has enough information on the CA to
predict exactly its dynamics. When asynchrony is introduced this ceases to be
true and, while there is no assurance that similar predictions are not possible, the
statistical tests are unable to expose any clear regularity in the resulting data.

An observation of the results, however, shows that not all rules in this class
share exactly the same behaviour, even if, in the general trend, they are all
quite similar. Therefore, we can further subdivide the rules of this class into four
distinct sub-classes:

1. rules 154 and 166 already show increased scores in the tests with k = 2,
showing that even a limited amount of asynchrony is sufficient;

2. rules 180 and 210 perform similarly to 154 and 166, but they show a decrease
for k = 32 that is not present in the latter two rules;

3. rules 60, 105, 150, and 195 require more asynchrony (k = 4) before reaching
high enough scores in the statistical tests;

4. rules 90 and 165 are able to pass more tests than any other rule for full
asynchrony (51 and 52 tests, respectively).

In particular, the last case is of particular interest, since it seems to highlight that
the two considered rules have some characteristic that is able to counteract, in a
limited way, the effect of full asynchrony. It could be interesting to understand
what this characteristic is in order to take it into account in the design of new
CA-based PRNG.
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Fig. 3. The number of NIST test passed by type 3 rules with the change in asynchrony

Table 2. The maximum number of tests passed by the rules of type 3 together with
the value of the asynchrony parameter where the maximum was reached.

Rule 60 90 105 150 154 165 166 180 195 210

Max score 184 187 186 187 186 187 187 186 183 187

k 16 8, 16, 32 4 4 16 4, 16, 32 32 16 16 16

5 Conclusions

In this paper we have explored the effect of increasing levels of asynchrony in ECA
used as PRNG. Since they can be employed in cryptographic applications, it is
important to understand what is the edge that an attacker can gain by disturbing
the global clock regulating the update of the cells. Three different interesting
behaviours were found. The least unexpected one is the type 1 behaviour, where
there is an abrupt decrease in the pseudo-randomness quality of the sequences
generated when asynchrony increases. Similar to the first class, type 2 CA exhibit
a more complex behaviour, where a limited amount of asynchrony produces an
increase in the pseudo-randomness quality of the generated sequences, while a
further increase greatly reduces it. Finally, CA of type 3 are usually unsuited to
be used as PRNG, but a limited amount of asynchrony make them competitive
with the traditional rules employed for pseudo-random number generation. It
is noticeable the fact that there are no CA where the decrease in quality is
smoother; it appears as if the qualities necessary for obtaining a good PRNG are
“binary”: they are either almost all present or almost all absent.

This preliminary study opens many different possibilities for exploring the
relationship between pseudo-randomness and asynchrony. It is currently unknown
if the same behaviours can also be found in CA with radius grater than 1 or if new

8

https://doi.org/10.1007/978-3-319-99813-8_39


The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99813-8_39

behaviours will appear. The results found for CA of type 3 open a lot of questions
on why such CA need asynchrony to generate pseudo-random sequences: what
are the factors that make them predictable when synchronous and unpredictable
when asynchronous? Moreover, the way asynchrony has been introduced in this
study is quite limited: the updates are always performed in contiguous blocks
of the same size. It would be interesting to study if different updating patterns
produce different behaviours or if the observed ones are all the possible ones.

Finally, another direction for further research is to relate the results presented
in this paper with the cryptographic properties of the considered local rules. An
interesting starting point could be to compare the three classes of rules observed
in our experiments with respect to the property of asynchrony immunity, recently
introduced in [20]. Of course, this line of research could also be generalised to
rules of higher radius.
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