
This is a preprint of an article:
Lech Madeyski and Marcin Kawalerowicz, “Software Engineering Needs Agile Experimentation: A
New Practice and Supporting Tool”, in Software Engineering: Challenges and Solutions (L.

Madeyski, M. Śmia lek, B. Hnatkowska, and Z. Huzar, eds.), vol. 504 of Advances in Intelligent
Systems and Computing, pp. 149–162, Springer, 2017. DOI: 10.1007/978-3-319-43606-7_11

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-43606-7_11
[BibTeX] Draft: http://madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz17.pdf

Software Engineering Needs Agile
Experimentation: A New Practice and

Supporting Tool

Lech Madeyski1 and Marcin Kawalerowicz2

1 Wroclaw University of Science and Technology, Faculty of Computer Science and
Management, Wyb.Wyspianskiego 27, 50-370 Wroclaw, POLAND,

Lech.Madeyski@pwr.edu.pl
2 Opole University of Technology, Faculty of Electrical Engineering, Automatic

Control and Informatics, ul. Sosnkowskiego 31, 45-272 Opole, POLAND,
m.kawalerowicz@po.opole.pl

Abstract. This article proposes a novel software engineering practice
called Agile Experimentation. It aims mostly small experiments in a
business driven software engineering environment where a developer is
a scarce resource and the impact of the experimentation on the return-
of-investment driven software project needs to be minimal. In such en-
vironment the tools used for the sake of research need to have virtually
no negative impact on the developers, but simultaneously those tools
need to collect high quality data to perform sound enough quantitative
analyses. In order to fulfill those requirements, and to support the Agile
Experimentation practice, we co-developed a tool called NActivitySensor
that gathers the data about the developers activities in a widely used In-
tegrated Development Environment—Visual Studio. The proposed Agile
Experimentation practice and the developed tool complement each other
to support lightweight experimentation in real-world software develop-
ment settings.

Keywords: agile experimentation, empirical software engineering, ex-
perimentation in software engineering, NActivitySensor

1 Introduction

Performing experiments in industrial software development environment is dif-
ficult and quite expensive [8]. It is usually hard to replicate the software engi-
neering experiments [1]. The same problem is magnified in Software Engineering
experiments conducted in industrial environment. There is usually no budget for
conducting the experiment twice, with a classic method (used to date) as well as
using the new approach (the one being evaluated). It takes a rich country and
research institute to perform controlled replication experiment in real software
project with professional developers [23]. It seems like in last years the software
engineering scientists realized that there is a need for experimentation. In fact,

1

http://dx.doi.org/10.1007/978-3-319-43606-7_11
http://dx.doi.org/10.1007/978-3-319-43606-7_11
http://madeyski.e-informatyka.pl/download/MadeyskiRefs.bib
http://madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz17.pdf

2 Lech Madeyski and Marcin Kawalerowicz

nowadays it is more and more difficult to publish research papers that do not
include an empirical evaluation of new methods, practices, technologies or tools.

While we notice the research activities concerning experimentation in soft-
ware engineering of the large multinational corporations like IBM (http://
research.ibm.com/ - 213 publications in ”Programming Languages and Soft-
ware Engineering” area), Microsoft (http://research.microsoft.com/ - 203
research projects in ”Software development, programming principles, tools, and
languages” area) or Google (http://research.google.com/ - 177 publications
in ”Software Systems” area)3, we do see the lack of research motivation in smaller
companies all around the world. Running real world software engineering project
is a business with many interested parties, the most important of which is the cus-
tomer. Unfortunately, the main priority for a customer is the return of investment
(ROI), not the experimentation with a new software engineering method. Despite
it could be beneficial in later projects. Customers fear that it will cost too much
and there will be too much hassle while performing the experiments. For example
developers will be pulled away from their actual job and software development
tasks they should focus on. The developers themselves fear they will have more
responsibilities in they day-to-day work. To overcome such difficulties and to
fill the existing gap with regard to lack of software engineering experimentation
practices and supporting tools, we call for something we denominated Agile Ex-
perimentation (more after simple definition from Merriam-Webster’s Learner’s
Dictionary: ”quick, smart, and clever” than after Agile Software Development).
It is a way to perform empirical studies and research in real-world software
projects with no or minimal impact on people involved in those projects and
their schedules. But in the same time what we propose should give researchers
the way to perform effective experimentation to reach reliable enough conclu-
sions on a subject being investigated (e.g., the impact of a new practice, method
or tool).

In this paper, we start from our motivation, presented in Section 2, on which
we build our agile experimentation ”manifesto” formulated in Section 3, where
the idea is thoroughly explained. Then we focus on a tool that we co-developed to
aid the agile experimentation. It is called NActivitySensor after its predecessor
called Activity Sensor [18,20,19] that was developed under the supervision of
one of the authors of this paper. The new tool was built for the Microsoft .NET
Framework development, while its predecessor was built for Java. We describe
the new tool in detail in Section 4 and in Appendix A. Discussion and future
work can be found in Section 5.

2 Motivation

The reasons given by scientists and professionals for not experimenting in soft-
ware engineering are greatly outlined in the article ”Should computer scientists
experiment more?” by Tichy [22]. Among them are:

3 The numbers gathered in May 2016.

http://research.ibm.com/
http://research.ibm.com/
http://research.microsoft.com/
http://research.google.com/

Software Engineering Needs Agile Experimentation 3

– Traditional scientific method is not applicable.
– The current level of experimentation is good enough.
– Experiments cost too much.
– Demonstration till suffice.
– There is too much noise in the way.
– Progress will slow.
– Technology changes too fast.
– You will never get published.

Tichy fights those excuses one by one in his paper with argumentation that will
most likely resonate with average scientist but not a business person. It is because
the researcher is most likely to aim at the scientific excellence and businessman
is most likely to be interested in ROI. The argument that ”experiments cost too
much” is the hardest to fight in a ROI-oriented environment such as industrial
software development. It is a fact that performing an experiment costs. It might
be beneficial in a long term, but in terms of immediate ROI, it is always burdened
with an additional cost. It is the reason why so few smaller companies are willing
to take the additional experimentation costs into consideration while racing for
the customer on highly competitive market. For the same reason there are so
few industrial professionals available for experimentation. They are considered
to be valuable resource to waste their time for additional tasks like taking part
in experiments. The professionals themselves seem to be rather ambivalent to
the idea of taking part in experiments. From one point of view, they know that
the results are potentially beneficial but from the other, they fear they will have
less time for their duties towards the employer.

Thomke in his article ”Enlightened Experimentation - The New Imperative
for Innovation” names the cost of the experimentation the main damper for the
companies to create great products [21]. His list of ”Essentials for Enlightened
Experimentation” gives four rules for companies to be more innovative:

1. Organize for rapid experimentation.
2. Fail early and often, but avoid mistakes.
3. Anticipate and exploit early information.
4. Combine new and traditional technologies.

3 Agile Experimentation ”Manifesto”

We think it is a time to give both the business professionals and researchers ready
to use tool-set to align their goals in software engineering. Researchers want to
perform controlled experiments that will give reliable enough conclusions leading
to improvements in software engineering. Business professionals (e.g., an engi-
neer working on a project or manager supervising it) are mostly interested in
return of investment. The work done should make the customer happy and bring
benefit for the organization. The results of potential experimentation is inter-
esting for them only if the main goal is met and the additional experimentation
cost is acceptably low. We want to give the methods and tools they can use to

4 Lech Madeyski and Marcin Kawalerowicz

better meet those requirements. We gathered those methods and tools in pop-
ular nowadays form of ”manifesto” [2,3,6,7]. We have played with the form and
proposed Agile Experimentation ”Manifesto”. The target of our ”manifesto” are
both the researcher as well as the practitioner willing to perform experiments.
Some of the items might seem obvious for an experienced researcher but they
are not necessary so obvious for an average practitioner. Thus the abstraction
level of the items. Our ”manifesto” contains the following rules:

1. Use small-n and single case experiments rather than large scale experiments
to cut costs and enable experimentation.

2. Care about the power of your experiments to reduce waste.
3. Search for the best experiment design that fits your settings.
4. Use friction free tools for data gathering to not interfere with the real-world

development environment.
5. Use just-in-time quantitative data rather than late, post project qualitative

surveys to enable early informed decisions (on a basis of quantitative data
instead of late anecdotal information).

What really hides behind those statements? How are they important for a
business professional or a researcher wanting to do experiment in a real-world
software engineering project.

3.1 Small-n and single case experiments

As we mentioned earlier in this paper the main driver of a real-live business
software engineering project is ROI, which is what the customer is most inter-
ested in. He puts his money into the project and expects to get the best possible
software in exchange. There is no place for large scale experimentation in such
project. There is no money for an experiment with a large number of profes-
sional developers. In fact there can be a problem with finding large number of
professional developers willing to sacrifice their precious time for any kind of
experiment. What can be done to change this situation? There is a way used
by pharmacists and medical scientists for years. It is called small-n and single
case experimentation [5,10]. Those are special kind of experiments designed es-
pecially for very small samples (small-n) or even one participant (single-case).
They are very helpful in clinical trails where the researcher do not have a large
set of patients or when you study human behaviour. Often such kind of experi-
ments are done as a low cost pre-studies before large scale and more expensive
experiments.

This method took inroads into the software engineering already [24]. The
reasoning is simple. Software development team is usually a small group of people
(small-n) working on a single software project. In fact every developer working
in a project is a case for itself. If psychologists are using small-n and single case
experiments to study human behaviour why not use it in software engineering?

We are using this approach to study our extension to TDD (Test Driven De-
velopment) that we called CTDD (Continuous Test Driven Development) [17] in

Software Engineering Needs Agile Experimentation 5

a real, industrial software development environment. We have promising results
using the agile experimentation to study TDD vs. CTDD. In fact the idea for
agile experimentation was actively trialed during this experiment. We have used
our own principles to design and conduct the TDD vs. CTDD experiment. We
are intending to publish a paper discussing the results and our experience with
agile experimentation as soon as we finish the ongoing experiment.

The idea behind our experiment it to extend the commonly used TDD chain
of actions:

write the test → execute it → see if it fails → satisfy the test → run the test
→ see if it succeeds → refactor → run the test → see if it still succeeds.

The extension involves using continuous testing (unit tests performed on a
background thread in the development environment). Thanks to that technique
we can eliminate the need of manually starting the tests and thus improve soft-
ware development. This kind of improvement can be seen as a modification of the
existing TDD practice in contrast to combining different software development
practices together (e.g., the TDD and pair programming practices [13,14,15]).
In CTDD the chain of actions is shorter:

write the test→ see if it fails→ satisfy the test→ see if it succeeds→ refactor
→ see if it still succeeds.

The reasoning is that a small increase of productivity in an individual devel-
oper can make a big impact in the whole developers community. The question
is how omitting the need of manually executing the tests will impact the overall
performance of the developer. That is what we want to estimate by conducting
research following the idea of agile experimentation. We had to our disposal only
one small (measured in terms of developers) project where only two developers
were contracted. An ideal small-n experiment with two conditions (condition A:
TDD and condition B: CTDD). But doing small-n and single case experimen-
tation is challenging in another aspect. Precisely because of the small number
of participants the researcher needs to be extra caution to be able to achieve
enough statistical power to detect the difference between two conditions (soft-
ware development practices, TDD and CTDD, in this particular case).

3.2 Care about power of your experiments

The so called A/B experiments [12] are quite popular in the mainstream web
development lately. They are used to perform simple online test where a new ver-
sion of an existing website is created with, e.g., slightly different layout, colours,
button orientation or alike and taken online alongside the old version. The old
version (A - baseline) is showed to a randomly assigned part of the online au-
dience and the new version (B - with intervention) to the other. The visitors
behaviour is then recorded. Is the new layout causing them to stay on the page
longer? Are they ”liking” the page more if the colours are different? Do they
click the ”order” button more often in the new version? What is done here is
a randomized controlled experiment, using between-subject design, where two
groups of subjects are simultaneously tested: one being the control group (A)
and one being under ”treatment” (B). The subjects are simultaneously tested

6 Lech Madeyski and Marcin Kawalerowicz

but assigned randomly to one of the groups, A or B. What is important is the
ability to detect statistically significant difference between the treatments, i.e.,
the statistical power of the experiment is crucial. The power of any test of statis-
tical significance is formally defined as the probability that a false null hypothesis
will be rejected if there is no difference between the treatment and the baseline.

Researchers should be interested if the recorded difference between A and
B is in fact statistically significant and, last but not least, what is the size of
the effect [15,16,11]. The power of the test is especially important if perform-
ing small-n and single case experiments, see Section 3.1. To detect an effect of
reasonable size the person performing agile experimentation will have to ana-
lyze power taking into consideration the small sample size. Another important
aspect is generalization from such experiments. Agile experimentation may im-
pede generalisation, but the threads to external validity can be minimized by the
fact that agile experiments are conducted in a real world environment, by real
software developers, not in a laboratory environment by inexperienced student
subjects as is often the case.

In a simple online A/B test the, so called, random allocation is used. A
visitor is randomly put into a group that sees A or B version of a web site.
It is enough for such a simple experiment, but what if a researcher performs a
more sophisticated small-n or single case experiment? In such case, the more
possible experiment arrangements the better. The researcher needs to eliminate
all competing explanations for the effect he is observing.

Let us consider an experiment with four phases. Every phase is either a
baseline (A) or a treatment condition (B). The moment when to switch between
A and B can be randomly chosen. This way the possible arrangements are: switch
after the first phase - ABBB, switch after the second phase - AABB, or after
the third phase - AAAB. The set of possible arrangements is quite small. What
if the researcher decides to use a completely random approach? This means to
simply choose every phase randomly? Using this approach he will get 16 (24)
possible arrangements like this: AAAA, BAAA, ABAA, AABA, AAAB, BBAA,
ABBA, AABB and so on. But some of the arrangements are not desirable from
the beginning (like AAAA or BBBB). In that case the researcher can decide
to gather the phases in blocks. For example always in pairs like AABBAA,
AAAABB, BBAAAA, and so on.

Let us consider the TDD vs. CTDD experiment. Lets assume we have 8
modules to do. We have 2 software developers so each one may get 4 modules to
write. There are 6 possible arrangements within these 4 modules (4 observations,
2 for A and 2 for B): AABB, ABBA, BBAA, BAAB, ABAB, BABA. For 2
developers there is 6 ∗ 6 = 36 possible arrangements. Maybe switching from
the module/package level to the class level (the number of classes is usually
larger than the number of packages in Java or solutions in .NET) in the TDD
vs. CTDD experiment will be give us higher power to detect the difference?
Maybe another design of experiment will be better (for example randomized
block design)? This kind of a priori consideration can pay off if the researcher
strives for reliable results.

Software Engineering Needs Agile Experimentation 7

3.3 Searching best experiment design

Finding an appropriate design for a given experiment in software engineering
is not an easy task. If it is an small-n or single case experiment it might be
even harder because it is not common in software engineering. There might be
a need to extrapolate the types of experiments from different fields of study
onto software engineering. For example, Dugard et al. [4] give a set of example
experimental designs. There is a lot to choose from: single-case/small-n one way,
single-case randomize block design, small-n repeated measures, small-n repeated
measures with replicates, two-way factorial single-case/small-n, single-case AB,
single-case ABA, multiple baseline AB, multiple baseline ABA. One design may
be better for one kind of experiment and the other for another type. But how
to choose the right one? The one that will answer the posed research question
in the best way? There is not an easy way to choose a design. There is no
tool for searching the available design given project and research constrains. For
example in our research about TDD vs. CTDD we had a small project that was
contracted for 2 developers, having 160 hours/month in the period of at least
one year, with estimated 37 modules (400 classes) to write. We searched the
possible set of designs answering the following important questions [4]:

– Do we have at least two participants? Yes, we have.
– Do we have two conditions to compare? Yes.
– Will each participant receive each of the condition on at least two occasions?

Also yes (we have a lot of modules/classes to write and if we consider one
as an ”occasion” then we are good to go).

– Is it possible to randomly assign conditions to each participant? Yes - we can
write a software tool that will randomly assign a class to a given treatment.

”A small-n repeated measure design with replicates” experimental design
seemed to be the most suitable for our needs.

3.4 Use friction free tools for data gathering

Software developers refer to tools that do not need much attention while in use as
”friction free tools”. It is because ”friction free tools” are not generating ”resis-
tance” while in use. Meaning they need no special attention from the developer.
It is quite important to use such tools in agile experimentation while gathering
data. Agile experimentation tools should work without the developer attention.
They have to integrate seamlessly with the developer environment. After sim-
ple installation and minimal configuration they should be up and running. Such
friction free data gathering software tools need to be quite resilient. If the data
gathering relies on network communication and the developer decides to work
from home, they have to provide fall back scenarios so the data will not be lost.

What kind of tools will be needed in any given research depends on the
planned experiment. There is quite a number of tools already written and avail-
able for various range of experiments. That was the case in our empirical eval-
uation of new approaches to software engineering - TDD vs. CTDD. We found

8 Lech Madeyski and Marcin Kawalerowicz

very good continuous testing plug-in for IDE that was used in the project under
investigation. We needed only to extend it with the data gathering capabilities.
It was an open source project so we ”forked it”, meaning created our branch of
source code and added a small data gathering part. We saved measurements like:
when, what test and with what outcome were run, how long it took to complete
them. The detailed description of the tool we called AutoTest.NET4CTDD can
be found in [17].

The second tool we created was a small randomized block generation. We
mentioned it in 3.2. It was a tool that randomly assign a condition to a given
class. It simply assigned a newly created class to TDD or CTDD group by
adding a specially formatted line at the beginning of the file. The line was read
by AutoTest.NET4CTDD and the plug-in acted accordingly. It automatically
turned on or off the continuous testing.

We needed one more tool: reliable event recorder for our IDE. We were quite
surprised when we realized there is none available. So in this case we have written
it from scratch and open sourced it for the community. The NActivitySensor tool
is described in Section 4.

3.5 Use just-in-time quantitative data

We do not advocate discontinuing the traditional research approaches involving
semi-quantitative or qualitative data gathered after the experiment using various
kinds of surveys. We suggest to enrich this kind of data with a quantitative
data based on experiments, both, large and small scale (e.g., small-n, single-
case). We strongly believe that such data can be gathered during the research
without an additional effort from the researcher and the subject. This data
gathering can occur in a just-in-time manner. Meaning the data is gathered in
real-time as it happens and is logged immediately for researcher to be used in
his convenience. We have build our TDD vs. CTDD research tools in that way.
Both AutoTest.NET4CTDD4 and NActivitySensor5 are storing the data in a
central database from where they can be used as they are needed.

4 NActivitySensor

For the purpose of this agile experimentation we created a tool called NActivi-
tySensor. It is a ”friction free” kind of software tool we described in Section 3.4.
It is designed to gather the real-time quantitative data while working. NActivi-
tySensor was developed with the third and forth Agile Experimentation rule in
mind. It was co-developed at the software development company one of the au-
thors is running. The company is a mostly Microsoft .NET shop that uses C# as
his primary language. The main IDE for .NET is Microsoft Visual Studio (VS).
Investigation of the VS extensions showed no tool that can be used to record

4 Available at https://github.com/ImpressiveCode/ic-AutoTest.NET4CTDD
5 Available at https://github.com/ImpressiveCode/ic-NActivitySensor

Software Engineering Needs Agile Experimentation 9

the developer actions in IDE. The data recorded by such tool could then be
used in different type of agile experimentation. One of the authors of this paper
supervised the creation of similar tool that integrated with Java IDE Eclipse.
This tool was called Activity Sensor and developed back in 2006 at Wroc law
University of Technology. We decided to name the new tool NActivitySensor. N
in the name is often used in the .NET tools and libraries as the indication of the,
in most cases, Java based ancestors. NActivitySensor integrates with VS IDE
and hooks to Development Tools Environment (DTE) and its ”Test subsystem”.

We are currently using the NActivitySensor to gather data for our research
on Continuous Test Driven Development (CTDD)[17]. The detailed description
of NActivitySensor is given in Appendix A.

5 Discussion and future work

The proposed agile experimentation practice and supporting tool are proposed
to make experimentation in real-world, industrial settings more widely adapted.
The agile experimentation practice and supporting tool set will be refined as part
of our further research. We are currently working on a new publication where
we are discussing the TDD vs. CTDD experimentation. This research is done
solely according to the agile experimentation principles. The overall experiences
regarding agile experimentation from this ongoing project are promising. We
were able to harness the most of our ”manifesto” principles to action. In this
research we are targeting professional developers in business driven projects. It
is not easy to get the permission to experiment in such environment. Thus if
permission is granted it is advisable (to say the least) to make the most of it.
By using well known small-case and single-n experiments designs (1) and to take
care about the power of the experiment up front (2). The act of experimenting
should not impact the work of the developers much (4). With this goal in mind
the NActivitySensor was developed. It gathers the information about developer
activities in the Visual Studio IDE without disturbing developer’s work. The
data is then gathered immediately for the sake of quantitative research. We
will work further on the agile experimentation idea in order to provide a tool for
searching the best experiment design for a given project and research constraints
(3).

Appendix A - NActivitySensor

This appendix contains description of the details of NActivitySensor Visual Stu-
dio Add-in. NActivitySensor is available as an extension [9] at Visual Studio
Gallery. Visual Studio Gallery is a tools, controls, and templates distribution
platform used in Visual Studio. NActivitySensor is maintained and supported
as a free extension by its creators. It can be installed from withing Visual Stu-
dio by using ”Extension and Updates...” from the ”Tools” menu (see Figure
1). After successful installation NActivitySensor writes the activities log to a

10 Lech Madeyski and Marcin Kawalerowicz

new output window with the same name (see Figure 2). It is possible to con-
figure the extension to write the activity log into a database. The database
engine supported in NActivitySensor is Microsoft SQL Server. The database
connection string is set in NActivitySensor.dll.config in the extension installa-
tion directory (which is C:\Users\Account_Name\AppData\Local\Microsoft\

VisualStudio14.0\Extensions). The key for the connection string is stored
in NActivitySensor.MSSql.ConnectionString. Also it is possible to configure the
extension on a project level. In order to do it a configuration file in the Visual
Studio solution directory is needed. It needs to be called NActivitySensor.config.
Example configuration file is showed on Listing 1.

Fig. 1. NActivitySensor installation in Visual studio 2015

Listing 1. NActivitySensor.config file

<?xml version=” 1 .0 ”?>
<c o n f i g u r a t i o n>

<appSett ings>
<add key=” NAct iv i tySensor . MSSql . Connect ionStr ing ”

value=”Data Source =192 .168 .1 . 102 ;
I n i t i a l Catalog=ExCalcNActivitySensorReports ;
User Id=NAct iv i tySensor ;
Password=NActiv i tySensor ;
Mu l t ip l eAct iveResu l tSe t s=True”/>
</ appSett ings>

</ c o n f i g u r a t i o n>

The internal storage format for the activities is JSON. JSON stands for
(JavaScript Object Notation) and is a widely used as a data exchange format. It
was used because it is both: (1) easy to read and write by a human and a machine
and (2) its structure does not have to be defined beforehand. We are using JSON

Software Engineering Needs Agile Experimentation 11

to store various activities with varied format. For example Listing 2 shows the
log for the activity ’DocumentOpened’ (opening a document in IDE) and Listing
3 shows the ’BuildBegin’ (starting of project building in Visual Studio).

Listing 2. DocumentOpened activity example log

[2 2 . 0 3 . 2 0 1 6 1 5 : 2 4 : 2 1] [DocumentOpened] {
”Name” : ”Examples . c s ” ,
”Kind ” : ”{8E7B96A8−E33D−11D0−A6D5−00C04FB67F6A}” ,
”Path ” : ”C:\\Dev\\ClaToDot\\ClaToDot .Demo\\” }

Listing 3. BuildBegin activity example log

[2 2 . 0 3 . 2 0 1 6 1 5 : 2 8 : 2 7] [Bui ldBegin] {
”Scope ” : ” vsBui ldScopeSo lut ion ” ,
” Action ” : ” vsBui ldAct ionRebui ldAl l ” }

Table 1 shows all hooked-up events recorded by the NActivitySensor.

Table 1. Microsoft Visual Studio events hooked in NActivitySensor

Event group Event Event group Event

SolutionEvent

SolutionOpened,
SolutionBeforeClosing,
SolutionRenamed,
SolutionQueryClose,
SolutionProjectRenamed,
SolutionProjectRemoved,
SolutionProjectAdded,

TextEditorEvent LineChanged

BuildEvent

BuildDone,
BuildProjConfigDone,
BuildBegin,
BuildProjConfigBegin

TaskEvent

TaskRemoved,
TaskNavigated,
TaskModified,
TaskAdded

UserEvent
UserInactive,
UserActiveAgain

FileItemEvent
FileItemRenamed,
FileItemRemoved,
FileItemAdded

PluginEvent

Connect,
Connection,
Disconnection,
AddInsUpdate,
StartupComplete,
BeginShutdown

FindEvent FindDone

WindowEvent

WindowMoved,
WindowCreated,
WindowClosing,
WindowActivated,
WindowPaneUpdated,
WindowPaneClearing,
WindowPaneAdded

DebuggerEvent

DebuggerExceptionThrown,
DebuggerException-
NotHandled,
DebuggerEnterRunMode,
DebuggerEnterDesignMode,
DebuggerEnterBreakMode,
DebuggerContextChanged

SelectionEvent SelectionChange CommandEvent
CommandBeforeExecute,
CommandAfterExecute

DocumentEvent
DocumentClosing,
DocumentSaved,
DocumentOpened

The data is stored in the Microsoft SQL Server database. Additionally the
data is echoed back into VS output windows as a fall-back for non functioning
database or network (it is possible to record the data from the output window
to a file).

12 Lech Madeyski and Marcin Kawalerowicz

Fig. 2. NActivitySensor output window in Visual studio 2015 IDE

References

1. Basili, V.R.: What’s so hard about replication of software engineering experiments?
https://www.cs.umd.edu/~basili/presentations/RESER%20Keynote.pdf (Oc-
tober 2011), accessed: 2016-03-18

2. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile
Software Development (2001)

3. Bonér, J., Farley, D., Kuhn, R., Thompson, M.: The reactive manifesto. http:

//www.reactivemanifesto.org/ (2014), accessed: 2016-03-29
4. Dugard, P., File, P., Todman, J.: Single-case and Small-n Experimental Designs:

A Practical Guide to Randomization Tests, Second Edition. Routledge (2012)
5. Gast, D., Ledford, J.: Single Case Research Methodology: Applications in Special

Education and Behavioral Sciences. Taylor & Francis (2014)
6. Guevara, P.C.: Manifesto for minimalist software engineers. http://minifesto.

org/ (2013), accessed: 2016-03-29
7. Harman, M., Jia, Y., Langdon, W.B.: A Manifesto for Higher Order Mutation

Testing. In: Proceedings of the Third International Conference on Software Testing,
Verification, and Validation Workshops. pp. 80–89. ICSTW ’10, IEEE (2010)

8. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Springer Publishing Company, Incorporated, 1st edn. (2010)

9. Kawalerowicz, M., CODEFUSION: Microsoft Visual Studio Extension
NActivitySensor. https://visualstudiogallery.msdn.microsoft.com/

4675d6fb-2608-48ed-ae0a-320b3a756047 (2013-2016), accessed: 2016-03-18
10. Kazdin, A.E.: Single-case Research Designs: Methods for Clinical and Applied

Settings. Oxford University Press (2011)
11. Kitchenham, B.A., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters,

S., Gibbs, S., Pohthong, A.: Robust Statistical Methods for Empirical Software

https://www.cs.umd.edu/~basili/presentations/RESER%20Keynote.pdf
http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/
http://minifesto.org/
http://minifesto.org/
https://visualstudiogallery.msdn.microsoft.com/4675d6fb-2608-48ed-ae0a-320b3a756047
https://visualstudiogallery.msdn.microsoft.com/4675d6fb-2608-48ed-ae0a-320b3a756047

Software Engineering Needs Agile Experimentation 13

Engineering. Empirical Software Engineering (in press) (2016), http://dx.doi.

org/10.1007/s10664-016-9437-5, DOI: 10.1007/s10664-016-9437-5
12. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experi-

ments on the web: survey and practical guide. Data Mining and Knowledge Dis-
covery 18(1), 140–181 (2008), http://dx.doi.org/10.1007/s10618-008-0114-1

13. Madeyski, L.: On the effects of pair programming on thoroughness and fault-finding
effectiveness of unit tests. In: Münch, J., Abrahamsson, P. (eds.) Product-Focused
Software Process Improvement, Lecture Notes in Computer Science, vol. 4589,
pp. 207–221. Springer Berlin Heidelberg (2007), http://dx.doi.org/10.1007/

978-3-540-73460-4_20, DOI: 10.1007/978-3-540-73460-4_20
14. Madeyski, L.: Impact of pair programming on thoroughness and fault detection

effectiveness of unit test suites. Software Process: Improvement and Practice 13(3),
281–295 (2008), http://dx.doi.org/10.1002/spip.382, DOI: 10.1002/spip.382

15. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile Prac-
tice. Springer, (Heidelberg, London, New York) (2010), http://dx.doi.org/10.
1007/978-3-642-04288-1, DOI: 10.1007/978-3-642-04288-1

16. Madeyski, L., Jureczko, M.: Which Process Metrics Can Significantly Improve De-
fect Prediction Models? An Empirical Study. Software Quality Journal 23(3), 393–
422 (2015), http://dx.doi.org/10.1007/s11219-014-9241-7, DOI: 10.1007/

s11219-014-9241-7
17. Madeyski, L., Kawalerowicz, M.: Continuous test-driven development—a novel

agile software development practice and supporting tool. In: Maciaszek, L., Fil-
ipe, J. (eds.) ENASE 2013 - Proceedings of the 8th International Conference
on Evaluation of Novel Approaches to Software Engineering. pp. 260–267 (2013),
http://madeyski.e-informatyka.pl/download/Madeyski13ENASE.pdf, DOI: 10.
5220/0004587202600267

18. Madeyski, L., Piechowiak, A.: Exclipse plug-in activity sensor. http://sens.

e-informatyka.pl/projekty/activity-sensor/ (2006), accessed: 2016-03-18
19. Madeyski, L., Sza la, L.: Impact of aspect-oriented programming on software de-

velopment efficiency and design quality: an empirical study. IET Software 1(5),
180–187 (2007), http://dx.doi.org/10.1049/iet-sen:20060071, DOI: 10.1049/
iet-sen:20060071

20. Madeyski, L., Sza la, L.: The Impact of Test-Driven Development on Software
Development Productivity — An Empirical Study. In: Abrahamsson, P., Bad-
doo, N., Margaria, T., Messnarz, R. (eds.) Software Process Improvement, Lec-
ture Notes in Computer Science, vol. 4764, pp. 200–211. Springer Berlin Hei-
delberg (2007), http://dx.doi.org/10.1007/978-3-540-75381-0_18, DOI: 10.

1007/978-3-540-75381-0_18
21. Thomke, S.: Enlightened Experimentation - The New Imperative for Innovation.

Harvard Business Review 79(2), 66–75 (2001)
22. Tichy, W.F.: Should computer scientists experiment more? Computer 31(5), 32–40

(May 1998)
23. Vokáč, M., Tichy, W., Sjøberg, D.I.K., Arisholm, E., Aldrin, M.: A controlled ex-

periment comparing the maintainability of programs designed with and without
design patterns—a replication in a real programming environment. Empirical Soft-
ware Engineering 9(3), 149–195 (Sep 2004)

24. Zendler, A., Horn, E., Schwärtzel, H., Plödereder, E.: Demonstrating the us-
age of single-case designs in experimental software engineering. Information
& Software Technology 43(12), 681–691 (2001), http://dx.doi.org/10.1016/

S0950-5849(01)00177-X, DOI: 10.1016/S0950-5849(01)00177-X

http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10618-008-0114-1
http://dx.doi.org/10.1007/978-3-540-73460-4_20
http://dx.doi.org/10.1007/978-3-540-73460-4_20
http://dx.doi.org/10.1007/978-3-540-73460-4_20
http://dx.doi.org/10.1002/spip.382
http://dx.doi.org/10.1002/spip.382
http://dx.doi.org/10.1007/978-3-642-04288-1
http://dx.doi.org/10.1007/978-3-642-04288-1
http://dx.doi.org/10.1007/978-3-642-04288-1
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://madeyski.e-informatyka.pl/download/Madeyski13ENASE.pdf
http://dx.doi.org/10.5220/0004587202600267
http://dx.doi.org/10.5220/0004587202600267
http://sens.e-informatyka.pl/projekty/activity-sensor/
http://sens.e-informatyka.pl/projekty/activity-sensor/
http://dx.doi.org/10.1049/iet-sen:20060071
http://dx.doi.org/10.1049/iet-sen:20060071
http://dx.doi.org/10.1049/iet-sen:20060071
http://dx.doi.org/10.1007/978-3-540-75381-0_18
http://dx.doi.org/10.1007/978-3-540-75381-0_18
http://dx.doi.org/10.1007/978-3-540-75381-0_18
http://dx.doi.org/10.1016/S0950-5849(01)00177-X
http://dx.doi.org/10.1016/S0950-5849(01)00177-X
http://dx.doi.org/10.1016/S0950-5849(01)00177-X

	Software Engineering Needs Agile Experimentation: A New Practice and Supporting Tool

