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1 About

The purpose of this document is to gather graph parameters (also called graph
invariants) and their relationships in a central place. It was edited by Manuel
Sorge1 and Mathias Weller2 with contributions by René van Bevern, Florent
Foucaud, Ondřej Suchý, Pascal Ochem, Martin Vatshelle, and Gerhard J. Woeg-
inger. This project and the diagram shown in Figure 1 is inspired by the work
of Bart M. P. Jansen [20]. Some further related work (in no particular order) is
the Information System on Graph Classes and their Inclusions (ISGCI)3, the
Graph Parameter Project4, INGRID: a graph invariant manipulator [12] and
the work by Martin Vatshelle [26].

2 Terminology

A graph parameter is a function φ : G→ R where G is the set of finite graphs
and R is the set of real numbers. Let φ, ψ graph parameters. The parameter φ
upper bounds another parameter ψ, if there is some function f such that for
every graph G in G it holds that ψ(G) ≤ f(φ(G)); we write φ � ψ. Parameter φ
is unbounded in ψ if ¬(ψ � φ). Parameter φ strictly upper bounds ψ if φ �
ψ ∧ ¬(ψ � φ). If (¬(φ � ψ)) ∧ ¬(ψ � φ) then φ and ψ are incomparable. If
φ � ψ ∧ ψ � φ then φ and ψ are equal.

1manuel.sorge@gmail.com
2mathias.weller@u-pem.fr
3http://www.graphclasses.org
4https://robert.sasak.sk/gpp/index.php
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Figure 1: Hasse diagram of the known part of the boundedness relation between graph parameters.
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3 Parameter Definitions

3.1 Acyclic Chromatic Number

The acyclic chromatic number of a graph G = (V,E) is the smallest size of a
vertex partition P = {V1, . . . , V`} such that each Vi is an independent set and
for all Vi, Vj the graph G[Vi ∪ Vj ] does not contain a cycle. In other words, the
acyclic chromatic number is the smallest number of colors needed for a proper
vertex coloring such that every two-chromatic subgraph is acyclic.

Introduced by Grünbaum [18].

3.2 Covering Parameters

3.2.1 Path Number

The path number of a graph G is the minimum number of paths the edges of G
can be partitioned into [2]. Exists in “disjoint” and “overlapping” versions where
the paths have to be disjoint or not, respectively.

3.2.2 Arboricity

The arboricity of a graph G is the minimum number of forests the edges of G
can be partitioned into. It is called linear arboricity if the forests are linear
(collection of paths).

3.2.3 Vertex Arboricity

The vertex arboricity (or “point arboricity”) of a graph G is the minimum
number of vertex subsets Vi of G such that G[Vi] induces a forest for each i. It is
called linear vertex arboricity if the forests are linear (collection of paths). If G
is the line graph of G′, then this equals the (linear) arboricity of G′ [2].

3.2.4 Average Degree

The average degree of a graph G = (V,E) is 2|E|/|V |.

3.3 Graph Intersection Parameters

Let G be a class of graphs and let G = (V,E) not necessarily in G. Let p be the
smallest number p of sets Ei with E =

⋂
i≤pEi and each (V,Ei) ∈ G. Then, p is

called G’s G-intersection number.

3.3.1 Interval-Intersection (Boxicity)

The boxicity is the G-intersection number for G being the class of interval graphs.
Exceptionally, each clique has boxicity 0.

An equivalent alternative definition is the following. An axis-parallel b-
dimensional box is a Cartesian product R1 × R2 × . . . × Rb where Ri (for
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1 ≤ i ≤ b) is a closed interval of the form [ai, bi] on the real line. For a graph G,
its boxicity is the minimum dimension b such that G is representable as the
intersection graph of (axis-parallel) boxes in b-dimensional space.

3.3.2 Chordal-Intersection (Chordality)

The chordality is the G-intersection number for G being the class of chordal
graphs.

3.4 Average Distance

The average distance of a graph G = (V,E) is 1/
(
n
2

)
·
∑

u,v∈V d(u, v), where d(u, v)
is the length of a shortest path between u and v in G.

3.5 Bandwidth

The bandwidth bw of a graph G is the maximum “length” of an edge in a one
dimensional layout of G. Formally:

ml := min
i:V→N

{ max
{u,v}∈E

{|i(u)− i(v)|} : i is injective}

3.6 Bisection Width

The width of a bipartition of a graph is the number of edges going between the
parts. The bisection width of a graph G = (V,E) is the smallest width of a
bipartition of G such that the difference of the parts’ numbers of vertices is at
most one.

3.7 Branchwidth

A branch decomposition of a hypergraph H = (V,F) is a tuple (T, τ), where T
is a rooted binary tree and where τ is a bijection from the leaves of T to the
hyperedges F . The order of an edge e in T is the number of vertices v in H
such that there are leaves t1, t2 in different connected components of T \ e for
which τ(t1), τ(t2) both are incident to v. The width of a branch decomposition
is the maximum order of edges in T . The branchwidth of H is the minimum
width of branch-decompositions of H.

3.8 Chromatic Number

The chromatic number χ of a graph G is the smallest number i such that the
the vertices of G can be partitioned into i independent sets.
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3.9 Cliquewidth

Let q be a positive integer. We call (G,λ) a q-labeled graph if G is a graph and
λ : V (G) → {1, 2, . . . , q} is a mapping. The number λ(v) is called label of a
vertex v. We introduce the following operations on labeled graphs:

(1) For every i in {1, . . . , q}, we let •i denote the graph with only one vertex
that is labeled by i (a constant operation).

(2) For every distinct i and j from {1, 2, . . . , q}, we define a unary operator
ηi,j such that ηi,j(G,λ) = (G′, λ), where V (G′) = V (G), and E(G′) =
E(G) ∪ {vw : v, w ∈ V, λ(v) = i, λ(w) = j}. In other words, the operator
adds all edges between label-i vertices and label-j vertices.

(3) For every distinct i and j from {1, 2, . . . , q}, we let ρi→j be the unary
operator such that ρi→j(G,λ) = (G,λ′), where λ′(v) = j if λ(v) = i, and
λ′(v) = λ(v) otherwise. The operator only changes the labeling so that
the vertices that originally had label i will now have label j.

(4) Finally, ⊕ is a binary operation that makes the disjoint union, while keeping
the labels of the vertices unchanged. Note explicitly that the union is
disjoint in the sense that (G,λ)⊕ (G,λ) has twice the number of vertices
of G.

A q-expression is a well-formed expression ϕ written with these symbols. The
q-labeled graph produced by performing these operations in order therefore has
a vertex for each occurrence of the constant symbol in ϕ; and this q-labeled
graph (and any q-labeled graph isomorphic to it) is called the value val(ϕ) of ϕ.
If a q-expression ϕ has value (G,λ), we say that ϕ is a q-expression of G. The
cliquewidth of a graph G, denoted by cwd(G), is the minimum q such that there
is a q-expression of G.

Cliquewidth has been defined by Courcelle and Olariu [7]. The definition
above is inspired by Hliněný et al. [19].

3.10 Clique Cover

A clique cover of a graph G = (V,E) is a partition P of V such that each part
in P induces a clique in G. The minimum clique cover of G is a clique cover
with a minimum number of parts. Note that the clique cover number of a graph
is exactly the chromatic number of its complement.

3.11 Coloring Number

Is one larger than the degeneracy. Introduced by Erdős and Hajnal [13].

3.12 Degeneracy

The degeneracy of a graph G is the maximum, with respect to all subgraphs G′

of G, of the minimum degree of G′. Equivalent definitions include the minimum
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outdegree over all acyclic orientations of G and the minimum, over all linear
ordering so the vertices, of the maximum, over all vertices v, of the number of
neighbors of v that occur later in the ordering.

3.13 Density

Also known as average degree.

3.14 Distance to Π

The distance to Π of a graph G = (V,E) is the minimum size of a set X ⊆ V
such that G[V \X] ∈ Π, where Π is a graph class, e. g. chordal, bipartite, or
clique.

3.15 Domatic Number

The domatic number of a graph G is the maximum number of pairwise disjoint
dominating sets of G.

3.16 h-Index

The h-index of a graph G is the maximum integer h such that G contains h
vertices of degree at least h.

3.17 Genus

The genus g of a graph G is the minimum number of handles over all surfaces
on which G can be embedded.

3.18 Girth

The girth of a graph G is the minimum number gi such that G has a cycle of
length gi.

3.19 Linkage

Also known as degeneracy. Introduced by Kirousis and Thilikos [21].

3.20 Max Leaf Number

The max leaf number ml of a graph G is the maximum number of leaves in a
spanning tree of G.
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3.21 Subgraph-Cutset-Number

The subgraph-cutset-number is the maximum, with respect to all subgraphs G′

of G, of the minimum vertex cut of G′. Here, a vertex cut in a graph G is a
set of vertices such that removing them from G yields a disconnected graph;
considering graphs that contain only a single vertex also as disconnected.

3.22 Treedepth

Let the span of a rooted tree be the graph constructed from that tree by adding
an edge {u, v}, for each pair of vertices u, v where u is an ancestor of v. The
treedepth of a graph G is the smallest height of a rooted tree T such that G is a
subgraph of the span of T .

3.23 Rankwidth

Introduced by Oum and Seymour [24]. For a definition, see [24] or [19].

3.24 Width

Consider a linear ordering of the vertices of a graph G and call its order the
maximum over all vertices v of the neighbors of v preceding v in the ordering.
The width of G a graph is the minimum order of all linear orderings of the
vertices of G.

Introduced by Freuder [16].

4 Proofs

4.1 Equality

Lemma 4.1 ([25]). Let β be the branchwidth and ω be the treewidth. max{β, 2} ≤
ω + 1 ≤ max{3β/2, 2}.

Lemma 4.2 ([22]). Let d be the degeneracy and w the width. We have d = w.

Lemma 4.3. Let d be the degeneracy and c the subgraph-cutset-number. We
have d ≥ c ≥ bd/4c+ 1.

Proof. Let G be a graph with degeneracy d. For the first inequality, consider
any subgraph G′ of G. Since G is d-degenerate, there is a vertex v in G′ with
degG′(v) ≤ d. Cutting v’s neighbors yields a disconnected graph.

For the second inequality, we use a result of Mader [23, Korollar 1]. Namely,
every graph G with n vertices and m edges that fulfills m > (2k − 3)(n −
k + 1) and n ≥ 2k − 1 contains a k-vertex-connected subgraph. Consider any
subgraph G′ of a graph with degeneracy d such that G′ has minimum degree d.
This subgraph has n ≥ d vertices and at least dn/2 edges. Let us show that
choosing any positive k ≤ bd/4c+ 1 fulfills both conditions on G of the above
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statement. This is clear for the second condition, as n ≥ d ≥ bd/2c + 1 ≥
2bd/4c+ 1 ≥ 2k − 1. Since G′ has minimum degree d, it contains at least dn/2
edges, and, hence we need to show dn/2 > (2k − 3)(n− k + 1). Since n− k + 1
is positive and less than n, it suffices to show d/2 > 2k − 3 which is implied
by bd/4c ≥ k − 1. Hence, G′ contains a k-vertex-connected subgraph, and any
of its supergraphs has subgraph-cutset-number at least k.

Lemma 4.4 ([24]). Let r be the rankwidth and q the cliquewidth. We have r ≤
q ≤ 21+r − 1.

Lemma 4.5. Let a be the arboricity and d the degeneracy. We have a ≤ d ≤
2a− 1.

Proof. If the graph G has degeneracy d, then there is an acyclic orientation with
outdegree at most d. Injectively mapping d edge sets to the outgoing edges of a
vertex yield a partition into d forests because, if one of the edge sets contained
a cycle, then there were two oriented paths from one vertex to another, which
means that we would have assigned the same edge set to two outgoing edges of
a vertex; absurd. Hence the arboricity is at most d.

In the other direction, any subgraph of a graph G with arboricity a has also
arboricity at most a. Thus, any subgraph has average degree at most 2a(n−1)/n
and, hence, contains a vertex of degree at most 2a− 1. Hence the degeneracy
of G is at most 2a− 1.

4.2 Bounds

Lemma 4.6 ([15]). The acyclic chromatic number χa is upper bounded by the
maximum degree ∆ (for every graph with ∆ > 4). We have χa ≤ ∆(∆− 1)/2.

Lemma 4.7. The acyclic chromatic number χa is upper bounded by the h-index h.
We have χa ≤ h(h+ 1)/2.

Proof. Let G be a graph and let H be the set of vertices of degree more than h
in G. Then the maximum degree of G−H is at most h. Thus, by Lemma 4.6,
G−H can be acyclically colored with at most h(h− 1)/2 colors. Finally, assign
each vertex in H a new color. Thus, G can be acyclically colored with at most
h(h− 1)/2 + h = h(h+ 1)/2 colors.

Lemma 4.8 ([3]). The acyclic chromatic number χa is upper bounded by the
genus g. We have χa ≤ 4g + 4.

Lemma 4.9 ([14]). The boxicity b is upper bounded by the acyclic chromatic
number χa (for every graph with χa > 1). We have b ≤ χa(χa − 1).

Lemma 4.10 ([8, 11]). The max-leaf number ml upper bounds the distance to
disjoint paths d. We have d ≤ ml− 1.
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Proof. Let n be the number of vertices. From the proof of Corollary 2 in ref. [11]
it follows that n = ml+γc where γc is the smallest size of a connected dominating
set. Clearly, n = d+ f where f is the largest size of a vertex subset inducing a
disjoint set of paths. By Theorem 4 in ref. [8] we have γc ≤ f − 1 and, hence,
ml− 1 ≥ d.

Lemma 4.11 ([1]). The boxicity b is upper bounded by the maximum degree ∆.
We have b ≤ O(∆ log2 ∆).

Lemma 4.12 ([5]). The treewidth ω upper bounds the boxicity b. We have b ≤
ω + 2.

Lemma 4.13 ([4]). The average distance d upper bounds the girth g. We
have d ≥ ng/(4n− 4).

Lemma 4.14 ([9]). The max leaf number m upper bounds the feedback vertex
set size f . We have f ≤ m.

Lemma 4.15. The boxicity b upper-bounds the chordality c. We have c ≤ b.

Proof. The bound follows from the fact that interval graphs are chordal. Strict-
ness is shown, for example, by Chandran et al. [6] (even for bipartite graphs).

Lemma 4.16. The distance i to an interval graph upper bounds the boxicity b.
We have b ≤ i+ 1.

Proof. Let G = (V,E) be a graph and let D ⊆ V be a vertex set such that |D| = i
and G−D is an interval graph. We define an extension of G−D and intersect
it with an interval graph Gv for each vertex v ∈ D to obtain G as follows.
The extension G′ = (V,E′) is obtained from G by making each vertex u ∈ D
universal, that is, by making every vertex in V adjacent to u. Since adding
universal vertices to an interval graph yields an interval graph, G′ is an interval
graph. For each vertex v ∈ D we define Gv = (V,Ev): Gv consists of a clique
with vertex set V \{v} and an edge {u, v} for each vertex u incident to v. Each Gv

is clearly an interval graph. It is also not hard to see that E = E′ ∩
⋂

v∈D Ev.
Hence the boxicity of G is at most i+ 1.

Lemma 4.17. The distance c to a cograph upper bounds the cliquewidth q. We
have q ≤ 23+c − 1.

Proof. Let G = (V,E) be a graph and D ⊆ V be a vertex set such that |D| = c
and G − D is a cograph. Since cographs have cliquewidth at most 2 [7], by
Lemma 4.4 we have that the rankwidth of G −D is at most 2. Since G −D
is obtained from G by c vertex deletions and deleting a vertex decreases the
rankwidth by at most 1 [19], we have that G has rankwidth at most 2 + c.
Applying again Lemma 4.4, the cliquewidth of G is at most 23+c − 1.

Lemma 4.18. The acyclic chromatic number a upper bounds the degeneracy d.
We have d ≤ 2

(
a
2

)
− 1.
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Proof. If the graph G has acyclic chromatic number a, then there is a partition
of its edges into at most

(
a
2

)
forests (one for each pair of colors). Hence, the

arboricity of G is at most
(
a
2

)
. The statement follows from Lemma 4.5.

Lemma 4.19. The feedback edge set number f upper bounds the genus g. We
have g ≤ f .

Proof. Fix a spanning forest. This graph has genus 0. Add the remaining edges
one-by-one. After adding the ith edge, the current graph is embeddable in a
surface of genus i, because we can introduce a new handle for each edge.

Lemma 4.20. The feedback vertex set f upper bounds the distance to a chordal
graph c. We have c ≤ f .

Proof. A tree is chordal.

4.3 Strict Bounds

Lemma 4.21 ([10]). The acyclic chromatic number χa is strictly upper bounded
by the treewidth ω. We have χa ≤ ω + 1.

Proof. Starting in the root of a width-ω tree decomposition, assign colors to
vertices in such a way that, for each bag B, the vertices in B have pairwise
different colors. Since, for each cycle C, there is some bag containing at least
three vertices of C, all cycles have at least three colors. Strictness follows from
n× n-grids having treewidth n+ 1 and acyclic chromatic number three.

Lemma 4.22. The maximum degree ∆ is strictly upper bounded by the band-
width bw. We have ∆ ≤ 2bw.

Proof. Let v be a vertex in a graph G with bandwidth bw. There are at most bw
neighbors of v to the “right” in a bandwidth layout of G and equally as many to
the “left”.

The bound is strict by a n× n-grid example: Maximum degree is four, but
treewidth is n+ 1 and treewidth is a lower bound for the bandwidth.

Lemma 4.23 ([7]). The cliquewidth of a graph is upper bounded by 2ω+1 + 1
where ω is its treewidth. This bound is strict.

Involved proof. The bound is strict by a clique example.

Lemma 4.24. The h-index h strictly upper bounds degeneracy d. We have d ≤ h.

Proof. Construct a “degeneracy ordering” as follows. First, enumerate all vertices
of degree ≤ h in any order, then enumerate all remaining vertices in any order
(observe that there are at most h vertices of degree more than h).

Strictness follows from a disjoint union of stars.

Lemma 4.25. The max leaf number ml strictly upper bounds the bandwidth bw.
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Proof. We show bw ≤ 2ml. Let T be a BFS tree of the graph from some vertex v
and let Li denote the vertices of distance i to v (horizontal “layers” of T ). We
show for all i that T has at least |Li| leaves. For the last layer imax, this is trivially
true. Now, assume that T has at least |Li+1| leaves. If |Li| ≤ |Li+1|, then T
also has at least |Li| leaves. Assume |Li| > |Li+1|. However, since T is a tree,
no vertex in Li+1 is adjacent to two vertices in Li. Thus, at least |Li − Li+1|
vertices in Li are leaves in T . Thus, T has at least |Li| leaves, implying
that maxi{|Li|} ≤ ml.

Now, by the definition of Li, the layout that simply puts all vertices in Li

before each vertex in Li+1 for all i has bandwidth at most maxi{|Li|+ |Li+1|} ≤
2 maxi{|Li|} ≤ 2ml.

Strictness follows from long caterpillars with degree-three backbone vertices.

Lemma 4.26. The minimum clique cover number c strictly upper bounds the
independence number α.

Proof. Let G be a graph. Then, c(G) = χ(G) where χ is the chromatic number
and α(G) = ω(G) where ω is the clique number. Since there is a family of
graphs with unbounded χ and ω = 2 (see Mycielski graph), there does not exist
a function f such that for all graphs G it holds that c(G) = χ(G) ≤ f(ω(G)) =
f(α(G)). On the other hand, it is trivial that χ � ω, implying c � α.

Lemma 4.27. The treedepth t strictly upper bounds the pathwidth p. We have
p ≤ t.

Proof. Let G be a graph and T be a tree of height t(G) such that G is a subgraph
of T . Construct a path-decomposition as follows. For each leaf v ∈ V (T ),
introduce a bag containing all ancestors of v in T . Two bags are adjacent in the
path-decomposition if the corresponding leaves u, v have the property that there
is no third leaf occuring between u and v in a post-order traversal of T . It is not
hard to check that this indeed results in a path-decomposition and that each
edge is contained in a bag.

Strictness follows from the fact that a path with n vertices has pathwidth 1
and treedepth at least blog nc.

Lemma 4.28. The minimum vertex cover size v strictly upper bounds the
treedepth t. We have t ≤ v + 1.

Proof. Let G be a graph and U ⊆ V (G) a vertex cover. Construct a tree T with
vertex set V (G) by making U into a path, picking an endpoint u of the path,
and making each vertex in V (G) \ U adjacent to u. Clearly, G is a subgraph of
the span of T and hence the treedepth of G is at most |U |+ 1.

Strictness can be seen as follows. Consider a rooted tree T with n leaves,
each of which has distance exactly two from the root. Tree T has minimum
vertex cover size n but treedepth 2.
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4.4 Unboundedness

4.5 Incomparability

Lemma 4.29. Boxicity and cliquewidth are incomparable.

Proof. Consider a square grid with side-length n. Its cliquewidth is n+ 1 [17].
However, such a grid has boxicity two: Arrange the grid in two-dimensional
space such that each edge is either perpendicular or parallel to the coordinate
axis. Tilt the grid by 45 degrees. Then, replace each vertex by a square such
that it overlaps on the edges with the squares of the vertex’ neighbor and only
with those squares.

For the other direction, consider a graph G which is a clique with a perfect
matching {{v1i , v2i } : 1 ≤ i ≤ n/2} removed. This graph is a co-graph: we show
that there is no induced path P4 on four vertices. Consider any four vertices. The
number of edges induced by these four vertices is minimized if they correspond
to two edges of the removed matching. However, they still induce at least four
edges and, thus, there is no induced P4. It follows that G has cliquewidth two.
However, G has boxicity at least n/2: Let Gi = (V (G), Ei), 1 ≤ i ≤ b, be

interval graphs such that E(G) =
⋂b

i=1Ei. All edges of G have to occur in
each Ei, 1 ≤ i ≤ b. However, no two of the matching edges, say {v1e , v2e}, {v1f , v2f}
may not occur in Ei, since, otherwise, v1e , v

1
f , v

2
e , v

2
f is an induced cycle in Gi and,

hence, this graph is not an interval graph. Thus, the boxicity is at least n/2.

Lemma 4.30. Distance to disjoint paths and treedepth are incomparable.

Proof. To see that the distance to disjoint path does not upper bound the
treedepth, consider a path with n vertices, which has treedepth at least log n.

For the other direction, consider a collection of n vertex-disjoint triangles.

Lemma 4.31. Cliquewidth and degeneracy are incomparable.

Proof. Since a clique has cliquewidth 2, cliquewidth does not upper bound
degeneracy.

On the other hand, square grids with side-length n have cliquewidth ex-
actly n+ 1 [17]; but have degeneracy 4.

Lemma 4.32. Treewidth and h-index are incomparable.

Proof. The disjoint union of stars proves that the h-index can be arbitrarily
large whereas the treewidth is 1.

A grid proves the other direction.

Lemma 4.33. Max leaf number and treedepth are incomparable.

Proof. Consider the set of paths and the set of stars.
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