
Design issues in concurrent object-oriented languages and observability

Thi Mai Thuong Tran and Martin Steffen
Department of Informatics

University of Oslo
Oslo, Norway

{tmtran,msteffen}@ifi.uio.no

Abstract—This paper discusses different choices in the
design of object-oriented, concurrent language from the per-
spective of observability. Observability takes the standpoint
that two “program fragments” are observably equivalent
if one can be replaced by the other without leading to
differences in a larger context. Characterizing the observable
behavior of a program fragment is therefore crucial for
compositionality.

The choice of language constructs has a big impact on
what can be observed, and thus also how well-suited the
language is for being composed. In this paper, we concentrate
on well-established variants of constructs in object-oriented
languages and discuss their influence on the observable
semantics. In particular, we discuss classes as units of
code, inheritance as the mainstream way of code re-use in
class-based, object-oriented languages. For concurrency, we
compare the two most prominent ways to combine objects
and concurrency: multi-threading as for instance done in
Java vs. the active objects or actor paradigm. A final aspect
is the influence of the synchronization mechanism of locks
and monitors.

I. INTRODUCTION

Compositionality is important in large and distributed
systems as it allows programmers to build a larger system
from smaller components. In general, a large system
cannot be built from scratch by a single programmer or by
a company. It often requires a cooperation from different
organizations and from different places. In that setting,
we need a good mechanism to compose components or
replace a component with another one. In general, to re-
place a component with another, one needs to observe their
behaviors to see whether two components are observably
equal, if no context can see a difference. One of the most
widely adopted solutions is to consider components as
black-boxes, and only observe the interactions via their
interfaces. So the question is that what can be observed
or seen from the outside, from the “client code”.

In an object-oriented setting, an open program inter-
acts with its environment via method calls or message
exchange. Besides message passing, of course, different
communication and synchronization mechanisms exists
(shared variable concurrency, multi-cast, black-board com-
munication, publish-and-subscribe and many more). We
concentrate here, however, on basic message passing using
method calls. In that setting, the interface behavior of
an open program C can be characterized by the set of
all those message sequences (traces) t, for which there
exists an environment E such that C and E exchange the
messages recorded in t. Thereby we abstract away from

any concrete environment, but consider only environments
that are compliant to the language restrictions (syntax, type
system, etc.). Consequently, interactions are not arbitrary
traces C t=⇒; instead we consider behaviors

C ‖ E t=⇒̄
t

Ć ‖ É (1)

where E is a realizable environment and trace t̄ is com-
plementary to t, i.e., each input is replaced by a matching
output and vice versa. The notation C ‖ E indicates that
the component C runs in parallel with its environment
or observer E. To account for the abstract environment
(“there exists an E s.t. . . . ”), the open semantics is given
in an assumption-commitment way:

∆ `C : Θ
t=⇒ ∆́ ` Ć : Θ́ , (2)

where ∆ (as an abstract version of E) contains the as-
sumptions about the environment, and dually Θ the com-
mitments of the component. Abstracting away also from C
gives a language characterization by the set of all possible
traces between any component and any environment.

Such a behavioral interface description is relevant and
useful for the following reasons. 1) The set of possible
traces given this way is more restricted (and realistic) than
the one obtained when ignoring the environments. When
reasoning about the trace-based behavior of a component,
e.g., in compositional verification, with a more precise
characterization one can carry out stronger arguments. 2)
When using the trace description for black-box testing, one
can describe test cases in terms of the interface traces and
then synthesize appropriate test drivers from it. Clearly, it
makes no sense to specify impossible interface behavior,
as in this case one cannot generate a corresponding
tester. 3) A representation-independent behavior of open
programs paves the way for a compositional semantics, a
two-level semantics for the nested composition of program
components. It allows furthermore optimization of com-
ponents: only if two components show the same external,
observable behavior, one can replace one for the other
without changing the interaction with any environment. 4)
The formulation gives insight into the semantic nature of
the language, here, to different design choices concerning
concurrency and object orientation. Some technical mate-
rial underlying this paper can be found in [1]; here we
concentrate on discussing the influence of various design
choices from a more practical and global view.

http://www.ifi.uio.no/~tmtran
http://www.ifi.uio.no/~msteffen

In Section II, we discuss closer observability and the
problem of characterizing the interface behavior. After-
wards in Section III resp. IV, we discuss the influence of
classes and inheritance, resp. of the concurrency model.
In Section V we conclude by summarizing lessons learned
from the theoretical approach in more practical terms.

II. OBSERVABLE BEHAVIOR

In this section, to give an intuitive understanding of
the formal framework, we first sketch in Section II-A the
object-oriented calculus which concentrates on the object-
oriented features we are interested in; later we extend or
modify it by inheritance, by two different concurrency
models, and considering synchronization. Afterwards, Sec-
tion II-B describes the steps of an open semantics, based
on the ideas mentioned in the introduction.

A. An object-oriented, concurrent core calculus

The abstract syntax is given in Table I (where run-
time syntax is underlined). The calculus is rather standard
and a class-based variant similar to the object calculi of
Abadi and Cardelli [2][3]. The syntax supports objects as
instances of classes, local variables, and standard control
constructs like conditionals; later we will add concurrency.
Objects carry a name or reference, likewise classes and
later threads, and via destructive field update, the model
supports mutable heap and aliasing.

C ::= 0 |C ‖C | ν(n:T).C | c[(O)] | o[c,O] | \〈e〉 component
O ::= M,F object
M ::= m = ς(n:T).λ (~x:~T).e, . . . method suite
F ::= f = fd, . . . fields
fd ::= v | ⊥c field
e ::= v | stop | letx:T = e in e expressions

| if b then eelse e
| v.m(~v) | v. f | v. f := v | new c

v ::= x | n | () values
n ::= o | c names

Table I
SYNTAX OF AN OO CORE CALCULUS

A component C is a collection of classes c[(M,F)],
objects o[c,M,F], and (for now) one single thread \〈e〉,
with empty component 0. The ν-binder is used for hiding
and dynamic scoping, as known from the π-calculus [4].
An object o references the class c it instantiates, contains
embedded the methods it supports plus the fields. The
thread \〈e〉 contains the running code, basically as incar-
nation of method bodies “in execution”. The expression
e is basically a sequence of expressions, where the let-
construct is used for sequencing and for local declarations.
Sequential composition e1;e2 abbreviates letx:T = e1 ine2,
where x does not occur free in e2. The (closed) semantics
can be given operationally in a standard way, describing
steps of the form C τ−→ C′, modulo standard algebraic
laws for parallel composition (such as associativity and
commutativity). Being closed, the steps of the semantics
are labelled with an internal τ-label, only.

B. Characterizing the observable behavior

Whereas the closed semantics uses internal steps, the
open semantics interacts with the environment via com-
munication labels a, and the behavior can be characterized
by sequences or traces t of such interaction labels. In
an object-oriented setting, the message labels are catego-
rized in method calls, returning the results, and ν-labels
which communicate fresh names and which correspond
to instantiate a new object from a class. In a concurrent
setting later, also fresh thread names are created and
communicated via ν-labels. The communication labels are
either incoming (from the environment to the component)
or dually outgoing (marked ? resp. !).

As said, without concrete environment, the open se-
mantics uses assumptions as existential abstraction of all
potential environments, and the interaction steps are of the
following form:

∆ `C : Θ
a−→ ∆́ ` Ć : Θ́ , (3)

(cf. also the traces as sketched in equation (2)). In the
step, ∆ is the mentioned assumption context, and Θ a
commitment context, describing dually relevant interface
information about the component C. In software engineer-
ing, the terms provided and required interface are also
used instead of commitments and assumptions. In the
steps of the open semantics, the two contexts are used as
follows: For incoming communication, originating from
the environment, (mainly) the assumption context ∆ is
used to check whether there exists an environment that
can send the incoming step (written ∆,Θ ` a below). The
information exchanged over the interface via the commu-
nication label a updates the (assumption and commitment)
contexts in the step (written ∆́,Θ́ = ∆,Θ +a below).

The steps of equation (3) existentially abstract away
from the environment but keep the component part C of
the configuration concrete. Abstracting away in the same
way from C as well gives a representation-independent
characterization of interaction traces possible for well-
formed and well-typed open programs. The corresponding
judgment

∆,Θ ` r B t : trace

captures the statement: “under assumptions ∆ and given
commitments Θ, and with history r, the further trace t is
possible”. The rule of equation (4) inductively formalizes
the basic step of that judgment:

∆,Θ ` a ∆́,Θ́ = ∆,Θ +a
∆́,Θ́ ` r aB t : trace other conditions

∆,Θ ` r B a t : trace

(4)

The details of the check ∆,Θ ` a and the update
∆,Θ +a as well as the “other conditions” depend on the
design decisions concerning the language constructs. We
describe the influence of classes, inheritance, two forms
of concurrency and related synchronization mechanisms
in the following.

Env. Comp.

o1
o2

o3

o′3 o′′3

(a)

Env. Comp.

o1
o2

o3

o′3 o′′3

〈call o2.m(o3)〉!

(b)

Figure 1. Connectivity

III. CLASSES AND INHERITANCE

Since Simula [5], classes are a central concept in
most object-oriented languages. Actually, classes combine
different roles in programming languages: 1) they structure
the code and offer an abstraction mechanism (as they are
also used as type or at least implement an interface).
2) They offer a mechanism of code reuse, typically via
inheritance. 3) Finally, they are generators of objects. We
describe the influence on the interface behavior of all three
roles in turn.

A. Classes as units of composition

In class-based, object-oriented languages, classes de-
scribe data together with operations or methods to operate
on the data and thus provide a programming abstraction,
similar to abstract data types [6]. The global heap contains
the state of all instances, where objects are identified via
their references or addresses, and objects may refer to
each other via references stored in their instance variables.
When considered as open system, some classes belong to
the component, and others are external, i.e., belong to the
environment. The state and the methods are therefore only
partially part of the component: conceptually, instances of
component classes reside in the component part of the
heap, and instances of external environment classes are
part of the “environment heap”, i.e., abstracted away when
modelling the behavior of the component.

If in that situation a component object creates an
environment object by an instantiation across the bor-
der between component and environment, then, without
further interface communication, the new environment
object cannot be connected to any other object, in the
sense that the new object itself cannot contain references
to any other object and also that it itself cannot be
pointed to by other environment objects. The reason is
that all communications which would put the new object
in connection in this way would be visible at the interface.
For instance, in Figure 1, after the component object o1
has created the environment objects o2 and o3, indicated
by the two arrows, it is guaranteed that both o2 and o3 are
unconnected with each other and no other objects from
the environment can point to them. However, o3 could
create environment instances in turn, to which it would be

connected, but that would not be visible at the interface.
The fact that o3 has created 2 objects internal to the
environment is indicated by the two corresponding dotted
arrows. The (potential) connectivity of objects among each
other is important for describing the interface behavior,
since certain communications are impossible. For instance,
in the situation described so far, no incoming call label a of
the form 〈call o.m(o2,o3〉? (for some callee o) is possible,
since no caller object in the environment can point to both
o2 and o3, as they are necessarily unconnected.

To prevent such impossible interface interaction, the
assumption context must contain an over-approximation of
such connectivities as an existential abstraction of the heap
structure. In particular, the check and update mentioned in
the rule of equation (4) must check the connectivity, resp.
update that information appropriately.

The potential connectivity of, for instance, environment
objects among each other is a reflexive, transitive, and
symmetric relation (written �). We call the equivalence
class of potentially connected objects a clique. Note that
the reflexive, transitive, and symmetric closure over the
father-son arrows does not apply to the arrows crossing
the border. For instance, in the described situation, the
check whether o2 and o3 are potentially connected, i.e.,
members of the same environment clique, would fail, i.e.,

∆,Θ 6` o2� o3 but ∆,Θ ` o3� o′3� o′′3 . (5)

In Figure 1, the arrows show the tree of object creation
(with cross-border instantiation as full arrows), and the
resulting cliques of objects as dotted bubbles.

The picture so far is static and the cliques are “induced”
by the tree of creation. Communication over the interface
updates the connectivity information, as formalized by the
update ∆́,Θ́ = ∆,Θ + a. For instance, if the component
sends an outgoing call 〈call o2.m(o3)〉! with o1 as caller,
o2 as callee and o3 as argument, then all four objects o2,
o3, o′3, and o′′3 are assumed to be connected after the step
(see Figure 1(b)).

B. Classes as units of code reuse

Besides describing the implementation of their in-
stances, one common role of classes is that they are units
of code reuse via inheritance. The most established form

of inheritance is single inheritance, on which we con-
centrate, even if the results apply to multiple inheritance,
as well, only the details get more involved. To represent
(single) inheritance, the syntax requires a small addition,
only: each class mentions its immediate super-class, i.e.,
for c1[(c2,M,F)], c2 is the super-class of c1.

In the open semantics in Section III-A, the heap is split
into a component heap and to an (abstracted) environment
heap, containing instances of component resp. of environ-
ment classes. Introducing inheritance means that instances
may contain members (fields or methods) whose code is
provided by the component as well as ones whose code is
provided by the environment. Concerning the state of the
open system, this existence of component and environment
fields in one instance has the following consequence. Not
only is the heap separated into component instances on
one side and environment instances on the other, now each
instance state itself is split into two halves, one containing
the content of the instance’s component fields and the
other that of the environment fields.

Figure 2(a) schematically sketches that split when in-
stantiating an instance of a component class c2 which
inherits from an environment super-class c1. The new
object o2 contains fields from c2 and from c1. It is thus
depicted as consisting of two halves, where the absent
environment half is drawn shaded. Similar to the situation
in Section III-A, and without further communication, the
environment fields of the new object o2 do not point to
any other object and furthermore, o2 is not pointed at by
environment fields of any object. In that sense, the environ-
ment half of o2 forms a separate clique, indicated by the
dotted circle and unconnected until interface interaction
puts it into connection. We assume the standard good
practice that fields are “private”, so a method added in
a sub-class cannot access (via this) fields inherited from
a super-class. As a consequence of that privacy restriction,
component fields can be accessed only by component
methods, and analogously for fields and methods of the
environment.

A second consequence is that, due to late binding and
overriding, seemingly internal implementation details are
actually externally observable. One symptom of that is
known in software engineering as the fragile base class
problem [7]. A base class in an inheritance hierarchy is
a (common) super-class, and fragile means that replacing
one base class by another, seemingly satisfying the same
interface description, may break the code of the client
of the base class, i.e., change the behavior of the “en-
vironment” of the base class. Consider the following code
fragment.

c l a s s A { c l a s s B ex tends A {
void add () { . . . } void add () {
void add2 () { . . . } s i z e = s i z e + 1 ;
. . . super . add () ; }

} void add2 () {
s i z e = s i z e + 2 ;
super . add2 () ;}

The two methods add and add2 are intended to add
one respectively two elements to some container data

structure. Even if informally, this completely describes the
intended behavior of A’s methods. Class B in addition
keeps information about the size of the container. Due
to late-binding, this implementation of B is wrong if the
add2-method of the super-class A is implemented via self -
calls using two times the add-method. The problem is
that nothing in the interface, e.g., in the form of pre-
and post-conditions of the methods, helps to avoid the
problem. The interface specification is too weak to allow
to consider the base class as a black box which can be
safely substituted based on its interface specification only.
In other words, due to late binding, the version of A where
add2 implements its functionality via seemingly internal
self-calls add and the version where it directly implements
it are observationally different. In the open semantics of
the form of equation (3), this is reflected by the fact
that the mentioned self-call constitutes a call across the
interface; assuming e.g., that A is a component class and
the sub-class B an environment class, a self call from
method add2 of A is an outgoing call from the component
to the environment if add2 is executed on an instance of B,
as in that case the this refers to the environment method
add of B. Note that the observability of the self-call does
not depend on the use of the super-keyword (which is
used here only to make the example more plausible).

When formulating the open semantics, the assumption
and commitment contexts must represent two equivalence
relations, one as abstraction of the environment fields and
their connectivity and one for the component fields. These
abstractions are used to check the interface steps and are
correspondingly updated similar to before. Taking the tree
of object creation from Figure 1(a), in the setting with
inheritance, the clique structure now looks schematically
as in Figure 2(b). Since each object is now split into two
halves, all objects from the original figure have now a
“mirrored” counterpart. For instance, if the component half
of o1 instantiates o2 and o3 (as before), the environment
half of o1 is connected to both o2 and o3 (indicated here
by 2 pairs of arrows). Note that the clique structures on
the component side and on the environment side differ.
For instance, in the figure, the component half of o3 is
connected to o′3 and o′′3 , however, for the environment part
o3, o′3, and o′′3 are all members of different cliques. Also
in case of communication (as shown in Figure 1(b) in the
setting without inheritance), the two clique structures are
updated differently. For instance, an outgoing communi-
cation merges only cliques at the receiving side of the
component, i.e., only environment cliques.

C. Classes as generators of objects

One last aspect of classes we shortly discuss is that
classes are generators of objects. In particular, two in-
stances of the same class are, until the first differentiating
incoming input, identical up to their name or address. That
means, that their behavior, when confronted with the same
sequence of inputs must be identical (up to the object
names). In the description of the open behavior and the
possible traces from equation (4), the “other conditions”

Comp. Env.

C2

C1
extends

o0

o2

(a)

Comp. Env.

o1

o2

o3

o′3 o′′3

o1

o2

o3

o′3o′′3

(b)

Figure 2. Connectivity and inheritance

must therefore require that the trace is “deterministic” in
that sense, i.e., given the history r, the next step a must
not contradict behavior seen earlier on an “equivalent”
instance of the same class. This restriction of course
only applies when the language is deterministic, i.e., in
particular in absence of concurrency. Note further that the
problem of assuring deterministic reactions from instances
rests also on the fact that objects may be unconnected
from other objects (by being in different cliques). In the
presence of global variables, for instance, class variables,
no newly instantiated object would have “a fresh start” and
would therefore not be required to show the same behavior
as an earlier instantiation of the same class. Of course the
complication does not occur when objects are not created
from classes, or each class is instantiated only once. The
formal study of full abstraction in a class-less object-
oriented calculus [8] basically allows to instantiate objects
only once (and besides that disallows cross-border instan-
tiation/inheritance, which therefore avoids these problems.

IV. CONCURRENCY MODEL

How to marry concurrency and object-orientation has
been a long-standing issue; see e.g., [9] for an early
discussion of different design choices. Actually, the basic
distinction already discussed in [9] is between consid-
ering threads and objects as separate concepts on the
one hand or considering objects conceptually as a unit
of concurrency (and state) on the other. The first model
is the multi-threading model, prominently represented by
object-oriented languages like Java [10] and C], [11]. The
alternative is known as active objects or actor model.
When comparing both models, we assume that part of the
model are locks as mechanism for concurrency control,
i.e., objects are now of the form o[F,M,L] were L is the
lock.

A. Multi-threading

The concurrency model, as known from languages like
Java, separates the unit of state (the objects) from the units

of concurrency (the threads).1 The locks to protect shared
data are re-entrant locks. To formalize that model means
to extend the calculus of Table I by a spawne-expression
plus operations for synchronization such as wait and
notify. In order to characterize the interface behavior,
the formalization of legal traces from equation (4) needs
to be adapted capturing the following two aspects,
• re-entrant calls, and
• the lock-status.
We discuss the two issues in turn.
1) Re-entrant calls: In the multi-threading model, call-

backs and re-entrant calls between component and envi-
ronment are possible, e.g., an outgoing call by one thread
from the component to the environment is not directly
answered by the corresponding return giving back the
result, but followed by an incoming call. Each thread for a
legal trace from equation (4) must therefore be a) strictly
alternating wrt. incoming and outgoing communications
and b) each return must be preceded by a matching
call. This amounts to a context-free condition on the
interactions of one thread p, where on equation (4), one
needs one check of a form ` r B a : wbalanced+

p where
p is the name of the thread executing a and “weak
balance” formalize the condition just mentioned, requiring
that the next interaction a must be incoming for instance
(` r B a : wbalanced−p is dual).

2) Lock status: In Java, each object is equipped with
a (re-entrant) lock which can be used to protect the
internal state of the object from interference or also for
programming synchronized blocks. The actual state of a
lock is not observable.2 However, from the interface trace,
under certain circumstances, one can draw the conclusion
that a lock of an object is definitely taken. That is
the case when a call is answered by a call-back. With
the information of a lock being definitely taken, certain

1The fact that in Java concretely a thread is created as an instance of a
specific thread class does not change the conceptual distinction between
threads and objects.

2In our theoretical calculus we do not include a method as
isLocked() from Java’s ReentrantLock-class which allows direct
inspection of the lock status.

interface interactions are known then to be impossible and
must therefore be excluded form the legal traces. Those
conditions complicate the description of the interface
behavior considerable [12]. The complications are caused,
basically, by the important fact that interface interactions
have no instantaneous effect on the state. This decoupling
in the formulation of the open behavior is crucial, because
enabledness of a step of, say, the component must not
depend on the (internal) state of the environment and vice
versa. This would contradict a compositional description
of the open system. In our setting, e.g., sending a call
across the interface is independent on the state of the
callee’s lock, as the lock itself is unobservable.

The issue is illustrated in Figure 3. The scenario of
Figure 3(a) shows a trace with interactions of 2 threads
(red and blue), where after two incoming calls of the
two threads, each one responds with a corresponding
return. Since neither the interface interaction in the form
of a call takes the lock instantaneously nor a return
indicates the exact point of lock release, the behavior of
3(a) is actually possible: since the object lock guarantees
mutual exclusion, either p1 executes its the method body
completely before the method body executed by p2, or
conversely. Both serialized executions are consistent with
the shown interface behavior of 3(a).

The situation of Figure 3(b) is similar, only now the red
thread p1 responds with a call-back instead of a return.
Also this scenario possible: The call-back of p1 makes it
observable that p1 at that point actually holds the lock. The
outgoing return of p2 makes it observable, that at some
point in the past, p2 must have held the lock (but does
no longer). A possible serial execution consistent with the
shown scenario therefore is that p2 takes the lock first,
releases it again, and afterwards p1 takes it and holds it
till the end of the scenario. Unlike the situation of 3(a),
this time the observed behavior imposes an order in which
the method bodies are entered.

As discussed so far, the constraints on the order derived
from the observable interaction depended only on obser-
vations concerning synchronization via the locks. Object
creation and thus the exchange of dynamically created
identifiers, e.g., object references, impose another ordering
constraint: a value cannot be communicated before it
has not been created. Consider Figure 3(c), which shows
the same communication pattern as 3(b) except that the
first incoming call of thread p1 sends a freshly created
object identifier o as argument, indicated by the binder
ν(o). The shown scenario, where p2 returns the o in the
last interaction is impossible. As discussed for 3(b), the
serialization constraint concerning the locks enforces that
p2 is executed before p1. The data dependence concerning
o requires that p1 is executed before p2.

In summary, to capture the legal behavior in the
presence of lock synchronization and re-entrant multi-
threading concurrency, the conditions of equation (4) need
to keep track of the mentioned order constraints and
the rule need to check that the order constraints remain
acyclic.

B. Active objects

An alternative to the multi-threaded model of concur-
rency is one based on active objects, where the object
is not only the unit of (encapsulated) state but also
a unit of concurrency. One way to move from multi-
threading to active objects is to replace standard method
calls v.m(~v) by asynchronous method calls, written say
v@m(~v). In an asynchronous call, the caller can proceed
concurrently with the called method and get the result
back from the call only if and when it needs it. In this
way, each asynchronous method calls spawns an new
thread; hence there is no stack of method calls. For the
interface behavior that means the balance condition of
Section IV-A1 is not needed, resp. it degenerates to check
that there is no return without prior call and the condition
degenerates from a context-free restriction to a regular
one (per thread). Also, in the rule of equation (4), when
checking ∆,Θ ` rB t : trace, the history r needs no longer
be remembered, when formalizing the check for possible
traces.

As in the multi-threaded setting the encapsulated state
of an active object needs to be protected against unwanted
interference. Without re-entrance, that can be achieved
by simple binary locks, as opposed to re-entrant locks.
Likewise as before, the actual lock status is not directly
observable and in particular an interface interaction (still)
does not indicate the instantaneous acquisition (in case of
a call) or release (in case of returning the value) of a lock.
Without re-entrance and call-backs, the scenario shown in
Figures 3(b) and 3(c) is not possible, the one of 3(a) of
course is. Remember that in Figure 3(b) it is the call-back
which makes the fact observable that the lock is actually
taken. In 3(a), no information about the current lock status
can ever be observed, which means the lock status needs
not be represented when formalizing the legal traces of an
open system which simplifies the description considerably.
This corresponds to the situation with active objects.

Both facts —regular behavior is simpler than context-
free and non-observability of the internal lock status for
active objects— are a clear formal indication that the
active object models with its simpler interface behavior
are better suited for open systems and when considering
compositionality.

V. CONCLUSION

In this paper we discussed issues for object-oriented,
class-based languages from the perspective of composi-
tionality and observable behavior. We gave an overview
of how design decisions in an object-oriented language
influence the description of the black box behavior when
considering classes as units of composition. The question
of observable black-box behavior can be and has been
studied theoretically. Apart from the theoretical problems,
there are also practical lessons to be learned: a clean and
simple description of the component behavior is an indi-
cation that the chosen constructs are suitable for modular
design and compositional reasoning. Or conversely, if the
open semantics makes clear that the behavior directly or

Comp. Env.
m?

m?

r!

r!

(a)

Comp. Env.
m?

m?

m!

r!

(b)

Comp. Env.
ν(o).m?(o)

m?

m!

r!(o)

(c)

Figure 3. Locks

indirectly exposes internal details at the interface, this is
an indication of an inherently non compositional design,
for instance not providing enough encapsulation, resp. that
the interfaces are too abstract to reflect the reality of what
actually is observable.

Based on the sketched theoretical results, we opine the
following three main points.

1) Object-orientation and modularity: Using classes as
units of composition and as generators of objects exposes
an abstract representation of the heap (in the form of
connectivity of objects) as part of the interface behavior,
which is a considerable complication. Taking into account
also inheritance across component boundaries the descrip-
tion becomes even more involved. Basically, classes and
sets of objects are no good units of composition, especially
if it is allowed to instantiate instances of classes from
another component or if inheritance between component
borders is possible.

2) Concurrency: The comparison between the two
main competing models of concurrency for object-oriented
programs in Section IV clearly showed that the multi-
threading model is unsuitable as interaction model be-
tween components. Components are better considered as
communicating asynchronously. Furthermore, the discus-
sion in Section III-C indicates that components should
be considered as inherently concurrent from the start
since assuming a sequential model actually complicates
the description of the interface behavior. In other words,
a concurrent model of interaction surprisingly simplifies
composition.

3) Synchronization: The presence of concurrency re-
quires concurrency control. Especially in connection with
multi-threading, the (in principle unobservable) status of
the lock may sometimes be inferred by interacting with
an object. This fact further complicated the multi-threaded
setting by introducing some order constraints. One under-
lying reason for that seems to be that lock based synchro-
nization is a rather low-level means of guarding against
interference. The purpose of using locks is to protect
critical regions against unwanted interference, but the way
it’s achieved is by low-level lock acquisition and release on
shared locks. A more compositional, declarative, and high-
level way on the user level to achieve protection would
be based on transactional constructs. Known long from

databases, such constructs have recently been proposed
as user-level constructs for programming languages, for
instance for Java [13] as well as for other languages. We
leave the study of observational semantics for such designs
as future work.

REFERENCES

[1] M. Steffen, “Object-connectivity and observability for
class-based, object-oriented languages,” Habilitation thesis,
Technische Faktultät der Christian-Albrechts-Universität zu
Kiel, Jul. 2006, 281 pages.

[2] M. Abadi and L. Cardelli, A Theory of Objects, ser.
Monographs in Computer Science. Springer-Verlag, 1996.

[3] A. D. Gordon and P. D. Hankin, “A concurrent object
calculus: Reduction and typing,” in Proceedings of HLCL
’98, ser. Electronic Notes in Theoretical Computer Science,
U. Nestmann and B. C. Pierce, Eds., vol. 16.3. Elsevier
Science Publishers, 1998.

[4] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile
processes, part I/II,” Information and Computation, vol.
100, pp. 1–77, Sep. 1992.

[5] O.-J. Dahl, B. Myhrhaug, and K. Nygaard, “(simula 67)
common base language,” Norsk Regnesentral (Norwegian
Computing Center), Oslo, Norway, Technical Report S-2,
May 1968.

[6] W. Cook, “Object-Oriented Programming Versus Abtract
Data Types,” in Foundations of Object-Oriented Languages
(REX Workshop), ser. Lecture Notes in Computer Science,
J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, Eds.,
vol. 489. Springer-Verlag, 1991, pp. 151–178.

[7] L. Mikhajlov and E. Sekerinski, “A study of the fragile base
class problem,” in Proceedings of the 12th European Con-
ference on Object-Oriented Programming (ECOOP’98),
Brussels, Belgium, ser. Lecture Notes in Computer Science,
vol. 1445. Springer-Verlag, 1998, pp. 355–354, a longer
version has been published as Turku Centre of Computer
Science Technical Report TUCS Nr. 117, June 1997 under
the title “The Fragile Base Class Problem and Its Solution”.

[8] A. Jeffrey and J. Rathke, “A fully abstract may testing
semantics for concurrent objects,” in Proceedings of LICS
’02, IEEE. Computer Society Press, Jul. 2002, pp. 101–
112.

[9] P. America, “Issues in the design of a parallel object-
oriented language,” Formal Aspects of Computing, vol. 1,
no. 4, pp. 366–411, 1989.

[10] J. Gosling, B. Joy, G. L. Steele, and G. Bracha, The
Java Language Specification, Second ed. Addison-Wesley,
2000.

[11] C# Language Specification, 2nd ed., ECMA International
Standardizing Information and Communication Systems,
Dec. 2002, standard ECMA-334.

[12] E. Ábrahám, A. Grüner, and M. Steffen, “Abstract interface
behavior of object-oriented languages with monitors,” in
FMOODS ’06, ser. Lecture Notes in Computer Science,
R. Gorrieri and H. Wehrheim, Eds., vol. 4037. Springer-
Verlag, 2006, pp. 218–232 (15 pages).

[13] S. Jagannathan, J. Vitek, A. Welc, and A. Hosking, “A
transactional object calculus,” Science of Computer Pro-
gramming, vol. 57, no. 2, pp. 164–186, Aug. 2005.

	Introduction
	Observable behavior
	An object-oriented, concurrent core calculus
	Characterizing the observable behavior

	Classes and inheritance
	Classes as units of composition
	Classes as units of code reuse
	Classes as generators of objects
	Concurrency model
	Multi-threading
	Re-entrant calls
	Lock status
	Active objects
	Conclusion
	Object-orientation and modularity
	Concurrency
	Synchronization

	References

