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ABSTRACT

Let G be a graph and let «'(G) be the edge-connectivity of G. The
strength of G, denoted by ¥'(G), is the maximum value of «'(H), where
H runs over all subgraphs of G. A simple graph G is called k-maximal
if '(G) = k but for any edge e € E(G), x'(G + e)=k+ 1. Llet Gbea
k-maximal graph of order n. In [3], Mader proved |E(G)| = (n — k)k + (5).
In this note, we shall show (n — 1)k — &) Ln/tk +2)] = |E(G)], and charac-
terize the extremal graphs. We shall also give a characterization of all
k-maximal graphs.

I. INTRODUCTION

We shall adopt the notation and terminology of Bondy and Murty [2] except for
contractions. A graph G may have multiple edges but loops are not allowed.
Let G¢ denote the complement of a simple graph G. Let H and G be graphs. By
H C G we mean that H is a subgraph of G and by H = G we mean that H is
isomorphic to G. If X is a subset of V(G) or of E(G), then G[X] denotes the
subgraph of G induced by X. An edge-cut of a graph G is an edge subset whose
removal increases the number of components of G. A bond of G is a minimal
edge-cut. An edge-cut of size k is called a k-edge-cut. We use N to denote the
set of all positive integers. The floor of a real number x, denoted by |x], is the
greatest integer not larger than x. For any k € N, we define &) = [k(k — D] /2
and so (}) = 0. The join of two graphs G and H, denoted by G \/ H, has

V(G\/ H) = V(G) U V(H)
and

E(G\/H)=EG)UEWH)U {uv:u € V(G)and v € V(H)} .
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We use the following definition for contractions. Let G be a graph and let X
be a subset of E(G). We use G/X to denote the graph obtained from G by iden-
tifying the two ends of each edge in X and then deleting all loops produced.

We define the strength of G to be the following number:

K'(G) = max k' (H) . (D

HCG

The invariant «'(G), first introduced by Matula [4], has been studied by
Boesch and McHugh [1], by Matula [4,5], by Mitchem [6], and implicitly by
Mader [3], among others. In [5], Matula gave a polynomial algorithm to deter-
mine «'(G).

Fix k € N. A simple graph G is k-maximal if [V(G)| > k, k'(G) =< k and if
for any edge e of G°, K'(G + e) > k.

Define, forn, k € N, n > k = 1,

f(n, k) = min{|E(G)|: G is simple, of order n, and k-maximal},
and
F(n, k) = max{|{E(G)|: G is simple, of order n, and k-maximal} .

Since K, is the only k-maximal graph of order & + 1,

f(k+1,k)=F(k+l,k)=<k+l>. )

2

Let €x(f;n, k) (€x(F; n, k), respectively) denote the set of simple k-maximal
graphs of order n and with strength at most k such that |E(G)| = f(n, k)
(|E(G)| = F(n, k), respectively). In [3], Mader proved
Theorem (Mader [3]). Forn, k € N with n > k = |, we have

(a) F(n, k) = (n — bk + (5);
(b) G € éx(F;n,k) if and only if G = K,,, or G has a vertex of v of degree
ksuchthat G — v € €x(F;n — 1,k).

In this note, we shall show

k n
= - e ()]

and shall characterize €x(f;n, k).

il. EXAMPLES

The following examples of k-maximal graphs will be used in this paper.
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Example 1. Forn, k € N withn >k + 1 > 2, we define a graph H(k,n — k)
to be the simple graph K, \/ (n — k)K,. If H = H(k,n — k), we use H' to de-
note the subset of V(H) that corresponds to the n — k K,’s.

Example 2. For n,k, r € N with n > k + 1 > 2 and with r = 2, and

for m,,m,,...,m, € N with k =2m, =2,1=i=r, and with m, +
m, + <+ + m, =n — rk, and for any tree T with V(T') = {v,,v,, . .. ,U,}, we
define T(k;m,, m,, . .. ,m,) to be the simple graph obtained from T by replacing

each v, by a graph H, = H(k,m,) and by replacing each edge of 7, say v,
1 <s,0<r, by aset E, , of k edges such that each vertex in H; U H, is inci-
dent with at least one edge of E, ,. Since this graph is simple, E , has at most
m,m, edges, and so k = mym, for all s and ¢ such that vy, € E(T).

. MAIN RESULTS

We start with some lemmas.

Lemma 1. Letn = |V(G)|. Suppose that G has an edge-cut X such that G[X]
is spanning subgraph of G.

(a) If G[X] is spanned by a complete bipartite graph, then
X|=zn-—1.

(b) If G is simple and G[X] is a complete bipartite graph, then either
k'(G) < |X| or G is complete and one component of G — X is a single
vertex.

Proof. Suppose that X satisfies the hypothesis. If G[X] has a complete
bipartite subgraph, then G[X ] contains a spanning tree of G and so (a) follows.
We only need to prove (b).

Suppose that G is simple and G is not complete. By (a) of this lemma,
IX| = n — 1 and, since G is simple, equality holds only when G[X] 1s a star
K, .-, Since G is simple and not complete, then G has a vertex of degree
smaller than n — l and so k' (G) <n — 1 = [X|. §

Theorem 1. If n = |V(G)| >k + 1 and G is a k-maximal graph, then
k'(G) = k'(G) = k.

Proof. We argue by contradiction and assume that G is k-maximal but
k > k'(G). Let X be an edge-cut of G with |[X| = «'(G) < k and let G, and G,
be the two components of G — X. Clearly X # .

Since X # & and since k < n — 1, it follows from (a) of Lemma 1 that
there is an edge e € E(G°) such that e is incident with a vertex of each compo-
nent of G — X. Since G is k-maximal, k'(G + ¢) > k. Let H be a subgraph of
G + e such that k'(H) = k(G + ) > k. Since [X U {e}| = k, H must be a
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subgraph of either G, or G,. It follows that k'(G) = k + 1, contrary to the fact
that k' (G) < k. 1

The converse of Theorem 1 is false. Let H, and H, be two H(2,2)’s and let
H\ = {w,,w,} and H} = {u,, u,}. Let G be the graph obtained from the union of
H, and H, by joining u; and w, by a path of length two, i = 1, 2. It is easy to
see that k'(G) = 2 = k'(G) and that G is not 2-maximal.

Lemma 2. Let G be a simple k-maximal graph of order n, where n > k +
1 > 2. Then exactly one of the following holds:

() G =Hk,2), or
(i1) For any k-edge-cut X of G, each component of G — X is either K , ora
k-maximal graph that is not K, ;.

Proof. 1t is clear that (i) and (ii) of Lemma 2 are mutually exclusive.

Let X be a k-edge-cut, and let G, and G, denote the two components of
G- X.

Suppose first that G, = K. If G, is complete, then since n > k + 1,
\V(G)] = k + 1. Since '(G) = «'(G) = k, and since G, is complete, G,
has order at most k + 1. Thus G, = K, and so (i) of the lemma holds. Hence
we may assume that G, is not complete. Let e € E(GY). Since G is k-maximal,
there is a subgraph L C G, + e such that k(L) = k + 1. Since L is sim-
ple with 8(L) = k'(L) = k + 1, |V(G))| = |V(L)| = k + 2. Hence G, is
k-maximal and we are done.

Similarly, the lemma will follow if G, = K,. Hence we may assume that
both [V(G,)| and |V(G,)| are greater than one. Thus

min{[V(G )|, [V(G)} = 2. 4
Case 1. Suppose that one of the G,’s is complete, say
G, =K, for some m = 2.
We shall derive a contradiction.
Since G is k-maximal, k'(G) < k and so m < k + 1. Thus
2=m=k+1. (5)
Let e be any edge of E(G°) such that e has exactly one end in V(G,) and one
end in V(G,). We claim that such an edge e exists. There are |V(G))||V(G,)]
pairs (v, v,) in V(G,) X V(G,), and only k of them cannot be the ends of e, be-
cause they are joined by one of the k edges of X. By (4),

VG V(G| = V(G| + V(G| =n >k +1=[X] + 1,

and so e exists, as claimed.
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Since G is k-maximal, G + e has a (k + 1)-edge-connected subgraph, say
L = L(e). If e & E(L), then L C G, contrary to k'(G) = k. Hence, ¢ € E(L)
and it follows that the edge-cut X U {e} of G + e must be E(L).

Define L, = L[V(G,) N V(L)], i € {1,2}, and denote [V(L))| = t.

Without loss of generality, since (4) gives |V(G,)| = 2, we can assume that
¢ = 2: if all edges of X were incident with a single vertex of V(G), then by (4),
e can be chosen incident with a vertex of V(G,) that is not incident with an
edge of X.

Also without loss of generality, we can assume that t < k, as we now show.
If the edges of X are incident with fewer than k vertices of V(G)), then ¢ = k. If
the edges of X are incident with k distinct vertices of V(G,) then each of those k
vertices is incident with exactly one edge of X. By (4), |V(G,)| = 2, and so e
may be chosen in E(G®) such that e and some edge of X are incident with a
common vertex on V(G,). Since k = 2, we can also assume as before that not
all edges of X U {e} are incident with the same vertex in V(G,). Hence

2=t=<k. 6)

Since k'(L) = k + 1, all ¢ vertices of V(G,) have degree at least kK + 1 in L.
This, L, = K,, and X U {e} C E(L) give

wk+ )= > dv) = 2<;> + X U{e}| =t -1+ k+1).

veEV(L )

Thus,
¢—-—Dk+1D)=t@-1).

By 2 = t of (6), we can divide each side by (¢t — 1) to get k + 1 = ¢, which
contradicts (6). This concludes Case 1.

Case 2. G, is not complete.

For any edge e € E(G;) C E(G°), G + e has a subgraph L with k(L) =
k + 1. Since |X| < k, L is a subgraph of G,. Note that [V(G))| = [V(L)| =
k + 1. Hence G, is a k-maximal if we can show that k'(G,) = k. By Theorem
1, ' (G,) = «'(G) = k, and so G, is k-maximal. Since G, is not complete, G,
is not isomorphic to K, ;.

Similarly, G, is k-maximal and is not isomorphic to K,,,. 1

By Lemma 2, we can determine the minimal k-maximal graphs.

Corollary 2A. Letn > k > 1 and let G be a k-maximal simple graph of
order n that is not isomorphic to K, ,. If every proper k-maximal subgraph of G
is isomorphic to K, ,, then G = H(k, 2).
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Proof. By Theorem 1, G has an edge-cut X of size k. Let G, and G, be the
two components of G — X. By Lemma 2, either G = H(k, 2) or one of G, and
G, is a proper k-maximal subgraph of G that is not isomorphic to K, ,,. By the
hypothesis, G = H(k,2). 1

Corollary 2B. Let k € N and let G be a k-maximal graph with [V(G)| =
k + 2, then G = H(k, 2).

Proof. The proof is trivial if k = 1 and so we assume k > 1. By Theo-
rem 1 and Lemma 2, G must have a vertex v of degree k. By (2), G — v =
K,,,. Hence G = H(k,2). 1

Let k € N and let H, and H, be two graphs with disjoint vertex sets and with
max{|V(H )|, |V(H,)|} = k. A k-edge-join of H, and H, is a simple graph
obtained from the disjoint union of H, and H, by adding k new edges
e, e, ...,e tothe union of H, and H, such that each ¢, is incident with a ver-
tex of V(H,) and a vertex of V(H,). Denote by [H,, H,], the set of all k-edge-
joins of H, and H,. Clearly, [H,,H,], = [H,,H ];.

Lemma 3. Letk € N, let H, be a k-maximal graph and let H, be either a K|
or a k-maximal graph. Then all graphs in [H,, H,], are k-maximal.

Proof. Let G be a graph in [H,, H,],. It is easy to see that
k'(G) = max{x'(H,), k' (H,)} = k.
The lemma becomes trivial if & = 1. Thus we assume k>1.

By way of contradiction, let G € [H,, H,], be a counterexample of minimum
number of vertices, for some H, and H, satisfying Lemma 3, and let ¢ € E(G")
such that (G + ¢) < k. Since H, and H,, if nontrivial, are k-maximal
graphs, e & E(H}) U E(H5). Hence we assume that e = x x, with x; € V(H)),
(i=1,2).

Let E' = E(G) — E(H,) — E(H,). Then |E'| = k, by the definition of
(H,,H);. :

Let X be an edge-cut of G + e with |X| =< k. Applying Theorem 1 to H, and
H,, we conclude that neither H, nor H, has a k-edge-cut. This, together with the
fact that the ends of ¢ = x,x, are in V(H,) and V(H,), respectively, implies that
XN (E'"U{e}) = J, and so for some i € {1,2}, X C E(H,).

Let H, and H; be the components of H, — X. Since H, is k-maximal, by
Lemma 2, each of H, and H| is either K, or k-maximal. Let V' be the vertices
of V(H,) that are incident with edges in E’ U {e}. Since X is an edge-cut of
G + eandsince (E' U{ep) N X =, either V' C V(H])or V' C V(H}).

Without loss of generality, we assume that V' C V(H ), and so the edges in
X U {e} are all incident with vertices of V(H,). Let G’ = G — V(H). Then G’
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is a subgraph of G that is in [H],H;_,], with e € E(G')°). By the minimality
of G, all graphs in [H],H,_;], are k-maximal. Thus k'(G" + ¢) = k + 1, and
so kK'(G + e) = k' (G + e) =k + 1, a contradiction. 1

Definition of M(k). For n, Kk € N with n > k, let M(k) denote the family of
graphs containing K, , as the only graph of order n + 1, such that a graph G of
order n = k + 2 is in M(k) if and only if there exist graphs H, and H,, where
H, is either in M(k) or K, (i = 1,2), and where at least one of the H,’s 1s not
K,, such that G € [H|,H,],.

Corollary 3. Letn, kK € N with n > k. A graph G of order n is k-maximal if
and only if G € M(k).

Proof. It follows from Lemma 3 and induction on [V(G)|. 1
Definition of (k). For n, k € N with n > k + 1, let ¥(k) denote the graph
family containing H(k, 2) as the only graph of order k + 2, such that a graph G
of order n > k + 2 is in &(k) if and only if there exist graphs H, and H,

with order n’ = |V(H,)| and n" = |V(H,)|, where H, is either in F(k) or K|,
(i = 1,2), and where at least one of the H,’s is not K|, such that G € [H,,H,],

and such that
n n' n"
= + ) 7
EaNas M g

It is clear that F(k) is a subfamily of M(k).

Theorem 2. Forn, Kk € Nwithn >k + 1= 2, we have

(@) f(n,k) = (n — Dk — () n/k + 2)J;
(b) G € Ex(f;n, k) if and only if G € F(k) and |V(G)| = n.

Proof. We shall need the following trivial fact: for any real numbers x and y,
lx] + Lyl =[x+ y]. (8)

Let r = [n/(k + 2)]. It is easy to check that
k
|E(T (k;m,, m,, ... ,m,))| = r<2) +(r=Dk+(m, +m+ - +mk

= r<§> + (r — Dk + (n — rk)k

=(n - Dk ——‘r<§> )
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Hence by the definition of f(n, k),

fln, k) < (n — Dk - r<§> , (9)

Let G € €x(f;n, k). We shall prove (a) of Theorem 2 and G € F(k) '
by induction on n. If n = k + 2, then by Corollary 2B, G = H(k,2) and
so G € (k) and f(k + 2,k) = (k + Dk — ('5_). Hence Theorem 12 holds for
n==k+ 2.

Now suppose that n > k + 2. We assume that if 2 =k + 1 <m < n and
if G € éx(f,m,k), then G € F(k) and

Fm, k) = (m — Dk — (’;) [k 'J’: 2J . (10)

By Lemma 2, G has a k-edge-cut X such that each component of G — X is
either K, or a k-maximal graph of order greater than k& + 1.

An edge-cut X of G is called a fan if one component of G — X is a single
vertex.

Claim. If n > k + 2 and if (k + 2) is a factor of n, then X is not a fan.

By way of contradiction, suppose that n = r(k + 2), for some r € N, and
that X is a fan.

Let v be the vertex of G that is incident with every edge in X, and let
G =G —v.

Since G is k-maximal and since n > k + 2, it follows from Lemma 2 that
G' is k-maximal. Since n = r(k + 2),

n—1
[k+2J—r—l. (11)

By (9), (10), and (11),

(n — Dk - r(é) = f(n, k) = f(n — 1,k) + k

n—1| [k
=(n—2)k—[k+2‘|<2>+k

n— 1| [k
:(""l)k—[kJer(z)

— (- Dk = (r - 1)(’;),

a contradiction. Hence the claim. 1§
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Case 1. X is a fan.
By the claim, (k + 2) is not a factor of n. Hence
n n—1
= = . 12
’ [k+2J Lsz (12

Let v denote the vertex of G that is incident with edges in X. Then by (9),
(10), and (12),

(n — Dk - r<§> = f(n, k) = f(n — 1,k) + k

o )

+
=n—-1Dk—r ) (13)

Thus equalities must hold in (13) and so

fln, k) = (n — Dk — r<§> . (14)

By Lemma 2, G — v is k-maximal. By (13) with equalities, G — v €
€x(f;n — 1,k). By induction, G — v € %(k). Thus G € F'(k) by definition.

Case 2. X is not a fan.

Let the two components of G — X be H, and H,, and their orders be n" and
n’, respectively. By (8), (9), and (10).

(n — Dk — r<§> = f(n, k) = f(n', k) + f(n", k)

, n' k .
=(n—1)k-{k+2J<2)+k+(n Dk
_ n// k
k+2|\2
=(n— Dk-— r(I;) . (15)

Thus equalities must hold in (15) and so (7) follows. By Lemma 2, the H,’s are
either k-maximal or K, and at least one of them is not K. By (15) with equal-
ties and by induction, the H,’s are either K, or in F(k). Hence G € (k) and
(a) of Theorem 2 holds.
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By Corollary 3, every graph in %(k) is k-maximal. To complete the proof of
(b) of Theorem 2, it suffices to show that

if n=|V(G) and G € F(k), then G € €x(f;n, k). (16)

Let G € (k) be a graph of order n with n > k + 2.

By the definition of %(k) and the assumption that G € F(k), there exist
graphs H, and H, with the H,’s being in %(k) or K, and not both H, and H,
being K, such that G € [H,, H,], and that (7) holds. If one of the H’s s K,,
then by (7) and by the assumption that n = k + 2, (k + 2) is not a factor of n.
Hence (12) holds. By (12) and by induction, we have

EG) = fin — 1,k) + k

n— 1] (k
i [ ()
:(n-—l)k—r<];>.

Thus (14) holds and so G € €x(f;n, k).
If both H, and H, are not K,, then by (7) and by induction, we have

EG)| = fn', k) + f(n", k)

, 3 n' k . B n" k
= (n 1)k [k " 2J (2> + k+ (n 1)k [k n 2J <2>
k
=(n— Dk - r<2> ,

and so (14) holds also. Thus in any case, G € €x(f;n, k). 1
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