The Size of Strength-Maximal Graphs

Hong-Jian Lai

DEPARTMENT OF MATHEMATICS WEST VIRGINIA UNIVERSITY MORGANTOWN, WEST VIRGINIA 26506

ABSTRACT

Let G be a graph and let $\kappa'(G)$ be the edge-connectivity of G. The strength of G, denoted by $\overline{\kappa}'(G)$, is the maximum value of $\kappa'(H)$, where H runs over all subgraphs of G. A simple graph G is called k-maximal if $\overline{\kappa}'(G) \leq k$ but for any edge $e \in E(G^c)$, $\overline{\kappa}'(G+e) \geq k+1$. Let G be a k-maximal graph of order n. In [3], Mader proved $|E(G)| \leq (n-k)k+\binom{k}{2}$. In this note, we shall show $(n-1)k-\binom{k}{2}\lfloor n/(k+2)\rfloor \leq |E(G)|$, and characterize the extremal graphs. We shall also give a characterization of all k-maximal graphs.

I. INTRODUCTION

We shall adopt the notation and terminology of Bondy and Murty [2] except for contractions. A graph G may have multiple edges but loops are not allowed. Let G^c denote the complement of a simple graph G. Let H and G be graphs. By $H \subseteq G$ we mean that H is a subgraph of G and by $H \cong G$ we mean that H is isomorphic to G. If X is a subset of V(G) or of E(G), then G[X] denotes the subgraph of G induced by X. An edge-cut of a graph G is an edge subset whose removal increases the number of components of G. A bond of G is a minimal edge-cut. An edge-cut of size K is called a K-edge-cut. We use K to denote the set of all positive integers. The floor of a real number K, denoted by K, is the greatest integer not larger than K. For any $K \in K$, we define K0 = K1 = K2 and so K3 = K4.

$$V(G \vee H) = V(G) \cup V(H)$$

and

 $E(G \vee H) = E(G) \cup E(H) \cup \{uv: u \in V(G) \text{ and } v \in V(H)\}.$

Journal of Graph Theory, Vol. 14, No. 2, 187–197 (1990) © 1990 by John Wiley & Sons, Inc. CCC 0364-9024/90/020187-11\$04.00 We use the following definition for *contractions*. Let G be a graph and let X be a subset of E(G). We use G/X to denote the graph obtained from G by identifying the two ends of each edge in X and then deleting all loops produced.

We define the *strength* of G to be the following number:

$$\overline{\kappa}'(G) = \max_{H \subseteq G} \kappa'(H). \tag{1}$$

The invariant $\overline{\kappa}'(G)$, first introduced by Matula [4], has been studied by Boesch and McHugh [1], by Matula [4,5], by Mitchem [6], and implicitly by Mader [3], among others. In [5], Matula gave a polynomial algorithm to determine $\overline{\kappa}'(G)$.

Fix $k \in \mathbb{N}$. A simple graph G is k-maximal if |V(G)| > k, $\overline{\kappa}'(G) \le k$ and if for any edge e of G^c , $\overline{\kappa}'(G + e) > k$.

Define, for $n, k \in \mathbb{N}$, $n > k \ge 1$,

 $f(n,k) = \min\{|E(G)|: G \text{ is simple, of order } n, \text{ and } k\text{-maximal}\},$

and

 $F(n, k) = \max\{|E(G)|: G \text{ is simple, of order } n, \text{ and } k\text{-maximal}\}.$

Since K_{k+1} is the only k-maximal graph of order k+1,

$$f(k+1,k) = F(k+1,k) = {k+1 \choose 2}.$$
 (2)

Let $\mathcal{E}\chi(f;n,k)$ ($\mathcal{E}\chi(F;n,k)$, respectively) denote the set of simple k-maximal graphs of order n and with strength at most k such that |E(G)| = f(n,k) (|E(G)| = F(n,k), respectively). In [3], Mader proved

Theorem (Mader [3]). For $n, k \in \mathbb{N}$ with $n > k \ge 1$, we have

- (a) $F(n,k) = (n-k)k + {k \choose 2};$
- (b) $G \in \mathcal{E}\chi(F; n, k)$ if and only if $G = K_{k+1}$ or G has a vertex of v of degree k such that $G v \in \mathcal{E}\chi(F; n-1, k)$.

In this note, we shall show

$$f(n,k) = (n-1)k - \binom{k}{2} \left\lfloor \frac{n}{k+2} \right\rfloor, \tag{3}$$

and shall characterize $\mathcal{E}\chi(f; n, k)$.

II. EXAMPLES

The following examples of k-maximal graphs will be used in this paper.

Example 1. For $n, k \in \mathbb{N}$ with n > k + 1 > 2, we define a graph H(k, n - k)to be the simple graph $K_k \vee (n-k)K_1$. If H = H(k, n-k), we use H^1 to denote the subset of V(H) that corresponds to the $n - k K_1$'s.

Example 2. For $n, k, r \in \mathbb{N}$ with n > k + 1 > 2 and with $r \ge 2$, and for $m_1, m_2, \ldots, m_r \in \mathbb{N}$ with $k \ge m_i \ge 2$, $1 \le i \le r$, and with $m_1 + m_1 \le r$ $m_2 + \cdots + m_r = n - rk$, and for any tree T with $V(T) = \{v_1, v_2, \dots, v_r\}$, we define $T(k; m_1, m_2, \ldots, m_r)$ to be the simple graph obtained from T by replacing each v_i by a graph $H_i = H(k, m_i)$ and by replacing each edge of T, say $v_s v_t$, $1 \le s, t \le r$, by a set $E_{s,t}$ of k edges such that each vertex in $H_s^1 \cup H_t^1$ is incident with at least one edge of $E_{s,t}$. Since this graph is simple, $E_{s,t}$ has at most $m_s m_t$ edges, and so $k \le m_s m_t$ for all s and t such that $v_s v_t \in E(T)$.

III. MAIN RESULTS

We start with some lemmas.

Lemma 1. Let n = |V(G)|. Suppose that G has an edge-cut X such that G[X]is spanning subgraph of G.

(a) If G[X] is spanned by a complete bipartite graph, then

$$|X| \geq n - 1.$$

(b) If G is simple and G[X] is a complete bipartite graph, then either $\kappa'(G) < |X|$ or G is complete and one component of G - X is a single vertex.

Proof. Suppose that X satisfies the hypothesis. If G[X] has a complete bipartite subgraph, then G[X] contains a spanning tree of G and so (a) follows. We only need to prove (b).

Suppose that G is simple and G is not complete. By (a) of this lemma, $|X| \ge n-1$ and, since G is simple, equality holds only when G[X] is a star $K_{1,n-1}$. Since G is simple and not complete, then G has a vertex of degree smaller than n-1 and so $\kappa'(G) < n-1 \le |X|$.

Theorem 1. If n = |V(G)| > k + 1 and G is a k-maximal graph, then $\overline{\kappa}'(G) = \kappa'(G) = k.$

Proof. We argue by contradiction and assume that G is k-maximal but $k > \kappa'(G)$. Let X be an edge-cut of G with $|X| = \kappa'(G) < k$ and let G_1 and G_2 be the two components of G - X. Clearly $X \neq \emptyset$.

Since $X \neq \emptyset$ and since k < n - 1, it follows from (a) of Lemma 1 that there is an edge $e \in E(G^c)$ such that e is incident with a vertex of each component of G - X. Since G is k-maximal, $\overline{\kappa}'(G + e) > k$. Let H be a subgraph of G + e such that $\kappa'(H) = \overline{\kappa}'(G + e) > k$. Since $|X \cup \{e\}| \le k$, H must be a

subgraph of either G_1 or G_2 . It follows that $\overline{\kappa}'(G) \ge k + 1$, contrary to the fact that $\overline{\kappa}'(G) \le k$.

The converse of Theorem 1 is false. Let H_1 and H_2 be two H(2, 2)'s and let $H_1^1 = \{w_1, w_2\}$ and $H_2^1 = \{u_1, u_2\}$. Let G be the graph obtained from the union of H_1 and H_2 by joining u_i and w_i by a path of length two, i = 1, 2. It is easy to see that $\overline{\kappa}'(G) = 2 = \kappa'(G)$ and that G is not 2-maximal.

Lemma 2. Let G be a simple k-maximal graph of order n, where n > k + 1 > 2. Then exactly one of the following holds:

- (i) $G \cong H(k, 2)$, or
- (ii) For any k-edge-cut X of G, each component of G X is either K_1 or a k-maximal graph that is not K_{k+1} .

Proof. It is clear that (i) and (ii) of Lemma 2 are mutually exclusive.

Let X be a k-edge-cut, and let G_1 and G_2 denote the two components of G - X.

Suppose first that $G_2 \cong K_1$. If G_1 is complete, then since n > k+1, $|V(G_1)| \ge k+1$. Since $\overline{\kappa}'(G) = \kappa'(G) = k$, and since G_1 is complete, G_1 has order at most k+1. Thus $G_1 \cong K_{k+1}$ and so (i) of the lemma holds. Hence we may assume that G_1 is not complete. Let $e \in E(G_1^c)$. Since G is k-maximal, there is a subgraph $L \subseteq G_1 + e$ such that $\kappa'(L) \ge k+1$. Since L is simple with $\delta(L) \ge \kappa'(L) \ge k+1$, $|V(G_1)| \ge |V(L)| \ge k+2$. Hence G_1 is k-maximal and we are done.

Similarly, the lemma will follow if $G_1 \cong K_1$. Hence we may assume that both $|V(G_1)|$ and $|V(G_2)|$ are greater than one. Thus

$$\min\{|V(G_1)|, |V(G_2)|\} \ge 2. \tag{4}$$

Case 1. Suppose that one of the G_i 's is complete, say

$$G_1 \cong K_m$$
, for some $m \ge 2$.

We shall derive a contradiction.

Since G is k-maximal, $\kappa'(G) \le k$ and so $m \le k + 1$. Thus

$$2 \le m \le k+1. \tag{5}$$

Let e be any edge of $E(G^c)$ such that e has exactly one end in $V(G_1)$ and one end in $V(G_2)$. We claim that such an edge e exists. There are $|V(G_1)| |V(G_2)|$ pairs (v_1, v_2) in $V(G_1) \times V(G_2)$, and only k of them cannot be the ends of e, because they are joined by one of the k edges of X. By (4),

$$|V(G_1)||V(G_2)| \ge |V(G_1)| + |V(G_2)| = n > k + 1 = |X| + 1$$

and so e exists, as claimed.

Since G is k-maximal, G + e has a (k + 1)-edge-connected subgraph, say L = L(e). If $e \notin E(L)$, then $L \subseteq G$, contrary to $\overline{\kappa}'(G) = k$. Hence, $e \in E(L)$ and it follows that the edge-cut $X \cup \{e\}$ of G + e must be E(L).

Define $L_i = L[V(G_i) \cap V(L)], i \in \{1, 2\}, \text{ and denote } |V(L_1)| = t.$

Without loss of generality, since (4) gives $|V(G_1)| \ge 2$, we can assume that $t \ge 2$: if all edges of X were incident with a single vertex of V(G), then by (4), e can be chosen incident with a vertex of $V(G_1)$ that is not incident with an edge of X.

Also without loss of generality, we can assume that $t \le k$, as we now show. If the edges of X are incident with fewer than k vertices of $V(G_1)$, then $t \le k$. If the edges of X are incident with k distinct vertices of $V(G_1)$ then each of those k vertices is incident with exactly one edge of X. By (4), $|V(G_2)| \ge 2$, and so e may be chosen in $E(G^c)$ such that e and some edge of X are incident with a common vertex on $V(G_1)$. Since $k \ge 2$, we can also assume as before that not all edges of $X \cup \{e\}$ are incident with the same vertex in $V(G_1)$. Hence

$$2 \le t \le k \,. \tag{6}$$

Since $\kappa'(L) \ge k+1$, all t vertices of $V(G_1)$ have degree at least k+1 in L. This, $L_1 \cong K_t$, and $X \cup \{e\} \subseteq E(L)$ give

$$t(k+1) \leq \sum_{v \in V(L_1)} d_L(v) = 2\binom{t}{2} + |X \cup \{e\}| = t(t-1) + (k+1).$$

Thus,

$$(t-1)(k+1) \le t(t-1)$$
.

By $2 \le t$ of (6), we can divide each side by (t-1) to get $k+1 \le t$, which contradicts (6). This concludes Case 1.

Case 2. G_1 is not complete.

For any edge $e \in E(G_1^c) \subseteq E(G^c)$, G + e has a subgraph L with $\kappa'(L) \ge k + 1$. Since $|X| \le k$, L is a subgraph of G_1 . Note that $|V(G_1)| \ge |V(L)| \ge k + 1$. Hence G_1 is a k-maximal if we can show that $\overline{\kappa}'(G_1) \le k$. By Theorem $1, \overline{\kappa}'(G_1) \le \overline{\kappa}'(G) = k$, and so G_1 is k-maximal. Since G_1 is not complete, G_1 is not isomorphic to K_{k+1} .

Similarly, G_2 is k-maximal and is not isomorphic to K_{k+1} .

By Lemma 2, we can determine the minimal k-maximal graphs.

Corollary 2A. Let n > k > 1 and let G be a k-maximal simple graph of order n that is not isomorphic to K_{k+1} . If every proper k-maximal subgraph of G is isomorphic to K_{k+1} , then $G \cong H(k, 2)$.

Proof. By Theorem 1, G has an edge-cut X of size k. Let G_1 and G_2 be the two components of G - X. By Lemma 2, either $G \cong H(k, 2)$ or one of G_1 and G_2 is a proper k-maximal subgraph of G that is not isomorphic to K_{k+1} . By the hypothesis, $G \cong H(k, 2)$.

Corollary 2B. Let $k \in \mathbb{N}$ and let G be a k-maximal graph with |V(G)| = k + 2, then $G \cong H(k, 2)$.

Proof. The proof is trivial if k = 1 and so we assume k > 1. By Theorem 1 and Lemma 2, G must have a vertex v of degree k. By (2), $G - v \cong K_{k+1}$. Hence $G \cong H(k, 2)$.

Let $k \in \mathbb{N}$ and let H_1 and H_2 be two graphs with disjoint vertex sets and with $\max\{|V(H_1)|, |V(H_2)|\} \ge k$. A k-edge-join of H_1 and H_2 is a simple graph obtained from the disjoint union of H_1 and H_2 by adding k new edges e_1, e_1, \ldots, e_k to the union of H_1 and H_2 such that each e_i is incident with a vertex of $V(H_1)$ and a vertex of $V(H_2)$. Denote by $[H_1, H_2]_k$ the set of all k-edge-joins of H_1 and H_2 . Clearly, $[H_1, H_2]_k = [H_2, H_1]_k$.

Lemma 3. Let $k \in \mathbb{N}$, let H_1 be a k-maximal graph and let H_2 be either a K_1 or a k-maximal graph. Then all graphs in $[H_1, H_2]_k$ are k-maximal.

Proof. Let G be a graph in $[H_1, H_2]_k$. It is easy to see that

$$\overline{\kappa}'(G) \leq \max\{\overline{\kappa}'(H_1), \overline{\kappa}'(H_2)\} \leq k$$
.

The lemma becomes trivial if k = 1. Thus we assume k > 1.

By way of contradiction, let $G \in [H_1, H_2]_k$ be a counterexample of minimum number of vertices, for some H_1 and H_2 satisfying Lemma 3, and let $e \in E(G^c)$ such that $\overline{\kappa}'(G + e) \le k$. Since H_1 and H_2 , if nontrivial, are k-maximal graphs, $e \notin E(H_1^c) \cup E(H_2^c)$. Hence we assume that $e = x_1 x_2$ with $x_i \in V(H_i)$, (i = 1, 2).

Let $E' = E(G) - E(H_1) - E(H_2)$. Then |E'| = k, by the definition of $[H_1, H_2]_k$.

Let X be an edge-cut of G + e with $|X| \le k$. Applying Theorem 1 to H_1 and H_2 , we conclude that neither H_1 nor H_2 has a k-edge-cut. This, together with the fact that the ends of $e = x_1x_2$ are in $V(H_1)$ and $V(H_2)$, respectively, implies that $X \cap (E' \cup \{e\}) = \emptyset$, and so for some $i \in \{1, 2\}, X \subseteq E(H_i)$.

Let H_i' and H_i'' be the components of $H_i - X$. Since H_i is k-maximal, by Lemma 2, each of H_i' and H_i'' is either K_1 or k-maximal. Let V' be the vertices of $V(H_i)$ that are incident with edges in $E' \cup \{e\}$. Since X is an edge-cut of G + e and since $(E' \cup \{e\}) \cap X = \emptyset$, either $V' \subseteq V(H_i')$ or $V' \subseteq V(H_i'')$.

Without loss of generality, we assume that $V' \subseteq V(H'_i)$, and so the edges in $X \cup \{e\}$ are all incident with vertices of $V(H'_i)$. Let $G' = G - V(H''_i)$. Then G'

is a subgraph of G that is in $[H'_i, H_{3-i}]_k$ with $e \in E((G')^c)$. By the minimality of G, all graphs in $[H'_i, H_{3-i}]_k$ are k-maximal. Thus $\overline{\kappa}'(G' + e) \ge k + 1$, and so $\overline{\kappa}'(G + e) \ge \overline{\kappa}'(G' + e) \ge k + 1$, a contradiction.

Definition of $\mathcal{M}(k)$ **.** For $n, k \in \mathbb{N}$ with n > k, let $\mathcal{M}(k)$ denote the family of graphs containing K_{k+1} as the only graph of order n + 1, such that a graph G of order $n \geq k + 2$ is in $\mathcal{M}(k)$ if and only if there exist graphs H_1 and H_2 , where H_i is either in $\mathcal{M}(k)$ or K_1 , (i = 1, 2), and where at least one of the H_i 's is not K_1 , such that $G \in [H_1, H_2]_k$.

Corollary 3. Let $n, k \in \mathbb{N}$ with n > k. A graph G of order n is k-maximal if and only if $G \in \mathcal{M}(k)$.

Proof. It follows from Lemma 3 and induction on |V(G)|.

Definition of $\mathcal{F}(k)$. For $n, k \in \mathbb{N}$ with n > k + 1, let $\mathcal{F}(k)$ denote the graph family containing H(k, 2) as the only graph of order k + 2, such that a graph G of order n > k + 2 is in $\mathcal{F}(k)$ if and only if there exist graphs H_1 and H_2 with order $n' = |V(H_1)|$ and $n'' = |V(H_2)|$, where H_i is either in $\mathcal{F}(k)$ or K_1 , (i = 1, 2), and where at least one of the H_i 's is not K_1 , such that $G \in [H_1, H_2]_k$ and such that

$$\left|\frac{n}{k+2}\right| = \left|\frac{n'}{k+2}\right| + \left|\frac{n''}{k+2}\right|. \tag{7}$$

It is clear that $\mathcal{F}(k)$ is a subfamily of $\mathcal{M}(k)$.

Theorem 2. For $n, k \in \mathbb{N}$ with $n > k + 1 \ge 2$, we have

- (a) $f(n,k) = (n-1)k {k \choose 2} \lfloor n/(k+2) \rfloor$;
- (b) $G \in \mathscr{E}\chi(f; n, k)$ if and only if $G \in \mathscr{F}(k)$ and |V(G)| = n.

Proof. We shall need the following trivial fact: for any real numbers x and y,

$$|x| + |y| \le |x + y|. \tag{8}$$

Let $r = \lfloor n/(k+2) \rfloor$. It is easy to check that

$$|E(T(k; m_1, m_2, \dots, m_r))| = r \binom{k}{2} + (r-1)k + (m_1 + m_2 + \dots + m_r)k$$

$$= r \binom{k}{2} + (r-1)k + (n-rk)k$$

$$= (n-1)k - r \binom{k}{2}.$$

Hence by the definition of f(n, k),

$$f(n,k) \le (n-1)k - r\binom{k}{2}. \tag{9}$$

Let $G \in \mathcal{E}\chi(f;n,k)$. We shall prove (a) of Theorem 2 and $G \in \mathcal{F}(k)$ by induction on n. If n=k+2, then by Corollary 2B, G=H(k,2) and so $G \in \mathcal{F}(k)$ and $f(k+2,k)=(k+1)k-\binom{k}{2}$. Hence Theorem 12 holds for n=k+2.

Now suppose that n > k + 2. We assume that if $2 \le k + 1 < m < n$ and if $G \in \mathscr{E}_{\chi}(f; m, k)$, then $G \in \mathscr{F}(k)$ and

$$f(m,k) = (m-1)k - \binom{k}{2} \left\lfloor \frac{m}{k+2} \right\rfloor. \tag{10}$$

By Lemma 2, G has a k-edge-cut X such that each component of G - X is either K_1 or a k-maximal graph of order greater than k + 1.

An edge-cut X of G is called a fan if one component of G-X is a single vertex.

Claim. If n > k + 2 and if (k + 2) is a factor of n, then X is not a fan.

By way of contradiction, suppose that n = r(k + 2), for some $r \in \mathbb{N}$, and that X is a fan.

Let v be the vertex of G that is incident with every edge in X, and let G' = G - v.

Since G is k-maximal and since n > k + 2, it follows from Lemma 2 that G' is k-maximal. Since n = r(k + 2),

$$\left\lfloor \frac{n-1}{k+2} \right\rfloor = r-1. \tag{11}$$

By (9), (10), and (11),

$$(n-1)k - r\binom{k}{2} \ge f(n,k) \ge f(n-1,k) + k$$

$$= (n-2)k - \left\lfloor \frac{n-1}{k+2} \right\rfloor \binom{k}{2} + k$$

$$= (n-1)k - \left\lfloor \frac{n-1}{k+2} \right\rfloor \binom{k}{2}$$

$$= (n-1)k - (r-1)\binom{k}{2},$$

a contradiction. Hence the claim.

Case 1. X is a fan.

By the claim, (k + 2) is not a factor of n. Hence

$$r = \left| \frac{n}{k+2} \right| = \left| \frac{n-1}{k+2} \right|. \tag{12}$$

Let v denote the vertex of G that is incident with edges in X. Then by (9), (10), and (12),

$$(n-1)k - r\binom{k}{2} \ge f(n,k) \ge f(n-1,k) + k$$

$$= (n-2)k - \left\lfloor \frac{n-1}{k+2} \right\rfloor \binom{k}{2} + k$$

$$= (n-1)k - r\binom{k}{2}. \tag{13}$$

Thus equalities must hold in (13) and so

$$f(n,k) = (n-1)k - r\binom{k}{2}. \tag{14}$$

By Lemma 2, G - v is k-maximal. By (13) with equalities, $G - v \in \mathcal{E}_{\chi}(f; n-1, k)$. By induction, $G - v \in \mathcal{F}(k)$. Thus $G \in \mathcal{F}'(k)$ by definition.

Case 2. X is not a fan.

Let the two components of G - X be H_1 and H_2 , and their orders be n' and n'', respectively. By (8), (9), and (10).

$$(n-1)k - r\binom{k}{2} \ge f(n,k) \ge f(n',k) + f(n'',k)$$

$$= (n'-1)k - \left\lfloor \frac{n'}{k+2} \right\rfloor \binom{k}{2} + k + (n''-1)k$$

$$- \left\lfloor \frac{n''}{k+2} \right\rfloor \binom{k}{2}$$

$$\ge (n-1)k - r\binom{k}{2}.$$
(15)

Thus equalities must hold in (15) and so (7) follows. By Lemma 2, the H_i 's are either k-maximal or K_1 and at least one of them is not K_1 . By (15) with equalities and by induction, the H_i 's are either K_1 or in $\mathcal{F}(k)$. Hence $G \in \mathcal{F}(k)$ and (a) of Theorem 2 holds.

By Corollary 3, every graph in $\mathcal{F}(k)$ is k-maximal. To complete the proof of (b) of Theorem 2, it suffices to show that

if
$$n = |V(G)|$$
 and $G \in \mathcal{F}(k)$, then $G \in \mathcal{E}\chi(f; n, k)$. (16)

Let $G \in \mathcal{F}(k)$ be a graph of order n with n > k + 2.

By the definition of $\mathcal{F}(k)$ and the assumption that $G \in \mathcal{F}(k)$, there exist graphs H_1 and H_2 with the H_i 's being in $\mathcal{F}(k)$ or K_1 and not both H_1 and H_2 being K_1 such that $G \in [H_1, H_2]_k$ and that (7) holds. If one of the H_i 's is K_1 , then by (7) and by the assumption that $n \ge k + 2$, (k + 2) is not a factor of n. Hence (12) holds. By (12) and by induction, we have

$$|E(G)| = f(n-1,k) + k$$

$$= (n-2)k - \left\lfloor \frac{n-1}{k+2} \right\rfloor {k \choose 2} + k$$

$$= (n-1)k - r {k \choose 2}.$$

Thus (14) holds and so $G \in \mathcal{E}_{\chi}(f; n, k)$.

If both H_1 and H_2 are not K_1 , then by (7) and by induction, we have

$$|E(G)| = f(n', k) + f(n'', k)$$

$$= (n'-1)k - \left\lfloor \frac{n'}{k+2} \right\rfloor \binom{k}{2} + k + (n''-1)k - \left\lfloor \frac{n''}{k+2} \right\rfloor \binom{k}{2}$$

$$= (n-1)k - r\binom{k}{2},$$

and so (14) holds also. Thus in any case, $G \in \mathcal{E}\chi(f; n, k)$.

ACKNOWLEDGMENT

The author wishes to thank Paul A. Catlin, the author's Ph.D. supervisor, for his shortening the proof of Lemma 2 and other useful suggestions. He also wishes to thank the referees for their helpful comments.

References

- [1] F. T. Boesch and J. A. M. McHugh, An edge extremal result for subcohesion. J. Combinat. Theory Ser. B 38 (1985) 1–7.
- [2] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*. American Elsevier, New York (1976).

- [3] W. Mader, Minimale *n*-fach kantenzusammenhängende Graphen, *Math. Ann.* **191** (1971) 21–28.
- [4] D. Matula, K-components, clusters, and slicings in graphs. SIAM J. Appl. Math. 22 (1972) 459–480.
- [5] D. Matula, Determining edge connectivity in O(nm). IEEE, to appear.
- [6] J. Mitchem, An extension of Brooks' theorem to *n*-degenerate graphs. *Discrete Math.* 17 (1977) 291–298.