
Submit Manuscript | http://medcraveonline.com

Abbreviations: VCG, vibrocardiographic; EEMD, ensemble 
empirical mode decomposition; IMF, intrinsic mode functions; NR-
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Introduction
Empirical mode decomposition (EMD) is a signal processing 

technique proposed for the analysis of non-stationary and nonlinear 
signals.1 EMD has been successfully applied to solve numerous practical 
problems in various applications.2–9 This technique decomposes a time 
series into a set of zero-mean underlying components called intrinsic 
mode functions (IMF). The main advantage of EMD is that it is an 
adaptive method. For example, the EMD algorithm depends only on 
the signal under analysis and does not require any a priori defined 
basis system. One of the main drawbacks of EMD is mode mixing 
that occurs when either signal of a similar scale resides in more than 
one IMF or an IMF consists of signals of broadly different scales.10 

This issue may cause some IMFs to become physically meaningless. 
Ensemble EMD (EEMD) was developed to overcome the EMD mode 
mixing issue.10 The improved algorithm, EEMD, is based on one of 
the most important properties of EMD, namely that EMD behaves 
as a dyadic filter bank when applied to white Gaussian noise.11,12 The 
principle of EEMD is to add a finite number of white noise series to 
the signal of interest. These background white noise series provide a 
time-frequency reference frame for the original signal. The filter bank 
properties of EMD help the signal components to be projected on the 
proper scales of this reference frame. Since the white noise series are 
different in each trial, the noise cancels out for a sufficiently large 
number of ensembles, leaving only the persistent part of the signals. 

As a result, the components of similar scales are expected to reside in 
the same IMFs which reduce the mode mixing problem.10

Vibrocardiographic (VCG) signals are the cardiac vibration 
measured at the chest surface.13 These signals can contain useful 
information for diagnosing and monitoring of cardiac conditions.14 
However, VCG vibrations have relatively low amplitudes that can be 
easily contaminated by environmental vibration, patient movements 
and respiration noise, which can lead to a misinterpretation of the 
VCG signal features. VCG as well as other biomedical signals such 
as heart sounds have nonlinear and non-stationary characteristics.15–24 
Hence linear methods may not be effective in analyzing these signals. 
EMD and EEMD were successfully used for noise cancellation and 
analysis of some biomedical signals.25–30 For example, Velasco et 
al.31 utilized EMD to filter the high-frequency noise and baseline 
wander of ECG. Nimunkar et al.32 suggested an algorithm to remove 
power-line noise on ECG by adding a pseudo-high-frequency noise 
to IMFs. Krupa et al.33 proposed an algorithm for denoising the 
cardiotocography signals using partial sum of IMFs. Lemay et al.34 
compared the performance of an EMD-based algorithm with an IIR 
band pass filter to improve the quality of atrial signals after QRST 
cancellation. Chang et al.35 investigated the effectiveness of EMD-
based, EEMD-based and FIR Wiener filters for removing the Gaussian 
noise from ECG and concluded that EEMD outperformed the other 
two methods. The current study investigates the utility of different 
filters for VCG noise cancellation. The performance of EEMD and 
Wiener filters was compared at different signal to noise ratios for a 
synthetic VCG signal. In order to assess the performance of different 
filtering methods, the root-mean-squared misadjustment between the 
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Abstract

Vibrocardiographic (VCG) signals are the cardiac vibration measured at the chest 
surface. These signals can contain useful information for diagnosing cardiac conditions 
but are often contaminated by noise. Although band-pass and adaptive filters were 
used for noise removal from similar signals, the utility of ensemble empirical mode 
decomposition (EEMD) for filtering VCG was not previously investigated. In this 
study, an EEMD-based filter was proposed and tested. The filtering scheme first 
decomposed the VCG waveform into a set of intrinsic mode functions (IMF) then 
utilized the partial sum of IMFs to remove white noise that was added to simulated 
VCG signals. To measure the filter effectiveness, the normalized root-mean-square 
error (NRMSE) between the clean (i.e., before adding noise) and filtered signals 
was calculated for signal-to-noise ratios ranging from 1 to 20dB. The EEMD-based 
filter performance was also compared with traditional methods such as Wiener filter. 
This comparison suggested that EEMD-based filter outperformed the Wiener filter in 
noise removal from simulated VCG. These results also suggested that EEMD may be 
utilized for white noise removal from actual VCG signals. Further investigations are 
warranted to study the relation between IMFs and different types of noise, which can 
enhance the effectiveness of EEMD-based filters in removing these noise types from 
actual VCG signals.

Keywords: noise cancellation, wiener filter, priori, denoising, cardiotocography, 
misadjustment
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clean and filter VCG amplitudes was calculated. The EEMD-based 
filter had a lower misadjustment than the Wiener filter. Therefore, this 
study suggests that the proposed EEMD-based filter may be more 
effective than Wiener filter in removing white Gaussian noise from 
actual VCG signals. The organization of this paper is prepared as 
follows. The Materials and Methods section provides the theoretical 
background behind EMD and EEMD as well as a brief description of 
EEMD-based filter and performance evaluation methods. Results are 
then presented and discussed in the Results and Discussion sections. 
Finally, a Conclusion section is presented.

Materials and methods
VCG signal and synthetic noise set

A simulated VCG consisting of a pure tone at 40Hz and a varying 
frequency component ranging from 7 to 20Hz has been used in the 
present study. To evaluate the capability of EEMD-based filter in 
noise cancellation, the synthetic VCG signal was polluted by white 
Gaussian noise sets, nwgn, with the signal-to-noise ratio (SNR) ranging 
from 1 to 20dB.

Ensemble empirical mode decomposition

The Hilbert Huang transform is developed for analysis of 
nonlinear and non-stationary signals. This technique consists of two 
core steps; empirical mode decomposition and Hilbert transform. 
The EMD decomposes the signal into IMFs with varying amplitude 
and frequency. These IMFs are assumed to be correlated to physical 
or physiological aspects of the signals under analysis.26,36 More 
specifically, the EMD algorithm consists of the following steps:1

i.	 Identify all the local extrema of the signal, x(t).

ii.	 Determine the upper and lower envelopes of the signal with 
cubic spline using the local maxima and minima, respectively.

iii.	 Calculate the local mean of the two envelopes, m(t).

iv.	 Calculate the difference between the signal and the local mean, 
d(t)=x(t)-m(t).

v.	 Replace x(t) with d(t)

vi.	 Repeat steps 1 through 5 until d(t) becomes a zero-mean func-
tion. Then, d(t) is called the first IMF, c1(t).

vii.	 Subtract the IMF from the signal r1(t)=x(t)-c1(t)

viii.	 Repeat steps 1 through 7 to obtain the nth IMF after n iterations, 
cn(t).

ix.	 The process stops when rn(t) becomes a monotonic function from 
which no more IMF can be extracted.

The EEMD that is proposed to solve the mode-mixing issue of the 
EMD uses the following algorithm:10

i.	 Add a white noise series, ni(t), to the original signal, x(t), to ob-
tain xi(t)=x(t) + ni(t).

ii.	 Decompose xi(t) using EMD algorithm

iii.	 Repeat steps 1 and 2 with NE (number of ensembles) different 
sets of white noise series to obtain NE sets of IMFs

iv.	 Calculate the mean of the ensemble of IMFs to obtain the final 
signal intrinsic mode functions.

v.	 At the end of the process, the original signal can be reconstructed 
as:

( ) ( ) ( )
n

x t c t r tii 1
= +∑

=                                                          (1)

Where ci(t) and r(t) are the ith IMF and residue, respectively. 
The low and high scale IMFs contain the high-frequency and low-
frequency components of the signal, respectively. Thus, EEMD-
based low-pass and high-pass filters can be designed using the partial 
reconstruction of IMFs of interest. Since the white noise series usually 
has higher frequencies than VCG signals, they are expected to reside 
in the low scale IMFs. In the current study an EEMD-based low-pass 
filter was used to remove the undesired noise sets as follows:

( ) ( )
n

EEMDF c t r tm ii m
= +∑

=                                                  (2)

Where 1 m n≤ <

Misadjustment analysis

The normalized root-mean-square error (NRMSE) between the 
filter and clean VCGs’ amplitude was calculated as:

( )2L VCG VCGclean,i filt,  ii 1RMSE
L

−∑ ==                              (3)

RMSE
NRMSE

VCGmax
=

                                                                 
(4)

where VCGclean,i  and VCGfilt,  i  are the clean and filtered VCG 

signal amplitude at time i, respectively.  VCGmax and L are the 
maximum amplitude of the clean VCG and the VCG signal length. 
The performance of the EEMD-based filter was also compared with a 
Wiener filter37 with a priori SNR estimation using Decision-Directed 
method.38

Results
The first step of EEMD algorithm consists of adding a finite 

number of white Gaussian noise series to the signal of interest. The 
number of added noise (number of ensembles) plays an important role 
in the EEMD performance. Figure 1 shows the NRMSE of the signal 
under analysis polluted with different levels of noise versus number 
of ensembles. The NRMSE decreased dramatically as number of 
ensembles increased from 1 to 100. For larger number of ensembles, 
the NRMSE decreased with a slower rate and finally reached a plateau. 
Large number of ensembles resulted in lower NRMSE, but also 
required more computational time. Therefore, a compromise between 
the NRMSE and computational efficiency is needed. In the current 
study, number of ensembles of 150 was sufficient for the simulated 
VCG to achieve an acceptable NRMSE value.

The EEMD-derived IMFs of the simulated VCG with Gaussian 
noise and their power spectrum are shown in Figure 2. As expected, 

https://doi.org/10.15406/jabb.2017.02.00024


Noise cancellation from vibrocardiographic signals based on the ensemble empirical mode decomposition 51
Copyright:

©2017 Taebi et al.

Citation: Taebi A, Mansy HA. Noise cancellation from vibrocardiographic signals based on the ensemble empirical mode decomposition. J Appl Biotechnol 
Bioeng. 2017;2(2):49‒54. DOI: 10.15406/jabb.2017.02.00024

the EEMD behaved as a filter bank and decomposed the signal into 
IMF components each of which resided in a specific frequency range. 
Thus, the noise may be filtered by ignoring the lower IMF scales. 
Figure 2 shows that the signal is decomposed into 11 oscillatory 
components and a residue. The lower frequency component of the 
VCG events (i.e. the varying frequency component ranging from 
20 to 7Hz) was distributed in IMF #2 through #5, while the higher 

frequency component (i.e. the 40Hz component) mainly allocated 
in IMF #2. The high frequency Gaussian noise was concentrated in 
the first IMF. Therefore, the signal contaminations can be reduced 
with partial reconstruction of IMF components by ignoring the low 
scale IMFs. This concept will be investigated further in the following 
section using the NRMSE parameter.

Figure 1 The effect of trial number (number of white noise series) on EEMD performance for reconstructed simulated VCG without added noise and with 10, 
5 and 2dB added noise.

Figure 2 Simulated VCG contaminated by Gaussian noise with SNR=10dB EEMD-derived IMF components (left). The signal was decomposed into 11 IMFs 
(sub Figure a through k) and a residue (sub Figure l). The power spectral density of the IMFs and residue (right).Most of the high-frequency Gaussian noise is 
concentrated and localized in the first IMF. However, some low amplitude noise can be seen above 45Hz in the second IMF. Also, some parts of the VCG events 
(especially VCG2) are seen in the first IMF between 20-40Hz which is not desirable.

https://doi.org/10.15406/jabb.2017.02.00024


Noise cancellation from vibrocardiographic signals based on the ensemble empirical mode decomposition 52
Copyright:

©2017 Taebi et al.

Citation: Taebi A, Mansy HA. Noise cancellation from vibrocardiographic signals based on the ensemble empirical mode decomposition. J Appl Biotechnol 
Bioeng. 2017;2(2):49‒54. DOI: 10.15406/jabb.2017.02.00024

Discussion
EEMD is a signal-dependent technique that is convenient for 

nonlinear and non-stationary signals. In this section, the performance 
and efficiency of the EEMD-based noise filtration method was 
investigated and compared with traditional filters.

 Filtering performance of EEMD

Figure 3 shows the filtered VCG signals using partial summation 
of IMF components. The NRMSE between the filtered and clean VCG 

amplitude are shown in Figure 4. Both EEMD-based filter and the 
Wiener filter had improved noise cancellation performance as SNR 
increased. The Wiener filter and EEMDF2 had the minimum NRMSE 
at 1≤SNR≤2dB and 4≤SNR≤16dB, respectively. The ratio EEMDF2/
Wiener fell by 48.85% from 1.095 to 0.560 as SNR increased from 1 
to 20dB, which indicates that EEMD-based filter was able to reduce 
the white Gaussian noise more efficiently than Wiener filter at higher 
signal-to-noise ratios. Overall, for the signal considered, the EEMD 
filter outperformed the Wiener filter for SNR values >4dB and had 
similar performance for 1<SNR<4 (Table 1).

Table 1 NRMSE analysis for simulated VCG contaminated with white noise with SNR values ranging from 1 to 20dB.

NRMSE for simulated VCG with white noise (%)

Signal-to-noise ratio [dB] EEMDF1 EEMDF2 EEMDF3 EEMDF4 Wiener

1 22.95 13.57 16.25 21.07 12.39

2 20.5 12.46 16.01 21.15 11.06

4 16.3 10.13 15.6 20.99 10.23

6 12.99 8.23 15.11 20.87 9.02

8 10.39 6.82 15.04 20.83 8.56

10 8.39 5.98 15.02 20.85 8.18

12 6.75 5.26 14.82 20.8 7.84

14 5.55 4.85 14.93 20.79 7.52

16 4.56 4.46 14.79 20.8 7.33

18 3.86 4.2 14.76 20.78 7.36

20 3.32 4.07 14.8 20.87 7.26

Figure 3 Noise reduction from the simulated VCG contaminated with white 
Gaussian noise using EEMD-based partial reconstruction.
(a) EEMDF1

(b) EEMDF2

(c) EEMDF3

(d) EEMDF4

EMD and EEMD were designed to analyze nonlinear and non-
stationary signals. The main advantage of EMD is that it is an adaptive 
method that depends only on the signal under analysis and does not 
require any a priori defined basis system. Instead, it decomposes the 
signal into IMFs that depend on the original signal alone. On the other 
hand, determining the physical phenomena associated with IMFs is 
not always possible and needs comprehensive understanding of the 

signal.39 A main drawback of EMD is the “mode mixing”, which 
is either a similar scale residing in more than one IMF or an IMF 
consisting of signals of broadly different scales.10 This issue may 
cause some IMFs to become physically meaningless. EEMD was 
developed to overcome the EMD mode mixing issue. However, 
EEMD has relatively higher computational cost than both EMD and 
traditional band-pass filters. In the current study, EEMD was more 
effective than Wiener filter in white noise removal from VCG. The 
filter performance certainly depended on the number of IMFs left out. 
Performance was best in the current application when only the lowest 
IMF with the lowest scale is ignored.

Figure 4 NRMSE analysis for simulated VCG contaminated with white noise 
with SNR values ranging from 1 to 20dB.

https://doi.org/10.15406/jabb.2017.02.00024


Noise cancellation from vibrocardiographic signals based on the ensemble empirical mode decomposition 53
Copyright:

©2017 Taebi et al.

Citation: Taebi A, Mansy HA. Noise cancellation from vibrocardiographic signals based on the ensemble empirical mode decomposition. J Appl Biotechnol 
Bioeng. 2017;2(2):49‒54. DOI: 10.15406/jabb.2017.02.00024

Conclusion
Noise removal from biological signals like VCG can help provide 

higher quality information that would facilitate signal interpretation, 
which may help provide more accurate medical diagnosis. In the 
current study, the performance of EEMD-based filter for white noise 
removal from VCG signal was evaluated. To test the filter, a synthetic 
VCG signal was created and corrupted by white noise. The filter was 
then used to recover the original VCG signal. This was followed 
by calculating the normalized root-mean-squared misadjustment 
between the original and filtered signals. The performance of the 
EEMD and a Wiener filter was evaluated by comparing the associated 
misadjustments. Results of this analysis demonstrated that the EEMD 
filter had a lower normalized root-mean-squared misadjustment than 
the Wiener filter. The lower performance of the Wiener filter may be 
attributed to a relatively high non-linearity of the VCG signal under 
consideration. More studies may be warranted to document the 
effectiveness of EEMD filters for noise cancellation from actual VCG 
signals in health and disease. Future studies may also investigate 
the connection between the IMF and cardiac events, which in turn, 
may enhance our understanding of VCG signals and their relation to 
cardiac events.
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