Socket Protocol: First Chain-Abstraction Protocol

Version 1.0

Socket Labs

Contents

1__Introduction 1
(1.1 "The Application-Centric Thesis|

[2 Application Centric Design| 3

(3 High Level Overview|
3.1 Chain Abstracted Packetl o0

LUt W W

[4 Socket Protocol Design|
4.1 Components and Agents|

42 Howit works
4.3 Implications of Design| L.

- O ot

[> Concepts|

1 Introduction

The blockchain ecosystem has experienced unprecedented growth and diversification over
the past few years. This expansion has led to the emergence of numerous chains and
layers, each offering unique features and capabilities. While this proliferation has brought
increased functionality and specialization, it has also resulted in a fragmented landscape
where users, liquidity, and state are dispersed across multiple networks.

In response, the industry has focused on building bridges and cross-chain messaging
systems. However, this approach has introduced new intermediaries to connect networks,
resulting in a “connected” ecosystem that still doesn’t function as a cohesive unit for
applications and users.

Using blockchain based applications remains challenging. Paradoxically, as the num-
ber of chains increases, the distance between apps and their users seems to grow. A
key insight into this growing fragmentation is the number of intermediaries that now lie
between applications and their users.

sdk
dapp

xa

. "~
bridge
l|i|%HH||
rfq market
maker

Figure 1: Illustration of blockchain fragmentation and intermediaries

Consider an app with its user on a different chain and the intermediaries user’s trans-
actions go through before they even land on the application:

e Bundlers & paymasters for accounts (on both chains)
e Relayers & liquidity providers for bridging
e Sequencers, validators etc. at the protocol level

e and more

What’s worse is that each of these intermediaries are unaligned with application or
user needs. As a result, users are forced to go through multiple layers of rent seeking
intermediaries to be able to interact with application which simply act as hurdles user
has to go through before they can use the application.

1.1 The Application-Centric Thesis

We expect the world to increasingly shift towards applications being the focal point for
onchain user actions. Applications will become the first touch point for users such that
users will interact directly with apps instead of going through intermediaries.

This means that applications will ingest the complexities arising from usage of these
intermediaries while offering a chain abstracted experience for their users by controlling
on-chain execution for their end users.

By doing this, applications become the gateway for user requests/transactions which
manage how the actions actually get executed on-chain across networks. The execution
of these transactions are managed by offchain agents that are “employed” by these app
gateways, these intermediaries work for the application and users to help them perform
actions they need to perform on-chain to complete the user’s transaction across chains.

By controlling on-chain execution, applications can:

e Abstract away on-chain complexities for their users

e Ensure important elements are surfaced for their users

e Utilize intermediaries as smart agents within their apps, unlocking new possibilities

This approach not only simplifies the user experience but also opens up new avenues
for application functionality and innovation in the blockchain space.

2 Application Centric Design

We think the ideal architecture going forward in this application-centric-world would
enable a world where:

e Applications are the gateway

e Applications actively help users execute onchain actions across networks via aligned
intermediaries

e Applications become the “glue” and onchain infra like chains, rollups are more like
servers and execution-engines with various useful properties

e Applications no longer need to decide where to build

e Applications can be everywhere, all at once, maximising exposure, while providing
a monolithic experience to end users

This is a general pattern across multiple industries as pointed out by Vitalik in his
glue and co-processor blogpost.

Coprocessor |

>
Input
npd Glue p » | Coprocessor |

Output

Coprocessaor |

Figure 2: Illustration of glue and co-processor architecture for modern applications

3 High Level Overview

3.1 Chain Abstracted Packet

To enable the application-centric world, Socket Protocol centers around a structure
called the “chain-abstracted packet,” much like how general blockchains revolve around

Request]

Action for Chain A J [Action for Chain B

[Action for Chain B } [Action for Chain B

.

J

-

J

Action for Chain C] [: Action for Chain C

Gateway Approval J

Figure 3: Chain Abstracted Packet

“blocks.” This packet is simply an application-approved execution of requests and re-
sponses across networks.

To elaborate on the general architecture pattern for applications in a chain-abstracted
and application-centric world:

request These are signed off-chain authorisations from the end user. Depending on
what the application accepts, this could be userOps, intents, permit2 witness, or
any custom type.

response These are signed responses by off-chain actors to help execute the pending
requests on-chain. The combination of a request and response forms an on-chain
actionable unit. The gateway is responsible for selecting the right response for the
request in an application-specific manner.

gateway This is an application-specific lightweight business logic that lives off-chain
but approves on-chain execution (packet) for the application contracts. It allows
application developers to write arbitrary logic. The primary goal of the gateway is
to create the packet by matching the right request and response, and to perform
any pre-execution logic.

As mentioned earlier, Socket Protocol revolves around the chain-abstracted packet.
Socket Protocol can be viewed as a framework that applications can leverage to create,
execute, and finalize chain-abstracted packets (CAPs) across networks.

The supply chain can be roughly divided into three phases: packet creation, packet
execution, and packet settlement.

3.1.1 Phase 1: Packet Creation

Applications are able to deploy a gateway with business logic where all user-requests and
responses from off-chain actors are received as inputs. The app-gateway executes the
logic to build a chain-abstracted-packet ready for onchain execution. As user-requests
come in, smart off-chain agents compete to fulfil it as dictated by the app-gateway.

N /

Request 7onse

Application
Gateway

[Chain Abstracted Packet j

Chain A Chain B Chain C

Figure 4: High Level Architecture of an Application in Chain Abstracted Future

3.1.2 Phase 2: Packet Execution

Once the Packet is created and authorised by the gateway, it’s ready to be executed across
networks. Off-chain actors will perform delivery to the networks needed and perform the
execution of the Packet.

3.1.3 Phase 3: Packet Settlement/Finalisation

At the end, to finish processing, the application-gateway is informed of fulfilment.

4 Socket Protocol Design

4.1 Components and Agents

Socket Protocol is a framework with a set of immutable contracts and ability for appli-
cation developers to leverage the framework with full customisability in essential areas.
Socket Protocol consists of 4 major components: Plugs, Switchboards, Gateway and
of-course Socket which is the center-point and where everything is plugged into. The goal
of the entire protocol is to create, execute and finalise chain-abstracted-packet.
Quick summary of what these components are:

Plugs Plugs are applications built on top of Socket Protocol aka smart-contracts that
“plug” into Socket.

Gateway These again same as above are applications built on Socket with the difference
being they are the entry/exit point of your onchain application plugs and are hosted
by “watcher service operators” offchain.

Switchboard Switchboards are on-chain smart contracts that applications(plugs) can
select to authenticate packets and their validity. Switchboards allow Plugs to elect

Application

Gateway

R =
“' 2. Packet Execution !

Socket Plug

Switchboard

Figure 5: Socket Protocol Components

and choose multiple watcher-services operating in various settings, optimistic, msig
based, zk based or rollup based.

Socket Socket is where everything gets plugged into, lightweight, immutable contract
facilitates standardised interactions between the above components.

Socket Protocol operates with the help of 2 types of off-chain agents:

Watchers Watchers are service-operators that host application-gateways and “watch”
chains. Watchers basically accept inputs from users and transmitters and run
them via the gateway logic and finalise by signing off on the output called chain-
abstracted-packet(CAP). To host a gateway you can deploy your own watcher-
service or leverage existing ones. Watchers are employed by Plugs to host their
Gateways.

Transmitters Transmitters are off-chain smart-actors that are responsible to execute
user-requests onchain, anyone can become a transmitter and submit responses to
user-requests. App-Gateway is able to select the right transmitters for the user-
request ultimately.

4.2 How it works

Figure above illustrates the steps involved in creation, execution and finalisation of Chain-
Abstracted-Packet across 2 networks, there can be arbitrary number of networks involved
depending on application/user-request. This section walks through an example of an ap-
plication on 2 networks composing via the application-defined-gateway leveraging Socket
Protocol.

1. The user sends a request to the application-gateway with a signature over the
required contents as per the application.

4.3

Transmitter

User Request Responses
4)
Application
Gateway
\ Watcher .

|

[Chain Abstracted Packet <j

Figure 6: Socket Protocol Agents

Transmitters send responses to the gateway, resolving the request into multiple
actions that can be performed on multiple networks onchain.

Gateway is triggered and application logic selects the winning transmitter that then
delivers the chain-abstracted packet across chains. Packet contains the request, his
response as well as watcher-signature that can be used to prove to switchboards
that the watcher authorised execution.

. As Socket contracts execute the plug onchain, authentication of the packet happens

via the Plug selected switchboard, if the switchboard authorises the packet, the
user-request and transmitter-actions meant for this network get executed.

Transmitter finalises execution on the source network by reporting to the gateway,
which then authorises next leg with a fresh watcher-signature.

Same as 4, Packet is validated via switchboards and then transmitter-responses for
this network get executed.

Finalisation of this leg happens as step 5 above.

Repeat of steps 5,6, 7 till the entire packet is executed.

Implications of Design

Incentivised Expansion: Today, applications need to pay intermediaries aka ser-
vice providers to expand to new networks, however due to the marketplace structure
of Socket Protocol, transmitters compete with other transmitters to win the right

7

o L| application < @
1. user-request| gateway 2. transmitter-response

6. Finalise Packet execution on
chainA to get watcher_sig
for second chain

quest
PLUG
J

chainA chainB

Figure 7: Step by Step Flow

of execution, transmitters will be open to serving new chain faster as it gives them
edge over other transmitters and increases their likelihood of winning user-requests
towards new networks. So while the Socket Protocol can already be permissionlessly
deployed to new networks, the market dynamics enable “incentivised expansion”
which flips the current meta.

Application leakage to intermediaries gets re-captured: Applications leak
all sorts of values due ttheir design to intermediaries like validators, sequencers, arb
bots and relayers exposing users to worse execution and other negative externalities,
Socket Protocol allows applications help users get better outcomes and protect them
from these negative externalities.

Gasless and batched execution by default: Due to the nature of the protocol,
transmitters are incentivised to automatically batch user execution onchain as much
as possible making it cheaper for users to interact onchain while also providing
gasless execution, no failing transactions as a side effect.

Security Pre-Checks: Applications while operating in 1000 chain world often
want to maintain global invariants that should not break no matter what, for eg,
token-supply for an erc20 is a great one, applications now have a natural place to
write such checks and increase safety properties of their application for their end
users.

Modular Settlement/Security: Given applications/plugs can choose any switch-
board AND registering new switchboards is permissionless, applications have full
control on how they want to validate actions across networks as well as interactions
between gateway and the onchain application.

5 Concepts

5.1 Application Gateway

Application Gateways are application-specific top level functions that can run pre-onchain
execution of the application itself. Socket doesn’t enforce a particular VM or language
for these gateway contracts, but assuming EVM for simplicity, developers can leverage
the gateway for various use cases.

Gateways are hosted offchain by watcher entities, which is a permissionless role. Ap-
plications can select and employ watchers via onchain contracts called switchboards. This
gives them the flexibility to select multiple watchers and decide how they want to validate
watcher execution of their gateway contracts.

There are various use cases for gateway contracts. Developers might use the gateway
contract to:

e Run simulations of all interactions with their onchain applications to increase safety
e Run an auction to optimize better outcomes for their end users

e Enable global routing

5.2 MOFA

MOFA stands for Modular OrderFlow Auctions and is a unique concept Socket Protocol
leverages to enable developers to create a market for the their orderflow where third-
parties compete to fulfill the orderflow. It gives application developers the ability to
convert an unaligned intermediary into an aligned friend that instead of being a hurdle
instead then becomes the enabler of chain-abstraction for the application.

Applications can now optimise the properties they and their users care about, like
price, latency or any other. Third-parties to fulfill these user-requests onchain as defined
by applications enabling chain-abstraction while delivering value to users and applica-
tions.

5.3 Switchboards

Switchboards are essentially onchain verifier contracts that anyone can write and attach
to Socket Protocol. Before executing the application, Socket Protocol checks with the
application-selected switchboard, allowing applications to perform various checks before
executing their onchain contracts.

You can think of switchboards as libraries that anyone can use. For example:

e A switchboard that allows for plug execution if only a single watcher authorizes
execution

e A switchboard that employs 100 watchers and allows for execution if 2/3 authorize
it

e Optimistic, ZK, or oracle-based switchboards that prove the watcher ran the application-
defined gateway as intended

Applications will choose different switchboards according to their use case. Different
switchboards will offer varying levels of cost, security, and latency for onchain execution.
Of course, applications can switch Switchboards as needed.

5.4 Watchers

Watchers are entities that run the “watcher service,” which read multiple chains and
allows application developers to deploy gateway contracts on top of the VMs they run.
Applications employ watchers via switchboards, making them an important part of the
puzzle.

Key points about watchers:

e Depending on the switchboard application developers use, they would have varying
degrees of trust in this entity

e Anyone can run a watcher-service and listen to as many or as few chains as they
want to participate in the Socket protocol

e Participation is subject to applications opting to deploy their gateway contracts on
the watcher’s service

6 Conclusion

The application-centric approach presents a promising solution to the challenges posed by
blockchain fragmentation. By empowering applications to become the primary gateway
for users, we can create a more unified and user-friendly blockchain ecosystem, fostering
greater adoption and innovation in the space.

10

	Introduction
	The Application-Centric Thesis

	Application Centric Design
	High Level Overview
	Chain Abstracted Packet
	Phase 1: Packet Creation
	Phase 2: Packet Execution
	Phase 3: Packet Settlement/Finalisation

	Socket Protocol Design
	Components and Agents
	How it works
	Implications of Design

	Concepts
	Application Gateway
	MOFA
	Switchboards
	Watchers

	Conclusion

