
Fast Trajectory Replanning Using Laplacian Mesh

Optimization

Thomas Nierhoff and Sandra Hirche

Institute of Automatic Control Engineering

Technische Universität München

D-80290 München, Germany

Email: {tn,hirche}@tum.de

Abstract—Adjusting to new situations by changing the shape
of a prerecorded trajectory is an important aspect for robot
manipulation in a constrained environment. For being recognized
as a distinctive trajectory, the goal of any trajectory modification
is to keep local and global properties as similar as possible
compared to the reference trajectory. This paper presents a
framework that can alter the shape of a trajectory by defining
the position of a set of sampling points while maintaining local
properties in a least-squares manner. The method consists of a
three-staged approach first modifying the global shape of the
trajectory and subsequently taking local features into account.
Inspired by mesh processing used for 3D surface editing, differ-
ential coordinates based on the discretized Laplacian operator are
used for measuring and maintaining local trajectory properties
when deforming the trajectory. Last, a post-processing step
based on a relaxed ”as-rigid-as-possible” principle allows local
deformations and length modifications of the trajectory for a
better tradeoff between preserving local and global properties.
Experiments verifying the applicability of the proposed algorithm
are conducted using a 7-DoF anthropomorphic arm following a
previously recorded and modified trajectory.

I. INTRODUCTION

Robotic systems are increasingly used for assisting humans

in daily life tasks. Even though some highly specialized

commercial systems like Roomba or Automower [1], [2] exist

already today, it is still a largely open challenge to design a

full-scale humanoid robot that can interact with any human

in a natural way. One core component of natural interaction

are natural movements. Here, programming by demonstration

and movement adaption [3] are considered being a promising

approach. Rather than programming every single possible

movement manually, a class of typical movements is encoded

as a prototypic movement and then modified in a adequate

manner. This way, only a few movements are required to

be able to fulfil a large variety of tasks by suiting them to

situation-dependent circumstances.

For both techniques - programming by demonstration and

movement adaption - different methods are proposed. Exam-

ples are Hidden Markov Models [4], Gaussian mixture- and

regression models [5] being able to extract one representative

trajectory from multiple demonstrations and dynamic move-

ment primitives [6] suited well for low-dimensional trajectory

representation. All three methods have in common they can

both encode and reproduce trajectories and allow trajectory

modifications by varying certain model parameters.

However, in certain situations the user wants to modify

some prerecorded discretized trajectory not in the parameter

space of an underlying model but directly in the task space of

the trajectory. This can be both, faster and more efficient, as

the trajectory does not have to be generated first. In addition

it provides a more intuitive and possibly flexible way than

the parameter space if the number of sampling points of the

trajectory is large enough.

A still ongoing problem is a proper trajectory adaption in

case a single sampling point of the trajectory is displaced for

collision avoidance or task adaption. In this case, a set of

adjacent sampling points has to be displaced as well in order to

maintain the local trajectory properties. Whereas maintaining

local trajectory properties (curvature) and global trajectory

properties (fixed sampling points, trajectory shape) appears to

be a challenging optimization problem at first glance, methods

do exist in computer graphics for this type of problem. Being

a standard tool in 3D surface editing and mesh processing,

Laplacian mesh optimization provides a fast and intuitive way

to change the global shape of a mesh while preserving local

features and considering positional constraints [7], [8]. Based

on the discrete version of the Laplace-Beltrami-operator, the

method tries to maintain the local mesh curvature if vertices

of the mesh are displaced. This is also known as ”as-rigid-

as-possible” (ARAP) transformation [9]–[11]. Resulting in a

linear least-squares problem, it can be solved in real-time even

for large meshes. By interpreting a path (a trajectory without

time information) as a very primitive mesh, this method can

be adapted for trajectories as well.

The contribution of this paper is the adaption of Laplacian

mesh optimization for modifying trajectories while keeping

local and global properties similar to a reference trajectory for

application in robotics. As existing methods partially fail if the

trajectory deformation is large, a novel optimization approach

is presented. This makes it possible to preserve characteristic

properties of the trajectory even if the trajectory is deformed

by adding positional constraints on a subset of sampling points

of the trajectory. Experiments with a 7-DoF anthropomorphic

robot manipulator performing imitation of a human movement

and the subsequent adaption of the recorded trajectory is

performed in order to react properly to environmental changes.

The results show the suitability of the proposed approach for

online trajectory replanning.



The remainder of this paper is organized as follows:

Section IV illustrates the general approach. In section V

experiments show the movement imitation and adaption on

an anthropomorphic arm together with a critical analysis of

the approach, discussing both its potential and limitations.

Last, section VI concludes with a final statement and possible

expansions for the future.

II. OBJECTIVE AND CONCEPTUAL APPROACH

This paper adresses the general issue of how to transform

a sampled reference trajectory into another one if the position

of a set of sampling points has to be set to a fixed value. In

case enough sampling points are fixed, no perfect matching

can be achieved in general and an approximated solution has

to be used instead. Here, the fundamental question is how to

achieve a suitable approximation as there is no unique best

solution. The adaption of Laplacian mesh optimization for

trajectory editing constitutes the core component for modifying

trajectories (section IV-B). As Laplacian mesh optimization

only preserves local features, a preprocessing step modifies the

global shape of the trajectory through an affine transformation

to achieve a coarse matching for the fixed sampling points (sec-

tion IV-A). In addition, a post-processing step (section IV-C)

ensures a good tradeoff between preserving local and global

properties.

Trajectory

alignment

(Section IV-A)

Laplacian

trajectory

optimization

(Section IV-B)

Relaxed

ARAP

optimization

(Section IV-C)

Figure 1. Overview of the three-staged approach presented in this paper.
Red circles around certain sampling points indicate the desired position of
fixed sampling points, grey lines mark the trajectory before the corresponding
modification stage and black lines a schematic resulting trajectory.

III. LAPLACIAN TRAJECTORY RREPRESENTATION

Each trajectory is given by an ordered set of sam-

pling points P = [p(t1),p(t2), . . . ,p(tn)]
T ∈ R

n×3 where ti
represents the time ti ∈ R, p(ti) ∈ R

3. The set of

sampling points P = [p(t1),p(t2), . . . ,p(tn)]
T is rewrit-

ten as P = [p1,p2, . . . ,pn]
T . The trajectory is represented

as an undirected graph G = (V, E) where each ver-

tex vi is associated with one sampling point pi → vi,
i.e. V = {v1, v2, . . . , vn}. The neighbor set of the

vertex vi, i.e. the set of adjacent vertices, is given

by Ni = {vj |j ∈ {i+ 1, i− 1}; i, j ∈ {1, , n}}. Accordingly

the edge set is defined as E = {eij}, i, j ∈ {0, .., n} with

eij =

{

wij if j ∈ Ni

0 otherwise
(1)

Depending on the irregularity of the edge

lengths lij = ‖pi − pj‖, different weighting terms wij

are presented in literature for mesh optimization: Uniform

umbrella weights wij = 1 or scale-dependent umbrella

weights wij = 1/lij . As cotangent weights described in [12]

are only defined for triangular meshes structures, they

cannot be applied for trajectories. Uniform umbrella weights

proved to be sufficient in all performed experiments and in

literature [13], so they are used for the remainder of this

paper.

Instead of working in absolute Cartesian coordinates, the

discrete Laplace-Beltrami operator δ is used for specifying

the local properties of the trajectory [14]. For vertex vi it is

defined as

δi =
∑

j∈Ni

wij
∑

wij

(pi − pj), (2)

The topology of the graph can be represented as a tridia-

gonal Laplacian matrix matrix L ∈ R
n×n with

Lij =























1 if i = j,

−
wij
∑

j∈Ni

wij

if j ∈ Ni,

0 otherwise.

(3)

IV. APPROACH

A. Trajectory Alignment

Given a reference trajectory that has to be realigned through

an affine transformation such that some sampling points of the

trajectory minimize the distance to predefined positions, this

section describes an SVD-based approach to achieve this goal.

To apply the affine transformation it is assumed that

a subset Ps = [ps1,ps2, . . . ,psk]
T ∈ P of sampling points

- with a special meaning like being the start pointt of

the trajectory, end point, grasping point or interaction

point - shall be mapped as good as possible onto desired

positions Pd = [pd1,pd2, . . . ,pdk]
T . Formally

pdi = cRpsi + t+ no, i = 1, . . . , k, (4)

with c as a scalar scaling factor, R ∈ R
3×3 as a rotation

matrix, t as a translational vector and no as a noise term

due to matching imperfection that has to be minimized. For

this purpose, least squares fitting using SVD as presented

in [15] and [16], can be applied: The first step consists of

the calculation of the centroids p̄s and p̄d of Ps and Pd as

p̄s =
1

k

k
∑

i=1

psi, p̄d =
1

k

k
∑

i=1

pdi. (5)

Then Ps and Pd have to be centered around p̄s and p̄d

p′
si = psi − p̄s, p′

di = pdi − p̄d, i = 1, . . . , k. (6)

The covariance matrix Q is calculated as

Q =
1

k

k
∑

i=1

p′
sip

′T
di , (7)



and the variance σ2
s as

σ2
s =

1

k

k
∑

i=1

‖p′
si‖

2
. (8)

The SVD of Q is calculated such that Q = UqSqV
T
q .

Then c, R and t can be computed as

R = VqS
′
qU

T
q , (9)

c =
1

σ2
s

tr(SqS
′
q), (10)

t = p̄d − cRp̄s. (11)

with S′
q preventing mirrored mappings

S′
q =

{

I if det(Uq)det(Vq) = 1,

diag(1, . . . , 1,−1) if det(Uq)det(Vq) = −1.
(12)

Remark 1: It is also possible to use multilateration instead

of an SVD-based affine transformation: Given enough sam-

pling points in Ps and Pd such that (4) applies with no = 0,

i.e. a perfect affine transformation is possible, multilateration

can be applied. However, multilateration fails easily if the

mapping between Ps and Pd is not affine or the basis formed

for multilateration of Ps or Pd is ill-defined.

B. Laplacian Trajectory Optimization

After the trajectory is aligned depending on the task

as described in IV-A, this section decribes how to en-

sure positional constraints while maintaining shape similar-

ity. When concatenating all δi-values into a single vector

as ∆ = [δ1, δ2, . . . , δn]
T , one can write the equation system

LP′ = ∆. (13)

with P′ = [p′
1,p

′
2, . . . ,p

′
n]

T ∈ R
n×3 for the desired sampling

point positions of the modified trajectory. As the equation

system is underdetermined (the differential coordinates ∆ are

translational invariant), one additional positional constraint is

needed in order to get a unique solution. A set of k additional

positional constraints in the form pi = ci can be defined by

adding them to the linear equation system (13)
(

L

ωP̄

)

P′ =

(

∆

ωC

)

, (14)

with the definition of P̄ ∈ R
n×n and C ∈ R

n×3 as follows

P̄ij =

{

1 if i = j and pi = ci,

0 otherwise.
(15)

Ci: =

{

[pix, piy, piz] if pi = ci,

0 otherwise.
(16)

For k > 1 positional constraints this results in an overdeter-

mined linear equation system defining both the local curvature

of the trajectory and additional positional constraints of pos-

sibly displaced vertices. The equation system can be solved

for P′ using least squares. The weighting factor ω determines

the weight of the positional constraints with respect to the

curvature of the trajectory. Note that the positional constraints

are treaten in the least-squares sense, i.e. they are not matched

perfectly and have have to be reassigned manually for a perfect

match. If the trajectory is bent too much, artifacts as illustrated

in section V-A can occur during the least-squares optimization

and have to be enhanced during the post-processing step.

C. Relaxed ARAP Optimization

Any calculated mesh as described in section IV-B still

has the disadvantage not including any local rotation of the

trajectory as the x, y and z-components of the resulting vertex

positions are calculated independently. In addition, it might be

necessary to patch artifacts occurring during the least-squares

optimization. To overcome both problems, [9] presented a

SVD-based ARAP optimization method which iteratively tries

to rotate the differential coordinates δ for preserving the ab-

solute edge lengths as good as possible. This is problematic

as any trajectory is inherently more flexible than a surface

mesh due to the lower valence of each vertex. Therefore, con-

ventional ARAP optimizations used for modifying trajectories

may fail in case the trajectory is bent too much.

The algorithm presented in this paper is a more relaxed

version of the SVD-based ARAP optimization, located in

between a native Laplacian optimization not allowing any

rotations at all and a ARAP optimization rotating differen-

tial coordinates freely. Whereas the SVD-based method tries

to maintain edge lengths using differential coordinates, our

method tries to maintain angles and weighted relative distances

between adjacent sampling points in order to model the rela-

tion between adjacent sampling points better without forcing

absolute distance constraints.

Let ci = p′
i+1 − p′

i be the connection vector between two

adjacent sampling points and P′ = [p′
1,p

′
2, . . . ,p

′
n]

T ∈ R
n×3

be the set of all sampling points after Laplacian optimization.

The angle between adjacent connection vectors is calculated

using the dot product

θ′i = arccos

(

ci · ci−1

‖ci‖ ‖ci−1‖

)

. (17)

The relative distance between adjacent sampling points is

defined as

γ′
i =

‖ci‖

‖ci−1‖
. (18)

All angles θ′i and relative distances γ′
i are characteristic

measures of every trajectory. Thus, if a reference trajectory

(subscript r) is altered, resulting in a modified trajectory (sub-

script m), the resulting optimization problem can be formulated

as keeping angles and relative distances between reference

trajectory and modified trajectory as similar as possible. The

angular difference θ between the modified trajectory and the

reference trajectory of vertex i is defined as

θi = θ′ri − θ′mi, (19)

and the relative distance difference γi is defined as

γi = max

(

γ′
ri

γ′
mi

,
γ′
mi

γ′
ri

)

− 1. (20)



It is max
(

γ′

ri

γ′

mi

,
γ′

mi

γ′

ri

)

≥ 1. The term −1 ensures that a perfect

match of relative distances will result in a relative distance

difference of 0. The resulting optimization problem can be

formulated as

P′′ = argmin
P′

(

n−1
∑

i=1

θ2i + µγ2
i

)

, (21)

subject to the equality constraints

θi = θ′ri − θ′mi(P
′), (22)

γi = max

(

γ′
ri

γ′
mi(P

′)
,
γ′
mi(P

′)

γ′
ri

)

− 1. (23)

with the term µ as a weighting factor. This is a nonlinear

least-squares problem depending on the 3D position of all

vertices in P′. However, as the optimization search space

is 3n-dimensional for a 3D space it becomes quite inefficient

as soon as the number of sampling points of the trajectory

increases.

pi

pi-1 pi+1

ci-1 ci

θi'

Figure 2. Optimization is based on the angle θi between adjacent sampling
points and the relation between the distances of adjacent sampling points using
the vectors ci and ci−1.

A fast approximate solution (relaxed fast ARAP optimiza-

tion) can be obtained under two conditions:

• To reduce the dimensionality of the search space, gradi-

ents for vertex i are only allowed to be computed in the

plane defined by ci and ci−1. This reduces the search

space to 2n dimensions, regardless of the task space

dimension.

• Due to the structure of the trajectory and the type of

cost function, gradients at optimization step o have to

be computed only for sampling points adjacent to other

sampling points which are updated at optimization step

o− 1.

pi

pi-1

pi+1

ci-1

ci

pi-2
pi-3

pi

Figure 3. Independence of the optimization terms θi and γi: When changing
the position of the sampling point p′

i
during the optimization step o, only the

gradients for pi+1, pi and pi−1 (red circles) have to be calculated at step
o+ 1. All other sampling points (green circles) stay the same as they do not
depend on ci, ci−1 or θi.

In combination with a threshold below which the gradient

is set to zero, it increses the execution speed of gradient-based

algorithms at the cost of a slighty reduced accuracy.

The first point limits the search space of the optimization

algorithm for finding better sampling point positions. As the

result of the Laplacian trajectory optimization is generally

close to the desired shape of the trajectory, the search space

reduction helps preventing the optimization algorithm from

finding results differing too much from the Laplacian opti-

mized trajectory.

The second point takes advantage the fact that certain terms

of the optimization are independent of other terms. As the

optimal solution of (21) is the sum of single optimal partial so-

lutions θi and γi, each one depending only on a certain number

of sampling point positions pi, gradients have to be computed

during an optimization step only for variables which are either

not yet at their optimal value or dependent of sampling point

positions that changed during the last optimization step. The

gradient threshold prevents variables from moving towards a

more optimal point for small gradients. This helps reducing

the number of gradient evaluations of dependent variables, see

Fig. 3.

μ too small

μ too large

μ ok

Laplacian

optimization

Figure 4. Schematic effect of varying the µ parameter for fixed sampling point
positions (red dots): Topmost trajectory: Resulting trajectory after Laplacian
optimization. Lower three images: Resulting trajectory after relaxed ARAP
optimization.

Determination of a proper value for µ is crucial. When

being set to a too small or too large value, too much weight

is given on matching the angles respectively the relative

distances between modified trajectory and reference trajectory,

see Fig. 4.

V. EXPERIMENTAL EVALUATION

A. Experimental Results

Experiments are conducted in two ways: In the first set

of experiments (Fig. 5 - 7) an original trajectory is modified

by fixing some of its sampling points at certain positions.

Subsequently the methods presented in this paper are compared

with other approaches. In the second experiment (Fig. 8), the

applicability to a real-life problem is shown.

A first experiment in Fig. 5 shows the difference between

a piecewise shearing of the reference trajectory and Laplacian

optimization, as they do look similar at a first glance. One can



see that Laplacian optimization offers the advantage of main-

taining local properties like a smooth curvature characteristics

also at the fixed sampling points.

0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

x [m]

y
 [

m
] original trajectory

laplacian trajectory

sheared trajectory

Figure 5. Comparison between Laplacian optimization and piecewise shearing
of a straight reference trajectory. Fixed sampling points are marked by black
dots. Whereas shearing preserves the local features of a straight line between
the fixed sampling points better, it results in a kink at the central point.

The difference between Laplacian mesh optimization, re-

laxed ARAP optimization and SVD-based ARAP optimization

is shown in Fig. 6: Based on a reference trajectory first

Laplacian optimization is performed and subsequently either

SVD-based ARAP optimization, relaxed ARAP optimization

or relaxed fast ARAP optimization. Whereas the SVD-based

ARAP optimization ensures better similarity of local features,

it differs from Laplacian optimization at global scale. The two

different relaxed ARAP optimizations with parameter µ = 0.1
produce almost similar results while the approximated version

is around two magnitudes faster. For all experiments pre-

sented in this section, relaxed fast ARAP optimization took

between 30ms and 100ms whereas relaxed ARAP optimiza-

tions took between 1s and 10s on a Core2Duo T7500 with

4GB Ram using Matlab.

The difference between relaxed ARAP optimization and

smoothing is shown in Fig. 7: Here, relaxed ARAP optimiza-

tion is compared to a single iteration of Laplacian smoothing,

an iterative process that computes the resulting position p̃i of

vertex i as the centroid of all neighboring vertices

p̃i =
1

|Ni|

∑

j∈Ni

pj . (24)

Even one iteration of Laplacian smoothing produces unac-

ceptable results both at global scale where the trajectory differs

much from the Laplacian trajectory and at local scale where

distinctive corners have got a round shape.

Real-life experiments are conducted by tracking the 3D

trajectory of a yellow marker from a human demonstration

using a Microsoft Kinect. Reproduction of the trajectory is

performed using a 7-DoF anthropomorphic manipulator with

a Schunk PG-70 gripper. Fifth-order polynomials are used

for interpolation between adjacent sampling points of the

trajectory. As shown in Fig. 8, the reproduced trajectories are

modified in three different ways: Whereas the first trajectory

has only been aligned according to section IV-A to match

0
0.1

0.2 0
0.1

0.2
0.3

0

0.05

0.1

0.15

0.2

 

y [m]x [m]

z
 [

m
]

original trajectory

laplacian trajectory

relaxed ARAP trajectory

relaxed fast ARAP trajectory

ARAP trajectory

0.05

Figure 6. Drawbacks of pure Laplacian optimization and SVD-based ARAP
optimization at global scale (top image) and local scale (bottom image). Fixed
sampling points are marked by black dots.

0
0.2

0.4

0

0.2

0.4

�
0.04

0.02

y [m]

 

x [m]

z
 [

m
]

original trajectory

laplacian trajectory

relaxed ARAP trajectory

relaxed fast ARAP trajectory

laplacian smoothed trajectory

Figure 7. Comparison of relaxed ARAP optimization and one iteration
of Laplacian smoothing at global scale (top image) and local scale (bottom
image). Fixed sampling points are marked by black dots.

the green waypoints on the table, one waypoint is moved for

the second trajectory. For the third trajectory, the obstacle in

between the waypoints is removed partially. As a consequence,

is is now possible to traverse between two of the waypoints in

a straight line. For the second and third trajectory, Laplacian

trajectory optimization and relaxed ARAP optimization with

fixed waypoint positions are performed in order to obtain

the smooth trajectories and to fulfill the positional waypoint

constraints.



Figure 8. Trajectory imitation using an anthropomorphic manipulator. Top
row: Human demonstrated trajectory. Second row: Replayed trajectory. Third
row: Trajectory with modified waypoint. Fourth row: Trajectory with removed
obstacle. Columns (from left to right): Chronological order.

B. Discussion

Experiments show Laplacian trajectory optimization in

combination with a post-processing step (relaxed ARAP op-

timization) and preprocessing (trajectory alignment) works

well for manipulating trajectories. Depending on the required

execution speed, the post-processing step can be neglected. In

this case, the total execution time for trajectory alignment and

Laplacian optimization is smaller than 1ms for the presented

experiments.

Considering computational complexity, current solvers for

sparse matrices depend only on the number of nonzero entries.

As this number depends linearly on the number of sampling

points, the computational complexity for the Laplacian opti-

mization scales linearly with the number of sampling points.

Whereas ”stretching” a trajectory, i.e. increasing lij com-

pared to the reference trajectory, causes only minor differences

between a Laplacian optimized trajectory, ARAP optimized

trajectory and relaxed ARAP optimized trajectory, the differ-

ences and therefore the need to apply our method increase

when a trajectory is being ”compressed”, i.e. lij decreases with

respect to the reference trajectory. Whereas a correct parame-

terization of µ is crucial for the relaxed ARAP optimization to

work properly, varied µ parameters within a rather large range

of 0.01-1 produced satisfying results.

Though it is tested only with two- and three-dimensional

trajectories, the algorithm is theoretically able to work in an

arbitrary number of dimensions. One still existing challenge

is a proper selection of sampling points for alignment and

repositioning. Whereas start and end point of the trajectory

simple to determine, other points usually have to be determined

taking also the environment into account.

VI. CONCLUSION AND FUTURE WORK

This paper presents a framework for possible online trajec-

tory modifications with the goal of preserving local and global

properties as good as possible. Inspired by Laplacian opti-

mization from computer graphics, we present a novel approach

to modify the shape of a trajectory by introducing positional

constraints on some sampling points of the trajectory. However,

instead of performing an ”as-rigid-as possible” optimization

focusing only on the local features, a novel more relaxed

optimization is presented preserving global features during

trajectory modification better. Modifications leading to an ap-

proximate but much faster solution are presented. Experiments

with an anthropomorphic robot with an anthropomorphic robot

manipulator with seven degrees of freedom show the approach

is suitable for application in robotics.

Laplacian mesh optimization shall not be understood as

a competitive algorithm to existing trajectory interpolation

methods [17]. Rather it works as an extension to existing

methods as the resulting sampling points still have to be

interpolated either using polynomial functions, Bézier curves

or splines for smooth and high resolution trajectories.

Future work will be focused on the combination of the

proposed algorithm with a motion imitation and recognition

framework, allowing a robot to interact dynamically with a

human counterpart.

ACKNOWLEDGEMENT

This work is supported in part within the DFG excellence

research cluster Cognition for Technical Systems - CoTeSys

(www.cotesys.org) and by the DAAD (www.daad.de).

REFERENCES

[1] http://www.irobot.com/en/us/robots/home/roomba.aspx.
[2] http://www.husqvarna.com/us/products/robotic-mowers/husqvarna-

robotic-mowers-for-homeowners/.
[3] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming

by demonstration,” in Springer Handbook of Robotics, 2008, pp. 1371–
1394.

[4] J. R. Medina, M. Lawitzky, A. Mortl, D. Lee, and S. Hirche, “An
experience-driven robotic assistant acquiring human knowledge to im-
prove haptic cooperation,” in IEEE IROS, 2011, pp. 2416–2422.

[5] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard,
“Learning and reproduction of gestures by imitation: An approach
based on hidden Markov model and Gaussian mixture regression,” IEEE

Robotics and Automation Magazine, vol. 17, no. 2, pp. 44–54, 2010.
[6] S. Schaal, “Dynamic movement primitives - a framework for motor

control in humans and humanoid robotics,” Adaptive Motion of Animals

and Machines, pp. 261–280, 2006.
[7] M. Alexa, “Differential coordinates for local mesh morphing and defor-

mation,” The Visual Computer, vol. 19, no. 2, pp. 105–114, 2003.
[8] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Laplacian mesh

optimization,” in ACM SIGGRAPH, 2006, pp. 381–389.
[9] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in

EUROGRAPHICS, 2007, pp. 109–116.
[10] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-possible shape

manipulation,” in ACM SIGGRAPH, 2005, pp. 1134–1141.
[11] M. Alexa, D. Cohen-Or, and D. Levin, “As-rigid-as-possible shape

interpolation,” in ACM SIGGRAPH, 2000, pp. 157–164.
[12] U. Pinkall, S. D. Juni, and K. Polthier, “Computing discrete minimal

surfaces and their conjugates,” Experimental Mathematics, vol. 2, pp.
15–36, 1993.

[13] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P.
Seidel, “Laplacian surface editing,” in ACM SIGGRAPH, 2004, pp. 175–
184.

[14] Y. Lipman, O. Sorkine, M. Alexa, D. Cohen-Or, D. Levin, C. Rössl, and
H.-P. Seidel, “Laplacian framework for interactive mesh editing,” IJSM,
vol. 11, no. 1, pp. 43–62, 2005.

[15] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of
two 3-d point sets,” in IEEE TPAMI, vol. 9, no. 5, 1987, pp. 698–700.

[16] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” in IEEE TPAMI, vol. 13, no. 4, 1991, pp.
376–380.

[17] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning for
mobile robots using splines,” in IEEE IROS, 2009, pp. 2427–2433.


