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Abstract

Cryo-Electron Tomography (CET) is a three-dimensional (3D) imaging technique
to study the structures of macromolecular complexes in their physiological envi-
ronment. 3D image processing plays a pivotal role for the structural analysis of
macromolecules depicted in cryo-tomograms. A typical processing workflow of CET
comprises: (i) Reconstruct a tomogram from 2D projections of a sample. (ii) Iden-
tify macromolecules of interest in the reconstructed tomogram. (iii) Align subtomo-
grams of the individual copies of macromolecules and average them to enhance the
signal and increase the resolution of resulting average. (iv) Classify subtomograms
depicting heterogeneous molecules into smaller, homogeneous classes.

In this dissertation novel 3D image processing methods for each of these process-
ing steps are presented and assessed: (i) An iterative reconstruction algorithm based
on nonuniform Fourier transform yields the most accurate reconstruction results. (ii)
A supervised machine learning approach, combined with rotation-invariant features
for 3D objects, enables accurate macromolecule identification. (iii) For subtomo-
gram alignment, an algorithm is introduced, which allows efficient and accurate
computation of a constrained correlation function via a generalized convolution the-
orem. (iv) A novel subtomogram classification algorithm is presented, which is able
to automatically focus the similarity measurement to regions of highest structural
variability. This autofocus ability does not require any prior knowledge or human
intervention, which avoids hypothesis-driven bias of classification results.

In conclusion, a complete image processing workflow for molecular structural
analysis in CET is covered here. All the introduced methods are thoroughly evalu-
ated on various simulated and experimental datasets. Moreover, most of them allow
rapid computation via parallelization and released as open source software to the
community. The 3D image processing framework presented here provides a solid
basis for users to process massive datasets rapidly and accurately.






Zusammenfassung

Kryoelektronentomographie (KET) ist ein Bildgebungsverfahren zur Erforschung
der dreidimensionalen (3D) Strukturen makromolekularer Komplexe in ihrer phys-
iologischen Umgebung. Bei der Strukturanalyse der abgebildeten Makromolekiile
spielt 3D Bildverarbeitung eine Schliisselrolle. Ein typischer Analysevorgang bein-
haltet folgende Schritte: (i) die Rekonstruktion des 3D Tomogramms anhand von 2D
Projektionen. (ii) Identifizierung spezifischer Makromolekiile im rekonstruierten To-
mogramm. (iii) Alignierung von Subtomogrammen, die Kopien eines Makromolekiils
abbilden, sowie deren Mittelung zur Verstarkung des Signals und zur Erhchung der
Auflésung. (iv) Klassifizierung von Subtomogrammen, die strukturell heterogene
Molekiile abbilden, in kleinere, homogenenere Klassen.

In dieser Dissertation werden fiir jeden dieser vier Schritte neue 3D Bildverar-
beitungsmethoden présentiert und ausgewertet: (i) Ein auf nicht-uniformer Fouri-
ertransformation basierender iterativer Rekonstruktionsalgorithmus erzielt hochst
genaue Rekonstruktionen. (ii) Ein maschinelles Lernverfahren, das rotationsinvari-
ante Kenngrofen nutzt, ermdglicht genaue Molekiilidentifikation. (iii) Zur Subto-
mogrammalignierung wird ein Algorithmus vorgestellt, der die effiziente und genaue
Berechnung der eingeschrankten Korrelationsfunktion unter Ausnutzung eines ver-
allgemeinertem Konvolutionstheorems ermdoglicht. (iv) Ein neuer Algorithmus zur
Klassifikation von Subtomogrammen fokussiert sich automatisch auf die Regionen
der hochsten Variabilitat. Hierdurch sind biologische Vorinformation und subjek-
tive Intervention nicht notwendig, wodurch hypothesegetriebene Beeinflussung der
Klassifikation verhindert wird.

Zusammenfassend wird in dieser Arbeit ein umfassender rechnerischer Arbeits-
ablauf fiir molekulare Strukturanalyse mittels KET behandelt. Alle entwickelten
Methoden sind griindlich evaluiert worden anhand verschiedener simulierter und
experimenteller Datensatze. Die meisten Algorithmen erlauben schnelle Berechnun-
gen durch Parallelisierung und die Quellcodes sind frei zuganglich. Die im Rahmen
der Arbeit entwickelte 3D Prozessierungsplattform bietet Nutzern eine solide Basis,
grofle Datensétze schnell und akkurat zu prozessieren.
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Introduction

As an extension of human vision into the smaller scale, various imaging techniques
are the driving force behind numerous biological discoveries. They enable researchers
to study questions at the organic, cellular, or even molecular level. As most of the
basic, biological questions can be traced back to the cell, imaging the cell is pivotal
in the life sciences. While the modern light microscope is able to examine the cell in
vivo, its resolution is limited by the wavelength of the visible light (a few hundreds of
nanometers). Although by using fluorescence labels it is able to accurately localize
and dynamically track certain proteins in the living cell (fluorescence microscope
and the confocal light microscope), it is still impossible for detailed studies of the
structures of macromolecular complexes and their interactions in the cell.

To obtain 3D information of specific macromolecules at subnanometer resolu-
tion, high-resolution techniques can be used, such as X-ray crystallography, Nuclear
Magnetic Resonance (NMR) and cryo-electron microscopy Single Particle Analysis
(SPA). Take SPA for example, by imaging numerous copies of a structurally in-
variable macromolecule isolated from the cell, atomic resolution (a few angstroms)
can be obtained [van Heel et al., 2000, Armache et al., 2010]. The resulting re-
construction can then be used to fit atomic models of the respective peptide or
nucleotide chains for further interpretation. However, the complexes may dissociate
during extensive purification steps or undergo conformational changes. Moreover,
the spatial-temporal information of the complexes in the living cell is lost by the
isolation. The study of the interactions between macromolecular complexes inside
the cell can only be conducted in their physiological environment.

On the other hand, Cryo-Electron Tomography (CET) has the ability to visualize
the cellular architecture and macromolecular assemblies three-dimensionally in their
physiological settings |Luci¢ et al., 2005]. Due to the advances in the past few
decades (sample preparation, automated image acquisition, microscope hardware
and software), CET has become an important imaging tool for structural studies of
macromolecules in situ at nanometer scale. Briefly, in CET the biological sample is
first rapidly cooled in the liquid ethane (ca. —180°C). The plunge-freezing prevents



1. Introduction

the formation of ice crystals and preserves the sample in a near-to-native condition.
In contrast, other preparation methods that involve staining or chemical fixation lead
to artefacts and limit the maximal attainable resolution [Luci¢ et al., 2005 Frank,
2006a). Afterwards, the frozen-hydrated sample is placed in a Transmission Electron
Microscope (TEM) and its 2D projections are acquired from different angles by
tilting the sample holder. The automated data acquisition procedure is crucial here
to accurately control the imaging process and to acquire the images under low-dose
conditions [Koster et al., 1992, Dierksen et al., 1992, Dierksen et al., 1993|. Finally,
the 2D projections are used to reconstruct the 3D map (or the so-called tomogram),
which is subjected to further visualization, interpretation or processing. Due to the
dose limit, the final attainable resolution of a raw tomogram is typically in the range
of 5-10 nm [Griinewald et al., 2003].

Although the resolution of CET is inferior to the ones of X-ray crystallography,
NMR and SPA, the uniqueness of CET is the capability to image not only the macro-
molecule of interest, but also its cellular context. It provides medium resolutions
of macromolecular complexes without the need for extensive purification. It hence
bridges the gap between low-resolution imaging techniques (e.g., X-ray computed to-
mography and light microscopy) and high-resolution imaging techniques (e.g., X-ray
crystallography, NMR and SPA), linking cellular and molecular structural biology.
By registering multiple copies of the macromolecule of interest and averaging them,
the resolution can be further improved, making it a powerful tool to study, e.g.,
macromolecular complexes associated with the membranes (Figure [Bartesaghi
and Subramaniam, 2009, [Pfeffer et al., 2012| [Pfeffer et al., 2014], which are difficult
for other imaging methods. In selected cases, even averages with subnanometer res-
olution have already been obtained by subtomogram averaging [Schur et al., 2013].

An ambitious goal of CET is towards the so-called “visual proteomics” [Nick-
ell et al., 2006, Brandt et al., 2009, Forster et al., 2010|, which aims at studying
macromolecular complexes in the native cellular environment by detecting them,
quantifying their abundances and analysing their spatial distributions and interac-
tions. As a consequence, a macromolecular atlas can be build (Figure , which
provides insights into the functional associations between the macromolecular com-
plexes. Visual proteomics requires high-resolution tomograms of CET and accurate
identification of various macromolecular complexes in the 3D maps. Currently, only
large complexes, such as ribosomes, can be detected with reasonable fidelity. It
remains a challenging task to identify complexes of smaller weights (< 1 MDa).

1.1 3D Image Processing in CET

Image processing techniques are of vital importance in CET to mine the structure
information extensively. Starting with the projections (micrographs) obtained by



1.1. 3D Image Processing in CET

ER-lumenal
complexes

Figure 1.1: CET applied to study Endoplasmic Reticulum (ER) membrane-
associated ribosomes. (a) Left: A 2D slice view of a tomogram of rough ER~derived
microsomes. The image depicts densely populated, membrane-bound ribosomes.
Scale bar: 100 nm. Right: The corresponding segmented map of the isosurface
representation. The membrane is colored in gray and ribosome in cyan. (b) Left:
The subtomogram average of the ER-associated ribosome at a resolution of approx-
imately 3 nm. The 60S ribosomal subunit is colored in cyan, 40S subunit in yellow,
membrane in gray and ER-lumenal part in red. Right: A preferred 3D arrangement
of membrane-bound ribosomes in situ. A thread is drawn from the mRNA entry to

the exit site of adjacent ribosomes, visualizing a possible pathway for interconnecting
mRNA. Adapted from [Pfeffer et al., 2012].

a TEM, a typical processing workflow consists of several steps (Figure . First,
the tomogram is reconstructed using the 2D projections from different projecting
angles. CET shares the same principle with other tomography methods in medical

imaging, which was first formulated by [Radon, 1917]. Radon proved that an object
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Figure 1.2: Idea of visual proteomics. The objective of visual proteomics is to detect
macromolecular complexes comprehensively in a cell, allowing the studies of their
abundances, spatial distributions and interactions. This can be achieved by first
constructing a template library of macromolecules of interest, then calculating their
features and finally identifying them inside the tomogram. As a result, a molecular
atlas of the imaged cell can be built. Adapted from [Nickell et al., 2006].

can be reconstructed from its projections. This principle was first applied to CET
in |[DeRosier and Klug, 1968, [Hart, 1968]. The resulting reconstruction is a 3D
density map, indicating the density of the imaged specimen as a function of spatial
coordinates.

Secondly, a specific type of macromolecular complex is often of interest, which
has to be localized and identified in the 3D tomogram. Due to the low SNR of the
tomogram and the large amount of data, manual labelling of the macromolecule
by experts is rarely feasible. Instead, automated approaches utilize the structural
signature of the macromolecule to identify and localize its occurrences within a
tomogram. A common approach is to use the prior knowledge of the target macro-
molecule structure as the template to search the whole tomogram. With a descent
similarity metric, the search can be efficiently computed, resulting in the spatial
distribution information of the macromolecules in the tomogram.

Thirdly, subtomogram alignment and averaging can be conducted to get a 3D
density of the target macromolecule with an improved resolution. The resolution
of the raw tomogram is approximately 5-10 nm [Griinewald et al., 2003, which
enables detecting large macromolecules. However, the resolution level is insuffi-
cient for depicting finer structural details. By aligning and averaging the subtomo-
grams, extracted at the locations resulting from the identification step, the noise can
be reduced, yielding a better-resolved structure. Normally, the alignment involves
searching the best translational and rotational matches of 3D maps, which is a com-
putationally intensive task. The obtainable resolution by subtomogram averaging
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Figure 1.3: A typical image processing workflow of CET in 2D for simplification. It
consists of four major steps: 1. The tomogram is reconstructed from the acquired
projections of different angles. 2. The macromolecular complex of interest, denoted
as ‘A’s with different fonts, is identified in the tomogram. 3. The subtomograms
containing the targets are extracted from the tomogram. Aligning the subtomograms
and averaging them can reduce the noise, resulting in a better resolved structure
‘A’. 4. Further classification of the subtomograms helps to discriminate different
conformations of the complex. Adapted from [Hrabe and Forster, 2011].

of thousands of subtomograms is typically in the range of 2-3 nm.

Finally, subtomogram alignment and averaging assume that the subtomograms
contain copies of a specific macromolecule in the same conformation. If the imaged
particles are structurally heterogeneous, the resolution of the averaged structure will
be reduced. The heterogeneity could originate either from the false positive detec-
tions of the identification step, or from the conformational changes of the macro-
molecules when they fulfill their cellular functions, in which case the valuable infor-
mation will be lost by simple averaging. This issue is addressed by subtomogram
classification, where different, structurally more homogeneous classes are separated
and their respective resolutions are improved ideally.

The aim of this thesis is to develop novel methods for these four steps: tomo-
gram reconstruction, macromolecule localization and identification, subtomogram
alignment and subtomogram classification to improve the image processing pipeline
of CET. Although there are various software packages [Kremer et al., 1996, [Frank|
ket al., 1996, Sorzano et al., 2004} Nickell et al., 2005, Nicastro et al., 2006, Winkler |
2007, Heymann and Belnap, 2007, (Castano Diez et al., 2012] for each of these steps,
the idea is to implement all the proposed methods in a unified open-source soft-
ware, intended to provide a platform for accurate and efficient processing of CET
data. All the methods should be applied to simulated and experimental datasets for
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quantified evaluations of the performances.

1.2 Thesis Outline and Contributions

The remainder of the thesis is organized as follows: First, the background about the
TEM and CET is presented in chapter [2l The knowledge about the components of
a modern TEM helps understanding the principle of the image formation of a TEM,
and therefore its power/weakness. A basic workflow of CET is presented to give an
overview about the imaging technique.

In chapter [3 the first processing step, tomogram reconstruction, is discussed.
Based on the projection-slice theorem, a Fourier-based 3D reconstruction method
is adapted here. It formulates the reconstruction as an optimization problem and
use the nonuniform fast Fourier transform as the forward (backward) projection
operator in the optimization procedure, which can be solved iteratively using the
conjugate gradient algorithm.

Chapter 4| demonstrates how to use machine learning to improve the identifica-
tion of macromolecular complexes in the tomograms. A rotation-invariant descrip-
tor for 3D data is proposed and integrated into a supervised learning framework.
Compared to template matching, the approach yields a superior identification per-
formance with a reduced false positive rate.

A fast and accurate alignment algorithm is presented in chapter 5] to align subto-
mograms to a common coordinate system. The major contribution is the general-
ization of the convolution theorem to the rotational space. Based on the spherical
harmonic transform, the convolution can be efficiently computed. As evaluated on
simulated and experimental datasets, the algorithm provides a speedup of up to
three orders of magnitude and it is able to resolve the structures with 15-20 A
resolution, opening the possibility to process massive data in the future.

Chapter [6]introduces a subtomogram classification algorithm, which is able to au-
tomatically focus the classification on the regions of significant structural variability.
This autofocus ability does not require any prior knowledge about the macromolec-
ular structure. The algorithm can deconvolute different conformational states of
macromolecular complexes in situ as demonstrated for ER-associated ribosomes.

All the above-mentioned algorithms and tools were implemented in PyTom
[Hrabe et al., 2012] and released as an open-source software to the community.

Finally, the thesis is summarized in chapter [/} Detailed discussions are provided
for each topic and the outlook for the future work is suggested.



Background

2.1 Transmission Electron Microscopy

The major components of a modern transmission electron microscope (TEM) are
first described, followed by a brief discussion of the principles of the image forma-
tion mechanism in a TEM. They provide a basis for understanding the information
content of electron micrographs, as well as the challenges faced when processing
them.

2.1.1 Transmission Electron Microscope

As shown in Figure 2.1} the basic setup of a TEM resembles a light microscope,
which has an illumination source, condenser lenses to focus the incident beam on
the specimen, a specimen stage, objective lenses to obtain a real-space image from
the scattered light, projector lenses to magnify the resulting image, and finally a
camera to record the image. In detail, some parts are explained in the following.

Electron gun. The major difference between a TEM and a light microscope is
the illumination source: electrons are used in the TEM instead of light. Electrons
are emitted by the electron gun, accelerated and formed into an electron beam
with high spatial and temporal coherence that transmits the specimen afterwards.
A high-performance TEM is typically equipped with a field emission gun (FEG),
which produces electron beams with significantly higher brightness than the cheaper
LaBg sources. The resulting wavelength of electrons ranges from 0.037 A to 0.020
A (with the accelerating voltage between 100 kV and 300 kV), allowing structural
studies at high resolution [Frank, 2006b]. To avoid interaction between the electron
beam and air, the TEM column has to be kept at ultra-high vacuum.

Condenser lenses. Condenser lenses (C1 and C2) and their respective aper-
tures condense the electron beam to a small spot size (typically on the order of 1 pm
for bright-field imaging) [Reimer and Kohl, 2008]. For this purpose, electromagnetic
coils are used as the lenses, which generate magnetic fields altering the direction of
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Figure 2.1: Schematic view of a modern transmission electron microscope. Adapted
from [Schweikert, 2004].

electron beam (but not its energy). By applying different currents on the coils, the
focal length of the lenses can be adjusted.

Specimen stage. The specimen is usually applied to a metal mesh grid, which is
approximately 3 mm in diameter. The grid is then placed on a computer-controlled
stage allowing precise translation and single-axis rotation of the sample.

Objective lenses, intermediate lenses and projector lens. The image of
the specimen is first created by the objective lenses. At the back focal plane, the
objective aperture removes the electrons with high scattering angles and improves
the contrast. The image is further magnified by the intermediate lenses and finally
projected to the detector by the projector lens.

Energy filter. When thick samples (> 200 nm) are imaged, the chance of
inelastic scattering of electrons increases (see section , which leads to blurring
of the image due to the high chromatic aberration of the objective lenses. The
blurring can be reduced by employing an energy filter, which can filter out the
inelastically scattered electrons. One commonly used type is the post-column energy
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filter [Krivanek et al., 1995], which consists of a magnetic prism dispersing the
electrons according to their energy and an energy selective slit allowing only electrons
within a certain energy range to pass.

Image Detector. The electrons are finally captured by the detector, forming
an image visible to the human eye. A widely used detector is the scintillator-coupled
Charge Coupled Device (CCD) camera, in which the electrons are first converted to
photons by the scintillator. These photons are then transmitted to the CCD array,
using either fiber optical or lens coupling, to generate the digital signal. During this
process, the signal is first carried by electrons, then photons, and finally electrons
again. The transformation of the carrier causes unnecessary information loss. This
is addressed by the recently introduced Direct Detection Devices (DDDs), which
are digital cameras capable of detecting the electrons directly. They have superior
quantum efficiency and increased image contrast [McMullan et al., 2009, Faruqi
and McMullan, 2011], which leads to a significant performance advance over CCD
cameras.

2.1.2 Image Formation

Before describing the image formation mechanism of the TEM, we have to under-
stand the interaction of the electrons with the specimen. There are four major types
of interactions (Figure[2.2)): 1. Most of the electrons are too far away from any atom
and their paths will not be altered. They are called unscattered electrons. 2. If the
electrons pass in the range of the electron clouds of the atoms, they will be scattered
due to the Coulomb force. If a negligible amount of energy is transferred from the
electrons to the specimen, we define this interaction as the elastic scattering, which
is the main factor of forming the high resolution TEM image because this interaction
contains information about the Coulomb potential distribution of the atoms in the
specimen. 3. On the other hand, there is a significant energy loss of the electrons
by inelastic scattering, which causes energy deposition in the specimen and thus ra-
diation damage. Moreover, inelastic scattered electrons will introduce incoherence
by generating new wavelengths, which results in the background noise. This be-
comes a severe issue, when the specimen is thick, increasing the chance of multiple
scattering events (therefore also the chance of inelastic scattering). In such case, an
energy filter is required to filter out the inelastic scattered electrons. 4. There are
some electrons that travel close to the atomic nuclei. They will be attracted by the
high Coulomb potential and be scattered at high angles. We call them backscattered
electrons. They will be removed by the objective aperture, resulting in a decrease
of transmitted electron intensity.

The image formation mechanism of a TEM comprises two parts: phase contrast
and amplitude contrast. Phase contrast is due to the elastic scattering and is the
main contribution of contrast in the image [Dubochet et al., 1988]|. It arises from the
interferences of electron waves at the image plane. Amplitude contrast, on the other
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Figure 2.2: Interactions of the electron beam with an atom in the specimen.

hand, is a result of the backscattering and inelastic scattering, in which there is a
loss of electron intensity. It contributes mainly to the low or medium resolutions.
In the following, the phase contrast and amplitude contrast are discussed in detail.

Phase contrast. We can describe the incident electrons travelling through the
specimen along the z-direction as a uniform planar wave ¥, = exp(ikz), where
k = 1/X is the wavenumber of the electrons. Due to the elastic scattering, the
electron wave will undergo a phase shift ®(z,y) [Frank, 2006b]:

U(x,y) = Uoexp(i®(z,y)), (2.1)
O(x,y) = /C(w,y,z)dz. (2.2)

Here, (z,y) is the coordinate of the specimen plane and C(z,y, z) is the Coulomb
potential distribution of the specimen. Under weak-phase approximation: ®(z,y) <
1, U(z,y) can be expanded to:

W(r,y) = WL+ i(z,y) ~ LB(r,0)* + ] (2.3)

Omitting the Taylor series expansion of above the first order suggests that the
electron wave behind the specimen can be approximated as a sum of an unscattered
wave Wy and a weakly scattered wave of low amplitude ®(z,y) with a 7 phase shift.

However, this phase shift is hardly measurable because the intensity is dominated
by the unscattered wave (Figure . This is essentially the same problem facing in
light microscopy and it led to the invention of the phase contrast microscope. Here,
on the other hand, the lens aberrations and defocusing are utilized to generate
additional phase shift in TEM. Mathematically, the phase delay W depends on the
frequency k = (k;, ky), k = |k| and it can be expressed as [Reimer and Kohl, 2008]:

W (k) = g(CSA3k4 —2ANR?). (2.4)
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2.1. Transmission Electron Microscopy

Herein, C is the spherical aberration coefficient of the lens; A is the electron wave-
length; and Az is the defocus of the objective lens.

a) no phase contrast

¥y

b) positive phase contrast
v A
el

¥

Figure 2.3: Phase contrast generation. (a) No phase contrast. The amplitude of
the resulting wave W is approximately the same as the one of the incident wave
Uy, making the phase shift hardly measurable. (b) Positive phase contrast. An
additional 7 /2 phase shift is used to produce more contrast. Adapted from [Reimer
and Kohl, 2008|.

Therefore, the wave function at the back focal plane of the objective lens can be
expressed in Fourier space as [Frank, 2006b]:

Uip(k) = F(¥(x,y)) exp(iW (k). (2.5)

The wave function in the image plane can be obtained by an inverse Fourier trans-
form:

Ui(z,y) = FH(F(U(z,y))A(k) exp(iW (k))). (2.6)

Here, A(k) is the aperture transfer function:

A(k) =

{1 for [k| = 0/X < 01/X | (2.7)

0 elsewhere

where 6; is the angle corresponding to the radius of the objective lens aperture.
Finally, the observed intensity in the image plane is equal to the magnitude of the
incident wave function (ignoring the scaling factor):

Assuming ®(x,y) is real and ignore the terms above the first order, Equation
can be rewritten as [Reimer and Kohl, 2008|:

F(I(z,y)) = O(k)A(k) sin(W (k)), (2.9)

O(k) = F(®(x,y)). (2.10)
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2. Background

Here, the function sin(W(k)) is the so-called contrast transfer function (CTF). It
is a function of the spatial frequency k and characterizes how the information of
different frequencies is transferred (Figure . Due to the oscillatory nature of the
sine function, some frequencies are transferred strongly while others are inverted
or even eliminated. As seen from Equation 2.4, CTF is mainly controlled by the
defocus value Az. The effect of the CTF is illustrated in Figure [2.5]

0.5

CTF
=)

-05r

: -1
1 i I 1 1 1 i L i i 1 1 1 i i 1 1 1
0 0.1 02 0.3 04 0.5 06 07 08 09 1 0 0.1 0z 03 04 05 06 or 08 09 1.0
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Figure 2.4: Theoretical contrast transfer functions (blue) and their envelopes (red).
(a) The CTF is calculated with the defocus value of 5 um, the accelerating voltage
of 300 kV and the spherical aberration of 2 mm. The first zero-crossing of the CTF
is at (3.1 nm)™?. (b) If the defocus value is changed to 8 um, the first zero-crossing
of the CTF is at (4 nm)™.

Equation assumes the coherent illumination with monochromatic electrons.
However, the illumination in practice has both a finite divergence and a finite energy
spread, which results in the damping of CTF towards higher frequencies. This can
be formulated by introducing an additional “envelope function” E(k):

F(I(z,y)) = O(k)E(k)A(k) sin(W (k)). (2.11)

The descending property of E(k) limits the obtainable resolution of TEM.
Amplitude contrast. Equation [2.1]does not take into account of the amplitude

component. The Fourier transform of the amplitude component is transferred by
cos(W(k)) and Equation [2.9) can be rewritten as [Frank, 2006b]:

F(I(2,y)) = O, (k)A(k) sin(W (k) — O,(k) A(k) cos(1V'(k)), (2.12)

where O,(k) and O;(k) are the real and imaginary parts of O(k), respectively [Er-
ickson and Klug, 1970]. The percentage of amplitude contrast varies according to
the atom species. For a negatively stained specimen this percentage is higher, while
for a thin cryo-specimen it is usually between 5%-7% [Orlova and Saibil, 2011].
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2.1. Transmission Electron Microscopy

7B\ AR

Figure 2.5: The effect of the CTF illustrated in 2D. The original image can be seen
in Figure 2.6, Top row: CTF-affected images. Bottom row: Corresponding 2D
CTFs.
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2.2 Cryo-Electron Tomography

After the description of TEM, some important steps of CET are presented here,
providing an overview about this imaging technique. The state-of-the-art methods
for all the steps are introduced and some challenges are discussed.

2.2.1 Sample Preparation

Before the biological sample is examined under the microscope, it has to be fixated
in a solid state. In molecular structural biology, the most common method is plunge
freezing ([Dubochet et al., 1988]): the aqueous sample is first placed on a thin EM
grid and then rapidly submerged in liquid ethane (ca. —180°C). During plunge
freezing the temperature drops so quickly (10* K/s) below —140°C that the forma-
tion of ice crystals is avoided, which would cause damage to the biological material.
Instead, the ice is in an amorphous state (vitrification), which preserves the sample
in a near-physiological condition.

2.2.2 Image Acquisition

After the sample is prepared, it is further examined using a TEM. A series of 2D
projections is recorded from different angles by tilting the sample holder. Due to the
dramatic increase of the sample thickness at high tilt angles, inelastic scattering of
the electrons increases, which greatly degrades the image quality. The consequence
is that the tilt angles are typically restricted to a certain range, e.g, —60° to +60°
(limited angle tomography) with an angular increment of 2°-3°, which causes severe
artefacts of the reconstruction (discussed in section [2.2.5). Automated data collec-
tion process is vital for the tilt-series acquisition [Koster et al., 1992, Dierksen et al.,
1992) Dierksen et al., 1993], to automatically compensate for lateral movements of
the specimen, to maintain invariant imaging conditions (e.g., keep the target cen-
tered under the beam and at a constant focus) and to take images with minimal
electron dose (low dose) throughout the entire acquisition process. The development
of such automated data acquisition tools (e.g., SerialEM [Mastronarde, 2005], TOM
[Nickell et al., 2005, UCSF Tomography [Zheng et al., 2007], Leginon [Suloway
et al., 2009]) makes it possible to obtain large amounts of data for structural studies
with high resolution.

Another important issue during the data acquisition is the dose limitation. There
is a limit of electron dose that can be applied on the biological sample because too
much exposure leads to structural changes. The electron dose should be sufficiently
low to avoid the structural damage of the specimen. Therefore, the obtainable
resolution of CET is essentially limited by the applicable electron dose, typically
below 100 ¢ /A? allowing resolutions in the range of 1-2 nm [Henderson, 2004].
Moreover, the electron dose has to be divided over the number of projections. As
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2.2. Cryo-Electron Tomography

a consequence, the SNR of each projection is extremely low. This is the major
difference between SPA and CET. In SPA all the electron dose is applied on a
single image. According to the dose-fractionation theorem [McEwen et al., 1995],
the information contained in a projection and a tomogram is the same, if both are
acquired with the same electron dose [Hegerl and Hoppe, 1976, [McEwen et al., 1995].
Therefore, SPA resolves a 2D view in higher resolution, while CET yields a 3D map
with lower resolution.

2.2.3 Tilt-Series Alignment

Although sophisticated automated acquisition tools exist for correcting large dis-
tortions, further processing of the recorded images/tilt-series is required for more
accurate corrections of mechanical imperfections and shifts, rotations, magnification
changes of the images [Frank, 2006a]. The goal of this step is to transform/align the
images to a common coordinate system. This is typically achieved by tracking and
aligning features with high contrast throughout the tilt-series.

A conventional method is to add colloidal gold particles into the biological sam-
ples as the fiducial markers, which is electron-dense and will create high contrast
circle-like features. After the tilt-series is recorded, the fiducial markers are identified
and localized either manually, semi-automatically or automatically across the whole
tilt-series for further refinement. Because manual labelling of the gold markers is te-
dious, several algorithms were proposed to automatically track the markers [Brandt
et al., 2001b, |Amat et al., 2008]. There are also approaches which do not require
the presence of gold particles; they are normally based on tracking of high-contrast
features or patches [Brandt et al., 2001a, Brandt and Ziese, 2006, Castano Diez
et al., 2007, Sorzano et al., 2009, Castano Diez et al., 2010]. They are particularly
useful when adding the gold particles is impossible or inconvenient.

After the markers are localized, their coordinates are used to align the images by
typically a least squares algorithm to minimize the alignment error as a function of
shifts, rotations, magnification changes of the images, etc [Frank, 2006al, Lawrence
et al., 2006, Amat et al., 2010a]. The resulting images are used for further processing.

2.2.4 CTF Correction

As discussed in section the contrast of the images recorded by TEM is domi-
nated by the phase contrast. In linear approximation, the micrograph is a projection
of the specimen’s electrostatic potential, convoluted with the inverse Fourier trans-
form of the CTF, which describes the imaging properties of the TEM (lense aber-
ration, defocus, etc). The CTF oscillates around zero, which not only modulates
the amplitude of the signal in Fourier space, but also reverses its phase at some
frequencies (Figure . As a consequence, the details of the acquired image at
certain frequencies will have flipped signs (Figure . This is not a problem if the
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expected resolution is below the first zero of the CTF. For example, if the defocus
value is 4 um and the accelerating voltage is 300 kV, the first zero is about 2.8 nmE]
Lowpass filtering until the first zero is enough for structural studies at resolution 2.8
nm. However, if higher resolution is anticipated, e.g., by subtomogram averaging,
CTF correction must be done.

Before correcting for the CTF it must be determined accurately. This is not
trivial in CET because the SNR of the micrograph is low, which makes the power
spectrum too weak to determine the CTF. A common strategy is the periodogram
averaging [Ferndndez et al., 1997]: based on the assumption that the defocus along
the tilt axis is constant, the regions (tiles) around the tilt axis in the micrograph
will have the same defocus value. By averaging the power spectra of the tiles the
defocus is determined by comparing the periodograms with the theoretical CTF
model. From this defocus value the CTF at any point of the micrograph can be
calculated according to the geometry. After the CTF is determined the correction
can be done by phase flipping [Zanetti et al., 2009] or Wiener filtering [Fernandez
et al., 2006]. It is worth mentioning that with the development of phase plate [Danev
et al., 2010] it will allow tilt-series acquisition close to focus without loss of contrast
at low resolution.

2.2.5 Tomogram Reconstruction

After the projections are aligned and possibly CTF corrected, they can be used to
reconstruct the 3D density map (tomogram). The principle connecting the projec-
tions and the tomogram is the so-called projection-slice theorem, which states that,
for a 3D object, the Fourier transform of its 2D projection corresponds to a cen-
tral slice of the 3D Fourier transform of the object |Bracewell, 1986]. This implies
that, if the projection angles are fully covered from —90° to +90°, the object can be
uniquely recovered. However, as discussed in section CET typically has a lim-
ited angular tilt range (e.g., from —60° to +60°). As a consequence, a wedge-shaped
region in the Fourier space is unsampled. This is called “missing wedge” problem
(Figure [2.6b), which makes the reconstruction ill-posed (no unique solution exists)
[Davison, 1983, Natterer, 2001]. This problem typically leads to severe artefacts of
the reconstruction, especially along the direction of the “missing wedge”. A remedy
of this problem is to employ the double-tilt axis acquisition geometry [Penczek et al.,
1995| Mastronarde, 1997] (Figure. [2.6h), which can, in principle, reduce the missing
information dramatically. However, the double-tilt axis acquisition scheme is not
widely used in CET due to the additional (mechanical and algorithmic) complexities
introduced by the second tilt axis.

ITheoretically speaking, imaging close to focus can push the first zero to higher resolution.
However, images under such situations will have low contrast, which makes it difficult to depict
structural features.
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2.2. Cryo-Electron Tomography

Figure 2.6: “Missing wedge” problem in CET. (a) Left: the sampling of the single
tilt-axis tomography in Fourier space. The tilt axis is the y-axis and the tilt angle
is limited from —60° to +60°. A wedge-shaped area in Fourier space is left unsam-
pled. Right: the “missing wedge” can be reduce to the “missing pyramid” using
a double-tilt axis acquisition scheme. (b) The “missing wedge” effect illustrated in
2D. The upper and lower rows show the sampling area (gray) in Fourier space and
the corresponding images in real space, respectively. If the “missing wedge” is ab-
sent, the Fourier space is fully sampled and the corresponding image is isotropically
resolved. On the other hand, if the Fourier space is only partially sampled, the
resulting image is severely deformed.
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Arguably, the most commonly used method for tomogram reconstruction is
the weighted backprojection (WBP) algorithm, which has been introduced several
decades ago [Ramachandran, 1971} |Harauz and van Heel, 1986} |Radermacher et al.,
1986|, Radermacher, 1992]. In WBP the 2D projections are projected back to the 3D
space according to the acquisition geometry. The projections have to be weighted
properly prior to the backprojection to handle the unevenly distributed sampling
points in Fourier space. Otherwise, the low frequency would be artificially enhanced.
Due to its simplicity and efficiency, WBP is well understood and accepted in CET.

Other real space approaches also exist, such as Algebraic Reconstruction Tech-
nique (ART) [Gordon et al., 1970, Marabini et al., 1998], Simultaneous Iterative
Reconstruction Technique (SIRT) |Gilbert, 1972, Penczek et al., 1992] and Simul-
taneous Algebraic Reconstruction Technique (SART) [Wan et al., 2011]. They for-
mulate the reconstruction problem as a system of linear equations, which can be
solved by minimizing the error between the observed projections and the expected
projections calculated from the reconstruction. They are becoming popular because:
(i) They normally produce results with more contrast than WBP. (ii) Regulariza-
tion can be readily applied by incorporating prior knowledge, which is commonly
done in medical imaging field. The regularization helps to stabilize the inversion
procedure for ill-posed problem. Common strategies include total variation regular-
ization [Wang et al., 2008|, edge-preserving regularization [Yu and Fessler, 2002] and
wavelet /curvelet regularization [Verhaeghe et al., 2008, [Frikel, 2013], etc. However,
such assumption or prior knowledge is hardly available for CET. Making a wrong
assumption could lead to biased structure information. Advanced regularization is
therefore rarely used for reconstruction in CET.

Another major category of reconstruction algorithms is based on Fourier trans-
formation. The representatives are the fast Fourier summation algorithm [Sandberg
et al., 2003], the gridding method [Penczek et al., 2004] and the nearest neighbor
(NN) direct inversion method |Grigorieff, 1998, |Zhang et al., 2008]. These Fourier-
based methods have been shown to result in more accurate reconstructions than the
algebraic methods (without imposing constraints) in terms of Fourier Shell Corre-
lation (F'SC, see section [Penczek et al., 2004].

2.2.6 Tomogram Interpretation

The interpretation of the tomogram typically requires to decompose the tomogram
into individual structural components. One category is based on segmentation.
Although it is hampered by the low SNR of the tomograms and the “missing
wedge” problem, it has been successfully applied to segment large structures with
high contrast, such as membranes [Moussavi et al., 2010, Martinez-Sanchez et al.,
2011, [Martinez-Sanchez et al., 2013|, microtubules [Weber et al., 2012] and filaments
[Rigort et al., 2012]. Various automatic or semi-automatic segmentation methods
were proposed [Volkmann, 2010], which include Watershed transform [Volkmann,
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2002|, density thresholding [Cyrklaff et al., 2005, normalized graph cut and eigen-
vector analysis [Frangakis and Hegerl, 2002|, active contours [Bartesaghi et al.,
2005), oriented filters [Sandberg and Brega, 2007], level-set |[Whitaker and Elan-
govan, 2002|, etc. Nevertheless, few of them are universally applicable and widely
used due to the high noise level of cryo-tomograms and obscure parameters to tune.
Manual segmentation is still commonly adopted.

Another category is based on identification, when multiple copies of specific
macromolecules are present. The target is to localize and identify them in the
tomograms. Most of the identification methods in CET originate from SPA in
cryo-electron microscopy (CEM), in which 2D images of the biological samples con-
taining presumably identical copies of macromolecules are acquired [Frank, 2002].
Compared to tomograms from CET, the micrographs from CEM are 2D and have
relatively higher SNR, which makes the identification easier. Popular approaches in-
clude template matching methods [Ludtke et al., 1999, Roseman, 2003, [Wong et al.,
2004, Huang and Penczek, 2004], feature-based methods [Mallick et al., 2004}, |Zhu
et al., 2003| [Hall and Patwardhan, 2004, [Volkmann, 2004] and some machine learn-
ing methods |[Ogura and Sato, 2004, |Mallick et al., 2004]. However, most of these
methods are not widely adopted in CET due to several reasons: (i) The SNR of CET
is lower than that of CEM. And the tomogram of CET is “missing wedge”-affected,
which results in distortions in real space. Therefore, many feature-based approaches
cannot be applied. (ii) The tomogram of CET is 3D, which makes the extension
from some 2D methods difficult and the computation more intensive.

Among all the listed methods, the most widely used one is template matching
[Frangakis et al., 2002, Roseman, 2003| (or matched filtering), when prior knowl-
edge (template) about the structure of the interested macromolecule exists. This
is achieved by exhaustively comparing the structural template against the noise-
corrupted signal (tomogram) under scrutiny in different orientations. The resulting
map contains similarity measures of the template and corresponding subregions of
the tomogram. The maxima of the map indicate possible occurrences of the tar-
get macromolecule (candidates). More specifically, the local correlation function is
typically used in CET as a measure of the similarity [Roseman, 2003|. Details of
template matching technique are discussed in section [£.2 The template matching
approach is widespread due to three major reasons: (i) It is is able to detect large
macromolecules (> 1 MDa) with reasonable fidelity and is noise robust compared to
many other approaches [Zhu et al., 2004]. (ii) The handling of the “missing wedge”
problem can be integrated into the correlation score [Frangakis et al., 2002]. (iii)
The computation is efficient using Fast Fourier Transforms |[Roseman, 2003].

2.2.7 Subtomogram Alignment and Averaging

Higher resolution of a specific type of macromolecular complex can be obtained
by aligning the subtomograms containing multiple copies of the same complex and
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averaging them. This can reduce the noise level and fill in the missing information
caused by the limited angle tomography.

Mathematically, given n subtomograms Vi, ..., V, depicting the same object S
(no shift and rotation) and assuming each subtomogram V; is corrupted by additive
white Gaussian noise (i.i.d.): V; = 5 + N, averaging all the subtomograms yields:

A=n-S+> Nyiell,... . (2.13)

Then the SNR of the average is:

Var(n-S)  n?-Var(S)
SNEa Var(}, N;) n-Var(N) n-SNRy, (2.14)

That means, theoretically speaking, the SNR of the average increases linearly with
the number of subtomograms.

Prior to averaging all the subtomograms have to be aligned to a common coor-
dinate system. This is an optimization problem where the objective is to maximize
the similarity scores between the average A and all the subtomograms Vi,...,V,
with unknown shifts 7 and rotations R:

A= arg maxz Score(Tr,Ar,A,V;), (2.15)

A,T1,R i—1

where T is the translation operator and A is the rotation operator. For the similarity
metric, most software packages, including AV3 [Forster and Hegerl, 2007, PEET
[Heumann et al., 2011), BSOFT [Heymann and Belnap, 2007], Dynamo [Castano
Diez et al., 2012] and Protomo [Winkler et al., 2009], normally use Constrained
Cross-Correlation (CCC) because it accounts for the “missing wedge” problem and
constrains the similarity calculation only to the commonly sampled region in Fourier
space [Forster et al., 2008§].

Equation is a non-convex optimization problem with 6n degrees of free-
dom (DoF's) because each subtomogram has 3 translational parameters and 3 rota-
tional ones to be determined. A common strategy for solving this problem is the
expectation-maximization algorithm, where A is iteratively determined and used
for calculating the new 7 and R for the next iteration [Hrabe et al., 2012|. For the
translation determination there is an efficient algorithm based on Fourier transform
[Roseman, 2003, while the rotation is normally sampled with a certain angular step
to determine the maximum of the similarity score. As a consequence, the computa-
tional cost is enormous. The expectation-maximization algorithm requires an initial
model, which can be obtained either by lowpass filtering a reference derived from
other sources [Walz et al., 1997, Brandt et al., 2009|, or by a de novo approach based
on alignment by classification where the subtomograms are grouped according to the
orientation [Bartesaghi et al., 2008, [Winkler et al., 2009].
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In the case of limited angle tomography, the averaging step in Equation is
typically not a direct sum of all the aligned subtomograms because the sampling
in Fourier space is normally nonuniform. Mathematically, given a set of aligned
subtomograms V... V! and their corresponding sampling regions in Fourier space

wi,...,wn, the average A can be calculated as:

FT(Q i, Vi)

A=FT7
D i1 Wi

). (2.16)

Here, F'T and FT~! are the forward and inverse Fourier transforms, respectively. In
this way, the average is weighted in Fourier space according to the sampling density.

2.2.8 Subtomogram Classification

Subtomogram averaging assumes that all the subtomograms represent the same
conformational state of a macromolecular complex. However, this is rarely the case
because in situ macromolecules typically adopt various conformations to fulfil their
tasks. Classification of subtomograms is beneficial to reveal these conformational
changes and to improve the resolution.

Major classification methods include: (i) Principle Component Analysis (PCA)-
based approaches [Walz et al., 1997, Bartesaghi et al., 2008, Forster et al., 2008],
in which all the subtomograms are first aligned to a single reference and the sim-
ilarity matrix is then calculated for each pair of the subtomograms. The CCC, in
which two volumes are correlated only in their commonly sampled regions in Fourier
space, is typically used as the similarity measure. Afterwards, the similarity ma-
trix is subjected to PCA analysis to reduce the dimensionality and thus also the
noise influence, followed by K-means or hierarchical clustering. Alternative PCA-
based classification approaches are probabilistic principal component analysis with
expectation maximization [Yu et al., 2010] and wedge-masked differences-corrected
PCA [Heumann et al., 2011]. (ii) Maximum likelihood approaches [Scheres et al.,
2009, Stolken et al., 2011], which formulate the classification problem statistically
and calculate the probability of observing a subtomogram for a given reference.
They try to estimate the hidden parameters from the observed data to maximize
the probability. (iii) Multi-reference alignment and classification [Bartesaghi et al.,
2008, [Winkler et al., 2009, Xu et al., 2012, |[Frank et al., 2012]. Here, the basic
idea resembles k-means clustering. The subtomograms are iteratively aligned to a
set of references and their class labels are assigned to the most similar references.
After each iteration the references are updated by averaging the subtomograms with
the new class assignment. The whole procedure terminates when it converges or a
predefined number of iteration is reached.
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2.2.9 Resolution Estimation

After obtaining the subtomogram average, one important question is how to esti-
mate its resolution, which indicates the maximum spatial frequency at which the
information can be considered significant. Reliable resolution estimation in CET
is nontrivial because: (1) the imaging parameters of the microscope are hard to
determine; (2) the noise level is high; and (3) the data processing might introduce
artefacts. As a result, there is no single universal criterion to estimate the resolu-
tion. All the current methods provide different insights into this topic from different
perspectives.

The commonly used criterion in this field is based on Fourier Shell Correlation
(FSC) |Saxton and Baumeister, 1982, Harauz and van Heel, 1986], which is a 1D
function of spatial frequency containing correlation coefficients between two volumes
in the Fourier space over shells of same resolution (Figure. . Mathematically,
given two volumes V;, V5 and their corresponding Fourier transforms F; = F(17),
Fy = F(V3), the FSC at band r is calculated as:

FSC(T7I/'1,V'2) = ZTiEr Fl(ri) : FQ(’I"Z'>* |
\/Emer | Fl(?”i) ‘2 . ZHET | FQ(’I”Z') ’2

(2.17)

Computing FSC for each band r results in a 1D function, for which a cutoff value
can be chosen as the resolution threshold. Typical choices of the threshold are 0.5,
0.33 and 0.143 [Rosenthal and Henderson, 2003, |Penczek, 2010].
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Figure 2.7: A typical Fourier shell correlation curve. The resolution determined here
using 0.5 criterion is 29.9 A.

There are three main types of FSCs: (1) Half-set (pairwise) FSC. It is calcu-

lated during the alignment procedure by splitting the subtomograms into two half
sets and averaging them separately. The two half-set averages are then used for
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calculating the FSC and determining the resolution of the overall average. Half-set
FSC measures the self-consistency of the result. However, it has been reported that
the noise might also be aligned by this approach, which leads to an overestimated
resolution [Grigorieff, 2000, |Stewart and Grigorieff, 2004]. (2) Gold-standard FSC.
Here, the subtomograms are first split into two halves and aligned separately. The
two resulting averages are compared using the FSC. The advantage is the reduction
of the noise bias because the alignment procedures are carried out independently
on each half set. (3) Cross-resolution FSC. When a high-resolution structure is
available (e.g., from X-ray crystallography or SPA), it can be used to compute the
FSC against the subtomogram average to estimate its resolution. In this thesis,
these three resolution estimations are conducted as many as possible for each case
in order to provide a comprehensive resolution analysis.

Overall, the FSC is easy to compute and is able to quantify the consistency of
information contained in each frequency. Nevertheless, it has several shortcomings:
(1) Tt is controversial for setting a proper FSC threshold for the resolution determi-
nation [van Heel and Schatz, 2005]. (2) The calculation of the FSC assumes that the
signal and noise are uncorrelated. However, this might not be the case because the
subtomograms have to be aligned prior to computing the FSC and the correlation
might be introduced by the alignment. (3) Another assumption is that the signal
contained in two averages is the same, which might also be violated if the dataset
is heterogeneous.
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Tomogram Reconstruction

3.1 Introduction

After the micrographs of the sample are acquired using a TEM, the tomogram can be
reconstructed from those 2D images, which are approximately parallel projections
of the object [Hawkes, 2006]. In practice, the performance of the reconstruction
algorithm, which inverts the projection process, determines the accuracy of the
3D reconstruction of the sample. In CET, major challenges for the reconstruction
process are the low SNR of the micrographs and the limitation of the projection
angle (section [2.2.5)).

Except for the commonly used methods mentioned in section [2.2.5] considerable
advances have been made to solve the inverse problem of reconstructing an object
from projections, especially in the medical imaging field. There is a trend towards it-
erative reconstruction algorithms. It is attractive to use Fourier-based interpolation
methods in such iterative schemes due to their high accuracy and speed compared to
real-space based approaches. For instance, [Fessler and Sutton, 2003] introduced the
min-max interpolation for nonuniform fast Fourier transform and later combined it
into an iterative procedure for 2D tomographic reconstruction [Matej et al., 2004].
Potts and co-workers [Knopp et al., 2007] introduced a method, which is referred
to as Iterative Nonuniform fast Fourier transform (NUFFT) based Reconstruction
method (INFR) in the following. In this method the reconstruction is formulated
as an algebraic optimization problem, which is solved using the conjugate gradient
method and NUFFT. INFR has been shown to result in excellent reconstructions
when applied to magnetic resonance imaging data, but it has not been applied to
CET data. In particular, it has not been characterized to what extent the excellent
interpolation characteristics of INFR are beneficial to obtain meaningful information
in parts of the missing wedge.

Here, INFR is adapted to reconstruct tomograms from cryo-electron micrographs
and the reconstruction quality is compared to the state-of-the-art methods. Spe-
cially, the main contribution includes an efficient implementation based on the single-
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3. Tomogram Reconstruction

axis tilt geometry and an analytic means to compute the density compensation
matrix. Simulations show that the reconstructions obtained by INFR are more ac-
curate than reconstructions using NN direct inversion method and WBP (section
for tilt series covering the complete angular range. More importantly, the
behavior of INFR under the “missing wedge” situation (limited angle tomography)
is studied in detail. For restricted angular sampling, INFR is capable of retrieving
meaningful information in some regions of the missing wedge in Fourier space, in
particular in the low frequency regime. When applied to experimental CET data,
the improved reconstruction accuracy of INFR in the low frequencies has important
consequences: sensitivity and accuracy of particle localization by template match-
ing are increased considerably and subtomogram averaging yields higher resolution
results due to more accurate subtomogram alignment.
This chapter is based on a previous publication |Chen and Forster, 2013].

3.2 Nonuniform Fast Fourier Transform

For reconstruction of cryo-electron tomograms INFR was implemented. In the fol-
lowing, the method and its specific implementation are explained.

First, the NUFFT [Keiner et al., 2009] is briefly discussed, which is the basis
of the reconstruction algorithm described here. Given a function f(z),z € Iy and
In = {2 = (2t)i=0,...a1 € Z* : —N/2 < x; < N/2} (the equispaced grid) as the
input, NUFFT tries to evaluate the following trigonometric polynomial efficiently
at the reciprocal points k; € [-1/2,1/2)%,j=0,..., M — 1:

flky) o= fla)e?meh (3.1)

xeln

In contrast to the regular discrete Fourier transforms, k; can be on an arbitrary
nonuniform grid. In matrix vector notation, Equation [3.1] can be rewritten as

f=Af (3.2)

with the nonequispaced Fourier matrix A := e 2% x € In,j =0,...,M — 1.
One approach for fast computation of Equation is based on the factorization
A~ BFD [Potts et al., 2001|, where D is the inverse Fourier transform of a window
function w, F' is the oversampling Fourier matrix and B is a sparse matrix of the
window function w with the cut-off parameter m, which contains at most (2m + 1)¢
non-zero entries per row (Figure . The basic idea of this factorization, which
resembles the reverse gridding method [Penczek et al., 2004], is the following: the
accurate interpolation in Fourier space to a different grid is achieved by convolution
with an appropriate window function w, which is compensated for via prior division
by the inverse Fourier transform of w. The accuracy of this approach depends on the
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Input grid Output grid
Real space Fourier space
“kXZ ‘kXZ
A X2 “Xz
Oversample
7/IFT(W) & FFT * w
- s "k ko
D F B

Figure 3.1: Fast computation of Equation [3.2] where A ~ BFD. It consists of three
steps: 1. Multiply with a diagonal matrix D, which contains the inverse Fourier
transform (IFT) of the window function w (simultaneously in space and frequency
localized, e.g., Kaiser-Bessel window). 2. Do a Fourier transform and oversampling
in Fourier space, i.e., multiply with a matrix F' in matrix notation. 3. Convolute
with a matrix B of the window function w. B is a sparse matrix that contains at
most (2m + 1)? non-zero entries per row and m is a predefined cut-off parameter
specifying the maximum width of w for the sake of efficient computation.

oversampling factor and the choice of window function w and its cut-off parameter
m. It has been suggested that the Kaiser-Bessel window function provides high
accuracy and a typical choice of m would be 3 for an oversampling factor 2 [Fessler
and Sutton, 2003| Jackson et al., 1991].

The adjoint (or conjugate transpose) NUFFT is defined as the sum

M—1
flz) =" f(k,)e*™ iz e Iy (3.3)
=0
or in matrix vector notation
f=A"f (3.4)

Its efficient computation can be analogously achieved by the factorization AY ~
DTFTBT. Tt has been shown that the gridding method can be seen as an efficient
algorithm to compute AX [Potts et al., 2001].

3.3 Iterative Reconstruction Scheme
Without loss of generality, the reconstruction of a 2D image from 1D projections
is considered for the sake of simplicity. According to the projection-slice theorem

the Fourier transform of a projection corresponds to a slice in the Fourier space
of the object |Bracewell, 1986]. Given M observations b as the Fourier transforms
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3. Tomogram Reconstruction

of projections, we define the matrix A as a nonuniform Fourier transform matrix
depending on the sampling geometry:

A= e ™ e [-1/2,1/2)%, 5 €[0,..., M). (3.5)

The reconstruction problem is to recover f(z),z € {—Ny/2,...,N;/2 — 1} x
{—=N3/2,...,N5/2 — 1} defined on a regular grid, such that:

Af =b. (3.6)

Solving Equation can be formulated as an optimization problem:

f=argmin || b— Af || . (3.7)

This is a least square problem and when the sampling density compensation [Pipe
and Menon, 1999| is considered its solution requires solving the following equation:

AFWAf = ATWb, (3.8)

Here W := diag(w,,) is the density compensation matrix, which account for the
nonuniform distribution of the sampling in Fourier space (Figure ) For exam-
ple, in CET the sampling is very dense towards zero frequency and thus the projec-
tions contain to some degree redundant information in these frequencies |Crowther
et al., 1970|. It is important to weigh the information in Fourier space according to
the overall sampling pattern because low frequencies would be artificially enhanced
otherwise.

Equation can be solved using the conjugate gradient method on the nor-
mal equations [Saad, 2003], in which the matrix vector multiplications in this opti-
mization algorithm are substituted by the (adjoint) nonuniform Fourier transform
operators. The details are described in Algorithm [3.1] Throughout the iterative
optimization the residual decreases and agreement of the reconstruction with the
observations increases. Interestingly, it can be shown [Knopp et al., 2007] that the
result of the first iteration of the conjugate gradient optimization starting from a
void volume is similar to the solution of the gridding method. When optimization is
continued, the iterative approach becomes more accurate than the gridding method
[Bronstein et al., 2002].

Nevertheless, excessive optimization is harmful under the situation of the ill-
posed inverse problem (limited angle tomography) and the high noise level. There
is no straightforward or clear stopping criterion under such situations. The ill-
conditioning will cause a semi-convergence behavior [Hansen, 1998, |Qu et al., 2005],
which manifests itself as an initial convergence towards the true solution and later
divergence. This situation is aggravated by the noise. If the noise variance ¢ is
known, in order to prevent the noise overfitting, a conservative criterion is to stop
the iteration when: )

| AP Wb — AW AF < e. (3.9)
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Figure 3.2: Sampling and weighting in Fourier space. (a) The sampling pattern of
single-axis CET in k-space. (b) One slice view of the k,-k, plane, assuming y-axis is
the tilt axis. The black dots are the sampling points and the outlined area around
the sampling point is its corresponding weight.

Algorithm 3.1 Solving Equation |3.8| via the conjugate gradient method

Input: A, AY W, b, k: Number of iterations to run.
Output: i
: f() - O _
ro=0b—Afy
Zoy = AP Wry
P() = Z()
fort=0,...,k—1do
Vi= AP,
& = foZi/V;HWV;
Jiri = fi+ a5
Tiq1 =1 — oV
Zitn = ATWrig
8= ZH 7,1/ Z1 7,
Py =Zi + BiP;
. end for
: return fk

e e e
el

Here, the number of iterations is a compromise between the accuracy of the recon-
struction and the overfitting. Essentially all iterative reconstruction methods face
this problem. The common approach is to simply terminate the reconstruction after
certain number of iterations, which is specified by the user according to typically
subjective criteria. Alternatively, it is suggested here to determine the stopping cri-
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Figure 3.3: The residual of INFR reconstruction of an experimental tomogram (yeast
lysate, Figure against the number of iterations. It typically has an L-shape and
the star labels the “elbow” of the L-curve, which is the lower bound of the necessary
number of iterations. It can be used as an indicator of the stop criterion for INFR.
According to the experience, a few more iterations beyond the elbow help INFR to
achieve a better performance, as long as no visual artifact appears.

terion objectively based on the behavior of the residual as a function of the number
of iterations. In most cases where the reconstructions are well-behaved, the residuals
during the iterations typically adopts an “L” shape (Figure . As a criterion for
the number of iterations to be used for the reconstruction, identifying the “elbow”
of the L-curve is typically a reasonable option [Qu et al., 2005].

3.4 Reconstruction of Single-Axis Cryo-
Electron Tomograms

The above-described reconstruction method is analogous in the 3D case. In this
section, the density compensation for single axis tomography is explained. In par-
ticular, the efficient implementation of the algorithm is described here because the
use of iterative reconstruction algorithms tends to be limited by extensive compu-
tation time, especially in the 3D case.

For general projection geometries, the density compensation matrix W can be
determined by calculating the Voronoi diagram according to the sampling geometry.
Although there exists an efficient algorithm for that [Barber et al., 1996] with the
computational complexity of O(nlog(n)), the computation is nevertheless expensive,
in particular in the 3D case. Moreover, this approach often faces difficulties at the
sampling points on the periphery where the Voronoi cell is unbounded, or the areas
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Figure 3.4: Single-axis tilt geometry in CET. Here, the tilt axis is y. All the grey
strips with the same y index constitute the b,,y € [1,ny]. The corresponding sam-
pling pattern in Fourier space is illustrated in Figure [3.2]

where there are major sampling gaps in Fourier space.

For the single-axis tilt geometry (Figure , an analytical way for the compu-
tation of W is proposed, which is simplified and computationally much faster than
the Voronoi approach. Specifically, assuming 2D projections have been aligned (sec-
tion and the CTF corrections (section have been conducted prior to
the reconstruction, the original 3D reconstruction problem (Equation can be
reformulated as (the tilt axis is the y-axis):

Al : fl - b17
(3.10)
A"+ fry = bpy.

Here, A’ is the new 2D sampling matrix and is identical in the xzz-plane for each
y (Figure ) That means, solving Equation can be decoupled into solving
a set of independent linear equation systems, each of which is a 2D reconstruction
with respect to the zz-plane. Therefore, the calculation of the weights in 3D can be
reduced to 2D.

For each of the 2D pattern, the weight of i-th sampling point (i =0,..., N — 1)
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3. Tomogram Reconstruction

along projection angle o; (j = 0,..., M —1) can be approximated as (Figure[3.2b):

|aj1 — o] X i — N/2], i#N/2,j#0,M—1
2|loq — , — N /2 £ N/2,j=0
wi o = e x i = N/2) i# N/2] (3.11)
’ 2|O./M_1—05M_2|X|Z—N/2|, ’L#N/Q’]:M—l
/4AM, i= N/2.

In this way, the overweighting of the sampling points close to the missing wedge area
in Fourier space is avoided. In general, these weights resemble the “ramp” function
in the WBP algorithm, when the tilt angles are equally spaced [Harauz and van
Heel, 1986].

After calculating the weights for the sampling points, the method described above
can be used to reconstruct the tomograms. Due to the single axis tilt geometry the
sampling pattern is of the type 2Dx1D. Therefore, a significant speedup can be
achieved by first performing 2D reconstructions in k,-k, planes and then an overall
reconstruction by 1D FFTs along the k, dimension. Currently, the implementation
of the reconstruction algorithm is restricted to cubic volumes.

3.5 Tomogram Simulation

In this section, the means of tomogram simulation is presented, which serves as
the foundation of performance evaluations on the simulated dataset. To simulate
the tomograms as realistically as possible, the protocol described in |Beck et al.,
2009, |[Forster et al., 2008] was followed. In short, the simulations were carried out
as follows: the electron optical 3D density of an atomic model was approximated by
summing up the atomic numbers on a Cartesian grid with the specified pixel size
and was low-pass filtered. Subsequently, a 2D CTF function was simulated with
a given defocus value. The density map was projected according to the tilt angles
and angular increment. Gaussian-distributed noise (CTF noise) was added to each
projection and the CTF was applied. Furthermore a non-CTF affected portion of
noise (MTF noise) was added and finally the tomogram was reconstructed from the
projections.

3.6 Experimental Tomograms from Yeast Lysate

For application of INFR to the experimental tomograms, the yeast cytosol was
prepared by following a protocol that was slightly modified from [Brodsky, 2010].
Yeast cells were grown in YPD medium to mid log phase at 30°C. Cells were
harvested and washed in water, before they were resuspended in a minimal amount
of Lysis buffer (20 mM Hepes at pH 7.7, 100 mM KOAc, 2 mM Mg(OAc),, 1 mM
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DTT, 0.5 mM PMSF, protease inhibitor). The cells were added drop-wise into liquid
nitrogen and broken by manual crushing with a pistil. The resulting powder was
resuspended in a minimal amount of lysis buffer. The lysate was then centrifuged
(15 min at 18000 rcf in an SS34 rotor) and 4.5mL aliquots of the supernatant were
applied to a fine G25 column, equilibrated in TE-buffer (20 mM Hepes, 100 mM
KOAc, 2 mM Mg(OAc)y, 2 mM DTT, 0.5 mM PMSF, 10% glycerol). Fractions
with high ODggy were pooled, aliquoted, flash-frozen in liquid nitrogen and stored
at —80°C.

Ribosomes from 200 ul of thawed yeast lysate were pelleted in a Beckman Optima
TLX ultracentrifuge (TLA 100, 30 min, 190,000 g, 4°C) and were resuspended in
40 wl ribosome buffer (5 mM MgCly, 140 mM KCI, 10 mM HEPES pH 7.4, 1 mM
DTT, protease inhibitor). 3 pl of resuspended ribosomes were applied to lacey
carbon molybdenum grids (Ted Pella, USA). After an incubation time of 60 s, 3 pl
of 10 nm colloidal gold in ribosome buffer were added to the grid and the sample
was vitrified in liquid ethane using a Vitrobot Mark IV (FEI, Netherlands). The
tilt series were acquired using a FEI Titan Krios transmission electron microscope
(acceleration voltage of 300 kV) equipped with a 4kx4k FEI Falcon direct electron
detector. Single-axis tilt series were acquired from —60° to +60° with an angular
increment of 3° at different nominal defocuses (2, 3, 4, 5 um) and an object pixel
size of 0.288 nm using the FEI tomography acquisition software. The cumulative
electron dose did not exceed 60 electrons/A2.

3.7 Results

3.7.1 Reconstruction of Simulated Data

INFR was first evaluated on simulated data. Following the protocol described in sec-
tion the 3D density of the S. cerevisiae translating 80S ribosome was simulated
from atomic models (Protein Data Bank ID: 31ZB 3IZE 3IZF 31ZS) and projected it
in different tilt angles using 3° as the angular increment. The projections were then
used for the reconstruction. For comparison, the volumes were reconstructed using
WBP and NN direct inversion methods implemented in the SPARX software [Hohn
et al., 2007], which yielded the most accurate reconstructions among the software
packages used in the tests here (TOM [Nickell et al., 2005], EMAN2 [Tang et al.,
2007), SPARX [Hohn et al., 2007], PyTom [Hrabe et al., 2012]). The reconstruction
accuracy was finally measured by FSC.

The results are plotted in Figure [3.5h. If the tilt angles range from —90° to 90°
(no missing wedge), the FSC of the reconstruction using INFR exceeds that of the
other reconstructions essentially over the entire frequency range. In particular, the
FSC remains essentially one until very close to the Crowther frequency |[Crowther
et al., 1970] for the simulation.
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Figure 3.5: Comparison of reconstructions of simulated 80S ribosomes. (a) The FSC
curves of the reconstructions using projections from —90° to 90° with an angular
increment of 3°. (b) The FSC curves of the reconstructions using projections from
—60° to 60° (3° angular increment). (c¢) The FSC curves of the reconstructions using
projections with SNR=1 from —60° to 60° (3° angular increment). (d) Central slice
views of XZ plane of reconstructions from —60° to 60° using various methods.

If the tilt angles are limited from —60° to 60°, the improvement in reconstruction
quality achieved by INFR is more apparent (Figure [3.5p). Strikingly, INFR could
even fill some missing wedge areas in Fourier space with meaningful information, if
the sampling is dense enough around that area. By design, the other two methods
set the coefficients in the missing wedge area essentially to zero throughout and
consequently no meaningful information is placed in those sectors. The filling of
meaningful information in the part of the missing wedge area gets apparent when
the FSC is plotted throughout the course of the conjugate gradient optimization: the
reconstruction accuracy continuously improves, due to the reconstructed coefficients
in the missing wedge area.

To compare the noise sensitivity of the three methods, Gaussian white noise
was added to the projections of the simulated tilt series (SNR=1) and again recon-
structed the volume from limited tilt angles ranging from —60° to 60°. The FSC was
then measured against the original tomogram and the results are shown in Figure
. This analysis indicates that the reconstruction accuracy of the INFR is also
superior in the presence of noise. In particular, the generation of meaningful infor-
mation by INFR in the missing wedge area, especially in the low-frequency regime,
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Figure 3.6: Reconstructions of Dirac delta function for limited angle tomography.
The power spectra of the reconstructions of the Dirac delta function with projections
from —60° to 60° (3° angular increment) for the different reconstruction methods.

SPARX WBP (s) | SPARX NN (s) | INFR (s/iter)
Volume size 503 0.46 1.69 0.09
Volume size 100° 0.85 7.43 0.39
Volume size 200° 2.68 46.7 1.86

Table 3.1: Elapsed time for various reconstruction methods. The reconstruction
time is evaluated for cubic volumes reconstructed from 41 projections of dimensions
5050, 100x 100, and 200x 200, respectively. All tests were performed on a machine
equipped with Intel Xeon Processor X5570 of clock speed 2.93 GHz and 48 GB main

memory.

is also observed in the presence of noise.

To better understand the generation of meaningful coefficients in the missing
wedge area, the Dirac delta function (in 3D) was reconstructed from limited angu-
lar projections. An empty volume was generated with only one voxel set to 1 at
the center and subsequently projected from —60° to 60°. After reconstruction using
different methods, the power spectrums of each method were examined, which are
shown in Figure[3.6] It clearly demonstrates the advantage of INFR by having a uni-
form power spectrum inside the sampled area in Fourier space, i.e., within the limit
of the Crowther frequency. Moreover, the “leaking” of information from the sam-
pled area into the missing wedge can be observed, demonstrating an extrapolation
of data from the sampled area into the missing wedge.

Furthermore, the speed of various reconstruction methods was evaluated. Due
to the iterative scheme of INFR, its computational time depends on the number of
computed iterations. The elapsed time of reconstructing volumes of difference sizes
were measured and the results are shown in Table from which we can see that
INFR per iteration is fastest. However, typically many iterations are necessary to
achieve better accuracy. A trade-off has to be made.
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Figure 3.7: Comparison of reconstructions from experimental data. A slice from
the XY plane of the reconstructions of S. cerevisiae lysate using WBP and INFR,
respectively, is shown.

3.7.2 Reconstruction of Experimental Data

INFR was furthermore tested on experimental data of 80S ribosome from yeast
lysate (section , from which one tomogram of 5 um nominal defocus was cho-
sen. The downsampled tomogram (voxel size 2.3 nm) was reconstructed using INFR
and WBP as a comparison. Due to practical reasons the NN method was excluded
from further analysis: the implementation is not originally designed for subtomo-
gram reconstruction and it would be difficult to integrate it into the workflow. The
simulations indicate that the main difference in the INFR reconstruction is in the
low-resolution part of the missing wedge, which is reconstructed similarly in WBP
and the NN method. Hence, the comparison of INFR to WBP is sufficient to assess
the main consequences of INFR.

One slice of the reconstructed tomogram can been seen in Figure 3.7, INFR was
terminated after 20 iterations, which were sufficient for convergence according to
the plot of the residual (Figure . For comparison a reconstruction by WBP was
performed.

The performance of INFR was evaluated quantitatively with respect to two as-
pects: template matching and subtomogram averaging. After reconstruction, tem-
plate matching was carried out, followed by the determination of the 1,000 highest
correlation peaks [Forster et al., 2010]. The plot of the correlation values of these
peaks as a histogram typically results in a Gaussian distribution for true positive
matches as well as a background distribution that increases strongly towards lower
correlation values. Depending on the quality of the tomograms the Gaussian curve
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Figure 3.8: Effect of reconstruction method on template matching performance. (a)
The histograms of correlation coefficients from 1000 picked candidates using WBP
and INFR. The dashed lines correspond to their respective Gaussian fittings. (b)
The ROC curves for WBP and INFR. TPR =TP/P, FPR = FP/N.

corresponding to true positives is well separated from the background or it may not
be discernable at all in the worst case.

The histograms of the correlation coefficients are plotted in Figure for the
tomograms reconstructed with the different methods. The correlation values are
substantially higher for INFR. More importantly, if we fit Gaussians to the first
halves of the histograms and assume these detections are mostly true positives, the
Receiver Operating Characteristic (ROC) curves can be plotted (Figure [3.8b), i.e.,
the estimated true positive rate against the estimated false positive rate. The ROC
curves clearly indicate a better separation of the true positives from false positives

for INFR than for WBP.

To compare the reconstruction quality in terms of subtomogram averages, un-
binned subtomograms (160°, voxel size 2.88 A) of the top 443 candidates were
reconstructed, which contain about 70% of all ribosomes in the tomogram accord-
ing to the histogram analysis. For a fair comparison, the same candidates, the
ones from identification in the INFR volume, were used. These subtomograms were
then translationally and rotationally aligned with respect to each other using the
fast subtomogram alignment algorithm presented in chapter | Figure shows
the pairwise FSC curves of the averages obtained from the subtomograms recon-
structed using INFR and WBP. The FSC indicates a slightly higher resolution for
the INFR reconstruction. Furthermore, the accuracy of the subtomogram averages
was assessed by cross-resolution (Figure ) with a 7.9 A resolution single particle
reconstruction (EMDB: 1668). The cross-resolution FSC confirms the higher accu-
racy of the average from INFR compared to that from WBP subtomograms. Note

37



3. Tomogram Reconstruction

o
&
g

S

o

©
b=
=
T

IS4
®
T

R)

0.8

o
J
T
’

o
o
o
)
T
4
’

o
~

Fourier Shell Correlation
o o
= (%
T
-
-

Fourier Shell Correlation

o
)
T
o
w
T
|
|
|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
L

-02 . s ‘ ‘ s . . ‘ ‘ ‘
461 92.2 46.1 307 23 18.4 154 461 92.2 46.1 307 23 18.4 15.4

Frequency [A] Frequency [A]

o o o 4
) ~ © ©

Fourier Shell Correlation
o o
S (4]

o
w

o
o

o

WBP INFR

. . . . .
461 92.2 46.1 30.7 23 18.4 15.4
Frequency [A]

Figure 3.9: Effect of reconstruction method on subtomogram averaging. (a) The
pairwise FSC curves of aligned top 443 particles reconstructed using WBP and
INFR. (b) Cross-resolution FSC curves for WBP, INFR and WBP2. Here, WBP2
is the average of WBP subtomograms with the alignment parameters determined
for the INFR subtomograms. (c¢) Averaged FSC curves of individual subtomograms
against WBP2 and INFR. (d) The subtomogram averages from WBP and INFR,
filtered by cross-resolution 0.3 criterion.

that the first zero of the CTF is more pronounced for the average using INFR, which
is indicative of less noise and the signal beyond the 1st zero of the CTF is much
stronger. Using a FSC threshold of 0.3, which is typically used for cross-resolution
[Rosenthal and Henderson, 2003] the INFR subtomogram average is clearly superior
to the WBP average (22.8 vs 32.2 A) (Figure )

To only compare the reconstruction quality and exclude the influence of subto-
mogram alignment, the alignment parameters determined by INFR were used to
average the subtomograms reconstructed by WBP. Then the cross-resolution of this
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average was measured (we name it WBP2, Figure [3.9p), which is essentially the
same as the one of INFR. Thus, the choice of the reconstruction algorithm has little
effect on the resolution of the average itself at the sampling chosen in this test (voxel
size on the specimen level: 2.88 A, resolution: ~22 A).

To monitor the accuracy of the individual subtomograms, the averaged FSC was
calculated (Figure [3.9¢) of each individual subtomogram against the averages of
WBP2 and INFR, respectively. The averaged FSC of the INFR subtomograms is
slightly higher than that of the WBP2 subtomograms in the low frequency part.
This suggests the individual subtomogram reconstructed by INFR is more accurate,
on average, than the one reconstructed by WBP, which is the reason for the more
accurate subtomogram alignment.

3.8 Discussion

Here, an iterative reconstruction algorithm is introduced that makes use of the pow-
erful NUFFT. INFR shows substantial advantages over state-of-the-art approaches,
without imposing any prior information or constraint. Specifically, compared to
the fast Fourier summation algorithm and gridding method, the major difference is
the iterative scheme, which yields superior performance, especially when data sam-
pling is incomplete. For simulations the achieved resolution by INFR is close to the
Crowther limit when the sampling angle range is complete. More importantly, for
limited angle tomography the missing information in Fourier space is recovered to
some extent. The rationale behind this recovery is that the information is spread
out in the vicinity of the sampling points with the help of the adjoint nonuniform
Fourier transforms during the iterative reconstruction procedure. This extrapolation
results in fewer artifacts in real space, especially along the “missing wedge” direc-
tion (Figure [3.5d). Due to the benefit of this method, one could not only achieve a
better detection rate for template matching, but also a more accurate subtomogram
alignment yielding higher resolution subtomogram averages.

Importantly, the generation of meaningful information in the missing wedge by
INFR is not due to the use of prior information, which is in contrast to other iterative
Fourier-space based reconstruction akin to the Gerchberg-Papoulis algorithm for
super-resolution |Gerchberg, 1974, Papoulis, 1975]. In this type of algorithm the
finite support of a specimen and its resulting well-defined envelope are used to
extrapolate from sampled data into unsampled areas. An implementation of such
a method tailored to electron tomography has revealed that the missing wedge can
largely be recovered if the object of interest is bounded [Miao et al., 2005]. However,
in CET this condition is essentially never met because the objects of interest (e.g.,
macromolecules, virions, organelles) are embedded in vitreous water, which also
gives rise to considerable, nonuniform signal (sometimes referred to as structural
noise). INFR does not make such assumption making the method applicable to

39



3. Tomogram Reconstruction

CET.

INFR can be easily generalized to reconstruction in single particle analysis or
other sampling schemes such as tomography using double-tilt geometry or random
conical tilting. In such case, the density compensation has to be calculated in a more
complicated fashion, e.g., using Voronoi diagrams. However, the speedup achieved
by the 2Dx1D sampling pattern for single-axis tomography will not be available
anymore. INFR is implemented as an easy-to-use library, which requires only one
parameter (the number of iterations) to be specified, or none if the automatic stop-
ping criterion is adopted.

A drawback of INFR compared to WBP and the NN method is its computational
speed: it requires a number of iterations to get the final result, which leads to linear
growth of the reconstruction time. Due to the efficient computation of the weighting
function and the adopt of 2D x 1D reconstruction scheme, a speedup of at least one
order of magnitude is achieved compared to the NN method per iteration (Table
, which makes the computation time tolerable for routine application in CET.
In the tests here, 20 iterations resulted in reconstructions that were more accurate
than those obtained using WBP while the computation time was comparable to the
NN method.
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Macromolecule Identification

4.1 Introduction

After tomogram reconstruction an important task is to localize and identify the
macromolecule of interest inside the tomogram. This step serves as the basis of the
subsequent analysis, subtomogram alignment and averaging. When the identified
particles have homogeneous structures, the resulting resolution of the subtomogram
average can be greatly improved. Therefore, this step is crucial here and the goal
is to produce a set of particles, which contains more true positives and less false
positives. However, major challenges are: 1. The identification is hampered by the
low SNR of the cryo-tomogram, typically in the range of 0.1-0.01. As a consequence,
most of the methods developed in computer vision for 3D object recognition with
high SNR cannot be directly applied here. 2. The artefact caused by the “missing
wedge” problem creates additional difficulties for the detection. 3. The abundance
and spatial information of the macromolecule of interest are normally unknown,
which poses a challenge for the computation.

The state-of-the-art method is template matching (section . Despite its suc-
cess in CET, it also confronts some challenges: (i) High-contrast features (e.g., mem-
branes and gold fiducials used to align the projections) often generate false positive
matches. (ii) Human interaction is required to set the threshold for allowing the
discrimination between the true positives and false positives [Ortiz et al., 2006]. To
reduce the false positive rate and avoid subjective thresholding, a post-processing
step can be appended. For example, linear discriminant analysis of correlation values
from different templates in simulations has been used to generate a composite score
for classification of the candidates [Beck et al., 2009]. (iii) A template is required
as the input. It is typically generated from higher resolution structures obtained
by other methods, e.g., x-ray crystallography or SPA. However, they might not be
available, especially for the structurally uncharacterized complexes. (iv) The result
of template matching might introduce template-bias to the subsequent steps |Subra-
maniam, 2006], especially when an external high resolution structure is used as the
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4. Macromolecule Identification

template. Attention has to be paid to avoid overfitting to the template. (v) Tem-
plate matching works well for large macromolecular complexes (above 2.5 MDa),
such as ribosomes, which have strong contrast in cryo-tomograms. The challenge is
to detect complexes with smaller weight, which have less contrast.

Here, an identification protocol is proposed, which uses a supervised learning
technique for the binary classification of the candidates from template matching. For
each candidate, the features derived from spherical harmonics expansion of subto-
mograms are used. These features have the advantage of being rotation-invariant
and can be computed fast.

A part of this chapter has been published in [Chen et al., 2012].

4.2 Template Matching

In this section, the details of template matching technique are discussed. Template
matching is a method to find macromolecular complexes in cryo-tomograms based
on structural templates of the macromolecules of interest, i.e., using prior struc-
tural knowledge of the target macromolecules. In principle, template matching is
a matched filter, which is a commonly used technique in signal processing for de-
tection and localization of patterns corrupted by noise |[Turin, 1960]. In CET, the
template is compared to all possible same-sized subregions inside the tomogram. In
order to take into account of the local imaging variations such as the voxel intensity
difference and gray value offset, a normalization has to be employed. Moreover, the
macromolecules inside the tomogram typically have unknown orientations, which
have to be searched explicitly. In practice, the orientation space is scanned using
Euler angles with a specific angular increment. This increment should be chosen
according to the Crowther criterion |Crowther et al., 1970], typically oversampled
by a factor of at least two. Mathematically, given a object with the diameter d, the
relationship between the angular increment A« and the obtainable resolution r can
be expressed as [Crowther et al., 1970]:

r~Aa-d. (4.1)

A common choice of the angular increment is in the range of 7°-15°. In the end,
for each position and orientation, a scoring function is computed, which indicates
the similarity between the template and the subvolume of the tomogram. Overall,
template matching in CET consists of following steps (Figure : 1. template
generation, 2. scoring function calculation and 3. localization. The details of each
step are discussed below.
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Figure 4.1: Steps of template matching. For a given input volume Vj,, first the
templates T" are prepared. Then the cross-correlation function between V;,, and T
under different rotations are calculated. This step can be parallelized to accelerate
the computation. Finally, after the peak extraction the macromolecular complexes
of interest can be localized as the output V. Image from |[Luci¢ et al., 2005].

4.2.1 Template Generation

Specifically, the generation of templates from atomic models is presented here. Struc-
ture determination of biological macromolecules can be accomplished by different
techniques. Arguably the most prolific method is X-ray crystallography, which pro-
vides the positions of the atoms that constitute a specific macromolecule. The
Protein Data Bank (PDB, www.rcsb.org), which serves as an archive for experi-
mentally determined structures of proteins, nucleic acids, and complex assemblies,
stores the atomic coordinates of biological macromolecules. These atomic models
can be used to generate structural templates for CET.

The key of a successful template is to simulate the imaging process of CET
as realistically as possible, which typically requires the following steps (Figure
[Forster, 2005]): 1. Calculate the electron density according to the coordinates and
identities of the atoms specified in the PDB file. For biological materials, the electron
optical density is proportional to the electrostatic potential of the macromolecule,
which is approximately proportional to the atomic number Z of each element. In
this way, the coordinates of the atoms contained in the PDB file are translated into
the electron density map and sampled at the pixel size used in the experiment. 2.
Convolute the density map with the appropriate point spread function (PSF) of the
microscope and low-pass filter it to the corresponding resolution. 3. Rescale the
template to the relevant pixel size consistent with the tomogram. The generated
template can then be used to calculate the scoring function.

43


www.rcsb.org

4. Macromolecule Identification

a b {I
Atomic 05 (\
model

[ /I\ 1 /]
e o W N

| Electrostatic potential |

| Convolution with CTF | 05
-

| Low pass | 4 . o\, N,
| [ 0 1115 1/576 1/3.84 1/2.88 1/23 1/1.92 1/1.65 1/1.44
Ty g [1/nm]
| Bjmmg | C o2 - .
\ 4 0.1
\\ 4 ]
\_ r”fr
A" -0.1
t 0.2
] o
-0.3
Template o4
-0.5

0.6
0 1/11.5 1/5.76 1/3.84 1/2.88 1/2.3 1/1.92 1/1.65 1/1.44
g [1/nm]

Figure 4.2: Template generation. (a) Template generation workflow, given the
atomic model. (b) The CTF function has to be applied to the electrostatic po-
tential map. The CTF consists of two additive contributions, phase contrast (blue)
and amplitude contrast (red), which are damped by the modulation transfer func-
tion (MTF) of the CCD camera (green). (c) The CTF should be low-pass filtered
to a proper resolution to prevent overfitting. All the information in the red-colored
region is eliminated. Adapted from [Forster, 2005).

4.2.2 Scoring Function Calculation

In principle, the scoring function is a similarity measure of the template T" and the
tomogram V. Mathematically, given a 3D volume V(p) = V (2, vy, z), we can define
the rotation operator Ag as: AgrV(p) = V(RTp) (assuming the origin is at the
center). R is an Euler angle and can be parametrized with, e.g., ZYZ convention:
R(a,8,7) = Rz(a)Ry(B)Rz(y). Given a similarity measure Sim, the scoring
function can be calculated as:

Score = max Sim(ArT,V(p)). (4.2)
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4.2. Template Matching

In other words, for every possible position in the target volume V', the best orien-
tation R is determined, such that the similarity Sim is maximized. The final score
at position p is then the maximal value of Sim over all sampled rotations. In CET,
correlation-based similarity measures are widely used. In the following, different
variants of similarity measure are discussed.

Cross-correlation function. For discrete functions, the standard normalized
cross-correlation function is defined as:

N oo
> 1%

where T is the search template and V' is the target volume. Both T'(p) and V(p) are
two discrete functions defined over N points. T, V are the means, and o, oy are
the standard deviations. The cross-correlation function C'C' describes the correlation
between T" and V for every relative displacement 7 = (7,,7,,7,). Both volumes
T and V are firstly normalized and correlated. Equation can be efficiently
calculated by using correlation theorem and the fast Fourier transform:

CC =F Y F(T)FV)), (4.4)

where F and F~! are the forward and inverse Fourier transformations, respectively,
and * denotes the complex conjugate.

Local cross-correlation function. When the template 7" has a smaller size
than the target V, or the region of interest occurs over a small region. A mask
function M (p) is introduced (specified by the user) that explicitly defines the extent
of the area of interest. This leads to the local cross-correlation function [Roseman,
2003):

L0 = Ly T =T) - M) (V(r +p) -T) )

n > UTUMV(p)

where n = > M, and ouv(p) is the local standard deviation of V' under M.
This is equivalent to calculating the normalized correlation coefficient between the
search object and the masked subregion of the target for every relative position
of the mask. The local correlation function has the advantage that nomalization
of correlation only occurs locally, rather than the whole area. It should also be
noted that the mask M is not necessarily binary, i.e., masks may also have smooth
boundaries and pixels contribute with weights smaller than 1 to the correlation.
Local normalized cross-correlation function. To address the incomplete
angular sampling of cryo-tomograms (“missing wedge” problem), the local normal-
ized cross-correlation (LNCC) is proposed [Frangakis et al., 2002] to improve the
similarity measure. The basic idea is to constrain the correlation calculation in the
sampled region in Fourier space. Because the orientation of the searched particle is
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4. Macromolecule Identification

unknown, the “missing wedge” effect has to be applied to the template T" for every
rotation before calculating the correlation. Mathematically, LNCC is calculated as:

- >_p V(T +p) (T(p) ® PSFr(p)) - M(p) |
VI (V= V) M)\ [S,(T = T) @ PSFr - M)’

LNCC(r (4.6)

Here, PSFR is a point spread function that causes the same “missing wedge” effect
and it is a function of the orientation R of the template. Assuming the sampled
region in Fourier space is w, PSFg can be calculated as: PSFr = F }(Agw). ® is
the convolution operator. Obviously, LNCC is equivalent to LCC when the whole
Fourier space is sampled. LNCC can also be calculated efficiently using fast Fourier
transform.

4.2.3 Localization

After the calculation of the scoring function (Equation with a proper similarity
measure, the result needs to be further processed and interpreted in order to localize
the macromolecules of interest. Because the obtained scoring function is a quanti-
tative measure of the similarity of the template and the target volume, the peaks of
the scoring function indicate possible occurrences of the template. The higher the
coefficient is, the more likely the object of interest is located at the corresponding
position. Therefore, a predefined number of peaks can be extracted from the scoring
function in descending order. Note that after each peak is extracted, the area within
the approximate radius of the template has to be excluded from the further analysis
to prevent multiple counting. In the end, each extracted peak indicates a candidate
with corresponding position and orientation information.

Due to the low SNR of the tomogram, some peaks will correspond to false positive
matches. Another problem is how to determine the number of extracted peaks,
because the number of macromolecule of interest inside a tomogram is essentially
unknown. To address these issues, Ortiz et al proposed an empirical approach
[Ortiz et al., 2006]: 1. Plot the histogram of the scores of the peaks. 2. Choose
a threshold and fit all the scores above this threshold to a Gaussian distribution.
3. Use the determined mean ;1 and standard deviation o to estimate the detection
fidelity. This approach is under the assumption that the scores from the positives
form a Gaussian distribution that can be relatively easily separated from the one of
negatives. It works well for the macromolecules with high contrast, e.g., ribosomes
[Ortiz et al., 2006]. However, for other macromolecules the true positive distribution
may have more overlap with the negative distribution making the estimation of the
number of false positives based on the histogram difficult.
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Figure 4.3: Classifier generation and identification workflow. In particular, the
identification workflow consists of three steps: 1. Template matching and peak
extraction. 2. Feature calculation. 3. Class prediction using the trained classifier,
which is obtained from the classifier generation (the part illustrated above the dashed
line).

4.3 Identification Workflow

The identification problem is first defined mathematically here. Given an input 3D
tomogram V', the objective of identification of a target macromolecular complex in V'

is to find a set of subtomograms {vy,...,v,} containing the copies of the molecule,
and their corresponding positions {p,...,p,} (center of mass) and orientations
{Ry,...,R,}.

Here, a 3-step supervised learning approach is proposed for this problem: (i)
candidate generation using template matching, (ii) feature calculation and (iii) final
decision using a support vector machine (SVM) [Cortes and Vapnik, 1995]. SVMs
are supervised learning models and they belong to the family of generalized linear
classifiers, i.e., a SVM tries to find an optimal hyperplane to separate the samples
of different classes. The hyperplane is determined by maximizing the margin and
minimizing the structural risk. SVMs are well suited for the task here because:
1. SVMs have good out-of-sample generalization abilities. 2. SVMs are capable
of handling high-dimensional features and non-linearly separable problems with the
help of the soft margin and kernel techniques. 3. The theory of SVMs is well
established and there are various efficient implementations. The overall workflow
is depicted in Figure [£.3] The details of step (i) and (iii) will be discussed in the
following. The feature calculation will be presented in section 4.5

Candidate generation using template matching. This is a pre-detection
step for obtaining the candidates. Given a tomogram V' and the structural template
T of the target macromolecular complex, the LNCC is calculated using Equation [4.6]
Orientations are sampled explicitly with a pre-defined angular step. The candidates
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4. Macromolecule Identification

C = {v},...,v,} can then be found by determining the local maxima of the LNCC
(peak extraction), yielding their corresponding positions and orientations:

p, R =argmax LNCC(V,T). (4.7)

p,R

Final decision using SVM. In this step, a SVM classifier is used to discrim-
inate the true and false positives in the candidates. The input of the classifier
(test set D') consists of the rotation-invariant features (discussed in section
D' ={x;},x; = SH(v}),i € [1,n/] of the candidates. The class labels of candidates
will be predicted by the classifier trained below. Finally, all the candidates labelled
as the positive class {vq,...,v,} € C,n < n' are the final output.

Classifier training. SVM is a supervised learning algorithm. It has to be
trained before it is used for predicting the class labels (Figure . The training
can be conducted either on simulated or experimental tomograms. Given m can-
didates (training samples) and their features = {x,...,x,}, the class labels
y=Av,...,ymnt,yi € {—1,1},i € [1,m] of all candidates are determined by their
distances to the ground truth locations. If the candidate is closer than a threshold,
it is labelled as positive, otherwise negative. Finally, the labels y and corresponding
features @ constitute the training set D = {(x;,y;)},7 € [1,m] of the SVM.

LIBSVM [Chang and Lin, 2011] is used as the implementation of SVM. Specif-
ically, the RBF kernel is chosen for training and the best parameters C' and ~ are
determined by a grid search. [[| Additionally, five-fold cross-validation is applied to
avoid overfitting. To account for the unbalanced training set, different weights are
assigned to the classes according to the quantity of the samples in each class [Chang
and Lin, 2011]. Briefly, if the number of positive class in the training set is n, and
the number of negative class is n_, the weight of the positive class is set to W, =n_
and the weight of the negative class is then W_ = n. Finally, the obtained classifier
can then be used to predict the class labels of the incoming candidates from a new
tomogram.

4.4 Spherical Harmonics

Before describing the feature calculation, the basics about spherical harmonics (SH)
are introduced here. We firstly define the spherical function f(n) = f(6,¢) on the
unit sphere S?, where n is a vector of # € [0, 7], the colatitude (angle from the
north pole) and ¢ € [0, 27), the longitude (angle around the z axis) (Figure. [£.4). A
square-integrable function f(n) € £2(S5?) can be expanded into a series of spherical

ntuitively, C is a trade-off between the misclassification of training samples against the sim-
plicity of the decision surface; v defines the influence of a single training sample.
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harmonics [Hobson, 1931]:

) l
=" > LY. (4.8)

=0 m=-1

Here, Y! are the spherical harmonic functions, and [ and m are the degree and order,
respectively. If the function f is band-limited or can be approximated as such, then
we have:

oy

l
Z ),0< 1< B, (4.9)
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where B is the bandwidth Correspondlng to the angular sampling of f. Namely,
the number of sampling points of 6 and ¢ should be at least 2B, according to the
sampling theorem.

The spherical harmonic function Y} () : % — C is defined as:

Y10, ) = (—1)m\/ (214; (i)fm) M Pl (cos ), (4.10)

where P! (cos®) denotes the associated Legendre polynomials. A set of spherical
harmonics forms an orthogonal basis system on the unit sphere S 2,
The coefficients f! can be calculated by:

fl= fm)Y}(n)dn. (4.11)

nes?

Here, the overline denotes the complex conjugation. This procedure is called the
Spherical Fourier Transform (SFT). Analogous to FFT, an algorithm exists for effi-

cient computation of the SFT [Healy et al., 2003|. Its computational complexity is
O(B?%log® B).

4.5 Spherical-Harmonics-Based 3D Rotation-
Invariant Features

After the retrieval of the candidates, their corresponding features are calculated. The
features play a key role in the whole procedure because they ultimately determine
the performance of the identification. These features should be not only noise robust,
but also computationally efficient. Here, a set of rotation-invariant features based on
spherical harmonics is proposed for each candidate. Rotation-invariant features are
of special interest because they are fast to compute: an exhaustive angular search
for the orientation is no longer necessary.
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Figure 4.4: Parameterization on a sphere. 6 € (0,7) is the colatitude down from
the Z-axis and ¢ € [0, 27) is the longitude counterclockwise off the X-axis.

The first step of calculating the SH features for a subtomogram v centered at
the position of a candidate is to convert v to spherical coordinates:

v(z,y,2) = f(r,0,9). (4.12)

For the spherical coordinate holds r € [0, R] (distance to the center of v), 8 € (0, )
(colatitude) and ¢ € [0,2) (longitude) (see Figure [1.4). For a specific r, f(r) is
a spherical function. If f(r) is band-limited to B or can approximated as such,
f(r) should be sampled at twice the bandwidth B at § = %,Qﬁ = %,z’,j =
0,...,2B—1 according to the Nyquist-Shannon sampling theorem, which yields 432
samples for each f. Here, the input is discrete 3D volumes in Cartesian space. In
order to compute the features defined on spherical functions, the spline interpolation
is used here for calculating the values of the points at spherical coordinates r -
(cos ¢sin b, sin ¢sin b, cos ) = (z,y, 2).

One important question in practice is how to choose the bandwidth B. In prin-
ciple, the higher B is, the more accurate the approximation f will be. On the other
hand, the expense is the rapidly increasing computation time. Moreover, it is ben-
eficial to limit B to a low value when the input is noisy. Therefore, a trade-off has
to be made for an appropriate setting of B. Mathematically, the surface area of a
sphere with the radius 7 is 47r2. According to the sampling theorem, the number
of the sampling points 4532 can be approximately determined as:

AB® =2 -4mr® = B~ V21 -7 (4.13)

The coefficients frln themselves are not rotation-invariant. However, rotating a
spherical function will not change the Lo-norm of f! on each frequency [, because
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the spherical harmonics are orthogonal basis functions of the unit sphere. Mathe-
matically, the following rotation-invariant features can be constructed for a spherical
function f(r) [Kazhdan et al., 2003|:

SHU@) = (U BO 1 S 1RO e S 150D @)
m=—1 m=—(B-1)

Here, the sums of || f! () || within each frequency [ is used, because they are ob-
viously also rotation-invariant; they provide a more compact feature representation
and are more robust to the noise. Compared to [Kazhdan et al., 2003|, the energy
information ) || FL () || is used, instead of || S L) -

Equation is calculated on a spherical function f(r, 0, ¢). When it is applied
to a 3D data v, the rotation-invariant features are an assembly of SH(f(r)) of
different radii from the volume center: SH(v) = {SH(f(1)),...,SH(f(R))}. There
are a few notes about these features: (i) These features are based on amplitude
information of ffn The compressed information results in ambiguity of the features.
In detail, the ambiguity is manifested in two aspects. First, rotating each spherical
function f(r) differently will yield the same feature representation. Second, for two
spherical functions f and g, it is not sufficient to conclude there exists a rotation R
so that Agf = g given SH(f) = SH(g), because the phase information is discarded
(see Appendix [A]). (ii) For CET, strictly speaking, these features will differ to some
extent for subtomograms depicting the same macromolecules in different orientations
because the unsampled regions in Fourier space depend on the orientation of the
macromolecules. This will have influence of all the spherical functions defined in
real space. Nevertheless, as we shall see below the variations are sufficiently small
to allow for discrimination of different macromolecules (Figure [4.5]).

4.6 Dataset Preparation

e Simulated Tomogram. Ten tomograms (512 x 512 x 512 voxels) were sim-
ulated as described in section [3.5] each of which contained 5 different types
of abundant objects (30 copies of each): 80S ribosome (PDB ID: 31ZS, 3IZF,
3I1ZB and 3IZE), 60S ribosome (PDB ID: 3IZB and 3IZE), 20S proteasome
(PDB ID: 1PMA), GroEL (PDB ID: 1SS8) and gold beads of different sizes.
All of the tomograms were simulated with a defocus value of 4 pm and a pixel
size of 0.47 nm. The resulting tomograms were finally binned twice (pixel size
1.88 nm) to be consistent with the typical processing of experimental tomo-
grams.

Here, the focus is on the identification of 80S ribosomes (positive class). After
template matching (12° as the angular increment for computing the LNCC)
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Figure 4.5: The influence of the missing wedge on the features. (a) The features
were first calculated on a 80S ribosome map. Then it was randomly rotated three
times and the missing wedge effect (tilt range: —60° to +60°) was applied to each
rotated map. Finally, the features were computed the same way. Left: a 80S
ribosome density map. Right: the calculated features. (b) The same protocol as

above applied on a 26S proteasome map.

1000 peaks (more than three times the amount of 80S ribosomes) were ex-
tracted to ensure a high coverage of the positive class. The class labels of the
candidates were then determined. In this case, 258 candidates were labelled as
the positive class (86% coverage) and the remaining 742 as the negative class.

The SH features were computed for all candidates. The radii for decomposing
the subtomograms were chosen according to the size of the object of inter-
est, 80S ribosome in this case. The size of 80S ribosome is approximately
25 nm and the pixel size is 1.88 nm, which leads to the maximal radius:
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25nm/(1.88 x 2nm/pix) = Tpixz. The bandwidth B of the spherical harmonics
was determined according to Equation . Here, B = /27 -7 ~ 17.5. For
the computational reason, B is chosen to be the closest integer of the power
of 2, which is 16 in this case. Consequently, the dimension of the SH feature
space was 112. The features and the class labels of the candidates formed
the training set for the SVM. After the training, the obtained classifier was
evaluated both on simulated and experimental tomograms.

¢ Experimental Tomogram of ER-associated Ribosomes. An experimen-
tal tomogram of endoplasmic reticulum (ER) microsomes derived from canine
pancreas (Figure ) was used for the evaluation purpose. The tomogram
(tilt range: —60° to +60°, 3° angular increment) was acquired on a FEI Tecnai
Polara TEM equipped with a Gatan GIF 2002 energy filter (300 kV accelera-
tion voltage, 4 um defocus, object pixel size 0.47 nm). After template matching
with the 80S ribosome template (12° as the angular increment for computing
the LNCC), 500 peaks were extracted and these candidates were subjected to
classification.

4.7 Results

4.7.1 Identification on Simulated Volumes

Ten additional tomograms were simulated as the test set. After template matching
the SH features were calculated for each candidate. The class labels of the test set
were then predicted by the classifier obtained in section 4.6l As a comparison, the
state-of-the-art approach [Ortiz et al., 2006 was also evaluated (template matching
with a single template followed by the thresholding, or TM in the following).

The results are shown in Table [4.1, which shows the SH approach performed
vastly superior to the TM approach on the simulated data. Furthermore, the Re-
ceiver Operating Characteristic (ROC) curves of the classifiers are shown in Figure
[4.60l SH clearly overcomes the TM approach by having a higher true positive rate
while keeping the false positive rate lower.

4.7.2 ldentification on An Experimental Volume

The performances of the proposed approach was further evaluated on the experi-
mental tomogram (section . Using the classifier trained on simulated dataset
(section , SH approach predicted 224 candidates as the positive class and 276 as
the negatives. The classification result is plotted in Figure [4.7b, which shows most
of the false positives, such as the gold beads or carbon films, were removed. For
a fair comparison, the 224 particles with top scores from TM approach were also
assigned to the positive class.
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Approach | Accuracy | Precision | Recall
™ 61.4% 32.4% 33.1%
SH 96% 91.8% | 94.4%
Table 4.1: Identification results on simulated tomograms. Accuracy = (T'P +

TN)/(P+ N), Precision =TP/(TP + FP) and Recall = TP/P with P: number
of positives, N: number of negatives, T'P: number of true positives, F'P: number
of false positives and T'N: number of true negatives. For a fair comparison, the
peak extraction threshold for the TM approach was set such that the amount of the
positive class was the same as the one of the SH approach.
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Figure 4.6: ROC curves of classifications for 80S ribosomes on simulated tomograms.
The correlation threshold of peak extraction is varied for plotting the ROC curve of
TM approach.

Due to the lack of ground truth, the performances were evaluated in two aspects.
Firstly, the whole 500 candidates were manually labelled by the experts. Based on
these subjective decisions, the results from SH and TM were evaluated in Table
which also indicate clear improvement of SH over the TM approach, even if
the SVM was trained using the simulated data. Secondly, the resulting positives
were evaluated based on their averages obtained by the subtomogram alignment
and averaging (chapter |5)). The average of positives from the SH approach exhibited
ribosome-specific features and readily distinguishable ER-membranes, in contrast to
the average from the TM approach, which was clearly affected by false positives with
strong signals, probably gold beads and carbon films (Figure. ) This is further
confirmed by the pairwise FSC curves and the cross-resolution (section with
a 18.3 A resolution single particle map (EMDB: 1093) (Figure. ) Thus, the
averages suggest improvements of detection accuracy by SH approach.
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b j DA 2
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Figure 4.7: A slice view and identification result of an experimental tomogram. (a)
A slice view of an experimental tomogram depicted ER-associated ribosomes. The
arrow points to a potential ER-associated 80S ribosome. (b) Identification result of
the SH approach. The green circles represent the positives, while the red ones are
the negatives.

Approach | Accuracy | Precision | Recall
™ 57% 61.2% 51.7%
SH 79% 85.7% | 72.5%

Table 4.2: Identification results on an experimental tomogram of ER-associated
ribosomes based on the ground truth from manual labeling.

4.8 Discussion

A protocol is presented here to identify macromolecular complexes in cryo-electron
tomograms using a 3-step supervised learning approach with rotation-invariant fea-
tures. These features are calculated in spherical coordinate system and are based on
spherical harmonics expansion. Due to the fact that the Lo-norm (“energy”) of the
spherical harmonic coefficients within the same frequency remain constant under any
rotation, SH features are rotation-invariant. Moreover, SH features are noise robust
because they characterize the object by its “energy” information. Finally, the exis-
tence of efficient algorithm for spherical Fourier transform makes the computation
of SH features fast. Using SVMs, SH features associated to a specific complex are
learned and trained. The resulting classifier is utilized to identify macromolecules
of interest in a new tomogram.

The performance of the SH approach was first assessed on simulated tomograms,
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Figure 4.8: Comparison of subtomogram averaging between TM and SH approaches.
(a) Subtomogram averages of TM approach (left) and SH approach (right). (b) Left:
the pairwise FSC curves, right: cross-resolution FSC curves.

which showed significant advances of the accuracy, precision and recall rate com-
pared to the state-of-the-art approach: template matching followed by thresholding.
Furthermore, the SH approach was evaluated on an experimental tomogram of ER-
associated ribosomes. It has been shown that SH approach was able to detect a vast
majority of the positives while removing most of the false positives such as the gold
nanoparticles or carbon films. The improvement was confirmed by the subtomogram
averaging, which yielded a final structure of 80S ribosome with higher resolution and
faithful ribosome-specific features. Because the classifier was trained on a simulated
dataset, further improvements can be expected by improving the quality /quantity
of simulation. It is worth mentioning that the classifier can also be trained using
experimental dataset, if manual labelling is available.

On the other hand, SH approach presented here faces several challenges: (i)
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4.8. Discussion

Strictly speaking, the SH features introduced here are not rotation-invariant due
to the “missing wedge” effect of the cryo-tomograms. Because the unsampled re-
gions of each subtomogram in Fourier space are different, the underlying spherical
functions are different even for the same macromolecular complex. Nevertheless,
as confirmed by both simulation and experimental datasets, the features are robust
enough to characterize correctly the different structures. The negative effect of this
phenomenon could be reduced by constructing a large dataset with a proper angu-
lar coverage of the macromolecule, hence resulting in a stronger classifier. (ii) The
preparation of the training set might be cumbersome and time-consuming. For dif-
ferent targets of macromolecules and different imaging condition of the TEM (such
as the pixel size and defocus value), the simulation has to be conducted with corre-
sponding configuration and the classifier has to be re-trained. It is a time-consuming
task and cannot be generalized. Alternatively, if multiple tomograms with the same
imaging condition are present, one can manually label one of the tomograms, train
the classifier and use it to predict for the rest of the tomograms. Nevertheless, it is
subjective and time-consuming for the operator. (iii) A bottleneck of this approach
is that the sensitivity (recall rate) is limited, because the candidate list is still pro-
vided by template matching. This might become a problem for the detection of
small macromolecules, on which the performance of template matching is normally
inferior.
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Subtomogram Alignment

5.1 Introduction

Once the macromolecule of interest is localized and identified in the tomogram,
higher resolution insights can be obtained by aligning and averaging subtomo-
grams, each depicting the macromolecule of interest |[Bartesaghi and Subramaniam,
2009, [Forster and Hegerl, 2007]. Commonly, thousands of subtomograms can yield
resolutions of up to 15-20 A [Briggs et al., 2009, Eibauer et al., 2012]. More re-
cently, resolutions in the subnanometer regime have been obtained from more than
100,000 subtomograms [Schur et al., 2013]. Recent advances in automated data
acquisition make it feasible to record thousands or more subtomograms [Korinek
et al., 2011}, Suloway et al., 2009, |Zheng et al., 2010], which, in principle, should
allow achieving a similar level of resolution as in single-particle cryo-electron mi-
croscopy reconstructions [Lander et al., 2012]. However, fast and accurate methods
are needed for aligning and averaging such large datasets.

As mentioned in section the expectation-maximization algorithm is a
widespread approach for subtomogram alignment. While the translational match of
a subtomogram and the reference can be searched efficiently, the rotational match
needs explicit sampling of the whole rotational space. Its computational cost is enor-
mous. As a consequence, the alignment procedures are typically started from initial
references and rotational sampling is restricted to angles in the vicinity of rotations
determined in previous alignment iterations, which may introduce “reference bias”
into the resulting average |[Subramaniam, 2006].

Here, a computationally efficient and accurate reference-free subtomogram align-
ment protocol is proposed that makes use of fast rotational matching. In contrast
to previously introduced fast rotational matching approaches [Bartesaghi et al.,
2008, Xu et al., 2012], the complete (amplitude and phase) information is used
for scoring, which yields significantly more accurate alignment results for low SNRs.
The alignment method is combined with a CTF correction of subtomograms using
Wiener filtering.
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5. Subtomogram Alignment

This chapter is associated with a previous publication |[Chen et al., 2013].

5.2 Correlation in Rotational Space

First, the mathematical basis of correlation in the rotational space using spheri-
cal harmonic functions is presented. Then the alignment problem is formulated in
Fourier space and is finally addressed using fast translational and rotational match-
ing.

5.2.1 SO(3) Fourier Transform

The basics about spherical harmonics and SFT have been explained in section [4.4]
Here, the Fourier transform on the rotation group SO(3) is introduced.

For a rotation R defined on the rotation group SO(3), we can parameterize
R with ZYZ convention (successive rotations around Z-, Y-, and Z-axis), namely:
R(a,,7) = Rz(a)Ry(B)Rz(7). For a function defined on the rotation group:
h(R) € L*(SO(3)), we have [Kostelec, 2008]:

l l

h(R) = fj > W ULL(R), (5.1)

=0 m=—In=-1

Upin(R(ex, ,7)) = €7 Py, (cos f)e™™.

Here P! are the generalized associated Legendre polynomials. The coefficients lAzfnn
can be obtained by:

A= / hR)U. (R)dR. (5.2)
ReSO(3)

This is called the SO(3) Fourier Transform (SOFT). If the bandwidth of A is limited
to B, it has been shown that it can be efficiently calculated and its computational
complexity is O(B*log® B) [Kostelec, 2008].

5.2.2 Cross-Correlation of Spherical Functions

With the two transforms (SFT and SOFT) described, the cross-correlation function
of two spherical functions f(n), g(n) can be computed efficiently. We firstly define
the spherical cross-correlation function as

SCC(R) = f(M)Arg(n)dn. (5.3)

nes?

Maximizing SCC(R) is equivalent to finding a rotation R to rotate g such that
the two functions match best. It can be proven that (Appendix [Makadia and
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5.2. Correlation in Rotational Space

Daniilidis, 20006]:

SOFT(SCC) = (5.4)

In other words, the SO(3) Fourier transform of SCC(R) equals to the pointwise
product of SFT(f) and the complex conjugate of SFT(g), which is the generalized
convolution theorem of spherical functions.

Obviously, the computational complexity of computing SCC(R) is the same as
that of SOFT. The obtainable angular precision is (259)° for o,y and (332)° for 3
(without considering possible gains by interpolation).

There is another more efficient algorithm [Kovacs and Wriggers, 2002] to compute
Equation using discrete Fourier transform rather than SOFT which can reduce

the computation complexity to O(B?log B). By factorizing the rotation

mgp'

T ™ ™

§,§,O>R2(7T—6,§7’}/——), (55)

R(%Bﬁ):Rl(O‘_ 9

the cross-correlation function can be rewritten as

l l l

SCC(R Z DD D 0 A (1)) (0 R (5.6)

=0 m=—lp=—1 k=-I

where o/ = a — 5, 8’ =7 — 3,7 = v — 5. Therefore, applying a Fourier transform
F on SCC(R) results in:

B-1

F(SCO(R) = ) fnhPrui(0) P, 0). (5.7)

=0

That means, after an inverse 3D Fourier transform of the coefficients and a transfer
of the angular parameters, the original spherical cross-correlation function can be
retrieved. Using this approach, the computational complexity is essentially deter-
mined by that of FFT, which is O(B?log B). Therefore it is faster than the SOFT
approach.

5.2.3 Constrained Cross-Correlation of Spherical Functions

The above approach to compute the correlation of two spherical functions assumes
a complete sampling of # and ¢. If only parts of the functions are sampled, the
correlated area has to be constrained and the correlation coefficients have to be
normalized within the common area of the two correlated functions [Forster and
Hegerl, 2007]. Two binary mask functions, m; and m,, are used to indicate the
sampled areas of f and g, respectively. For convenience, the spherical correlation
operator x is first introduced:

fxg(R):=SCC(R). (5.8)
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5. Subtomogram Alignment

The overlapping area of my and m, is denoted by M, which depends on the rotation
R. Then the normalized spherical constrained cross-correlation function can be
calculated as [Huhle et al., 2009

SCCCO(R _ Jeel(f(m) = far)my][Ar(g(n) — g_M)mg]dn |
\/fM = Ju*dn - \/fM — gum)?dn

Here, the overline represents the mean value of the respective function. It can be
proven that overall six spherical correlation operations are needed for its calculation.
Expansion of the numerator of Equation yields:

(5.9)

[ 15 ~ mhatotn) ~ Fm
= fmsxgmg — far(mg x gmg) — Gar(fmg xmy) + farGar(mys x my).

The first factor in the denominator of Equation can be calculated by:

\//M[f("?) — fu]?dn = \/f2mf * My + f_MZ(mf *my) — 2f_M(fmf *Mmy).

The mean of spherical function under the overlap area, fy;, can be calculated as:

— fmpxrmy
omypamy
The second factor in the denominator of Equation|5.9|can be determined analogously.
Therefore, the computational complexity of the constrained correlation computed
using spherical harmonics is the same as the aforementioned unconstrained correla-
tion. The same equation applies for complex spherical functions.

5.3 Fast Volumetric Matching

Finding the best alignment parameters between two 3D subtomograms V) and Vj;
can be mathematically described as:

argmax CCC(Vy, T ARrVa), (5.10)
R

where TV (x) := V(x — 7) is the translation operator on volumes, Ag is the ro-
tation operator, and CCC is the constrained cross-correlation coefficient of two 3D
volumes. Here, the translational and rotational searches are separated, which is
in contrast to the previously pursued approach of simultaneously sampling rota-
tion and translation [Forster et al., 2005, Hrabe et al., 2012], due to the fact that
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CCC(R)

Best rotation Rmax

scc % -~z .

%

Figure 5.1: Workflow of FRM. The CCC of the Fourier transformed volumes (masks
specify the respective missing wedges) as a function of the rotation of the yellow
density can be computed using spherical cross-correlation (SCC).

[s

¢

simultaneous acceleration in terms of both, translation and rotation could not be
mathematically formulated in this framework. This strategy of separate optimiza-
tions is also commonly done in the field of single particle analysis for essentially
the same reason. In the following, how to find the best-scoring translation 7, is
first described, and then the best-scoring rotation R,,... Finally, those two separate
optimizations are integrated into one procedure.

Assuming R, is known, the translation 7,,,, = arg max CCC(Vy, Ag,,,.V2) can
be efficiently determined by fast translational matching (FTM): The subtomograms
are first constrained in Fourier space according to the common areas [Frangakis
et al., 2002]. Then the local correlation of V; and V5 can be computed using the
FFT-based formulation [Roseman, 2003].

In order to apply Equation for rotational matching, the SCCC has to be
extended to 3D volume data and the missing wedge problem has to be addressed. To
achieve the latter the CCC is formulated in Fourier space, which allows incorporating
the missing wedge as masks of spherical functions in Fourier space as shown in the

following (Figure [5.1)).

First an equivalent of Equation is derived in Fourier space. We define Vi
and \72 as the Fourier transforms of V; and V5, and two mask functions m; and ms,
which indicate the respective missing wedges. The Fourier coefficients are converted
to spherical coordinates: f/(kx, ky, k,) = V(k, 0,¢). Because the mean value of a
volume only affects V(0), we can set V(0) = 0. The SCCC between V; and V5 in
frequency band £k can be derived from Equation by variable substitution and
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5. Subtomogram Alignment

setting all the mean terms to 0:

SCCCO(R: k) = SCC(R; k) B> (5.11)
\/SCCH(R, ]{7) . \/SCCQQ(R, /{Z)

SCCha(R; k) = Vi(k, 0, ¢)my * Va(k, 0, ¢)ma,

SCCyy (R k) = |Vi(k, 0, 9)[*my % ma,

SCCy(R; k) = my % [Va(k, 8, ¢)|*m,.

The CCC between Vi and V; is then given by [Kovacs and Wriggers, 2002]:

max ‘kj _k:2
CCC(R) = > ohmi” SCC(R; k)
VS SCC(Rk) - k2 ([ SCCo (R ) - k2

where k.. is the maximal frequency band during calculation. The peak of this
function indicates the best-scoring rotation R,,,,. Equation describes how to
compute the CCC by combining the SCC(R; k) of each frequency k. Here, this
method is called fast rotational matching (FRM). There are several notes about
this function:

. (5.12)

1. Its computation time depends on the chosen maximal Fourier frequency k,,qz
and the maximal bandwidth B of the spherical harmonics. Overall, 3,4z
spherical correlation operations are needed to compute the CCC. The larger
kmae and B are, the more time the computation will consume, but larger £,,q.
and B also yield higher accuracy. To avoid unnecessary computation cost, B
is chosen according to the sampling theorem such that B = 27k (Equation
and k4, is determined according to the resolution of the reference.

2. If Equation [5.12 is used to calculate the correlations of subtomograms and a
reference (e.g., V1), my and my are typically fixed. Therefore all SCCy;(R; k)
only need to be calculated once, i.e., all the necessary number of spherical
correlation operations can be reduced from 3k, t0 2k 40z

3. Another feature of Equation [5.12] is that the calculation in each frequency
can be handled separately. For example, by applying weights on different
frequencies according to the FSC (section the negative impact of noise
can be alleviated |[Rosenthal and Henderson, 2003, Stewart and Grigorieff,
2004].

Finally, an iterative procedure called Fast Volumetric Matching (FVM) is pro-
posed to retrieve Ty, and R,,,, when aligning V5, to V4. In FVM, the 6D opti-
mization problem is approximated by successive solution of two 3D optimization
problems (“divide and conquer”) in an iterative manner. The overall workflow of

FVM is depicted in Figure and formally described in Algorithm [5.1]
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5.3. Fast Volumetric Matching

Algorithm 5.1 Fast volumetric matching

Input: Vi, V,
Output: 7,02, R

1: Estimate an initial set of N candidate rotations {R}, ..., R)}. Because the
power spectrum of a subtomogram is translation invariant, we can obtain the
top N best rotational estimations between |V;| and |V3| using Equation m
without any initial guess for the translations.

2: 1 < 0 {current number of iteration}

3: I {maximal number of iterations allowed}

4: Scores {the scoring function}

5: for Rl € {R},..., R} do

6: T« FTM(W, AR{VQ) {use FTM to find the best translation parameter}

7. Rl,, < FRM(W, TTij‘/Q) {use FRM to find the best rotation parameter}

8 Scores(t!, R}) « CCC(V4, TTgARz‘/YQ) {calculate the scores}

9: if |7/ =7/ | <ecori+1>1then

10: break
11:  end if
12: 14+ 1+1
13: end for

14: return T4, R < argmax Scores

Here, the key differences between FVM and two state-of-the-art approaches,

“Bartesaghi’s approach” |Bartesaghi et al., 2008] and “Xu’s approach” [Xu et al.,
2012], are outlined:

1. In Bartesaghi’s approach |V;| and |V3| are summed up along k to yield two real

spherical functions and the best-scoring rotation is computed. This compres-
sion can cause significant errors at low SNRs. Mathematically, the following
approximate scoring function is calculated:

, (S Vil * (5 [Val)ma
CCC'(R) = A : .
Ve Vi)« ma -y« (5 [Valyme

. Xu’s approach does not project 3D data to 2D. However, the rotation is op-

timized using |V;| and |V3| instead of V; and V. Thus, all the phase infor-
mation is discarded, which is similar to the rotation function used in X-ray
crystallography. Mathematically, it computes the following approximate scor-
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Figure 5.2: Fast volumetric matching and reference-free workflow. (a) FVM work-
flow. In the iterative procedure fast rotational matching (FRM) and fast transla-
tional matching (FTM) are used sequentially to obtain the best rotation R and
translation 7 of V, compared to V;. (b) Reference-free alignment workflow. In this
quasi-expectation maximization algorithm the initial de novo reference Ty algorithm
is the average of the subtomograms with random orientations. The reference T is
iteratively refined until the termination criterion is reached.

ing function:

Soimer SCCY(R; k) - k2
\/ka SCOW(RE) - K2 /s SCCa (R k) - 12
SCCYy = |V1|m1 * |V2|m2.

CCC"(R

)

3. FVM not only keeps the phase information, but also introduces an iterative
procedure to obtain the best rotation and translation from the two separate
3D searches in rotation and translation space.
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Algorithm 5.2 Reference-free alignment of subtomograms
Input: To be aligned subtomograms {Si,...,S,}
Output: Aligned subtomograms {S7,...,S,}
1: Generate a de novo reference Ty by averaging a random portion of the subto-
mograms with random orientations.
Set the starting frequency k.
i <— 0 {current number of iteration}
I {maximal number of iterations allowed }
while i < I and kz — ki—l < 0do
for S; € {5,...,5,} do
S% < use Algorithm to align lowpass(S;, k;) to lowpass(T;, k;).
end for
T;+1 < average {S},..., S}
ki1 < calculate the FSC and determine the new resolution/frequency
11+ 1
: end while

— =
T

5.4 Reference-Free Alignment

The fast rotational matching procedure allows exhaustive rotational sampling in
reasonable timescales, which is required for Reference-Free Alignment (FRA). The
defining feature of RFA is that subtomograms are aligned without an external ref-
erence that might bias the alignment procedure. One possible RFA protocol is to
use the average of the subtomograms in random orientations as an initial reference
[Pteffer et al., 2012, |Scheres et al., 2009, Stolken et al., 2011]. Note that “reference-
free” as used here does not mean no reference is used per se, rather any external
reference is omitted. Thus, reference bias due to arbitrarily chosen starting models is
alleviated. With conventional rotational matching exhaustive sampling is extremely
time-consuming. The FRA method proposed here profits from the greatly acceler-
ated rotational sampling and the high rotational sampling density. The workflow of
the method is illustrated in Figure and is described in detail in Algorithm

The key points of this approach are: 1. The algorithm is entirely data-driven; an
external reference is not required. 2. The iterative alignment algorithm is a quasi-
expectation maximization algorithm, which ensures that it continuously improves
the similarity score of a reference to the subtomograms and it converges rapidly
(typically within ten iterations). 3. During each iteration ky,q, in Equation [5.12]
is updated. Thus, the alignment evolves from low (reduce the noise bias) to higher
(reveal fine details) frequencies and efficient computation is ensured concomitantly.
4. Tt cannot be excluded that the alignment might be locked in a local optimum if
the SNR is very low or the orientation distribution of the subtomograms is strongly
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5. Subtomogram Alignment

nonuniform. In such cases, cross-validation methods, such as resolution determina-
tion using gold-standard FSC described below, may be beneficial.

5.5 Contrast Transfer Function Correction

A Wiener filter based approach was implemented in RFA procedure to compensate
for the effects of the CTF, which allows aligning the subtomograms from tilt se-
ries with different defocus values analogous to common protocols in single particle
analysis (SPA) (chapter [1)) [Frank and Penczek, 1995]. In SPA, CTF correction
is typically applied to class averages of many images with identical defocus rather
than individual images. However, in CET projections contributing to a subtomo-
gram have different defocus values due to the focus gradient in projections of the
tilted specimen, which makes it essentially impossible to work with subtomograms
of homogeneous defocus. Therefore, Wiener filtering is performed to each individual
projection.

The Wiener filter of a projection ¢ from 7T tilt angles for subtomogram i (of N)
to reconstruct the CTF corrected density has the following form in Fourier space:

CTFy(k)
Fu(k) = =7 — — (5.13)
NT Zi:l Zt:l |CTFit(k)| + s3E
The term ﬁ is the Wiener filter constant, which is set to 0.1 as commonly

done in SPA [Grigorieff, 1998|. In RFA implementation here, each projection was
filtered using this filter prior to reconstructing the subtomograms, which were then
used to compute the appropriately weighted average [Forster and Hegerl, 2007]. In
the CTF, the damping envelope was not considered at this point, which would lead
to enhancement of high frequency part in the corresponding filter and may increase
noise enhancement. Moreover, the CTF was defined as constant for frequencies
below the first maximum because phase contrast is typically not dominant at very
low frequencies.

The defocus gradient was incorporated similarly as described in |[Ferndndez et al.,
2006, |Zanetti et al., 2009]: the average defocus of the entire tilt series was determined
based on the Thon rings of a periodogram average and the defocus value at different
stripes parallel to the tilt axis was determined based on trigonometry. For each
of these stripes the Wiener filtering was performed by adopting the phase-flipping
procedure published in [Eibauer et al., 2012]. Overall, two differently filtered versions
of each subtomogram were reconstructed: the CTF convoluted subtomogram was
used for computing the Wiener-filtered average after each iteration and a phase-
flipped subtomogram was used for subtomogram alignment.
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5.6 Resolution Determination Based on Gold-
Standard FSC

Interpretation and resolution determination of single particle reconstruction accord-
ing to the gold-standard FSC rather than standard FSC was reported to be able to
prevent overfitting and resulting noise enhancement in SPA [Grigorieff, 2000, [Scheres
and Chen, 2012]. The essence of this measure is that two sets of particles, each con-
taining 50% of the whole dataset, are aligned and averaged independently rather
than together, which avoids correlation due to noise. Here, this method was imple-
mented for subtomogram alignment and averaging. The dataset was divided into
two random sets and low-pass filtered to a certain resolution for the first iteration
(in the ribosome dataset 5.2 nm and proteasome dataset 4 nm). Within each set,
the alignment was carried out independently. After each iteration, the average of
the second set was aligned to that of the first one and the FSC between the two
averages was calculated (gold-standard FSC). The determined resolution was used
as the low-pass filter for the next iteration in both sets.

5.7 Dataset Preparation

5.7.1 Simulated Subtomograms

Subtomograms of the S. cerevisiae translating 80S ribosome were simulated using
atomic models from the Protein Data Bank (ID: 31ZB 3I1ZE 3IZF 31ZS) with the size
of 1003, a defocus value of 4 um and a pixel size 0.47 nm. The subtomograms were
randomly translated and rotated. Their projections were simulated as described
in section from —60° to +60° with an angular increment of 3° in various noise
conditions. Finally, the subtomograms were reconstructed using weighted back-
projection. For computation of cross-resolutions (section of the obtained
averages, a tomogram was generated by applying the 3D CTF to the original density
map derived from the atomic coordinates. All the simulations were carried out using
the TOM toolbox [Nickell et al., 2005].

5.7.2 Ribosome Subtomograms from Yeast Lysate

The sample preparation of S. cerevisiae lysate and the tomogram acquisition fol-
lowed the protocol described in section . Downsampled tomograms (voxel size:
2.3 nm) were reconstructed by weighted-back projection (section using the
TOM toolbox [Nickell et al., 2005]. A ribosome template was generated (section
from atomic models (PDB ID: 3IZB 31ZE 3IZF 3IZS), convoluted with an ap-
propriate CTF and low-pass filtered to 40 A as described previously [Forster et al.,
2010]. Template matching (section was then carried out for each tomogram

69



5. Subtomogram Alignment

to extract the ribosome candidates |[Chen et al., 2012, Hrabe et al., 2012], which
resulted in 8,000 subtomograms. For reconstruction of the unbinned subtomograms
the phases were first corrected (section [Eibauer et al., 2012] prior to weighted
backprojection. The resulting subtomograms were then classified using CPCA (sec-
tion [Forster et al., 2008] to remove false positives (e.g., gold beads) from the
dataset. Finally, 6,436 subtomograms were retained for further alignment. For these
subtomograms, a second set of volumes, convoluted with the CTF, was reconstructed
and used for the Wiener filter.

5.7.3 20S Proteasome Subtomograms

20S proteasomes were recombinantly expressed in Fscherichia coli cells and purified
as described in [Witt et al., 2006]. The sample was diluted to a concentration of
approximately 0.5 mg/ml and CET grids were prepared as described in section .
Tilt series were acquired with a defocus of 6 um. The reconstructions and processing
steps were performed analogous to the ones of the ribosomes, finally yielding 1,247
subtomograms for the alignment and averaging.

5.8 Results

5.8.1 Implementation

The algorithms proposed here were programmed in C for the sake of efficiency, and
a high level interface is also provided in Python for the ease of usability. The whole
software package was built based on two libraries: SpharmonicKit [Healy et al., 2003]
for computing the SFT, and Situs [Kovacs and Wriggers, 2002] for computing the
cross-correlation of spherical functions. Third order spline interpolation was used
for transferring the voxel values from the Cartesian to spherical coordinates. For
comparison, Bartesaghi’s and Xu’s approaches [Bartesaghi et al., 2008, Xu et al.,
2012] were also implemented. Moreover, a seamless integration to PyTom |Hrabe
et al., 2012 was provided for alignment procedures, which are parallelized by mes-
sage passing interface (MPI) to exploit further speedup.

5.8.2 Speedup compared to Real Space Rotational Searches

The speedup of FVM was first evaluated and compared to rotational sampling in
Cartesian space, as currently used in most subtomogram averaging packages us-
ing simulated data. 100 ribosome subtomograms were simulated (SNR=0.1) with
random translations (in the range of 10 pixels) and rotations. The low-pass filtered
original model (5.2 nm resolution) was used as the starting reference for FVM. After
each iteration, the averages from different iterations were compared to the original
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Figure 5.3: Speedup of FVM compared to real space rotational search. The compu-
tation time for refining the alignment of simulated subtomograms was evaluated for
FVM and exhaustive rotational sampling with different angular intervals, as well as
the cross-resolutions of the averages from alignment iterations with respect to the
original density.

model by means of FSC to measure the cross-resolutions and recorded the elapsed
time. Finally, the protocol was repeated using exhaustive real space rotational
searches with different angular steps.

The results of this comparison indicate a large speedup of FVM compared to the
real space rotational search (Figure . For the best possible resolution (12.7 A),
the speedup is approximately 1,000. The resolution of the average resulting from
the real space search approximately corresponds to that indicated by the Crowther
criterion [Crowther et al., 1970], whereas the resolution from the FVM approach
matches the ground truth (average of subtomograms using their true translations
and rotations). Thus, the simulations suggest that FVM accelerates subtomogram
alignment by approximately three orders of magnitude at resolutions beyond 2 nm
without notable loss of accuracy.

If the orientation of subtomograms were known approximately, only a small angu-
lar range would need to be searched (albeit the expectation maximization algorithm,
strictly speaking, requires global sampling). In such a case, there is a limit when the
direct angular search is faster than FVM, depending on several parameters, such
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Figure 5.4: Alignment errors of different spherical-harmonics-based matching algo-
rithms for different SNRs. The alignments below the dashed line is considered as
correct.

as maximal frequency and the bandwidth of spherical harmonics. For example in
this case, for k.. = (2nm)~1, the elapsed time of FVM equals to the one of direct
angular searches of approximately 108 angles. The comparison was run with the
same data on a machine equipped with the Intel Xeon Processor X5570 2.93GHz (4
cores) and 48 GB main memory.

5.8.3 Comparison of Alignment Accuracy

Next, FVM was compared with other spherical-harmonics-based approaches: Barte-
saghi’s approach [Bartesaghi et al., 2008] and Xu’s approach [Xu et al., 2012] in
terms of accuracy. 1,000 ribosome subtomograms were simulated with different
SNRs, which were randomly translated (in the range of 10 pixels) and rotated. The
three different approaches were then used to determine the best translational and
rotational parameters of the simulated subtomograms when matched against the
original volume. The translational and rotational errors are shown in Figure [5.4]
Here, an alignment is considered correct if the translational error is smaller than 2
pixels and the rotational error is smaller than 20°.

All three approaches resulted in correct alignment for high SNRs (SNR > 0.1).
When the SNR was below 0.01, Bartesaghi’s and Xu’s approaches yielded incor-
rect alignments. Consistent with [Xu et al., 2012], it is observed that Xu’s ap-
proach achieves higher accuracy than Bartesaghi’s approach, but the error of both
approaches is larger than the tolerance. On the contrary, FVM yielded correct
alignment even for SNR=0.005. In summary, the simulations show that FVM yields
significantly higher alignment accuracy at typical SNRs of cryo-tomograms (SNR
< 0.1).
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Figure 5.5: Comparison of computation time for subtomogram alignment of simu-
lated 80S ribosomes using three spherical-harmonics-based alignment algorithms.

The computational speed was also compared using different spherical-harmonics-
based alignment methods (Figure . This comparison reveals that Bartesaghi’s
and Xu’s approaches surpassed FVM approximately by a factor of ten and five,
respectively. Thus, the gain in alignment accuracy resulted in a reduction of com-
putational speed.

5.8.4 Reference-Free Alignment on Simulated Dataset

To test the RFA, it was first applied to a simulated dataset with various SNRs (Fig-
ure . All resulting averages were analyzed by cross-resolution with the noise-free
reference. For comparison, the subtomograms were averaged according to the ground
truth translation and rotation parameters and the cross-resolution FSC curves were
computed. The FSC curves suggest that the resolutions of the averages from RFA
are close to the best possible values. Only for the lowest SNR tested (SNR=0.001)
the FSC is worse than the ground truth FSC. This decreased performance is con-
sistent with the accuracy assessment of FVM.

5.8.5 Reference-Free Alignment on Experimental Dataset

RFA was then applied to an experimental ribosome dataset from Saccharomyces
cerevisiae cell lysate (Figure[5.7h). Throughout the iterative procedure the average
evolves from a blob to a structure with canonical ribosomal features (Figure |5.8a).
Because the ground truth was unavailable here, the results were evaluated in three
aspects (section : the half-set FSC, the gold standard FSC and the cross-
resolution FSC. According to the half-set FSC, the resolution (0.5 criterion) of the
final average is 20.4 A (Figure ) Using the gold standard FSC, i.e., the alignment
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Figure 5.6: Accuracy of averages obtained from RFA. For simulations with SNR=1,
0.1, 0.01 and 0.001 the cross-resolutions of the averages and true CTF-convoluted
model were computed. For comparison, the cross-resolutions of averages using the
ground truth alignment are shown.

was conducted with the data split into two independent sets, the resulting density
was essentially identical to that obtained by RFA. The corresponding resolution was
even slightly better (18.9 A) according to the 0.143 criterion that is recommended
for the gold-standard FSC [Scheres and Chen, 2012]. Furthermore, the accuracy
of the obtained averages was assessed by cross-resolution with a 7.9 A resolution
single particle reconstruction (EMDB: 1668), which yielded 19.4 A resolution (0.3
criterion). Thus, the average obtained by RFA is faithful to at least 20 A resolution.

In a second experimental test case RFA was applied to subtomograms from
purified Thermoplasma acidophilum 20S proteasomes (Figure ), which are sig-
nificantly smaller than the 80S ribosomes (700 kDa vs. 3.3 MDa). The result
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Figure 5.7: Slice view of experimental tomograms. (a) One slice of an experimental
tomogram depicting S. cerevisiae ribosomes from yeast lysate. (b) One slice of an
experimental tomogram depicting Thermoplasma acidophilum 20S proteasomes.

converges into a trustworthy average (Figure ) When the full Dyy symmetryﬂ
is exploited, the resolution of the final average, according to different measures, is:
15.1 A (half-set FSC 0.5), 14.7 A (gold standard FSC 0.143), and 16.2 A (cross-

resolution) (Figure [5.9b).

5.9 Discussion

An algorithm (FVM) is presented here to find the best translational and rotational
match of two subtomograms using CCC as the scoring function. For acceleration
of rotational matching, the computation of the CCC is formulated using spherical
harmonics in Fourier space. The CCC uses the full information (including phases)
and constrains the correlation to Fourier space sectors that are sampled in both
volumes. It is shown that FVM is approximately 3 orders of magnitude faster than
methods using exhaustive rotation sampling in Cartesian space, as implemented in
many packages for subtomogram averaging [Amat et al., 2010b, (Castano Diez et al.,
2012, [Forster et al., 2005, Hrabe et al., 2012], [Schmid and Booth, 2008, [Walz et al.)
11997, Winkler et al., 2009]. Compared to previously published spherical-harmonics-
based approaches [Bartesaghi et al., 2008, [Xu et al., 2012], FVM is significantly
more accurate because it uses the full information (including phases) and the trans-
lational match is iteratively refined. Thus, FVM provides significant computational
speedup of subtomogram alignment by correlation methods essentially without loss

17-fold symmetry around one axis and 7 2-fold axes orthogonal to that one.
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Figure 5.8: Evolution of subtomogram averages during alignment. (a) Evolution of
subtomogram averages (80S ribosome from yeast lysate) from the starting reference
to the final 20 A structure. In the final average, the large ribosomal subunit is
colored in blue and small subunit in yellow. (b) Evolution of subtomogram averages
(208 proteasome) from the starting reference to the final 15 A structure. The Dy,
symmetry is applied after iteration 7.

of accuracy. This method will therefore become the method of choice in the field of
subtomogram averaging.

The FVM framework presented here can, in principle, be used for other scoring
schemes. For example, application of different spectral weighting schemes as sug-
gested in the single particle field [Stewart and Grigorieff, 2004] is straightforward.
The proposed algorithm would also accelerate alignment and classification by the
maximum likelihood approach [Scheres et al., 2009, Stolken et al., 2011] without loss
of accuracy.

Based on FVM, a reference-free alignment procedure (RFA) was developed,
which does not require external references. RFA is a quasi-expectation maximization
procedure (Algorithm [5.2)). The problem here is to find the maximum a posteriori
estimates of the alignment parameters, given a set of observations (subtomograms).
In detail, the current model in the E-step is calculated by the subtomogram averag-
ing (Equation and the parameter estimation in the M-step is provided by the
proposed subtomogram alignment algorithm, i.e., FVM. The rest of RFA is basically
the same as the expectation maximization, which is proven to converge [Wu, 1983].
Nevertheless, a local optimum might be reached. The RFA starts from an average of
the subtomograms in random orientations. The reference and its determined reso-
lution are updated during each iteration, which ensures efficient computation of the
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Figure 5.9: (a) The pairwise FSC and cross-resolution FSC curves of 80S ribosome
averages from various iterations of the RFA procedure, as well as alignment of gold-
standard FSC. (b) Same for the subtomogram averages of 20S proteasomes.

result. The protocol was tested on subtomograms of S. cerevisiae ribosomes from
cell lysate and purified Thermoplasma acidophilum 20S proteasomes. The results
suggest that the proposed alignment procedure is suitable to resolve macromolecular
complexes well beyond 20 A.

It is anticipated that even higher resolution averages can be obtained in the
future using larger datasets and improved methods for CTF correction, which will
greatly benefit from the new generation of direct electron detectors allowing more
accurate defocus determination |Glaeser et al., 2011} (Guerrini et al., 2011]. It will
be interesting to see whether subtomogram averaging will, for example, allow resolv-
ing transmembrane helices in lipid membranes in future studies. In any case, the
computational framework proposed here provides a solid basis for fast and accurate
subtomogram alignment and enables processing of massive datasets in the future.
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Subtomogram Classification

6.1 Introduction

In this chapter, the focus is on the subtomogram classification, which is particularly
challenging due to several reasons: (i) The signal-to-noise ratio (SNR) of cryo-
electron tomograms is poor (typically in the range of 0.1 - 0.01). (ii) The tilt
range for data acquisition is limited, typically from —60° to 60°, which results in an
incomplete sampling in Fourier space (missing wedge problem). (iii) The number of
classes is typically unknown beforehand. (iv) The classes of subtomograms can be
unbalanced (strongly differing populations). (v) The structural differences between
the class averages can be subtle.

It is worth clarifying here that the term classification in the “subtomogram clas-
sification” is irrelevant to the one used in the machine learning field, which typically
means the supervised learning. In this chapter, to avoid the confusion, the term
classification means to classify the subtomograms.

Despite the successes of various classification methods (section when ap-
plied to respective datasets, their performances tend to be limited in particular for
unbalanced classes and subtle structural differences. Here, an unsupervised learn-
ing approach named AC3D (Autofocused Classification of 3D cryo-electron subto-
mograms) is proposed that can automatically focus the classification on the most
variable parts of 3D structures. This similarity metric can capture subtle differences
and does not involve any human intervention, thus alleviating bias. Based on this
metric, an iterative multi-reference clustering scheme is introduced that makes use
of the FVM algorithm for subtomogram alignment (chapter [5) to achieve a sub-
stantial speedup. Moreover, k-means++ is adapted as the initialization strategy for
the clustering procedure to avoid being trapped in local optima and to accelerate
the convergence. Comparisons of AC3D against the Constrained Principle Compo-
nent Analysis (CPCA) approach [Forster et al., 2008] and the maximum likelihood
approach MLTOMO [Scheres et al., 2009] on a simulated dataset show significant
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6. Subtomogram Classification

Algorithm 6.1 AC3D
Input: SS: A set of input subtomograms, k: Number of classes.
Output: CS: Class-labeled subtomograms.
1: Pre-align SS
. Initialize k class centers SV = {Vq,..., Vi}
while #class changes > 0.5% do
Align SS to SV and obtain the corresponding scores SC'S
Determine the noise class so that SS = S5 U SS,0ise
Calculate the focused scores (F'SS) of S5’ with respect to SV
Determine the class labels according to F'SS, which results in C'S
Update the alignment of C'S according to the class assignment
Average classes in C'S to get the new class centers SV
end while
: return C'S

— =
—= O

improvements of classification accuracy. Application of AC3D on experimental cryo-

tomograms of ER-associated ribosomes yields clearly distinct conformations includ-

ing established ribosome states without any human intervention or prior knowledge.
This chapter is based on a previous publication in |[Chen et al., 2014].

6.2 Overall Classification Workflow

The overall workflow is first briefly described in Algorithm and some important
components will be explained in the following sections. The iterative optimization
procedure of AC3D is a multi-reference scheme, which is closely related to k-means
clustering. However, a more efficient initialization is used (see section [6.3). The
basic workflow goes as follows: Firstly, the subtomograms are pre-aligned using the
FVM algorithm described in chapter After initialization the class centers (the
subtomogram averages) are computed. During each iteration, subtomograms are
aligned and assigned to the “closest” class center. All the class centers get updated
subsequently using the assigned class members and their respective alignments. The
whole procedure iterates until it converges or the maximal number of iterations is
reached.

There are a few challenges when implementing this algorithm for CET. Firstly, an
appropriate similarity metric is required to measure the “distance” of each subto-
mogram to the class average. Constrained cross-correlation (CCC) is used here,
which constrains the correlation to the commonly sampled region in Fourier space
[Forster et al., 2008]. However, computing the CCCs is time-consuming because
each subtomogram has to be optimally aligned to the class centers prior to com-
puting the CCC. The alignment is a problem of 6 DoFs, 3 for translation and 3
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for rotation. The speed of subtomogram alignment is the bottleneck of the entire
procedure and thus limits its practical use. This problem is tackled by the FVM
algorithm presented in chapter Secondly, the SNR of cryo-electron tomograms
is relatively low making it difficult to identify outliers/noise that may deteriorate
the clustering performance. This problem is explicitly handled here using the score
distribution functions. Thirdly, it is difficult to classify subtle structural differences
in CET data. The CCC quantifies the similarity between two volumes globally or
within a subjectively chosen real-space mask of interest [Forster et al., 2008]. An
objective and robust way has to be found to define the mask where significant dif-
ferences are located because the noise may otherwise deteriorate the classification
performance. Here, an algorithm is introduced to automatically focus the clustering
on the variable parts of the macromolecule of interest and calculate the so-called
focused score as the similarity measure. Some features will be discussed in detail in
the following sections.

6.3 Initialization of Class Assignment

K-means clustering normally starts with a random initialization of the class assign-
ment. Nevertheless, it is known that the performance of k-means strongly depends
on the starting condition. There is no guarantee that the global optimum can be
achieved. Moreover, a bad initialization decelerates the convergence of k-means. A
common strategy is to run k-means multiple times with different seeds and then to
choose the result with the best score as the final output. However, this strategy is
not applicable here because each iteration is computationally intensive.

Arthur and Vassilvitskii proposed an algorithm named k-means+-+ to improve
the initialization step [Arthur and Vassilvitskii, 2007]. The basic idea is to choose k
cluster centers successively, each of which is randomly picked with a probability pro-
portional to its squared distance from the closest existing center. It is shown that k-
means++ converges faster than k-means with random initialization and guarantees
it is O(log k)-competitive with the optimal clustering. In contrast, the performance
of k-means with random initialization can be arbitrarily worse than the optimum
[Kanungo et al., 2004].

Here, k-means++ was implemented with a few important modifications for ap-
plication to CET (Figure : 1. The class center is not a single subtomogram,
but rather an average of a certain portion of the whole dataset containing N subto-
mograms. The reason is that one single subtomogram has low SNR and is affected
by the missing wedge. 2. The first class center is the average of the aligned subto-
mograms with top |N/k| scores, which are obtained by the CCCs from the pre-
alignment. This class is thus similar to the average of the whole dataset. 3. The
subsequent class centers are the averages of | N/k| subtomograms from the whole
dataset. These subtomograms are chosen at random with probabilities proportional
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Figure 6.1: K-means++ is adapted as the initialization strategy. In the two-
dimensional simplification each square represents a subtomogram. The distance
between the squares is the distance measure given by Equation [6.1] For convenience
of the illustration, the 2D simplification is drawn here. Assuming a subset of subto-
mograms (upper left, outlined with a solid line) is already chosen yielding the first
class center (#1), the next class center (#2) is then the subtomogram average of a
new subset (e.g., bottom right, outlined with a dashed line), in which each subto-
mogram is randomly picked with a probability proportional to the squared distance
function (indicated by the colors of the squares and the scalebar).

to the squared distance functions. 4. The distance function D used here is the nor-
malized Euclidean distance, which can be derived from the CCC. Mathematically,
given a set of class centers SV = {V4,...,Vi} and a subtomogram S, D can be
calculated as:

D(S,SV) = in V2—-2-CCCO(V,S). (6.1)

The final initialization algorithm is presented in Algorithm [6.2] The computa-
tional cost of this step is marginal compared to the others in Algorithm and the
whole clustering procedure normally converges faster with this new strategy.

6.4 Noise Class Handling

The subtomograms under investigation often include outliers, typically false posi-
tives from the automated or manual detection or subtomograms that are too noisy
to be aligned accurately. These outliers tend to degrade the clustering performance.
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Algorithm 6.2 Initialization of AC3D
Input: SS: A set of input aligned subtomograms, k: Number of desired classes.
Output: SV: A set of initial class centers.
1: n= I_N/k‘J
2: Sort S.S according to the scores and average the top n subtomograms to get V;
3 SV = {Vl}
4: fori=2:k do
58 ={}
for j=1:ndo
VS € S8, calculate P oc D*(S, SV)
Pick S; € SS without replacement at random with probability P;
SS9+ S5 U{S;}
10: end for
11:  Average SS’ to get V; and SV + SV U{V;}
12: end for
13: return SV

To ensure the robustness of the classification with respect to such outliers, a cer-
tain percentage of all the subtomograms is assigned to a “noise class” during each
iteration. This step is conducted before the class label determination step. If a
subtomogram is assigned to the noise class it will be excluded from the remaining
steps of that iteration. Importantly, the subtomogram will be included again in the
subsequent iterations and may be assigned to a different class.

To decide which subtomogram belongs to the noise class, the probability is calcu-
lated using the score distributions. Given a set of subtomograms SS = {Sy,..., Sy}
and a set of class centers SV = {V;,...,Vi}, SS is first aligned to SV using the
FVM algorithm. For each V; € SV, we will have a set of similarity scores (score
distribution function): SCS; = {SC4,...,SCy}. Assuming the noise class has low
score and it is statistically independent of all class centers SV, the probability of a
subtomogram S; € S5 not belonging to a class Vj is proportional to the distance of
the subtomogram to the class center (Equation [6.1)): P; ;{SC; < SC},VSC € SCS;.
Finally, the overall probability of .S; being noise can be calculated by the joint prob-
abilities of not belonging to any class: P, = H§:1 P, ;. Sorting the probabilities and
setting a threshold of the list will then yield the noise class.

6.5 Focus Mask and Focused Score

Another critical step is the automatic calculation of the focus mask F'M and the
corresponding focused score F'S. Given two volumes (class centers) V; and V,, FM
is calculated as follows (Figure [6.2)): 1. Low-pass filter Vi and V5 (according to the
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Figure 6.2: Steps of calculating the focus masks F'M; and F' M, of two class centers
Vi and V5.

corresponding resolution) to reduce noise influence and normalize them (mean=0,
std=1) so that they have approximately the same intensity scale. 2. Align V; and
V5 to make sure they have the highest correlation. 3. Multiply the aligned V; and
V5 with a mask M, if provided, to enforce F'M to be computed inside M. Note this
step is optional and M is only used for explicitly constraining the classification, e.g.,
filtering out hypervariable areas. 4. Calculate the standard deviation map S7T'D
of the aligned V; and V5. In this case ST D of two volumes is essentially the same
as their absolute difference map. 5. Threshold ST'D according to a specified value
and binarize it by setting the areas above the threshold to 1 and those below it
to 0 resulting in FM. 6. Transform FM back to the respective orientations and
positions of V; and V5, which results in a pair F'M; and FM,. Note for each pair
(V1, Va), their focus masks are also a pair (F My, F'My).

Finally, F'S;; of a subtomogram S; and V; can be obtained by first aligning S5;
to V; and then calculating the local CCC [Forster et al., 2008]:

FS;; = ZS’ (z,y,2) - Vi(2,y,2), (6.2)

z,Y,2

FMj(x,y7z) ) (FT_1<‘§1' ) w) _§1/>
¢zw,mwwy¢»@T4@ww—§W

Sl = FT7Y(S; -
7 Z%yZFM T,Y, %2 Z UJ

S| =

Y

Herein, S; is the Fourier transform of S; and w is the corresponding sampling region
in Fourier space. Vj’ can be computed analogously. Note that if F'M; is a unit
volume, F'S;; is identical to CCCj;.

The most important factor involved in calculating the focused score is the thresh-
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old. For the convenience of the specification, a parameter t is introduced here:
threshold = mean(STD) + t x (max(STD) — mean(STD)). It is obvious that if
t = 0, the threshold equals to the mean value of the ST'D map; if t = 1, the max-
imum value of the ST D map is used as the threshold. The parameter ¢ indirectly
determines the size of the focus mask. For the applications in CET, 0.2 — 0.4 is
normally a good range.

6.6 Multiclass Label Determination

Binary class label determination is straightforward. Given a subtomogram S; and
two class centers (V7, V5), we first calculate (F'M;;, FM,;) and their corresponding
FSy;, F'Sy;. The class label of .S; will then correspond to the class average with the
larger value between F'S;; and F'Sy ;.

Multiclass label determination, i.e., class assignment to more than two classes,
is not trivial because F'M is defined pairwise. Focus masks that incorporate the
structural discrepancies of more than two volumes are less discriminative than those
pinpointing pairwise differences because the focus mask of multiple volumes will
involve more voxels than any pairwise F'M. In order to use the pairwise F'M for
classification a voting strategy is used for the multiclass label assignment (Figure
. The focus score is defined with respect to a pair of class centers and can be
therefore considered as a binary classifier, which can produce a vote to one of the
classes between the pair. For each comparison of a subtomogram .S; with a pair of
class centers, the binary class label is determined according to the vote. The final
class label of S; is determined by a voting of all the pairwise comparisons.

6.7 Dataset Preparation

6.7.1 Simulation of Ribosome Subtomograms

Three different states of ribosomes were simulated using atomic models from the
Protein Data Bank (PDB) (Figure [6.4h): the Saccharomyces cerevisiae 80S ribo-
some (IDs: 3IZB, 31ZE, 3IZF and 3IZS), the S. cerevisiae 80S ribosome bound to
the Sec61 translocon (ID: 2WWB) and the S. cerevisiae 80S ribosome bound to the
Signal Recognition Particle (SRP) (ID: 1RY1). The simulations were conducted as
described in section for SNR=0.01. For testing the performance on an unbal-
anced dataset, the number of particles for each class was 150, 100, 50, respectively.
Furthermore, 100 noise particles were added into the dataset to test the robustness.
They were spheres with diameters ranging from 15 to 30 nm. They had similar mean
values as the 80S ribosome and the same SNR. In total 400 subtomograms of size
100% voxels were simulated with a defocus of 4 pm and voxel size 0.47 nm. The tilt
angles ranged from —60° to 60° with 3° as the angular increment. The tomograms
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6. Subtomogram Classification

Figure 6.3: Multiclass label determination. A voting strategy is used for multiclass
label determination. The subtomogram under investigation with unknown class
label (top left) will be assigned to the class with the most votes from pairwise
comparisons, i.e., class 2 in this case.

were randomly translated with respect to the center within the range of 10 voxels
and randomly rotated.

6.7.2 Experimental Dataset of ER-Associated Ribosomes

Rough microsomes were prepared from dog pancreas and vitrified on lacey car-
bon molybdenum EM grids (Ted Pella, USA) as described in [Pfeffer et al., 2012].
Tilt series were acquired using a FEI Titan Krios TEM equipped with a Gatan
“K2 summit” direct electron detector, operated in frame mode with 5-7 frames per
projection image. The TEM was operated at an acceleration voltage of 300 kV.
Single-axis tilt series were recorded from —60° to +60° with an angular increment
of 2° at a nominal defocus of 4 um and an object pixel size of 2.62 A using the Serial
EM acquisition software [Mastronarde, 2005]. The cumulative electron dose did not
exceed 60 electrons/A?2.

Frames from the K2 DDD were aligned using quasi-expectation maximization
implemented in the MATLAB toolbox AV3 [Forster et al., 2005]. Phase correction
of single projections was performed using the MATLAB scripts described in [Eibauer
et al., 2012, and tomogram reconstruction (object pixel: 2.1 nm) and template
matching were accomplished using PyTom [Hrabe et al., 2012] as described in [Pfeffer
et al., 2012], followed by extraction of ribosome candidates. No Wiener filtering was
applied in this case. A preliminary classification [Forster et al., 2008] was carried
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out to remove most of the false positives, e.g., gold markers, ER membranes or
carbon edges. Finally, 2,584 subtomograms (200° voxels, object pixel: 0.262 nm)
were retained and reconstructed for further processing.

6.8 Results

6.8.1 Classification of Simulated Ribosome Subtomograms

AC3D was first assessed on a simulated dataset of S. cerevisiae 80S ribosomes bound
to different cofactors involved in SRP mediated protein translocation into the En-
doplasmic Reticulum (ER) (Figure[6.4h): the 80S ribosome alone, the 80S ribosome
bound to the Sec61 translocon, and the 80S ribosome bound to the SRP. For conve-
nience, we name the 80S ribosome as class #1, the 80S ribosome bound to the Sec61
channel as class #2, the 80S ribosome bound to the SRP as class #3, and noise par-
ticles as class #0. The parameter ¢ (section was set to 0.2. For comparison,
this dataset was also classified into four classes using CPCA in combination with
k-means clustering [Forster et al., 2008] and the maximum likelihood approach ML-
TOMO implemented in Xmipp [Scheres et al., 2009]. For CPCA 5 eigenvectors were
retained for k-means and for MLTOMO 20 iterations were executed with reg0=>5,
regk'=0 and reg_steps=>5.

The confusion matrices are shown in Table [6.1], in which also the true positive
rates (TPR) and false positive rates (FPR) are listed. Table [6.1]indicates a signifi-
cantly better performance of AC3D compared to CPCA and MLTOMO in terms of
both, TPR and FPR. Moreover, the classification results of AC3D (class centers) are
shown in Figure [6.4b, in which the 3D densities are colored by the STD map (prior
to threshold) to illustrate the autofocus ability of AC3D. All the tested methods
exhibited excellent performances of distinguishing the noise class. This is due to
the property of the noise simulation here. Currently, the assumption is that there
is no correlation between the noise and the structure signal. The Gaussian white
noise was added into the projections according to the specified SNR. As a result,
the simulated noise particles were relatively easy to be classified out. However, the
noise situation in reality is much more complicated and not completely understood.
Thus, the real case scenario is usually more difficult. The noise was added here as
a control.

To demonstrate the benefits of two key components of AC3D, i.e., the advanced
initialization (k-means++) and the focused score, the classification results of AC3D
were evaluated with each of these two features turned off (Table [6.2). When the
random class assignment was used in the initialization step, the obtained accura-
cies were essentially identical in this case, but the convergence was slower (2 more
iterations) compared to AC3D with k-means++. Thus, k-means++ increases the
classification speed. When the conventional CCC was used as the similarity metric
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Figure 6.4: Classification result on simulated dataset of 80S ribosomes. (a) Densities
simulated from atomic models of three ribosome states. From left to right: S.
cerevisiae 80S ribosome (model #1), 808 ribosome bound to the Sec61 translocon
(model #2), and 80S ribosome bound to the SRP (model #3). (b) Classification
result. From left to right: subtomogram average of class #1, subtomogram average
of class #2 colored by the STD against #1 and subtomogram average of class #3
colored by the STD against #1.

\ CPCA \ MLTOMO \ AC3D \
Predicted Predicted Predicted
H0 [ #1 [ #2 [ #3 HOT#1 [ #2] #3 HO #1 [ #2 [ #3
=[#0]100] 01 00 |=[#0[100] 0 |00 |=[#0][93] 7[00
E[#1]15 [ 7659 | 0 |E[#1| 2 [106 |42 | 0 | E[#1| 4 [125][21 | 0
<[#2] 8 56 36| 0 |<|#2| 1 [68]31] 0 |<|#2] 2] 0 [98]0
#7100 43 #1028 15] 7 #1110 0 |49
TPR FPR TPR FPR TPR FPR
#0 100% 10% #0 100% 1% #0 93% 2.3%
#1 50.7% | 22.4% #1 70.7% | 38.4% #1 83.3% 2.8%
#2 36% 19.7% #2 31% 19% #2 98% ™%
#3 86% 0% #3 14% 0% #3 98% 0%

Table 6.1: Results of compared classification approaches for simulated ribosome
dataset. Classes #1-#3 are shown in Figure [6.4] and class #0 corresponds to the
noise class. From the class assignments the true positive rate (TPR) and false
positive rate (FPR) were computed.
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‘ AC3D with random initialization ‘ AC3D without focused score ‘ AC3D ‘
Predicted Predicted Predicted
#0 | #1 | #2 #3 H#0 | #1 | #2 | #3 #0 | #1 | #2 | #3
=|#0| 91| 6 2 1 =|#0| 93| 1 0 6 |=|#0] 93| 7 0 0
E[#1] 6 [123] 21 0 E[#1] 2 [ 7454 |20 | E/#1] 4 [125[21] 0
< |#2| 3 0 |97 0 < | #2| 3 |49 | 37 | 11 | <<|#2| 2 0 |98 ] 0
#3110 0 0 50 #3 | 2 8 |33 7 #3 | 1 0 0 | 49
TPR FPR TPR FPR TPR FPR
#0 91% 3% #0 93% 2.3% #0 93% 2.3%
#1 82% 2.4% #1 49.3% 23.3% #1 83.3% 2.8%
#2 97% 7.7% #2 3% 29% #2 98% %
#3 100% 0.3% #3 14% 10.6% #3 98% 0%
‘ Convergence: 8 iterations ‘ Convergence: 7 iterations ‘ Convergence: 6 iterations ‘

Table 6.2: Influence of AC3D’s initialization and focused score on classification
accuracy. Classification of the simulated ribosome dataset was performed by AC3D
with random initialization and with a uniform F'M for comparison with the AC3D
enabling all the features.

in AC3D, the classification accuracy degraded dramatically. Thus, the superior clas-
sification performance of AC3D compared to CPCA and MLTOMO can be almost
exclusively attributed to the focused score.

Finally, the parameter ¢ in AC3D was evaluated at different levels (0, 0.2, 0.4,
0.6) to demonstrate its influence. The confusion matrices are shown in Table
which shows the best performance was achieved when ¢t = 0.2. The classifications
were inferior when t = 0 and ¢ = 0.4, which indicates the underlying focus masks
were either too big or small. Lastly, ¢ = 0.6 yielded the worst accuracy.

6.8.2 Classification of ER-Associated Ribosomes

AC3D was further tested on an experimental dataset of mammalian ribosomes bound
to the ER protein translocon. In previous studies of the same sample, the membrane-
bound 80S ribosome and two complexes with prominent lumenal domains were re-
solved [Pfeffer et al., 2012, Pfeffer et al., 2014]: the translocon-associated protein
complex (TRAP) and the oligosaccharyl-transferase complex (OST). The acquired
subtomograms depict ribosomes bound to ER-derived microsomes. Due to the highly
variable diameters of the microsomes the curvature of the membrane would dom-
inate the classification; to prevent classification according to membrane curvature
the classification was constrained on the ribosome and the ER lumenal region. This
was achieved by constructing a mask M (section covering the corresponding
region and excluding the membrane part.

The whole dataset was firstly classified into 4 classes by AC3D with t = 0.4.
No noise class was specified here in order to be a fair comparison with [Pfeffer
et al., 2014]. The resulting four classes are depicted in Figure : class #1 clearly
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| AC3D: t =0 | AC3D: t = 0.2 |
Predicted Predicted
H0 | #1 [ #2] #3 HOT #1 [ #2] #3
=[#0] 95 5[ 0]0|=[#0[9] 7070
E[#1[ 4 [130[14] 2 |E[#1| 4 12521 ]| 0
<|#2[ 1 | 7160 [32|<[#2] 20 98] 0
#3170 [ 1 [ 4|45 #3171 10 [0 |49
TPR FPR TPR FPR
#0 95% 1.7% #0 93% 2.3%
#1 86.7% 5.2% #1 83.3% 2.8%
#2 60% 6% #2 98% 7%
#3 90% 9.7% #3 98% 0%
| AC3D: t =04 | AC3D: t =06 |
Predicted Predicted
H0 [ #1 [ #2 ] #3 HOT #1[#2] #3
—=[#0]92 6 [ 0] 2 |=[#0[9% | 212
E[#1] 6 [ 75 [47 [ 22| E[#1] 2 [69[23]56
<|#2[ 1 [ 10 |8 ] 0 |<|[#2] 2 [30 |68] 0
#3111 0 [ 0 |49 A3 1170 [ 0 |49
TPR FPR TPR FPR
40 92% 2.7% #0 95% 1.7%
#1 50% 6.4% #1 46% 12.8%
#2 89% 15.7% #2 68% 8%
#3 98% 6.9% #3 98% 16.6%

Table 6.3: Influence of AC3D’s parameter ¢ on classification accuracy. Classification
of the simulated ribosome dataset was performed by AC3D with different parameters
t: 0,0.2, 0.4 and 0.6.

captures 80S ribosomes bound to a translocon population with only TRAP, class
#2 80S ribosomes bound to a translocon population with TRAP and OST, class #3
60S large ribosomal subunits with only TRAP, and class #4 60S ribosomal subunits
associated with TRAP- and OST-containing translocons. The populations of the
four classes are 564 (21.8%), 970 (37.5%), 737 (28.5%) and 313 (12.1%) particles,
respectively. The classification agrees well with the results in [Pfeffer et al., 2014],
where the foci for classification were chosen based on biological prior knowledge. In
detail, CPCA classification was conducted on the same dataset with firstly a sphere
mask focusing on the entire ribosome and then another sphere mask covering the
ER-lumenal region [Pfeffer et al., 2012, Pfeffer et al., 2014]. The resulting class
averages are essentially the same as depicted in Figure [6.5a. The confusion matrix
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AC3D
H1 | #2 | #3 | #4
#1299 | 381 | 250 | 68
#2253 [ 575 | 21 | 14
#3190 | 8 [ 327 49
#4 3 | 6 | 139182

CPCA

Table 6.4: Confusion matrix of classification results from CPCA and AC3D on ER-
associated ribosomes.

of the classification results from CPCA and AC3D is shown in Table 6.4l

Moreover, a further classification round was conducted on the particles included
in classes #1 and #2, focusing on the 80S ribosome part only. The number of classes
was set to 3 and the obtained class averages are shown in Figure [6.5b. Consistent
with previous studies using cryo-electron microscopy single particle analysis [Frank
and Gonzalez, 2010}, Melnikov et al., 2012, |Wilson and Doudna Cate, 2012], a highly
flexible ribosomal L1-stalk is observed (Figure , right panel). Furthermore, we
find a non-ribosomal density of approximately 100 kDa bound to the ribosomal stalk
base in classes C1 and C2, but not C3, which likely corresponds to canonical trans-
lation elongation or termination factors. The number of subtomograms assigned
to class C1 was 637 (41.5%), class C2 507 (33%) and class C3 390 (25.4%). The
classification result was furthermore quantitatively assessed by the Fourier Shell
Correlation (FSC) curves. Three types of FSC curves were calculated for each class:
intra-class FSC, inter-class FSC and FSC of a random, same-sized portion of subto-
mograms (Figure ), from which we can see the intra-class FSCs are generally
better or similar than the random FSCs. Because the FSC measures the global
similarity, which is dominated by the structurally invariant core ribosome, the su-
periority of intra-class FSCs is more obvious when compared to inter-class FSCs,
which indicate the level of similarity between the different classes. Taken together,
these classification results suggest that AC3D is capable of separating different con-
formations of ER-associated ribosomes, which all agree with previous studies relying
on much larger datasets.

6.9 Discussion

Here, a multi-reference clustering algorithm (AC3D) was introduced for subtomo-
gram classification and simultaneous alignment. For large datasets AC3D is compu-
tationally more efficient than clustering approaches requiring pairwise correlations of
all subtomograms, such as PCA-based approaches |Bartesaghi et al., 2008, |Forster
et al., 2008]. The main distinguishing feature of AC3D among multi-reference ap-
proaches is the ability to automatically focus the similarity measurement to regions
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Figure 6.5: Classification result for mammalian ribosomes bound to the native ER
protein translocon. (a) The whole dataset was first classified into 4 classes that ap-
parently corresponded to the following assemblies: 80S ribosomes bound to a translo-
con population with only TRAP (class #1), 80S ribosomes bound to a translocon
population with TRAP and OST (class #2), 60S ribosomes with only TRAP (class
#3), and 60S ribosomes with TRAP and OST (class #4). (b) Classes #1 and #2
were merged and further classified into 3 classes (class C1, C2 and C3) with the
focus on the ribosome density. The dotted circles mark the presence/absence of a
non-ribosomal density bound to the ribosomal stalk base, which likely corresponds
to canonical translation elongation or termination factors. The 3 class averages are
overlaid on the rightmost side to show the high flexibility of the ribosomal L1-stalk
(outlined with a dotted rectangle). (¢) The FSC curves of the class averages in the
panel b. For each class, three types of FSC curves are plotted: the intra-class FSC,
the inter-class FSC and the FSC of a random portion with the same number of
subtomograms.
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of significant structural discrepancies. This autofocus ability does not require any
prior knowledge or human intervention, which avoids hypothesis-driven bias of clas-
sification results. Moreover, k-means++ was adapted for the initialization of the
iterative clustering algorithm, which improves the convergence speed and makes the
procedure less vulnerable to local optima. Last but not least, the integration of the
FVM algorithm for subtomogram alignment makes AC3D computationally highly
efficient compared to other state-of-the-art approaches without compromising on
accuracy.

When evaluated on a realistic simulated dataset of 80S ribosomes bound to
different cofactors, AC3D achieved a nearly perfect classification of the different
states while two other tested state-of-the-art classification approaches, CPCA and
MLTOMO, yielded significantly less accurate class assignments. The dataset was
designed such that it encapsulated three challenges of subtomogram classification:
(i) In particular between two classes, the bare 80S ribosome and the 80S ribosome
bound to the Sec61 channel, the structural difference arose from only a 60 kDa
density, indicating that AC3D can identify highly subtle structural heterogeneity
in low SNR data. (ii) The populations of different classes were unbalanced by a
factor of up to three. The ability of handling the unbalance situation comes from
two aspects. First, the class centers are generated by weighted averaging of the
subtomograms (Equation . The weighting ensures a relatively fair comparison
of the similarity, regardless of the size of different classes. Secondly, the focused
score (section and the voting strategy (section [6.6) allow a subtomogram to
be assigned to a small class, even though the subtomogram’s overall similarity with
a larger class might be higher. This prevents the large class “absorbs” more and
more entities from the others. (iii) A considerable amount of outliers was present.
It is highly encouraging that AC3D yielded a near-to-perfect classification result
under these challenging conditions, which often occur in experimental data from
physiological samples.

AC3D was then applied to an experimental dataset of ER-associated ribosomes.
For the ER-lumenal part of the complex, essentially the same classes were retrieved
as the ones obtained previously using biological knowledge-based classifications [Pf-
effer et al., 2014]: the OST complex was present in the translocon holocomplex
in substoichiometric amounts. The most prominent classes for the cytosolic ribo-
somal density were assembled 80S ribosomes and 60S ribosomal subunits. Thus,
the smallest structural difference detected in the initial classification was the pres-
ence/absence of the 250 kDa lumenal OST density. The significant enrichment of
OST in translocon complexes bound to fully assembled 80S ribosomes (62.8% occu-
pancy) compared to 60S ribosomal subunits (29.8% occupancy) suggests that OST
has a higher affinity to translocon complexes engaged in cotranslational transloca-
tion of a nascent peptide across the ER membrane. This affinity variation would
imply that the ER protein translocon is not a temporally invariant complex, but
rather undergoes compositional dynamics according to the translational state of the
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associated ribosome.

More subtle structural differences were detected when 80S ribosomal densities
were classified, revealing well-established flexibility of the L1-stalk and cofactor bind-
ing to the ribosomal stalk base. The approximate mass of 100 kDa of the cofactor
would be consistent for example with the 95 kDa eukaryotic elongation factor 2
(eEF2). Previously, different conformational states of the ribosome during transla-
tion could only be observed in CEM single particle data of purified ribosome parti-
cles. The classification results presented here for ribosomes in their native membrane
suggest that CET in conjunction with subtomogram classification by AC3D will be-
come a powerful method to study the mechanics of large macromolecular machines
in their physiological environment.
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Conclusion

In this thesis, a typical processing pipeline of CET is covered (Figure , which
includes four main aspects: tomogram reconstruction, macromolecule identification,
subtomogram alignment, and subtomogram classification. They are the key to high-
resolution structural studies of macromolecules in situ. Several algorithms were
presented here for each of these four steps. They were implemented as part of the
open-source software package PyTom, with the aim of assisting and unifying the
processing of CET data. Specifically, each individual aspect is briefly summarized
in the following and an outlook for possible further developments is provided.

Tomogram Reconstruction. The first step after acquiring the projections is
to reconstruct the 3D tomogram. Reconstruction itself is a vibrant research topic
which has a long history, e.g., in medical imaging field, and attracts the attention of
many mathematicians. The problem is well understood if the sampling is complete,
making the underlying equation system unique to solve. This is, however, rarely
the case in practice. Especially for CET, the specimen is imaged within a limited
angular range. As a consequence, no unique solution exists and the reconstruction
procedure becomes unstable. What makes the reconstruction in CET even more
challenging is the low SNR, leading to an unknown amount of errors in the result.
NUFFT is of particular interest in such case. Previously, it has been shown that
NUFFT exhibits excellent interpolation accuracy (forward problem) [Keiner et al.,
2009]. It is also natural to formulate the reconstruction (backward problem) in such
framework because the sampling points during image acquisition lie on a nonuniform
grid in Fourier space. Based on these considerations, INFR was introduced in chap-
ter |3 as an alternative Fourier-based reconstruction method. Its power is due to the
NUFFT and iterative refinement procedure. It has superior reconstruction accuracy
compared to the gridding method and yields tomograms with better contrast. More
importantly, with help of the adjoint NUFFT operations in the iterations, INFR
is able to recover certain missing information, resulting in a density map with less
artifacts. However, the expense is the increased computational time and required
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memory.

It will be interesting in the future to see if it is possible to find an appropriate
regularization strategy to reduce the noise level or the artifacts caused by the “miss-
ing wedge” problem, without losing the high frequency information or introducing
any structure bias.

One additional challenge of reconstruction in CET that has emerged in recent
years is the rapid improvement of the detector resolution, which results in a large pro-
jection size of 4k x4k or even 8kx8k. The computer memory that would be required
for reconstruction of full-sized tomograms is typically not available. For example, to
reconstruct the full 4k x4k x4k tomogram from projections of size 4k x4k, at least
256 GB memory is needed for only single precision format. Generalization of the im-
plementation of INFR to non-cubic volumes would reduce the memory requirement
for thin specimens, but the memory requirement is nevertheless huge. While tomo-
grams are often reconstructed at decreased resolution to provide an overview of the
imaged sample, specific features of interest are required to be reconstructed at full
resolution, for example for subtomogram averaging. Such reconstruction of specific
subregions is a principal problem for reconstruction methods because the underly-
ing equation systems become inconsistent due to the signal from the surrounding
that will influence all the subprojections of interest. This is called “interior prob-
lem” [Kudo et al., 2008, Natterer, 2001], which mathematically cannot be solved
uniquely. It raises challenges to the method described here, as well as to almost
all reconstruction methods available until now. To what extent this problem will
influence the final structure obtained by subtomogram averaging requires further
studies. It would be extremely useful to develop an algorithm that can reconstruct
the subtomograms at the original scale with affordable computing resources.

Another obstacle towards high-resolution reconstruction is the accurate correc-
tion of the CTF. As discussed in section [2.1.2] the Fourier transform of a projection
obtained using a TEM is multiplied by a CTF, which depends on the settings of the
microscope, e.g., the defocus, the accelerating voltage, the spherical aberration, etc.
The oscillatory nature of CTF makes the image features of certain frequencies weak
or even inverted. Therefore, a CTF correction procedure of the projections prior to
reconstruction is critical, in order to resolve structural information faithfully in the
high frequency region. Currently, the CTF correction in CET is still a challenging
task and lacks of powerful tools for automatic correction of large amounts of data.

Macromolecule Identification. After the tomogram is reconstructed, it is ready
for further analysis, such as macromolecule identification. If a specific type of macro-
molecule is of interest, its occurrences in the tomogram have to be extracted from
the background. While large structures like membranes can be relatively easily seg-
mented, it still remains infeasible to segment smaller structures (macromolecules).
The major difficulties arise from the noise condition and the “missing wedge” phe-
nomenon. The low SNR of the tomogram makes the structural features of macro-
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molecules difficult to recognize, which explains why few of the advanced object
detection methods from computer vision are applied in CET. This is made even
worse by the deformation created by the “missing wedge” problem: the structural
information along certain directions are unavailable.

A supervised learning approach was presented in chapter 4| to identify macro-
molecule in three steps. The major contribution is the development of rotation-
invariant features for 3D data. They are based on spherical harmonics, which form
an orthogonal basis system on the unit sphere. Importantly, there is an efficient
algorithm for the spherical harmonics expansion, which is an analogue of the FF'T
in Cartesian space. Similar to the Fourier shift theorem, the rotation of spherical
functions will not change the amplitudes of the coefficients from spherical harmonics
expansions. As a consequence, the features can be computed fast and used as the
rotation-invariant signatures for 3D data in SVM to improve the identification per-
formance. The method was applied to an experimental tomogram of ER-associated
ribosomes, where template matching suffered from a high percentage of false posi-
tives. In contrast, the proposed approach was able to reduce the false positive rate
significantly by yielding an average of clear ribosome-specific features and of higher
resolution.

Regardless of the advances demonstrated here, the macromolecule identification
remains the most challenging task among all the processing steps and there is still
room for improvement. For future work, it will be interesting to see if the proposed
approach can be generalized to detect other type of macromolecular complexes.
While the method was applied to detect ribosomes here, it is expected to provide
similar advantages for the detection of other complexes. Hence, it is of special inter-
est to determine the minimum mass of complexes that can be detected in tomograms
with satisfactory specificity and sensitivity.

Another direction worth investigating is the unsupervised learning approaches,
i.e., clustering of the features without the training phase. Although the supervised
learning approach has been demonstrated here to improve the identification perfor-
mance, the prerequisite for an accurate detection is the training on a large dataset.
This becomes an obstacle when applied to CET, because the training dataset is
either simulated, which is an approximation of the reality, or is constructed by man-
ual labelling of experimental tomograms, which is subjective and time-consuming.
Based on this consideration, the unsupervised learning approach might be an alter-
native. It is also intriguing to develop advanced features for 3D structures, which
should be noise robust and take the “missing wedge” effect into account. These
features could be applied either in a supervised learning approach, or in an unsu-
pervised approach, to improve the identification performance.

One additional challenge arises from detecting small macromolecules due to their
poor contrast and high noise level. With the advance of the microscope hardware
(e.g., DDD, phase plate, etc), a future direction is segmentation. It would be inter-
esting to develop a segmentation algorithm tailored to CET, to see if it is possible to
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detect small objects with the help of improved image qualities and denoising tech-
niques. Segmentation is of special interest, because it is an alternative approach to
template matching, which rules out any potential template bias.

Subtomogram Alignment. For in situ structural studies of macromolecules at
high resolution, it typically requires aligning the subtomograms extracted based on
the identification step to a common coordinate system and average them to enhance
the SNR. This is, however, not a trivial task. In addition to the “missing wedge”
problem, the contrast of each individual subtomogram is even lower than the whole
tomogram, making the registration algorithms from the medical imaging field not
applicable here. The alignment problem can be simplified under the assumption
that the structures contained in the subtomograms are rigid and homogeneousE]
Nevertheless, the alignment is still a complicated problem considering the complex-
ity of the solution space: every subtomogram has 6 alignment parameters to be
determined, making it extremely time-consuming to compute.

The main contribution of chapter |5| is to generalize the convolution theorem
to the rotational space based on spherical harmonic analysis introduced previously
in chapter [ It is shown that the SO(3) Fourier transform of the convolution be-
tween two spherical functions is equal to the pointwise multiplication of the spherical
Fourier transforms of the two functions. Based on this theorem, a fast rotational
matching (FRM) algorithm was proposed, in which the alignment problem is for-
mulated in Fourier space. The “missing wedge” can thus be conveniently handled
by introducing two mask functions. Afterwards, the FRM is integrated with the
fast translational matching into a unified alignment framework (FVM) via quasi-
expectation-maximization. As tested on a simulated dataset, a speedup of approxi-
mately three orders of magnitude was achieved by FVM without decrease of accu-
racy. Subsequently, it was shown that FVM was able to resolve structures beyond
20 A on experimental datasets.

Several aspects can be improved in the future: (i) Without considering interpo-
lation, the angular precision is (%)o. For the current computing power, a descent
maximum choice of B is 64, resulting in an angular precision of about 2.8°. This suf-
fices for most scenarios. If higher precision is expected, it has to be combined with a
local sampling of finer angular search. (ii) FRM searches the best angular match in
the whole rotational space. In some cases, this is unnecessary. For instance, when
there is prior knowledge about the orientation, it is preferred to constrain the angu-
lar search in the vicinity of a certain angle or around a certain rotation axis. These
constraints can be easily imposed in FRM by multiplying CCC(R) in Equation
with a mask function specifying the angular constraints. (iii) FVM is designed
for homogenous populations of subtomograms. However, it can be readily incor-
porated into multi-reference alignment procedures. For example, the demonstrated

IThe homogeneity assumption can be weakened by the subtomogram classification.
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advantages of FVM should enable better alignment and hence better separation of
particle populations [Xu et al., 2012]. FVM could also be integrated into maximum
likelihood approaches |Scheres et al., 2009} Stolken et al., 2011], which would be an
elegant solution to deal with structurally heterogeneous subtomograms. Thus, it
is anticipated that the FVM algorithm described here will also be instrumental for
dealing with heterogeneous data.

Subtomogram Classification. Structure analysis by subtomogram alignment and
averaging assumes all the subtomograms depict the macromolecule with the same
conformational state. This is, however, often not the case due to the heterogeneity
of the dataset. The heterogeneity arises from either false positives of the identifica-
tion step, or conformational changes when the macromolecules fulfill their biological
functions in situ. Subtomogram classification is therefore of particular importance
to group different states together, in order to improve the resolution or to study the
conformations of macromolecules in their native environment.

Most of the state-of-the-art classification methods quantify the similarity be-
tween two subtomograms globally. A more intuitive way is to focus the comparison
on the region of significant difference, which provides a stronger discriminative ability
than the global comparison. This is the basic idea of AC3D presented in chapter [6]
This autofocus does not require any prior knowledge and is calculated automatically,
reducing the human bias. Furthermore, the FVM algorithm proposed in chapter
is used in the classification framework, providing a significant speedup without sac-
rificing the accuracy. AC3D was compared to two state-of-the-art approaches on
a simulated dataset, where it showed a superior performance to classify the subtle
structure variations and the dataset with unbalanced classes. AC3D was further
evaluated on an experimental dataset of ER-associated ribosomes, where AC3D was
able to classify distinct conformations of well agreement with the previous result
[Pteffer et al., 2014] obtained based on biological prior knowledge.

Whereas AC3D performs excellently for figuring out whether cofactors are ab-
sent/present in complexes as shown here, for the future work it is interesting to test
how well AC3D works in the situations that the structure variations are not confined
to small regions, e.g., to classify datasets consisting of different species (sizes and
weights) of macromolecules.

Another challenge that AC3D shares with essentially all multi-reference classifi-
cation approaches is that the user must specify the number of classes &k, which is not
straightforward. Too few classes will mix up different conformations, whereas an
overestimated number of classes might result in an insufficient amount of subtomo-
grams per class, increasing the negative influence of the noise. A common guideline
is to oversample k properly, because this makes it more likely to discover small
classes and the clustering result will become more stable. In a subsequent step, the
classes can be either manually examined and aggregated, or automatically merged
using hierarchical clustering of the class averages |[Hrabe et al., 2012]. Nevertheless,
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it would be beneficial to find a criterion to automatically determine the number of
classes.

Software Platform. All the methods presented in this thesis have been imple-
mented and included in the software PyTom (www.pytom.org) |Hrabe et al., 2012],
an open-source tool aimed at providing a unified platform of data analysis for CET.
PyTom covers a typical processing pipeline described above, as well as numerous
handy scripts to assist the 3D image analysis. PyTom adopts a two-layer architec-
ture: the low level is implemented in C/C++ and the high level in Python. The
two layers are bridged using SWIG, a software tool designed for connecting pro-
grams or libraries written with different programming languages. The benefit of
this architecture is to keep the computational efficiency, while providing a flexible
and easily extendable interface for the developers and users. New functionalities and
customized methods can be added in this platform rapidly without the pain of learn-
ing obscure programming languages or taking care of the computational efficiency.
Moreover, considering the dramatic increase of the data size nowadays and compu-
tational demand thereby, Message Passing Interface (MPI) is employed in PyTom
to parallelize the computations in, e.g., template matching, subtomogram alignment
and classification steps. Parallelization becomes an indispensable tool enabling the
step towards subnanometer resolution using CET. Finally, PyTom provides a web-
based, user-friendly interface and a rich documentation, which allow the users to
process their data smoothly and unambiguously.

In summary, CET is becoming an important imaging tool nowadays to study
the 3D structures of macromolecular complexes in their near-to-native conditions.
While there are still continuous (hardware or methodology) developments of CET
technique, the processing of the CET data is also crucial and an active research
field. The approaches presented in this thesis show a step towards establishing an
automatic, accurate, efficient and unbiased analysing framework of CET data.
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A

Generalized Convolution Theorem
of Spherical Functions

The proof of Equation is provided here. To rotate a spherical function g(n) €
L£2(S5?), we have

Arg(n) = => Z Y[R ] (A1)

I m=-—1

The spherical harmonics are rotated by U!,, the matrix elements of the irreducible
representation of SO(3) |Brink and Satchler, 1993]:

Y[R n) ZUﬁ,mYnl (A.2)
Therefore, the rotated g(n) can be expanded as:

Mgl = 3 30 Y gV (A3)

I m=—l n

It can be seen that the rotation of a spherical function will not change its energy
among degrees [:

I G 1= 1 G2 Unin ||, YR € SO(3). (A.4)

The correlation SCC(R) in Equation [5.3|can then be calculated by using the Fourier
expansions of f(n) and Arg(n):

SCC(R) = / S2f(n)ARg(n>d77

Y Y Y Y Y AGtEm [ TEmyiman. (a5

I m=—l n p=—mk=—n
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A. Generalized Convolution Theorem of Spherical Functions

Due to the orthogonality of the spherical harmonics function, we have:
nes?

where 0 is the Kronecker delta function. The nonzero terms only appear when
m =m' and [ = [I'. Thus, Equation can be reduced to:

SCC(R) =" Z Z fLabUL, (R) (A7)
I m=—Ilp=-I
By applying SOFT (Equation to the above equation, we obtain:
SOFT(SCC(R)) = hp, = Z Z Ll / UL (R)UX(R)AR. (A.8)
I m=—Ip=—I (3)

Due to the orthogonality:
/ Ul (R)UL(R)AR = 6130mq0pr, (A.9)
ReSO(3)

Equation have nonzero terms only when [ = n, m = ¢ and p = r, which leads
to:
Al AT
SOFT(SCC) = Iy, = fradh- (A.10)

Thus, the proof of Equation [5.4] is completed.
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