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Abstract

Ultrasound-imaging is nowadays the modality of choice for initial examinations
in vascular applications. Real-time capabilities and the interactive nature of
this modality allow trained sonographers to utilize their experience to perform
reliable diagnosis with a minimal expenditure of time. For untrained doctors,
however, a similar diagnosis is much more time-consuming and error prone.
Consequently, especially 3D sonography suffers from a high dependency on the
operator and variations of acquisition parameters, hampering the full clinical
acceptance of those techniques.

With the goal of an improved reliability and quality of the whole ultrasound
processing chain, this thesis introduces a set of mathematical and technical
methods, incorporating domain-specific knowledge in both the acquisition
process and further post-processing and quantification steps. This includes
a novel solution for the acquisition of spatio-temporal ultrasound data, i.e.
3D+t information, by correlating pulse-oximetry sensors with ultrasound flow-
velocity signals to retrieve an accurate reference for phases of cardiac pulsation.
Moreover, both physically and biologically inspired models for an improved
processing of ultrasound data are introduced. As such, a framework for a
detailed physical modeling of ultrasound acquisitions is described, utilizing
directed, unstructured graph networks to represent arbitrary sampling spaces,
i.e. freehand ultrasound data. Based on such modeling, the estimation of confi-
dence values for each sample of a 3D ultrasound acquisition is used to show
the capabilities of the general framework. Furthermore, a geometrical model
for the appearance of vessels in ultrasound images is introduced. Thereby,
an approach to identify desired structures using specially designed filters is
presented and second order derivatives are modeled accordingly. Finally, a
biologically inspired waveform model of blood flow is used as a basis for the
combined reconstruction of blood flow velocities along with laminar pulsation
profiles from multiple 3D duplex-ultrasound acquisitions. Our results prove
that such methods could potentially facilitate an improved understanding and
future diagnosis of vessel flow dynamics in the clinical routine using 3D+t
ultrasound imaging.
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Zusammenfassung

Ultraschall als bildgebendes Verfahren ist heute die primare Modalitét fiir
Erstuntersuchungen innerhalb der Gefafidiagnostik. Dank einer hohen Interak-
tivitdt und der Moglichkeiten zur Bilddarstellung in Echtzeit konnen erfahrene
Arzte ihr Wissen einsetzen, um innerhalb kiirzester Zeit eine zuverldssige Dia-
gnose zu stellen. Im Gegensatz dazu neigen Arzte mit wenig Erfahrung im Um-
gang mit Ultraschall zu zeitaufwédndigeren und gleichermafien fehleranfalligen
Diagnosen. Aufgrund dieser hohen Untersucherabhédngigkeit sowie des star-
ken Einflusses von Aufnahmeparametern wiahrend der Untersuchung sind vor
allem 3D-Ultraschall-Systeme heutzutage innerhalb der Medizin nicht weit
verbreitet.

Mit dem Ziel einer hoheren Verldsslichkeit und Qualitat wahrend der Auf-
nahme, wie auch in der weiteren Verarbeitung, beschreibt diese Arbeit sowohl
mathematische als auch technische Methoden, um bildgebungsspezifisches
Wissen innerhalb der Verarbeitungskette zu integrieren. Diese Methoden bein-
halten zum einen ein System zur Aufzeichnung von 3D+t Ultraschall-Daten
unter Verwendung eines Pulsoximeters in Korrelation mit Duplexsonographie
wéhrend der Aufnahme, wodurch eine exakte Rekonstruktion der Pulsphasen
innerhalb eines Blutgefafies ermoglicht wird. Weiterhin werden Modelle zur
physikalischen und physiologischen Modellierung zur verbesserten Verarbei-
tung der Daten vorgestellt. Einerseits werden dabei US-Aufnahmeparameter
physikalisch innerhalb eines gerichteten, unstrukturierten Graphen model-
liert, um daraus Informationen iiber die Zuverladssigkeit der Daten abzuleiten.
Andererseits wird auch die spezifische Erscheinung von Geféflen in Ultraschall-
Bildern verwendet, um daraus ein geometrisches Modell herzuleiten. Hierftir
wird ein Ansatz zum Auffinden von Zielstrukturen mittels speziell angepasster
Filter innerhalb der zweiten Ableitung vorgestellt und auf Problemstellungen
in der Gefdfsdiagnostik angewendet. Schlussendlich wird innerhalb der Ar-
beit gezeigt, wie ein periodisches Pulsphasen-Modell unter Annahme eines
laminaren Blutflusses verwendet werden kann, um aus mehreren 3D Duplex-
Ultraschall-Aufnahmen ein vollstandiges Flussprofil in 3D+t zu rekonstruie-
ren. Die gewonnenen Ergebnisse zeigen dabei, dass derartige Methoden ein
umfassenderes Verstindnis der dynamischen Verdnderungen des Blutflusses
ermoglichen und somit langfristig auch fiir eine bessere Diagnosemoglichkeit
sorgen konnen.
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Thesis Outline and Publications

In the following, a brief outline of the main chapters in this dissertation is
presented.

Chapter 1: Introduction. In the first chapter, the basic principles of ultrasound
imaging with a brief general history will be given, followed by an overview of
the acquisition process and major clinical applications. Based on this general
overview, vascular ultrasound as a main application field of the methods
described in this thesis is introduced. In this scope, the current state of the
art, recent technological advances and requirements for clinically applicable
processing tools will be shown.

Chapter 2: Towards 3D+T Ultrasound. As the first major topic in this thesis,
the second chapter discusses 3D ultrasound acquisitions over time. This
includes an overview of applications, major challenges to be overcome, as
well as prior art. Further, the main contribution to this area is introduced,
incorporating anatomical and physical modeling of the ultrasound acquisition
process into the problem statement.

Chapter 3: Advanced Computational Methods in Vascular Ultrasound. As
the second field of contributions, advanced computational methods for vascular
ultrasound are presented. In this regard, a general overview of ultrasound data
processing, as well as main challenges and related work are given, followed
by the main contributions for different modeling approaches. This includes
a framework for general quadratic energy minimization problems, a method
for multi-scale tubular structure detection specifically adapted to ultrasound
imaging, and the reconstruction of 3D+T flow velocity profiles from multiple
3D Doppler ultrasound acquisitions.

Chapter 4: Conclusions and Outlook. The final chapter concludes the thesis
with a brief summary of the main work presented in this dissertation, as well
as remaining challenges and future directions, where a possible continuation
of the presented approaches is described.



Chronologic List of Publications

[Hennersperger et al., 2014] C. Hennersperger, D. Mateus, M. Baust, and
N. Navab, (2014), A Quadratic Energy Minimization Framework for Signal
Loss Estimation from Arbitrarily Sampled Ultrasound Data. In Medical Image
Computing and Computer-Assisted Intervention - MICCAI 2014 (pp. 373-380).
Springer International Publishing.

[Zettinig et al., 2014] O. Zettinig, C. Hennersperger, C. Schulte zu Berge, M.
Baust, and N. Navab, (2014), 3D Velocity Field and Flow Profile Reconstruction
from Arbitrarily Sampled Doppler Ultrasound Data. In Medical Image Comput-
ing and Computer-Assisted Intervention - MICCAI 2014 (pp. 611-618). Springer
International Publishing.

[Okur et al., 2014] A. Okur, C. Hennersperger, B. Runyan, J. Gardiazabal,
M. Keicher, S. Paepke, N. and Navab, (2014), fhSPECT-US Guided Needle
Biopsy of Sentinel Lymph Nodes in the Axilla: Is it Feasible?. In Medical Image
Computing and Computer-Assisted Intervention - MICCAI 2014 (pp. 577-584).
Springer International Publishing.

[Hennersperger et al.,, 2014] C. Hennersperger, M. Baust, P. Waelkens, A.
Karamalis, S. Ahmadi, and N. Navab, (2014), Multiscale Tubular Structure
Detection in Ultrasound Imaging, In Medical Imaging, IEEE Transactions on, 2014

[Hennersperger et al., 2014] C. Hennersperger, A. Karamalis, N. and Navab,
(2014), Vascular 3D+ T Freehand Ultrasound Using Correlation of Doppler and
Pulse-Oximetry Data. In Information Processing in Computer-Assisted Interventions
(pp. 68-77). Springer International Publishing.

[Rieke et al., 2014] N. Rieke, C. Hennersperger, D. Mateus, and N. Navab
(2014), Ultrasound Interactive Segmentation with Tensor-Graph Methods, In
IEEE International Symposium on Biomedical Imaging 2014, Beijing, China

[Feurer et al., 2012] R. Feurer, C. Hennersperger, B. Runyan, C.F. Seifert,
J. Pongratz, M. Wilhelm, ]J. Pelisek, N. Navab, E. Bartels, and H. Poppert
(2012), Reliability of a Freehand Three-Dimensional Ultrasonic Device Allowing
Anatomical Orientation at a Glance: Study Protocol for 3D Measurements With
Curefab CS’, In Journal of Biomedical Graphics and Computing, Vol. 2:2, 2012




Introduction

1.1 Background and Main Objective

Up to the 19" century, accurate diagnoses were heavily relying on the experi-
ence of physicians. Technical assistance was primarily restricted to basic tools
such as stethoscopes and other developments, in order to gain more infor-
mation about the patient’s health condition. Due to huge technical advances
and discoveries, the upcoming century not only revolutionized civil life, but
also the whole field of medicine in many ways. Among those discoveries,
especially the detection of X-Rays by Wilhelm Conrad Réntgen in 1895 led to a
breakthrough in medicine, resulting in the new domain of medical imaging.

While X-Ray has shown that interior parts of the body can be made visible
with radiation transmitted through the body, the upcoming decades led to the
development of other modalities, including medical ultrasound starting from
1949, the Computed Tomography in the mid 20" century and Magnetic Reso-
nance Imaging starting from 1973. With those and other evolving modalities
in place, medical imaging finally allowed for a detailed understanding of the
human anatomy. In terms of applications, tomographic imaging modalities
have quickly become standard of care in modern radiology, enabling not only
3D reconstructions of the whole body, but also a detailed and comprehensive
view of specific anatomic regions, such as individual organs or tumors. As
those modalities are usually targeted at a general-usage setup to provide full-
body imaging, they mostly require patients to be placed within a spacious
gantry unit, which impedes on-site diagnosis, i.e. at the patient’s bed. Addi-
tionally, tomographic acquisitions may require images taken under influence
of contrast-agents, often being nephro-toxic, or exposing patients to significant
doses of radiation.

With this in view, sonography evolved as a standard for initial examinations
in many medical disciplines, given the advantages of real-time and on-site
imaging guided by the physician. Although being used frequently in daily
routine, the interpretation of ultrasound images nowadays still remains chal-
lenging. The main reasons for this are the prevalence of imaging artifacts, and
a strong operator dependence as a result of the ultrasonic imaging principle
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ultrasound . .
A acquired localized &
processing target anatomy enhanced dataset o
workflow ultrasound data quantified anatomy
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Figure 1.1: Ultrasound processing chain. In order to retrieve diagnostic values,
ultrasound data of a desired region is collected, followed by an enhancement
and an interpretation of the recorded information in order to retrieve diagnostic
values.

of partial wave reflection at interfaces between tissues in the body. As the
ratio of reflection differs with varying incision angles of the ultrasonic waves,
acquisitions are heavily dependent on well-trained staff, and careful interpreta-
tion of the images is an elaborate task often requiring additional information
about the imaging context. In today’s practice, this contextual information is
mostly provided by the fact that the physician directly guides the US imaging
probe during examination, where the trained hand-eye cognition allows for an
improved understanding of the anatomy during image acquisition. In distinc-
tion to 3D tomographic imaging modalities, and despite a variety of potential
applications however, ultrasound suffers from this operator-dependence during
acquisitions, imposing additional challenges to a potential post-processing of
the data. This is also why the overall clinical availability of 3D-ultrasound
solutions is still limited to certain applications where the whole target region of
interest can be imaged directly by the probe, with prominent examples being
echocardiography or imaging of small aortic aneurysms.

The main contributions presented in this thesis aim at improving the
whole ultrasound processing chain in order to facilitate the acceptance of 3D
ultrasound for vascular applications. In this context methods to incorporate
physical and physiological modeling into different steps throughout the whole
processing workflow will be shown, facilitating final diagnostic outcome, cf. Fig.
1.1. During acquisition, pulse-oximetry information is added for correlating
vessel expansion and compression to acquired pulsed-wave flow estimates,
leading to a full estimation of 3D flow profiles over cardiac cycles. Furthermore,
ultrasound acquisition properties are included into compounding strategies,
and processing methods for the retrieval of values of relative confidence for
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1.1 BACKGROUND AND MAIN OBJECTIVE

the acquired ultrasound samples are presented, facilitating improved vessel
detection in ultrasound data.

The Necessity of Modeling in Ultrasound Processing

In contrast to 3D imaging, 2D ultrasound is the modality of choice for a variety
of applications where a diagnosis is necessary directly at the patient’s bed,
or within a limited time frame respectively. Moreover, ultrasonic waves are
harmless to biological tissue and thus enable a high potential for screening
applications in daily practice.

Within all general application fields, vascular ultrasound represents one
of the major areas for both the screening and the diagnosis of acute events
such as the detection of thrombi and stroke or aneurysm rupture [105]. The
predominant tasks in this field include imaging of the vessels in the human
body and blood hemodynamics by analyzing flow velocities. These methods
allow for an inspection of the condition of the vessels as such, i.e. by detecting
and grading a narrowing (stenosis) or widening (aneurysm) of arteries. An
occurring disease can then be treated effectively by adapting the medication
of patients, performing vascular surgery, or imposing an alternative treatment
depending on the progress of the disease. With the advantages described
above, ultrasound is recently enjoying an increased usage in new areas; a trend
which is believed to continue in the next years.

When recalling the cognitive hand-eye coordination and action performed
by the physicians during ultrasound imaging, it becomes immediately clear that
in order to asses the images with respect to the given context, medical experts
are heavily relying on their experience, such as knowledge of human anatomy
and possible diseases. Collective information based on trained knowledge and
experienced images can be summarized under the term of modeling, which
can be categorized - with respect to the field of medical imaging and image
processing - as follows:

1. Physical modeling: The specific physical properties and effects, characteris-
tic for an imaging modality, are used to model specific image appearance
and properties (e.g. noise models).

2. Physiological modeling: The anatomy, physiology, or even biochemistry of
organs, vessels, tissue and other structures is modeled, e.g. by biomechan-
ical or geometrical and deformable approaches.

While these different approaches pose challenges with respect to their integra-
tion into the clinical processing chain, they can drastically influence potential
diagnostic outcome facilitated by further processing. This attempt of integrat-
ing modeling approaches into ultrasound imaging and processing is exactly
the main scope of this thesis.




INTRODUCTION

1.2 Essentials of Vascular Ultrasound

In this section, first a short overview of medical ultrasound in general will be
given along with a brief history and a description of the detailed ultrasound
image formation process. Next, it will be described how sonography can be
utilized in vascular applications to detect and monitor diseases.

1.2.1 Brief History

While basic principles and effects of sound waves had already been examined
by ancient philosophers and scientists, such as Pythagoras, Aristoteles, and
Galileo, the fundamentals for the development of biomedical ultrasound were
mostly discovered from the 18th century on [19]. Essential knowledge about
(non)linear acoustic wave propagation in liquids was already gathered by
important mathematicians and physicians in the 18" century, including Euler,
Lagrange, and D’Almbert as well as Earnshaw, Helmholtz, Kirchhoff, Lebedev,
Navier, Poisson, Raylegih, Riemann, and Stokes later in the 19th century [23]. A
major milestone for the theoretical understanding of ultrasonic acoustic wave
propagation was presented by Rayleigh in 1877 with the book “The Theory
of Sound”, describing the propagation of waves in his two-volume experi-
ment [112]. However, even earlier in 1842, Christian Doppler had discovered
the well-known effect named after him, indicating that a moving wave source
would cause a change in the perceived frequency, in relation to the movement
velocity of the receiver. This forms the basis of today’s vascular ultrasound
imagery, where the speed of blood can be determined using this effect.

With respect to a real application of today’s ultrasound technology, the
discovery of the Piezo-electric effect by Pierre and Jacques Curie in 1880 [27]
showed that pressure acting on certain crystals generated a potential difference
between conducting surfaces attached to those crystals. This principle can also
be reversed and serves as a general tool to transform mechanical stress into
electric potentials. While today piezo-elements are used in a broad variety of
industrial and medical applications, the discovery of the piezo-effect is the very
foundation of all modern ultrasound transducers.

After the exploration of major theoretical and physical backgrounds of
ultrasonic wave propagation and its effects, the start of World War I in 1914 led
to a variety of practical developments aiming at sonar technology, with the goal
of detecting enemy objects underwater. Among the scientists of that period,
Paul Langevin certainly was the prime mover, together with his co-workers,
namely Robert Boyle and Constantin Chilowski, developing the so-called
"Hydrophone”, the first practical system for using ultrasonic echoes to detect
underwater objects [90]. In a patent filed in 1917, Langevin also describes
a method to determine the relative motion of an object using the Doppler
effect, leading to the development of Doppler Ultrasound [23]. Following
those advances, Sokolov and Muhlhauser described techniques to detect small
defects in metallic objects by continuous wave excitation. During World War 1II,
a series of developments in similar fields were accomplished by Firestone and
Sproule, again to detect small defects in metallic objects, where the majority of
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1.2 EsSsENTIALS OF VASCULAR ULTRASOUND

outcomes was classified as confidential until the end of the war.

With a dual-transducer setup measuring the continuous wave (CW) trans-
mission through the head, Karl T. Dussik and his brother Friedrich showed a
2D image of wave absorption through the ventricles in 1942, and more detailed
in 1947. To do so, the transducers were aligned on both sides of the head with
one being used for transmission, while the other served for reception [31, 32].
Although it was shown later that they only imaged artifacts caused by the
transmission through the skull and not the ventricles, their work served as a
main driving factor for further developments of ultrasound imaging techniques
and the shift from transmission to reflection sonography as used in most of
today’s systems. [23].

While most of the developments before the end of World War II were
considering 1D transmission through tissue over time only (the so-called
Amplitude or A-mode), soon the interest in cross-sectional images arose in
order to be able to interpret information more effectively with respect to the
underlying anatomy. In this context, the development of a 2D-imaging system
by Wild and Reid was another major milestone in ultrasound history [148].
In their work they showed how a cross-sectional image can be obtained from
a mechanically rotated single element probe, and how the resulting sector
image can be interpreted with respect to the underlying anatomy. This was
also the key development leading to modern ultrasound imagery, showing the
amount of reflection as changes in brightness, which finally lead to the term
of B-Mode images. Among these new advances was also the development of
non-invasive methods to measure the flow velocity of fluid using continuous
wave ultrasound in arteries, as described by Kamus ef al. [72] in 1954, going
back to the very principles of Langevin and others. Two years later, the group
around Satomura presented the first in-vivo results of flow-measurements
in vessels, showing a potential applicability for the evaluation of vascular
diseases. These findings were also verified by later experiments, although the
underlying physiological principles remained unclear for some more years.
Finally, starting from the 1960s several research groups identified the scattering
of the red blood cells as main reason for the successful flow measurements,
utilizing the Doppler frequency shift as basic principle.

In subsequent years, major advances of grayscale and flow ultrasound
imaging techniques were achieved by separate groups around Kossoff and
Brown, improving the overall image quality by beamforming techniques such
as compound imaging, as well as logarithmic compression and amplification.
In terms of commercial ultrasound systems, the Siemens Vidoson remains
among the most well-known historic systems, as it was the first system being
capable of providing real-time images with an ultrasonic wave frequency of
2.5 MHz. The major developments enabling this breakthrough were made
by Krause and Soldner in Germany during the mid 1960s and allowed for
the acquisition of 140 scan lines with a sampling rate of about 15 frames per
second.

In the area of flow velocity estimation and in contrast to the continuous
wave systems developed up to this time, several groups switched to the devel-
opment of Pulsed Wave (PW) methods for flow measurement in the late 1960s.

7
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Figure 1.2: Early pulsed-waved duplex system. Shown are the system block-
diagram of the system (left) and a resulting image showing a color coded flow
visualization overlaid on B-mode grayscale images for the common carotid
artery (right). Reprinted from [36] by permission from Elseveier.

While these are commonly referred to as PW Doppler, rather the movement
of small scatterers between separate pulses than the resulting frequency-shift
due to their movement is used to determine the velocity here, as discussed
thoroughly in multiple publications in the mid 1980s [23]. The advantages
of PW-systems over CW-estimation are thereby primarily that i) only one
transducer is required for estimation, and ii) the depth of detected velocity
estimates can be retrieved with PW-estimation in contrast to CW. Among the
first of these systems was the one presented by Peronneau, who filed patent
for flow estimation with a pulsed-system, followed by Baker, Watkins, and
Wells” detailed report in 1969, presenting a pulsed-wave system to determine
the velocity of cardiovascular structures. Following Baker and Watkins’ efforts
at the Univeristy of Wahsington, the first combination of B-Mode and velocity
measurements was developed in the 1970s , which also shaped the term of
Color-Coded Duplex (CCD) imaging. This allowed for a direct mapping of
the vascular anatomy to measured flow velocities for the first time, providing
a significant benefit for the field of vascular diagnosis. In the period around
1971/72, the first attempts towards an intuitive flow visualization were pro-
posed by Hokansen and Fish. Finally, the works of Brandestini and Forter
showed a full superimposition of grayscale B-Mode images with color flow
velocity data for the first time in 1978, which is still used in a similar fashion in
today’s diagnostic machines [17].

From the end of the 1980s through the 1990s, the general image quality
was further improved and additional technologies were developed. This
included the introduction of 3D imaging by Von Ramm and Smith at the Duke
University in 1987, as well as new imaging techniques, such as ultrasound
elastography. Further achievements also lead to the exploration of better
US contrast agents [98], gaining more importance in recent years within the
context of accurate vascular diagnosis. All these advances facilitated the
increased application of ultrasound imaging in practice with an associated
improvement in image quality, and equipped with novel functionality. Finally,
new developments continued throughout the last decade, when techniques
such as plain wave imaging have drawn attention to both real-time and ultrafast
scanning techniques of modern US systems, as well as the combination of

8



1.2 EsSsENTIALS OF VASCULAR ULTRASOUND

several ultrasonic signals for reliable and quantitative imaging.

1.2.2 Ultrasound Wave Propagation

Acoustic waves in the frequency range between 20kHz and 1 GHz define the
ultrasonic spectrum, where the distinction from lower frequencies is given by
the definition of ultrasound not being perceivable by the human ear. While
strictly spoken, ultrasound only defines a frequency spectrum, it is often used
as a synonym for the respective imaging modality, whereas, depending on the
application, frequencies ranging from 1 to 60 MHz are used in the medical
field.

Ultrasonic (and general acoustic) waves transmitted through media can be
categorized by their motion, with the two elementary forms being longitudinal
and transverse waves. The former type, also referred to as compressional
wave (cf. Fig. 1.3 left), employs a stress normal to the medium surface, which
results in internally propagating areas of compression and rarefaction. In these
regions, the particle displacements, densities, and other properties change
over time as the area of excitement is traversing the medium. The overall
wave transmit speed is called the speed of sound inside the medium, which
is proportional to the material stiffness. In general, a higher stiffness leads
to an increased speed, while more elastic materials will result in a slower
transition of waves through the medium. Although the speed of sound varies
even across (soft) tissue types, different assumptions for each tissue are not
applicable in practice due to the lack of detailed knowledge about the different
imaging media in clinical routine. Thus a speed of 1540 %' is usually set as a
constant value in most of the modern ultrasound imaging systems, yielding an
acceptable trade-off for most types of soft tissue appearing in the human body.

In contrast to longitudinal waves (cf. Fig. 1.3 right), for transverse waves
the movement of particles is orthogonal to the wave propagation direction.
Consequently, for these waves no regions of compression and rarefaction are
present. However, particle movements in shear directions are induced. The
shear movements are thereby proportional to the ratio given by the material-
dependent shear modulus as well as the medium density.

In order to allow for an understanding and calculation of wave propagation
in biological tissue, the continuity equation represents one of the basic princi-
ples by means of the conservation of mass. Thereby, this equation forces the
mass of fluid flowing into a volume to be equal to the mass of fluid flowing
out of the same volume, given by

% + div(pv) =0, (1.1)
ot

where p is the density, div() the divergence operation, and v(x, t) the velocity
of a particle at location x given at time f. The second equation required to

simulate the propagation of viscous fluid extends Euler’s equation of motion

0 <th) + (vV)v) =-Vp, (1.2)
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longitudinal (compressional) wave transverse (shear) wave

‘_,
y h’ y

rarefaction compression oscillation

Figure 1.3: Wave propagation in y-direction for an isotropic medium. A
plane longitudinal wave (left) produces propagating areas of compression and
rarefaction with a movement in the axial y-direction , while for transversal
waves particles move in the lateral x-direction (right).

relating the gradient of the pressure p(x,t), given for a point in space and
time, to the velocity of particles. By adding an additional term for shear stress,
which is of significant importance in viscous fluid, this leads to the well-known
Navier-Stokes equation

P (E;zt) + (vV)v) =-Vp+ (yb + ;y> V(V0) + uV2o, (1.3)

where pt an y;, are the shear and bulk viscosities [23].

Finally, the propagation of longitudinal waves in a homogeneous medium
can be defined as a combination of the continuity equation (1.1), and the Navier-
Stokes-equation (1.3). In order to do so, the velocity potential —V¢ = v is
introduced, whose gradient is the velocity of longitudinal waves vy, leading to

ach o VZ

4 J
KPomm = p+x <.”b + 3P‘> g(vzfp)/ (1.4)

with « being the adiabatic compressibility, relating a change in pressure to the
change in density. Thereby, x is based on the equilibrium density pg, as well as
the pressure and material density

_1lop
po Op’

For the assumption of inviscid fluid, the given relation between velocity poten-
tial, pressure, and particle velocity, as introduced in Eq. (1.4) can be further
reduced to

(1.5

_ 99
P=pogs (1.6)
Jv
Vp = _PO§/ (1.7)

yielding a direct relation of the pressure to the velocity potentials, or the
gradient of the pressure to a change of particle velocities respectively. The
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latter forms an intuitive relation to the regions of compression and rarefaction
indicated in Fig. 1.3. As the velocity of particles is correlating with changes in
pressure, waves propagating through the tissue will cause periodic regions of
changing pressures and particle velocities.

The distance between these indicated regions is referred to as wavelength A
and directly affects the resolution of objects which can be discriminated by an
ultrasonic wave with a given frequency. The wavelength is in general given as
the ratio between the propagation speed ¢ and frequency f

A=5, 1.

7 (1.8)
which results in wavelengths of ultrasonic waves ranging from 1.54 mm for a
frequency of 1 MHz up to 0.039 mm for 40 MHz, assuming a constant speed
of sound as described above. In vascular ultrasound (excluding intravascular
applications), frequencies in the range between 4 and 13 MHz are used most
frequently, resulting in wavelengths between 0.39 mm and 0.12mm. While
A describes the distance between compressional regions, the resolution of
detectable structures using ultrasound waves varies for axial, lateral and el-
evational directions following the principles of wave propagation. In axial
direction, the resolution is limited by the spatial pulse length of the acoustic
wave, consisting of several wavelengths

_L_m

R”zz

(1.9)
In practice, usually n = 2,3 pulses are used, enabling a straightforward
relationship between wavelength and axial resolution. In lateral direction, the
optimal resolution is affected by the focal length F and the aperture D of the
transducer F
Ry = 1.4/'\5. (1.10)
Figure 1.4 shows an example for a simulated ultrasound beam profile in
axial and lateral directions. As can be seen, the beam width varies in lateral
directions with increasing distance to the sound source. In this context, the
beam width is indicating the width of the white region presented in the image
in lateral direction, for which the acoustic pressure is within 6 dB of the emitted
wave at the transducer source.

With a focus on the mechanical stress induced by ultrasonic waves, the
vibrations characterized by the particle displacements in the media can be
considered as an organized mass-spring system, cf. Fig. 1.5. Following this
definition and making use of Hooke’s law as well as Newton’s second law [104,
109], we can reformulate the displacement of particles based on the mass and
spring constants k as the harmonic function

?x  k
= +—x= 1.11
FY + ot 0, (1.11)
whose solution is given by the form
x(t) = Asin(wot + ¢o), (1.12)
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100 200 300 400 500 100 200 300 400 500

Figure 1.4: Simulated focused beam profile in the lateral-axial (x-y) plane based
on ultrasound scan parameters. Left: Full simulated profile, where red to blue
colors represent regions from high to low energies. Right: 6 dB field mask of
the simulated ultrasound beam.

Figure 1.5: Mass-spring system as a model for particle vibration induced by ul-
trasonic waves. Particles are interconnected by springs, and their displacement
is characterized by Hooke’s law.

with the initial phase angle ¢y and angular frequency

woy = \/5 = 27Tf0. (1.13)

Given the additional constraints of the initial displacement xy and velocity vy,
A and ¢ can be written for t = 0 as

(4]

A:%+w (1.14)
0

-1
= tan
$o Woxo’

(1.15)

enabling the direct retrieval of the velocity v and acceleration a for a given
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particle at the source and time ¢ by using A and wy respectively

ox

o(t) = Fri vmcos(wot + ¢p) (1.16)
0%x )
a(t) = i —woumsin(wot + ¢p). (1.17)

The particle movement can be further extended to a function of the distance z
to the transducer

x(t,z) = xq sin (z)ir(ct - z)> . (1.18)

As both pressure and particle velocity are depending on the speed of sound
c for given media, we can directly relate pressure and velocity, utilizing the
material density

p(t,z) = pmem v(t, z) = Zyo(t, z), (1.19)

where Z,, is the characteristic acoustic impedance for a given media m and is
given by the product of the characteristic material properties, i.e. its density,
and speed of sound

Zy = PmCm- (1.20)

As a whole, the acoustic impedance represents the basic physical quantity
enabling ultrasound imaging at all, as different materials, such as fat, muscle,
or water have different acoustic impedances. When an ultrasonic wave incises
on an interface between two media with different acoustic impedances Z; and
Zy, Snell’s law relates the angles of incision 6; and transmission 6; based on
the speed of sound ¢y, ¢; in both media
sin(0;) ¢

(1.21)

sin(6;) ¢

In regard to the propagation of waves across tissue interfaces, two fundamental
conditions must be satisfied, i.e. that both the pressure, as well as the particle
velocity normal to the interface have to be continuous [109]. By using these con-
ditions, Snell’s law can be used to determine ratios of reflected and transmitted
velocity potentials or pressures as

pi ¢ - Zycos(8;) + Zycos(0y) (1.22)

Pt (Pt ZZZCOS(QZ‘)
T, =Pt — P _ ) 123
P pi ¢ Zacos(6;) + Zycos(6;) (1.23)

R.o_Pr_ Zycos(0;) — Zycos(6;)
)=

where Rj, and R; are defined as reflection and transmission coefficients given
an incident angle 6.

Figure 1.6 shows how Snell’s law applies for a given interface between two
media and how the Lambert cosine law relates to the observed wave intensity
as a function of the incident angle to the surface. Similarly, these coefficients
can be also described as the ratio between the intensity magnitudes of reflecting
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(a) Lambert’s Cosine Law (b) Snell’s Law

Figure 1.6: Lambert’s cosine law (a) relates incident ultrasound waves to the
observed reflected intensity for a given observation direction with respect to
the incident angle. Snell’s law (b) relates the ratio of incidence and transmission
angle to the ratio of velocities in two interfacing media.

in incising waves [23]

R — (;;,)2 _ (chos(éi) - Zlcos(9t)>2 (1.24)
T, =

Zycos(0;) + Zycos(6;)
4Z1Z2COSZ(91')
" (Zacos(0;) + Zycos(6))?

(1.25)

It becomes evident that for incident angles 6; # 6; # 0 the wave direction may
change at tissue interfaces, referred to as refraction. However, with a normal
incidence 0; = 6; = 0 to the interface, only reflection and transmission are
present. Consequently, the reflection-transmission coefficients reduce to

_(zz—zl>2 o Az
L2741 L=
(

;= — 1.26
! Zo + 74 Zy + Z1)? (1.26)

Figure 1.7 gives an example for an imaged region containing several me-
dia with different acoustic impedances. Emitted waves from the ultrasound
transducer are partially reflected and transmitted at the interfaces between the
media of acoustic impedances Z1, Zy, Z3 facing normal incident angles to the
surface.

An additional scenario being of high interest for multiple applications is the
transmission of ultrasound waves through a medium with fixed thickness and
defined acoustic properties. Such situations appear frequently in ultrasound
phantom design or anatomical modeling, for which the transmission coefficient
can be described as [23]

T, = . 42521 : 5 (1.27)
(Z1 4 Z3)" cos(02) + (Za + Z1Z3/ Zy)?sin (62)

where 0, = 27l /A and Zy,Z,, Z3 are the acoustic impedances, similar to the
example given in Fig. 1.7. This relationship can be used in order to design
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Figure 1.7: Example for several interfaces in an imaged region. Three media
with acoustic impedances Z;, Z,, Z3 are traversed by the ultrasound wave,
causing subsequent reflections and the transmission of wave intensity at the
respective interfaces.

layers of tissue where a passing wave will loose a defined (or even no) fraction
of its intensity, and is valid for both liquids and solids.

In contrast to specially designed interfaces and layers in media such as
human tissue, however, the wave energy is lost not only due to reflection at
interfaces but also because of additional effects. The two predominant ones
are absorption and scattering, often combined under the common term of
ultrasound attenuation. Scattering describes the reflection of waves at objects
smaller than the wavelength when, instead of a specular reflection as described
above, a diffuse reflection is observed. More specifically, as a result of scattering
at small objects, interference waves will be emitted from the scattering object
in different directions, recursively causing a subsequent scattering at nearby
objects. Although the visual impression of those speckle patterns seems to
be noise-like, the process itself was recently shown to be a deterministic
interference [124]. This also becomes evident visually, as tissue of a certain
type exhibits similar speckle patterns, which is why ultrasound speckle is of
high interest for various applications, such as tissue classification [121] and
registration [137]. While speckle accounts for the scattering at small objects,
absorption describes the loss of wave energy due to its conversion into other
forms, such as heat. In detail, as the wave propagates through the tissue,
regions of rarefaction and compression are caused by particle displacement, as
already described in detail above. The movement and oscillation of particles
causes a loss of wave energy and its dissipation as heat or chemical energy
within the medium.

Following the physical principles presented above, it becomes evident that
both scattering as well as absorption are frequency- and material-dependent.
Consequently, a detailed modeling needs to be conducted in order to allow
for a thorough examination of both effects. In many applications, a combined
attenuation model is utilized, referring to the total loss of wave energy while
traversing through tissue.
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This attenuation can be modeled as a negative exponential gradual loss of wave
energy with respect to the emitted intensity I(0)

I(z) = 1(0)e ™, (1.28)

usually referred to as Beer-Lambert-Law. The attenuation coefficient « is
frequency and temperature dependent; however, the frequency-dependence
for most biological tissue can be reduced to

o« = aof", (1.29)

where «g denotes the attenuation coefficient for a material given at constant
temperature and # lies between 1 and 2 [23]. As the wave intensity decreases
exponentially with increasing distance to the sound source, this intuitively
indicates the physical limitations of the achievable penetration depth for cer-
tain frequencies, where the attenuation increases exponentially for higher
frequencies.

1.2.3 B-Mode Image Formation

As already discussed in section 1.2.1, the discovery of the piezo-electric effect in
1880 was a major milestone in the development of modern ultrasound imaging
technology, as it enabled the conversion of electric into mechanical energy;
the basis for all modern ultrasound transducers. While most of the basic
research in the early 20" century was conducted with single piezo-elements, the
development of commercial systems yielded ultrasound transducers consisting
of many single piezo-electric transducer elements. Today’s probes usually
consist of about 128 to 256 elements aligned in an array, enabling higher
spatial resolution in lateral directions by combining several elements for the
acquisition of images. In clinical practice, three basic forms of transducers exist
for 2D ultrasound imaging, cf. Fig. 1.8:

1. Phased arrays employ a minimal footprint of the transducer to enable
imaging through small acoustic windows, required for example in trans-
cranial applications. The elements are therefore aligned on a line or plane
and triggered with temporal delay in order to allow for a beam steering
and associated imaging of a defined field of view (ultrasound fan).

2. Curvilinear arrays use single elements aligned on a circular arc with a
given radius, allowing for an increase in the covered region without
requiring additional movement of the probe. The main application region
is abdominal imaging.

3. For linear arrays, elements are aligned on a rectangular array, such that a
given region can be imaged with parallel ultrasound beams. Those arrays
are frequently used in vascular diagnosis of the carotid and femoral
arteries, as well as for high-resolution applications.

In addition, combined or modified forms exist for specific applications, such
as trans-rectal or intra-cranial probes. In general however, those probes can be
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Figure 1.8: Three basic forms of ultrasound transducers with phased (left),
curvilinear (middle) and linear (right) piezo arrays.

considered as modified forms of the fundamental probe geometries presented
above.

With the goal of image generation, an ultrasonic pulse wave is first transmit-
ted into the tissue, where individual piezo-elements are converting electrical
signals into a mechanical wave. This pulse will cause reflections and other
interactions within the tissue resulting in partially reflected waves returning
to the transducer, as described in previous sections. In receiver-mode, the
piezo-array will then convert the incoming wave energy back into electrical
signals, which are processed in order to finally generate an output image for
visualization and further processing. In more detail: For the transmission
of ultrasonic waves, an ultrasonic pulse is generated as a convolution of the
carrier signal at a certain frequency with a desired pulse, such as Gaussian or
sinusoidal shapes. This allows for the control of the spatial pulse length of
the ultrasound wave, such that the axial resolution can be set accordingly for
the specific application. To generate a focused beam with an optimal spatial
resolution with respect to the lateral and elevational directions, instead of trans-
mitting the pulses simultaneously using all transducer elements, a short time
delay is employed between the single elements, referred to as time-delay focus.
Because of the change of temporal offsets within the array, the beam can thus
be focused at desired locations. Alternatively, delays can also be incorporated
to steer the whole ultrasound beam, as utilized in phased array transducers
to cover a higher fan angle without requiring additional piezo-elements, or
an increased probe footprint respectively. For an optimal control of the beam
width and focus, usually not all but only a subset of the available transducer
elements is used in order to generate a single scanline. Consequently, this
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Carrier signal  Shape signal  Pulse shape Active elements Near Field Focal region Far Field

Figure 1.9: Ultrasound beamforming. The carrier signal with given frequency
is shaped to create a pulse with a given length (usually 2-3 half-cycles). To
create a focused ultrasound beam, the signals are transmitted delayed with
respect to the single transducer elements of the probe.

allows for the acquisition of multiple scanlines in parallel and improved control
of ultrasound beam shapes. Fig. 1.9 shows the basic process for ultrasound
beamforming using a subgroup of all available elements (often about 5 to
30). In modern US systems, the transmitted pressure is further controlled
separately for each piezo-crystal, where central elements are transmitting with
higher power compared to the out-most ones. This approach is referred to as
apodization, again enabling improved control over the desired beam shapes
and properties. After transmission of the pulse for a desired scanline, the
transducer switches into receiver mode, where it "listens’ to waves caused by
reflection at subsequent tissue interfaces and processes the received signal
in order to generate the final image, cf. 1.10 To do so, incoming waves are
first amplified globally, followed by a local amplification for each depth value,
i.e. time-gain-compensation (TGC). To allow for an analysis of the reflected
waves, the signal is then demodulated in order to separate the carrier wave
from the actual signal containing the reflection information. The modulated
receiver signal can be written as

s(t) = a(t) cos(2mtfo + ¢(t)), (1.30)

with fy being the center frequency, a(t) the signal amplitude, and ¢(t) the
phase. Eq. (1.30) can be represented in the complex domain by

z(t) = u(t) 2900t (1.31)

with p(t) = |u(t)]e/®) containing both amplitude and phase information, thus
defined as the complex envelope signal [94]. Furthermore, z(t) can alternatively
be described as an analytic signal

z(t) = s(t) + jH{s(t)} (1.32)
(1.33)

where H{s(t)} = [ () 4y is the Hilbert transform of s(t). The absolute
X=—00

t—x
value of the analytic signal is used in modern ultrasound systems to perform
envelope detection, which is exactly the demodulation of the actual reflected
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Figure 1.10: Ultrasound image generation system information flow.

signals from the carrier waves:

A = [2(8)] = \/s(0)2 + H{s(t)}. (134)

The envelope A is then used for all further processing steps in order to retrieve
images which can be shown to the end user. It should be noted that although
the envelope detected data A are used for final presentation of ultrasound
images to the physician, analytic or complex representations of the signals can
be particularly useful, as they contain all available information acquired by the
system hardware. For the example of speckle reduction, such information may
be beneficial or even required to achieve a sufficient quality of the resulting
image samples. In contrast to this, the envelope A is usually subject to further
processing, where the signals are passed through a series of filters, for example
to reduce the noise present in the data. While different groups of such filters
are commercially available, most of the ultrasound manufacturers are devel-
oping and refining specialized pipelines for their own products, but details
or implementations mostly remain unknown to the public and the research
community. After post-processing of the data, the signal is interpolated from
single scanlines, which were acquired using separately transmitted beams, to
a 2D image representation of the ultrasound information. This step is called
scan-conversion and represents the interpolation of the individually acquired
rays into a 2D image. After scan-conversion, the image will be compressed in
order to allow a perception of the whole dynamic range of the ultrasound data
by the human eye, which is restricted to 8 or 16 bit of distinct gray-values.
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In this sense, the output for one image [ is denoted as
I=DIn(A)+G, (1.35)

where [ is the final (displayed) intensity value, G a constant gain factor and D
the dynamic range of the signal
Xmux - Xmin 255

D = = , 1.36
Zn(Amax - Amin) ln(Amax - Amin) ( )

assuming maximum and minimum gray values of 255 and 0, representing an 8
bit image. The equation above describes the compression step as a nonlinear
function of the envelope signal, for which also alternative forms can be found
in literature [33].

1.2.4 Flow Image Formation

The retrieval of flow information from ultrasound data is of special interest for
vascular applications, which is often referred to Doppler imaging in clinical
practice. While the basic definitions of analytic signals and ultrasonic pulses
for this imaging mode remain identical to the terms described in Section 1.2.3,
several modifications to the transmission and reception of waves have to be
made in order to allow for an estimation of blood flow velocities.

In this context, we recall the Doppler-effect as the relation between a change
in frequency and the speed of a moving object, such as an ultrasound scatterer

fo= —f—ZfocOS(G), (1.37)

where v is the velocity of the scatterer, c;; the speed of sound in the media, fy
the frequency and 0 the Doppler angle, i.e. the angle between the movement
direction of the object with respect to the observer. With today’s ultrasound
system, both continuous- as well as pulsed-wave estimation is possible, al-
though pulsed-wave systems are more wide-spread in clinical practice. In
general, ultrasound elements are constantly firing/receiving in transmission
and reception mode for continuous-wave estimation of flow, while for pulsed-
wave methods, transducer-elements will switch back and forth between both
modes, similarly to classical B-Mode imaging. For a detailed introduction
to continuous flow imaging, the reader is referred to [23], while we will fo-
cus mainly on pulsed-wave flow estimation. Although the Doppler-effect
as presented above seems intuitive to explain the principle of pulsed-wave
flow estimation, researchers are questioning since the early 1980s, whether
it is in fact the responsible phenomena for flow estimation in pulsed-wave
imaging [117]. While we skip a detailed explanation of the distinction from
the basic Doppler effect, pulsed-wave imaging uses for flow estimation rather
the movement of scatterers between two subsequent short pulses than their
frequency shift. In practice, these movements relate to the distances traveled
between the time points when the transducer elements are triggered in transmit
mode. In contrast to this, the definition of the Doppler-effect would assume
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Figure 1.11: Received signal of a single scatterer for a series of fired ultrasound
pulses into the media. For each pulse (n = 1,2, ...,8) referred to as slow-time,
the scatter signal will arrive at the transducer with a different temporal delay
(fast-time).

a frequency-shift of the ultrasonic waves due to the velocity of the moving
scatterers observed at each point in time.

From the observation above it follows that at least two separate pulses
have to be transmitted into the tissue to allow for an estimation of the velocity,
where in practice usually about 8 to 12 pulses are used for the estimation
along each scanline. For a specific direction and velocity of a moving scatterer
(such as a red-blood cell) over time, its distance to the transducer source will
vary, as the scatterer moves towards the probe or away from it. This behavior
becomes evident from Fig. 1.11, where 8 pulses are transmitted subsequently
into the tissue. For this scenario, the reflected scatterer signal will arrive with a
varying temporal delay for each transmitted pulse, corresponding to a change
of distance to the wave source.

The number of transmitted pulses is called ensemble and consists of n
pulses shot over a given time period (slow-time) in the order of ms. Each
pulse will be transmitted, reflected at scatterers, and the reflected wave will
be received at the transducer. All these steps lie within a period of several s,
which is why a single pulse transmission-reception cycle usually is referred
to as fast-time. For pulsed-wave acquisitions, the temporal distance between
subsequent pulses is specified by the so-called pulse-repetition interval tpg;. Its
inverse quantity, the pulse repetition frequency fprr = %, represents one of
the major settings to be adapted by the physicians according to the respective
medical application. For the example above, the distance traveled by a scatterer
between two pulses in beam-direction is given by

Az = (vcos(0))tpry, (1.38)

and can be evenly expressed in the delay time between two subsequent ultra-

sound pulses
o

Cm

At (1.39)

This enables to reformulate the scatterer velocity as a function of the delay
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time At, the speed of sound c;;, as well as the pulse-repetition interval and the
angle of the scatterer movement direction with respect to the beam angle 6

cmAt
= — 1.4
v ZtPRI COS(G) ( 0)

Furthermore, by assuming a constant phase-shift for fast- and slow-time, the

frequency of the latter signal can be defined as fpy = %, enabling an

estimation of the velocity from received pulse waves using the relation

2 v cos(0)

Cm

fe. (1.41)

frw =

The necessity of several short pulses transmitted into tissue obviously also
implies certain restrictions to minimal and maximal velocity magnitudes, being
detectable with pulsed-wave approaches. According to the Nyquist sampling
criterion, a scatterer must not move with more than half a period length of
the emitted pulse in order to be able to determine fpy; properly. Similarly, the
minimum speed is determined such that at least one period has to be observed
in a time window consisting of n pulses. Thus the maximum and minimum
detectable speed of scatterers can be determined by

CmfPRE CmfPRE
_ - , 1.42
Omax 4fccos(6)’ Cmin 2n f.cos(0) (142)

Above and below those limits, the estimations will be distorted by aliasing.
Consequently, in clinical practice, a careful balance between the resolution of
differentiable values (low absolute velocities - high pulse-repetition-frequency)
has to be considered versus high absolute velocities (low pulse-repetition-
frequency).

While the explanations above describe the flow estimation process for
pulsed-wave excitations over time for a single position, the same principle
can be extended to several samples along one scanline, as well as for multiple
scanlines. Hereby, for each additional sample along a scanline, the required
total processing time for a full image will increase based on the ensemble
size n, and the pulse-repetition and center frequencies fpgrr, f.. It should be
noted here that the comparably low speed of sound is limiting the achievable
update-rate for pulsed-wave acquisitions, requiring a trade-off between the
desired field of view and high temporal sampling rates. Thus, flow estimates
are usually restricted to a certain window in which they and their associ-
ated pulse-tranmissions will be carried out. Within these so-called gates, the
estimated flow speed can be either displayed for single positions over time
as velocity-time-curves, or as color-coded pulsed-wave duplex (CCD-PWD),
where estimated velocities are superimposed in color on top of the gray-valued
B-Mode images. For CCD, a mapping of blue to red colors based on move-
ments towards or from the transducer are usually employed. Figure 1.12 shows
two examples for CCD-PWD of the carotid artery, with both cross-sectional as
well as longitudinal views.
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(a) Cross-sectional (b) Longitudinal

Figure 1.12: Cross-sectional and longitudinal views for pulsed-wave flow
estimation. Color-coded values show movement towards/from the transducer
in red/blue. Green areas show regions for which aliasing is present due to a
non-optimal setting of the pulse-repetition frequency.

1.3 Clinical Background and Vascular Applications

As the general focus of this work is the field of vascular imaging, a short
overview of major applications will be given below. The cardio-vascular system
provides the main infrastructure to transport necessary substances within
the body, including gases, nutrition, heat, hormones, antibodies, or water.
In this cycle, the heart serves as main actuator, pumping blood through the
cardiovascular system to target organs and extremities. All vessels used for
blood streaming out of the heart are referred to as arteries, while inflowing
blood is transported through veins. Each vessel contains of several layers,
facilitating the transport of blood through the Lumen of the vessel. The
innermost layer of the vessel wall is the Intima, a epithelium layer, interfacing
to the Media, a layer of muscular tissue strengthening the stability of the overall
vessel. While the Media can regulate the widening of arteries, such as for high
and low temperatures, it is thick in comparison to the Intima, which by itself is
usually not observable with ultrasound imaging. Consequently, the two inner
layers are often considered as the combined Intima-Media complex. Finally,
the out-most layer is referred to Adventitia and acts mainly as a fascia to the
surrounding tissue.

Major diseases in the context of vessels are a narrowing of arteries due to
atherosclerotic disease, as well as a widening (ballooning). The latter effect is
in general referred to as Aneurysms, where the Abdominal-Aortic-Aneurysm
(AAA) is the most occurring form [119]. With an increasing loss of elasticity of
the aortic wall, mechanical stress caused by the blood flow streaming through
the artery causes an extension of the vessel in diameter, ultimately leading
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Figure 1.13: Stages of forming aneurysms. Due to shear stress acting on the
vessel wall, the artery extends in size and an aneurysm sack forms over time.
An increasing size of the aneurysm causes serious risk of rupture.

to a pronounced aneurysm sack. The main risk factor in this context is the
aneurysm-rupture, which is characterized by high mortality if not treated
in-time. Figure 1.13 shows a schematic progress of an AAA, where in most
situations a ballooning is observable between the branches of the renal and
femoral arteries, even though other forms exist similarly. Despite open surgery,
endovascular abdominal repair (EVAR) of aneurysms is an increasingly used
form of treatment for AAA, where a stent graft is placed within the artery
through catheters. In general, the risk of mortality can be greatly reduced
with an early detection and monitoring throughout progressing disease [119],
facilitating screening applications for AAA. In this context, 2D ultrasound is the
modality of choice for the initial diagnosis, mainly due to its fast examination
times, high patient-safety as well as a potential support for screening scenarios.

The second major group of atherosclerotic diseases concerns the narrowing

Lumen
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>

Disease progress over time

Figure 1.14: Different stages of forming plaques inside an artery. Throughout
the progression of the disease, tissue is deposited at the inner artery wall,
narrowing the blood flow increasingly, finally leading to vessel occlusion.
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of arteries, which is widely considered as one of the major causes of death
worldwide. Due to an inflammation of the epithelium (Intima) with subsequent
binding of cholesterol within the arterial wall, material is deposited in the
artery, referred to as arterial plaque. Throughout the progress of atherosclerosis,
the arterial wall is thickened incrementally, resulting in an increasing constraint
of the blood flow through the narrowed vessel Lumen (stenosis). Consequently,
the available blood flow arriving at post-stenotic regions decreases, causing
an under-supply of organs. If an artery finally gets fully occluded by plaques,
serious events such as strokes or heart-failures are frequent consequences. A
regular screening could avoid those cases, similar to aortic aneurysms.

Besides those major areas, a variety of smaller applications exist, including
diseases of veins or inflammations. As vessels are in general well-observable by
ultrasound imaging, it serves as one of the most important tools for the diag-
nosis of vascular diseases, especially in daily routine. For a detailed overview
of the whole field of vascular diseases and their anatomical background, the
reader is referred to [71, 79].
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Towards 3D+t Freehand Ultrasound

Due to the real-time feedback of 2D+t ultrasound, the modality serves as a
generic tool for diagnosis in vascular applications, as for example, changes in
arterial flow can be easily examined over time by a medical expert. Moreover, it
is possible to extend 2D and 2D+t ultrasound imaging to 3D and 3D+t imaging
by considering the acquired sweeps as a volumetric dataset based on their
spatial context. In this chapter the motivation, basic scope, today’s challenges
as well as potential future applications will be described with respect to the
area of vascular 3D+t ultrasound as one of the main contributions of this thesis.

2.1 Problem Definition and Motivation

Given the basic physical principles of ultrasonic wave propagation, as intro-
duced in the last chapter, the goal of 3D and 3D+t ultrasound is to provide
3D information either for a given time-step, or, alternatively, over a desired
time frame. Thus, for every ultrasound sample s;, a tuple consisting of the
ultrasound intensity I;, the position in 3D space x;, and time information ¢; is
acquired

si = {L;, x, ti}. (2.1)

In the view of acquiring such data, general concepts in order to provide
3D-information, assuming the examined anatomy to be static over time, are
introduced at first. Two distinct approaches have evolved in the last 30 years to
retrieve 3D ultrasound data [68]:

e Matrix-array probes enabling real-time 3D acquisition of a defined volume
covered by the probe.

o Freehand 3D ultrasound using 2D ultrasound images with their spatial
context, i.e. their position and orientation in space, to obtain volumetric
information.

Matrix-array transducers (cf. Fig. 2.1a) as the first group consist of two-
dimensional arrays of ultrasound elements aligned on a plane. Therefore,
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Figure 2.1: Basic techniques for the acquisition of 3D+t data. Left: Matrix
array probes provide realtime 3D information for a volumetric region. Right:
The freehand 3D scanning technique allows for dynamic movements and the
coverage of arbitrary field of views.

the alignment of all single piezo-elements enables the system to cover not only
a narrow 2D slice, but a defined volumetric region with several transmit-receive-
cycles, so that 3D volume information can be acquired in real-time. It should
be noted that the alignment of transducer-elements on a two dimensional array
requires a significantly higher amount of elements to achieve a lateral resolu-
tion comparable to the one of linear arrays (often about 2000 to 3000 elements).
Imposing more elements on a transducer results in additional requirements in
terms of signal-processing, partial beamforming and multiplexing of signals.
Thus, for most available systems, these steps are partially directly performed
at the transducer, as the necessary cable connections running from the array to
the ultrasound machine for the high number of elements would impose too
high restrictions for the usability of such systems. Despite the first commercial
release of matrix-array probes thirteen years ago and the associated benefits for
a variety of applications [26], matrix probes unfortunately are still comparably
expensive and open systems are not widely available. Today, the major appli-
cation fields are echocardiography, as well as diseases which make it necessary
that a whole volume of interest is captured by the probe at each point in time,
e.g. small aortic aneurysmes.

As an alternative to matrix-array transducers, freehand scanning techniques
(cf. Fig. 2.1b) augment 1D- or 2D-information, as provided by any ultrasound
device, with spatial pose information acquired by tracking systems or sensors
in mechanical actuators to perform the respective movement [132]. In con-
trast to this, sensor-less approaches try to estimate the pose-changes between
subsequent images directly from the acquired data, or assume a constant
movement or rotation speed in order to allow 3D image reconstruction [67].
Due to the fact that for the latter approach the accuracy is highly depending
on the performance and experience of the operator, systems augmenting 2D
imaging with tracking information are used more frequently in clinical prac-
tice. Finally, ultrasound systems utilizing mechanically-actuated piezo-arrays
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Figure 2.2: Interpolation strategies for compounding using forward transfor-
mations, backward transformations or estimation of functional parameters.

are often referred to as Wobbler-probes, being available for most ultrasound
systems.

For further processing and visualization in combination with other 3D
imaging data, such as CT- or MR-angiography, 3D freehand data is often
interpolated with respect to a regular grid. This interpolation procedure is
commonly referred to as 3D reconstruction or compounding [125] and can be
done in different ways, with differences in both reconstruction complexity and
quality of the resulting 3D images (compare Fig. 2.2):

e Forward interpolation transforms every sample (pixel) directly into the
corresponding voxel to determine the final voxel intensity value. Com-
pounding can be performed fast (real-time), but holes can occur as the
mapping is not necessarily surjective with respect to the target voxels.

e Backward interpolation applies the inverse transformation to the target
voxel position in order to interpolate the voxel intensity from the closest
neighbors in pixel space, e.g. by trilinear interpolation. Compounding
is considerably slower. However, holes are naturally avoided due to the
surjectivity of the mapping.

e Functional interpolation is used if more than the closest neighbors in the
pixel space shall be considered for interpolation. To do so, basis functions
with a larger support are employed (such as B-Splines), which then can be
sampled at the desired voxel positions in order to reconstruct an intensity
value. Such interpolation can provide the best overall quality. However,
it is often limited by the computational complexity of the reconstruction.

When comparing matrix-array imaging with freehand 3D ultrasound, it be-
comes obvious that the former technology provides the functionality to retrieve
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3D information in combination with time domain data right-away. As the full
volume can be covered by a single probe, these systems can acquire 3D+t data
with up to 40 volumes per second [53]. In contrast to this, freehand techniques
provide data with a high spatial resolution, but mostly neglect the temporal do-
main. In case of freehand 3D+t acquisitions, one usually has to trade temporal
for spatial resolution and it is often advantageous to consider the acquired data
as individual 1D-rays in 3D+t space or 2D image planes respectively, as they are
sparsely distributed either in the spatial, or in the temporal domain. It should
be noted here that also matrix-array probes can be combined with tracking
devices in order to acquire freehand 3D+t ultrasound, combining volumetric
images at several positions and time phases. Figure 2.3 shows an example for a

Figure 2.3: 3D-reconstruction (left) and two longitudinal cuts (right) through
a freehand 3D-ultrasound scan with periodical lateral displacement during
movement along the artery. The segmentation of the Lumen boundary shows
the bifurcation from the common to the internal and external Carotid artery.
Images were acquired with a Curefab CS 3D ultrasound system.

freehand 3D-ultrasound scan of the Carotid artery, acquired with a tracked 2D
US probe using magnetic position tracking. To demonstrate the possibilities of
dynamic acquisition trajectories as one of the main advantages of the freehand
scanning technique, the transducer was moved freely in a sinusoidal trajectory
along the artery for this acquisition. With respect to the sparsity in temporal
domain, neglecting the time-domain can be potentially unfavorable for vascular
diseases, as changes in time usually correspond to changes in the anatomy
due pulsation, breathing or patient motion. Considering an artery for example,
such changes include the expansion and compression of the artery, causing
artifacts and distortions in the 3D volumetric reconstructions (cf. Fig. 2.4).
The main challenge in 3D+t freehand ultrasound is thus to utilize all
available information in a way that optimally takes the sparsity with respect
to the spatial or the temporal domain into account. In this context, spatio-
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Figure 2.4: Pulsating artifacts in a longitudinal cut through a transverse free-
hand 3D-scan without consideration of time as a separate domain.

temporal physiological models can be used in order to regularize the acquired
information, especially with respect to the temporal domain. For vascular
applications in particular, the temporal domain can be restricted to the period
of cardiac pulsation, wherein an artery would move from a compressed state
to full expansion and back to the initial state. Exploiting this periodic nature,
i.e. repetitive cycles of cardiac pulse phases, measurements of several cycles
can be merged in the spatial domain, which leads to an increased sampling
rate in the temporal domain.

Under the assumption that a spontaneous movement of the patient can
be excluded, similar physiological models can thus be utilized for image
acquisition and throughout the whole workflow chain in general. In order
to allow for a subsequent utilization of temporal information on top of 3D
data however, it should be noted that already the acquisition should ideally
incorporate additional sample information regarding the temporal domain.
In this sense and with respect to vascular applications, we limit ourselves
to methods for the detection of cardiac and breathing phase information, as
these are the effects which are primarily reliable for alterations in the observed
anatomy over time for vascular applications.

2.2 Medical Applications

Three-dimensional ultrasound information with an extension to the temporal
domain enables a variety of specific applications in the vascular area, in
particular as physical and physiological models are gaining increasing interest.
In the following, we categorize applications in methods i) enabling temporal
analysis, and ii) improving diagnosis for single points in temporal domain,
and will describe possible approaches in detail.

Vessel Dynamics

Focusing on vascular applications, the evaluation of the vessel wall over time
is certainly a promising area, where 3D+t information can facilitate the ad-
vancement of technology and medical knowledge. In this context, the arterial
stiffness is known to correlate with atherosclerosis, and can be assessed locally
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from arterial cross-sections with reference to the blood pressure, for example by
distensibility or compliance [46]. Recently, it was shown that local evaluation
can yield an improved detection of hypertension accompanied by a significant
increase of local stiffness parameters [49]. Besides hypertension, an estimation
of local vessel wall parameters for a whole arterial segment could provide
important information for vascular surgeons in order to decide on optimal
treatment.

vessel
wall

carotid
artery
bifurcation

Figure 2.5: Slice through a transverse 3D-ultrasound scan of the Carotid
artery. The red line marks the border between Intima-Media and Adventitia,
showing significant vessel expansion and compression. In this case, non-
constant velocity of the sweep results in non-periodic steps.

In clinical routine, such techniques could be used to determine the effect of
alternative treatment strategies, such as different stent types versus bypasses,
as increased arterial stiffness reduces the compliance of the vessel wall. In
today’s practice, however, estimation of stiffness and distensibility remain
mostly experimental [88], which is also why methods to estimate pulse-wave-
velocity as an indirect measure of arterial stiffness have evolved in the last
years. Utilizing the dynamic behavior of the vessel wall over the period of
a cardiac cycle however, local stiffness values of an arterial segment can be
potentially obtained with high precision and reliability, cf. Fig. 2.5.

Besides evaluating the dynamics of vessel walls, also the diagnosis of the
blood flow itself can profit from temporal information. Color-Coded-Duplex
(CCD) acts as a standard tool in order to diagnose the progression of stenosis
by evaluating flow velocities in narrowed arterial regions. Despite the strong
inter-operator-variation between untrained and experienced sonographers,
it was shown in retrospective studies that CCD provides the same quality
as high-resolution MRA, and a superior quality in comparison to CTA [22],
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where US was compared to both modalities in reference to intra-operative
validation. Moreover, there has been a variety of research in the context of CA
stenosis grading in the past [39, 55, 96]. The utilization of ultrasound imaging
as a main diagnostic tool was thereby recently anchored in the guidelines
for vascular surgeons in Germany. With the possibility of acquiring reliable
3D+t information for arterial segments, such data can be used for 3D blood-
flow reconstruction over time, showing the full flow dynamics which could
potentially be used as a quantity to evaluate the severity of disease progression
on a per-patient basis. This would not only overcome the limitations of today’s
pulsed-wave measurements, but also resolve the angle-dependency of current
methods. Furthermore, appropriate adjustments by the physician enable an
integration of such information into the processing chain as well as their
utilization for physiological modeling of diseases.

Improving Image Quality

Contrary to approaches for intrinsically dynamic scenarios, methods designed
for the assessment of static structures such as inelastic cysts subject to motion
due to the movement of adjacent structures can profit from the acquisition of
3D+t data as well. Particularly 3D compounding and reconstruction methods
could directly benefit from a restriction of the compounding to a certain time
step, as artifacts due to anatomical changes can be, roughly speaking, averaged
out, as shown in Fig. 2.5. In practice, neglecting time information can result
either in distortions due to pulsation-artifacts, or in a significant motion blur
when samples of different time phases overlap in the same region. It becomes
evident from this observation that appropriate compounding can resolve these
problems by considering only points within a certain time frame for volumetric
reconstruction. In addition to compounding, post-processing methods could
profit equally well of the above-mentioned considerations. In the case of image
segmentation for instance, gradient information is an important cue for many
available methods. As a consequence, the segmentation of target structures may
become more challenging in case of distorted gradients, i.e. due to washed-out
image information caused by motion blur.

In contrast to external motions, i.e. transducer movement, also internal
motions such as arterial expansion and compression should be considered. For
the example of vessel tracking, the contour of a vessel wall should be localized
in subsequent frames, e.g. by employing Kalman-filters, which are often used in
order to initialize the contour tracked on a previous frame at similar positions
at the current one. If the contours are drastically changing, for example due
to an instantaneous expansion of the vessel between subsequent frames, the
quality of such approaches might however decrease.

Finally, even if a segmentation or tracking may result in accurate outcomes,
the comparability to other acquisitions of the patient or to records of other
patients is particularly difficult as there is no reference to the utilized phase of
cardiac pulsation as basis for the segmentation. The comparison of estimated
quantitative values such as aneurysm or plaque volume [34] could thus be
falsified by the comparison of results for different pulse phases.
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2.3 Challenges in 3D+t Ultrasound

With respect to a full acceptance and integration into the clinical workflow,
several challenges have to be overcome in the context of 3D+t ultrasound
acquisitions, which will be described next.

Improving Diagnostic Value

The improvement of the diagnostic value is of predominant importance in
order to facilitate the clinical acceptance, which directly relates to the spatial
and temporal accuracy of 3D+t data. While the spatial resolution is restricted
by physical limitations, such as the usable wave-length and the ultrasound
beam properties, temporal sampling can be influenced by both the imaging
hardware as well as the acquisition protocol itself (i.e. scanning of a volume
of interest within a certain time frame). Furthermore, the robustness with
respect to noise and varying quality for different target anatomies has to be
verified and maintained from a practical point of view, in order to ensure a
continuously high quality in the clinical routine. As ultrasound is considered
as an imaging modality with high intra-observer-variability, the reliability of
all processing steps has to be evaluated carefully, i.e. by exhaustive tests with
different patient groups and target applications. In line with this, possible
calibration steps have to be assessed carefully and with respect to the achieved
precision and accuracy, as well as their clinical feasibility.

Operator-Dependency

Up to now, ultrasound imaging is manually guided by physicians and experts
and, thus, is heavily user-dependent. Due to all the imaging characteristics
and the considerably large influence of acquisition parameters on the resulting
image quality, achieving a low intra and inter-operator-dependency remains as
a major challenge for freehand 3D+t ultrasound systems. In order to account
for these effects, either an automatic optimization of the acquisition parameters,
or alternatively a fixation of scanning protocols has to be considered on the one
hand. On the other hand, ultrasound imaging requires extensive training of the
operator, which is why an additional feedback should be given to physicians
during US guidance. Alternatively, a (semi)-automatic acquisition process
needs to be taken into consideration.

Clinical Integration

Besides an improved accuracy, the practical applicability and usability of
introduced methods remains a key challenge in all ultrasound-related methods.
Given the support of ECG in most of today’s ultrasound devices for example,
the comparably high additional effort, i.e. the placement of several electrodes
on the patient’s skin, prevents this technology from being applied more often.
The acceptance of technologies with a more complicated acquisition setup
or protocol usually depends on the gained diagnostic value or the reduced
examination costs, e.g. due to subsequent examinations becoming superfluous.
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Thus, technologies providing additional diagnostic information or precision,
while adding minimal complexity in terms of the clinical setup will become
accepted more easily. This is of special importance for screening applications
or initial diagnosis, where the available examination time is limited, and
thus, additional practical restrictions for an examination comprise a significant
impact to diagnostic costs.

Sparse sampling

Today’s freehand 3D ultrasound systems imply the acquisition of individual 2D
images and thus suffer from the aforementioned trade-off between the temporal
and the spatial resolution. As a consequence of this sparse sampling, additional
challenges are imposed for the interpolation of the 3D+t data. Even for a
potential integration of matrix-array transducers in future freehand systems,
sparse sampling may be inevitable in image regions, where the transducer is
moved. Thus, data sparsity will probably remain as a main challenge also in
future technology platforms.

Data Visualization and Processing

Based on the acquisition of 3D+t information, processing and especially visual-
ization of acquired data in 3D+t is a demanding task. Mainly due to the high
amount of data, high computational requirements need to be imposed in order
to allow for fast and intuitive processing for different applications. In this sense,
additional methods for dynamic and adaptive sub-sampling strategies have to
be incorporated for optimal data processing. Furthermore, new visualization
methods have to be developed as well, as a volumetric dataset may have a
differing appearance in the temporal domain. As an example, a focus has
to be put onto the visualization of changing structures over time, i.e. vessel
dynamics, while static structures might be less important for a diagnosis.

2.4 Related Work

Based on the general concepts of freehand ultrasound, related work can be
categorized into i) methods without consideration of temporal information,
ii) systems utilizing secondary devices to retrieve such information, and iii)
approaches extracting temporal information directly from the acquired image
data.

Neglecting Temporal Information

Due to its simplicity, time-information is even today not commonly considered
for 3D freehand ultrasound. With respect to systems presented in the early
2000s [38], basic concepts remained identical up to now, such that a regular
2D ultrasound system is usually connected to a tracking device in order to
acquire pose information for the maneuvered transducers. As an alternative
to tracking systems, some 3D approaches are capable of steering/moving the
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arrays mechanically, e.g. by stepper motors. In recent works it was shown
that by using such systems, the progression of atherosclerosis in form of
plaque evaluation can be monitored successfully [89, 136]. For quasi inelastic
structures such as plaques, the assumption of a static structure subject to
periodical movements obviously seems to be more appropriate. For application
areas where pulsation plays a minor role, such as bone traumatology, the
anatomy is entirely static and thus triggering (gating), or additional time
information is not necessary. As soon as changes are induced by breathing or
pulsation however, neglecting the dynamic behavior can hamper subsequent
processing and quantification steps. Since such applications are generally
characterized by higher intra- and inter-observer variability, additional pulse-
phase information can be used to reduce this variability, e.g. for plaque volume
measurements [28]. In case of intravascular ultrasound, several works also
considered the effect of cardiac pulsation for volume quantification, showing
that volume estimates are affected by coronary pulsation without respective
pulse-phase gating, e.g. [134].

External Sensors Providing Temporal Information

As a consequence of the limitations given by discarding temporal information
completely, gating methods for compensating cardiac pulsation have been in-
troduced for several systems. The most wide-spread technology is ultrasound-
gating by means of Electro-Cardiograms (ECG) acquiring ultrasound images
only for a given time point during the cardiac cycle. ECG-triggered ultrasound
acquisition is by now integrated in most commercially available systems, with
a focus on the cardiac and intravascular area [10], where a first research in
the field was already conducted in the late 1960s [149]. Many freehand ultra-
sound systems in literature enable the storage of ECG information for certain
applications, facilitating retrospective gating [6]. For freehand ultrasound,
breathing motion can also be acquired by placing additional tracking sensors
on the patient’s chest in order to directly acquire signals of chest movement as
an indicator for breathing phases. For this application, ultrasound was also
utilized directly to perform estimates of cardiac motion, and results have been
evaluated within the field of biomechanical simulations [5] as well as gated
radiotherapy [70]. With respect to cardiac pulsation and the broad availability
of ECG systems, their utilization is still not widely accepted in clinical practice,
as the placement of multiple electrodes with proper skin-contact is very time
consuming and cumbersome. Thus, it is of high practical value to develop
techniques which do not impose a significant overhead to the clinical work-
flow, but still achieve an accurate diagnosis when the placement of multiple
electrodes is not feasible in the clinical routine.

Image-Based Techniques

Restrictions due to the practical usability and the integration into the clinical
workflow are the main reasons, why many researchers are aiming at devel-
oping fully image-based methods for the determination of phase information.
Among these methods, early attempts directly utilized the gray-scale data over
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time within a selected region of interest to determine pulse-phase curves [133],
or extracted pulse information from Doppler acquisitions for the gating of
MRI sequences [118]. Others tried to extract secondary signals such as di-
ameter or area curves over time and performed temporal filtering of these
signals [48], or even used a second ultrasound device in order to record pulse
phase information via pulsed-wave flow curves [29]. Moreover, the tracking
of certain diaphragm features over time was employed to detect breathing
phases automatically [152]. Alternatively, independent component analysis on
sequences of contrast-enhanced ultrasound images was also used to retrieve
pulse components [114]. Finally, recent methods also looked into the utilization
of manifold learning to estimate breathing phases from 3D wobbler ultrasound
acquisitions [140].

Concerning the interpolation of acquired spatio-temporal information with
respect to a regular 3D+t representation, most systems focus on single time
points without a separate subsequent temporal analysis. Only a few methods
tried to reconstruct full 3D+t -information from ultrasound imagery so far.
For instance, [13] included the concept of normalized-convolution in order to
reconstruct 3D+t ultrasound data of the heart from images acquired with a
fast-rotating probe. For the same data, another approach showed improved
reconstruction quality [95] in comparison to the original method, utilizing all
available spatio-temporal information for the determination of respective spline
interpolation components in order to perform full compounding of datasets in
the 3D+t domain.

2.5 Contributions

2.5.1 Vascular 3D+t Freehand Ultrasound using Correlation of
Doppler and Pulse-Oximetry Data (IPCAI 2014)

Due to the potential applications for an analysis of arterial expansion and
compression throughout cardiac phases, estimates of vessel dynamics from
3D+t data could facilitate early-detection and screening applications leading to
a stronger clinical integration of these methods. For the acquisition of 3D+t
ultrasound data, image-based methods for detecting cardiac pulsation provide
promising results for healthy conditions. However, underlying assumptions of
a constant pulse frequency or steady ultrasound probes are often not valid in
practice. As explained before, ECG-based gating methods suffer from limited
clinical usability, because several electrodes have to be placed on the patient’s
chest, resulting in a both time-consuming and error-prone setup.

In order to overcome such limitations, in [64] a method for the acquisition
and reconstruction of 3D+t data from freehand ultrasound information is
proposed, cf. appendix A. Instead of only relying on the acquired image
information, a pulse-oximetry sensor is used for recording information about
the total blood volume (in the fingertip) over cardiac cycles. Pulse-oximetry
provides a convenient alternative to ECG monitoring; only a single clip needs
to be attached to one of the patient’s fingers, allowing for a monitoring of
pulsation, pulse frequency, and oxygen saturation. These signals directly
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correlate with vessel expansion and compression and thus give an indirect
measure of cardiac pulsation. Due to its comparably low usability overhead,
these sensors are used as a standard tool for patient monitoring in clinics to
detect acute events, e.g. while patients are transported to different stations or
acquisition sites. However, pulse-oximetry signals may face a temporal delay
from the location of measurement (finger) to the anatomical region where the
ultrasound data is acquired. To overcome this varying temporal lag, a time-
calibration step is performed on a per-record basis, enabling direct correlation
of the ultrasound imaging data to the retrieved pulse phase values. With
respect to a clinical application in vascular diagnosis, Color-Coded Duplex
ultrasound is used as a standard tool for the evaluation of vascular blood
flow, and color-coded flow velocities are superimposed on top of normal B-
mode images. Consequently, both B-mode and flow information is presented
simultaneously in this scenario, facilitating the direct correlation of the flow
information to the acquired pulse-oximetry signals. Recalling the theoretic
principle for pulsed-waved flow estimation in ultrasound in Sec. 1.2.4, the color-
coded signals correspond to velocities of scatterers within the blood. Pulse-
oximetry measures the amount of oxygenated blood over time by evaluating
the absorption of light through the skin. As the observed signals are quasi-
static between distinct periods of cardiac pulsation, changes of pulse-oximetry
signals in short periods are modeling the total volume of oxygenated blood
absorbing some of the light emitted from the pulse-oximetry diode. The
volumetric flow rate can thus be approximated by

pi = PP, (2.2)
where Jk denotes the sampling time interval and py the amount of oxiginated
blood passing through a fixed volume with surface area A during ok, i.e.

pk%/Av(t) dA - 3k, 2.3)

For the CCD data, an arterial flow signal dj is extracted from all non-zero
flow values present in the ultrasound data. Then, for every patient acquisition,
the cross-correlation of the signals is evaluated in order to estimate the offset
between both signals

K—I-1
04y = argmax Y djy; * pj. (2.4)
l k=0

In this view, the time offset 04, , comprises the processing times for ultrasound
and pulse-oximetry data, the transmission lag for all information as well as
varying pulse wave delays from the finger-tip to the site of the ultrasound
acquisition. Using the determined offset values, a normalized pulse phase
signal, representing the phase of vessel expansion and compression, can then be
extracted from the calibrated pulse signals. This allows for a subsequent 3D+t
compounding of ultrasound image information with respect to desired phases
of vessel expansion and compression, utilizing i) the time phase information
provided by pulse-oximetry, and ii) the resolution of the natively acquired
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Figure 2.6: Impact of resolution-preserving compounding using temporal
information. Discarding pulse phase information results in blurred images
with fuzzy boundaries (left), while pulse-oximetry signals incorporated into
the compounding preserve the image content for a given time phase (right).

ultrasound data by modeling the beam shape and size along each acquired
scanline. In detail, compounding is performed as a two-step process, where
first all samples contributing to a target voxel position in the 3D+t domain
are selected. This selection includes the distance of the ultrasound samples
to the voxel position with respect to the native resolution of the ultrasonic
beam dimensions. The voxel intensity values are then reconstructed from all
collected samples by using a Gaussian weighting of the samples according to
their distances to the target position in the 3D+t domain.

Resulting 3D+t volume information preserves more details in the images
compared to today’s state of the art, neglecting temporal information for ultra-
sound compounding, cf. Fig. 2.6. Furthermore, by reconstructing information
for distinct time steps, dynamics of vessels during expansion and compression
can be visualized and studied. For the corresponding full publication, the
reader is referred to appendix A.
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Modality-Specific Modeling for
Information Processing in Vascular
Ultrasound

While the last chapter focused on an accurate and reliable acquisition and
reconstruction of 3D+t data, approaches for incorporating domain-specific
models as well as knowledge about the image formation process into the
processing chain are the main interest of this chapter. These are aiming at
overcoming the limitations of today’s methods in order to provide additional
diagnostic value.

3.1 Problem Definition and Motivation

The landscape of ultrasound processing methods dealing with vascular applica-
tions is extensive, where the major areas are image segmentation, registration,
and extraction of quantitative information from the acquired medical data.
The general motivation for these approaches can be roughly characterized in
methods

1. augmenting acquired information by further image processing, such that
these steps can benefit from the processed data.

2. extracting additional diagnostic information directly from the data, e.g. in
the classical sense of computer vision.

3. improving the visualization for physicians and medical experts.

While this categorization is intuitive and often considered as a sequential
pipeline in commercial solutions (consisting of submodules for each part), it
is vague at the same time from a technological point of view, because the
aforementioned categories are not disjoint. As such, data enrichment is usually
performed first, followed by an extraction of quantitative information and its
visualization to the expert performing the diagnosis.
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Data Enrichment

The augmentation of data with the help of image processing methods is
commonly considered as data post-processing, with typical sub-categories
being distortion-correction or noise-reduction. The underlying assumption
of these methods is that the image data is subject to the imperfections of the
image formation process, such as distortions caused by varying probe pressure,
ultrasound artifacts, electronic noise, or quantization artifacts. Thus, the ideal
image I is altered by some kind of distortion, and only the distorted image I’
can be observed by the sensor, i.e. the ultrasound probe:

I/ = gO I/ (31)

where ¢ models the distortion. The goal is then to recover the original image
data by reversing g, in order to remove the alterations introduced by the
distortions. A common example for post-processing is the removal of noise

Figure 3.1: An example for ultrasound speckle removal using anisotropic
diffusion filtering [2] (right) shows suppressed speckle and noise while the
main image structures are preserved. In contrast to this, the raw input image
(left) shows significant noise and speckle across the image.

from the data, e.g. by Gaussian or Speckle filtering. In case of noise removal for
ultrasound data, g refers to a combination of additive and multiplicative noise,
resulting in the observed intensity I = I -, + ], for an image point x, with
#m, 1o being the multiplicative and additive noise terms. While the additive
terms can be removed by classical noise-reduction methods, multiplicative
terms usually refer to the task of Speckle reduction, where the main goal is to
remove diffuse scattering from the image data while preserving the anatomical
information such as small interfaces and other image features.

Besides the removal of noise and speckle, further post-processing methods
are used in order to improve contrast, sharpness, or image quality in general.
Thereby, the necessity for different approaches and their parametrization
varies based on the final goals in terms of data processing. For instance,
while a subsequent visualization of data may be improved by a sharp and
crisp presentation of the image data, automatic processing methods could be
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Figure 3.2: Left: Multiplanar reconstruction of an aortic aneurysm, showing
axial, sagittal and coronal views. Right: Shaded 3D-visualization of a common
carotid artery (manually highlight in blue).

hampered by such fine-scale details. In such cases a coarse representation
could be sometimes favorable.

Quantification and Visualization

The latter two information processing categories, namely the extraction of
quantitative information and data visualization, serve for the goal of helping
the physician or the medical expert in performing a more accurate and reliable
diagnosis. Although the respective goals are similar, the employed concepts
often vary significantly for both categories. On the one hand, visualization
facilitates a direct interaction with the data, such that the expert can retrieve
added value. Quantification, on the other hand, utilizes processing tools in
order to retrieve measurable values for given indications, which could for
example be the volume of an aneurysm or the elasticity of a tumor lesion.

In the area of medical visualization, multiplanar reconstruction (MPR),
showing three orthogonal cuts through a 3D volume, and direct rendering
of the volumetric data still belong to the most frequently used visualization
techniques (cf. Fig. 3.2), because they provide a fast anatomical overview of
structures. Besides these rather basic visualization techniques, which were
mostly adapted from other imaging domains, additional information can be
included into visualization approaches in order to enable enhanced visibility
of the structures of interest within the acquire data. In this context, segmented
objects can be blended with the 3D intensity data, or combined directly to
provide improved 3D visualization, ¢f. [120]. As a consequence, modern
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visualization methods often require additional information as a prerequisite
for visualization, e.g. geometric primitives, segmented organs, or a registered
set of other images. Based on this additional input, they then allow the medical
experts to compose more intuitive representations of the data, facilitating
improved diagnosis. In summary, we can identify general processing methods,
which are used for both quantification and visualization of image data.

Regarding the processing and extraction of quantitative information, there
is a large body of literature available, with image segmentation and registration
probably being the most prominent examples for such processing approaches.
For the segmentation of an object in a medical image, the interest lies in the
delineation of the object boundaries, such as contours in 2D or surfaces in 3D, in
order to enable a visualization of the structure and an extraction of quantitative
measures such as its volume or diameter. As opposed to this, the main
challenge for image or model-based registration lies in aligning two or multiple
sets of points, shapes, or images to each other, facilitating the overlay and
detection of certain structures in the corresponding sets of data. More formally,
the goal of registration is to find a transformation T mapping corresponding
points x, x" into each other, i.e. ¥ = Tx. Thereby, transformation models can
be categorized with respect to the type of mapping (rigid, affine, projective,
or deformable) the dimensionality (2D-2D, 2D-3D, 3D-3D), or their spatial
sampling, i.e. dense or sparse. This not only enables an overlay of multiple
images for one patient, but also an analysis of the progression of anatomical
regions over time. By image registration, complementary information can be
further combined for visualization, often referred to as image fusion. For both
fields described, a multitude of approaches was presented in the past, where
[101] gives a good overview of segmentation methods for ultrasound imaging,
and [157] for the field of medical image registration.

3.2 Modality-Specific Modeling for Improved
Ultrasound Processing

In the area of medical image processing, the majority of methods in literature
was developed with a focus on tomographic modalities such as CT and MR,
while an application to (3D) ultrasound imaging was often not considered. As
a result of these developments, methods were directly applied to US imaging
without modification as such, often yielding unsatisfactory results. Instead, a
modality-specific modeling, inspired by both imaging physics and physiology
would lead to an improved performance of general processing methods, such
that specific properties could be used in order to improve the final outcome. At
this point, we recall the modeling categories, namely physical and physiological
modeling, as introduced in Sec. 1.1.

Physical Modeling

Physical modeling tries to account for all properties and effects during the
modality-specific image formation process. Thereby, the main motivation for

44



3.2 MODALITY-SPECIFIC MODELING FOR IMPROVED ULTRASOUND PROCESSING

physical modeling is to account for the characteristics of the different image
modalities. In the case of ultrasound, such properties are, among others, the
specific acoustic attenuation, the anisotropic nature of ultrasound due to the
directionality of the beam as well as the formation of ultrasonic speckle. The
image acquisition properties and processes can differ fundamentally across
modalities however, which becomes obvious when imaging the same anatom-
ical structures. When comparing CT, MRI, and ultrasound for example, CT
reconstructs tissue attenuation given by Hounsfield units, while MRI uses
the relaxation of hydrogen atoms, and ultrasound the differences in acoustic
impedance as basic physical imaging properties. As a consequence of the
differences in image acquisitions, resulting images of the same anatomy can be
used to obtain complementary information about the target structure, which is
often utilized in clinical routine.

With regard to the detailed image formation process of sonography, the
specific image appearance and its properties include for example appropri-
ate noise and distortion models as well as modeling of ultrasonic speckle
as Rayleigh scattering. Furthermore, information about the attenuation of
ultrasonic waves for deeper tissue regions can improve the quality for generic
processing methods, as due to the loss of wave energy, the confidence of im-
aged features decreases in heterogeneous tissue with increasing distance to
the transducer. Finally, modeling can also incorporate knowledge about the
specific parameters used for image acquisition, i.e. the choice of the ultrasound
transducer geometry, its layout, and the emitted ultrasonic wave front. This
includes again wave and beam modeling, which influence not only the overall
image appearance and confidences, but also the image resolution as a function
of the penetration depth. Moreover, the focal length and the frequency of
emitted waves can be used effectively to model a full ultrasound acquisition
performed by a physician.

Besides the characteristics described above, physical modeling can also be
used to address further parameters and effects, such as the direct interaction of
ultrasonic waves with solids and tissues. This refers to ultrasound simulation,
where, based on known physical parameters and target material properties,
the appearance of a resulting image can be simulated fully. In this context,
however, also information about the target tissue is required for simulation,
which is why usually information given by other sources (e.g. CT, histology)
is used as a basis to simulate data, which is directly leading to physiological
modeling approaches.

Physiological Modeling

Physiological modeling uses knowledge about the target structures (e.g. organs,
vessels) in order to model the anticipated shape or appearance of the respective
structures in the image data. While physical modeling differs among imaging
modalities, physiological modeling can be applied in a similar way to different
modalities, as the biological and physiological principles of the imaged objects
do not depend on the modality. In this sense, knowledge about organs and
their dynamic behavior, or whole anatomical regions can be related to the
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cognition of human operators, as outlined in Sec. 1.1.

More precisely, physiological modeling utilizes prior knowledge about
the construction and composition of anatomical structures as well as their
function for geometric and deformable models. A vessel for example can be
represented as a tubular structure with bifurcations and a varying diameter
along the vessel. Similarly, assuming a deformable model, the tubular structure
would be compressed over time due to cardiac pulsation, leading to phases of
minimal and maximal expansion. In daily routine, such information is used
by the physicians in order to find and analyze target regions of interest in the
image data. By considering multiple patients for the creation of such models,
statistical models of different vascular structures and anatomical regions can
also be computed. More precisely, the vessel diameter and its dynamic behavior
over time will heavily depend on both the anatomy and the time of observation,
while the underlying assumption of a tubular structure with narrower/wider
regions and bifurcations can be used to model all vessels in a uniform fashion.

Beyond geometrical and deformable models, information about human
physiology can allow for a compensation of dynamical changes due to motion.
For the example of flow estimation with ultrasound, the changes of blood flow
velocities over cardiac cycles can be correlated with changes in the patient’s
condition, such as a potential malfunction of the heart, or a localized damage of
the vessel (stenosis, aneurysm) respectively. By comparing observed informa-
tion with respect to their accordance to previously generated (dynamic) models,
diseases and malfunctions can be detected directly, or confidence values can be
derived. Furthermore, not only the dynamics of single objects and organs, but
also their relation to each other can be modeled. This includes the coupling of
adjacent organs, as well as their dynamic behavior. In such a scenario, whole
anatomical regions such as the abdomen can be modeled, consisting of several
different structures including the arteries, the liver, kidneys, the lung and the
like. Today, complex models incorporating biological, mechanical and dynamic
properties for certain anatomies are summarized as biomechanical models and
enable a full simulation of single and multi-organ behavior.

3.3 Challenges

While the points described above indicate different methods and possibilities
for an integration of physical and physiological models into data processing,
several challenges are still evident in this context. It has to be noted that the
decision on the type and extent of modeling heavily depends on the specific
goals and applications.

Quality of Ultrasound Data

Most importantly, proper modeling always requires a certain level of quality of
the input data. While the main goal for physical models is to compensate for a
degenerated quality of the acquisition, variations among different examiners
(operator-dependency) may influence the performance heavily and are difficult
to model. Furthermore, any type of modeling usually poses high requirements
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in terms of additional meta-information for each recording. These include
among others the acquisition protocol with its parameters, the trajectory as-
sociated to the sweep or the tissue types. For an appropriate modeling of
ultrasound waves and beam profiles in homogeneous tissue, for instance, a
detailed knowledge about the used imaging parameters such as transducer
properties, transmit and sampling frequency, and focal points may be required.
Consequently, acquisitions and recording of data has to be performed carefully,
ensuring that the required information is collected in sufficient quality.

Dependency on Acquisition Settings

In addition to the quality of the acquired data, varying acquisition settings
may have an impact on the modeling results. For the example given above,
a change in parameters would result in different beam profiles and conse-
quently in changed image appearance, influencing the visibility of noise and
ultrasonic speckle. Thus, the dependency on acquisition settings has to be
taken into account throughout all processing steps, either by generating mod-
els parametrized based on those, or restricting the modeling to a specified
combination of imaging and acquisition parameters.

Model Complexity

When comparing highly realistic models to basic ones, a balance of accuracy
and complexity versus runtime has to be found. While for the example of
ultrasound image simulation complex models enable realistic estimations, the
computation of a single image can easily take up to several hours, which is
simply not feasible for an incorporation into real-time scenarios. On the other
hand, too simplistic models may not be suitable for accounting for a varying
image quality and the presence of noise. As a consequence, the selection of an
appropriate model has to be made with care and with a focus on the desired
balance between complexity and runtime.

Quality and Quantity of Available Data

Similar to the runtime, the quantity of available data for constructing models
impacts the (possible) choice of models. While basic anatomical priors can
be incorporated in many approaches, complex biomechanical or deformable
models often require a considerable amount of information for training or
parametrization. Furthermore, the acquisition of geometric models as well as
the annotation of respective meta-data usually requires a considerable amount
of manual interaction or input, restricting the generation of high amounts
of datasets in practice. While this point is certainly less evident for leading
companies in the field of medical technology, which have access to databases
of several thousands of patients, the non-commercial generation of such a
collection remains challenging. In addition to this, it has to be noted that it
is usually much easier to obtain data exhibiting pathologies than data from
healthy subjects. This can both cause a bias in the generated models and
hamper the generation of these models as such, because the variability of
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pathological organs or structures is in general higher than the variability of
healthy collections.

Model Validation

Proving the accuracy and robustness of the developed methods remains a
further challenge, especially with respect to other approaches. The reason
for this fact is that the concept of reproducible research has not been fully
established yet in the area of computer science, e.g. by providing source code,
reference implementations, or ground truth data. To enable a validation using
ground truth information, manual segmentation of objects in a series of images
may be required in many cases. Alternatively, computationally generated
phantom datasets can be used for evaluation. However, the quality and realism
of such phantoms suffers from certain limitations such as imperfect material
properties, or the lack of dynamic behavior. In addition to the availability of
the evaluation data, choices for appropriate validation strategies have to be
made. In practice, a combination of both the comparisons to computational
phantoms and a ground truth validation seems to provide a good strategy for
many scenarios.

3.4 Related Work

Similar to the last section, we differentiate related work according to physical
as well as physiological models. While the areas are partially overlapping,
for physical models the emphasis lies on the utilization of ultrasound-specific
knowledge, while physiological models focus on incorporating physiological
priors into the processing chain.

Physical Modeling

Detailed incorporation of imaging parameters with specific corrective process-
ing steps started in the early 2000s, when expected intensity homogeneities
due to changes in attenuation in different tissue types were used for the first
time in order to improve segmentation results [150] in ultrasound imaging.
While intensity homogeneity can be observed in acquired ultrasound im-
ages, the reasons for this effect are mainly due to ultrasound attenuation in
tissue as well as modality-specific peculiarities. Several approaches have fo-
cused on the estimation of ultrasound attenuation for a reduction of distortions
due to attenuation and enhancement artifacts [131]. More recently, a full beam
shape modeling was combined with the estimation of ultrasound backscatter-
ing statistics to automatically detect shadows from acoustic interfaces, such
as bones [62]. With the similar goal of removing attenuation artifacts in ul-
trasound images, advanced models for attenuation estimation using partial
differential equations to compensate for those artifacts were presented in [154].
As an alternative approach, ultrasound transmission-reflection was also used
to directly reconstruct attenuation values from a series of multi-view ultra-
sound acquisitions [138], enabling both the visualization of attenuation and the
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presentation of simulated CT data from these values to the end-user. Moreover,
the quality of ultrasound images was evaluated by means of machine learning,
allowing for an automatic adjustment of acquisition parameters in an on-line
fashion [35].

Beside various research efforts in order to compensate and correct for at-
tenuation and artifacts in imaging, a second trend can be observed with the
goal of incorporating more information (specific to each imaging modality)
into further processing steps. Thereby, the utilized information is used for
both data enrichment and further processing with the goal of improved quality,
performance and accuracy of the respective methods. More recently, Rayleigh
models targeted to ultrasound scattering [15] as well as general ultrasonic
speckle distributions [123] have been included into segmentation methods for
improving performance and robustness. Concerning the registration of CT
and ultrasound data, ultrasonic reflection-transmission as a basic imaging-
principle was also used to simulate US images from CT, facilitating direct
registration of both modalities [146]. Besides these speckle models, confidence
maps for ultrasound have been presented recently, yielding an estimate of the
information-certainty provided by each ultrasound sample [75]. As such, confi-
dence values are estimated by incorporating a Beer-Lambert attenuation model
with the image intensity information in order to locally detect shadowing and
artifacts.

Physiological Modeling

Within the area of physiological modeling for vascular applications, geometric
models are used most-frequently for ultrasound imaging. With a focus on
vessel detection and tracking, several methods used geometric assumptions
such as a circular and ellipsoidal appearance of vessel cross-sections for their
detection [107, 108, 143, 144, 81, 80], relying on the general assumption of
tubularity discussed above. As an extension to basic geometrical constraints,
statistical shape models for various ultrasound applications have been proposed
in literature [101], and partially also specific adaptions to the ultrasonic imaging
principles have been included to improve processing outcomes [83, 123].
While the majority of geometric and deformable models is directly used
within the respective processing approaches including segmentation and regis-
tration, biomechanical models combine geometrical information of the vessels
with dynamic changes over time (i.e. cardiac pulsation) and are often used
for the direct simulation of vascular structures and their behavior. In this
field, various models are available for the simulation of pulsatile blood flow
in arteries [69, 141], which can directly be mapped to ultrasound flow veloci-
ties. To model the propagation of fluids in vessels in a fully realistic fashion,
the Navier-Stokes equations have been integrated with appropriate boundary
conditions in various methodological setups [103, 156, 129]. Thereby, the fluid
dynamics simulations were partially augmented by fluid-structure interactions
in order to model the dynamic changes of the vessel wall interacting with the
pulsatile blood flow [129]. Furthermore, there have been efforts for incorporat-
ing biomechanical models directly into the registration of CT and ultrasound
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data [51] in the case of spine. Targeted to vascular applications, extensive
biomechanical models were finally utilized to directly improve the quality and
accuracy of ultrasound blood flow imaging as such [130, 128].

3.5 Contributions

In the following, all contributions with respect to modality-specific modeling
in vascular ultrasound are described. For the detailed versions of the respective
contributions, the reader is referred to appendices B to D.

3.5.1 A Quadratic Energy Minimization Framework for Signal
Loss Estimation from Arbitrarily Sampled Ultrasound
Data (MICCALI 2014)

Incorporating information about the image acquisition process, the ultrasound
probe and machine settings can improve image processing significantly, cf. Sec.
3.2. As described in [75], ultrasound confidence maps are modeling ultrasonic
attenuation and imaging artifacts, which can be useful for further processing
as well as visualization of ultrasound confidence values to the physicians. This
approach is, however, limited to 2D images, while certain applications demand
for 3D information to be incorporated into processing. In order to enable
similar estimations in 3D, an approach which directly takes the acquisition
process into account is presented in [65]. The main novelty of this approach is
two-fold: Firstly, a framework for the modeling of general quadratic energy
minimization problems on arbitrary 3D trajectories is presented, which does
not require interpolation with respect to a regular grid (compounding-free).
Secondly, an extension of [75] for arbitrary geometries is described, enabling the
retrieval of confidence values not only for 2D images, but for full acquisitions
with a support for arbitrary image geometries such as linear, curvilinear or 3D
trajectories.

The structure of a general energy-minimization problem, a re-occurring
problem in image processing, is given by

I T
E(x) = 5% Ax—x'Db, (3.2)

where x is the state vector, A the system matrix, and b the boundary conditions
and the source term for a given problem. With respect to the minimization of
such problems, current methods usually assume a regular grid, i.e. the ultra-
sound data lying on a 3D volume reconstructed with respect to a rectangular
lattice [54, 75]. In practice, however, prior compounding of data may impair
the image quality or even lead to a loss of information [110]. In [65], a graph is
thus constructed directly from the acquired ultrasound samples in 3D space
instead, assuming individual US scanlines as the native form of sampling. As
images are generated from a series of individual scanlines (acquired subse-
quently over time) for the majority of ultrasound systems, such an approach
can consequently be used to model any given ultrasound acquisition.
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Figure 3.3: Single ultrasound images are modeled as sets of several rays, where
neighbors are searched in directions e, e, orthogonal to the ray direction e,

For the graph construction from a whole set of rays, a nearest neighbor
search is carried out in orthogonal directions to each ray, such that the six
nearest neighbors can be found in the directions e, e;, e, € R3, cf. Fig.
3.3. Based on the selected neighbors for each sample, a fully connected but
unstructured graph is assembled, for which directional derivatives Vgp; :=
pe — pi can be defined as the difference between a target sample potential p;
and one of its six neighboring potentials ps. By including a potential-dependent
activation and update scheme, one can solve energy minimization problems
on a directed graph in a descent-like fashion. The activation for an edge
connecting two samples is controlled by the potential difference of adjacent
samples 1(p; > pg) = 1, if p; > pg, and 1(p; > pg) = 0, resulting in the
following update scheme:

Api= ) [1lpi > pe)wic +1pi < pe)wei] Vepie (33)
cen;

As the computation of Ap; is only dependent on the local neighborhood, a
parallel implementation on the GPU allows for an efficient optimization directly
on the assembled graph.

For applying the optimization framework to the task of confidence esti-
mation based on the presented framework, only the weighting function for
each graph connection has to be adapted and the boundary conditions have
to be set accordingly. More precisely, the angle between two rays determines
whether their imaged samples correlate to each other or show complementary
information. To account for this ultrasound-specific pecularity, a 3D weighting
scheme is presented, incorporating sample intensities, their distance, as well as
the angle between the respective rays:

|19—1 - Ie—l i | 1
Wei = exp [ (Gj)a() +7(Xg15) = X1 |(1— (e er'))

(3.4)
Thus, the optimization problem yields confidence values for each sample
of an arbitrary (3D) acquisition directly in the native sampling space. In
comparison to 2D-based methods, our results show improved consistency
and homogeneity along the trajectories, also facilitating the application of the
proposed framework to other, physically-inspired processing approaches.
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Figure 3.4: Loss Estimates for Carotid Ultrasound Transverse (top) and longi-
tudinal (bottom) cuts through a 3D acquisition for [75] (middle) compared to
the presented method (right) shows much more consistency along the trajectory
by using full 3D information.

The publication as printed in appendix B gives additional information with
a detailed description of the optimization problems and strategies, as well
as results for two different application fields, namely bone ultrasound and
vascular ultrasound.

3.5.2 Multi-Scale Tubular Structure Detection in
Ultrasound Imaging (TMI 2014)

Especially with the goal of a quantitative analysis in vascular ultrasound,
automatic processing of data, including vessel segmentation, still remains chal-
lenging. For an automatic detection of vessels in 2D and 3D ultrasound images,
several methods have been presented based on the well-known vesselness
filter [42], including a first adaption to ultrasound imagery [142]. In [63] this
approach is extended with respect to a full adaption to ultrasound images by
means of presenting a generalized method to design second-order derivative
filters targeted at specific image st ructures. Furthermore, general strategies
for adapting filter-based techniques to the special appearance of ultrasound
images are proposed.

For the classical approach of using Hessian-based techniques to detect
vessel-like structures, the second order derivative is equal to the graph Lapla-
cian for the discrete setting in 1D

aZ
328%) = Ag, (3.5)

and serves as a ridge-detector. As the goal is an accurate structural modeling
of the target by the second order derivative, filters can be designed directly
by prescribing these. In detail, this is realized by defining the desired second
order derivate function values as a discrete vector, for which the equality to the
graph Laplacian can be used to iteratively optimize for ¢(x). Using this general
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Figure 3.5: Second derivatives for a Gaussian, the kernel proposed in [142]
(PolyExp), and our presented method (Piecewise Poly), with the gray line
representing an idealized vessel model in ultrasound.

approach, arbitrary structures and shapes can be detected by constructing
appropriate derivatives and solving for g(x).

In addition to this generative filter-design method, additional physics-based
adaptions are included into the vessel detection method in order to improve
the performance and robustness with respect to ultrasound imaging. This
includes a compensation for the decaying image confidence caused by the
decreasing ultrasound beam energy for deeper image regions. To do so, the
respective factor for a discrimination between plate-like and line-like features
using the eigenvalues of the Hessian matrix in the images is modified, such
that confidence eigenvalues are used instead, being more robust with respect
to noise and artifacts. Besides the compensation for ultrasound confidence, the
beam-directionality is modeled within the presented work as well. In general,
observed gradients in axial directions are more prominent in ultrasound images
compared to lateral (and elevational) ones. Based on this assumption, the
eigenvector belonging to the highest eigenvalue of the Hessian matrix should
point into the beam direction for vessel-like structures. Consequently, the dot
product of beam direction and the mentioned eigenvector can be used as an
additional factor for vesselness estimation.

The results for this combined method show an improved separation of ves-
sel points from the background compared to basic vesselness implementations
and single adaptions, cf. Fig. 3.6.

A more thorough explanation of the described components, including a
detailed evaluation and additional qualitative results for comparison can be
found in the main publication in appendix C.
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combined

Figure 3.6: Comparison of the proposed method to the classical vesselness
filter for a scan of the carotid artery.

3.5.3 3D Velocity Field and Flow Profile Reconstruction from
Arbitrarily Sampled Doppler Ultrasound Data
(MICCALI 2014)

The reconstruction of 3D flow velocities from multiple freehand Doppler acqui-
sitions can potentially allow for an improved understanding of how changes in
local flow behavior in the arteries have an influence on cardiovascular diseases,
resulting in a direct impact to diagnostic routines in the future. In order to en-
able a reconstruction of flow profiles, recent studies have shown combinations
of multiple compounded Doppler acquisitions for the estimation of the flow
velocities [52].

While these methods focus on the reconstruction of flow profiles from
fixed pulse phases, e.g. by using ECG-triggered 3D ultrasound acquisitions,
[155] presents an approach suitable for the simultaneous reconstruction of flow
profiles and their behavior over time. With several 3D Doppler acquisitions
from different views and angles to the target structure, a waveform model for
blood flow throughout cardiac pulse phases [141] is applied in order to avoid
the requirement of triggered acquisitions. Similar to the concept presented in
Sec. 3.5.1, the method is compounding-free, such that acquired ultrasound
data is processed without requiring a-priori interpolation with respect to a
regular grid. Instead, for each sample a 4-tuple consisting of the position p, the
ray direction d, the measured Doppler velocity m and normalized pulse phase
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Figure 3.7: Reconstruction for 5 patient records. Shown are the reconstructed
velocity fields as an overlay of visualized cross-sectional planes through the
arteries.

t is collected for the reconstruction of the flow. For a combined reconstruction
of flow velocities and their behavior over time, laminarity of the individual
flow direction is assumed, such that only the flow speed can vary over time,
while its direction is forced to be constant

v(p,t) = @(t) Vimax(p), (3.6)

where ¢(t) represents the pulsatile flow profile over a cardiac phase. Using the
available information for each sample, this results in a cost function depending
on a global, relative pulse profile ¢ and maximum flow v

N

Toroj (v, ) = Y l@(t) dr - Vinax(pr) = mell3 st max[g(t)| =1, (37)
r=1

where the index r denotes the sample number of the respective quantity. By
performing an iterative, alternating optimization for the global pulsatile profile
on the one hand, and the respective flow vectors for each resolution cell on the
other, both entities can be estimated in a combined fashion. As a reconstruction
basis, b-spline grids were used for both the spatial and temporal data sampling,
resulting in smooth estimates due to a divergence regularizer enforcing the
incompressibility of blood flow.

The manuscript, as shown in appendix D, gives a thorough explanation and
discussion of our phantom validation along with a description of the utilized
experimental setup and a full explanation of the optimization strategy for a
simultaneous reconstruction of flow directions and profiles over time.
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Conclusion and Outlook

As a conclusion of this dissertation, we finally want to summarize the main
contributions and points addressed and use it in order to discuss a possible
outlook with respect to the two main fields of 3D+t ultrasound systems and
modality-specific modeling for vascular imaging. In this context, a detailed
overview of the fundamental principles and physics of ultrasound imaging
was provided in the first chapter before focusing on the two separate areas of
contributions. This allowed for an understanding of the respective imaging
physics and properties as well as important effects, and potential challenges
for today’s discipline of ultrasound imaging.

Towards 3D+T Freehand Ultrasound

In the second chapter, the field of 3D ultrasound over time was addressed,
yielding 3D+t data for processing and visualization. Based on a general
problem definition with a focus on different methods for the acquisition of
spatio-temporal data with a high quality, freehand and matrix-array systems
were described as the two basic approaches to acquire such data. Next, a set
of viable clinical application fields was described, and the additional value
given by spatio-temporal information was demonstrated, utilizing provided
dynamic temporal data. While systems for acquiring 3D+t data are available
for some applications, e.g. 3D echocardiography, several challenges are evident
with regard to a full clinical acceptance, especially concerning their clinical
integration, the operator-dependency, as well as the sparsity of resulting data.
With respect to an improved acceptance of freehand ultrasound systems for
vascular diagnosis, the following contributions towards full 3D+t acquisitions
have been introduced:

e A pulse-oximetry sensor for state-of-the art 3D freehand ultrasound
systems, avoiding the inconvenient placement of several electrodes by
using a single clip attached to one of the patient’s fingers, thus facilitating
a fast integration into the clinical workflow.

e An automatic correlation of pulse phase data with respect to the ultra-
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sound information to enable an individual calibration on a per-record
basis exploiting the corresponding signals.

o The reconstruction and visualization of high quality 3D volumetric infor-
mation over phases of cardiac pulsation (3D+t data).

While the presented methods are a first step towards clinically usable
systems, additional analysis regarding the evaluation with different patient
groups and pathologies will be required to show the robustness of the devel-
oped system. With a broader view in mind, the combination of pulse-phase
information could be beneficial for an integration of matrix-array probes with
the freehand scanning technique in the future, allowing for cardiac references
without requiring ECG systems. Moreover, based on the technological ad-
vances as well as increased capabilities for signal processing, the combination
of matrix-array probes with accurate tracking, or even a direct extraction of
pose information from overlapping volume information will potentially lead to
a much higher quality of 3D+t data. In conjunction with additional sensors for
pulse-oximetry and breathing, this could ultimately allow for the acquisition
of 3D ultrasound information, fully incorporating the dynamic and periodic
motions of breathing and cardiac pulsation.

Modality-Specific Modeling for Information Processing in Vascular Ultra-
sound

In the third chapter, the focus was shifted towards the processing of vascular
freehand ultrasound data, utilizing all available domain-specific knowledge.
In this context, data enrichment was presented first, followed by visualization
and quantification as main goals of this domain, before the possibilities for
incorporating specific knowledge were described in detail. With physical
and physiological models, two categories including the specific knowledge
about the physical processes for the imaging-domain, as well as physiological
processes and relations for specific structures were presented. While the
utilization of domain-specific knowledge provides high potential, challenges
are imposed due to high requirements in terms of quality and quantity of data,
the robustness of models, as well as a careful balance between realism and
computational complexity as such. The presented contributions in this field
include both physical and physiological models:

o A generalized framework for the minimization of quadratic energies on
acquired, arbitrary ultrasound trajectories within the domain of physical
modeling. The presented framework allows for an optimization directly
in the original sampling space and enables a modeling of the underlying
imaging principles and properties in a specific fashion.

e The potential of the framework was demonstrated in terms of an estima-
tion of confidence values for each ultrasound sample based on the probe
geometry, the beam properties and the different resolutions in axial and
lateral/elevational direction.
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e An approach for the extraction and detection of vessels in ultrasound
images using a geometrical (physiological) model of vessel appearance in
US data. The model was incorporated within a general method to design
filters for the detection of desired objects based on the desired second
order derivatives using the Hessian matrix.

e As a second contribution to the field of physiological models and their
application to vascular ultrasound, a wave-form-like constraint was intro-
duced in order to reconstruct 3D+t blood flow velocities together with
the corresponding pulsatile profile in a combined fashion, modeling the
changes in laminar flow velocities over the cycles of cardiac pulsation.
This results in a combined retrieval of pulse phase information along
with estimates of flow direction and maximum flow velocities, allowing
for a visualization and quantification of blood flow dynamics in arteries
using freehand 3D duplex ultrasound.

With respect to future directions in terms of modeling in ultrasound pro-
cessing, physical models will gain in all likelihood high importance in the
future. While thanks to the availability of high quantities of data for processing,
physiological models have already became a standard tool throughout the last
decades, physical modeling was mostly considered for direct imaging only.
The potential of such models with regard to information processing are, how-
ever, enormous, especially with emerging fields, such as robotic and automatic
acquisitions of ultrasound data in mind. The integration of physical models, for
example by utilizing the confidence of acquired information, will be essential
to allow for an acquisition and processing of information in a closed-loop,
such that image acquisition and processing parameters could be optimized
on-line. In this view, the development of a generalized framework for phys-
ical modeling is a promising direction to include detailed acquisition- and
process-specific information, such that performance, accuracy and robustness
of resulting information can be improved.
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APPENDIX: 3D+T ULTRASOUND USING DOPPLER AND PULSE-OXIMETRY

Abstract. We present a new system to acquire and reconstruct 3D freehand
ultrasound volumes from arbitrary 2D image acquisitions over time. Mo-
tion artifacts are significantly reduced with a novel gating approach which
correlates pulse oximetry data with Doppler ultrasound. The reconstruction
problem is split into a ray-based sample selection on a per-scanline basis and a
backward algorithm which is based on the concept of normalized convolution.
We introduce an adaptive derivation of time-domain interpolation from the
correlated pulse-oximetry and Doppler signals as well as an ellipsoid kernel
size for spatial interpolation based on the physical resolution of the ultrasound
data. We compare pulse-oximetry to classical ECG gating and further show
the suitability of our normalized pulse signal for 3D+T reconstructions. The
ease of use of the setup without the need of uncomfortable triggering via ECG
provides the ability to use 3D+T ultrasound in every day clinical practice.

A.1 Introduction

Ultrasound imaging is an essential part of clinical imaging and plays a crucial
role in diagnosis of cardiovascular diseases. Three dimensional (3D) ultrasound
imaging is already used in obstetrics for diagnosis of facial abnormalities and
has high potential for vascular imaging [4]. While 2D matrix array probes are
providing 3D and 4D (3D+T) ultrasound information in realtime [10], they
are - as conventional 1D array probes - limited in their field of view with
respect to transducer design. Freehand ultrasound as an alternative or add-
on technique allows the acquisition of high quality 3D ultrasound of steady
anatomy; providing an extended field-of-view [11] and thus enables a better
overview for physicians. For vascular applications though, the data is acquired
over a certain period of time, in which the anatomy changes due to pulsating
blood flow.

One major area where avoiding these artifacts is of crucial importance is 3D
and 4D volume reconstruction (compounding). The goal here is to interpolate
the acquired, irregulary sampled data onto a regular spatial 3D grid to enable
an extraction of diagnostic indices (e.g. vessel volume from a segmentation)
and visualization of the data in 3D. We propose the use of a fingertip pulse
oximetry device, in addition to a 3D freehand ultrasound setup, recording
B-Mode and Doppler ultrasound data, to reconstruct 3D volumes for desired
cardiac pulse phases. This offers the possibility to accurately reconstruct pulse
phase information while avoiding the cumbersome placement of electrodes for
ECG gating, which is not applicable in many every-day screening applications
with short investigation periods. Pulse oximeters are used as a standard tool
in hospitals and allow the monitoring of the patient’s oxygen saturation and
heart frequency by analyzing the light absorption due to oxygenated red blood
cells through thin tissue (i.e. finger or earlobe). However, as the sensors are
measuring the local pulsation, which is not synchronous to cardiac excitation
due to different patient anatomy, the signals cannot be used for interpolation
without a reference to the ultrasound data.

To provide high-quality reconstructions and make full use of the discussed
system setup we propose a novel approach to correlate pulse oximetry with
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Ultrasound system

ECG and pulse oximetry ECG electrodes

EM tracki

Figure A.1: The experimental setup consists of a combined pulse oximetry
/ ECG device, an open-access ultrasound system and two electomagnetic
trackers mounted on the ultrasound probe. For ECG gating, three electrodes
(left bottom) have to be mounted on three torso positions to retrieve a ECG
curve, while for pulse-oximetry (left top), only a fingertip is required.

Doppler ultrasound information. This allows an automatic and accurate cali-
bration of the pulse oximetry sensor individually for every acquisition. Thus,
the pulse oximetry data can be used as a reference for constructing normalized
pulse phase signals. The reconstruction of 3D+T volume data from single
ultrasound scanlines is computed using a concept similar to normalized convo-
lution [8] for 0 — th order interpolation. We propose the selection of samples
for the reconstruction of every voxel based on an ellipsoid region defined by
the US properties around every sample in a backward transformation step.
Therefore, we are able to split the sample-selection from the voxel interpolation
to reconstruct smooth volumes with respect to the local spatial resolution of
the original ultrasound sample data. We compare pulse-oximetry to ECG
gating and further demonstrate the advantages of using adaptive time-domain
interpolation for the application of carotid artery freehand ultrasound.

A.2 Related Work

Although ECG can be used to accurately detect cardiac phases for freehand ul-
trasound [2], the equipment needed is relatively cumbersome and consequently
several alternative methods were developed relying on the ultrasound data
only. First approaches based on filtering of intermediate signals containing
cardiac information calculated from intensity values [13] or via the centroid
algorithm [6] demonstrated good performances but needed either user input
or were limited to certain areas. Further approaches based on phase correlation
[12] and manifold learning with Laplacian eigenmaps [14] were successfully
applied to US data for detection of both cardiac and respiratory motion. How-
ever, most of the proposed image-based methods rely on a constant pulse
frequency for detection [13, 6, 12] and provide rough estimates of cardiac pulse
phases [13, 6, 12, 14] which could introduce artifacts in 4D reconstruction with
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time-domain interpolation.

3D volume reconstruction methods can be grouped into pixel-based meth-
ods, voxel-based methods and function-based methods [11]. Pixel-based meth-
ods transform pixel values with a forward transformation into corresponding
voxels. Voxel-based methods traverse every voxel and map back corresponding
pixel values. Function-based methods estimate an interpolation function from
the input data and evaluate the function at a regular grid. Recent advances in
reconstruction methods also led to improvements by modeling US statistics in
a physical way by using Nakagami distributions [7]. Although these methods
provide volumetric data of exceptional quality, the computational demands
prevent their application in time-critical applications. In [1] a similar recon-
struction approach is used to carry out interpolation in the spatio-temporal
(4D) domain. However they apply interpolation only in forward direction and
do not consider adaptive interpolation in both spatial and temporal domain.

A.3 Methods

Our goal is to obtain an instensity value I(v;, ¢) for every voxel v; € V in
the Cartesian equidistant volume V € RR® for a given timepoint ¢ in the car-
diac pulse phase. We separate the ultrasound sample selection in spatial and
temporal domain from the actual voxel reconstruction, as a sample selection
in voxel coordinates (i.e. searching for the k nearest neighbours in the 4D
volume) would ignore the physical and temporal information of our acquisi-
tion. Instead, we supply temporal and spatial weights for every sample-voxel
relation to the reconstruction step. These weights are defined based on ei-
ther the (temporal) pulse phase information, or the (spatial) ultrasound beam
information. Therefore, the reconstruction approach is split into three parts:
i) the retrieval of a normalized pulse phase signal for every acquisition; ii)
a physics-based selection of ultrasound samples contributing to each voxel;
and iii) the reconstruction of the final voxel intensity value from the selected
samples.

A.3.1 Retrieval of Normalized Pulse Signal

We aim to reconstruct 4D data for different points within the cardiac pulse
phase and thus introduce a fingertip pulse oximetry device as a reference sensor
in the setup, which provides a measure of the oxygen saturation throughout the
cardiac pulse phase. As pulse oximetry values are influenced by the percentage
of blood that is loaded with oxygen [3], the measured signal changes during
cardiac pulse phases and is related to changes in vessel diameter caused by
volume-deviations. This is exactly what we are aiming for as changes in
vessel diameter are the cause of “pulsatile” artifacts in ultrasound acquisitions.
Consequently, the pulse-oximetry signal can not only be used for gating, as it is
currently also done with ECG, but also to reconstruct a normalized pulse shape
signal. This shape signal can then be used directly within the reconstruction.
In order to be able to utilize the pulse oximetry signal, we first have to carry
out a calibration to the ultrasound data, as due to different anatomy and pulse-
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wave-velocities, the temporal offset between fingertip and target ultrasound
location will vary among different acquisitions. For vascular applications,
a second signal containing pulse phase information can be retrieved from
the Doppler ultrasound components belonging to non-stationary, moving
scatterers within the volume of interest. These components can be identified as
the sum of all non-zero Doppler data components after clutter filtering of the
ultrasound ensemble, where stationary and slowly moving components are
removed from the signal. By having two signals containing pulse information,
we can automatically map US data to cardiac pulse phases for individual
acquisitions without any preconditions of a constant pulse frequency or the
absence of arrhythmia. To enable a direct correlation, we extract an arterial flow
velocity signal - corresponding to Doppler signals - from the pulse oximetry
data by taking the gradient of the signal [3] (see Fig. A.2a). Consequently, the
time offset 04, between the corresponding data can be retrieved by finding
the maximum cross-correlation of both real signals as:

04y = N e wrt 9Pk Al
d_)p—arginax k;) kil ¥ P Wt pp= 5% (A1)

with p} and dj representing the pulse derivative and shifted Doppler data
with offset [ respectively. Based on the calibration, we can use the pulse-
oximetry signal to reconstruct a normalized pulse shape signal p. Therefore,
we first automatically detect the set of M pulse periods [my, ..., my] in the
pulse oximetry signal corresponding to the sets of pulse samples pi",; = [p;; p;]
as follows. As the distance j — i between the peaks varies even within one
acquisition, we use the average peak-to-peak distance D = mean(j —i) Vi, j
with 0 < i < j < K to map all pulse periods p;_,; to the same interval

pf’i)j:pi...pj%pl...pp. (A.2)

To preserve the shape of every pulse signal in an optimal way, we use cubic
spline interpolation to conduct this mapping to the normalized pulse shapes.
To reconstruct a normalized pulse shape p from m =1... M — 1 pulse periods
Pi—j, we use a weighted average of all normalized pulse shapes, where the
weight is defined by the deviation of the original shape period length to the
average peak-to-peak distance

pl (A.3)
-a, L,
D—(i—
wmzl—%, Q:vz Whn. (A.4)
meM

The normalized pulse phase signal p can then be retrieved by mapping 7 to
every peak-to-peak interval of M accordingly by spline-interpolation. Figure
A.2b shows an example for resulting normalized pulse phases from given input
data.
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Figure A.2: Left: arterial flow signal extracted from pulse oximetry (blue,
dashed) used for time calibration with the Doppler signal (green, solid). Right:
normalized pulse phase p (blue, solid) retrieved from Doppler data (green
solid) and pulse oximetry (blue, dashed) for a freehand scan of the carotid
artery.

A.3.2 Ultrasound Sample Selection

Before reconstructing a final intensity value, we have to select and weight
contributing samples for every voxel based on spatial and temporal constraints.
Every sample has a position s;, normalized pulse value p; and an intensity
value I(s;). We first select samples for every voxel based on the voxel position
in the sample coordinates. To do so, we set an ellispoid around every sample,
representing its corresponding influence region

5; 2 s: s 2
K(UZ‘, S]) lf ( 1/~(d x) + (vi']y;sj'y) + ( i,]z j,z) < 1

Gs (vi/ S]) = %, - (A5)

mx dmy

0 otherwise,

where s; is the position of sample j in volume coordinates and U? the i-th
voxel position in coordinates of sample j. The maximum spatial distances
dmx, dmy, dmz to the sample location are set according to the axial, lateral and
elevational resolution of the ultrasound data, defined by the transducer and
acquisition properties [9] given by our US system (see Sec A.3.4). We define the
spatial weight of every US sample with respect to a target voxel based on the
voxel position in relation to a three-dimensional exponential decay centered at
the sample position s; ,,s;y, S; . of the current scanline ray sample j

K(vj,s)) = %e*%(”i]*SJ')TB_l(”i]*sf), B = diag(c?, 0 ,02).  (A6)
(27)2 (B2

The spatial variances are set to oy = %dmx,(fy = %dmy,(rz = %dmz to assure
the ellipsoid cut-off at 2 (95.4%). By specifying these distances based on
the physical properties, only samples fullfilling these prior information are
contributing to the final voxel intensity.

For the temporal selection of samples, weights are retrieved from a linear
decay, according to the distance of the normalized pulse phase sample point
0 < ¢ <1 to the desired reconstruction point ¢ with

lpi—¢l .0 —
_ 1—- 4 flp—o¢| <d
Gt(Pjr¢) _{ Aot 1 |P] ¢ < mt’ (A7)

0 otherwise
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which enables a reconstruction for any pulse point ¢ throughout the cardiac
pulse phase.

A.3.3 Normalized Backward Reconstruction

In order to obtain the final intensity value I(v;,¢) from our (sparse) set of
samples, we make use of the concept of normalized convolution. Therefore,
we modifiy the orginal concept [8] and apply it as a backward-transformation.
By doing so, we can incorporate our spatial and temporal weights directly,
while for a forward normalized convoluation, the weights would be retrieved
from the convolution of the sample space with a fixed kernel, which would be
unrelated to the ultrasound physics. We calculate the cumulative intensities
Leum(vi, ) and certainties Ceym(v;, ¢) by traversing all input samples S =
{s1,-. </ Sj, - ..,sN},sj € R3 for every voxel as

Ccum(vi/ (P) = Z Gs(vir S]) -Gy (FT]/ (P) : C(S]) (AS)
vjes

Teum (vi, 47) = VZ Gs(Ui/Sj) : Gt(}sz 4)) : I(Sj) ) C(S]) (A9)
jes

Here, C(s;) € [0...1] is a given certainty value for every input sample s;,
representing the reliability of the underlying data sample and G, and G; are
the spatial and temporal weighting functions. Once all voxels have been
traversed, Ceum (v;, ¢) states the total certainty of the individual voxels. It is

| < . [
noteworthy that |Gs(v;,s;)| < @ e for a single sample contributing to

the surrounding voxels, thus Cey (v;, ¢) is not limited to a specific value range.
Consequently, the final volume intensity values can be reconstructed as:

(v, ¢) = Jeum(0ir®). (A.10)

N Ceum (Ui/ ‘P)

A.3.4 Experimental Setup Protocol

All experiments in this work were carried out with an open access ultrasound
system (Aurotech ultrasound AS, model MANUS) with a linear array probe
(128 elements - single element width 0.27 mm, height 4 mm, focal depth 30 mm,
45 aperture elements) operating at 8 MHz. For every dataset, pulse-oximetry
as well as ECG data was acquired synchroneously with a combined POX-ECG
system (Medlab GmbH, model P-OX100). An overview of the whole system is
shown in Fig. A.1.

ECG Cross-Validation:

As ECG gating still is mostly considered as the only alternative to achieve
an accurate pulse gating, we validated our calibrated pulse-oximetry signals
versus ECG slopes. For 6 subjects, 2 records each were acquired. As the
total blood volume in the fingertip is influenced by the relative position of
the finger w.r.t. the heart, signals could change for varying positions. In
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our experimental setup the overall patient position (lying on table, similar
to conventional ultrasound examinations) was kept constant throughout the
experiments, but the position of the fingertip changed for the two recordings to
analyze POX signal changes. For the first records, the fingertip was placed at a
relaxed position at the table, while for the second recordings the patients had to
lift their fingers as high as possible. Scans of about 10s were acquired for each
position. Subsequently, automatic pulse-oximetry to ultrasound calibration was
carried out and additionally, a vessel-tracking method based on [5] employed
to the ultrasound data to extract a vessel lumen diameter signal from the
recorded 2D frames as an index of vessel expansion and compression. For
validation, the pulse peaks were extracted manually from the ECG, the lumen
diameter and our normalized pulse signals to compare the distances between
the diameter signal and the ECG and POX signals respectively.

Evaluation of Resolution-Preserving Reconstruction:

Without time-domain interpolation, cardiac pulsation will either cause the
appearance of a “"pulsating” vessel in the 3D volume for low frame density or
a loss of contour sharpness in regions where deformation is visible throughout
the cardiac cycle. The consequence is that a potential diagnostic value would be
falsified and the robustness and accuracy of image processing methods affected
in general. Thus we evaluate the suitability of our novel normalized pulse
phase signal for both cases and compare it to i) a constant volume without
time-domain consideration; ii) a linear monotonic increasing pulse phase signal
between subsequent pulse peaks, and iii) a linear pulse signal from mininmum
to maximum peaks and vice versa. As before, scans of 6 volunteers were
conducted, where for every subject both a slow (mean length 58.48s) and a fast
scan (mean length 22.32 s) of the carotid artery was acquired. For all datasets,
volumes were reconstructed with a spacing of 0.25mm for the four compared
methods. The maximum temporal distance d,;; was decreased stepwise to
A = [%, e, 21—0] = 2%5, ns = 1...10, which is equivalent to a subdivision of
each cardiac pulse phase in 7, steps. We compare how well the original US
data is preserved in the reconstructed 3D volumes by evaluating the Mean
Squared Error (MSE) of the reconstructed volumes € [0, 1] with respect to the
input samples at their corresponding locations.

A.4 Results and Discussion

The results for the POX-ECG validation of all compared distances are shown
in Table A.1. It can be seen that i) the peak to peak distance of the normalized
pulse signal is almost identical to the ECG data (mean distance of 1.2ms), and
ii) the calibrated pulse signals have a mean deviation to the extracted diameter
signal of —34ms. As the temporal resolution of the diameter signal extracted
from the ultrasound data is low compared to the other signals (12 Hz compared
to 100 Hz for POX and ECG signals), a standard deviation approximately equal
to the ultrasound sampling period (83.3 ms) is considered as optimal, which is
facilitated by the standard deviation of the peak-to-peak distances in the vessel
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Finger Position
Distance Comparison Relaxed Lifted
pls] ols] pls] ols]
A Area - 0.1049 - 0.1023
A p to ECG 0.0009 | 0.0187 | 0.0016 | 0.0229
A P to Area -0.0341 | 0.0774 | -0.0285 | 0.0799
A ECG to Area -0.2178 | 0.0858 | -0.1349 | 0.1348

Table A.1: Signal pulse period results. Shown are the peak distances between
the pulse oximetry and ECG signal, as well as the distance from the pulse
oximetry and ECG signals respectively to the vessel diameter signal.
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Figure A.3: Reconstruction sample preservation. Shown is the mean MSE
averaged over all fast/slow scans. The black solid line equals the baseline
error without time-domain consideration. Compared is our method (blue,
solid) to the linear pulse phase (red, dotted) and the min-to-max linear (green,
dash-dotted).

diameter signal (104.9ms). As the deviation of the normalized pulse peaks
is perfectly within this range, the extracted ultrasound signal is the limiting
factor to the general accuracy. This suggests that the pulse oximetry signal is
well-suited for gating of ultrasound acquisitions.

Results for the evaluation of the time interpolation scheme are shown in
Fig. A.3 for all methods. When comparing slow and fast ultrasound scans,
it becomes clear that for the fast scans, the input ultrasound information is
preserved best without time domain consideration. Disregard of the pulse
information is still not recommendable, as this would potentially distort di-
agnostic values extracted from the volume datasets. For both slow and fast
scans it can be observed that our normalized pulse phase provides the lowest
errors for the different number of time steps and further preserves the input
information better as a static reconstruction for slow scans. This preservation
is visualized in Fig. A.4, where a reconstruction without considering pulse
information is compared to our method considering pulse information. For the
former, edges are appearing less sharp and details get lost by using all input
samples from different pulse phases for the reconstruction. With our method,
details and edges are preserved much better. Beyond that also a time-domain
analysis is enabled by having distinct volume datasets for every point along
the cardiac pulse phase.
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min-phase constant traced-borders

Figure A.4: Reconstruction for different pulse phases. Shown are cross-sectional
slices through the vessel for min./max. vessel expansion, a volume without
consideration of pulse data (constant) and overlaid contours for min./max.
expansion.

Setup Robustness: In respect of the presented experiments, we did not
notice significant distortions of the pulse oximetry signals as long as the
patients did not move their fingers during acquisition. However, as opposed
to pulse oximetry, for placement of the ECG electrodes, full attention was
necessary in all experiments to provide useful signals. Thus we suggest that
especially for time-critical situations, our technique could be a promising and
robust alternative to classical gating. However to confirm these assumptions
w.r.t to a direct clinical application, a thorough validation of the presented
system is neccessary; especially in regard to different patient conditions (e.g.
arrythmia or calloused finger skin) and working environments with possible
distortions such as operating lights.

A.5 Conclusion

We presented a new system to reconstruct 3D+T volume data from freehand
ultrasound in combination with a pulse oximetry sensor. We introduced a
novel method for correlating pulse oximetry with Doppler ultrasound, enabling
an accurate time-calibration on a per-record basis. We further showed how a
normalized pulse phase signal can be defined based on the pulse oximetry data
to be used directly within time-domain interpolation. The setup can be used
to reconstruct 3D volume data for cardiac pulse phases superior compared to
today’s freehand approaches and delievers improved capabilities for vascular
ultrasound reconstruction compared to classical ECG gating. Furthermore, the
uncomfortable use of ECG electrodes can be circumvented, which allows a
more extensive use of 3D+T in every-day clinical scenarios.
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Abstract. We present a flexible and general framework to iteratively solve
quadratic energy problems on a non uniform grid, targeted at ultrasound
imaging. Therefore, we model input samples as the nodes of an irregular
directed graph, and define energies according to the application by setting
weights to the edges. To solve the energy, we derive an effective optimization
scheme, which avoids both the explicit computation of a linear system, as well
as the compounding of the input data on a regular grid. The framework is
validated in the context of 3D ultrasound signal loss estimation with the goal
of providing an uncertainty estimate for each 3D data sample. Qualitative
and quantitative results for 5 subjects and two target regions, namely US of
the bone and the carotid artery, show the benefits of our approach, yielding
continuous loss estimates.

B.1 Introduction

Many algorithms in computer vision and image processing, such as diffusion
image filtering [7] or random walks for image segmentation [1], require the
minimization of quadratic energy terms of the form

E(x) = ExTAx —xTb, (B.1)
where x € R denotes the solution vector, given a positive definite system
matrix A € R™*" and a vector b € R™. Such energies are usually defined
on a graph shaped as a square lattice resembling the spatial structure of the
image data. However today, and especially in medical imaging, the concept of
an image extends to sensor readings that sample the space arbitrarily, e.g. in
SPECT and ultrasound data. For the latter, single 1D rays, so-called scanlines,
are processed independently and get converted into 2D images subsequently.
This scan-conversion step is based on the transducer geometry, which is of-
ten non-rectangular, e.g. in case of curvilinear or phased-array transducers.
Furthermore, the image planes of 3D freehand sweeps are hardly parallel, as
straight trajectories are difficult to maintain. Therefore, the irregularly sampled
data is usually compounded prior to further processing, i.e. image intensities
are interpolated w.r.t. a rectangular grid. We argue that for the minimization
of a quadratic energy involving US data, such as for segmentation [1], signal
loss estimation (SLE) [3], or Speckle reduction [8], compounding is not only
unnecessary, but also counterproductive, as interpolation can imply a poten-
tial loss of information [4]. The main contribution of this work is therefore
a framework for solving arbitrary quadratic energy minimization problems
in a ray-based and thus compounding-free manner. Moreover, we propose
an ultrasound-specific construction of directed graphs allowing for the defi-
nition of direction and potential dependent edge weights (e.g. weights that
resemble the direction of propagation of the US rays). The aforementioned
generalizations pose additional challenges: i) A specialized neighbor search is

This work was partially supported by the EU 7th Framework, No. 270460 (ACTIVE), and the
Bavarian state program Leitprojekte Medizintechnik (BayMED).
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s : InputUSData—= . Image-based SLE Volume-based SLE Ray-based SLE

Figure B.1: Signal Loss Estimation for Carotid Artery 3D US From left to
right: Original ultrasound data, loss estimates obtained by a frame-based and
a compounding-based application of [3], as well as our method. Shaded areas
show confidence values quantized into 10 equidistant steps. The red window
in the US image marks the longitudinal view shown in the second row. It can
be clearly observed that ray-based SLE are the most consistent along the sweep
direction.

required, as a straightforward nearest neighbor (NN) search does not reflect
the US specific image formation process. ii) The symmetry and the linearity
of Eq. (B.1) are not necessarily preserved, which requires adaption of the
employed optimization algorithms. In this regard, there has been previous
work where most relevant is the one of Singaraju et al. [5], who employed a
Newton-descent like iterative algorithm. Here, we also propose to deal with
the problem in an iterative fashion using a modified version of the conjugate
gradient method, with re-initialization, cf. Sec. D.2.

To demonstrate its applicability, the proposed framework is used for signal
loss estimation in three-dimensional US sweeps, where a value of “confidence”
is estimated for each pixel following a random walker formulation [3], cf. Sec.
B.3. As observed in Fig. B.1 and in contrast to the proposed method, the naive
application of the approach of [3], either frame-wise, or via a compounding,
leads to either discontinuities, or compounding-related artifacts in frame di-
rection, respectively. Thanks to the construction of a directed graph network
on the spatially irregular samples and through the proper definition of graph
weights, our method instead achieves continuity along the trajectory.

B.2 Quadratic Energies on Irregular Ultrasound Graphs

The proposed framework consists of two main steps: i) building a connected
graph from arbitrary US samples in 3D space, and ii) making use of this graph
structure to effectively minimize quadratic energy terms in an iterative update
scheme directly on the graph.

Directed Graph-Network for 3D Ultrasound. For 3D ultrasound data, a graph
can be constructed from either a compounded dataset or directly from the original
ultrasound samples lying in 3D space. Although the graph construction is
easier in the former case, the latter is by far better suited to ultrasound data, as
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Figure B.2: Graph construction from two views, simplified to a 2D plane. Left:
Two views with exemplary local coordinate systems defining the orthants.
Right: Graph constructed from the two views (white and grey nodes) at their
intersection area. The bold red arrows show all outgoing edges from one specific
node (black), and the grey grid areas indicate the orthants for the marked node.

in US imaging, single 1D rays are acquired independently. With an irregular
graph built from individual samples in 3D space, minimization problems can
be solved efficiently, yielding results directly corresponding to the input data.

Thus, we aim to construct a graph directly from K arbitrarily spaced US
rays (scanlines), where each of them consists of N ultrasound sampling points.
The sampling points will be denoted by x;; € R® with corresponding intensity
values I;;, where k = 1,...,K and I = 1,...,N. Each of these sampling
points will be associated to a node n; (i = 1,..., M; M = KN) in the graph
G = (N,E,W), where N, £, and W denote the set of nodes, edges, and
weights, respectively. Further, we introduce the bijection

©:{1,...,N}x{1,...,K} 5 {1,...,M}, (kI)—i=0(KI) (B2)

in order to number all nodes. We call two nodes n; and n; connected if there
exists an edge ¢; ; or ¢;; in €. It is important to note that we construct a directed
graph, as ultrasound imaging is directional by nature with ultrasonic waves
traversing through tissue originating from the transducer. Thus we explicitly
make a difference between ¢; ; going from #; to n; and ¢;; going from n; to
n;. Each node is connected to six neighbors via six outgoing edges. As US
samples are lying arbitrarily in 3D space, a naive nearest neighbor search does
not resemble the US-specific image formation process. Thus, we propose a
different approach and endow every node (or equivalently every sampling
point) with a local coordinate system which is given by the orthonormal vectors
er, ep e € R3, f. Fig. B.2. The vector e, is pointing into the direction of the ray,
ey, is orthogonal to it and lies within the acquisition plane, and e, is orthogonal
to both of them. Given a node n; we can now define its six neighboring nodes
as follows. At first we connect it to its upper and lower neighbors n(; and np,
w.r.t. the scan line direction e;. Let (k,I) = ©@~1(i), then ny = ne(ki—1), and
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np = neg(k+1)- Based on e, and e, we define the four orthants

Oy = {(k’, I'):e, = argming_ o 1o (X — X1 P } (B.3)
Qs = {(k’, I): —ey = argming_ o io ZL(Xpr pp — Xk 1, )} (B.4)
Qp = {(k’,l’) rep=argming_ i, L. Z(Xge = X1, P } (B.5)
Qw = {(k’,l’) —ep =argming_yo oo L(Xr — xkl,p)} (B.6)

in which we aim to find the nearest neighbors in the different search directions
and choose ny, ng, ng, and ny as the nodes corresponding to the samples
with minimal Euclidean distance to x;; within the corresponding orthants.
The orthants can be seen as search regions defined by the coordinate quadrant
bisections, which are used to find neighbors orthogonal to the rays. It is
important to note that the search in these local spaces results in an irregular
directed graph, as for different local coordinates, neighbors will be found
differently (see Fig. B.2).

Minimization of Quadratic Energies on a Directed Graph. Recall that the
minimization of the general quadratic energy in (B.1) corresponds to solving
the equation system Ax = b, where A represents the graph Laplacian. In order
to do so, we propose a meta-algorithm that can be combined with any iterative
solution technique, which only requires a method implementing the matrix-
vector multiplication Ax, such as the well-known conjugate gradient method.
We note that the solution vector x contains the so-called node potentials
defined by p; = P(n;), where P : N’ — [0,1], and the interpretation of these
potentials depends on the application (cf. Sec. B.3). In order to derive a method
implementing Ax, we first introduce the directional derivatives w.r.t. its local
neighborhood

Vepi := pg — pi, where &€ ={ULN,S EW}. (B.7)

This definition allows us to write the directed and potential dependent graph
Laplacian (corresponding to G) at p; as

Api=)_ [1(pi > pe)wiz +1pi < pe)wz] Vepi, (B.8)
GEMN;

where 1(p; > pg) = 1, if p; > pg, and 1(p; > pg) = 0 otherwise, which
activates or deactivates the directed edges based on sign of the potential
difference. The computation of Ap; can be parallelized and thus efficiently
implemented on a GPU. As Ap; corresponds to the i—th row of Ax, the
proposed operation essentially represents a GPU-based black box for this matrix
vector multiplication. The next step for solving (B.1) consists now of selecting
an appropriate iterative solver which can be combined with the aforementioned
black box. An obvious, but slow candidate would be a classical gradient
descent, i.e., x'"T = x! — 7(Ax! —b). In contrast to this, we employed a
conjugate gradient method.

It is important to note that in case of a regular grid of voxels, symmetric
edge weights, and no dependency on the potentials, the corresponding graph
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Laplacian A would be symmetric positive definite. Thus, the plain application
of the conjugate gradient method would already be sufficient for minimizing
(B.1). The symmetry of A is, however, not preserved in the case of potential-
dependent edge weights in a directed graph. From a theoretical point of view,
this would prohibit the application of the conjugate gradient method without
any further modification. Thus, we propose to augment the selected iterative
solver, in our case the CG method, with an additional outer iteration loop.
For each outer cycle, a set of active edges is determined by evaluating the
indicator function in (B.8) once for the whole graph. This set of active edges is
then kept constant for the next 7 iterations of each inner cycle, where the CG
update scheme is started from the initial node potentials first and then updated
accordingly with the result of the previous cycle. As for the normal descent-like
approach, the update-scheme is repeated until the residual is below a threshold
€. We found experimentally that this procedure yields satisfactory results, as
demonstrated in Fig. B.3 and Fig. B.4.

B.3 Signal Loss Estimation from Ultrasound

We show how the proposed framework can be applied to the specific task
of signal loss (or uncertainty) estimation for 3D ultrasound imaging, where
the goal is to retrieve a coefficient describing the reliability of the ultrasound
signals at the different sample positions. The reliability of the ultrasound signal
drops with depth as the signal is attenuated and absorbed in tissue. However,
it is also partially scattered at small interfaces, and thus the reliability is also
depending on neighboring tissue and surrounding interfaces. Although similar
to attenuation estimation, signal loss estimates do not represent an absolute
value, but the relative confidence of the correspdonding sample, in reference
to a certainty of 100% at zero depth. As the SLE are retrieved globally for
the whole acquisition, application fields for these values are extensive, with
the most obvious ones being visualization, registration and segmentation of
ultrasound data, where the values can be directly incorporated as a weighting
term based on the confidence values assigned to the ultrasound samples.

The first step to use the proposed framework is to define weights and border
conditions, such that the result of the minimization scheme yields a mapping
of every ultrasound sample position to a reliability factor € [0,1]. The edge
weights w;; are defined to model ultrasound properties in an effective way, as
inspired by [3]. To account not only for varying distances between connected
nodes, but also for different incision angles of the ultrasound beams, we
additionally make use of the unit vector e,, indicating the direction of every US
ray, to evaluate the angles between compared nodes. This essentially accounts
for the inherent directionality of ultrasound, where signals are similar for ray
orientations which are parallel, but represent complementary information for
rays which are perpendicular to each other. We define our weighting function

We also conducted experiments with the fast Jacobi method proposed by [2], but results were
less convincing.
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Input US Data Image-Based SLE Volume-Based SLE Ray-based SLE

Figure B.3: Loss Estimates for Bone Ultrasound As for the carotid datasets
(cf. Fig. B.1), cross-sectional and longitudinal slices for the compared methods
(second and third column) exhibit a strong variation for image and volume
bases estimates, while our ray-based method provides consistent estimates,
properly modeling the bone structure also in elevational direction.

as

|19—1 - 19—1 H | i
wg; = exp [— (M +7(Ixg1 () — X1 (1 = (e ed)) | |

o
(B.9)
where o controls the edge weight based on the image information, y is a
penalty for nodes with high distances and inter-scanline angles, and e, is the
ray direction for node i, extending the weights in [3] to arbitrary samples in
space.

For the resulting loss estimates, it is known a priori that the relative signal
strength at the transducer surface should be 1, while it is expected to be ~ 0
for all regions which are outside of the US image in axial direction. To model
this conditions, two virtual nodes n; and n;, the transducer (source) and sink,
with py = 1,ps = 0, are added [3]. To account for these virtual nodes, the
right hand side b in (B.1) is initialized with zeros except for the the entries
corresponding to the first row which are initialized with bgx1) = —wWne(k1)
in order to satisfy the transducer-related boundary conditions. With these
constraints in place, we calculate all weights for the edges constructed during
graph setup, and apply the optimization scheme presented in the last section
to retrieve a global solution for all undefined node potentials, representing the
desired loss estimates.

B.4 Results and Discussion

We provide qualitative and quantitative results for SLE in case of 3D freehand
ultrasound based on the presented framework for ultrasound scans of the
carotid arteries, as well as the femoral bone. While in the former case, the
lumen of the vessel is mostly surrounded by soft tissue, bone structures are
strong reflectors which should result in clear steps in the signal loss estimates.
For both applications, we acquired 5 datasets from different subject, each with
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Figure B.4: SLE Variations along centerlines The first row shows the standard
deviations of SLE based on 2D images (blue), 3D volumetric (green) and 3D ray
based (red) methods, respectively. The second row shows the actual SLE values
for all methods along the centerline for carotid and femoral bone datasets 4.

a freehand US setup consisting of an Ultrasonix RP scanner providing scanline
data coupled with an Ascension electromagnetic tracking device.

In terms of a quantitative evaluation, we compare estimates obtained using
our approach to a method for uncertainty estimation from linear 2D ultrasound
images [3] and to an extension of this method, which is applied on a volumetric
(compounded) grid, where we used a backward-warping algorithm [6] prior
to loss estimation. Qualitative results for exemplary cases are shown in Fig.
B.1 for the carotid artery, and in Fig. B.3 for the femoral bone. We manually
extract centerlines for the target structures of interest (carotid artery / bone)
and evaluate the standard deviation of the extracted loss values along the
acquired trajectories, as these should stay constant within the target structures.
Fig. B.4 shows the deviations of SLE values for the individual datasets, for
which the standard deviation of all analyzed carotid records yields 0.00144 for
the proposed method compared to 0.0483 and 0.0300 for volume and frame
based approaches, as well as 0.0487 compared to 0.0780 and 0.0657 for the bone
datasets.

The results show that our method provides continuous results, modeling
target structures better than the two compared methods. In regard of the appli-
cability of our proposed framework, the results show that the graph-structure is
well-suited for its application to ultrasound, and may yield better performance
due to avoiding compounding of the data. Besides the presented application,
other fields can be directly considered, where the already mentioned SRAD [8]
and graph-based segmentation [1] are just two examples.

102



B.5 ConcLUSsION

B.5 Conclusion

While today, processing methods reyling on compounding-based US are still
common, interpolation of the data on a regular grid is unneccessary and po-
tentially destroys useful information. In this work, we presented a completely
compounding-free optimization framework for general quadratic energies. By
constructing an irregular, directed graph from the ultrasound data, US-specific
properties can be modeled effectively, as shown for the application of signal
loss estimation. Our proposed optimization scheme is directly applied on the
graph structure in a parallel fashion and thus facilitates the global optimization
of energies in an efficient way. As the framework enables a fast adaption to
other problems in ultrasound imaging, we hope that this work helps to start
a paradigm change to fully compouding-free processing of ultrasound data.
Future research might include the application of this technique to other modal-
ities comprising irregular sampling, as well as the investigation of different
iterative solvers.
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APPENDIX: MULTI-SCALE TUBULAR STRUCTURE DETECTION IN ULTRASOUND

Abstract. We propose a novel, physics-based method for detecting multi-scale
tubular features in ultrasound images. The detector is based on a Hessian-
matrix eigenvalue method, but unlike previous work, our detector is guided by
an optimal model of vessel-like structures with respect to the ultrasound-image
formation process. Our method provides a voxel-wise probability map, along
with estimates of the radii and orientations of the detected tubes. These results
can then be used for further processing, including segmentation and enhanced
volume visualization.

Most Hessian-based algorithms, including the well-known Frangi filter,
were developed for CTA or MRA; they implicitly assume symmetry about the
vessel centerline. This is not consistent with ultrasound data. We overcome this
limitation by introducing a novel filter that allows multi-scale estimation both
with respect to the vessel’s centerline and with respect to the vessel’s border.

We use manually-segmented ultrasound imagery from 35 patients to show
that our method is superior to standard Hessian-based methods. We evaluate
the performance of the proposed methods based on the sensitivity and speci-
ficity like measures, and finally demonstrate further applicability of our method
to vascular ultrasound images of the carotid artery, as well as ultrasound data
for abdominal aortic aneurysms.

C.1 Introduction

Ultrasound is one of the most widely used imaging techniques in clinical
routine, especially in case of initial diagnosis. This is mainly due to its wide
availability and ease of use. Applications are wide spread, as specialized ultra-
sound machines and probes are available for most fields. For trained experts,
ultrasound further provides unique possibilities, compared to other imaging
modalities such as Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI), because it facilitates real-time imaging of the patient while
providing the physician with the possibility of directly controlling the image
acquisition process and selecting the region of interest. Due to the interactive
nature of this imaging modality, detecting and highlighting target structures,
such as vessels, is of crucial importance not only for guiding novice users, but
also for alleviating the daily routine of experienced examiners. In addition to
this, many clinical applications, including diagnosis and treatment planning,
require proper anatomical models, i.e. segmentations. However, as stated by
Noble [21], ultrasound imaging still exhibits many challenges regarding the
segmentation and characterization of tissue. Various approaches, including
snakes [16] and active-shape models [7], rely on proper initializations to yield
correct segmentations. Moreover, not only vascular procedures could greatly
benefit from a visualization of vessel-like structures based on extracted tubular
features [9], as this could provide physicians with similar possibilities for diag-
nosis as current CT-angiography, without exposing the patient to nephrotoxic
contrast agents and X-ray radiation at the same time.

In order to understand why there still exist so many challenges, particularly
in the case of vascular applications, it is useful to recall the basic working
principle of medical ultrasound imaging. After emitting directed ultrasonic
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Figure C.1: Ultrasound image appearance: a) differences between horizontal
and vertical gradients, where gradients perpendicular to the ultrasound beam
are stronger, b) attenuation/shadowing artifacts by strong reflectors or vertical
edges, resulting in beam attenuation, c) characteristic attenuation in ultrasound
images for deep regions. The region marked by the dashed lines shows the
bright outer border ring around the vessel lumen.

waves via a transducer into the patients’ body, these waves get partially re-
flected at tissue interfaces, which are characterized by a change in physical
properties such as the tissue density. The reflected waves are then received by
the transducer again, and the final image is eventually reconstructed based
on these reflections. As a consequence, this means that no separate receiver
behind the target volume is necessary (in contrast to CT imaging). The main
drawbacks of this image formation process are, however, that i) the signal
attenuation influences the overall image appearance, resulting in deteriorated
image quality for deeper regions, ii) the resolution and contrast in axial, lat-
eral and elevational directions is not uniform, resulting in lower visibility of
vertical borders compared to horizontal ones, cf. Fig. C.1, and iii) because of
these distinctions, classic tubular structure detection approaches proposed for
CT/MR images often do not deliver usable results for ultrasound images.

Motivated by this observation, Waelkens et al. [24] proposed a Hessian-
based multi-scale tubular structure detection algorithm adapted to the imaging
properties of carotid (3D) ultrasound. In this paper, we extend this approach
in several aspects:

1. We introduce a multi-scale estimation not only with respect to the inner
diameter, but also to the outer border ring thickness (see Fig. C.1). To the
best of our knowledge, in all prior work, the outer ring was either not
considered at all, or assumed to have a constant radius.

2. We propose a general framework for designing filter kernels for arbitrary
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vascular models.

3. We further incorporate confidence maps [15] as prior information to be
able to compensate for ultrasonic attenuation and artifacts within the
structure detection approach.

4. Finally, we evaluate our combined structure detection approach exten-
sively on healthy and diseased patient datasets. As these sets were
acquired with ultrasound devices of different vendors (using different
post-processing chains and filters), we show the applicability of our
method to general (3D) ultrasound imaging.

The remainder of this article is structured as follows: in Section C.2) we
discuss related work and recent advances regarding tubular structure detection
approaches using different beam forming and filtering processes. We introduce
our detection algorithm in Section D.2. Section C.4 then provides a quantitative
comparison of our filter to the classical Hessian matrix based estimation on
several carotid artery ultrasound datasets. Finally, we discuss our results (Sec-
tion C.5), present important conclusions as well as future research directions
(Section D.5).

C.2 Related Work

Various methods for enhancement and detection of tubular structures have
been proposed. In this section, however, we focus on methods for the auto-
matic enhancement of tubular structures and exclude those aiming at a direct
segmentation or focusing on specific applications. For a recent survey on
methods for ultrasound segmentation, the reader is referred to the excellent
article of Noble [21]. Furthermore, we categorize prior work for enhancement
of tubular structures into Hessian-based methods and methods which aim
at computing certain kinds of medialness measures. While Hessian-based
methods extract information directly from the second order derivatives of the
image data, medialness functions try to detect the medial axis of structures
with circular cross-sections, mostly by evaluating the intensity information on
1D rays emitted from seed points.

C.2.1 Medialness Measures

Pock et al. [22, 23] extract the cross-sectional planes of vascular structures from
the two largest eigenvectors and define a medialness function based on the
average gradient information sampled along a circle, which is contained in
this plane. They further define a confidence weighting for the cylindrical
symmetry of this measure and include an automatic parameter estimation
yielding more robust estimates for cylindrical structures. Wang et al. [25, 26]
extract vessel centerline points based on the evaluation of intensity information
on radially emitted rays around a focus point (Star-algorithm), but they require
the definition of intensity thresholds in order to initialize an ellipse fitting.
Other, similar approaches deal with outliers on these rays by removing too low
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and high radius values [5], or evaluate gradient information on the emitted rays
[10, 1, 13]. Based on gradient information, vessel radius probability estimates
[1, 13] and contrast-independent medialness measures [10] can be computed
to extract 3D centerlines from different imaging modalities.

Methods based on initial seed point selection are usually very efficient as
far as the tracking on subsequent images is concerned, but they are typically
quite sensitive with respect to the choice of the seed point itself. Moreover, it
should be noticed that all these methods have not been specifically adapted
to ultrasound imaging and assume a homogeneous appearance of the vessel
border.

C.2.2 Hessian-based Approaches

The second group of methods employs the Hessian matrix in order to retrieve
"vesselness” information as initially proposed by Frangi et al. [8]. Frangi et
al. use the eigenvalues of the Hessian matrix in order to identify tubular
structures of various scales in two and three dimensions.

Krissian et al. [18, 17] combine the Hessian matrix with the structure tensor
[4] to compute more continuous direction estimates. In addition to this, Bauer
and Bischof [3] showed that the isotropic Gaussian smoothing used in the
original vesselness measure prevents a separation of neighboring structures
for higher scales. To overcome this limitation, they introduce Gradient Vector
Flow [28] as anisotropic diffusion process to preserve edges at higher scales.
Their assumption is, however, that the feature of interest is brighter or darker
the surrounding area.

From a general point of view, it should be noticed that most approaches
based on the Hessian matrix, such as [8, 18, 17, 3], make use of scale space
theory, cf. Lindeberg [19] by employing y—normalized derivatives to facilitate
a direct comparison of results from different scales.

C.2.3 Proposed Approach

Although some of the aforementioned approaches have been applied to ultra-
sound images, cf. [18, 17, 1, 13, 5, 25, 26], none of those integrates adaptations
specific to ultrasound imaging. Such an adaption is exactly the goal of this
work, where we try to show how tubular structure detection algorithms can be
redefined for ultrasound imaging by incorporating information about the spe-
cific characteristics of this imaging modality. A first step in this direction was
presented by Waelkens et al. [24], who introduced a method for vessel detection
in ultrasound imaging by defining an adapted filter kernel along with other
ultrasound-specific modifications. In the present work, we not only extend
and generalize these adaptations, but also introduce a different filter kernel
approach which also accounts for different outer border ring radii adjacent
to the lumen, as shown in Fig. C.1. Furthermore, we incorporate ultrasonic
attenuation information by means of ultrasound confidence maps into our
detection approach, which further improves vessel detection and separation.
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C.3 Methods

In the following section we first briefly review the Frangi filter [8], as it can be
regarded as the prototype of Hessian-based vessel filters. We then discuss the
necessity to adapt vesselness approaches specifically to ultrasound and present
in this context the approach of [24]. Next, we describe in detail how we can
derive smoothing kernels for matched second order derivatives directly based
on the Laplacian, which is the basis of our ultrasound-adapted vesselness
measure (C.28) to be discussed in detail in Section C.3.3.

C.3.1 Classic Vesselness Filter by Frangi et al.

In the following we assume that a vessel is characterized by a dark lumen
surrounded by brighter tissue. For all definitions, the Hessian matrix’s eigen-
values are sorted in increasing order |A1]| < |A2| < |A3] and their associated

eigenvectors vq, v and v3 are assumed to be normalized, i.e. ||v;|| = 1.
Let us consider the input image data I at a certain scale, i.e.,
I(p) := (K(Gr) * ) (p), (€1

where p denotes a pixel location and {, denotes the scale parameter of a
Gaussian kernel K. The subscript r indicates that the scale to be selected
depends on the radius r of the "vessels of interest”. In order to compute
the Hessian, we have to calculate the second order derivatives. Thanks to
the associativity of convolution, we can write the computation of the second
derivative at a certain scale as a convolution with the second derivative of K,
or more formally with a Mexican hat wavelet:

0? 0?
@(K(CHP) *1)(p) = W(K(QP)) +1(p). (C2)

Let us further denote the Hessian at point p computed at a certain scale ¢,
by Hg, (p). If p lies within a tubular structure, the eigenvalues of Hy, (p) are
non-negative and satisfy the following conditions:

0~ A << Ay = As. (C.3)

At a centerline point, the curvature of the smoothed data in the directions
vy and v3 is large, due to the intensity changes at the vessel wall, while the
curvature in the direction vy is considerably smaller. As a consequence, vy
and v3 span the cross-sectional plane of the vessel and v; is tangential to the
centerline direction.

In order to evaluate whether the criteria in (C.3) are met, Frangi et al. proposed
the following measures:

A [A2] 2+ A2+ 22
Fyy=—=, F,; ==, FE=1\/A7+A5+A5. (C4)
/|A2A3| p ‘/\3‘ s 1 2 3

Fp indicates whether A; is small in comparison to A, and A3. F, measures
that [A;| ~ |A3] and thus helps to discriminate between plate-like and line-like
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structures. Finally, F;; evaluates whether the eigenvalues are large, i.e. their
relative significance compared to noise.
Finally, these expressions are combined into a vesselness measure

2 2
Fbl F 1 2

Vipr)=e 2 (1—e 22)(1—¢ 23) € [0;1], (C5)

where V(p;r) =0, if (A, <0) V (A3 < 0), because we are only looking for a
dark lumen surrounded by bright tissue.

Higher values in V(p;r) indicate that p is probably a centerline point at the
selected scale {,. To be able to compare detection results for different scales {,
the vesselness measures is computed for a given range of scales, i.e. the radii,
and the total vesselness is defined as V(p) = max V(p;r). It is important

to note that for comprising vesselness results computed at different scales,
y-normalized partial derivatives have to be used as proposed by Lindeberg
[19].

C.3.2 Challenges for Vessel Detection in Ultrasound

Ultrasound images are composed out of individual scan lines. To image a
single ultrasound scan line, an acoustic wave is emitted by the ultrasound
transducer into the target tissue. The emitted waves travel through the tissue
and get partially reflected at interfaces between tissues of different acoustic
impedance. This reflection is the basis of diagnostic ultrasound imaging, as
the reflected acoustic energy can be transformed into electric signals by the
transducer and therefore eventually converted into intensity values. Modern
ultrasound machines feature transducers which usually consist of not only
one, but multiple piezoelectric elements which are aligned in an array. These
elements are then combined in order to transmit and receive focused ultrasonic
beams facilitating the enhancement of the spatial resolution at a selected depth.
However, it is important to keep in mind that the formation of an ultrasound
image is still based on single scan lines which are processed individually. These
scan lines are finally interpolated in order to obtain the output image, which is
displayed to the physician. As a consequence, ultrasound imaging differs from
CT or MRI in several aspects:

1. Ultrasound imaging visualizes differences of physical properties rather
than visualizing the physical tissue properties themselves. Small changes
of tissue properties (scatterers), however, cause the characteristic speckle
pattern in regions of homogeneous tissue, which can be used for tissue
classification and characterization.

2. As the waves are partially reflected at tissue interfaces and the signal is
attenuated as it traverses through homogeneous tissue, a characteristic
signal drop-out is observed for deeper regions.

3. Ultrasound images typically have a higher spatial resolution in axial
(beam) direction (limited by wavelength A = %) in comparison to the
lateral and elevational direction (which are limited by beam width/height
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which depend on the transducer geometry and the beam focusing proce-
dure).

4. In addition to the omnipresent speckle pattern, diffraction of ultrasonic
waves for non-perpendicular incision angles at tissue-interfaces causes
special interference artifacts.

As a consequence of these observations, we may draw the following two
conclusions:

1. As a fraction of the ultrasonic wave is reflected at every tissue inter-
face, the amount of energy reflected at deeper tissue interfaces will be
lower compared to interfaces closer to the transducer array. In fact, this
ultrasound-specific attenuation can be modeled by an exponential decay,
e.g., by the Beer-Lambert law [6]. This attenuation directly affects the
final ultrasound image, where deeper regions appear by default darker
due to the attenuation of the signals. Although these effects are par-
tially compensated by modern ultrasound machines (e.g. depth-specific
gain compensation), the overall image quality degenerates with higher
distance to the ultrasound transducer.

2. As mentioned before, all scanlines are processed individually. As beams
are emitted, the resolution in axial direction is limited by the wavelength
of the ultrasonic wave, which is small in comparison to the distance
between neighboring scanlines. Interfaces perpendicular to the beam
direction are directly imaged by reflection, while interfaces parallel to
it are only detected implicitly, i.e., by observing changes of neighboring
ultrasound scanlines. This results in much lower sharpness and strength
of image gradients parallel to the beam direction.

Due to this directional nature of ultrasound and the inevitable signal loss
in deeper areas, ultrasound imaging is considerable different to topographic
imaging modalities such as CT or MRI. The fact that classical filtering tech-
niques for the detection of tubular structures, such as [8], do not take these
peculiarities of ultrasound imaging into account is thus the main motivation
for this paper.

C.3.3 Design of Optimal Smoothing Kernel

For most angiographic imaging modalities, the basic assumption is that the
target structure appears as a bright tubular region surrounded by darker
but homogeneous intensities. In case of ultrasound images, however, the
appearance of vascular structures is characterized by a dark lumen region only
surrounded by a small but brighter border ring of certain thickness denoted
by 7. The region outside of this ring is usually characterized by areas of not
necessarily homogeneous, but considerably darker intensities, mostly due to
speckle patterns. As a consequence, we model all outer image points by noise,
cf. Fig. C.2. Based on the aforementioned assumptions we construct an optimal
vessel model to design a suitable detection method for ultrasound imaging.
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Figure C.2: Optimal ultrasound vessel model. The lumen consists of a dark
region which is surrounded by a bright border ring with a given thickness.
The region outside the border ring is modeled by noise.

The border width # depends on the application, the specific anatomy, e.g.,
higher age is associated with rising arterial wall thickness [12], and the scale,
i.e., the radius 7, of the structure to be detected. As already mentioned, a ho-
mogeneous tubular structure appears as a dark region with scale » surrounded
by a bright ring with a defined thickness 7. Thus, we choose

1 = Cat, (C.6)

where ¢, > 0 defines the specific relation between the radius and the border
thickness.

In order to see how we can define a proper smoothing kernel, we first
consider a standard Gaussian filter kernel with its second derivative, where we
can observe that the kernel shape changes by adjusting the kernel parameter (i.e.
varying ¢ values) as shown in Fig. C.3. Due to the associativity of convolution,
cf. (C.2), we can directly consider the second derivative of our smoothing
kernel in order to select the appropriate scale (radius) for the structures of
interest. Thus an optimal kernel response should model the inner, border and
outer regions in the best possible way.

While the Gaussian kernel is (practically) optimal for a single specific
choice of v and 7, i.e., a fixed choice of ¢, it is clearly not the best for arbitrary
lumen-border relations, i.e., arbitrary choices of c,.

Our goal is now to derive a filter kernel g, which is adapted to the model
depicted in Fig. C.2. We will assume that g, is one-dimensional, which means
that we want our filter to be separable. Before we start with our considerations
we make the following observations:

1. The vessel model in Fig. C.2 is radially symmetric.

2. As a consequence, the filter kernel should also be symmetric, i.e.

8ry(x) = gry(—x). (C7)
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Function Value
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Figure C.3: Modeling of a ultrasound tubular structure with a second order
Gaussian derivative. The black signal shows a 1D line through the tubular
ultrasound region, where the inner lumen is dark, surrounded by a bright
border ring and outside noise. The blue dotted, green dashed and red dash-
dotted lines show the second derivative of Gaussians with ¢ = 0.3, 0.575, and
1.5.

3. Due to the this symmetry, the convolution of any signal with g, is
equivalent to a correlation of the same signal with g; .

4. Consequently, the same holds true for any derivative of g, and the
convolution of a signal with

52
ng(x) (C.8)

is thus equivalent to a correlation with this filter.

We keep the last observation in mind and recall that the correlation of
a filter with a signal attains its maximum at the position where the filter
perfectly matches the signal, which is also well observed when computing the
autocorrelation of a signal. Thus, our goal is to design a filter such that the
second derivative of g, (x) is close or equal to the model, cf. Fig. C.2

52 1

r
mgﬂﬂ(x) ~ E(_X{0§x<r} + %X{r§x<r+ly})r (C9)

where Xg denotes the indicator function of a set S, i.e.,

Xs(x):{1 if x €, €10)

0 otherwise,

and K is chosen such that the second derivative of g, (x) sums up to 1. A
straightforward way of obtaining a suitable kernel g, would be to solve the
differential equation in (C.9) with appropriate boundary conditions. However,
it is important to notice that the regularity of the right hand side in (C.9)
directly influences the regularity of the computed filtering kernel and the
regularity of it is of crucial importance, because:
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Figure C.4: Regularity and radial symmetry: The three functions f(x) =
1 — |x| (black, dotted), fo(x) = (cos(27tx) +1)/2 (red,dashed), and f3(x) =
exp(—x2/0.05) (blue, solid) evaluated on the interval [—0.5;0.5] (upper left) as
well as the corresponding contour lines of f1(x)f1(y) (lower left), f2(x)f2(y)
(lower middle), f3(x)f3(y) (lower right) evaluated on [—0.5;0.5] x [—0.5;0.5].
Please note that the more regular functions f, and f3 cause significantly more
symmetric level lines in two dimensions.

1. If the right hand side of (C.9) is not even continuous, as in the case
of the proposed vessel model, the entries of the Hessian matrix (com-
puted after filtering the image data with our separable filter) would have
discontinuous entries, too.

2. As shown by Kannappan and Sahoo [14], the only rotationally invariant
separable filter is the Gaussian kernel. However, by enforcing a certain
degree of regularity for the right hand side of (C.9) it is possible to
achieve a sufficient (but not perfect) rotation invariance of the resulting
separable filter

8rn (X)8ry (¥)8ry (2) (C.11)

as demonstrated in Fig. C.4.

For this reason we will not directly solve (C.9), but investigate

52
o3 (x) = () (€12)

for different choices of f. We would like to emphasize at this point that we will
observe in Sec. C.4 that the regularity of f is directly related to the performance
of the resulting vessel filter.
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Poly-Exp Kernel

In [24] an exponential of a polynomial function was used to approximate the
shape of g7, of Eq. (C.9) with a smooth function

flx) = %ep“xf@r) (C.13)
k = |l (8], (C.14)

where P*(x, () is a polynomial of degree 2N with its coefficients ap, ay, ..., an
to be adjusted based on the lumen-border relation in (C.6)

. x
P*(x,C;) = w(=)? + ag(=)* + o+ an(=). (C15)
¢ Gr ¢
The kernel parameter (; is used to enable a direct correlation between the
polynomial and the scale r. This relation can be found by searching for the
maximum , corresponding to a defined radius r* for our model

X X
r r

Cr = f—:r. (C.16)
A numerical method to obtain the optimal match for this equation can be
found in [24], where for the application of carotid 3D freehand ultrasound the
relationship between lumen (inner tube) and arterial wall (bright border) was
set to ¢, = 0.6, resulting in # = 0.6r. For this specific relationship, a polynomial
of degree 12 was found as best match while preserving the shape of (C.9)

Pia(x, &) = ~05(ea( )2+ eal7)* + es(7)°
t

Fas(2) el )0 +en(2)12), (€17)
G Cr Cr

with ¢ = 8,¢4 = 16,¢c4 = 42.66,c5 = 128,c19 = 409.6,c1p = 1. This results
in a kernel-radius relation of {, = 0.95r. For a normal Gaussian kernel, the
relationship obtained for the carotid application is ¢; = {; = 0.575r for the best
balance between inner tube and outer ring.

Adaptive Smoothing Kernel Design

Although the aforementioned filters yield optimal responses for the specific
lumen-border ratio of ¢, = 0.6, they are not generalizable to arbitrary ratios
between lumen and border thickness, which would require a specific nonlinear
fitting of the polynomial parameters to exponential curves for every individual
tube-border relation. To avoid this fitting problem, we follow a different
approach, where we directly solve the differential equation in (C.12).

In order to compute a smoothing kernel from the designed second order
derivative f(x), we notice that the second derivative in (C.12) is nothing else
but the one-dimensional Laplacian, i.e.,

52
528(x) =g, (C18)
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where we dropped the dependency of g on # and r in order to simplify the
notation. The Laplace operator is then approximated using the standard finite
differences discretization

Aglx] =~ g[x — h] — 2g[x] + g[x + h] (C.19)

which can be written as a matrix-vector multiplication:

52
@g%Lg, (C.20)
-1 1 0 07
1 -2 1 0 .. 0
L={ .. 0 1 -2 1 0 ...}, (C.21)
0 .. 0 1 -2 1
L 0 0 1 -1

where we used the letter g for both the continuous and the discretized version
of g. To prevent aliasing artifacts we enforce homogeneous Neumann boundary
conditions such that the kernel fades out smoothly at the boundary. Thus, L is
singular, which requires g to be computed with an iterative method for solving
Lg = f, such as gradient descent, in order to compute the kernel entries'.

It is important to note that with this approach a broad variety of target
structures for second order analysis can be modeled by constructing appro-
priate smoothing kernels. Based on these models, the kernel can be directly
constructed based on the desired lumen-border ratio. Thus, we can extend the
multi-scale formulation of our detection method not only to the lumen scale r,
but also to the border scale 1. However, it is important to keep in mind that
in the case of Gaussian kernels, a suitable rescaling of the derivatives can be
found based on the concept of y-normalized derivatives discussed by Frangi
et al. [8]. In case of the proposed filters, a different normalization is necessary.
The reason behind this is that the proposed filters are not only scale-selective
with respect to the lumen radius, but also to the thickness of the vessel wall.
For this reason, we propose the following normalization strategy. Based on the
derivatives for a scale with assumed radius r, we use the tube model presented
in Sec. C.3.3 to first compute the second order derivatives used in the Hessian
matrix for this optimal model. As the maximum value of the partial derivative
(for the respective model) is - based on our matched-filter design approach -
estimated to be 1, we can use the maximum value of all partial derivatives as a
normalization factor for the smoothed image derivatives used for vesselness
estimation.

In the following we briefly describe three filters based on different assump-
tions, targeted to the detection of the Carotid artery as well as general vessels.
A detailed comparison of results for the filters is presented in Sec. C.4.2.

In order to ensure the uniqueness of a solution, an additional constraint such as ||g||, = 1 can
be enforced.
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Step Kernel Inspired by Eq. (C.9), we construct a continuous approxi-
mation of the step function, where the noncontinuous steps are replaced by
shallow linear transition regions

—B  for x <r—e
flx)=< a  for r+e< x <r+np—e€, (C22)
0 for r+n+e< x,

where the transition regions between the step regions have a width of 2e with
linear terms connecting — B, &, and «, 0, respectively. By using this approach,
we avoid discontinuous steps, while enabling an easy and straightforward
model which can be easily adapted to different border scales. It becomes
apparent in Sec. C.4 that this choice is not optimal due to the poor regularity
of f.

Piecewise Polynomial Kernel We construct the second order derivative of
our smoothing filter as a piecewise smooth polynomial function with respect
to the lumen and border radii r and 7.

ax?N —1 x<r
fx)=4 4=B(x—(r+4)*™ r<x<r+y , (C.23)
() 2N e

where the parameters «, 5, 4 can be determined analytically with the constraints
that the function values at x = r and x = r + 57 have equal values. In practice,
we set both values to J as we expect to have the highest gradients at these
points.

Carotid Artery Model Kernel Recently, a learning-based method for track-
ing of Carotid arteries was presented [20], using a model of the intensity
distribution of the appearance of carotid arteries in ultrasound images. We use
this model, extracted from 100 patient scans, to directly derive a smoothing
kernel optimized for carotid arteries. The model is used as basis for the kernel
estimation is shown in Fig. C.5.

Figure C.5: Carotid artery model extracted from 100 patient datasets, as pre-
sented in [20]. To transform the intensity distribution from [0, 1], we manually
selected the sample with highest gradient x;,, and normalized the value range
accordingly to k(xpax) = 0.
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Figure C.6: Comparison of filter kernels. Shown are the second derivatives of
the filter responses for a Gaussian kernel, the kernel proposed by [24], and
the proposed filter kernels. The gray signal shows a 1D line through our
ultrasound tube model, where the inner lumen is dark, surrounded by a bright
border ring and outside noise. The Gaussian kernel clearly shows contradicting
weighting of the different regions, while the other kernels show a good fitting
to the black signal for the tube-border ratio ¢, = 0.6 (top). For the smaller
border ratio ¢, = 0.2 (bottom), the piecewise polynomial and step kernels still
show an optimal fit, while the other kernels cannot model the thinner border
thickness properly.

Differences between kernels A comparison of all discussed kernels is
depicted in Fig. C.6 for two different lumen-border ratios. The Gaussian
kernel is either significantly influenced by noise outside of the vessel or it gives
negative or too low positive weights to white ring points for both ratios. The
fitted polynomial-exponential as well as the models presented above reflect
the tube model better by weighting regions correctly for the ratio of 0.6. For a
thinner border ratio, the step and piecewise polynomial kernels can be directly
derived based on the different ratios, while the other kernels are static with
respect to the lumen-border ratio. Our basic conclusion is here that filter
kernels have to be used with care, especially when the border ring is thin
compared to the inner radius. While Gaussian kernels deliver a straight-
forward implementation and good performance for a thick vessel border or
areas of very homogeneous intensity values surrounding the lumen, for thinner
walls, however, a selection based on the above criteria is preferable.
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C.3.4 Physics-based adaptations

Although the choice of appropriate smoothing kernels is important to account
for the specific appearance of vessels in ultrasound imaging, additional prior
information with respect to the physical imaging process can be used. In the
following sections, we briefly describe how the beam acquisition directory, as
well as ultrasound confidence can be used to improve vesselness detection
methods.

Beam Direction Dependency

As ultrasound waves are emitted in axial directions, we always expect that the
received signal changes are stronger in vertical image directions compared to
horizontal gradients. Based on this observation, the eigenvector v3 of highest
eigenvalue of the Hessian matrix should always point in a direction parallel to
the ultrasonic beam. We propose an additional weighting factor based on the
scalar product of v3 and the ultrasound direction to account for this property:

Fypir = [03bus|,  Fypir € [0;1] (C.24)

where b, is the ultrasound beam direction. By evaluating the eigenvector
direction, we can weaken false-positive regions, where the ratio of the eigenval-
ues fullfills the properties in (C.3), although the orientation of the eigenvectors
is not valid, i.e. the strongest eigenvector does not point in the beam direction.

Confidence Compensation

The fraction of wave-reflection at tissue-interfaces is related to the difference
in acoustic impedances. As a consequence, for example the interface between
muscle and bone with a high difference in impedances will cause a higher
reflection than the interface between muscle and arterial walls. As the wave
traverses homogeneous tissue, subsequent interfaces are causing a characteristic
attenuation of the waves. Based on this attenuation and signal drop-out,
[A2] = |A3z] > 0 will not be fulfilled, especially for higher distances to the
transducer, since both eigenvalues will be small in absolute value.

For the application of tubular structure detection in ultrasound, it is desir-
able to integrate information about the attenuation, present in the ultrasound
data, to account for these changes in the expected intensity values. A method
that computes uncertainty in ultrasound imaging data by modeling the image
formation and signal attenuation process was presented by Karamalis et al.
[15] by means of ultrasound confidence maps based on random walks. In this
work, confidence estimates are derived from the probability of random walker
starting from each pixel/sample to first reach virtual transducer elements un-
der ultrasound specific constrains. The random walks problem is formulated
with an undirected weighted graph, using following edge weights:

if ijadjacentand ¢; € Ey

o — if i jadjacentand e;; € Ey (C.25)
v if i,jadjacentand e;; € Ep )

otherwise
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Figure C.7: Confidence map example. Shown are the input image (left) with
its corresponding attenuation map (right).

The weights wll;l , w}](, wf]? for movement along horizontal, vertical and diag-
onal edges Ey, Ey, Ep are defined as:

H _ o=Bllei—¢j]+7)

wl‘]/ — o~ Bllei—¢j]) c

.26
wh = PV (C.26)
cj — gie(*“li),

where the parameter « controls the exponential penalty for depth dependent
attenuation that increases with distance /; to source nodes in the graph. The
parameter y penalizes horizontal and diagonal walks with increasing distance
to the originating scanline; effectively modeling image formation along the
beam direction. We extend this approach to 3D volumetric datasets in order
to incorporate information about the ultrasound confidence values into the
detection method. For applying the confidence estimation to a 3D grid, we
connect nodes to neighbors not only in horizontal and vertical, but also in the
elevational directions. Thus Ey and Ep include all edges orthogonal to the
ultrasound scan direction. For all our experiments we use the recommended
default values &« = 2, 8 = 90, and y = 0.06 as presented in [15]. The analytic
solution to the unknown random walks probabilities (see [11] for details)
provides the desired confidence estimates to the range [0; 1] and gives indication
about the possible attenuation based on image content and physical properties.
An example for a resulting ultrasound confidence map for an image used
within our validation is shown in Fig. C.7.

With respect to the originally defined vesselness factors (see Eq. C.4), we
can now look at the influence of the ultrasonic attenuation on the respective
detection factors. As the factor F,p;, is evaluating local intensity variations
only to establish a distinction between tubular and non-tubular regions, it is
not influenced by global attenuation. F,; compares the smallest to the two high
eigenvalues and is still valid in attenuated regions, as the curvature of intensity
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values should still be the smallest in tangent direction of the tube.

For F, however, the ratio of the eigenvalues can change because of speckle,
attenuation or shadowing changes, which deteriorates the overall results. To
account for this effect, we introduce a modified factor F;l (c.f. Eq. (C.4)) which
evaluates the eigenvalues A 5, A.3 of the Hessian matrix retrieved from the
confidence map instead of the image matrix. For vessel values, the ratio of
eigenvalues should be approximately A ~ A3 and A.» =~ A.3. The image
eigenvalues however are affected by attenuation and speckle, thus the ratio
% < 1. In contrast to this, for confidence data the cross-sections of tubular
structures are modeled as circular homogeneous regions, which are less influ-
enced by the changes in speckle and attenuation characteristics. Thus, we set

up a modified factor based on the confidence quotient

Ac2
F/ — | C,
I |/\c,3 | ’

(C.27)

which accounts for this sensitivity of the original plate-line discrimination w.r.t
to noise and ultrasound speckle.

C.3.5 Combined Structure Filter

The desired result of a combined tubeness measure should give the probability
of every point being a centerpoint, along with a radius estimate. The former
is given as the maximum tubeness response over all analyzed scales r, . For
determining the combination of all factors, we can observe that F;, F;l, Fypir, €
[0;1] while Fy; is limited by the magnitude of the Hessian eigenvalues of I(x).
To enable intuitive changes of all various contributing factors, we combine the
individual factors to retrieve our final tubeness measure analog to the original
vesselness approach:

P2 2
— e (1—e F)
Tx)= e 22(1—e . (C.28)
Fot _Fszr

All parameters can be used to control the importance of the respective weight
and can be adjusted to the application. For all results presented in this work
however, we use equal weights « = § = v = 6 not to emphasize on one of the
parameters and rather focus later on the optimal combination. By setting all
values to 0.5, the different factors follow a negative exponential decay, without
giving preference to specific terms.

C.3.6 Implementation Considerations

As computational efficiency is one main advantage of Hessian based tubular
structure detection methods, modifications should be selected carefully based
on this precondition. The original approach by Frangi uses Gaussian kernels for
retrieving the smoothed derivatives of the image data. Based on the derivatives,
the eigenvalues are evaluated and the vesselness measure constructed. In terms
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4.510° voxels | 8.5 10° voxels
Type mean | std mean | std

[s] [s] [s] [s]

Frangi 2734 | 0.068 | 4.073 | 0.038
PolyExp kernel 2694 | 0.022 | 4532 | 0.272
Proposed kernels | 3.104 | 0.051 | 4939 | 0.045
Beam direction 2733 | 0.095 | 4.074 | 0.045
Confidence 3906 | 0.041 | 5929 | 0.064
Combined 5295 | 0.057 | 6.996 | 0.576

Table C.1: time comparison for evaluation of tubeness measures for one scale r.

of computation time, the convolution of the smoothed derivative kernel with
the image data poses the highest demand. By using GPU capabilities, however,
the required 3D convolution can be carried out efficiently by transforming both
image and kernel data from the spatial into frequency domain and simply
multiplying both signals there. Major processing steps within this work were
implemented directly on the GPU in CUDA. Within this extensive framework,
there is also a library readily available (cuFFT?) to conduct transformations
into the frequency domain in a highly-efficient way.

With respect to our contributions, after calculating the confidence maps once
off-line, incorporating the general attenuation weighting and our proposed
smoothing kernel do not pose any significant increase in computation time,
as our kernel can be used for convolution right away, and confidence values
can be incorporated directly without additional preprocessing steps. When
using our additional modifications, the modified plate-line factor F;’?l requires
one additional convolution of the image/confidence data with a smoothing
kernel. Table C.1 shows a comparison of computation times of the vesselness
evaluation for our implementation with respect to different volume sizes,
evaluated within this work. All evaluations were carried out on a notebook
with an Intel Core i7-3612QM at 2.1 GHz, 8 GB DDR3 memory and a Nvidia
GeForce GTX 650M graphics card (384 CUDA cores) with 2GB DDR5 memory.

C.4 Evaluation

In order to validate the proposed methods, we first quantitatively analyze how
the adaptive filter design influences the vesselness results already without
incorporation of beam direction or attenuation correction. We then evaluate
how these physically motivated extensions can help to further improve results
in terms of computed vesselness. Finally, we show qualitative comparisons for
image data of the carotid artery as well as aortic aneurysms.

As a baseline for all results in this section, we chose the the classical
vesselness filter introduced by Frangi [8] as well as the approach by Waelkens
et al. [24]. We evaluate two different quality measures and further show -

2https: / /developer.nvidia.com/ cufft
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based on the dice similarity coefficient - the benefits of our approach for vessel
segmentation.

C.4.1 Experimental Setup

For validation, we acquired scans of different vascular regions with US systems
of different vendors, including both healthy and diseased datasets. In total,
20 healthy 3D freehand ultrasound records of the neck, 10 scans for patients
with diseased carotid vessels, and 5 scans of patients with abdominal aortic
aneurysms (AAA) were acquired with a commercial add-on freehand 3D ultra-
sound system (model CS, Curefab GmbH, Munich, Germany). For the healthy
carotid artery datasets, 10 subjects were scanned, each with two different 2D
ultrasound machines (GE Loqiq 7, Siemens Acuson S2000) connected to the
Curefab system, scanning the carotid artery with linear array transducers and
at 4 cm penetration depth. The same protocol was used for the patients with
atherosclerotic disease, where five records each were acquired with the Philips
IU22, and Toshiba Aplio 500 scanners connected to the Curefab system. For
the patients with aortic aneurysmes, all scans were taken with a Philips IU22
device and curvilinear transducers.

After acquisitions, all records were exported, and subsequently recon-
structed into volumetric datasets with a distance-weighted backward-interpolation
approach (voxel spacing of 0.25mm) [27]. After reconstruction, confidence
maps were calculated for the compounded volume datasets.

For ground truth generation, cross-sectional slices were then manually
segmented at uniform distances of 2.5mm per slice. On every slice, contours
were manually delineated by drawing polygon border points (similar to the
impoly functionality of Matlab) to segment the vessel walls. All segmentations
were performed by a trained ultrasound expert, yielding accurate ground truth
vessel segmentations as well as centerpoint location for the segmented slices.

Similar to [24], we evaluate the separation of centerline from background
points by analyzing the maximum tubeness probabilities at the 3D positions
extracted from the manually segmented slices:

1 & T(e) — Tl

Goep = (C.29)
o N j:l UTath

where ¢; denotes the j-th centerline point with maximum vesselness response,
T is the mean tubeness, and or,, the standard deviation of all tubeness values
outside of the vessel. The division by the standard deviation is particularly
important, as this measure aims for evaluating the possibility to differentiate
between foreground points (vessels) and the background (specificity).

In addition to the separation, we define a second measure accounting for
the detection of all points within a vessel (sensitivity). To do so, the vesselness
probabilities at all inner tube points s; enclosed by the delineated contours are
evaluated based on their distance to the mean vesselness responses

18 _
Qdetect = g Z T(Si) =T (C30)

Si:l
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Separation from background
CA Healhty | CA Diseased AAA

fype H o # v H o

Gaussian 240 | 75 | 118 3.8 262 | 8.6
Poly-exp kernel | 23.1 | 8.7 | 16.0 32 170 | 54
Step kernel 116 | 3.6 6.8 1.4 234 | 153

Piecewise kernel | 20.0 | 7.3 | 13.3 3.4 246 | 16.2
CA model kernel | 20.9 7.2 15.3 3.7 15.8 | 12.1
Detection of vessel points [10~°]

Gaussian 3.6 1.7 1.3 0.8 01 | 0.1
Poly-exp kernel | 32.8 | 155 | 155 3.5 71 | 64
Step kernel 685 | 291 | 346 | 96 149 | 13.1

Piecewise kernel | 51.0 | 23.4 | 26.0 54 12.7 | 11.3
CA model kernel | 45.1 | 209 | 21.6 4.6 9.9 9.0

Table C.2: Mean and standard deviation for separation and detection measures.
Shown are the results for all compared kernels, divided into healthy and
diseased datasets for Carotid artery (CA) as well as abdominal aortic aneurysms
(AAA).

with S being the total number of all segmented inner tube points.
While we rely on these two quantitative measures to evaluate the improve-
ments of the proposed method compared to the state of the art, we also evaluate
the benefits of the computed vesselness values for vessel segmentation. In order
to do so, we use the points of maximum vesselness response together with the
estimated vessel radii, which are obtained based on the maximum response
(taken over all considered scales), in order to obtain a segmentation of the
vessels. We use the dice similarity coefficient (DSC) evaluating the overlapping
region of the segmentation with respect to the (manually delineated) ground
truth
2|ANB]
Al + B’

where A and B represent binary masks of the segmented foreground /background
objects for the segmentation compared to the ground truth delineation.

DSC = (C.31)

C.4.2 Comparison of Filter Kernels

In order to evaluate the effects of designing custom tubeness filters targeted
to specific applications, we compare the quality measures defined in Sec.
C.4.1 for the discussed filter kernels. Fig. C.9 shows the resulting separation
statistics and detection levels for all evaluated Carotid artery records including
healthy and diseased cases, while Table C.2 lists the mean values with their
corresponding standard deviations, subdivided into all the three different
anatomical sites evaluated.

The overall results (all 30 datasets) for our proposed kernel as well as for the
poly-exponential kernel show a drastic improvement in vessel point detection
with approximately 9,14, 18, and 13 times higher detection for the polyExp,
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gaussian

CA model

Figure C.8: Comparison of vesselness responses for different filters. Shown
are cross-sectional (left images) and longitudinal (right images) slices of the
input as well as the evaluated filter kernels for the original Frangi filter, the
poly-exponential approach [24], the step kernel, the piecewise poly kernel, and
the kernel based on the carotid artery model. When comparing these filters,
it becomes visible that the filter responses for original approach are wider
and only partially modeling the vessel structure. For the step kernel, false
positives negatively influence the separation of the vascular structure from the
background. The bad performance of the step kernel might be explained by its
poor regularity in comparison to the other kernels, cf. Sec. C.3.3.
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Figure C.9: Quantitative results for healthy and diseased Carotid datasets. Sep-
aration (left) and detection (right) measures for the Frangi filter using Gaussian
kernels, compared to poly-exponential, step kernel, piecewise polynomial filter,
as well as the carotid artery model filter.
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Figure C.10: Quantitative results for the evaluation of the proposed physical
adaptations on all Carotid datasets. Separation (left) and detection (right)
measures for the original vesselness filter as proposed by Frangi et al. , and
the same filter augmented with beam direction compensation and confidence
values, respectively.

piecewise polynomial, step, and CA model kernels respectively, compared to
the original Gaussian based implementation. At the same time, the separation
rates remain all within 10% mean deviation to the original implementation,
with the exception of the linear step kernel. Based on these evaluations,
we conclude that the piecewise polynomial model provides the overall best
filter response yielding the best balance between higher detection rates while
maintaining the same level of separation as the original Frangi measure.

When comparing the piecewise polynomial kernel to the poly-exponential
counterpart, it is important to consider that the polyExp-kernel was designed
specifically for the application of Carotid ultrasound with a lumen-border-ratio
of ¢, = 0.6.

C.4.3 Evaluation of Physical adaptations

Similar to the last section, we evaluate both quality measures for our proposed
adaptations. We compare the original vesselness approach [8] as well as the
piecewise polynomial filter, providing the overall best results throughout the
evaluation in the last section, to the adaptations to the beam direction and
compensation for different confidence values. Finally, we also evaluate our
combined vesselness estimate using the piecewise polynomial kernel combined
with beam direction and confidence compensation.

Results for this comparison are shown in Table C.3. It can be observed,
that incorporating the beam direction term improves the separation of tube
centerline points. Considering the restriction of the main Hessian eigenvector
with respect to the beam direction it becomes apparent that this modification
is particularly interesting for large vascular structures, such as aneurysms. In
contrast to the beam direction, the confidence information clearly improves the
detection rate while having partially negative effects on the separation measure.
The advantages of the increased detection are, however, predominant due to
higher resulting detection rates (see also Fig. C.11.)

C.4.4 Carotid Artery Segmentation

The availability of tubeness (vesselness) estimates facilitates the automatic
initialization of segmentation methods, such as active contours, and provides
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Separation from background
CA Healhty | CA Diseased AAA

Type U o U o U o

Gauss 24.0 7.5 11.8 3.8 26.2 | 8.6
Gauss + BeamDir 24.7 7.5 12.7 44 41.3 | 155
Gauss + Attenuation | 12.7 44 7.7 4.1 171 | 2.2
Piecewise kernel 20.0 7.3 13.3 34 24.6 | 16.2
Combined 15.9 4.3 124 2.3 36.2 | 28.6

Detection of vessel points [10~°]

Frangi 3.6 1.7 1.3 0.8 0.1 0.1
Gauss + BeamDir 2.6 1.2 0.9 0.6 0.1 0.1
Gauss + Attenuation | 5.0 1.9 3.8 5.1 0.1 0.1
Piecewise kernel 51.0 | 234 | 26.0 54 12.7 | 11.3
Combined 61.7 | 25.0 | 50.8 36.0 12.6 | 9.9

Table C.3: Mean and standard deviation for separation and detection measures.
Shown are results for the proposed physical adaptations, divided into healthy
and diseased datasets for Carotid artery (CA) as well as abdominal aortic
aneurysms (AAA).

the possibility to window the volume dataset to contain mainly vascular
information. For both steps, it is important that vessel points are separated
properly from the background. Figure C.11 shows qualitative results for our
method compared to the original Frangi filter. In addition to this, Fig. C.12
shows a quantitative evaluation of our method for the two distinct sets of
healthy and diseased acquisitions of the Carotid arteries.

It can be seen that by using the proposed piecewise polynomial kernel
together with the physical adaptations, the dice overlap, which indicates
the suitability of the methods for the initialization of vessel segmentations,
increases significantly compared to the methods proposed by Frangi et al. and
Waelkens et al. . This is also confirmed by the visual inspection of the results,
as our method mainly responds to the vessel with a clear maximum, while
the responses for the classical method are less prominent, partially yielding
responses also for other, non-vascular structures.

C.4.5 Abdominal Aortic Aneurysm Centerline Estimation

Similar to the case of head and neck arteries, estimating the centerlines of
abdominal aortic aneurysm:s is still a challenging task due to the lack of contrast
and partial missing borders in the ultrasound image data. We compare the
vesselness results for our proposed method in comparison to the original
approach by retrieving centerline estimates as initialization of a subsequent
segmentation of the aneurysm sack.

As the lumen-border relation is not necessarily identical to the one of
Carotid arteries, we use our piecewise polynomial kernel to retrieve the best
matches for both radius and tube-border relations of the aneurysms. Qualitative
results for one of the evaluated datasets are shown in Fig. C.13. It is clearly
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baseline

combined

Figure C.11: Qualitative comparison of the Frangi filter (baseline) to to our
proposed method using the piecewise polynomial filter combined with beam-
direction and attenuation compensation. Shown are cross-sectional (left) and
longitudinal (right) slices. Our method mainly responds to the vessel with a
clear peak, while the baseline approach is partially also responding to other
image regions.
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Figure C.12: Dice overlap evaluation results for healthy (left) and diseased
(right) Carotid artery datasets. For both it can be observed that by using
our proposed methods, the resulting dice scores for segmentation (mean
0.7138 £ 0.0741) are clearly better compared to the poly-exponential kernel
(0.6434 £ 0.1059) and the original approach by Frangi (0.1713 & 0.0643).
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visible that the original vesselness approach of Frangi et al. fails in identifying
the tube centerline points correctly, although the general aneurysm structure
can be partially seen in the vesselness estimates. Even more interestingly, the
polyExp kernel also fails for this case, as obviously the constant tube-border
ratio of 0.6 is not valid, resulting in wrong estimations. This can be intuitively
verified, as a fixed border ratio results in too wide border contributions for
larger vessels, i.e. for a vessel radius of 25mm, the wall would be assumed to
be 0.6 - 25mm = 15mm thick. For our kernel, the wall thickness can be defined
directly in mm, for which we found consistently a wall thickness of 1.5mm
to provide highest kernel responses. This is confirmed by clinical indications,
where 1.5mm is a reasonable wall thickness for abdominal aortic aneurysms.
Fig. C.14 shows radius and wall thickness estimates for an abdominal case. In
contrast to this, the piecewise polynomial kernel provides nice and smooth
estimates of the AAA centerline. Moreover, it can be observed that background
vesselness responses can be suppressed by incorporating the proposed physical
adaptations.

This is also confirmed by the quantitative results for all 5 cases, shown in
Fig. C.15, where again our proposed solution provides higher Dice estimates
compared to the other methods.

C.5 Discussion

The scope of this work is to present modifications for an adaption of a general
tubular structure detection method to (3D) ultrasound imaging. We chose
Frangi’s approach for our evaluations based on its widespread usage and
intuitive formulation to demonstrate the advantages of our modifications.

Based on the different filter responses, we conclude that the combined mea-
sure gives the best overall performance, as it clearly separates the vessel points,
while suppressing high vesselness values in other regions (false positives). This
is also confirmed by the quantitative results, where the combined filter reached
the best results - also regarding Dice coefficients - indicating its suitability for
initializing subsequent segmentation purposes.

When considering the different adaptations separately, the confidence in-
tegration showed that the sensitivity of structure detections can be improved
clearly. As this adaption uses information from the underlying confidence of
the US data, it enables detection of features which would vanish otherwise. It
has to be noted however, that the confidence integration is currently still based
on a compounded 3D volume, which occasionally introduces small artifacts
into the detection. This is why the integration of confidence values will remain
as one focus in future work. The beam direction integration mainly focuses on
the different appearance of vertical compared to horizontal image gradients,
where the former are assumed to be sharper and more pronounced. The
validity of these assumptions are justified by both the physics of ultrasound
and the experimental results presented in the last section.

Besides the above mentioned modifications, we put a special emphasis on a
proper smoothing kernel selection to address border appearance in ultrasound,
as this has not been considered in most of the literature so far. Such considera-
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baseline

piecewise poly

combined

Figure C.13: Comparison of vesselness responses for different filters. Shown
are cross-sectional (left) and longitudinal (right) slices of the input as well as
the presented filter kernels for the original Frangi filter, the poly-exponential
approach [24], the step kernel, the piecewise poly kernel, and and the kernel
based on the carotid artery model. When comparing the filters, it becomes
apparent that the filter responses for the original approach (and the CA model)
are wider and less peaky compared to the other filters and exhibit weaker
response for the deeper vessel. The strong response at the bottom of the
saggittal image (bottom right) shows an artifact caused by distorted confidence
estimations.
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L
-
vesselness
§ 1

Figure C.14: Vesselness probabilities with corresponding radius and border
estimates for AAA scan. Shown are the input data, as well as the combined
vesselness measure and the maximum responses for border thickness and
lumen radii. The values are given in voxels with a resolution of 0.37522. It
can be seen that border thickness estimates are consistent within the aneurysm,
while radius estimates depend on the maximum response for different filter
scales.
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Figure C.15: Dice overlap evaluation results for abdominal aortic aneurysms.
For both it can be observed that by using our proposed methods, the resulting
dice scores for segmentation (mean 0.5513 & 0.2250) are better compared to the
poly-exponential kernel (0.5122 £ 0.2026) and the original approach by Frangi
(0.2572 £ 0.1511).
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tions are, however, not only important for any structure detection approach,
but also for many other processing steps, as scale selection is an important
preprocessing step for many other applications such as edge detection, segmen-
tation, denoising, etc. In contrast to this, Gaussian filters kernels enjoy a solid
theoretical justification, cf. Alvarez et al. [2], as well as several possibilities for
an efficient implementation, but they do not give optimal responses for specific
applications as it is demonstrated in this paper.

Within our evaluation, we focused on vascular 3D ultrasound as this is
a major application area where tubular structure detection is desirable for
a proper initialization of successive processing steps, such as segmentation
for instance. As different manufacturers are using different post-processing
chains, we recognized a strong variation in overall image appearance and
quality, which is why we put special emphasis on evaluating our method with
ultrasound systems of different manufacturers (Siemens, GE, Toshiba, Hitachi,
and Philips). Unfortunately, still most of the work in the field of medical
imaging is validated only based on one specific system and mostly also for a
fixed imaging setup and for this reason we conducted our experiments not only
based on one, but five different ultrasound systems. During the performed
evaluation using these devices, we did, however, not notice an influence of
the machine type on the results obtained with our proposed algorithm. This
demonstrates the robustness of our approach in a realistic setup even for
varying preprocessing pipelines.

With respect to the differences between healthy and diseased cases for the
carotid artery datasets, some further observations can be made. By comparing
the state of the art with our proposed approach, cf. Table C.3, a decrease of
separation is being observed in case of our approach compared to the classical
filter as far as the healthy datasets are concerned. The detection quality of our
method, however, method remains clearly higher. As opposed to this, for
the diseased acquisitions, the proposed combined filter provides both higher
separation and detection than the other methods. This is also confirmed by the
(diseased) AAA scans, where again our method provides higher levels of sepa-
ration and detection. Although the total number of evaluation datasets is still
too low in order to make statistically significant conclusions, a trend towards
improved vesselness estimates for pathological datasets can be observed for
our method in comparison to the classical Frangi filter as well as the method
of Waelkens et al.

C.6 Conclusion

The main contribution of this work is a novel multi-scale filter that explicitly
takes the ultrasound-image formation process into account. We showed that
this filter is superior to standard Hessian-based methods using ultrasound
imagery from 30 patients. Furthermore, we introduced several adaptations of
the filter to take different ultrasound-acquisition characteristics into account,
including direction-based and attenuation-based variations. In future work, we
will focus on designing filters that are based on a more detailed ultrasound-
image formation model. We believe that integrating 3D-based confidence
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APPENDIX: 3D VELOCITY FIELD RECONSTRUCTION

Abstract. With the need for adequate analysis of blood flow dynamics,
different imaging modalities have been developed to measure varying blood
velocities over time. Due to its numerous advantages, Doppler ultrasound
sonography remains one of the most widely used techniques in clinical routine,
but requires additional preprocessing to recover 3D velocity information. De-
spite great progress in the last years, recent approaches do not jointly consider
spatial and temporal variation in blood flow. In this work, we present a novel
gating- and compounding-free method to simultaneously reconstruct a 3D
velocity field and a temporal flow profile from arbitrarily sampled Doppler
ultrasound measurements obtained from multiple directions. Based on a lami-
nar flow assumption, a patch-wise B-spline formulation of blood velocity is
coupled for the first time with a global waveform model acting as temporal
regularization. We evaluated our method on three virtual phantom datasets,
demonstrating robustness in terms of noise, angle between measurements and
data sparsity, and applied it successfully to five real case datasets of carotid
artery examination.

D.1 Introduction

Today, there are several medical imaging techniques for non-invasive quantita-
tive and qualitative blood flow assessment. Although conventional Doppler
ultrasound (US) sonography suffers from limited anatomical accessibility as
well as high inter-observer variability, it is still an indispensable imaging modal-
ity for this task in clinical routine. The reason for this fact is that in comparison
to 4D magnetic resonance imaging and digital subtraction angiography, US
is broadly available, allows for fast acquisitions, offers high frame rates, and
does not expose the patient to ionizing radiation or nephrotoxic contrast agent.
Yet, Doppler US can only measure the projection of the true velocity vector
along the echo beam direction and is thus blind to the flow orthogonal to it.
As a consequence, examiners need experience in order to make qualitative
assertions regarding the three-dimensional blood flow, which also explains the
recent endeavors to reconstruct three-dimensional flow fields from multiple
Doppler acquisitions.

Since the early works by Fox et al. [3], who utilized simultaneous measure-
ments from multiple directions to recover velocity information, cross-beam
techniques have been proposed to overcome this limitation [2]. Alternative
approaches such as the augmentation of single 2D Doppler images using ven-
tricular wall motion [4] have the potential to successfully reconstruct vortex
patterns but rely on additional restrictions. Arigovindan et al. [1] introduced
B-spline grids to regularize the reconstruction problem. An extension of their
approach by Gomez et al. [5] allows for 3D blood flow quantification from mul-
tiple registered B-Mode and Doppler volumes acquired by a 2D matrix array
probe. However, the method requires pulse phase consistency, i.e. samples
acquired at (or interpolated for) the same instant in time, and fails if temporally
arbitrary Doppler samples are used. Inspired by the work of Waechter et al. [8],
who employ a waveform model to regularize the estimation of blood flow
parameters from rotational angiography, we propose a method which facili-
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Figure D.1: a) Three ultrasound sweeps from different directions are necessary
to reconstruct the velocity field in a blood vessel. b) Illustration of the patch-
wise reconstruction scheme. After reconstruction, only the estimated B-spline
coefficients in the non-overlapping core zone are stored. ¢) Algorithm to solve
spatial velocity field and temporal flow profile function. See text for details.

tates the simultaneous reconstruction of both a continuous three-dimensional
velocity field and a continuous waveform model. Thanks to the temporal regu-
larization provided by the waveform model, the proposed method is gating-free
in the sense that no data selection according to a gating signal is required and
that the reconstruction is performed over the entire dataset at once. Therefore,
it supports temporally arbitrary Doppler samples from any pulse phase as
input. Moreover, the proposed approach is also compounding-free as it is based
on the raw Doppler in-phase and quadrature (IQ) samples and thus also allows
spatially arbitrary, non-uniform data points, without prior compounding of
US volumes and associated interpolation artifacts.

D.2 Methods

The reconstruction method relies on raw Doppler IQ samples as input. In
particular, 4-tuples of (p,d, m,t) are collected for every sample, where p =
[px, py, pz]T denotes the sample position in Cartesian space, d the correspond-
ing normalized echo beam direction, m the measured Doppler signal, and
t € [0,1] the normalized pulse phase time. B-spline basis functions are em-
ployed to describe a smooth 3D velocity field v(p) = [vx(p), vy (p),vz(p)]T [5],
whose components are given by

vy (p) = ;{szrk Bsi(Px)Bs,i(Py) By (pz), fory € {x,y,z}. (D.1)
ij,
The indices i, j, and k indicate a location in the regular, three-dimensional
B-spline grid with spacing s, which defines the resolution of the recovered
vector field. B} ;(px) = B"(i/s — px) denotes the scaled and translated B-spline
basis function of degree n at grid position i, likewise for [3?]( py) and B, (pz).
Finally, CZj,k are the corresponding B-spline coefficients to be found.

The original approach in [5] relies on an input dataset with N samples
sharing the same pulse phase, from which the reconstruction is performed by
minimizing the error between the measured Doppler value denoted by m, and
the projection of the recovered velocity at sample position p, onto the beam
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Ground Truth Phantom Flow
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Figure D.2: a) Ground truth flow profile function defined using periodic
B-spline coefficients. b-d) Results of phantom experiment reconstructions
closely reflect expected results. Vector fields for Linear (b) and Curved (c)
phantoms, as visible in longitudinal slices, follow vessel direction indicated
in the background and exhibit quadratic velocity distributions. Expected
rotatory symmetry in the Barrel Roll phantom (d) can be easily observed using
direction-based color-mapping.

direction d,
S 2
Tproj(v) = }_ lldr - v(pr) — me|[3. (D.2)
r=1

However, this formulation has to be adjusted for different pulse phases be-
cause the blood flow at every point within an artery varies over time. Thus,
uncorrected Doppler measurements lead to inconsistent samples, prohibiting
the reconstruction of the velocity field at a given instant. In this work, we
introduce a flow profile function ¢(t): [0,1] — [0,1] mapping from normalized
pulse phase times to scaling factors compensating the varying flow patterns
(Fig. D.2a). The actual velocity vector at any point in time is then given by
v(p,t) = ¢(t) Vmax(p), assuming a pulsatile laminar flow. While allowing
varying velocity magnitudes over time, our formulation keeps the flow direc-
tion constant at any position in the reconstructed volume. Unless bifurcations,
high-grade stenoses, or aneurysms are invesigated, this model has been shown
to introduce only negligible errors [8]. It should be noted, however, that this
formulation does not enforce the velocity directions to be organized in parallel
sheets. In order to compute ¢, we employ a B-spline parametrization as well:
p(t) = ZgTzl célBﬁ g(t), where ‘ng(t) is a periodic B-spline basis function of de-
gree n and spacing T evaluated at grid point ¢, and cé denote the corresponding
temporal B-spline coefficients. As a result, we propose the cost function

N
]Pm]'(vr ¢) = Z @ (tr) dr - Vinax (pr) — mr”% s.t. mtax lp(t)|=1 (D.3)
r=1

The constraint in Eq. D.3 is added to the system to ensure that v, is correctly
scaled. For a matrix form expression, the spatial B-spline coefficients are
gathered in vector Cs = {cf‘ ik cz Y cf, j,k}' the temporal ones in vector C; = {cé}
The evaluation of the B-spline functions is encoded, after vectorization of the
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3D spatial grid of size M, by sampling matrices S; € R3N*3M and 5, € RN*T

Sp 00 with {Sp}r,vec(i,j,k) = ﬁ?,i(Pr,x)ﬁ?,j(Pny):B?,k(PY,Z)/
SS - 0 Sp

0 0 S, and  {St},z = Br:(t)

(D.4)
such that vy = SsCs and ¢ = S;C;. The dot product is realized using the
direction matrix D = [D*DYD?| containing diagonal matrices with the three
Cartesian components of the beam directions, respectively: {D*},, = d,,,
likewise for DY and D*. With m = {m;} referring to the vector of Doppler
measurements and ® to the component-wise multiplication, the cost function
reads

Toroj(Cs,Ct) = || (S:Ct) ® (D SsCs) —m 3. (D.5)

For smoothness, a spatial regularization term is added to the final cost function:
](Cs/ Ct) = (1 - A) ]proj(Cs/ Ct) +A Idiv(cs)' (D.6)

As shown in [5], the locally acting divergence term Jy;, = ||V - Viax Hg, derived
using the B-spline formulation, enforces the incompressibility of the blood flow.
It should be noted that the flow profile function ¢ inherently acts as temporal
regularization itself, rendering further regularization terms unnecessary.
Provided a global flow profile function ¢, the velocity field v, can be
reconstructed directly in a patch-wise fashion. Simultaneously solving for both
Vimax and @ is, however, not possible. Instead, spatial and temporal coefficients
are obtained in an alternating fashion as reported in Fig. D.1c. We employ
a LU decomposition with partial pivoting to directly solve the patch-wise
spatial system. Hereby, patches mutually overlap for increased stability, and
only the core, non-overlapping coefficients in vector Cs are stored (Fig. D.1b).
The global temporal coefficients C; are found using a Levenberg-Marquardt
solver. Eventually, the algorithm yields two continuously defined results: the
reconstructed maximum velocity field v, and the blood flow profile ¢.

D.3 Experiments

Phantom Evaluation. For evaluating our method, three virtual phantom data-
sets, each spanning 34x34x34mm, were created. The first two phantoms,
denoted Linear and Curved, contained a cylinder and a torus with a vessel
radius of 6 mm, respectively. A quadratic Poiseuille flow with a velocity of
Vimaxph = 1m/s in the centerline was applied. The velocity for the third
phantom, denoted Barrel Roll, was defined as v(p) = a[p —t(r- p)] x r, where
r is the direction of the roll and 4 a scaling factor to ensure max v,y ,n = 1 [6].
In all cases, a phantom flow profile function ¢, as shown in Fig. D.2a was
used to construct a time-varying flow profile. Finally, synthetic Doppler
sweeps from three directions d were generated with in total N measurements
m = @pu(t ~ [0,1]) d - Viar pr(P) + 715 + 170 The pairwise angle between the
sweeps, denoted opening angle « as illustrated in Fig. D.1a, was varied between
10° and 90°. For the linear phantom, the mean direction d was set to be 45°
tilted against the vessel direction. Two different Gaussian noise models were
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Figure D.3: a) The counterintuitive relation between a and the root mean
squared error is only present if noise is directly applied to the Doppler samples,
regardless of the direction of acquisition. b) Gaussian noise of up to ¢ <
0.35 m/s (Linear and Curved phantoms) can be added to the Doppler samples
before the cosine similarity s.,s drops below the success threshold. c) The
estimated flow profiles of all five subjects reveal the pulsatility of the artery.
See text for details.
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Figure D.4: a-b) Maximum tolerable Gaussian noise level ¢ for linear and
barrel roll phantoms such that reconstructions fulfill s¢,s > 0.85 and e; < 0.15.
More noise (up to ¢ = 0.25 m/s) can be added to samples with higher data den-
sity and higher angles between sweeps to still obtain successful reconstructions.

textbfc) Carotid arterty reconstruction results for two exemplary sub-
jects. Overlay of velocity fields on longitudinal B-mode image slices. See text
for details.

considered: On the one hand, noise with standard deviation ¢ was added
to the samples such that 7; = N'(0, ) simulated inaccuracies of the Doppler
measurement itself. On the other hand, noise added to the velocity vector

under investigation such that 1, = v-dN (0,0), with v=v/ |lv||, modeled
inaccuracies of the tracking system or badly synchronized temporal data.
The sample positions p were chosen from a regular grid with 1 mm spacing.
Pulse phase times t were randomly drawn from a uniform distribution. The
reconstruction was performed using 6x6x6 mm patches, with 2mm overlap,
for which only pN samples were used to mimic sparse sampling (data density
p € [0.6,1]). The spatial spacing of the cubic B-splines was fixed at s = 1.5 mm.
Due to the high runtime complexity of the alternating algorithm (Fig. D.1c), a
coarse temporal spacing of T = 0.25 was used. For all experiments, moderate
regularization (A = 0.1) and cubic B-splines (n = 3) were employed. Three
measures were used to analyze reconstruction errors of computed velocities
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Vinax,c and the estimated flow profile ¢.. While the mean cosine similarity s¢,s
and the mean Euclidean norm e; quantify errors of the velocity field, the root
mean squared error e;;;s measures how well the flow profile was recovered:

R -
Scos = N Zy:l Vmax,c(Pr) - Vimax,ph (pr),

1 N
eq = N 27:1 vaax,c(Pr) - Vmux,ph(Pr) (D.7)

Crms = \/% Zil [(Pc(tr) N (Pph(ty)]Z.

Real Case Acquisition and Preprocessing Protocol. We tested our method on
five carotid artery screening datasets of 25 - 31 year old subjects. An open
access ultrasound system (Aurotech ultrasound AS, model MANUS) with a
linear array probe (128 elements, single element width 0.27 mm, height 4 mm,
focal depth 30 mm, 45 aperture elements) operating at 8 MHz, was used
together with an electromagnetic (EM) tracking system (Ascension Technology
Corporation, model TrakStar) and a pulse-oximetry sensor (Medlab GmbH,
model P-OX100). After calibration and preprocessing as described in [7], the
system facilitates the acquisition of Doppler IQ samples as well as a normalized
pulse phase signal, mapping the peak-to-peak distances to a linear signal in
the interval [0, 1]. For each subject, three US sweeps, mutually around a = 60°
apart, were acquired. To correct for the limited precision of the EM tracking
system, the Doppler magnitudes of each sweep were manually thresholded
to obtain a point cloud of the blood vessel. The three point clouds were
then registered using ICP in a pairwise manner. It should be noted that a
sufficiently precise tracking system, e.g. mechanical tracking, would make this
preprocessing obsolete.

2/

D.4 Results and Discussion

Phantom Experiments. Fig. D.2b-d illustrate reconstruction results for all
phantoms with the ideal parameter configuration & = 90°, 775 = 77, = 0, and
p = 1. For the estimation of the flow profile, the correlation r between e;,,s and
the acquisition parameters was investigated. Interestingly, increasing opening
angles « led to higher errors (7,5« = +0.18) when only #s was applied, which
is intuitively more likely to cancel out if all samples are roughly obtained
from one direction (¢« ~ 0°). If, however, only 7, was used, no significant
relationship between angle and error could be observed (50 = —0.03), as
shown in Fig. D.3a. Although we expect the latter noise model to be dominant
in a clinical scenario, the former model facilitates evaluating the limitations of
the method. Therefore, we set 7, = 0 for all subsequent experiments.

A reconstruction of the velocity field was considered successful if s.,s > 0.85
and e; < 0.15 mm. As shown in Fig. D.3b, Gaussian noise of up to o < 0.35m/s
could be added to the Doppler samples under ideal measurement conditions
of « = 90° and p = 1, before the cosine similarity s.s dropped below the
success threshold (similar results were obtained for the Euclidean norm ey).
We evaluated the effect of data density and angle between the measurements
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Figure D.5: Carotid artery reconstruction results for all five subjects. Overlay
of velocity fields on cross-sectional B-mode image slices illustrate that the blood
flow pattern was qualitatively well captured (compounding only for reference).

for the same noise range. Figure D.4a-b illustrate the maximum tolerable noise
level ¢ for various acquisition parameters, indicating robustness in terms of
data sparsity. As expected, the method was most sensitive to noise for the
vortex patterns of the Barrel Roll phantom.

Real Case Evaluation. Despite the coarse temporal grid spacing, realistic and
qualitatively accurate velocity fields and flow profiles could be successfully
reconstructed with a resolution of 1 mm for all five datasets. The estimated
flow profiles captured the pulsatility of the artery well (Fig. D.3c). Results
illustrated in Fig. D.4c and Fig. D.5 show an overall promising agreement
between vector fields and vessel anatomies as seen in the B-mode images.
However, in some datasets, e.g. 52, reconstruction errors at the vessel borders
are evident. While phantom experiments suggest an unsatisfactory registration
of the three sweeps and thus missing vector information at the borders, further
evaluation is necessary to assess the effect of the spatially relaxed laminarity
assumption.

D.5 Conclusion and Future Work

In this work, we have presented a novel approach to quantify varying blood
velocities over time from spatially and temporally arbitrarily sampled Doppler
ultrasound measurements. For the first time and to the best of our knowledge,
we were able to simultaneously reconstruct a continuous three-dimensional
blood velocity field and a periodic temporal flow profile function by coupling
a patch-wise B-spline formulation of blood velocity with a waveform model.
With the assumption of a laminar flow, our both gating- and compounding-free
framework supports Doppler samples from any pulse phase acquired with a
tracked freehand ultrasound system. As presented on three virtual phantom
datasets, our method is robust with respect to noise, angle between measure-
ments and data sparsity. We were also able to present promising results on
five real case datasets of carotid artery screening, showing qualitatively well
captured blood flow patterns and realistic, pulsatile flow profiles. Apart from
a potentially expedient diagnostic value in clinical routine, our approach may
have further important applications, for instance as initialization of computa-
tional fluid dynamics models by the recovered flow profile. Possible future
extensions of this work include a detailed parameter evaluation, a thorough
quantitative validation, a more local definition of the flow profile for handling
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bifurcations, and an improvement of ultrasound sweep registration toward
higher velocity field resolution.
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