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Abstract

According to UniProt, the largest public database of protein sequences, less than
one percent of all known proteins directly map to experimental annotations. With
the continuous exponential growth of sequences, the annotation gap - the
difference between known sequences and sequences annotated - slows down the
pace of scientific discoveries. Bioinformatics bridges this gap through the
development of computational methods for protein function and structure
prediction, relying on statistics, machine learning, data mining, and natural
language processing.

PredictProtein is a software suite and-an online resource that integrates a battery
of protein functional and structural prediction methods. Taking a protein
sequence as input, the software generates over 30 prediction results.
PredictProtein has had a wide impact on research and has been cited by over
1,200 manuscripts.

Given bioinformatics ubiquitous and critical role in post-genomic biological
research, there is a need to ensure that the systems supporting this effort are
stable, amenable for change and ready to meet the demands of modern biology.
The work at hand, then, describes the technical and scientific solutions that
improve the functionality of PredictProtein. These can be applied to the design of
any other bioinformatics system. First, a framework that ensures the system
adheres to a set of software engineering best practices is introduced. Then,
methods for systematic software dissemination, results aggregation and their
quick retrieval are discussed. Finally, visualization tools that make results easily
communicable to biologists are reviewed.

As biology moves toward the study of complete sets of proteins in organisms
(proteomes) as well as protein samples recovered directly from environmental
sources (meta-proteomes), this work also focuses on extending PredictProtein to
create a system for rapid and comprehensive analysis of large sets of proteins in a
systematic way. The system prototype has been used to annotate, analyze and
draw biological inferences from a published experimental meta-proteomics
datasets.



0. Preamble

The thesis at hand constitutes a publication-based dissertation. The
methodologies and results as presented here - in particular sections 2.1 and 2.2.2
- have been published in the following peer-reviewed articles. The following
manuscripts have been appended to this dissertation. A description of each
publication and my own contributions can be found in Appendix D.

* Yachdav G, Kajan L, Vicedo E, Steinegger M, Mirdita M, Angermuller C,
Bohm A, Domke S, Ertl ], Mertes C, Reisinger E, Staniewski C, Rost B. Cloud
prediction of protein structure and function with PredictProtein for Debian.
Biomed Res Int. 2013;2013:398968.

The work reported in this manuscript is described in sections 2.1.1 - 2.1.5

* Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T,
Honigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L, Ashkenazy
H, Punta M, Schlessinger A, Bromberg Y, Schneider R, Vriend G, Sander C,
Ben-Tal N, Rost B. PredictProtein--an open resource for online prediction of
protein structural and functional features. Nucleic Acids Res. 2014;42(Web
Server issue):W337-43.

The work reported in this manuscript is described in sections 2.1.6 - 2.1.8

¢ Yachdav G, Hecht M, Pasmanik-Chor M, Yeheskel A, Rost B.
HeatMapViewer: interactive display of 2D data in biology. F1000Res.
2014;3:48.

The work reported in this manuscript is described in section 2.2.2

During the duration of the work described here I have also co-authored the
following manuscripts.

* Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, Ahmed N, Altermann U,
Angerer P, Ansorge S, Balasz K, Bernhofer M, Betz A, Cizmadija L, Do KT,
Gerke ], Greil R, Joerdens V, Hastreiter M, Hembach K, Herzog M,
Kalemanov M, Kluge M, Meier A, Nasir H, Neumaier U, Prade V, Reeb ],
Sorokoumov A, Troshani I, Vorberg S, Waldraff S, Zierer ], Nielsen H, Rost B.
LocTree3 prediction of localization. Nucleic Acids Res. 2014;42(Web Server
issue):W350-5.

The work reported in this manusscript is mentioned in section 2.1.7
* Garcia L, Yachdav G, Martin M]. FeatureViewer, a Bio]S component for

visualization of position-based annotations in protein sequences. F1000Res.
2014;3:47.



The work reported in this manusscript is mentioned in section 2.2.1

* Corpas M, Jimenez R, Carbon SJ], Garcia A, Garcia L, Goldberg T, Gomez ],
Kalderimis A, Lewis SE, Mulvany I, Pawlik A, Rowland F, Salazar G,
Schreiber F, Sillitoe I, Spooner WH, Thanki AS, Villaveces JM, Yachdav G,
Hermjakob H. BioJS: an open source standard for biological visualisation - its
status in 2014. F1000Res. 2014;3:55.

Conents from this manuscript were not used in this work.

¢ B Sokouti, F Rezvan, G Yachdav, S Dastmalchi. GPCRTOP: A Novel G Protein-
Coupled Receptor Topology Prediction Method Based on Hidden Markov
Model Approach Using Viterbi Algorithm. Current Bioinformatics 9 (4), 442-
451

Conents from this manuscript were not used in this work.

A manuscript discussing the work described in section 2.2.3 has been drafted and
is currently being reviewed by co-authors. The manuscript will be submitted to
Bioinformatics by June 2015. Co-authors include: Guy Yachdav, Sebastian
Wilzbach, David Dao, Robert Sheridan, Jim Procter, Ian Sillitoe, Susana Lewis,
Burkhard Rost and Tatyana Goldberg.

The work described in section 2.3 will be written up and submitted for publication
to the journal Bioinformatics. This will be done by the summer of 2015. The list of
co-authors will include: Guy Yachdav, Diana Iaacob, Jonas Raedle, Yana Bromberg,
Thomas Clavel, and Burkhard Rost.



Introduction

1. Introduction

1.1. The sequence annotation gap

The following section introduces the data deluge challenge facing modern biology

The Protein Structure Initiative (PSI) project was a decade-long effort funded by
the US National Institute of Health (NIH) in two phases. It encompassed up to
fourteen US-based research centers and cost $270 million during the pilot phase
and $325 million during the production phase. The goal of the project was to
increase the number of solved protein structures as well as research and improve
methodologies that will allow for faster, cheaper ways to elucidate protein
structure in the future. The impetus for this large scale effort was motivated by
the idea that increasing the number and breadth of the protein structural
repertoire will support and accelerate research into better understanding the
function of proteins, shed light on how altered structures can contribute to disease
and help identify new targets for drug development (1). The PSI effort resulted in
the deposition of an unprecedented, over-than 5900 newly and updated protein
structures onto the Protein Data Bank (2) a central archive for protein structure.

The UniProt database (3), the largest publicly available sequence database, also
logs the results of experiments that relate to the exploration of protein structure
and function. UniProt is mainly composed of two sections: 1) UniProt/SwissProt -
containing proteins with experimentally verified and reviewed annotations and 2)
UniProt/Trembl - containing all collected sequences that lack expert annotations.

While the growth of UniProt/SwissProt is, in part, a result of efforts such as the
PSI, a recent survey of UniProt reveals that UniProt/SwissProt and other expert
annotation databases (such as the Protein Data Bank) are growing at a much
slower pace than the growth rate of known protein sequences; This is not
surprising given the way in which modern molecular biology has developed;
advances in next generation sequencing and the steep decline in the cost of
sequencing per base-pair (4-8) have resulted in an anomaly -- currently the
exponential growth rate of UniProt/Trembl outpaces the growth rate of
UniProt/SwissProt by 70-fold (Jan-Sep 2014 statistics (3)).

Comparing the number of entries in UniProt to those in PDB also shows a striking
difference between the size of sequence space (the pool of all known sequences)
and structure space size (the pool of all known structures); at the end of 2014 the
PDB archived 105,426 protein structures whereas UniProt has logged over 82
million protein sequences (Sep 2014 statistics (3)).
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Figure 1 - growth of UniProt (blue line) as compared with the expert annotation UniProt/SwissProt section
(red line). Statistics are for the period 1-Jan-2004 through 3-Sep-2014. All data compiled from (3).

The annotation gap is then defined as the difference ratio between the growth of
the pool of known sequences and the set of experimentally verified annotated
sequences. The annotation gap increases daily, driven by current technology
available to researchers, that allows for greater opportunity of discovering new
protein sequences at a lower cost than the process of generating experimental
verified annotation.
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Figure 2 - the annotation gap exemplified by the difference in year over year growth rate of the UniProt(blue
line) as compared with SwissProt(red line) for the period 2004-2014. Starting in 2011 the UniProt/SwissProt
growth rate has plateaued around the 1.5% year while UniProt growth rate increased by an average of 63.4%
each year.
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By the end of 2014, the genomes of more than 2000 organisms had been
completely sequenced (9). Many large-scale efforts have aimed at providing
annotations for these sequences, for example, Gene Ontology (GO) (10), the
Human Proteomics Initiative (HPI;
http://www.uniprot.org/program/chordata/statistics) (11), and as mentioned
above the Protein Structure Initiative (PSI) (1). GO, systematically describes
biological function using ontologies that encompass molecular function, cellular
localization and biological processes. However, not even the best ontologies can
rely solely on expert annotations, because the experts are unable to keep up with
the rapid influx of new data. From among the ~82 million proteins of known
sequence to date, a bit over 30,000 proteins have been manually annotated with a
GO term (www.ebi.ac.uk/GOA/uniprot_release.html).

1.2. In silico annotation of protein structure and
function

The following section discusses the contribution of computational method in bringing the annotation gap
introduced in the previous section

For the past two decades computational methods relying on statistics, machine
learning, data mining, natural language processing as well as other strategies have
been improving in accuracy returning annotations useful for verification of
experimental results as well as elucidating scientific insight such as the prediction
of protein function.

Indeed many methods that predict aspects of protein folding are now readily
available for the community. The latest (2014) Critical Assessment of Techniques
for Protein Structure Prediction 11 (CASP11) challenge lists 84 (12) prediction
servers as participants. The prediction categories in the bi-annual CASP
experiment represent current advancements and challenges in the field. For
instance the prediction category Homology Modeling in which 37 groups
participated during the CASP 6 (13) experiment (2004) was no longer featured
during the CASP 11 experiment. Whereas the prediction of protein disordered
regions have remained a challenge and in CASP 11 more groups participated in
this category as compared to CASP6 (28 vs. 20). Similarly the Critical Assessment
of Function Prediction (CAFA) also feature a host of prediction methods aimed at
filling the protein function annotation gap (54 methods participated in the single
CAFA assessment to date) by providing new strategies to predict aspects of
protein function.

With the improvement and wider access to reliable predictions and at the same
time the lack of availability of enough experimental data, biological databases now
integrate predictions alongside data extracted from experimental resources. For
instance STRING (14) is a database of protein-protein interaction that combines
known experimentally verified interactions with predicted ones. Also, a growing
number of prediction methods now collect annotations from prediction methods
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where no experimental data is available. In this strategy a method will implement
a mechanism that will digest predictions into a single data models, and will
consider the prediction error rate, alongside other statistical measures and
summarize an overall reliability index for the resulting output. As an example,
consider SNAP (15, 16) - a method for that predicts the impact of non-
synonymous SNPs. SNAP uses predicted secondary structure, predicted solvent
accessibility, and predicted flexibility as input features to its own neural network
based prediction algorithm.

1.3. Combining annotation methods into meta-servers

The following section discusses the role of meta-server as an online central access point to a battery of
computational methods

Traditionally, developers made their computational methods available to a small
community of researchers. Such earlier packages required that the end user
posses a high degree of technical competency. Earlier commercial packages
combined these methods into a more user-friendly program suites such as the
GCG (17) package. With the advent of the Internet and the appearance of web
servers (Rost & Schneider, 1999) developers were making their resources
available online (18). The overwhelming acceptance of the web as the primary
resource for data retrieval created a new challenge of locating relevant and
reliable resources. The BCM-Launcher (19) was one of the early solutions that
offered a single portal allowing the access to a variety of tools. The single portal
model, also known as the meta-server, simplifies the process of resource
discovery by offering a central location for a set of contextually related tools.
Furthermore the portal abstracts the technical need of constructing a workflow
and handling a set of diverse and unstandardized file formats.

The growing need for higher degrees of collaboration across resources and data
endpoints has brought on projects that aimed at building automatic and semi-
automatic data discovery and data sharing infrastructures (20-23). While
automation in data integration remains an important goal, still one aspect cannot
be accomplished by any automation, namely the scientific combination of methods.
For example, we know that signal peptides are often confused with membrane
helices yet no method establishes a particular threshold that would allow an
automatic distinction between the two classifications. Furthermore, the wealth of
powerful tools and servers is, only utilized by a fraction of biologists who would
be able to profit from them. Especially for non-experts it can be very time-
consuming to find out which services exist, what they can or cannot do, how to use
them and how to feed results from one service to the next in the right format.
Therefore, biologists still turn to meta-servers as a primary point of access to
computational resources (24).

Some of the core resources provided for the community are servers that group a
set of tools and databases into a single meta-server. The Protein Data Bank (2)
maintained by groups from Rutgers University and from the University of
California, San Diego offers a Protein Feature View in which functional motifs,

11
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structured regions, disordered regions and Pfam domains (25) are all stacked into
a single visualization. By using such view against regions where a 3D structure is
available it is possible to see how a certain domain in a PDB entry relates to the
full-length protein sequence.

Another example for a meta-server is PSIPRED (26, 27). The PSIPRED server is
maintained by David Jones group at the University College London and provides
protein access to a set of protein structure prediction and sequence analysis
methods. PSIPRED main strength is in recognizing putative domains by combining
secondary structure data searches for PDB chains hits, and domain boundaries
prediction.

Finally, the MPI Bioinformatics Toolkit (24) provided by the Max Plank Institute
for Developmental Biology in Tubingen is an interactive web service which offers
access to a great variety of public and in-house bioinformatics tools. These are
grouped into different sections that support sequence searches, multiple
alignment, secondary and tertiary structure prediction and classification.

1.4. Sequence determines structure determines
function

This section surveys the scientific paradigm that motivates the study of protein structure and function

Proteins are polymeric macromolecules involved in a vast array of functions
within all living organisms (28). As enzymes, proteins play a critical role
throughout the DNA replication machinery by assembling complementary nucleic
acids to a template strand and synthesizing DNA. As ligand transporters, proteins
bind to small molecules and carry them around the multicellular organism, or as
membrane transporters, proteins assist in diffusing substances across the cell
membrane. Proteins also play a crucial role in metabolism, facilitating enzymatic
activity essential for the harvesting of energy (catabolism) and catalyzing the
construction of new cell components (anabolism).

Preutz and Kendrew (29) provided an initial evidence for the relationship
between a protein’s spatial conformation (fold) and its ability to carry out a
certain function. By determining the 3D structure of the myoglobin protein and
the Hemoglobin complex, Preutz and Kendrew demonstrated how the fold of the
protein renders its ability to bind to oxygen molecules, transporting them from
the respiratory system across the rest of the living organism.

The physical structure of a protein, it was shown, determines its ability to bind to
other molecules, interact with them through chemical reaction and ultimately
perform some activity. As an example, consider the Hexokinase enzyme that
catalyzes energy production within the cell by binding glucose and ATP. The
interaction between the enzyme and its substrates is only possible through a set of
binding sites - i.e. a set of regions on the proteins surface that can create weak
non-covalent bonds with the interacting molecule. Binding sites can be described
as cavities on the protein surface (figure 1) and are characterized by a physical

12
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shape and chemical composition that is highly specific to the surface contours of
the molecule they bind (the ligand).

Christian Anfinsen’s Dogma (30) postulates that the native structure of a protein
is largely determined by its amino-acid sequence. This dogma induced the
sequence—>structure>function paradigm (sequence determines structure
determines function) suggesting that largely the protein sequence determines the
way the protein folds and that this fold (3D structure) in turn determines the
protein’s function.

In recent years some researchers saw reason to slightly alter the paradigm with
the discovery of protein disorder. Disordered proteins lack a stable unique
ordered three-dimensional structure. Still, the lack of a defined structure appears
to be the key for a variety of important biological functions that involve cell cycle
control, gene regulation or signaling (31, 32). Nonetheless the sequence to
structure to function paradigm still holds and remains one of molecular biology’s
cornerstones.

noncovalent bonds
e \

binding
site

protein

Figure 3 - many weak non-covalent bonds are needed to bind tightly to a second molecule (called a ligand) A
ligand must therefore fit precisely into a protein’s binding site, like a hand into a glove, so that a large number
of non-covalent bonds can be formed between the protein and the ligand (adapted from (28))
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1.5. Thesis objectives

This section details the goals pursued in the work described in this thesis
Aim 1 - Create a reliable and maintainable protein annotation server.

PredictProtein (PP) is a protein sequence analysis software suite that has been
developed in our group over 23 years (went online in 1992). PP’s unique
approach combines many analysis and prediction methods into a “meta-server”
which lends itself to comprehensive protein sequence analysis prior or in parallel
to the experimental discovery process. In realizing this aim [ have been laying the
groundwork required to make PP a reliable and scalable system for the analysis of
individual proteins as well as to large datasets. All software components that
make up the PP server have been reviewed and standardized according to
software development best practices. The software that orchestrates the pipeline
activity have been rewritten and made flexible and fault-tolerant. A new
repository that indexes, stores and retrieves PredictProtein results has been
constructed to enable rapid access to PP results. Finally, a modern data-driven
web application has been developed to allow efficient and reliable access for the
community of 10,000 PP users that access the resources each month. The web
server incorporates a data visualization application that makes use of the
visualization tools developed as part of aim 2 in this work.

Aim 2 - Develop visualization tools required for the presentation of protein
annotation data on the web. Big-data becomes increasingly important in life
science as data grows rapidly in volume and complexity. Existing tools aim at
reducing the complexity level of arbitrarily large textual data (often organized in
tabular format) into more intuitively accessible visual representation. As more
data is consumed over the web by the mediation of web browser applications
there is a need to create software tools that are native to the web browser, i.e. that
do not require additional, complicated deployment procedures. I developed a set
of tools necessary to visualize the data annotations generated by the PP pipeline.
All tools were developed in JavaScript, a language native to modern web browsers
and ubiquitously employed across the web to deliver interactive images. The tools
were incorporated into the PP web application as well as made available to the
community as stand alone viewers through the Bio]S (33) visualization library and
registry.

Aim 3 - Establish a pipeline for the analysis of proteomes and meta-
proteomes.

Proteomics and meta-proteomics experiments aim at studying complete
organisms or random communities of microorganisms extracted from cultured or
environmental samples. Computational methods have been developed to help in
the characterization of proteins sequenced in those studies. Yet there is still a
need for systems that would assist in the comparative analysis of datasets
captured from different samples. Such systems are especially important in meta-
proteomics studies where multiple organisms are present and often composed of

14
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unknown or sparsely characterized proteins. In this part of the project the PP
software was extended to provide rapid annotation for datasets of proteins. The
system enables the functional annotation and analysis of large genes/proteins
lists. The prototype version of the system is designed for the needs of meta-
proteomics studies of the gut bacteria. The system can be used to A) provide
additional evidence or challenge existing findings, and to B) highlight new
‘interesting’ proteins given a set of annotations that will support follow on
research.

15



Methodology and results

2. Methodology and results

2.1 The PredictProtein meta-server
2.1.1 Background

The following section introduces the PredictProtein server and the guidelines used in rebuilding a robust
bioinformatics annotation system

The PredictProtein (PP) server is a protein structure and function annotation
service that went online at the EBML Heidelberg in 1992. The service started as
one of the first online resources for the prediction of secondary structure and
transmembrane helices (34, 35). From 1999 to 2009, the server operated from
Columbia University (New York, NY) and in 2009 it moved to the TUM (Munich,
Germany). PP was one of the first services realizing state-of-the-art protein
sequence analysis, and the prediction of structural and functional features in a
single server. The primary goal of the server has always been to provide a system
optimized to meet the demands of experimentalists not highly experienced in
bioinformatics. To this end, the PredictProtein pipeline has grew to integrate over
30 prediction methods, database search tools, post processing and parsers as well
as supporting libraries. Furthermore results are presented as both text and a
series of intuitive, interactive and visually appealing figures.

A combined software suite is an agglomeration of software pieces, each created to
fit a different set of technical specifications, each often written by different
developers and coded in various programming languages. On top, suites often
depend on other programs and libraries and require distinct input formats. The
issue of software dependencies is most pronounced since during software’s life
span updates and changes to underlying code, and libraries are introduced. Such
modifications can degrade capability and even render the software tool unusable.
Furthermore, maintainability of the software suite becomes an even bigger
challenge as the system grows in scale and scope and changes to the software
tools integrated are introduced more frequently.

To explain the complexity in designing and maintaining a system such as
PredictProtein consider that the current version of the system incorporates over
30 computational methods. Each such method relies on a set of parsers, compilers,
modules and external tools so it could properly function. Each of those
dependencies in turn relies on another set of system utilities and system libraries.
Figure 4 shows a selected set of tools that were incorporated into the system, yet
for the sake of clarity this list is restricted only to the main bioinformatics
packages that have been integrated. The list does not show the complete
dependency graph of the system which includes all supporting software tools. The
rostlab packages wiki page! lists 89 software packages that have been integrated
into PredictProtein. Figure S2 (Appendix C) shows a dependency graph for the

L https://rostlab.org/owiki/index.php/Packages#Package_overview
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software that is integrated and supports PredictProtein and their dependency
relations.

Furthermore, the tools integrated by PredictProtein and maintained by our group
were written by over 50 developers (a non-exhaustive-list of main contributors
can be found on the PredictProtein website (36)) over the course of 23 years. The
code base includes code written in the following programming languages: Python,
PERL, Java, FORTRAN, R, C/C++ and the following Unix shell scripting
environments and utilities: tcsh, BASH, make, awk.

The challenge of maintaining software that explicitly depends on dozens of tools
and implicitly on hundreds of dependencies is compounded by the time element
and the Information Technology reality that is driven by constantly changing
computing environment. A third (12 methods) of the tools integrated into
PredictProtein were incorporated over the past five years.

As the PredictProtein system has grown in size and scope and as it became more
mature, the need to implement a set of guidelines and best practices (37) that will
guarantee the continued scope expansion while ensuring the stability of the
system arose. Following is a set of principles adopted and implemented
throughout the redevelopment of the PredictProtein system:

* Resilient: The system stays responsive in the face of failure. Failures are
contained within each component, isolating components from each other
and thereby ensuring that parts of the system can fail and recover without
compromising the system as a whole. The client of a component is not
burdened with handling its failures.

* Flexibility: The system stays responsive under varying workload. Systems
can react to changes in the input rate by increasing or decreasing
the resources allocated to service these inputs. This implies designs that
have no contention points or central bottlenecks.

* Responsiveness - the system responds in a timely manner.
Responsiveness enhances usability and utility. Responsive systems focus
on providing rapid and consistent response times, establishing reliable
upper bounds so they deliver a consistent quality of service. This consistent
behavior builds end-user confidence, and encourages further interaction.

2.1.2 Improvements to source code

The following sections (2.1.2-2.1.6) will describe the steps taken in this project to create a more resilient,
flexible and responsive system.

As a first step for source code maintenance we collected all source for component
methods and deposited those into a version control management system. Version
control management systems keep track of changes introduced to the code base
throughout the development project life cycle, enable documentation of those
changes through logging, and provide a central repository that multiple
developers can access, share code and collaborate. Source code deposited into
version control was “cleaned up” from convenience copies, a software

17
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development anti-pattern in which the code base repository is being cluttered
with multiple backup copies of the same source files.

Deposited source was also reviewed and “cleaned up” from dysfunctional code
(code that was not being called during the execution time of the program or did
not serve any functional purpose). Excessively commented out code and
nonsensical comments were also removed to reduce source code obfuscation. A
naming scheme that enforces unified, meaningful naming of variables was
enforced. Runtime issues that raised system warnings were resolved and
nonsensical warnings generated by the program were muted.

The use of “exotic” modules and libraries has been disallowed. Exotic modules are
ad-hoc software libraries that haven’t been sanctioned by and official release
process. Usually such modules can be obtained from online sources but are rarely
backed by a community of maintainers. Due to their uncertain maintenance state,
exotic modules included into software can burden the development team with bug
fixes and keeping the code current.

To make sure that errors were contained within components, fault tolerance was
addressed in three levels:

1. User level errors were handled through user input validation
2. System level run time errors were captured and reported to the error stream
3. Exit code are used to report process state to any downstream process.

21.3 Software packages

Addressing the resilience guideline we have delineated the different
bioinformatics tools that are incorporated into the system. Each of those tools is
defined as a component. Roughly speaking a component could be a complex
software, a set of algorithms, a database or a simple script; each component is
usually composed of specialized code that performs a specific operation and relies
on a set of other tools as well as specific programming language libraries, modules
and plugins defined as dependencies. By identifying the set of components and
dependencies it is easier to map the scope of operation within the overall system,
ie points of failures can be easily traced and isolated at the component level.

Once the components-dependency maps are charted, we turned to organize those
maps into software packages. Software packages include the source code of the
software as well as a set of instructions that inform the operating system how to
automatically maintain the software during deployment, upgrade and. Technical
details such as software version, dependency packages as well non-technical
details such as the name(s) of the developer(s) and maintainer(s) and a free text
description of the software capabilities are all given within the package. The
instructions contained in the software package are used by a package manager
utility.

The package manager utility automatically puts together an installation plan -- a
tree-like graph that resolves all dependencies, pulls in necessary versions,
highlights version conflicts, verifies necessary storage space and prioritizes the
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installation steps. The package manager ensures an organized, smooth and error
free deployment process that maintains the integrity and stability of both the
installed software and the host operating system. The build and installation
process of a package on the target system makes use of auto-tools. Auto-tools are
a set of Unix based utilities that streamline and automate the software deployment
process.

PredictProtein method components were packaged using auto-tools. During the
package bundling step each package is clearly and automatically labeled with the
software name and its serial version number. Software packages were then
adapted to work with the Debian Linux operating system. The Debian operating
system is a widely recognized and accepted Unix-like operating system that is
composed entirely of open-source software, most of which is under the GNU
General Public License, and packaged by a group of individuals known as the
Debian project. Within the Debian project, the Debian-med group aims to develop
Debian into an operating system that is particularly well fit for the requirements
for medical practice and biomedical research. The Debian-med project maintains a
software and databases repository that primarily targets bioinformatics. Making
PredictProtein components available through the Debian repository resulted in
one of the largest ever contribution to the Debian-med repository in which 89
software tools and libraries (38) were added to the repository.

Beyond the sizable contribution of open source software to the Debian med
repository, the packaging effort also had two immediate benefits that address the
needs for open computing in science (39):

(ii) Transparency - the packaging process ensures that the source code for the
packaged software remains open and in the public domain for other developers to
be able to build upon and extend current work as well as provide the necessary
transparency required for end users who wish to inspect the way in which results
were derived.

(ii) Replicability (capable of replication) - packaging software and publishing it
through a software repository aims at making sure that the software would be
deployed to all system in a similar manner, enforcing that similar versions should
perform consistently across similarly configured (as well as different) systems.

2.1.4 Virtual machine

Using a software repository to selectively pick and install different packages can
be used deploy the PredictProtein suite onto a host Debian Linux system. However
an alternative software distribution method that allows a turn-key solution to be
quickly deployed into an end system or a cloud based service was implemented as
the PredictProtein Machine Image (PPMI), a disk image that can be run in a
virtualized environment on a host system. This image contains a minimal
installation of Debian with the command line version of PredictProtein. Databases
are provided as a separate disk image. The PPMI is bootable on server instances in
cloud infrastructure services, or on locally installed virtualization software. The
latter allows for a cross-platform solution to use PredictProtein. After booting the
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machine image, a friendly message at the login prompt offers usage tips and
directions to documentation. A “Getting Started with PredictProtein” guide is
available online?. The PPMI and the data image are updated regularly and are
freely available through the Rostlab website3.

2.1.5 Flexible workflow construction

To address the flexibility guideline, we put together all components to a
specialized, single PredictProtein workflow by utilizing the Make utility. Make is a
utility that automatically builds executable programs and libraries from source
code by reading files called makefiles which specify how to derive the target
program. The makefile instruction file specifies targets to be made and a “recipe”
of how to make them. Each prediction file was marked up as a target to be built (or
made in the Make terminology) and the recipes included method execution
specifications (e.g. the set of parameters that were calibrated to optimally run the
method). For each target a set of required targets are also specified; when make
encounter such specification it is required that the required target be made first
before completing the current target. Since the make process lays out the process
of building files ahead of execution and also checks for existing targets, it
eliminated the need for redundancy in the build process, as existing targets are
not built twice. Furthermore the make process also provides the ability to
parallelize work, allow the build of two or more targets to happen simultaneously
if those are not dependent on each other, thus utilizing resources most efficiently.
The make process therefore provides the core process that orchestrate the
execution of over 30 different bioinformatics packages and generate the resulting
annotations.

2 https://wiki.debian.org/DebianMed /PredictProtein
3 http://rostlab.org/services/ppmi/
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Figure 4 - package dependencies for PredictProtein. Arrows represent “depends on” relationships. Only
significant dependencies are shown for clarity. “profnet” is a FORTRAN based neural network component
used by multiple PP core components. Convenience copies of “profnet” for the prediction methods “profphd,”
“norsnet,” “profbval,” and “profisis” have been merged to a single “profnet” package. Similar merging was
done for all code convenience copies.

2.1.6 Responsiveness using PredictProtein cache

The PredictProtein Cache (PPcache) is a database that currently holds pre-
calculated results for over 13 million unique proteins, including all proteins of
model organisms. The PredictProtein web server makes use of the PP cache by
retrieving results directly from the cache. For results older than three month,
users are given the option to re-run the query, thereby updating the PPcache. If no
result exists in the PPcache, the job is processed, and users are notified upon job
completion. PPcache currently requires roughly 100TB of disk space.

2.1.7 Methods included

The following section lists some of the core methods and databases included in the PP suite and server

Prediction methods - a prediction method is a single orset of specialized
algorithms leveraging statistical model to forecast a particular feature related to
the protein structure or function. For instance the profisis prediction method (40)
forecasts the likelihood of each residue in a given amino acid sequence could be
involved in protein-protein binding. Following is a list of highlighted prediction
methods that were integrated into PredictProtein and their performance
evaluations.
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TMSEG transmembrane helix predictions - TMSEG (41) predicts alpha-helical
transmembrane proteins, the position of transmembrane helices, and membrane
topology. The method uses a novel segment-based neural network to refine the
final prediction. TMSEG was developed and evaluated on 166 transmembrane
proteins extracted from PDBTM (42) and OPM (43), and on 1441 proteins from
the SignalP4.1 dataset (44). In our hands, TMSEG appears to complement and
improve over the best existing methods (e.g. PolyPhobius (45) and Memsat3 (26))
predicting all membrane helices correctly for about 60% of all proteins. The
method correctly identifies 98% of all transmembrane proteins with a false
positive rate of less than 2%.

SNAP2: predict effect of mutations upon function - SNAP2 predicts the effect of
single amino acid substitutions on protein function (46) . It improves over its
predecessor SNAP (15) by using additional coarse-grained features that better
classify samples with unclear evidence. With a two-state accuracy of 83% and an
AUC of 0.91, SNAP2 performs on par or better than other state-of-the-art methods
on human variants while significantly outperforming these methods for other
organisms. For each protein we also predict the entire protein mutability
landscape (47, 48), i.e. the functional effect of all possible point mutations. The
results are displayed in a heat-map representation (49) of functional effects (Fig.
6C).

LocTree3 subcellular localization for all domains of life - LocTree3 predicts
subcellular localization for proteins in all domains of life (50). The method
predicts the localization in 18 classes (8 classes for transmembrane and 10 classes
for soluble proteins) for eukaryotes, in six for bacteria and in three for archaea.
LocTree3 successfully combines de novo (51) and homology-based predictions
(52), reaching 18-state prediction accuracy over 80% for eukaryotes and a six-
state accuracy over 89% for bacteria. The high level of performance and the large
number of predicted classes make LocTree3 the most comprehensive and most
accurate tool for subcellular localization prediction.

metastudent infers GO terms by homology - the method metastudent (53)
predicts Gene Ontology (GO) (10) terms through homology inference. It first
BLASTs queries against proteins with experimental GO annotations taken from
Swiss-Prot (54). Then, three algorithms independently choose which GO-terms to
inherit. These differ in the amount and quality of alignment hits considered and
how they assign a probability to each GO term. A meta-classifier combines the
three through linear regression. metastudent achieves a maximum F1 score of
0.36 in the biological process ontology and of 0.48 in the molecular function
ontology (53). Although this is slightly worse (within the error estimates (55))
than the best method for predicting GO terms (56), the advantage is that
metastudent predictions can easily be traced back to the experimental
annotations upon which they are based.
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Figure 5 - metastudent predicts GO terms. metastudent (53) is a program in the PredictProtein suite that
predicts the function of proteins in terms of Gene Ontology (GO) numbers (shown in each box are unique GO
numbers, the Score for the prediction ranging from 0 (low) to 100 (high). The GO numbers are given along
with a biochemical description, e.g. the most detailed prediction in shown in the yellow boxes at the bottom
imply that the protein for which PredictProtein was run is involved in “protein folding in the endoplasmic
reticulum” (which happens to be GO number 0034975) with a score of 12. The protein is also predicted to be
part of the apoptotic process (cell death) with an even higher score of 48.

Meta-Disorder prediction of protein disorder - intrinsically disordered or
unstructured regions in proteins do not fold into well-defined three-dimensional
structures but may become structured upon binding to a substrate. Because of the
heterogeneity of disordered regions, we have developed several methods
predicting different types of disorder. UCON (57) combines protein-specific
pairwise contacts predicted by PROFcon (58) with pairwise statistical potentials
to predict long disordered regions that are rendered intrinsically unstructured by
few internal connections. NORSnet (59) predicts disordered regions with NO
Regular Secondary structure (NORS (60), i.e. long loops), separating very long
disordered loops predicted by NORSp (61) from all other regions in the PDB (62).
PROFbval (63, 64), trained on B-values in X-ray structures, predicts flexible
residues in short disordered regions. Meta-Disorder (65) is a neural-network
based meta-predictor that uses different sources of information, including the
orthogonal disorder predictors mentioned above and others, e.g. IUPred (66) and
DISOPRED (67). Meta-Disorder significantly outperforms its constituents (65, 68).
A comprehensive, independent study (68), on disordered regions from the PDB
and DisProt (69), suggested Meta-Disorder to be one of the top two methods
available.

Protein-protein binding sites - residues that can bind other proteins are now
predicted by ISIS2 instead of ISIS (40). ISIS splits a query sequence into
windows of nine consecutive residues, encoding each window as a vector of
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features (e.g. PSI-BLAST amino acid conservation frequencies or predicted
secondary structure). A neural network, trained on existing protein-protein
binding residue annotations, determines whether a query residue can bind other
proteins. ISIS2 has been trained on a large data set of PDB-annotated binding sites
(70). A faster neural network implementation (70) and new methods for
predicting residue features further improve the accuracy of ISIS2.

Protein-DNA, protein-RNA binding sites - protein-polynucleotide binding
underlies important processes such as replication and transcription. SomeNA (71)
predicts protein-polynucleotide binding on three levels. First, it predicts which
proteins bind nucleotides. Second, it predicts the type of binding (RNA or DNA or
both). Third, it predicts the protein residues that bind DNA or RNA. The first step
is performed best: 77% of the proteins are correctly predicted to bind DNA and
RNA. The distinction between the type of nucleotide is slightly more difficult: 74%
of the proteins predicted to bind DNA and 72% of the proteins predicted to bind
RNA were correct. Slightly over 53% of the residues binding DNA and/or RNA
were correctly predicted. These levels of performance are at least 3-fold higher
than random.

ConSurf conservation of surfaces explains function - ConSurf (72, 73)
estimates the evolutionary rate in protein families. These rates are useful for
protein structure and function prediction because they reflect constrains imposed
on the general evolutionary drift (35, 74, 75). Queried with a protein sequence,
ConSurf first finds related sequences in UniProt. Evolutionary rates of amino acids
are estimated based on evolutionary relatedness between the protein and its
homologues using either empirical Bayesian (76) or maximum likelihood (77)
methods. The strength of these methods is that they rely on the phylogeny of the
sequences and thus can accurately distinguish between conservation due to short
evolutionary time and or conservation resulting from importance for maintaining
protein foldability and function. If a structure is available, ConSurf maps the
patterns of conservation upon the 3D structure. These patterns reveal crucial
details about protein function.

Database Searches - a database search algorithm is optimized to perform a
search and retrieval operation over a biological dataset. For instance the
hmmsearch tool (25) takes a protein sequence as input and matches this input
against a database of hidden Markov models (HMMs) based upon protein families.
In PP sequences similar to the query are identified by standard, pairwise BLAST
(78) and iterated PSI-BLAST (52) searches (75, 79) against non-redundant
combination of PDB (2), Swiss-Prot (54) and TrEMBL (3). In addition, functional
motifs are taken from PROSITE (80) and domains from Pfam (25).
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2.1.8 The PredictProtein web server

The PredictProtein web server provides a central, online interface for the
interaction with the PredictProtein annotation pipeline described in section 2.1.
The web server is available at http://www.predictprotein.org presents a
simplified, streamlined interface in which users can upload an amino-acid
sequence on the server homepage thus creating a PredictProtein job (PP job).
Every step in the life cycle of a PP job (whether received, in process, completed or
in error mode) is being communicated back to the user with actionable options
when available. Upon job creation the web server schedules the processing of the
uploaded input sequences by the PredictProtein annotation pipeline on a 600
cores Linux cluster. Account registration is available for users who wish to create
a repository of processed jobs to which they can refer to a later time. Users who
prefer not to register for the service can use the open version of the service
available at http://ppopen.rostlab.org.

Upon the normal completion of job processing, results become available through
an interface that integrates a set of visual components (described in detail on
section 2.2) and provides a navigation pane that allows users to easily browse
different results classes. Figure 6 shows a sample of the results presentation
available on the PredictProtein online interface.

25



Methodology and results

A E5A5U3_LEPMIJ
50

100 150 200 250
71 I T 1t T 1 i ! 7 s s s A 0
— = RN = = =
n NEEE = =] = = IIII i 1 0l 1
=

Protein-protein binding

Aligned sequences:
TrEMBL (blue)
Swiss-Prot (green)
PDB (purple)

B EMC4_HUMAN50

' ' | f I | ' 1?0 ; ; ; 1?0 ; Protein sequence
<|><|> <|> <‘><‘> <|> <|> <‘> <‘> <|> <‘> <‘> <|> Protein-protein binding
= T I P — I = Secondary structure
. | s Y R oy o I oy R R B Y | [ [y | | Y A v I Solvent accessibility
I Transmembrane helix
I @ [ |Disordered region

Aligned sequences

C functional effect of point mutations

E subcellular
localization

100 100 Biological Process Ontology
o - Reliail = o )
liabil
# GOID$ GO Term ® ", @ oo
(%) \ pe
D 1 GO:0006915 apoptosis 48 @
2 GO:0034975 protein folding in endoplasmic reticulum 12 @

Figure 6 - visual results from PredictProtein (PP). The PP Dashboard Viewer shows a schematic of all
position-based predictions and sequence alignments. A: Putative protein (UniProt AC E5A5U3). B: ER
membrane protein complex subunit 4 (EMC4, UniProt AC Q5J8M3). The protein sequence is represented by a
scale on top of the predicted features. Features presented include protein-protein binding sites (ISIS2),
disulfide bonds (DISULFIND), structural features such as secondary structure state and solvent accessibility
(PROFphd), transmembrane helices (TMSEG) and disordered regions (MD). Proteins aligned by PSI-BLAST
(52) are shown as thin lines colored by database origin (PDB (2), Swiss-Prot (54) and TrEMBL (3)). Clicking
on each line links to the database entry of the hit. For all elements, tooltips disclose the annotated feature, its
position in the sequence and its type (prediction vs. database search). C: A complete analysis of the functional
effect of point mutations on EMC4 shown in a heatmap (SNAP2). D: Predicted GO terms (metastudent) for
EMC4 in tabular format. E: The predicted cellular compartment, ER membrane, for EMC4 (LocTree3) is
highlighted in green in a schematic of a eukaryotic cell.

26



Methodology and results

2.2 Data Visualization

The following section (2.2) reviews the motivation and work to create a set of visualization tools

Web pages are ideal tools for the dissemination of results and data. Dynamic
interactivity is crucial in the discovery process, particularly for data-rich
applications, as is the case of many websites that provide interfaces to biological
databases. Databases storing genomic and other types of data have proliferated in
the biological sciences, making them a data-rich, data-intensive set of disciplines.
The visualization of these data plays a crucial role in their interpretation as it
permits the ability to hide or to focus on a particular detail, enabling the
researcher to shed light on specific hypotheses or to create new ones based on
observed patterns. The sheer complexity of biological data, however, requires
more complex technologies than the usual static pages when accessing them. They
require dynamic visualization tools to allow real-time interactions and the
usability of Web 2.0-based technologies. With the ubiquitous adoption of
JavaScript as the de-facto technology to deliver rich, interactive and scalable
graphics on the web by all major web-client software it is now possible to present
the data generated by the methods integrated into PredictProtein in an accessible
and intuitive way that will help researchers examine the results generated by
multiple methods.

2.2.1 Feature viewer

Position-based annotation is one of the cornerstones of bioinformatics. A great
number of databases, analysis and prediction methods are geared towards
providing data mapped to specific sequence coordinates. In the case of proteins,
the Pfam database (25) identifies, marks-up, and characterizes different functional
regions within a given protein. The coordinates of these domains are often given
in terms of the start and end position within the protein. UniProt (3) contains
position-based annotations for structural regions, modified residues, and
functional sites among others.

The Protein FeatureViewer is a JavaScript based component that lays out, maps,
orients, and renders position-based annotations for protein sequences. This
component is highly flexible and customizable, allowing the presentation of
annotations by rows, all centered, or distributed in non-overlapping tracks. It uses
either lines or shapes for sites and rectangles for regions. The result is a powerful
visualization tool that can be easily integrated into web applications as well as
documents as it provides an export-to-image functionality.
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Figure 7 - the FeatureViewer component was adapted to show all position-based predictions generated by
PredictProtein into a single interactive image. Position in the amino acid sequence can be oriented by using
the provided scale (top of figure). The amino acid itself is represented by a blue line. Predicted sites (such as
allosteric sites, protein-protein binding site, protein-DNA/RNA binding sites are represented by sticks and
diamonds coming. The brackets connecting positions on the sequence represent intra-connected sites such as
disulphide bonds. The boxes under the blue line represent various annotation where each annotation is
typically laid out in different rows (called tracks). Refer to figure 6A and 6B for concrete example and labeling
of the various annotations. Thin blue, green and purple lines represent aligned proteins found in TrEMBL,
Swiss-Prot and PDB respectively.

2.2.2 Heatmap viewer

Biological data are often organized into matrices in which the rows signify
different items of interest (a gene, a subject, a probe or a position in a sequence),
while the columns describe different experiments, variations, or samples. Matrices
are easy to process by algorithms. In contrast, the details in large matrices are
often, at best, challenging for experts who want to “understand” the data. The
information in matrices is usually better digested if presented by 3D plots or heat
maps. Heat maps are essentially simplified versions of 3D plots that replace the
3rd dimension with color gradients, thereby conveniently displaying the
information contained in matrices. Such heat maps allow for easy visual
differentiation between high and low values in a matrix.

Such heat maps are, for example, commonly used to display microarray data as
they quickly show which genes (rows) are differentially expressed under some
conditions (columns). Microarray technologies utilize arrays of probes located on
different exons for each gene and can be helpful in determining gene function by
measuring transcription and translation levels under certain experimental
conditions. The expression values for the differential expression may be presented
at the exon level, correlated with protein domains, and may help to decipher a
complex gene expression pattern.

The HeatMapViewer is a JavaScript-based component that lays-out and renders
two-dimensional (2D) plots or heat maps that are ideally suited to visualize matrix
formatted data in biology such as for the display of microarray experiments or the
outcome of mutational studies and the study of SNP-like sequence variants. It can
be easily integrated into documents and provides a powerful, interactive way to
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visualize heat maps in web applications. The software uses a scalable graphics
technology that adapts the visualization component to any required resolution, a
useful feature for a presentation with many different data-points. The component
can be applied to present various biological data types. Here, we present two such
cases - showing gene expression data and visualizing mutability landscape
analysis.

a) B L )
. SR B
c)

Figure 8 - The HeatMap Viewer component intergrated with FeatureViewer component (section 2.2.1).
Panel a) sketches the secondary structure (helices in red, beta strands in blue). Panel b) shows the predictions
of effects for each amino acid substitution. Effects are depicted as color intensities ranging from dark blue
(high probability of no or little effect) over white (effect can not be predicted or only with very low reliability)
to dark red (high probability of strong effects). Black depicts wildtype residues. The blue box marks the
zoomed-in region shown in panel ¢). The HeatMapViewer provides a fast and easy way to represent high
dimensional data in a visually comprehensible way that immediately conveys where mutations are likely to
be deleterious. Mutability landscape studies (48) involve predicting the effect of all possible nsSNPs through
computational methods, visualizing the predictions in heat maps and cross-linking these predictions with
additional sources of information (such as secondary structure, active sites and correlated mutational
behavior). To this end, heat maps (panels b, ) can easily distinguish between low effect regions (represented
in blue) and high effect regions (represented in red) while additional information (such as the secondary
structure; panel a) can simply be over-laid. These two components already perfectly convey the information
that high effect regions are mainly found in the transmembrane helices and in close proximity of the binding
sites. Displaying this simple fact without a heat map would be daunting due to the high dimensionality of the
underlying data.

2.2.3 Multiple sequence alignment viewer

Multiple Sequence Alignment (MSA) is a fundamental approach in modern
biological research that arranges nucleotide (DNA/RNA) or amino acid (protein)
sequences in a way that captures similarities among them. MSA highlights those
sites on biological sequences that evolution has “considered” as important, i.e.
sites that have slowly or hardly evolved. Thus, MSAs are essential for the
prediction of structural aspects such as secondary structure of proteins (27, 79)
and identification of functionally important sites such as binding sites (81). With
cross-referencing to phylogeny data, MSAs can be used to understand genomics
rearrangements and to identify evolutionary rates (77).

MSAs are also widely used to display complex annotations relating to structure
and function, and propagate those to un-annotated sequences (82, 83). Because
MSAs are important for annotating biological data, many Bioinformatics databases
and services are showing Multiple Sequence Alignments on their web pages. Over
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the years, a number of MSA viewing solutions were developed and provided to the
community. Those included desktop (82, 84) and web (82, 85) applications, as
well as libraries that use web technologies to render MSAs (82). Recently, with the
ubiquitous adoption of JavaScript as the leading programming language for
interactive web application, new JavaScript-based MSA viewing tools were
developed and made available (85).

The MSAViewer is a JavaScript-based visualization tool that can easily be loaded
on the web without any previous installation of third party software or library. It
renders 1) multiple sequence alignment, 2) sequence logo (86) and 3)
phylogenetic tree onto three separate panels. The MSA Viewer was designed to
require a small amount of memory and thus delivers a quick performance to the
user regardless of the overall size of the alignment it presents. Since its release,
the MSA Viewer has been incorporated in a variety of programs: in general
purpose tools like the Galaxy (23, 87-89) project (as visualization plugin) and in
specialized pipelines like the SNP assay development pipeline from PolyMarker
(90,91).

Through interaction with the viewer, users can intuitively browse and scroll the
presentation by simple mouse drag gestures, select rows in the alignment by
clicking on their corresponding protein IDs, manipulate and change the
presentation by applying all coloring schemes implemented by similar viewers.
Figure 7 shows the MSA Viewer component and reviews some of its main features.
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Figure 9 - A simplified view of the MSAViewer for the sequence alignment of the minor nucleoprotein VP 30
within twelve strains of species of virus Filoviridae family. (A) Sequence logo representation with
conservation patterns at each position in the MSA. (B) Main MSA panel with residues in the alignment colored
according to the default Taylor shading model. Dashes represent gaps. Sequence labeling s below are
provided by the user.(92). Red rectangles indicate sequence annotations provided by the user (here:
disordered regions as predicted by MetaDisorder (93)). (C) Overview MSA panel with a compact view of the
full alignment. (D) Phylogenetic tree representation. Sequence alignment and the phylogenetic tree were

calculated using ClustalOmega (94).
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2.3 Annotation of proteomes and meta-proteomes

The following section describes the motivation, methodology and results of a project aimed at building a novel
service to annotate and analyse proteomes and meta-proteomes.

2.3.1 Background

Microbes carry out metabolic activities that are crucial for environmental
processes and the physiology of colonized host species. The gut microbiome is
being studied extensively as it has been shown that changes in its composition are
correlated with intestinal disease, obesity, immune tolerance and autoimmune
diseases(95). Recent advances in molecular techniques, especially high-
throughput DNA sequencing and mass spectrometry analysis, revolutionized
research on microbial ecosystems and the investigation of key microbial functions
in environmental and host-derived ecosystems (96-98). However, the field is now
confronted with the fact that the analysis of large datasets remains a major
challenge, and the community would greatly benefit from new bioinformatics
approaches easing functional interpretation and unraveling the potential in the
wealth of published datasets. The most widely used web platforms for 16S rRNA
genes and metagenomes analysis are QIIME (99), IMG/M (100) and MG-RAST
(101). However, each implementation relies on analysis of single dataset, offering
minimal collective meta-analysis capabilities. The Sequence Read Archive (SRA)
(102) is the main site of deposition of datasets from sequencing projects (nearing
100,000 archived samples), but offers very limited functionality.

Traditional biological research approaches typically study one gene or a few genes
at a time. For example, the Pfam database (25) identifies, marks-up, and
characterizes different functional regions within a given protein. The coordinates
of these domains are often given in terms of the start and end position within the
amino acid sequence. In contrast, high-throughput genomic, proteomic and
bioinformatics scanning approaches (such as expression microarray, promoter
microarray, proteomics, ChIP-on-CHIPs, etc.) are emerging as alternative
technologies that allow investigators to simultaneously measure the changes and
regulation of genome-wide genes under certain biological conditions. Those high-
throughput technologies usually generate large ‘interesting’ gene lists as their
final outputs. Yet the biological interpretation of large, ‘interesting’ gene lists
(ranging in size from hundreds to thousands of genes) is still a challenging and
daunting task. Over the last few decades, bioinformatics methods, using the
biological knowledge accumulated in public databases [e.g. Gene Ontology (10)],
make it possible to systematically dissect large gene lists in an attempt to
assemble a summary of the most enriched and pertinent biology. State-of-the-art
proteome-analysis tools include: DAVID (103), STRING (104) or FFAS (105), but
there is room for improvement regarding functional prediction beyond classical
annotation and providing user-friendly services.

DAVID (103) is a functional annotation and gene enrichment analysis tool
provided by the National Institute of Allergy and Infectious Diseases (NIAID). Over
40 functional categories from dozens of independent public sources (databases)
are collected and integrated into the DAVID Knowledgebase. Still those databases

31



Methodology and results

fall short in providing functional annotations for hypothetical or sparsely
characterized proteins.

The work described in this section discusses the development of a novel resource
-- the Rostlab Meta-proteome Annotation Pipeline (RMAP) with the objective to
assist functional analysis of proteomics and meta-proteomics data. The pipeline
processes multiple datasets of protein sequences, collects annotations form
experimental databases and complements those with PredictProtein. Annotations
are summarized into a “differential view” i.e. a side-by-side comparison of the
functional annotations for each dataset. The pipeline also performs a gene
enrichment analysis - a statistical test that ranks overrepresented and
underrepresented GO terms.

The pipeline will therefore perform the following tasks:

Enable users to upload and label multiple datasets of proteins
Automatically annotate the datasets using PredictProtein
Summarize annotations and present differential view of datasets
Identify enriched GO terms

Present enriched GO terms graphically

2.3.2 Datasets

The development of the pipeline was done in collaboration with Dr. Thomas Clavel
and his colleagues at the ZIEL Research Center for Nutrition and Food Sciences
(TUM, Weihenstephan). Dr. Clavel’s research focuses on the study of intestinal
bacteria in humans and in mouse models. In a recent (106) study, Clavel et al
studied the impact of induced obesity in mice. In the study a group of mice (n=6)
subject were fed high-fat (HF) diet for 12 weeks. The gut microbiota of the HF was
studies and compared to the gut microbiota of a control group (n=6) fed
carbohydrates diet. The study findings show that:

Vi W

1. The change in diet altered the biochemical composition of the gut microbiota
or the activity of bacterial cells

2. The HF diet had the most pronounced impact on pathways of amino acid
metabolism

3. Cercal metabolic pathways affected by HF feeding include eicosanoid, steroid
hormone, macrolide, bile acid and bilirubin metabolism.

The datasets obtained from Dr. Clavel’s group were published together with the
gut microbiota study manuscript (106). Proteomics data in the study was acquired
through liquid chromatography and tandem mass spectrometry (LC-MS/MS). MS
raw data was processed using the Mascot program (107) to identify the set of
peptides and proteins. The set of identified proteins were collected into a primary
dataset.

The primary dataset contained proteins found in both the HF and control groups.
We separated between the proteins in the HF and control samples by averaging
the NSAF P-value calculated from the spectral counts of each individual identified
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protein. NSAF stands for normalized spectral abundance factor and describes the
normalized protein abundance in a spectra, i.e. the peptide counts of a protein
divided by the protein length and then normalized against all other NSAFs (108).
We then cataloged proteins as being part of either the HF or the control group,
depending on which group average NSAF value was higher. Since a higher NSAF
value corresponds to a higher level of expression, proteins with a higher NSAF
value in the HF measurements were sorted into the HF group, the rest belong to
the control group. A statistical test was performed on the NSAF values to
determine if the differences in expression are statistically significant. Only
proteins where this test resulted in a P-value below 0.05 were used in the
subsequent analysis. A summary of the datasets sizes is presented in table 1.

Total number of sequences 4,886
HF proteins before filtering 2,403
Control proteins before filtering 2,483
Significant high fat proteins 325
Significant control proteins 517

Table 1 - among the total of 4886 bacterial protein sequences, 2403 proteins were assigned to the HF dataset,
and 2483 to the control dataset. After filtering for statistically significant proteins, The HF and CARB datasets
consisted of 325 and 517 proteins, respectively. The HF and CARB datasets were studied separately as two
distinct sub-datasets. Only the statistically significant” proteins were used in the subsequent analysis.

We also compiled and annotated a reference dataset that includes over 40
sequenced bacterial genomes (Appendix C, list S1) and consists of over 280
thousand proteins. The reference dataset is retrieved from the NCBI protein
collection. The NCBI protein collection includes translations from annotated
coding regions in GenBank (92), RefSeq (109) and TPA, as well as records from
SwissProt (3), PIR (110) PRF, and PDB (2). The reference dataset serves as a
background or control against which the genes from the query datasets are
enriched. Subsequent discussion refers to the HF and control datasets as query
datasets to distinguish those from the reference dataset.

2.3.3 Annotation pipeline

We extended PredictProtein (111) and created a pipeline that annotates arbitrary
sized datasets. The workflow currently collects annotations for subcellular
localization, GO terms, trans-membrane regions, protein disorder and Pfam (25)
functional domains.

After retrieving all sequences from the NCBI protein database the pipeline
attempts retrieval of PP annotations stored in the PPcache (section 2.1.6). PPcache
allows fast and efficient retrieval of PP predictions without the need to recalculate
existing entries. This feature enables the rapid annotation feature of the meta-
proteomics annotation pipeline. In case annotations are not found in PPcache the
pipeline launches a PredictProtein job for each missing entry. Once all predictions
are ready for a given input amino acid sequence the results become available in
the PPcache.
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When the pipeline has completed annotating all input sequences, results are
retrieved from the PPcache, parsed and deposited into a dedicated database.
There are nine annotation tables in the database that summarize the annotations
for all protein sequences; five tables refer to the query datasets and the other four
tables refer to the reference dataset. The annotation tables represent the basis for
the functional annotation analysis and comparison between the query datasets
and the reference. The query and reference annotation tables for a particular
annotation class share the same structure, yet for efficiency reasons the
annotations were stored separately. The following annotations are currently being
collected, stored in the database and conserved in the analysis:

GO term prediction - protein function annotation is partially based on
predictions provided by the metastudent prediction method (section 2.1.7).
metastudent maps protein sequences to Gene Ontology terms and provides a set
of GO term labels, GO term IDs and reliability measure.

Subcellular localization - following synthesis proteins are sorted to various
compartments within the cell to perform their desired function.
Determining subcellular localization is therefore important for understanding
protein function and is a critical step in proteome annotation. Subcellular-
localization annotations are provided by the LocTree3 method (section 2.1.7).
LocTree3 takes an amino-acid sequence and uses a set of SVM classifiers
combined with homology inference to predict most likely compartment.

Protein disorder - Intrinsically Disordered proteins (IDP) - i.e. proteins that fail
to form a stable structure have been shown to play important role in biological
activities. It has been claimed by our group that nature uses disordered proteins
as a tool to adapt to different environments (112). We tried to put this hypothesis
to the test by comparing the number of disordered proteins and disordered
regions across the HF and control datasets and comparing both sets to the
reference dataset. Prediction of protein disorder are provided by the Meta-
Disorder method (section 2.1.7) and (65). The method combines orthogonal
approaches for the prediction of protein disorder to a consensus-based prediction
algorithm. Following the methodology in (112) we considered a protein to be
disordered if the method produced the following classifications:

* Definition 1: a short disordered region is a stretch of 30 or more
consecutive residues that have been individually predicted to be
disordered.

* Definition 2: along disordered region is a stretch of 80 or more consecutive
residues that have been individually predicted to be disordered.

* Definition 3: an ordered region is a stretch of 50 or more consecutive
residues, that have been individually predicted to be ordered.

Subsequently, three different approaches corresponding to the definitions above
have been considered:
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* Approach 1 (disordered30): identification of short disordered regions; a
protein is classified as disordered if and only if it contains at least one short
disordered region.

* Approach 2 (disordered80): identification of long disordered regions; a
protein is classified as disordered if and only if it contains at least one long
disordered region.

* Approach 3 (ordered50): identification of ordered regions; a protein is
classified as ordered if it contains at least one ordered region.

Note that most proteins in our sets have been labeled with more than one of the
approached described.

Transmembrane proteins - Transmembrane proteins (TPs) can be classified
into two types: alpha-helical and beta-barrels. Alpha-helical TPs are present in the
inner membranes of bacterial cells and represent the major category of
transmembrane proteins. We considered transmembrane protein annotation for
two major reasons:

1. Corroborate positive membrane proteins labeling by LocTree3
2. Support significant GO terms predictions by metastudent of membrane
specific activity such as transporters and cell signaling.

Transmembrane predictions are provided by TMSEG(41) (Section 2.1.7) a neural
network based prediction method.

Statistical Analysis

The final step of the pipeline generates and displays the results for the query
dataset against the gold-standard reference, for each annotation class. All
graphical charts are created using the R statistical package* and illustrate the
following statistics:

* Subcellular localization patterns in bacteria - distribution across the query
dataset comparing against reference

* Reliability of the subcellular localization predictions - distribution across
the query dataset comparing against reference

* Subcellular localization patterns for transmembrane proteins - distribution
across the query dataset comparing against reference

* Short disordered protein regions - distribution across the query dataset
comparing against reference

* Long disordered protein regions - distribution across the query dataset
comparing against reference

* Ordered protein regions - distribution across the query dataset comparing
against reference

4 http://www.r-project.org/
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* Overlap between the short and long disordered and ordered protein
regions, respectively - parallel distribution across all datasets
* Transmembrane proteins - parallel distribution across all datasets

Input 1: Input type 2.1: Input type 2.2:
LIS;: N'I!:: IDs FILE: NCBI IDs FILE: multifasta
(direct input) (file upload) (file upload)
‘et fasta sequences
from NCBI database,

‘save sequences:
tmp/fastaDir

Pre-processing

fetch into ticket:
job ID
creation date

Run pipeline

fetoh into sequences:

status =pending’

gi

organism_name

sequence_length
sequence

Tequence found™~\Y®*

in PPCache?

run PredictProtein

update sequences:
status = 'error’

update sequences:
status = 'compieted'

update TICKET:
total_sequences.
completed_sequences

Fetch annotations

total_sequences =
ompleted_sequences?,

'show error details Loctree distribution with reliability index
Metastudent MFO
Metastudent BPO
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Metadisorder threshold 50 (ordered)
Metadisorder statistics overview
TMSEG distribution
TMSEG/ Loctree comparison
Residue distribution
Blast e-value significance level
Organism distribution

Results -

Figure 10 - schematic representation of the annotation pipeline. Roughly speaking the annotation pipeline is
composed of the following steps: pre-processing - collection of user input, gathering of sequences from online
resources and job initialization, processing - collection of annotations from the PP cache or via computation,
extracting data and deposition into the annotation pipeline database, generating statistics and results
visualzations.
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234 Gene enrichment analysis

The pipeline performs a gene annotation enrichment analysis -- a high-throughput
strategy that increases the likelihood to identify meaningful biological processes
in a list of genes or proteins(113). The most traditional strategy for enrichment
analysis is to take a preselected ‘interesting’ set of genes, and then iteratively test
the enrichment of each annotation term one-by-one in a linear mode. Enrichment
test is simply done by comparing the frequency of each term. Each term’s
frequency is then evaluated against the overall distribution of term frequencies.
Thereafter, the individual, enriched annotation terms passing the enrichment P-
value threshold are reported by the enrichment probability (enrichment P-value).
The enrichment P-value calculation, i.e. number of genes in the list that hit a given
biology class as compared to pure random chance, can be performed with the aid
of some common and well-known statistical methods.

For the gene enrichment analysis in this project we used predictions of Gene
Ontology (GO) terms (predicted by Metastudent (53) described in section 2.1.4).
The Gene Ontology has three parts: Molecular Function Ontology (MFO),
Biological Process Ontology (BPO) and Cellular Component Ontology (CCO). Each
of these parts is organized in the GO as a directed acyclic graph and captures
different aspects of protein function. Functional keywords ("GO terms") are nodes
and their relationships are labeled edges. The ontology is hierarchical: following
the edges from a node, each new term corresponds to a more general concept of
the original function. All paths converge at the root node, which can simply be
interpreted as, e.g, has a molecular function. In this project we used the GO
version 1.2, downloaded on 2015-02-24.

The first step in the enrichment analysis is simply counting the number of times
each term in the ontology occurs in the query dataset and the reference,
respectively. A list of the terms where the difference in frequency in the dataset
and the reference is striking can then be generated.

In the next step we test for statistical significance for the differences between the
terms observed in the query set as matched against the control set. There are over
68 services and software packages available (113) that perform various types of
GO gene enrichment analysis. For this analysis we chose the Biological Network
Gene Ontology (BiNGO) tool. BINGO (114) is a java-based tool that is implemented
as a Cytoscape (115) plugin. It implements the hypergeometric and binomial
statistical tests to estimate over/under represented GO terms. BINGO also uses an
internal filtering approach to reduce the list of terms by removing redundant GO
terms. We found BiNGO to be a versatile tool that could be adapted to our needs
mostly because it can be easily used with Cytoscape for presentations.
Cytoscape(115) is a well-known platform that is used to integrate, analyze and
visualize molecular interaction networks and biological pathways data. We also
adapted BiNGO's source code to be able to perform gene enrichment outside of the
Cytoscape environment from the command line.

We used BiNGO to asses gene enrichment for both the HF and control sets. The
core microbiome set i.e. the reference set was used as a background dataset. We
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provide the option to use either the Molecular Function Ontology (MFO) or
Biological Process Ontology (BPO) parts of the Gene Ontology. We recommend,
however, using the MFO since metastudent predictions of MFO terms are more
reliable than those of BPO terms.

As mentioned above BiNGO can apply either the hypergeometric or binomial
significance tests. The difference between the hypergeometric and binomial tests
is simply the distribution the frequencies are assumed to follow. The
hypergeometric distribution is analogous to drawing balls from a bin without
replacement; the binomial distribution describes the same scenario with
replacement.

BiNGO sets the null hypothesis for the hypergeometric test to assume that the
probability of a sequence being annotated with the label (term) under
consideration is equal in both the reference and the query dataset. It also assumes
that the frequency of the annotations follows a certain distribution. BINGO then
calculates the probability of obtaining the given difference between the two
frequencies under the above assumptions and the probability then is provided as a P-
value measure. The P-value denotes the probability of obtaining the difference in
frequencies by random chance. By default, we consider a P-value below 0.05 to be
statistically significant.

Because BiNGO tests the significance of all GO terms present in the query set, the
number of statistical tests performed in a single analysis may amount to several
hundreds. When testing multiple hypotheses, the obtained P-values have to be
corrected in order to control the false positive rate (116). To control the expected
proportion of false positives among the positively identified tests, known as the
False Discover Rate (FDR), BINGO uses the Benjamini-Hochberg correction
procedure (117), which provides strong control over the FDR in that it minimizes
the number of false negatives at the cost of a few more false positives.

As a second possibility of combating the multiple-testing problem, BiNGO also
implements the Bonferroni correction. The Bonferroni correction works by
normalizing the significance threshold of each individual hypothesis by the
number of total tests performed. If, for instance, m tests are performed with a
significance level of a, the threshold of each individual test would be a/m.

Finally, since BINGO propagates terms upward in the GO hierarchy, very general
terms can appear in the output. These terms, such as ’biosynthetic process’
or 'gene expression’, are not particularly informative. We thus provide the option
to filter out terms that are at a less than a certain distance from the root of the GO
ontology.

2.3.5 Results and discussion

Subcellular localization - both the high-fat (HF) and control datasets contain a
significantly higher number of proteins that localize to the cytoplasm than the
reference set. Furthermore, there was a little change in the percentage of proteins
that localize to the cytoplasm when looking at both sets. This may be explained as
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an artifact of the proteomic mass-spectrometry method, which is overly sensitive
to proteins that are involved in translation. Another observation showed that the
control dataset contained nearly three times the number of proteins that localize
to the inner membrane which may suggest that cell transport activity was
somewhat altered as a result from the change in environment.

O Control: 516 sequences
O HF: 324 sequences

60 80

Sequence frequency per localization class(%)
40

470 301 3 0 7 0 19 7 17 15 0 1
(91.1%)(92.9%) (0.6%) (0.0%) (1.4%) (0.0%) (3.7%) (2.2%) (3.3%) (4.6%) (0.0%) (0.3%)

cytoplasm inner outer periplasm secreted fimbrium

Subcellular localization classes

Figure 11 - compariosn of subcellular localizaiton annotation of both query sets (Hf vs. control). Green and
blue bars represent control and HF sets respectively. The x-axis lists the six predicted subcellular localziation
classes. The ratio of proteins within their dataset (HF or control) per sub cellualr localization class is given on
the y-axis. Each bar is labeled with the number of proteins found to localize to each class as well as the ratio of
that count within the dataset (expressed as percentage in parenthesis).

Finally as a side effect of this project we encountered an interesting performance
measurement relevant to the subcellular localization prediction tool
(Locttree3). It seems that while LocTree3 provides medium to high reliable
results for the all non-cytoplasm classes, its low reliability (a reliability index
between 0-40) shoots up to over 30% for cytoplasmic predictions (figure 12).
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B Reliability Index [81..100]
O Reliability Index [41..80]
O Reliability Index [0..40]

40 60 80
| |
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]

cytoplasm inner outer periplasm secreted fimbrium

Figure 12 - sub cellular localization prediction summarized for the HF and control dataset. Each bar in the
chart shows the number of predicted proteins per localization class and is segemnted by the predictor
reliability index. For each pair of bars shown in each localization class the bars on the left expresses the ratio
of proteins predicted for that localization for the control dataset. Similiarly bars on the right hand side in each
pair express the ratio of proteins predicted to localize in the class labeled on the x-axis for the HF set. The
count of most reliable predictions is expressed by blue segment and most unreliable are expressed in green.

Transmembrane regions - another observation regarding the performance of
the tools used in this project shows a low degree of overlap between the
subcellular localization prediction method (LocTree3) and the transmembrane
region predictor TMSEG. On average the two methods provide consistent results
(i.e. LocTree3 assign inner/outer membrane prediction to a positive prediction by
TMSEG) for approximately 45.5% of the proteins. This observation led us to start
a new project of comparing predictions from a set of leading transmembrane
regions predictor and intersecting those with LocTree3. Note that since the
expression levels found for proteins in each dataset (HF, control) are
inconsequential for the performance analysis of the methods we used the entire
set of HF and control proteins (2403 and 2483 respectively).
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Signaling proteins: 166

(6.69%)
Signaling proteins: 120

(4.99%)
Transmembrane proteins: 55
(2.29%)

Transmembrane proteins: 109
(4.39%)

No prediction: 2228
(92.72%)

No prediction: 2208
(88.92%)

(a) Transmembrane proteins in high-fat dataset. (b) Transmembrane proteins in control dataset.
Signaling proteins: 19600

Transmembrane proteins: 28359
(20.70%)

No prediction: 89058
(65.00%)

(c) Transmembrane proteins in reference dataset.

Figure 13 - summary of TMSEG predictions for the HF set (a), control (b) and refernece (c) datasets as a
percentage out of the entire set. No predictions portion of the pie chart is colored pink, signaling proteins
colored blue and transmembrane prediction are colored white.

Protein disorder - as the gut bacteria study shows (section 2.3.3) the HF diet
alters primarily the bacterial ecosystem at the functional level and less so in the
composition of the community, we expected to find a greater number of
disordered protein to be expressed in the HF diet than in the control dataset and
also at higher levels compared to the reference set. The results from this analysis
did not confirm our expectation, namely that the HF set will contain a higher
portion of disordered proteins as compared to the reference. The HF dataset did
contain a higher portion of disordered proteins than the control (~13% vs ~6%).
However, both sets contained a lower portion of disordered proteins compared to
the reference set (~20%). One outcome of this analysis was to fine-tune the way
we compute the portion of disordered proteins by including a protein expression
value (using the NSAF value described in section 2.3.2) as an additional factor in
our calculations. This readjustment will take place in a follow up project.
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Control HF

No prediction: 64 (19.75%)

Disordered (all): 2 (0.62%)

No prediction: 24 (4.65%)
Disordered (all): 6 (1.16%)

Disordered (30...80): 40 (12.35%)
Disordered (30...80): 24 (4.65%)

Draw (all): 8 (1.55%)
Draw (al): 0 (0.00%)

Draw (30...80): 27 (5.23%) Draw (30...80): 14 (4.32%)

Ordered (all): 427 (82.75%)

Ordered (all): 204 (62.96%)

Figure 14 - breakdown of disorder prediction for the control (left pie chart) and HF (right pie chart). Note
that disorder classification follows the procedure described in section 2.3.3 (protein disorder). This
classification resulted in four disorder classifications: 1. Disordered 30.80 - predictions containing
continuous disordered regions between 30 to 08 residues long. 2. Draw 30..80 - predictions containing both
ordered and disordered regions between 30 to 80 residues long. 3. Draw all - predictions that fit all
classifications. 4. Disordered all - predictions fit all disordered classifications. Note that no assignment
(disordered/ordered) is made for proteins labeled as “draw”. No predictions proteins in this class contain no
ordered regions, no short disordered regions and no long disordered regions.

Gene enrichment analysis

The gut microbiome study demonstrates that “changes in bacterial metaproteome
after HF feeding are most pronounced for pathways of amino acid metabolism”
(106). In other words, given the deficiency in carbohydrates as an available source
for energy production, it has been observed that the bacteria had adapted to the
change in environment by altering its metabolic pathway and had now turned to
break down amino acids as its primary source for energy production. This finding
is supported by the following protein functional analysis protocol (abstract
description):

1. Spectra captured through the MS method are aligned against a database of
known sequences to identify known proteins in the set.

2. Spectra count is normalized to account for long proteins thus reducing the
effect of bias in the set that resulted from the MS method.

3. Identified proteins are functionally classified by aligning them against the
COG database (118). Each protein is assigned a COG category.

4. Using the assigned COG categories and the statistical significance of the
spectra count for each set, functional differences between the datasets are
outlined and reported through gene enrichment analysis.

Note that this procedure relies on the Clusters of Orthologous Groups (COG)
database. COG (118) is a popular tool for functional annotation. It relies on
complete microbial genomes, which allows reliable assignment of orthologs and
paralogs for most genes; Each COG consists of individual orthologous proteins or
orthologous sets of paralogs from at least three lineages. Orthologs typically have
the same function, allowing transfer of functional information from one member
to an entire COG. This relation automatically yields a number of functional
predictions for poorly characterized genomes.
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In our analysis we replace this workflow with the pipeline described in 2.5.4.
Overall our GO term annotation turns 7191 labels in which the HF set was labeled
with 1914 terms and the control set was labeled with 5227 terms. It is important
to note that the GO Term prediction tool used, Metastudent, labels each protein
with multiple predictions, some of them may have direct parent child
relationships along the GO graph. As stated earlier we reduce the number of
predicted labels considered in the enrichment analysis by eliminating all terms
that are catalogued three levels away from the GO graph root. This cutoff value (3)
was determined experimentally to remove most of the uninformative terms
without affecting terms of interest. BiNGO predicts 113 GO terms to be
significantly overrepresented in the HF dataset and 343 in the control set. After
filtering out uninformative terms, 103 remain in HF and 301 in control. Finally it is
important to note that the reference set has contained 602146 terms and on
average there were 4.4 terms predicted per protein.

Overrepresented terms in the HF set are shown in table 3. The terms are sorted by
ascending P-value after correction. The most striking overrepresented terms are
related to rRNA binding and glutamate dehydrogenase activity. The biological
inference of these functions are discussed in more detail later in this section.

GO-ID Description P-Value Corrected | Frequency | Frequency
P-value in Dataset in Reference

G0:0019843 rRNA binding 2.99E-22 1.03E-19 33 663

G0:0070181 small ribosomal subunit rRNA | 3.77E-19 9.74E-17 15 83
binding

G0:0003723 RNA binding 1.53E-18 3.17E-16 76 4848

G0:0004347 glucose-6-phosphate isomerase | 2.04E-18 3.51E-16 13 55
activity

G0:0004616 phosphogluconate dehydrogenase | 2.78E-16 4.11E-14 13 78
(decarboxylating) activity

G0:0004354 glutamate dehydrogenase (NADP+) [ 2.19E-13 2.71E-11 9 36
activity

G0:0004353 glutamate dehydrogenase | 2.88E-13 2.71E-11 9 37
[NAD(P)+] activity

G0:0004352 glutamate dehydrogenase (NAD+) | 2.88E-13 2.71E-11 9 37
activity

G0:0070728 leucine binding 2.88E-13 2.71E-11 9 37

G0:0016861 intramolecular oxidoreductase | 9.64E-11 8.30E-09 19 536
activity, interconverting aldoses and
ketoses

Table 2 - top 10 overrepresented GO terms in the HF dataset. Calculated with BiNGO using a binomial test
with Benjamini correction. Terms with distance at most 3 from the root of the gene ontology were filtered out.
Sorted by P-value after correction. The sizes of the dataset and reference are 277 and 52817, respectively.
These counts do not include sequences without Metastudent predictions.
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GO-ID P-Value Corrected P- Frequency | Frequency in
value in Dataset | Reference

G0:0003747 | translation release factor activity 2.69E-69 4.07E-66 61 267

G0:0006415 | translational termination 8.87E-68 1.68E-65 62 297

G0:0043624 | cellular protein complex 8.87E-68 1.68E-65 62 297
disassembly

G0:0032984 | macromolecular complex 8.87E-68 1.68E-65 62 297
disassembly

G0:0022411 | cellular component disassembly 8.87E-68 1.68E-65 62 297

G0:0071822 | protein complex subunit 8.87E-68 1.68E-65 62 297
organization

G0:0043241 | protein complex disassembly 8.87E-68 1.68E-65 62 297

G0:0008079 | translation termination factor 8.87E-68 1.68E-65 62 297
activity

G0:0004020 | adenylylsulfate kinase activity 4.93E-64 8.28E-62 55 227

G0:0043024 | ribosomal small subunit binding 2.63E-57 3.98E-55 55 294

Table 3 - top 10 overrepresented GO terms in the control dataset. Calculated with BINGO using a binomial
test with Benjamini correction. Terms with distance at most 3 from the root of the gene ontology were filtered
out. Sorted by P-value after correction. The sizes of the dataset and reference are 436 and 52904, respectively.
These counts do not include sequences without Metastudent predictions.

Figures 15-18 show a schematic view of all predicted terms for the HF set and
their assigned significance by the gene enrichment analysis. Note that BiNGO
connects all terms in the input set by traversing through the GO graph and adding
missing terms as nodes in the graphs. The resulting graph then always contains
the root element (in the MFO case the root term is molecular function). Terms are
laid out in a graph in which nodes represent terms and edges represent parent
child relationships between those terms. Each node corresponds exactly to one
predicted term and is labeled that term. Nodes vary in size to reflect the level of
the GO term they correspond to at the GO hierarchy. Finally, enrichment is
represented via node coloring and color intensity. Nodes’ colors range varies from
pale red to dark red and correspond to the P-value assigned by BiNGO where pale
red stand for insignificant and dark red stands for highly significant.
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Figure 15 - zoomed out view of all predicted GO terms for the HF set, their P-Value rankings,
interrelationships and level position in the GO hierarchy (as reflected by their relative size where smallest
nodes are at the leaf level and bigger nodes are at the root level). Blue frames mark areas of interest in the
graph and are blown out in subsequent figures. Region in blue frame labeled A is blown out and explain in
figure 16; Region in blue frame labeled B is blown out and explained in figure 17; Region in blue frame labeled
C is blown out and explained in figure 18.
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pxidoreductase activity, acting on the CH-NH2 group of donors, NAD or NADP as acceptor

plutamate dehydrogenase (NADP+) activity

blutamate dehydrogenase (NAD+) activity

plutamate dehydrogenase [NAD(P)+] activity

Figure 16 - a blow-out version of the region marked A in figure 15. The figure highlights the over repreented
group of terms glutamate dehydorgenase activity (parent term is oxidoreductase activity, actng on CH-NH2
group of donors, NAD or NADP as acceptor). The glutemate dehydorgensae activity terms are listed at ranks
3-6 in the list of significantly overrepresented terms among the HF dataset.

We use subcellular localization prediction to support or discard GO term
predictions. As an example, the proteins labeled with the glutamate
dehydrogenase term were also predicted by LocTree3 to localize to the cytosol as
expected.

oAy

arboxylic acid binding

boly(A) RNA binding

pmino acid binding

pmall ribosomal subunit rRNA binding

Figure 17 - a blow-out version of the region marked C in figure 15. The figure highlights the three related
terms rRNA binding, small ribosomal subunit rRNA binding, rRNA binding respectively positioned at first,
second and third places in the list of significantly overrepresented terms among the HF dataset. Note that
Leucine binding also appears in the figure yet the term is filtered out by our algorithm as uninformative.
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The enrichment analysis also highlighted ribosomal RNA binding as en enriched
activity in the HF diet (Figure 14). Translation is the net effect of proteins being
synthesized by ribosome in the cytosol. The mouse microbiome study findings
show that the HF diet-induced increase in spectral abundance factors related to
COG category ] (translation). Authors of the study postulate that this may reflect
adaptation of microbial cells to meet their needs for survival in a milieu with low
energy originating from carbohydrates.

riose-phosphate isomerase activity

activity, il ing aldoses and ketoses

lucose-6-phosphate isomerase activity

Figure 18 - a blow-out version of the region marked B in figure 15. The figure highlights the GO term glucose-
6-phospate isomerase activity ranked fourth in the list of significantly overrepresented terms among the HF
dataset.

We also note that the gene enrichment analysis highlighted the glucose-6-
phophate isomerase as an enriched activity in the HF diet. This seems to be
inconsistent with the underlying data as the glucose-6-phophate isomerase
enzyme fulfills a central role in the glycolysis pathway by converting glucose into
fructose and the activity is not expected to be enriched in glucose deficient
environment. Mismatches such as this example can point to the weakness of the
underlying approach (relying on a prediction method as a primary source) and
highlights the need for a careful cross-referencing.

2.3.6 Web server

The RMAP web interface provides an input box onto which users can upload two
separate lists of GI ids representing their datasets. Upon submission the server
maps the GIs to protein sequence using the NCBI server
(http://www.ncbi.nlm.nih.gov/). A number of reports are then generated from the
annotations. These are described more closely in section 2.3.5. The statistics are
visualized using interactive JavaScript plots. The results of the gene enrichment
analysis are illustrated in two different ways. A table view shows the significantly
enriched terms in a simple list with P-values and links to more detailed
descriptions on the Gene Ontology website. The other view displays the terms in a
graph. Individual entries in the table or graph can be clicked to show a list of the
proteins that are annotated with the corresponding GO term, along with
descriptions and links to further resources.
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3 Conclusion

The scope of the work presented here was the creation of systems that provide a
battery of prediction methods that help bridge the sequence annotation gap. It has
been observed in this work that in order to be able to provide systems that will
meet the demands of modern biology, those systems need to become resilient,
scalable and flexible so they will be able to deliver data in a consistent, unified and
accessible manner.

In the first part of this work we focused on applying the time tested best practices
of software engineering. We meticulously re-organized the code base of dozens of
software tools and arranged them into software packages. This in turn allowed us
to create a stable, scalable and predictable system that withstands the challenge of
constant change. We made the software available in open source form to benefit
from a community of developers that will be able to extend our tools and improve
on them. We also created a cloud-ready version of he software so it could be easily
scaled and be used in high throughput experiments. The lessons learned from this
work and the recommendation gathered in this thesis can be applied to any
bioinformatics system.

Next, we leveraged on the improvements introduced in the first step and
constructed a new and expanded version of the PredictProtein protein structure
and function online service. User experience has been enhanced by the addition of
the PredictProtein cache which delivers faster response time to ~45% of the jobs
being submitted to the server. User experience has also been enhanced by the
introduction of visualPP, the web application that unifies the presentation of
results into a set of interactive images. visualPP helps researchers better
understand the predictions we provide. Creating visualPP also benefitted the
community through the contribution of several visualization tools such as the
HeatMapViewer and the MSAViewer that provide a readily available visualization
solutions to present data types used in everyday biology.

In the final part of this work we extended the PredictProtein software suite and
used the PPCache to build a prototype system for the annotation of proteomic and
meta-proteomic data. The novelty of the system is its capability to summarize
protein function annotations and show a differential view across datasets of
interest. Unlike other systems that use experimental data to preform gene
enrichment, the proposed annotation pipeline uses predictions and thus is well
suited for studies that focus on multiple uncharacterized organisms. Through the
analysis of experimental datasets derived from the mouse gut meta-proteome, we
have shown that such a system may become useful. Future work will have to
expand the array of statistical methods employed by this pipeline.
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FIGURE 1 - GROWTH OF UNIPROT (BLUE LINE) AS COMPARED WITH THE EXPERT ANNOTATION
UNIPROT/SWISSPROT SECTION (RED LINE). STATISTICS ARE FOR THE PERIOD 1-JAN-2004
THROUGH 3-SEP-2014. ALL DATA COMPILED FROM (3) . srooeosersssessessesssessessesssssssssessssssesees 9

FIGURE 2 - THE ANNOTATION GAP EXEMPLIFIED BY THE DIFFERENCE IN YEAR OVER YEAR
GROWTH RATE OF THE UNIPROT(BLUE LINE) AS COMPARED WITH SWISSPROT(RED LINE)
FOR THE PERIOD 2004-2014. STARTING IN 2011 THE UNIPROT/SWISSPROT GROWTH
RATE HAS PLATEAUED AROUND THE 1.5% YEAR WHILE UNIPROT GROWTH RATE
INCREASED BY AN AVERAGE OF 63.4% EACH YEAR. ..ooocvrsoesoeeseessssessresessssssssessssssssssssessessn 9

FIGURE 3 - MANY WEAK NON-COVALENT BONDS ARE NEEDED TO BIND TIGHTLY TO A SECOND
MOLECULE (CALLED A LIGAND) A LIGAND MUST THEREFORE FIT PRECISELY INTO A
PROTEIN’S BINDING SITE, LIKE A HAND INTO A GLOVE, SO THAT A LARGE NUMBER OF
NON-COVALENT BONDS CAN BE FORMED BETWEEN THE PROTEIN AND THE LIGAND
(ADAPTED FROM (28)) coversrsessessessessessesssesssssessssssssessessesesessossesesessessessssssessessssssessossssssrs s 13

FIGURE 4 - PACKAGE DEPENDENCIES FOR PREDICTPROTEIN. ARROWS REPRESENT “DEPENDS
ON” RELATIONSHIPS. ONLY SIGNIFICANT DEPENDENCIES ARE SHOWN FOR CLARITY.
“PROFNET” IS A FORTRAN BASED NEURAL NETWORK COMPONENT USED BY MULTIPLE PP
CORE COMPONENTS. CONVENIENCE COPIES OF “PROFNET” FOR THE PREDICTION
METHODS “PROFPHD,” “NORSNET,” “PROFBVAL,” AND “PROFISIS” HAVE BEEN MERGED TO
A SINGLE “PROFNET” PACKAGE. SIMILAR MERGING WAS DONE FOR ALL CODE
CONVENIENCE COPIES. wooocveseesersessessssessessessessssssessessesessssesssssesssessessssssessessessssssesssesssses s 21

FIGURE 5 - METASTUDENT PREDICTS GO TERMS. METASTUDENT (53) IS A PROGRAM IN THE
PREDICTPROTEIN SUITE THAT PREDICTS THE FUNCTION OF PROTEINS IN TERMS OF
GENE ONTOLOGY (GO) NUMBERS (SHOWN IN EACH BOX ARE UNIQUE GO NUMBERS, THE
SCORE FOR THE PREDICTION RANGING FROM 0 (LOW) TO 100 (HIGH). THE GO NUMBERS
ARE GIVEN ALONG WITH A BIOCHEMICAL DESCRIPTION, E.G. THE MOST DETAILED
PREDICTION IN SHOWN IN THE YELLOW BOXES AT THE BOTTOM IMPLY THAT THE
PROTEIN FOR WHICH PREDICTPROTEIN WAS RUN IS INVOLVED IN “PROTEIN FOLDING IN
THE ENDOPLASMIC RETICULUM” (WHICH HAPPENS TO BE GO NUMBER 0034975) WITH A
SCORE OF 12. THE PROTEIN IS ALSO PREDICTED TO BE PART OF THE APOPTOTIC PROCESS
(CELL DEATH) WITH AN EVEN HIGHER SCORE OF 48. ...occeosrsoeescssesssessrssssosssessessssssssessee 23

FIGURE 6 - VISUAL RESULTS FROM PREDICTPROTEIN (PP). THE PP DASHBOARD VIEWER
SHOWS A SCHEMATIC OF ALL POSITION-BASED PREDICTIONS AND SEQUENCE
ALIGNMENTS. A: PUTATIVE PROTEIN (UNIPROT AC E5A5U3). B: ER MEMBRANE PROTEIN
COMPLEX SUBUNIT 4 (EMC4, UNIPROT AC Q5J8M3). THE PROTEIN SEQUENCE IS
REPRESENTED BY A SCALE ON TOP OF THE PREDICTED FEATURES. FEATURES PRESENTED
INCLUDE PROTEIN-PROTEIN BINDING SITES (ISIS2), DISULFIDE BONDS (DISULFIND),
STRUCTURAL FEATURES SUCH AS SECONDARY STRUCTURE STATE AND SOLVENT
ACCESSIBILITY (PROFPHD), TRANSMEMBRANE HELICES (TMSEG) AND DISORDERED
REGIONS (MD). PROTEINS ALIGNED BY PSI-BLAST (52) ARE SHOWN AS THIN LINES
COLORED BY DATABASE ORIGIN (PDB (2), SWISS-PROT (54) AND TREMBL (3)). CLICKING
ON EACH LINE LINKS TO THE DATABASE ENTRY OF THE HIT. FOR ALL ELEMENTS,
TOOLTIPS DISCLOSE THE ANNOTATED FEATURE, ITS POSITION IN THE SEQUENCE AND ITS
TYPE (PREDICTION VS. DATABASE SEARCH). C: A COMPLETE ANALYSIS OF THE
FUNCTIONAL EFFECT OF POINT MUTATIONS ON EMC4 SHOWN IN A HEATMAP (SNAP2). D:
PREDICTED GO TERMS (METASTUDENT) FOR EMC4 IN TABULAR FORMAT. E: THE
PREDICTED CELLULAR COMPARTMENT, ER MEMBRANE, FOR EMC4 (LOCTREE3) IS
HIGHLIGHTED IN GREEN IN A SCHEMATIC OF A EUKARYOTIC CELL. corvroeesesserseesessessssie 26

FIGURE 7 - THE FEATUREVIEWER COMPONENT WAS ADAPTED TO SHOW ALL POSITION-BASED
PREDICTIONS GENERATED BY PREDICTPROTEIN INTO A SINGLE INTERACTIVE IMAGE.
POSITION IN THE AMINO ACID SEQUENCE CAN BE ORIENTED BY USING THE PROVIDED
SCALE (TOP OF FIGURE). THE AMINO ACID ITSELF IS REPRESENTED BY A BLUE LINE.
PREDICTED SITES (SUCH AS ALLOSTERIC SITES, PROTEIN-PROTEIN BINDING SITE,
PROTEIN-DNA/RNA BINDING SITES ARE REPRESENTED BY STICKS AND DIAMONDS
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COMING. THE BRACKETS CONNECTING POSITIONS ON THE SEQUENCE REPRESENT INTRA-
CONNECTED SITES SUCH AS DISULPHIDE BONDS. THE BOXES UNDER THE BLUE LINE
REPRESENT VARIOUS ANNOTATION WHERE EACH ANNOTATION IS TYPICALLY LAID OUT
IN DIFFERENT ROWS (CALLED TRACKS). REFER TO FIGURE 6A AND 6B FOR CONCRETE
EXAMPLE AND LABELING OF THE VARIOUS ANNOTATIONS. THIN BLUE, GREEN AND
PURPLE LINES REPRESENT ALIGNED PROTEINS FOUND IN TREMBL, SWISS-PROT AND PDB
L2 DY g 2 O 1 2 28
FIGURE 8 - THE HEATMAP VIEWER COMPONENT INTERGRATED WITH FEATUREVIEWER
COMPONENT (SECTION 2.2.1). PANEL A) SKETCHES THE SECONDARY STRUCTURE
(HELICES IN RED, BETA STRANDS IN BLUE). PANEL B) SHOWS THE PREDICTIONS OF
EFFECTS FOR EACH AMINO ACID SUBSTITUTION. EFFECTS ARE DEPICTED AS COLOR
INTENSITIES RANGING FROM DARK BLUE (HIGH PROBABILITY OF NO OR LITTLE EFFECT)
OVER WHITE (EFFECT CAN NOT BE PREDICTED OR ONLY WITH VERY LOW RELIABILITY)
TO DARK RED (HIGH PROBABILITY OF STRONG EFFECTS). BLACK DEPICTS WILDTYPE
RESIDUES. THE BLUE BOX MARKS THE ZOOMED-IN REGION SHOWN IN PANEL C).
THE HEATMAPVIEWER PROVIDES A FAST AND EASY WAY TO REPRESENT HIGH
DIMENSIONAL DATA IN A VISUALLY COMPREHENSIBLE WAY THAT IMMEDIATELY
CONVEYS WHERE MUTATIONS ARE LIKELY TO BE DELETERIOUS. MUTABILITY LANDSCAPE
STUDIES (48) INVOLVE PREDICTING THE EFFECT OF ALL POSSIBLE NSSNPS THROUGH
COMPUTATIONAL METHODS, VISUALIZING THE PREDICTIONS IN HEAT MAPS AND CROSS-
LINKING THESE PREDICTIONS WITH ADDITIONAL SOURCES OF INFORMATION (SUCH AS
SECONDARY STRUCTURE, ACTIVE SITES AND CORRELATED MUTATIONAL BEHAVIOR). TO
THIS END, HEAT MAPS (PANELS B, C) CAN EASILY DISTINGUISH BETWEEN LOW EFFECT
REGIONS (REPRESENTED IN BLUE) AND HIGH EFFECT REGIONS (REPRESENTED IN RED)
WHILE ADDITIONAL INFORMATION (SUCH AS THE SECONDARY STRUCTURE; PANEL A)
CAN SIMPLY BE OVER-LAID. THESE TWO COMPONENTS ALREADY PERFECTLY CONVEY
THE INFORMATION THAT HIGH EFFECT REGIONS ARE MAINLY FOUND IN THE
TRANSMEMBRANE HELICES AND IN CLOSE PROXIMITY OF THE BINDING SITES.
DISPLAYING THIS SIMPLE FACT WITHOUT A HEAT MAP WOULD BE DAUNTING DUE TO
THE HIGH DIMENSIONALITY OF THE UNDERLYING DATA....onrinsssnsssssssssssssssssssssens 29
FIGURE 9 - A SIMPLIFIED VIEW OF THE MSAVIEWER FOR THE SEQUENCE ALIGNMENT OF THE
MINOR NUCLEOPROTEIN VP 30 WITHIN TWELVE STRAINS OF SPECIES OF VIRUS
FILOVIRIDAE FAMILY. (A) SEQUENCE LOGO REPRESENTATION WITH CONSERVATION
PATTERNS AT EACH POSITION IN THE MSA. (B) MAIN MSA PANEL WITH RESIDUES IN THE
ALIGNMENT COLORED ACCORDING TO THE DEFAULT TAYLOR SHADING MODEL. DASHES
REPRESENT GAPS. SEQUENCE LABELING S BELOW ARE PROVIDED BY THE USER.(92). RED
RECTANGLES INDICATE SEQUENCE ANNOTATIONS PROVIDED BY THE USER (HERE:
DISORDERED REGIONS AS PREDICTED BY METADISORDER (93)). (C) OVERVIEW MSA
PANEL WITH A COMPACT VIEW OF THE FULL ALIGNMENT. (D) PHYLOGENETIC TREE
REPRESENTATION. SEQUENCE ALIGNMENT AND THE PHYLOGENETIC TREE WERE
CALCULATED USING CLUSTALOMEGA (94). conirerrersierserssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssens 30
FIGURE 10 - SCHEMATIC REPRESENTATION OF THE ANNOTATION PIPELINE. ROUGHLY
SPEAKING THE ANNOTATION PIPELINE IS COMPOSED OF THE FOLLOWING STEPS: PRE-
PROCESSING - COLLECTION OF USER INPUT, GATHERING OF SEQUENCES FROM ONLINE
RESOURCES AND JOB INITIALIZATION, PROCESSING - COLLECTION OF ANNOTATIONS
FROM THE PP CACHE OR VIA COMPUTATION, EXTRACTING DATA AND DEPOSITION INTO
THE ANNOTATION PIPELINE DATABASE, GENERATING STATISTICS AND RESULTS
VISUALZATIONS. oottt bbb bbb bbb 36
FIGURE 11 - COMPARIOSN OF SUBCELLULAR LOCALIZAITON ANNOTATION OF BOTH QUERY
SETS (HF VS. CONTROL). GREEN AND BLUE BARS REPRESENT CONTROL AND HF SETS
RESPECTIVELY. THE X-AXIS LISTS THE SIX PREDICTED SUBCELLULAR LOCALZIATION
CLASSES. THE RATIO OF PROTEINS WITHIN THEIR DATASET (HF OR CONTROL) PER SUB
CELLUALR LOCALIZATION CLASS IS GIVEN ON THE Y-AXIS. EACH BAR IS LABELED WITH
THE NUMBER OF PROTEINS FOUND TO LOCALIZE TO EACH CLASS AS WELL AS THE RATIO
OF THAT COUNT WITHIN THE DATASET (EXPRESSED AS PERCENTAGE IN PARENTHESIS).
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FIGURE 12 - SUB CELLULAR LOCALIZATION PREDICTION SUMMARIZED FOR THE HF AND
CONTROL DATASET. EACH BAR IN THE CHART SHOWS THE NUMBER OF PREDICTED
PROTEINS PER LOCALIZATION CLASS AND IS SEGEMNTED BY THE PREDICTOR
RELIABILITY INDEX. FOR EACH PAIR OF BARS SHOWN IN EACH LOCALIZATION CLASS THE
BARS ON THE LEFT EXPRESSES THE RATIO OF PROTEINS PREDICTED FOR THAT
LOCALIZATION FOR THE CONTROL DATASET. SIMILIARLY BARS ON THE RIGHT HAND SIDE
IN EACH PAIR EXPRESS THE RATIO OF PROTEINS PREDICTED TO LOCALIZE IN THE CLASS
LABELED ON THE X-AXIS FOR THE HF SET. THE COUNT OF MOST RELIABLE PREDICTIONS
IS EXPRESSED BY BLUE SEGMENT AND MOST UNRELIABLE ARE EXPRESSED IN GREEN....40

FIGURE 13 - SUMMARY OF TMSEG PREDICTIONS FOR THE HF SET (A), CONTROL (B) AND
REFERNECE (C) DATASETS AS A PERCENTAGE OUT OF THE ENTIRE SET. NO PREDICTIONS
PORTION OF THE PIE CHART IS COLORED PINK, SIGNALING PROTEINS COLORED BLUE
AND TRANSMEMBRANE PREDICTION ARE COLORED WHITE. .....oonininsisssissssssssssnesns 41

FIGURE 14 - BREAKDOWN OF DISORDER PREDICTION FOR THE CONTROL (LEFT PIE CHART)
AND HF (RIGHT PIE CHART). NOTE THAT DISORDER CLASSIFICATION FOLLOWS THE
PROCEDURE DESCRIBED IN SECTION 2.3.3 (PROTEIN DISORDER). THIS CLASSIFICATION
RESULTED IN FOUR DISORDER CLASSIFICATIONS: 1. DISORDERED 30..80 - PREDICTIONS
CONTAINING CONTINUOUS DISORDERED REGIONS BETWEEN 30 TO 08 RESIDUES LONG. 2.
DRAW 30..80 - PREDICTIONS CONTAINING BOTH ORDERED AND DISORDERED REGIONS
BETWEEN 30 TO 80 RESIDUES LONG. 3. DRAW ALL - PREDICTIONS THAT FIT ALL
CLASSIFICATIONS. 4. DISORDERED ALL - PREDICTIONS FIT ALL DISORDERED
CLASSIFICATIONS. NOTE THAT NO ASSIGNMENT (DISORDERED/ORDERED) IS MADE FOR
PROTEINS LABELED AS “DRAW”. NO PREDICTIONS PROTEINS IN THIS CLASS CONTAIN NO
ORDERED REGIONS, NO SHORT DISORDERED REGIONS AND NO LONG DISORDERED
REGIONS. oottt bbb bbb bbb s 42

FIGURE 15 - ZOOMED OUT VIEW OF ALL PREDICTED GO TERMS FOR THE HF SET, THEIR P-
VALUE RANKINGS, INTERRELATIONSHIPS AND LEVEL POSITION IN THE GO HIERARCHY
(AS REFLECTED BY THEIR RELATIVE SIZE WHERE SMALLEST NODES ARE AT THE LEAF
LEVEL AND BIGGER NODES ARE AT THE ROOT LEVEL). BLUE FRAMES MARK AREAS OF
INTEREST IN THE GRAPH AND ARE BLOWN OUT IN SUBSEQUENT FIGURES. REGION IN
BLUE FRAME LABELED A IS BLOWN OUT AND EXPLAIN IN FIGURE 16; REGION IN BLUE
FRAME LABELED B IS BLOWN OUT AND EXPLAINED IN FIGURE 17; REGION IN BLUE
FRAME LABELED C IS BLOWN OUT AND EXPLAINED IN FIGURE 18......connisinisisninnns 45

FIGURE 16 - A BLOW-OUT VERSION OF THE REGION MARKED A IN FIGURE 15. THE FIGURE
HIGHLIGHTS THE OVER REPREENTED GROUP OF TERMS GLUTAMATE DEHYDORGENASE
ACTIVITY (PARENT TERM IS OXIDOREDUCTASE ACTIVITY, ACTNG ON CH-NH2 GROUP OF
DONORS, NAD OR NADP AS ACCEPTOR). THE GLUTEMATE DEHYDORGENSAE ACTIVITY
TERMS ARE LISTED AT RANKS 3-6 IN THE LIST OF SIGNIFICANTLY OVERREPRESENTED
TERMS AMONG THE HF DATASET. .. ssssssssssssssins 46

FIGURE 17 - ABLOW-OUT VERSION OF THE REGION MARKED C IN FIGURE 15. THE FIGURE
HIGHLIGHTS THE THREE RELATED TERMS RRNA BINDING, SMALL RIBOSOMAL SUBUNIT
RRNA BINDING, RRNA BINDING RESPECTIVELY POSITIONED AT FIRST, SECOND AND
THIRD PLACES IN THE LIST OF SIGNIFICANTLY OVERREPRESENTED TERMS AMONG THE
HF DATASET. NOTE THAT LEUCINE BINDING ALSO APPEARS IN THE FIGURE YET THE
TERM IS FILTERED OUT BY OUR ALGORITHM AS UNINFORMATIVE......coninrsinssirisnanns 46

FIGURE 18 - A BLOW-OUT VERSION OF THE REGION MARKED B IN FIGURE 15. THE FIGURE
HIGHLIGHTS THE GO TERM GLUCOSE-6-PHOSPATE ISOMERASE ACTIVITY RANKED
FOURTH IN THE LIST OF SIGNIFICANTLY OVERREPRESENTED TERMS AMONG THE HF
D ) L 47
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APPENDIX B - LIST OF TABLES

APPENDIX B - LIST OF TABLES

TABLE 1 - AMONG THE TOTAL OF 4886 BACTERIAL PROTEIN SEQUENCES, 2403 PROTEINS
WERE ASSIGNED TO THE HF DATASET, AND 2483 TO THE CONTROL DATASET. AFTER
FILTERING FOR STATISTICALLY SIGNIFICANT PROTEINS, THE HF AND CARB DATASETS
CONSISTED OF 325 AND 517 PROTEINS, RESPECTIVELY. THE HF AND CARB DATASETS
WERE STUDIED SEPARATELY AS TWO DISTINCT SUB-DATASETS. ONLY THE
STATISTICALLY SIGNIFICANT” PROTEINS WERE USED IN THE SUBSEQUENT ANALYSIS. ...33
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