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Abstract
Electric vehicles (EVs) could contribute towards the reduction of CO2 emissions
and the integration of renewable energies. To do so, efficient and applicable control
mechanisms need to be in place and a critical mass of EVs needs to be available.
In this work, two greatly different methods towards achieving these objectives are
presented.

We propose the Vehicle-Originating-Signals (VOS) approach for charging control
of a fleet of electric vehicles (EV) in an electricity distribution network. The VOS
approach enables EVs in a fleet to compute signals reflecting their need for charge
and willingness to supply power. An aggregator collects these signals and implements
the control with minor computational effort. The goal of the approach is to manage
the EV load such that the total power consumption, including inflexible demand and
solar generation, closely follows a given target profile. We evaluate the VOS approach
on a scenario for Munich, Germany, based on a mobility survey and real electricity
demand and solar generation data. We compare our approach against a centralized
optimization and show that it achieves a competitive performance. Then, we present
a statistical method to evaluate the performance and limitations of our approach.
We also introduce two extensions to the approach: a method for further reducing
the communication requirements and examples of alternative signals designs.

To reduce the effects of limited range and long charging times of EVs, and therefore
increase adoption rates, we propose a smart scheduling approach for EVs to plan
charging stops on a highway with limited charging infrastructure. This approach
aims to minimize the total travel time for each EV based on the A* algorithm with
constraint verification and a peer-to-peer scheduling system. By considering the
estimated state of the charging stations, we achieve indirect coordination between
EVs. We introduce a simulation framework with trips generated using a data-driven
approach and support for time-varying highway parameters. Furthermore, we apply
our approach to a use-case for the German highway A9 from Munich to Berlin.
Results show that the smart scheduling approach significantly reduces the total
travel times and adapts to changes on the highway, for example, slow traffic on a
given segment. Our approach can be generalized beyond fast-charging to account for
different technologies such as hydrogen or battery swapping stations.

iii



iv



Zusammenfassung
Elektrofahrzeuge können zur Reduzierung der CO2-Emission und zur Integration
erneuerbarer Energien beitragen. Um dies zu ermöglichen, müssen sowohl effiziente
und anwendbare Steuerungsmechanismen als auch eine bestimmte Mindestanzahl an
Elektrofahrzeugen vorhanden sein. Inhalt der vorliegenden Arbeit ist die Ausarbei-
tung zwei sehr unterschiedlicher Methoden, die die oben genannten Zielsetzungen
unterstützen.

Der erste Lösungsansatz, die Vehicle-Originating-Signals (VOS) Methode, steuert
das Batterieladeverhalten einer Elektrofahrzeugflotte. Die VOS Methode ermög-
licht, dass Elektrofahrzeuge ihre Notwendigkeit des Ladens und die Bereitschaft
Energie anzubieten signalisieren. Ein Aggregator sammelt diese Signale und führt
anschließend die Steuerung der Energiezufuhr oder -abgabe mit einem minimalen
Berechnungsaufwand durch. Ziel ist, das Ladeverhalten der Elektrofahrzeuge so zu
steuern, dass sich der daraus ergebende Gesamtenergieverbrauch, einschließlich der
nicht steuerbaren Nachfrage sowie der solaren Energieeinspeisung, an ein vorgegebenes
Zielprofil annähert. Die Evaluierung der VOS-Methode erfolgt anhand einem Szenario
für München (Deutschland). Dieses Szenario basiert auf einer Studie zur Mobilität in
Deutschland und auf tatsächlichen Daten zum Energiebedarf und zur Solareinspeisung.
Dabei wird die erarbeitete Methode mit einer zentralisierten Optimierung verglichen
und gezeigt, dass mit der VOS-Methode vergleichbare Ergebnisse erzielt werden
können. Abschließend werden anhand statischer Methoden die Leistungsfähigkeit
sowie die Grenzen der VOS-Methode analysiert. In einem Exkurs werden zwei
mögliche Erweiterungen vorgestellt: Zum einen die Möglichkeit zur weiteren Reduzie-
rung der Kommunikationsanforderungen und zum anderen Beispiele für alternative
Signalentwürfe.

Um die Nachteile von Elektrofahrzeugen, wie begrenzte Reichweiten und lange
Ladezeiten, zu kompensieren und somit die Attraktivität und Anzahl von Elektro-
fahrzeugen zu erhöhen, wird als zweiter Lösungsansatz die intelligente Disposition
der Ladeinfrastruktur vorgestellt. Diese intelligente Disposition ermöglicht es, die
Fahrtunterbrechungen auf Autobahnen zum Wiederaufladen der Fahrzeugbatterien zu
optimieren. Ziel ist, die gesamte Reisedauer für jedes Elektrofahrzeug zu minimieren.
Dazu wird ein modifizierter A*-Algorithmus mit definierten Randbedingungen und
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einem verteilten Buchungssystem verwendet. Unter Berücksichtigung der voraus-
sichtlichen Auslastungen der Ladestationen wird eine indirekte Koordination der
Elektrofahrzeuge erreicht. Dabei werden auch Reisezeit beeinflussende Informatio-
nen der Autobahn berücksichtigt. Die Verifizierung erfolgt durch eine Simulation,
deren einzelne Fahrten durch eine datenorientierte Methode generiert werden. Die
entwickelte Methode wird an einem Fallbeispiel für die A9 von München nach
Berlin (Deutschland) evaluiert. Die Ergebnisse bestätigen, dass durch intelligente
Disposition die Gesamtreisezeit signifikant reduziert werden kann. Zusätzlich können
Veränderungen auf der Autobahn, wie zum Beispiel stockender Verkehr auf einem
bestimmten Teilstück, berücksichtigt werden. Über die schnelle Wiederaufladung von
Batterien hinaus kann der Ansatz auch für andere Technologien, wie Wasserstoff-
Betankung oder Systeme mit Batteriewechsel, verwendet werden.
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Chapter 1

Introduction

Climate change, carbon emission reduction, and independence from fossil-fuels
continue to be important issues on the international agenda throughout the past few
decades. The numerous efforts aimed at dealing with and realizing these topics have
begun to show positive effects. In particular, the share of energy generated from
renewable sources has significantly increased [1].

In parallel, there has been an increased tendency towards electrification of products,
services, and technology, with electrification of transportation being perhaps the
most representative example. Electric vehicles (EV), in particular, allow for emission
reduction in urban areas and, due to their use-patterns in urban environments, can
potentially operate as flexible electric loads to support the operation of power systems
and the integration of renewable energy sources.

This work addresses the use of EVs from two perspectives. First, we look at the EV
as a tool for supporting power systems (and therefore the integration of renewable
energy sources) by using them as controllable loads and even energy storage. For this
we focus on residential environments. Second, we analyze strategies for the efficient
use of fast charging infrastructure for long trips which could contribute towards a
higher EV adoption. For both perspectives, we put strong focus on the role of ICT
technologies in the solution to these problems.
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1.1. MOTIVATION

1.1 Motivation

The United Nations Framework Convention on Climate Change (UNFCCC) [2]
defines climate change as a “a change of climate which is attributed directly or
indirectly to human activity that alters the composition of the global atmosphere and
which is in addition to natural climate variability observed over comparable time
periods.” Mitigating climate change involves reducing the sources or enhancing the
sinks of greenhouse gases [3]. Carbon dioxide (CO2) represents the largest contributor
to greenhouse gas emissions.

In 2010, CO2 emissions from energy accounted for around 60% of global greenhouse
emissions [4]. By 2013, around 82% of the world’s primary energy supply came from
fossil sources. Specifically, heat and electricity generation accounted for 42% of CO2
emissions in 2013, with an increase of 50% in emissions from electricity generation
(excluding heat generation) between 2000 and 2013 [4].

Renewable energy sources are a realistic alternative to reduce CO2 emissions and
mitigate climate change. In 2014, renewable electricity generation worldwide rose
by around 7%, accounting for more than 22% of the total electricity generation.
Furthermore, a number of countries have set ambitious renewable integration targets,
such as 35% for Germany, 50% for Sweden, and 20% for the European Union by 2020
[5]. Renewable generation, however, incorporates new challenges into how electricity
has been traditionally generated, transmitted, and consumed.

To keep the electric grid stable, power supply and demand have to be balanced at
all times. To date, this balance is preserved by dispatching generators to match a
given demand [6], most of these generators being fossil fueled. As the share of energy
from non-dispatchable renewable sources like wind and solar continues to increase,
demand-side management and energy storage are becoming more relevant as tools to
maintain this balance.

Furthermore, greenhouse gas emissions from the transport sector doubled between
1970 and 2010, faster than any other energy end-use sector [3]. For the majority of
transport modes, less than 5% of these emissions are non-CO2 gases [3]. In 2013,
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CHAPTER 1. INTRODUCTION

transportation accounted for 23% of global CO2 emissions by sector, with around
three quarters attributable to road transport [4].

Transportation electrification offers two important advantages. First, it reduces
local carbon emissions and fossil-fuel dependency [7]. Second, it shifts energy needs
towards a power system that is increasingly able to leverage energy produced from
renewable sources [8, 9]. Electric vehicles (EV), in particular, allow for emission
reduction in urban areas [9] and, due to their use-patterns in urban environments,
can potentially operate as flexible electric loads to support the operation of power
systems and the integration of renewable energy [9, 10, 11, 12].

This potential can only be materialized if the number of EVs is large enough and
the required technology and infrastructure are in place. On the one hand, control
approaches for coordinated EV charging need to be efficient and realizable with
moderate investment. On the other hand, known drawbacks of EVs such as range
and charging time need to be addressed.

1.2 Problem Statement

EVs can contribute towards the reduction of CO2 emissions and support the
integration of renewable energy sources. Such an ambitious objective is only realizable
when there is a large number of EVs and feasible control strategies are implemented.
This work concentrates on two main research objectives:

1. Control when and how individual EVs should charge for supporting the power
system towards integrating renewable energy sources, while keeping ICT infras-
tructure requirements within realistic boundaries.

2. Reduce the negative effects of limited range and long charging times of EVs
with the help of ICT, particularly for long trips, for reducing the total travel
time and therefore enabling a wider adoption of EVs.

In both cases, the ICT requirements play an important role. The proposed solutions

3



1.2. PROBLEM STATEMENT

must be feasible in practice. That is, the infrastructure requirements must be realistic
and the solution should be close enough to the theoretical best in order for benefits
to exceed investment.

Coordinated EV charging control allows for a higher adaptability to energy supply
conditions. This adaptability helps towards integrating renewable energy sources
and contributes to the reduction of reserve requirements in power systems. These
control strategies become particularly relevant for a large number of EVs. However,
their implementation also becomes more challenging as the number of EV increases.
Furthermore, the evaluation becomes non-trivial as it is likely to depend on the
behavior of EV drivers and the periods when EVs are available for charging.

Centralized optimization methods face the challenge of scalability as the size of
the problem increases. Distributed optimization approaches can be used to address
scalability limitations, but implementing such solutions could be challenging, mostly
due to their iterative nature and high communication overhead. The trade-off between
simplicity, scalability, and quality of the solution therefore plays an important role.
The quality of the solution is measured in terms of deviation from a given control goal,
the scalability in terms of solution time and the simplicity in terms of communication
requirements. The VOS approach combines the benefits of a centralized approach
regarding simplicity, but distributes part of the computation to the EVs to achieve
scalability.

The success of EVs as means to support the power systems depend on their level of
penetration. A critical mass needs to be achieved for coordinated control strategies
to be effective. To this extent, addressing specific drawbacks that prevent people
to choose EVs over fuel-based vehicles is important. Limited range and long
charging time are two specific drawbacks of EVs particularly relevant for long trips.
Reducing overall travel time on longer trips could contribute towards addressing
these drawbacks.

Solving this problem under dynamic conditions such as those in a highway is
challenging due to the time-dependent and interdependent nature of the variables
involved. The behavior of drivers and traffic on the highway also plays an important
role. The trade-off dilemma between centralized and distributed solutions is equally
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CHAPTER 1. INTRODUCTION

applicable here. The proposed scheduling approach for fast EV charging on highways
aims to reduce the total travel time, measured as the sum of driving, waiting, and
charging time for a given trip. This approach applies a local decision-making at
EV level but considers CS parameters (such as queue length and waiting times) as
the coupling element to coordinate with the EVs. The benefits of our scheduling
approach are an efficient use of charging infrastructure and the reduction of travel
time.

1.3 Approach

In summary, the objectives of this work are twofold. First, EV charging control
in residential environments for supporting the power system. Second, fast EV
charging scheduling in highway environments for reducing travel time and facilitating
EV adoption. For the former, we propose the Vehicle Originating Signals (VOS)
method. For the latter, we propose a dynamic scheduling method for total travel
time reduction. In this section, we briefly introduce these approaches.

1.3.1 Vehicle-Originating-Signals for EV Charging Control

To keep the electric grid stable, power supply and demand have to be balanced at all
times. Our objective is to facilitate this balance by reducing the difference between
a reference power profile and the power consumption of a group of consumers, e.g., a
neighborhood served by a section of a distribution network (DN). In other words,
we aim to comply with a planned external power supply by compensating for the
variations using internal resources.

This planned external power supply is usually the result of a unit commitment
process based on expected demand and generator capabilities. Complying to a given
planned supply allows operators and utilities to use their resources more efficiently
as the need for reserve is lower.

5



1.3. APPROACH

For the internal resources, we consider a scenario with a number of electric vehicles
(EV) and solar photovoltaic panels (PV) within the area of control. The EVs can be
seen as flexible loads, if they only consume energy, or additionally as storage if they
also supply energy back to the grid in what is known as Vehicle-to-Grid (V2G).

The Vehicle-Originating-Signals (VOS) approach for EV real-time charging control,
enables an aggregator to control how a fleet of EVs charges in order to follow
an arbitrary power profile. This approach takes computational, communication,
aggregator, and user requirements into account. The VOS approach can be generalized
to different loads and objectives. For the evaluation, we demonstrate how this
approach can be used to reduce the variability of demand and distributed solar
generation by intelligently charging and discharging EVs.

Several research papers [13, 14, 15, 16, 17] deal with aggregator-based EV charging
control, some of them proposing centralized strategies, some proposing distributed
approaches. The VOS approach combines the benefits of a centralized approach
regarding simplicity, but distributes part of the computation to the EVs. Furthermore,
it does not require iterative optimization and could therefore meet the real-time
requirements of advanced applications. In addition, we choose a direct control
method to ensure certainty in control but, to a certain extent, protect EV users’
privacy by limiting information exchange.

1.3.2 Scheduling Fast EV Charging on Highways

Electric vehicles could allow for emission reduction in urban areas and, due to their
use-patterns in urban environments, can potentially operate as flexible electric loads
to support the operation of power systems and the integration of renewable energy
sources. The wide adoption of EVs, however, faces a number of challenges. The
limitations on battery energy density and their effects on cost restrict the range or
autonomy of EVs to far below that of their fuel-based competitors. The requirements
in terms of a new charging infrastructure, particularly if extended beyond places of
residence or work, involve significant investment. For example, according to a study
in [18], investment in fast-charging infrastructure is unlikely to be profitable at low
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CHAPTER 1. INTRODUCTION

EV adoption rates, unless investment cost can be lowered. Additionally, the time
required for charging an EV is substantial, with the additional disadvantage that, in
general, increasing the charging power negatively influences the battery’s lifetime
[19]. A higher EV adoption rate can only be reached if sufficient infrastructure is
made available.

These major challenges, particularly related to the use of EVs in urban environments,
have been the subject of intense research in recent years. We argue that range,
infrastructure, and charging-time limitations are major factors in highway environ-
ments, an area not as densely researched as the above. The current range of most
commercial EV models is not extensive enough to cover long distances. This range
decreases further as driving speeds increase. Basic infrastructure, such as electricity
and services necessary for the charging infrastructure, are only available on specific
points along a highway. Long charging times can potentially cause significant delays
not only because of the charging process itself but also because of the potential
waiting times resulting from busy charging stations (CS).

Although advances in chemistry, battery, and charging technology play a role
in addressing these challenges, we believe that information and communication
technologies (ICT) can make a major contribution in efficiently managing the available
resources, reducing the required amount of infrastructure for a given service level,
and assist in planning and dimensioning fast-charging infrastructure. Therefore, this
work proposes a method for scheduling charging stops during highway travel such
that the final destination is reached with the lowest possible cost, in our case total
travel time. We put special focus on the applicability of this method from the ICT
perspective and present our results within the context of a use-case for a 500 km
long German highway accompanied by a methodology for generating EV trips based
on real data.

As EVs enter the highway, they decide at which CSs to stop and generate a schedule
accordingly. This schedule is then continuously updated during the EV’s trip to
account for changes in CSs and the highway. Unlike other approaches, we focus on
total travel time (not only waiting time [20, 21] or infrastructure usage [22]), apply
a local decision-making approach at EV level with CS parameters (such as queue
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1.4. CONTRIBUTION

length and waiting times) as the coupling element instead of a global approach [20,
23], and use synthetic trips rather than probabilistic models [22, 20, 21]. The benefits
of our scheduling approach are an efficient use of charging infrastructure and shorter
travel times, thus contributing to cost reduction and EV adoption.

1.4 Contribution

The main contributions of the VOS approach for EV charging control are:

i. We design the VOS approach: a novel charging control mechanism that aims at
matching a given power profile, provides scalability by applying heuristics and
partial distribution of computations, and achieves results comparable to those
from state-of-the-art optimization solutions in a fraction of the solving time.

ii. We conduct extensive evaluations based on a scenario with real data for electricity
demand and solar generation for Munich, Germany, as well as EV driving profiles
derived from a German mobility survey.

iii. We compare the performance of our VOS approach to a state-of-the-art central
optimization, both in terms of optimality and solving time.

iv. We apply a statistical method to evaluate the performance of the VOS ap-
proach in terms of the error’s upper bound for a given percentile. This allows
for a more insightful evaluation beyond average performance and for making
recommendations in terms of parameter selection such as fleet size and load
magnitude.

v. We propose an extension to the VOS approach for reducing the communication
overhead, which in turn reduces the number of messages by at least 70%.

vi. We propose alternative methods for signal design that allow for earlier charging.

The main contributions our approach for scheduling fast EV charging on highways
are:
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CHAPTER 1. INTRODUCTION

i. We introduce a scheduling method for planning charging stops on a highway
trip, based on an extension of the A* search algorithm that accounts for
problem constraints, including EV energy requirements and driving speeds,
that enables the reduction of travel times and efficient use of the available
charging infrastructure.

ii. We propose a trip generation method that uses data available from highway
counters and travel surveys to generate synthetic highway trips that are closer
to reality.

iii. We develop a simulation framework for highway traffic that accounts for highway
exits/entries, potential charging sites, variable highway speed limitations, and
EV-specific characteristics, enabling us to test scheduling methods and account
for changes such as traffic congestion.

iv. We implement our approach in a use-case for a German highway connecting
Berlin and Munich with the actual highway entries/exits, speed limits, and
production EV models, while considering current fuel stations as potential
charging sites.

Parts of the content and contributions of this work have been published in:

• V. del Razo and H.-A. Jacobsen. “Smart Charging Schedules for Highway
Travel with Electric Vehicles.” In: IEEE Transactions on Transportation
Electrification 2.2 (2016) [24]

• V. del Razo, C. Goebel, and H.-A. Jacobsen. “Vehicle-Originating-Signals for
Real-Time Charging Control of Electric Vehicle Fleets.” In: IEEE Transactions
on Transportation Electrification 1.2 (2015), pp. 150–167 [25]

• V. del Razo, C. Goebel, and H.-A. Jacobsen. “Reducing Communication
Requirements for Electric Vehicle Charging using Vehicle-Originating-Signals.”
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1.5 Organization

The rest of the document is organized as follows. Chapter 2 provides some background
on power systems with a focus on key concepts that may not be evident to computer
scientists. Chapter 3 presents the related work on the area of electric vehicles with
particular emphasis on power systems support and planning long distance trips.

Chapters 4 and 5 elaborate on the VOS method for EV charging control in residential
environments. Chapter 4 first presents the model, describes the VOS approach, and
introduces the Munich use cases that our evaluation is based on. Then, it introduces a
centralized state-of-the-art optimization method and uses it as a baseline to evaluate
the performance of the VOS approach. Finally, it presents a statistical analysis of
the performance and corresponding findings.

Chapter 5 presents two extensions to the VOS method. First, it introduces a message
reduction strategy and corresponding results. Then, it explores alternative signal
designs and their corresponding effects. Finally, it presents a discussion of the VOS
approach and its different extensions.

Chapter 6 covers the scheduling of fast EV charging on highways. First, it introduces
the charging scheduling algorithm for travel time minimization. Then, it describes
the simulation framework including a method for data-driven traffic generation. Next,
it introduces the use-case for the highway A9 in Germany from Munich to Berlin and
corresponding results. Finally, it presents a discussion of EV charging on highways.

Chapter 7 presents the conclusions covering both the VOS approach for EV charging
control for residential environments and the fast EV charging scheduling strategy for
highway environments.
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Chapter 2

Background

The main function of an electric power system is to convert and transport energy.
That is, to convert energy from naturally available sources into electricity and transmit
this electricity to the location where it is to be consumed. At the consumption point,
electrical energy is almost always converted into a different form to be consumed such
as light, heat, or mechanical energy. Energy in electrical form can be transported
and controlled in a simple and highly efficient and reliable manner [6].

In this chapter, we briefly cover the main concepts and elements in power systems.
First, we cover the characteristics, structure, and main elements of electric power
systems. Next, we briefly introduce the concepts of renewable energy and distributed
generation. Finally, we cover some important concepts in power system operation
and control.

2.1 Power System Characteristics and Structure

Electricity can be generated and consumed in direct current (DC) or alternate current
(AC) form. DC implies that the current flow is constant in magnitude and flows in
one direction. AC implies that the current flow oscillates in magnitude and direction.
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Power systems are mostly AC based due to technical and historical reasons. Between
the end of the 19th and beginning of the 20th century, AC became the standard for
power systems because voltage level transformation was easily achievable through the
use of transformers and AC generators and motors were simpler and less expensive
to build [6]. Today, due to the technological progress in power electronics, high
voltage DC (HVDC) transmission is becoming increasingly attractive for a number of
applications, particularly for large amounts of power transmission over long distances.

Some characteristics of electricity supply have a significant effect on how the electric
power system is engineered [29]. First, electricity, unlike gas and water, is difficult
and expensive to store and there is little control possible on the consumption side.
Therefore, balancing electricity supply and demand is one of the major challenges in
power systems. Second, electricity generation has a significant environmental impact
that increasingly determines what, how and where power plants are installed and
operated. Third, generation plants are often far from the loads.

Electric power systems may also vary in size and structure, although most of them
share the following characteristics [6].

• They are comprised of three-phase AC system,

• they produce most of the electricity via synchronous generators,

• they transmit power over long distances to widely spread consumers, and

• they operate at constant frequency and voltage.

Large AC power systems are generally three-phase systems. Put simply, this means
that each generator provides three voltage sources with a given phase difference
between them. This phase difference can be interpreted as some kind of delay
between the voltage signals. A three-phase generator is built utilizing three separate
conductors for the stator windings. The three-phase principle enables a higher power
capability for a given machine size. Additionally, three-phase systems allow for a
more efficient transmission and ensure that electric motors always run in the same
direction, provided that phases are connected in the same order [29].
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Prime movers convert a primary source of energy (e.g., fossil, nuclear, or hydraulic)
to mechanical energy. This mechanical energy is converted into electrical energy by
(commonly synchronous) generators [6].

The total electrical load usually consists of a base plus a variable element which
depends on factors like the time of day, season, weather, etc. Generally, the base load
is supplied by the most efficient (lowest operating cost) plant running continuously
while the remaining load is met by the less efficient, but less capital-intensive, stations.
For hydro systems some generators are only operated during times of peak load. In
a power system there is a mix of sources. These include, hydro, coal, oil, renewable,
nuclear, and gas. A system operator decides on the power supplied by the different
plants in order to achieve an optimal mix, which generally means the most economic
operation [29].

A certain proportion of the available generation capacity has to be held as reserve to
meet sudden contingencies. A part of this reserve, called the spinning reserve, must
be ready to be brought in immediately. This is commonly achieved by operating
machines below their maximum capacity. Spinning reserves can be used to cope
with errors in prediction of the load or the output of renewable energy sources. A
higher proportion of intermittent renewable energy generation, such as solar or wind,
increases the required reserve margin [29].

The transmission network in electrical power systems interconnects generating stations
and loads. This transmission network consists of the transmission, subtransmission,
and distribution systems [6].

The transmission system interconnects major generation sites with main load centers
or hubs and operate at the highest voltage levels. Generators usually produce lower
voltages (11-35 kV) which are then increased by transformers to the main transmission
voltage (230 kV and above) [6].

Higher voltages allow for longer transmission distances with lower losses. However,
there is a maximum permissible peak voltage between conductor and ground. Higher
voltages require more clearance between the lines and the ground and this relationship
is non-linear [29]. Therefore a transmission system usually operates on different
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voltage levels.

The subtransmission system connects transmission substations with distribution
substations. Some large industrial consumers may be supplied directly from this
system. In many power systems, there is no clear separation between transmission
and subtransmission systems. When the system expands, higher voltages become nec-
essary and previously transmission-exclusive sections are assigned to subtransmission
functions [6].

The distribution systems differ from transmission systems in ways beyond the voltage
levels. The number of branches and sources is significantly higher and the general
topology is different. Furthermore the way distribution networks are structured and
designed depends on whether they are serving rural, suburban, or urban areas [29].

Electricity consumers are generally classified as industrial, commercial, and residential
[29]. Industrial loads are lower in quantity but usually power intensive and often
consume electricity in three-phase, e.g., three-phase electric motors. Residential and
comercial loads generally consume electricity in single phases. The commercial sector
refers to shops, schools, offices, and so on.

Although the general form of power systems follows a similar pattern, there are
differences in voltage levels, topologies, and operation originating from geographical,
historical, and political reasons. In continental European countries, combined
generator/transmission utilities (usually covering the whole country and overseen by
government control) have been, or are being, separated into generation, transmission,
and distribution entities. These entities are individually accountable and allow for
private investors to enter the electricity market. Energy is traded under agreed
tariffs between national boundaries through interconnects. Due to the dominance of
industrial loads with the ability to vary demand and a lower reliance on electricity for
heating in private households, daily load variation tends to be lower where compared
to the UK, for example. A number of German and Scandinavian cities use combined
heat and power (CHP) plants with hot water distribution mains for heating purposes.
Transmission voltages are 380-400, 220, and 110 kV and household are supplied at
220-230 V, commonly with a three-phase supply taken into the house [29].
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2.2 Renewable Energy and Distributed Energy
Generation

Renewable energy sources are an alternative to reduce CO2 emissions. Many of
these energy sources come, at least indirectly, from the sun: wind, waves, tides, and
solar energy. These renewable sources of energy are intermittent, depend on external
factors such as the weather, and cannot be dispatched or controlled in the same
way as traditional power generators. In the following, we will briefly cover solar
photovoltaic (PV) and wind energy generation.

Photovoltaic conversion occurs in a thin layer of a specific kind of material, such
as silicon, where hole-electron pairs are created by incident solar photons. The
separation of these holes and electrons at a discontinuity in electrochemical potential
creates a potential difference. This technology is space-intensive. For an output in
the order of MWs, a very large area is required [29].

Wind energy is produced when the wind causes the rotor of a wind turbine generator
to rotate. The power produced depends on the swept area and the cube of the wind
speed and is limited by the power coefficient factor of the rotor. At high wind speeds,
the output can be controlled by modifying the blade pitch angle. A single large wind
turbine can produce around 5 MW [29].

Wind and photovoltaic solar generation produce a lower amount of power compared
to traditional sources and have specific geographical requirements. As a result, the
generation occurs in a more disperse manner and at lower volumes. This is known
as distributed generation (DG).

DG also implies that power may no longer be exclusively fed into the power system
via the transmission system. Large conventional power stations feed power into
the transmission or subtransmission networks which are designed for bidirectional
power transport. However, distribution systems are designed for unidirectional power
transport; that is, toward the consumers [30].
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2.3 Power System Design and Operation

Power systems are designed and operated to meet the following requirements [6]:

• keep the power quality with regard to constant frequency, constant voltage,
and level of reliability,

• meet continuously changing load demand for active and reactive power, and

• supply energy at minimum cost and with minimum ecological impact.

Constant frequency and voltage are not only power quality indicators but also a
measurement for the demand-supply balance of active and reactive power respectively.

The allocation of the required power amongst the generators is generally decided
before the load appears and is based on a given prediction of the load. In order to
meet continuously changing load demand, the system must be able to compensate for
the differences between the predicted and the actual load. Synchronous generators
in a power system are connected through the transmission system and have the same
frequency [29]. If the load is larger than the committed generation, the frequency will
decrease and vice versa. By applying frequency control, one can maintain this balance
by increasing or decreasing the generation or, more seldom, the consumption of active
power. Generation can be controlled by modifying the output of a given generator,
usually by controlling the prime movers, or dispatching additional resources.

Voltage stability means that a power system is able to maintain steady acceptable
voltages along the system. The main reason for voltage instability is the inability
of the power system to meet the demand for reactive power. This is mostly caused
by the voltage drop resulting from the power flowing through inductive reactances.
Voltage instability is essentially a local phenomenon but with potentially wider impact.
Methods for voltage control include sources or sinks of reactive power (e.g., capacitors,
reactors, and condensers), line reactance compensators (e.g., series capacitors), and
regulating transformers (e.g., tap-changing transformers) [6]. Increased PV solar
generation at the distribution network has also significant effects on voltage.
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An important tool to analyze the operation, power, voltages, and losses in the power
system is the power flow or load flow. The power flow is a network solution tool
that provides currents, voltages, and real and reactive power flows at every bus in
the system. It represents the electrical response of the transmission or distribution
system to a given set of loads and generator power outputs. The most common
method for solving the power flow calculation is the Newton–Raphson method [31].

Power systems must also be operated on an economic way. That is, energy must be
supplied at the lowest possible cost that allows a certain set of constraints to be met.
Generally, generators cannot instantly turn on and produce power, so generation
must be planned in advance. Three main concepts relate to the economic operation
of power systems: economic dispatch, unit commitment, and optimal power flow;
each of them being more comprehensive than the previous.

Real power economic dispatch (ED) aims at minimizing the generators fuel consump-
tion or the overall operating cost of the system. This is done by determining the
power output of each generating unit so that the system load demand is met. The
main elements of the ED problem are the set of input–output characteristics of each
power generating unit. That is, a fuel consumption or an operating cost function
[31].

Unit commitment (UC) manages the generation schedule of each unit in a power
system for minimizing operating cost and satisfying prevailing constraints. e.g., load
demand and system reserve requirements, over a set of time periods. The classical
UC problem aims at determining the start-up and shutdown schedules of thermal
units to meet the forecast demand over certain time periods. It is a combinatorial
optimization problem. The methods for solving the UC problem can be classified
into heuristic search, mathematical programming, and hybrid methods [31].

The objective of optimal power flow (OPF) is to find the optimal settings of a
given power system network that optimizes objective functions, e.g., generation
cost, system losses, voltage deviation, emissions, number of control actions, while
satisfying the power flow equations, system security, and equipment operating limits.
Control variables include generator real power outputs and voltages, transformer
tap changing settings or switched capacitors. The mathematical formulation of the
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OPF problem depends on the selected objective function and constraints (i.e., linear,
non-linear, integer). The algorithms can be classified into conventional optimization
methods, intelligence search methods, and non-quantitative approaches [31].
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Related Work

The effects of increased renewable and distributed generation and their potential
solution have been a subject of numerous studies. Similarly, a number of studies
related to transportation electrification (either as a challenge factor or a solution
alternative) and power systems have been conducted. A survey on transportation
electrification in smart grid environments has been conducted by Su et al. [32].
Gungor et al. [33] survey potential smart grid applications and corresponding
communication requirements.

Renewable generation and new types of electric loads are particularly challenging
for the distribution network level. For example, Woyte et al. [34] studies voltage
fluctuations caused by photovoltaic generation. The impact of EVs on the electricity
distribution network has also been extensively studied [35, 36, 37].

In this chapter, we first present the related work on EV charging control for supporting
the power system. That is, either as means to reduce the effects of EV themselves,
to facilitate integration of renewable energy sources, or to provide additional services
like storage or regulation. We then cover the previous work in the area of EV charging
in long distance trips.
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3.1 EV Charging Control for Power Grid Support

The related work in the area of EV charging strategies can be classified based on
system architecture (centralized/decentralized) and control method (direct/incentive-
based). In centralized architectures, all variables and constraints are known to a
central controller, whereas in distributed architectures, there is usually a differ-
entiation between local and global (or coupling) constraints and variables. Local
parameters are known to each controlling entity. Global parameters, on the contrary,
depend on the overall behavior of the system and need to be communicated to each
control entity. In direct control methods, the controlling entity triggers a certain
action on the controlled entity. In incentive-based methods, the controlling entity
sends a signal for which a certain action by the controlled entity is expected.

As decentralized incentive-based methods, for instance, Gan et al. [38] propose a
decentralized algorithm that controls EV charging to fill demand valleys via incentive
signals, and Rivera et al. [13] present a framework for incentives-based distributed
EV charging control for different objectives. These studies show how the optimization
problem can be solved in a distributed fashion. Incentive signals are used to decouple
the global constraints from the local problem, where a coordinating entity broadcasts
an incentive signal, e.g. a virtual price, and iteratively updates it according to the
response of the EVs.

In terms of decentralized, direct control methods, He et al. [39] present a decentralized
optimization with direct control to minimize charging costs, Richardson et al. [40]
present a local direct control technique for voltage stability in a DN, Rotering et al.
[41] present a dynamic programing approach with local controllers fed with energy
market information, Martinenas et al. [42] apply linear programming local control
to minimize charging costs for a dynamically updated composite price signal that
combines real-time hour- and day-ahead prices, and Binetti et al. [14] use an updated
power profile for EVs to locally define the charging starting time. These approaches
opt for local control, where EVs optimize for their individual objective taking into
account global variables like voltage levels or energy prices.

Furthermore, Galus et al. [15] present a decentralized direct control method that

20



CHAPTER 3. RELATED WORK

also includes other flexible loads where local managers, which are then connected
to an aggregator, are used to hierarchically divide the problem. In a study by Yao
et al. [16], a hierarchical decomposition approach is also used. In the high-level,
generator units and a number of EV aggregators are jointly dispatched. This results
in a low-level problem for each aggregator that is then solved as a mixed integer
problem.

Centralized control methods usually apply direct control. For instance, Clement-Nyns
et al. [43] aim at minimizing power losses with a centralized, direct control approach,
and Goebel et al. [17] evaluate the supply of frequency reserves via centralized and
direct EV control. Still, some other combinations are possible. For example, to
optimize centrally for the planning phase in order to define either a price or a profile
signal, and then apply local optimization for the control [44].

Centralized optimization methods face the challenge of scalability as the size of
the problem increases. Distributed optimization approaches can be used to address
scalability limitations, but implementing such solutions could be challenging, mostly
due to their iterative nature and high communication overhead. Instead, the VOS
approach uses heuristics to speed up the solution, distributes the computation by
enabling EVs to encode VOS signals, and applies a centralized control. The VOS
approach offers a solution where computation and communication overhead are a
concern, while some deviation from the results achievable by state-of-the-art solutions
is acceptable.

Alternatively, one can address the scalability challenge by optimizing for the ag-
gregated EV load [12, 45]. In the former, EVs are clustered into a single integer
variable that can take on values proportional to the number of EVs, whereas in
the latter they are grouped by arrival and parking times. EVs can also be grouped
for solving the mixed integer low-level problem [16]. Clustering, however, requires
a second mechanism to control the individual EVs. The VOS approach controls
vehicles individually and such a second mechanism is not required.

There are also incentive-based approaches for social optimality based on stochastic
optimization and game theory [46, 47]. Although we don’t aim at a social optimum,
where there is no solution with a higher benefit for one entity that does not decrease
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the benefits of the other parties, the VOS approach achieves a fair resource allocation.
It assigns resources based on the individual requirements with respect to the total
availability. In Section 5.2, we further explore these concepts for alternative signal
designs.

The concept of a single broadcast signal is present in some incentive-based approaches
[38, 13]. The idea of broadcasting a set point signal paired with a probability factor
is explored by Harris et al. [48]. These concepts allow for the reduction on message
requirements from the aggregator to the EVs. In Section 5.1, we build on these
concepts for reducing the aggregator-to-EVs message requirements and exploit the
modular characteristic of the VOS approach to also reduce the EVs-to-aggregator
message requirements.

Similar to Kempton et al. [49], we consider Vehicle-to-Grid (V2G), however, in our
case, the economic and market aspects are beyond the scope of the work.

3.2 EVs and Long Distance Trips

Research on EV charging has focused on its relationship with the power systems
infrastructure, mostly in urban or suburban environments. Highway-related problems
of EV charging have not been as densely studied.

EV highway-related work has focused on infrastructure planning and charging
strategies. A number of studies have been focusing on placement of CS infrastructure
along a highway. Some studies conclude that driving range is a major factor for
defining CS infrastructure location, with facility cost and population coverage also
playing an important role [50, 51]. Sathaye et al. [52] introduce a continuous
optimization approach for locating charging stations on highway corridors with a
case study for Texas. Furthermore, other studies take existing infrastructure into
consideration and limit potential CS locations to existing rest areas or fuel stations
[53, 22]. Different charging power rates are analyzed concluding that fast-charging is
necessary to achieve a reasonable level of service and minimize the cost [54]. Bae et
al. [55] aim at modeling charging demand using a fluid dynamic traffic model for
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arrival rates at different CS and a M/M/s queue model for the demand within the
CS with focus on infrastructure planning and energy demand. In contrast, our work
considers fast-charging infrastructure located on existing rest areas or fuel stations
and uses data-based synthetic highway trips for generating the charging demand.

In terms of modeling and charging strategies, Gong et al. [56] use a gas-kinetic model
to optimize power management with dynamic programing. This work focuses on
hybrid vehicles and fuel consumption. Rahman et al. [57] also focus on hybrid vehicles
and fuel consumption where a method based on Satisfiability Modulo Theories (SMT)
and a price-based navigation technique for load balancing are presented. A dynamic
allocation technique using a centralized control platform that focuses on maximizing
infrastructure utilization has also been presented [22]. Our approach considers only
battery-based EVs and focuses on travel time, not on consumption or infrastructure
utilization.

Yang et al. [20] compare global vs. local information strategies for a highway in
Taiwan with 6 CSs and an event-based model. They conclude that having global
information about CS workload helps to reduce waiting times. Qin et al. [21] also aim
at minimizing waiting time. They show that a theoretical lower-bound is achieved
when the charging demand of all CSs is balanced and propose a distributed strategy
based on CS reservation which follows certain success statistics. We also make use of
a CS reservation system but account for changes via dynamic updates.

A balanced CS demand is also considered the optimal strategy and a two-level
approach is proposed by Gusrialdi et al. [23]. The higher-level distributed scheduling
algorithm optimizes the operation of the charging network while the lower level
cooperative control law allows individual EVs to decide whether or not to charge
based on neighboring EVs. The approach requires communication between EVs
to cooperate, is based on a stochastic model for CS arrivals, and is applied to an
example with four CSs. In our work, the objectives are local to each EV but EVs
loosely interact with each other through estimates of CS occupancy levels as coupling
variables.

Pourazarm et al. [58] address the scheduling problem as a path-finding problem
within a graph of CS nodes. They use dynamic programming and, when dealing
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with multi-vehicle routing, apply a grouping technique based on flows. Similarly,
Storandt et al. [59] uses a graph model and considers the problem as a constrained
shortest path problem. The work concentrates more on urban environments where
the number of paths can be very large and the number of CS visits is given as a
constraint. The authors propose a pre-processing approach for saving computations.
We also formulate the problem as a shortest path problem but use a modified A*
algorithm focusing on total travel time.

Highway traffic modeling is a complex field with several approaches available
depending on the level of detail provided and the information available [60, 61].
In our simulation framework, we do not apply complex inter-vehicular dependencies
or gas-kinetic-based flow simulations. However, we foresee the use of more robust
and mature traffic simulation systems as an input for our framework in the form of
time-variant highway speeds.

Our approach differs from previous work in several ways. First, we use a close-to-
reality evaluation in a real highway scenario with data-based traffic generation, full
length highway, and a large number of CSs. Second, we consider the total travel
time reduction as the objective function, accounting for driving and charging times
in addition to waiting time. Last, we consider a local EV-centered approach with
limited computation and communication requirements, which indirectly accounts for
other EVs through a CS reservation system.

From the evaluation perspective, our work is based on data-based generated trips
whereas related work either allocates EVs randomly along the highway [22], or uses
a stochastic (mostly Poisson-based) model [20, 21, 23]. Similar to Bodet et al. [22],
we consider CS sites at rest and fuel stations along the highway and use a German
highway as a use-case. We also consider different types of EVs and variable speeds
along the highway.

From the scheduling perspective, we focus on time reduction. However, our focus on
total travel time reduction, not only waiting time, is advantageous under varying
highway conditions. Similar to Pourazarm et al. [58], we adjust charging time to
energy requirements. Time-variant driving speed, mostly limited by highway speeds,
is also taken into account.
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Finally, our work focuses on applicability. We do not use centralized control and
focus on individual EV optimization. Communication only takes place between
specific CSs and the EV without the need to provide all trip information. Although
we do not aim at a global optimization (e.g., [20, 23]), we indirectly account for
the behavior of other EVs by using the CS reservation information as a coupling
variable. Similar to other studies [58, 59], our model is based on a graph abstraction
and shortest-path search but we focus on algorithms with complexities achievable by
existing in-car navigation technologies.
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Chapter 4

EV Charging Control with VOS

In this chapter we present the EV charging control problem for supporting the
power system and the proposed solution. This solution, the Vehicle-Originating-
Signals (VOS) approach for EV real-time charging control, enables an aggregator
to control how a fleet of EVs charges in order to follow an arbitrary power profile.
The solution takes into account computational, communication, aggregator, and
user requirements. Section 4.1 presents the model and describes the VOS approach.
Section 4.2 introduces the Munich use cases that our evaluation is based on. Section
4.3, introduces a centralized state-of-the-art optimization method and uses it as a
baseline evaluate the performance of the VOS approach. Finally, Section 4.4 presents
a statistical analysis of the performance and corresponding findings.

4.1 Model

In this section we introduce the VOS approach. We present the power-matching
problem and model. We also discuss the implications of solving this problem with
state-of-the-art optimization techniques and cover the assumptions made at system
level. Finally, we describe the VOS approach in detail including the roles of EVs and
the aggregator.
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4.1.1 Power-Matching EV Charging Control

Figure 4.1.1 illustrates the scenario assumed in the following. For a given area of the
distribution network and the loads and distributed generation connected to it, the
goal of the aggregator is to control the charging and discharging behavior of EVs
such that the aggregated power profile matches a target power profile, PO(k), as
closely as possible. The aggregated power profile, Pagg(k), is defined as the difference
between the demand and the local generation within the defined area, i.e., the total
power demanded from the grid at time step k. That is:

Pagg(k) = PD(k)− PS(k) +
N∑
i=1

P i
EV (k) (4.1.1)

where for a given time step k, PD(k) represents the inflexible demand, PS(k) denotes
the produced solar power, and P i

EV (k) is the power consumed by the ith EV. P i
EV

can be negative, meaning that the EV is supplying energy back to the grid (V2G).
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Figure 4.1.1: Model overview

Matching a given target profile is an alternative to dispatching generators to meet
the demand. Dispatching generators according to the given demand requires that a
certain capacity is kept as reserve and that every new configuration is guaranteed to
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meet the constraints of all generators, the transmission, and the distribution grid. By
controlling demand to meet a given PO(k), which has been planned to meet all these
constraints, one could enable operators and utilities to use their existing capacity
more efficiently and to reduce their operational requirements.

Since we concentrate on a limited section of a distribution network, it is reasonable
to assume that the internal generation and loads can be aggregated into a single
node.

Our objective is to minimize |PO(k)−Pagg(k)| for all k subject to the set of constraints
of each vehicle XEV i and the limitations of the electricity distribution network XDN .
Using (4.1.1) we can express this problem formally as follows:

min
P i

EV (k)

(
PO(k)+PS(k)− PD(k)−

N∑
i=1

P i
EV (k)

)2
, ∀ k ∈ T

subject to (4.1.2)
P i
EV (k) ∈ XDN , ∀ k ∈ T
P i
EV (k) ∈ XEV i , ∀ k ∈ T, i ∈ N

Assuming that the constraints are linear, (4.1.2) is a convex optimization problem
that can be solved with state-of-the-art optimization techniques. However, the
complexity of this problem increases at least at a polynomial rate of its dimensions
[62], which in turn increase with the number of EVs and constraints.

For example, let n be the number of EVs and m the number of constraints. Consider
only two constraints per EV,

√
m iterations (reasonable for interior-point methods

[62]) and a complexity of nm3 per iteration. That results in 11.3 n4√n for n EVs
and 357, 770.9 n4√n for 10n EVs, over 31 thousand times higher.

Therefore, we argue that this approach is no longer feasible for large EV fleets,
especially if the goal is on-line or real-time control.1 Furthermore, the linearity of

1By real-time, we mean that these are not planning or day ahead decisions, but control decisions
that have to be made on the spot with currently available information and before the next control
interval starts.
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the constrains is not necessarily guaranteed, e.g., EVs may charge at defined power
levels and not at infinitesimal fractions of it, like a given power rating or a set of
power levels, resulting in discrete variables. Discrete variables lead to an integer
programming problem that is significantly more computationally intensive. The VOS
approach is an alternative to deal with this issue.

We make three assumptions at the model level. First, we assume that the length of
a time step k is significantly larger than the communication delays between elements
(milliseconds vs. seconds or minutes) and are therefore not taken into account.
Control with delays up to a few seconds is sufficient to cover a wide range of power
system control problems [63, 64].

Second, we consider a maximum charging rate Pmax
EV , common to all chargers, i.e.,

fast charging is not taken into consideration. We see fast charging as a premium
service that may be excluded from the control scheme.

Finally, we assume no losses when (dis)charging the battery. This assumption is
justified since a charger’s efficiency is relatively high, and it is irrelevant for the
method since it would only affect the total consumed power and therefore slightly
increase the reference PO(k).

4.1.2 Vehicle-Originating-Signals Approach

In the Vehicle-Originating-Signals (VOS) approach, an aggregator directly controls
a fleet of EVs, as illustrated in Figure 4.1.2. At each time step, every connected
EV computes a Need-for-Charge (NfC) and a Willingness-to-Supply (WtS) signal,
and sends them to the aggregator. The aggregator collects these signals and returns
charging instructions to the EVs. The NfC and WtS signals coexist, meaning that,
at a given time, an EV may be willing to either charge or discharge with a given
NfC or WtS. The aggregator decides to call on one of these options depending on
the resources available and the signal values of other EVs.

This approach has two immediate advantages. First, the NfC and WtS signals
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Figure 4.1.2: VOS process overview

are computed by every EV, resulting in high distribution of computation and
relatively high preservation of the EV owner’s data privacy.2 Second, by reducing
the information exchange to two scalars per time step, we have relatively low
communication overhead, especially if compared with distributed iterative methods.
Moreover, since the NfC and WtS are computed values, the number of messages can
be reduced. This is further explored in Section 5.1.

EV Need for Charge Signal

The NfC is defined as a function of the remaining connection time kiav and the time
required kireq to reach the desired state of charge (SOC) in percent. A threshold
policy makes sure that the EV constraints are fully satisfied. The thresholds are
scalars without units.

2Only two derived metrics (NfC and WtS) are revealed to the aggregator as opposed to, e.g.,
parking times, SOC or vehicle objectives and constraints.
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For every EV i and time step k, based on its target charge level SOCi
tar, battery

capacity Ei
max, current energy in the battery Ei

bat, allowed charging rate limit per
time step Ei

rate, and departure time kidep, we define the required and available number
of steps kireq and kiav as:

kireq = SOCi
tarE

i
max − Ei

bat

Ei
rate

(4.1.3)

kiav = kidep − k (4.1.4)

where kireq can take non-integer values. The departure time kidep can be either a time
set by the user or an expected departure time resulting from a statistical calculation.
In the use case in Section 4.2, we assume it is given. Also, Ei

max is specific to EV
i, therefore, different battery capacities to account for different models or battery
degradation over time are also possible.

We then define the thresholds CQoS > Ctar > Cfull, where CQoS indicates that the
EV must charge to reach SOCi

tar, Ctar indicates that the EV has reached SOCi
tar,

and Cfull indicates that the EV’s battery is fully charged.

We define the NfC as:

NfCi(k) =



CQoS, if CQoS ≤ NfCi
temp

NfCi
temp, if Ctar ≤ NfCi

temp < CQoS

Ctar, if NfCi
temp < Ctar

Cfull, if Ei
bat = Ei

max

(4.1.5)

where

NfCi
temp = CQoS

kireq
kiav

(4.1.6)
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EV Willingness to Supply Signal

For the computation of the WtS, we consider the thresholds CmaxS indicating the
maximum willingness, and CnoS indicating that this EV is not willing to supply at
all, where CmaxS � CnoS. For a given EV i and time step k, the WtS is a function
of the available time kiav, the departure time kidep, and the current SOCi. To set the
WtS within its thresholds, we scale it by CmaxS and shift it by CnoS, resulting in:

WtSi(k) =


CnoS, if Ei

bat ≤ Ei
minor kiav ≤ kireq

CmaxSSOC
i k

i
av

ki
dep

+ CnoS, otherwise
(4.1.7)

The Aggregator

At each time step, the aggregator receives the NfC and WtS signals from the EVs,
defines a charging strategy and instructs the EVs to charge accordingly. The process
is described in Algorithm 4.1.1.

To be realizable in real-time, EVs and aggregator must complete this process in
sufficiently less time than the duration of one time step k. Each EV needs to compute
two scalars and implement the charge/discharge action. Since this is done separately
by each EV, its role in the solving time is negligible. The aggregator, however,
performs up to two sort operations and processes each EV’s signal. Therefore, the
solving time depends on the number of EVs and its upper bound is proportional to
the fleet size N . In Section 4.3, we show that this relationship is linear.

Although this approach does not ensure the best feasible solution for the sum of
|PO(k)− Pagg(k)| over time, this process does minimize |PO(k)− Pagg(k)| on every
time step k. Furthermore, we can provide conditions for an upper bound as follows.

Let Nk be the set of EVs plugged in time step k. Let NQ
k , NT

k , and NF
k be the

subset of Nk of EVs with NfC(k) = CQoS, Ctar, and Cfull, respectively. Finally, let
NS
k be the subset of EVs with WtS(k) = CnoS. Using these definitions, the following

conditions can be formulated:
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Pmax
EV NQ

k ≤ (PO(k)− PD(k) + PS(k)) (4.1.8)
0 ≤ (PO(k)− PD(k) + PS(k)) ≤ (4.1.9)

Pmax
EV (Nk −NT

k −NF
k ) +

NT
k∑
i

min(Pmax
EV , Ei

max − Ei
bat)

−Pmax
EV (Nk −NQ

k −NS
k ) ≤ (PO(k)− PD(k) + PS(k)) ≤ 0 (4.1.10)

Let RESP be the resolution or smallest possible increment of PEV , which can be at
most Pmax

EV . The resolution RESP is an upper bound to |PO(k)− Pagg(k)| if, either
conditions (4.1.8) and (4.1.9), or conditions (4.1.8) and (4.1.10) hold. In other
words, Pagg(k) converges to PO(k) as long as the power requirements of those EVs
with NfC = CQoS do not exceed PO(k)− PD(k) + PS(k) and if there are enough EV
resources to consume or supply this amount of energy. The choice of PO(k) must
take these feasibility constraints into account.
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Algorithm 4.1.1

Algorithm 4.1.1: Aggregator

1. Pagg(k)← PD(k)− PS(k)

2. Sort EVs by NfC in descending order

3. While Pagg(k) < Pmax
agg and NfC = CQoS

• Charge EVs with NfC = CQoS

4. If Pagg(k) ≤ PO(k)

(a) S ← Select EVs with Cfull < NfC < CQoS

(b) Charge EVs

• Continuous case:
(Allocate available power to EVs proportional to NfC)
For EV i in S:

P i
EV ← min

(
Pmax

EV ,
NfCi∑S NfCi

[PO(k)− Pagg(k)]
)

Pagg(k)← Pagg(k) +
∑S

P i
EV (k)

• Integer case:
(Allocate available power to EVs with highest NfC)
For EV i in S:

If PO(k) ≤ Pagg(k), Break
P i

EV ← Pmax
EV

Pagg(k)← Pagg(k) + Pmax
EV

5. Else (meaning PO(k) < Pagg(k))

(a) Sort remaining EVs by WtS in descending order

(b) S ← Select EVs with WtS > CnoS

(c) Discharge EVs

• Continuous case:
(Allocate required power to EVs proportional to WtS)
For EV i in S:

P i
EV ← min

(
Pmax

EV ,
NfCi∑S NfCi

[PO(k)− Pagg(k)]
)

Pagg(k)← Pagg(k) +
∑S

P i
EV (k)

• Integer case:
(Allocate required power to EVs with highest WtS)
For EV i in S:

If Pagg(k) ≤ PO(k), Break
P i

EV ← −P
max
EV

Pagg(k)← Pagg(k)− Pmax
EV
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4.2 Munich Scenario

In this section we introduce the scenario that is used for the evaluations of this work.
The VOS approach can be used to make the aggregated demand follow arbitrary
target profiles. Our main use case focuses on a constant power profile PO(k) = PO,
which results in load leveling, where the target PO is ideally the average of Pagg(k)
over time. In addition, we define two supplementary use cases with a variable PO(k)
to illustrate the validity of our approach under these conditions.

A constant power profile has two desirable effects. First, renewable energy is
consumed locally, assuming the renewable generation capacity is below the desired
PO. Second, generation can be planned more efficiently since the aggregated demand
of the controlled area is less variable over time. In other words, non-renewable
resources operate at constant levels for long periods. This results in fewer ramping
events and lower requirements for reserved capacity, which brings environmental
and economical advantages. Yet, in a more realistic scenario, one would need to
account for transmission-level renewable generation to achieve the same effect. That
is, the target power profile would be the sum of the planned output of non-renewable
generation plus the renewable generation at the transmission level. This is not
within the scope of our work.

The evaluation presented in this work is based on actual data provided by Munich’s
distribution system operator (DSO) [65] and the official mobility survey conducted
by the German government [66].

The Munich DSO supplies yearly information on a 15 min granularity. We take
the load and distributed intake (reflecting local solar generation) data for the low
voltage level and select a 24 hour period starting on a given date at noon, such that
the considered time period spans an entire night. Then, we scale the load profile by
Fdemand to obtain a demand magnitude manageable by the intended EV fleet size,
e.g., 3% of Munich’s demand for fleet sizes of 1,000-20,000 EVs. Finally, we use the
same factor for scaling the solar generation data and multiply the resulting solar
profile by Fsolar to mimic a higher solar penetration.
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The mobility survey includes data for all of Germany. We filter data from major
cities (>500k inhabitants) in order to get a data set valid for Munich and large
enough to be representative. Additionally, we apply a set of quality assurance rules
to ensure that: the interviewed person is the driver, the used vehicle belongs to the
household, and the average reported speeds are lower than 120 km/h. For workdays
(Monday-Thursday), that amounts to around 1,800 trips from 500 households. In our
experiments, we select entries for workdays and up to three vehicles per household to
build N vehicle driving profiles. These profiles include parking times, driving times,
and driving distances. Driving distances are used to calculate the EVs consumption
while driving and the corresponding battery SOC at arrival.

If the size of the fleet N we want to generate is higher than three times the number
of trips available, we introduce a random Gaussian noise to the starting time and
trip duration and adjust the remaining parameters, e.g., arrival time, parking time,
SOC at arrival, etc., accordingly. This noise has mean zero, a standard deviation
of 15 minutes, and is restricted to a maximum of 1 hour. By adding this random
noise, we are able to generate driving profiles for large fleets with a lower probability
of repeated profiles.

We run simulations for varying fleet sizes, keeping the rest of the parameters constant.
We use a time step ∆t = 15min that matches the granularity of our data. For the
simulation, we consider a homogeneous fleet of EVs with SOCtar = 85%, battery
maximum and minimum capacities of Emax = 16kWh and Emin = 1kWh, and
charging power PEV = 4kW. A homogeneous fleet allows us to isolate the driving
profiles as the main random events without loosing generality. Different SOCi

tar or
Ei
max influence the fleet’s power requirements and therefore the target PO, not the

validity of the method.

Furthermore, we assume that the EVs charge only at home and are plugged in
only once (during the longest parking period). The last assumption implies a more
realistic scenario where users only plug in the EV once their driving day is over
rather than every time they park at home.

The ideal value for PO is the average of Pagg(k) over the day. Pagg(k) depends on the
EV power requirements, which correspondingly depend on driving and parking times.
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Figure 4.2.1: Demand, solar and target power profiles

Since these values are not known in advance, an estimate of these requirements is
needed.

For the EV power requirements estimate, we first define the realistic SOCi
tar from

a sample fleet. This SOCi
tar is either the maximum achievable SOC considering

the connection time or the general target (85% in our case). To this value we then
add two thirds of the difference between the target and the full SOC, calculate the
required energy based on the initial SOC and average it over time. The result is
the average power requirement per time interval for an EV in the fleet. The power
requirements of a given fleet are estimated by multiplying this average times the
fleet size. In practice, the EV consumption would come from actual measurements
and statistical or empirical studies. Figure 4.2.1 shows the inflexible demand, solar
generation and target power PO for different EV fleet sizes.

For the evaluation of the VOS approach for variable power profiles in Section 4.4, we
make some modifications to the scenario presented above. First, we define a demand-
following and a valley-filling case. The demand-following case aims at keeping the
same behavior of the inflexible demand. The valley-filling case aims at shifting more
of the load towards the regions with lower inflexible demand. Then, we combine
EV power requirement estimate with the solar generation to calculate the expected
average additional power requirements. Finally, we allocate these additional power
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requirements along the inflexible demand curve to produce the target PO(k). For
the demand-following case, we distribute the power requirements uniformly. In other
words, PO(k) is a shifted version of the inflexible demand. For the valley-filling
case, we allocate the additional power requirements so that more power is consumed
during the valley period and less during the peak period.

4.3 Benchmarking the VOS approach

In this section the VOS approach is compared with a a state-of-the-art centralized
optimization in terms of error performance and solving time. We describe the
optimization used for the benchmark followed by the corresponding results.

4.3.1 Benchmark

We formulate the problem as a centralized optimization with a quadratic objective
function. Additionally, we define a continuous and a mixed-integer optimization to
account for different types of decision variables P i,k

EV . For each case, we also consider
complete and partial EV information availability upon solution time.

We use Matlab[67] and Yalmip[68] to model the problem. We do not expect any
tool-specific bias since we only measure the solver’s solving time and use Gurobi[69],
a state-of-the-art solver, to solve the optimization problem.

In the notation below, we use indexes i, k to refer to EV and time step, respectively.
The optimization problem is defined as:

min
P i,k

EV

∣∣∣∣∣
∣∣∣∣∣P k
O + P k

S − P k
D −

N∑
i=1

P i,k
EV

∣∣∣∣∣
∣∣∣∣∣
2

2
(4.3.1)

s.t.
−Di,k

P P
max
EV ≤ P i,k

EV ≤ Di,k
P P

max
EV (4.3.2)
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diag(SOCi)Ei
max ≤ Ei

o +
T∑
k=1

P i,k
EV∆t ≤ Ei

max (4.3.3)

Ei
min ≤ Ei

o +Bk,kP i,k
EV∆t ≤ Ei

max (4.3.4)

P k
agg = P k

D − P k
S +

N∑
i=1

P i,k
EV (4.3.5)

0 ≤ P k
agg ≤ Pmax

G (4.3.6)

where P k
O is a vector containing the constant PO on every element. Di,k

P is the driving
profile matrix containing ones for each EV i connected at time step k. Pmax

EV is the
maximum (dis)charging rate assumed equal for all EVs. Vectors Ei

min, Ei
max and Ei

o

are the minimum/maximum allowed and initial state of charge of EV i’s battery.
The vector SOCi indicates the target state of charge of EV i, and ∆t is the time
step size. Bk,k is a lower triangular matrix that, combined with the charging profile
matrix P i,k

EV , indicates the state of battery charge at every time step.

We want to minimize the deviation of the aggregated power profile from a reference
profile (4.3.1) subject to a maximum (dis)charging power per EV, per time step (4.3.2),
ensuring that the EV’s battery is at least at a certain SOC when departing (4.3.3),
where batteries should remain within their allowed energy levels at all times (4.3.4),
and the total power consumption does not exceed a given threshold (4.3.5-4.3.6).

Equations (4.3.1-4.3.6) refer to the continuous problem. To convert this into the
mixed-integer case, one has to change (4.3.2) so that P i,k

EV can only take the values
{−Pmax

EV , 0, Pmax
EV }.

Clairvoyant Benchmark

In the complete information or clairvoyant case, we assume that all the required
information for the considered period T is known ex-ante. This information includes
PD, PS, and driving profiles for the entire EV fleet. Therefore, we only need to
perform the optimization once, and the result is valid for every time step k until T .
This benchmark yields the best possible solution in terms of performance.
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Figure 4.3.1: Building the EV profile set for the receding horizon approach

Receding Horizon Benchmark

In the partial information or receding horizon case, we assume that only PS and
PD are known for the entire period under consideration. Departure times, however,
are only known for those EVs that are connected at the corresponding time (cf.,
[39]). The optimization problem is solved at every time step k and the result is only
applied in that time step. This benchmark represents a more realistic scenario in
terms of known information, but also the worst case in terms of solving time.

Figure 4.3.1 illustrates how the EV information is built for every time step. As a
reference, the clairvoyant approach would use the entire matrix. We are optimizing
for k = 3 and therefore only consider the information of the EVs connected at this
time step (three EVs) and optimize for the shaded period covering up to the last
known EV departure. The optimization problems are in general smaller but need to
be solved in every time step.

For the evaluation, we concentrate on two metrics: (i) the error with respect to
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the objective, measured as the normalized3 mean squared error (MSE) of Pagg(k)
with respect to PO, and (ii) the solving time measured strictly only for the solver
excluding data acquisition, modeling, and parsing.

We use July 5th, 2012 as starting date, scale the demand by Fdemand = 0.3% to a
peak value of 1.6 MW, and a solar penetration Fsolar = 5. We run the simulations for
fleet sizes of N = 100, 200, ..., 1000. For each N , we generate the scenario once and
use the same data for all cases. That is, for the continuous and integer problems for:
our approach, the clairvoyant, and the receding horizon optimization benchmarks (6
runs per fleet size).

Regarding the settings of the mixed-integer solver, we limit the solving time to 250
min in the clairvoyant case and define a relative optimality gap of 0.05 and a time
limit of 15 min in the receding horizon case. Normally, a lower time limit increases
the deviation from the optimal result and a smaller relative gap increases the solving
time.

4.3.2 Results

The results are divided into: (i) the aggregated power profiles for 600 EVs, (ii) a
performance comparison in terms of objective fulfillment and solving time, and (iii)
a trade-off analysis between objective fulfillment and solving time for different fleet
sizes.

Figure 4.3.2 shows the aggregated power profiles for a fleet of 600 EVs in Watts
(W) for the studied day. The graphs show the resulting Pagg(k) for the continuous
and integer versions of the two benchmarks and the VOS approach, respectively.
They additionally show the pre-aggregated PD(k)− PS(k) profile to put the results
into perspective. There is an expected smoother profile for the continuous case with
respect to the integer one, since continuous values can be calculated to the desired
objective while integer ones need to be combined. Additionally, the receding-horizon
benchmark deviates more from the desired flat profile, particularly at the beginning

3Normalized MSE = 1
T

∑
( PO−Pagg(k)

PO
)2
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Figure 4.3.2: Power profiles for 600 EVs

43



4.3. BENCHMARKING THE VOS APPROACH

of the observation period, and possibly incurring in ramps that are hard to follow
by the system operator. This effect is caused by the lack of future driving profile
information, which is also more pronounced at the beginning.

Figure 4.3.3a illustrates the performance in terms of distance to goal (normalized
MSE) and solving time (seconds) for different EV fleet sizes. The scale of the y-axis
is logarithmic for both measurements. The bars in the solving time figures show the
standard deviation, maximum and minimum values.

As expected, the clairvoyant optimization for the continuous case shows a better
performance in terms of objective fulfillment, because the driving information is
known for the entire control period and the continuous variables can be adjusted
more precisely and faster. However, in the integer case, we see a reduced performance
due to the limited time available for optimization.

Another relevant finding is that our approach performs consistently better than the
receding horizon optimization as the number of EVs increases. On the one hand,
this demonstrates the scalability of our approach and its effectiveness. On the other
hand, it points out the main limitation of our approach: lower performance for small
fleet sizes. Yet, for a fleet size of 300 EVs, the normalized MSE of our approach for
the integer case is already 2.83× 10−3. That is an error of 5% or 60kW for a target
PO = 1.17MW, which one can consider acceptable if the solving time is put into
perspective. Average errors below 1% are possible with fleets of 600 EVs and larger.

The advantages of our approach become clear when observing the differences between
solving times. The VOS approach performs several orders of magnitude better than
both benchmarks. Furthermore, the solving time for our approach is similar for the
continuous and integer cases, whereas it is several orders of magnitude different for
the benchmarks. Additionally, the increase in solving time as the number of EVs
increases is moderate and its variance remains low. These findings emphasize the
flexibility and scalability characteristics of our approach.

Figure 4.3.3b summarizes the findings in a trade-off analysis. It shows the normalized
MSE on the y-axis and the solving time on the x-axis. The closer to the lower
left corner, the better the method. The performance of our approach is consistent,
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Figure 4.3.3: Performance: (a) goal and solving time, and (b) trade-off
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Figure 4.3.4: Scalability of VOS approach for up to 2 million EVs

especially, once a sufficiently large fleet (over 400 EVs) is used. Thus, our approach
provides an attractive trade-off between computation time and objective fulfillment.

Figure 4.3.4 shows the mean solving time for fleets from five thousand to two million
EVs and the standard deviation of this solving time within one experiment, that
is, for the different time steps. The solving time increases linearly with the size
of the problem at a rate of less than 1 second per 1 million EVs, or less than a
microsecond for each additional EV. Furthermore, the standard deviation also grows
proportionally to the size of the problem. Since, in our experiments, we process
every EV sequentially, we believe that the solving time can be further improved with
parallel processing.
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4.4 Reliability Analysis of the VOS Approach

Measuring the MSE is useful for comparing the VOS approach against the benchmark.
In practice, however, it is desired that the error remains below a certain level for
most of the cases. From the electric utility perspective, peaks in demand represent
additional capacity even if the average is low. In this section, we present a method
for analyzing the reliability of the VOS approach in terms of percentiles, followed by
an evaluation for the scenario described in Section 4.2.

4.4.1 Reliability Analysis

The performance of the VOS approach depends on the EV fleet size and the magnitude
of the load. Our reliability analysis has the following objectives: (i) identify the
largest error to expect with a given probability, (ii) find the range of the EV fleet
size that yields the best results, (iii) quantify the influence of external factors, such
as varying demand and weather, on the performance, and (iv) evaluate the approach
for a variable profile PO(k).

We run Monte Carlo simulations for the scenario described in Section 4.2. We use
Fdemand = 3% and fleet sizes of N = 4, 000− 19, 000 in steps of 500 EVs. For each
N , we run 100 simulations, keeping the same values except for the generated driving
profiles. This allows us to eliminate biases resulting from specific driving profile
combinations. The number of simulations was chosen by running 600 simulations for
the smallest N and choosing the point where the error’s accumulated mean varies
less than 1× 10−6 and its standard deviation remains almost constant as shown in
Figure 4.4.1.

We consider the integer problem, i.e., P i
EV (k) ∈ {−Pmax

EV , 0, Pmax
EV }. We measure the

absolute error |PO − Pagg(k)| for every run and time step. Then, we organize the
measurements by EV fleet size and calculate the percentile of the error. For the
evaluation, we report the 80-, 95-, 99- and 99.9-percentiles. In the following, we refer
to the process described above as one Monte Carlo run (MCrun).
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Figure 4.4.1: Monte Carlo error analysis

The evaluation is performed as described in Table 4.4.1. Except for Experiment 4,
the method can be generalized for any objective function and it is not limited to our
load leveling example.
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Table 4.4.1: Reliability analysis experiments

Experiment Description
1. Performance,

Fleet Size and
Solar Penetration

We use July 5th, 2012 as in the benchmark and Fsolar = 1. This returns
the relationship between the fleet size and performance for these specific
conditions. Then, we increase Fsolar =2,3,4,5 with one MCrun/step.
This gives us an insight of the influence of an increased solar penetration
on the performance.

2. Seasonal
Influences

We use random weekdays for a given season for each of the 100
repetitions, but use the same dates for the different values of N within
an MCrun and one MCrun per season. The load and solar generation
are taken exactly for the generated date, and the driving profiles are
produced for the corresponding season and day type. This gives us
some information on the influence of seasonal factor (demand and solar
generation variations) and at the same time eliminates day-specific
biases.

3. Fleet Size vs.
Demand Ratio

We use July 5th, 2012, a fixed N to Fdemand ratio of 8000 to 3% of
Munich’s load (around 16MW peak), and N = 400, 800, 4,000, 8,000,
16,000, 32,000, 64,000, 128,000 in one MCrun. This gives us insight
into whether the performance is dependent on the N : Fdemand ratio.
In other words, whether we can increase the load proportionally to the
fleet size and get equivalent results.

4. Prediction
Accuracy

We vary PO by factors of 0.95, 0.99, 1.01, and 1.05 with one MCrun/step.
Since the calculation of PO depends on the expected values for PD, PS ,
and

∑
P i

EV , this evaluation indicates the sensitivity of the VOS
approach with respect to prediction errors for this specific use case.

5. Variable Power
Profiles

We use a variable PO(k) instead of a constant PO. We evaluate two
use cases as described in Section 4.2. The first is a demand-following
profile that follows the shape of the inflexible demand but uniformly
shifted according to the additional energy requirements. The second is
a valley-filling profile that follows the shape of the inflexible demand
but increases the share of additional energy requirements during the
lower consumption times.
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4.4.2 Results

The results in the following are illustrated with percentile graphs. These graphs
display the number of EVs on the x-axis, the normalized absolute error on the y-axis,
and the 80-, 95-, 99- and 99.9-percentiles. These percentiles show the maximum
magnitude of the error for the given percentage.

Performance, Fleet Size and Solar Penetration

Figure 4.4.2 illustrates the results from experiments 1 and 2 of the reliability analysis.
Figure 4.4.2a shows the percentile analysis considering the given date and current
solar generation capacity in Munich. The remaining figures reflect the influence of
an increased solar generation capacity of up to five times the current one.

The choice of an EV fleet size depends on the requirements agreed upon between the
aggregator and the utilities. The factors influencing this choice are the maximum
allowed error and the probability that errors fall within this allowed maximum. For
example, with current solar generation, we could achieve relative errors below 1%
for 80% of the cases with a fleet of 5,000 EVs. However, if the requirement is a 99%
reliability, we can only commit to errors below 5% with a fleet of at least 9,000 EVs.

There is a clear tendency of a better performance the larger the fleet size, especially
for higher percentiles. However, the 80-percentile tends to increase with the fleet
size, indicating higher error values but a more homogeneous behavior.

This tendency is better illustrated in Figure 4.4.3. As the size of the fleet increases,
the proportion of the inflexible demand in the aggregated load decreases. Therefore,
the peaks from the inflexible demand have less influence on the aggregated load,
resulting in fewer outliers. However, the influence of the EV energy requirements
increases, which in turn causes generally higher errors.

The results in Figure 4.4.2 also show that an increase in solar penetration has a
positive effect: better results can be achieved with smaller fleets. On the one hand,
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Figure 4.4.2: Percentile analysis for (a) 1x; (b) 3x; (c) 5x; and (d) 6x the current solar penetration
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Figure 4.4.3: Box plot: normalized absolute error with current solar generation

the target PO decreases as the solar penetration increases. On the other hand, solar
energy tends to be generated also during high demand periods (i.e., during the day)
which in practice reduces the magnitude of the peaks. Although this experiment
focuses on one specific day, we observed a similar behavior for different days and
seasons. This suggests that using the VOS approach for load leveling could potentially
facilitate solar integration.

From the applicability perspective, these findings are also relevant. As the solar
penetration continues to increase, aggregators do not need to worry about negative
effects from increased penetration. On the contrary, they could increase their service
capacity while keeping the same infrastructure and expenses.
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Seasonal Influences

Figure 4.4.4 illustrates the results for Experiment 4 of the reliability analysis. Figure
4.4.4a - 4.4.4d show the performance of the VOS approach for different seasons.
Although there are some variations from season to season, we observe a relatively
consistent performance throughout the year. Since this evaluation covers the entire
year, it could be seen as the tool for aggregators to decide on the fleet size or load
magnitude to commit to.

Figure 4.4.5b shows a similar evaluation but done throughout the whole year. In
other words, it would be equivalent to merging all seasonal evaluations but with one
fourth of the samples. As such, it gives an overview of the performance for an entire
year.

Contrary to the evaluation yielding to Figure 4.4.5b, where the driving profiles
where generated according to the season of the corresponding random date, Figure
4.4.5a illustrates the performance when no seasonal filter is applied. We observe a
significant deterioration in the overall performance. This could indicate a correlation
between power consumption and driving patterns between seasons. Furthermore,
it emphasizes the importance of accurate driving models and data, especially for
feasibility studies.

Finally, we also evaluate the VOS approach for weekends instead of weekdays.
The results are illustrated in Figure 4.4.6. From the aggregator’s perspective, this
evaluation indicates whether a given performance is maintained for different day
types. The way we see it, aggregators would define parameters based on weekday
evaluations since they account for most of the operation time. Still, they would verify
that there is no major performance deterioration during weekends. In our results,
there are no negative effects in performance. That said, we have significantly less
data for weekends as we have for weekdays, so the results in Figure 4.4.6 could be
challenged.
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Figure 4.4.4: Percentile analysis for (a) winter; (b) spring; (c) summer; (d) fall
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Figure 4.4.5: Effects of seasonal driving profiles
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Figure 4.4.6: Percentile analysis for weekends
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Fleet Size vs. Demand Ratio

Figure 4.4.7 shows the results for Experiment 3 in the reliability analysis. The
objective of this analysis is to evaluate whether a given result can be generalized to
an arbitrary fleet or load size.

The performance remains constant for fleets of 16 thousand EVs and higher. It also
remains constant for 4 and 8 thousand EVs. In addition to the jump from 8 to 16
thousands, in our experiments we also see a decrease between Ns in the hundreds
and in the thousands, yet constant within the range of its order of magnitude.

This effect is likely to be related to a precision effect. The lowest step in power is
related to the PEV of a single EV. For example, the impact of 250 EVs would amount
to 1MW. That is an error of around 6% for a fleet size of 8,000 and 3% for a fleet
size of 16,000, which is consistent with the results for the 99-percentile. For fleets of
100 - 1,000 EVs, the influence of the lowest step with respect to PO is larger than
for fleets of 1,000 - 10,000 EVs. After a certain fleet size is reached, this effect is no
longer noticeable.

Our experiments thus indicate that this result can be extrapolated to an arbitrary
fleet or load size within a range of at least one order of magnitude. This has positive
implications for aggregators as their service providing capacity would increase linearly
to the fleet size.
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Figure 4.4.7: Percentiles for a fleet-size-to-demand ratio of 8000:3%
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Figure 4.4.8: Percentile analysis for P ′O = (a) 0.95PO, (b) 0.99PO, (c) 1.01PO, and (d) 1.05PO
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Prediction Accuracy

Figure 4.4.8 illustrates the results for Experiment 4 of the reliability analysis. Unlike
the previous evaluations, the relevance and interpretation of these findings are specific
to the objective of choice. In our case, we aim at power leveling, so the magnitude
chosen as objective PO must ensure that the power supply/demand balance is met.
The evaluation indicates the impact of errors in the prediction of the total energy or
the average power demand.

The sensitivity towards an error in the objective PO is relatively high. Already at 1%
(Figure 4.4.8b and 4.4.8c), we see different performance compared with Figure 4.4.2a.
This could indicate a significant challenge for pursuing a load leveling objective.
Yet, it can be argued that errors in predicting averages are in principle lower than
those for predicting time series. Figure 4.4.8a and 4.4.8d show the performance for
prediction errors of 5%. The results suggest that for this scenario it is better to
underestimate PO rather than overestimate it.

The sensitivity towards variations in PO is not specific to the VOS approach, but to
the requirement of defining an objective PO ex-ante. One alternative to minimize
errors in prediction would be to update PO for shorter time periods, e.g., hourly
or every 15 minutes. Another alternative is to use the result of an aggregated
optimization, e.g., a unit commitment like in [12] and [45] to define a specific target
PO and then use the VOS approach to reach this target.

From the aggregator’s perspective, these findings could help in the formulation of
commitments depending on the availability of predictions and their quality.
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Figure 4.4.9: Demand following and valley filling profile and percentile analysis
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Variable Power Profiles

Figure 4.4.9 show the results for the demand-following and valley-filling use cases
respectively. In Figure 4.4.9a and Figure 4.4.9b, we see the target and achieved
profiles for a fleet of 4,000 EVs. The difference in the target profiles PO(k) is mostly
visible in the period between 00:00 and 06:00, where the valley-filling profile is higher.
As we get closer to 12:00 in both sides, the valley-filling profile is very close to the
inflexible demand while the demand-following profile keeps the same shift along the
entire day.

The VOS approach succesfully matches the power profile in both cases. Furthermore,
the percentile analysis in Figure 4.4.9c and Figure 4.4.9d show that low errors can be
achieved also for larger fleets. In our use cases, we are able to match the valley-filling
profile better than the demand following one. The valley occurs at night when more
EVs are parked.

These results show that the VOS approach is also suitable for variable power profiles.
In general, the VOS approach distributes the available resources in order to meet
a certain target. This target PO(k), however, has to be feasible, and, although the
VOS approach does not test this feasibility, it does minimize the deviation from it.
In practice, the feasibility of PO(k) would be addressed by the entity setting this
target, e.g., the DSO.

61



4.4. RELIABILITY ANALYSIS OF THE VOS APPROACH

62



Chapter 5

Extensions to VOS

This chapter presents two extensions to the VOS method and closes with a general
discussion. Section 5.1 introduces a message reduction strategy and corresponding
results. Section 5.2 explores alternative signal designs and their corresponding effects.
Finally, Section 5.3 presents a discussion on the VOS approach and its different
extensions.

5.1 Reducing VOS Message Requirements

The VOS approach enables vehicles to compute signals reflecting their need for
charge and willingness to supply power, and an aggregator to collect these signals
and implement the control in a computationally efficient manner. However, it still
requires messages to be exchanged at every time step. For example, for performing
control in 15 minutes intervals, we need to send and receive messages every 15 minutes.
This load becomes more significant as the number of EVs and the granularity of the
control intervals (i.e., milliseconds or seconds instead of minutes) increase. Since
signal computation and control are decoupled, it is possible to reduce this requirement,
independently of the length of the control interval.
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The concept of a single broadcast signal is present in incentive-based approaches
like [38] and [13]. The idea of broadcasting a set point signal is also explored in [48].
These concepts allow for the reduction on message requirements from the aggregator
to the EVs. In this section, we build on these concepts to reduce the aggregator-to-
EVs message requirements. Furthermore, we exploit the modular characteristic of
the VOS approach to reduce the EVs-to-aggregator ones.

5.1.1 EV-to-Aggregator Messages

In the original VOS approach, a message containing the values of the NfC and
WtS signals is sent in every time step. From (4.1.5) and (4.1.7), we identify that
these signals only depend on local information. Furthermore, the only value that is
externally influenced is the energy level of the EV’s battery Ei

bat which depends on
the charging power P i

EV assigned by the aggregator.

Since the range of values for PEV is known, it is possible to calculate a set of possible
future values for NfC and WtS in terms of PEV . This set of possible values can be
sent to the aggregator in a single (and larger) message with a lifetime of several time
steps. On every time step, the aggregator can then choose the NfC and WtS values
for each EV depending on the calculated P i

EV , instead of receiving a new message.

Figure 5.1.1 illustrates how an EV builds the set of possible NfC values. Messages
are sent at the time step k = τ and have a message lifetime of TM time steps. For a
given EV, τ is equal to the arrival time step kin for the first message. The EV then
computes the possible NfC values based on the possible values of PEV .

As k increases, the set of possible NfC values forms a complete V -ary tree [70], where
V indicates the number of values that PEV is allowed to take. The height of the tree
hM is TM − 1 except when the EV departs before the end of the message lifetime or
kidep < τi + TM resulting in hM = kidep − τi − 1.

There is, however, a significant trade-off between the reduction of the number of
messages and the message size. For our V -ary tree, the total number of nodes (i.e.,
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k = τ 
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Figure 5.1.1: The NfC value set

NfC values) is [70]:

LiM(τi) = V hM (τi)+1 − 1
V − 1 (5.1.1)

where:

hM(τi) + 1 = min(TM , kidep − τi) (5.1.2)

The lower bound in terms of the number of messages can be achieved if the message
lifetime TM →∞. In this case, every EV sends only one message which is valid for
the entire plug-in period. The message size depends on the length of this plug-in
period and therefore varies from EV to EV.

From (5.1.1), we can see that the size of the message depends also on V . This means
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that PEV can only take on a discrete number of values so this approach cannot be
applied for a strictly continuous PEV . However, it is possible to approximate this for
a continuous approach by increasing the granularity of PEV at the cost of increasing
V . For a granularity of Pmax

EV

P step
EV

, we would have:

V = 1 + 2
P step
EV

(5.1.3)

E.g., if we want a granularity of one tenth of Pmax
EV , then V = 21.

The lower bound in terms of message size is therefore achieved when P step
EV = 1 so

P i
EV (k) can take on the values {−Pmax

EV , 0, Pmax
EV } and V = 3, i.e., we have a tertiary

tree. The other lower bound for the message size holds when TM = 0 but that means
sending messages every time step which is against our objective.

A second tree could be built for the WtS signal. However, since both values depend
on the same PEV , this is solved more efficiently by integrating both values into the
tree. That is, each node of the tree contains a value for NfC and WtS. This also
would enable a more efficient data compression and lower overhead. For example,
one would need a single pointer for both values and one could compress both values
into a single frame.

Since our tree is full and complete, we don’t have a significant overhead in terms of
structures. A serialized list could be sent by the EV and ordered by the aggregator
based on a predefined sequence. Therefore, we approximate the new message size as
LiM(τi) times the original (one NfC and WtS) message size.

Still, the message size grows exponentially and this method should be applied with
caution. Table 5.1.1 presents message size values in terms of number of nodes for
V = 3, 10 and TM = 4, 10 to give some intuition on the actual cost of this approach.

Table 5.1.1: Number of nodes for different V and TM

TM

V 4 10
3 40 29,524
10 1,111 1.1x109
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To strictly minimize the number of messages, we also want to avoid large messages
that need to be fragmented before being sent. In addition, we want to include as
much information as possible within this single unit. We therefore use the concept
of maximum transmission unit (MTU) in communication networks to define a target
message size that ensures no fragmentation and maximum information exchange.

We define the net MTU as the payload size without transmission overhead, i.e.,
MTUnett = MTU − OHnw. The number of nodes would be LtarM = MTUnett

Snode
, where

Snode is the node size in bytes, and depends on the protocol and compression applied.
LtarM is only an intermediate value and can take any real value.

From (5.1.1) and (5.1.2), we define the tree’s target height which in turn defines the
target message lifetime T tarM as:

htarM =
log

(
(V − 1)LtarM + 1

)
log V − 1 (5.1.4)

T tarM =
⌊
htarM + 1

⌋
=

 log
(

(V − 1)LtarM + 1
)

log V

 (5.1.5)

The actual number of nodes sent is:

Ltar∗M = V T tar
M − 1
V − 1 (5.1.6)

For example, an Ethernet network has MTU = 1500 bytes, which is also a common
default value for DSL and 3G routers. For an overhead of 10% (reasonable when
considering higher level protocols) and Snode = 8, corresponding to two (NfC and
WtS) floating point values of 4 bytes each, we have MTUnett = 1, 350 which for V = 3
can fit up to LtarM = 168.75 nodes, allowing for a message with lifetime T tarM = 5 time
steps and Ltar∗M = 121 tuples of NfC/WtS values.
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5.1.2 Aggregator-to-EV Messages

The VOS approach implements a direct control by sending a charging instruction
to every EV. These instructions depend on the EV’s NfC and WtS values and the
available resources at the time. If we consider the integer case, meaning that P i

EV (k)
can take the values {−Pmax

EV , 0, Pmax
EV }, the aggregator assigns resources based on a

highest-first approach. That means that the NfC of the last EV that was instructed
to charge can be seen as a set point: all EVs with higher NfC charged and all EVs
with lower NfC did not.

One can potentially reduce the control messages to a single broadcast signal containing
the set point values for the NfC and WtS. For this to yield the same results, however,
each EV must have unique values for NfC and WtS, and since these only depend on
local EV information, we cannot ensure uniqueness. We therefore propose a solution
in which the set point values for NfC and WtS are coupled to a probability rate to
steer those EVs having NfC or WtS values equal to the set point. In other words,
for the NfC case, those EVs with higher NfC than the set point charge, those with a
lower do not and those with an NfC equal to the set point charge with probability
p(NfC).

The aggregator’s algorithm is modified as shown in Algorithm 5.1.1. The EV receives
the broadcast signal and checks first the NfC set point. It charges if (i) its NfC is
larger, or (ii) its NfC is equal and a random function returns true. If the EV does
not charge, it checks the WtS set point and discharges if (i) its WtS is larger, or (ii)
its WtS is equal and a random function returns true. This random function returns
true if the output of a uniform random number generator of range [0,1] is less than
or equal to the set point’s probability rate coupled to the NfC or WtS, respectively.

The use of a probability factor implies an increase in uncertainty. This uncertainty,
however, exists only for those cases where there are more vehicles with the same
values as the set points. The probability of having more than one EV with the same
NfC or WtS values increases with the number of EVs. Nevertheless, the impact of
this uncertainty also decreases as the fleet size increases. The more EVs, the likelier
it is that the practical distribution matches the theoretical one.
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Algorithm 5.1.1

Algorithm 5.1.1: Aggregator with broadcasting

1. Pagg(k)← PD(k)− PS(k)

2. Sort EVs by NfC in descending order (index i∗)

3. While Pagg(k) < Pmax
agg & NfC = CQoS

(a) Pagg(k)← Pagg(k) + Pmax
EV

(b) i∗++

4. While Pagg(k) ≤ PO(k) & Cfull < NfC < CQoS

(a) Pagg(k)← Pagg(k) + Pmax
EV

(b) i∗++

5. NfC_Set_Point ← NfC(i∗)

6. Calculate Probability Rate

(a) a← Count NfC = NfC_Set_Point in Sortedlist (0:i∗-1)

(b) b← Count NfC = NfC_Set_Point in Sortedlist (0:end)

(c) NfC_Probability_Rate ← a/b

7. Sort remaining EVs by WtS in descending order (index i∗∗)

8. While Pagg(k) > PO(k) & WtS > CnoS)

(a) Pagg(k)← Pagg(k)− Pmax
EV

(b) i∗∗++

9. WtS_Set_Point ← WtS(i∗∗)

10. Calculate Probability Rate

(a) a← Count WtS = WtS_Set_Point in Sortedlist (0:i∗∗-1)

(b) b← Count WtS = WtS_Set_Point in Sortedlist (0:end)

(c) WtS_Probability_Rate ← a/b

11. Broadcast

• NfC_Set_Point, NfC_Probability_Rate

• WtS_Set_Point, WtS_Probability_Rate
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5.1.3 Combined Approach

It is possible to combine the two approaches above to enable further reduction
in the number of messages. This, however, requires some adjustments. The EV-
aggregator message reduction is based on the principle that future NfC/WtS values
can be accurately predicted for a given charging action. However, the aggregator-EV
message reduction introduces a degree of uncertainty that challenges this predictability
principle. The EV does not know beforehand if and when a case with NfC/WtS
equal to the set point will occur, nor the action that would be taken accordingly.
The aggregator knows how many EVs are under this condition and, of those, how
many are expected to take action, but it does not know which EV takes what action.

This challenge can be addressed by introducing a retransmission protocol. Whenever
an EV encounters a set point value equal to its NfC or WtS, it schedules a message
transmission for the next time step. That is:

Algorithm 5.1.2

Algorithm 5.1.2: Retransmission modification

If NfC(k) = NfC_Set_Point OR WtS(k) = WtS_Set_Point:
τ ← k + 1.

The trade-off here is the number of triggered retransmissions. A retransmission is
triggered if either the NfC or the WtS are equal to the set point, so the number of
retransmitted messages Mrtx depends on how often this happens. Yet, Mrtx is the
upper bound for the cost of combining both approaches. Since the message lifetime
TM remains the same, the new message spans over τnew +TM , so no message needs to
be sent at τold +TM + 1. The closer the retransmission is to the original transmission,
the higher the cost of retransmission, and the higher the amount of transmitted data
that is later discarded.

For example, an EV sends its NfC/WtS tree upon connection, receives a broadcast
signal with the set point equal to its NfC and the random function results in a
charging action "charge." The aggregator has no way of knowing what charging action
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Table 5.1.2: EV-to-aggregator message reduction results

Signal
size
(bits)

MTU
per mes.

Mes.
life time
TM

Reduction
in total

Mes.
per EV
(mean)

Reduction
in mean

Mes.
per EV
(3-qtile)

Reduction
in
3-qtile

32 1 5 79.4% 12.9 79.4% 16 79.2%
32 2 6 82.7% 10.8 82.7% 13 83.1%
32 3 6 82.7% 10.8 82.7% 13 83.1%
16 1 6 82.7% 10.8 82.7% 11 83.1%
16 2 7 85.0% 9.4 85.0% 11 85.7%
16 3 7 85.0% 9.4 85.0% 11 85.7%
8 1 7 85.0% 9.4 85.0% 11 85.7%
8 2 7 85.0% 9.4 85.0% 11 85.7%
8 3 8 86.8% 8.2 86.8% 10 87.0%

the EV took so it cannot choose the next NfC value from the tree. The EV needs to
retransmit a tree in the next time step, which, since happening shortly after the first
transmission, results in more messages and a large amount of data sent but not used.

5.1.4 Results

We compare the traditional VOS and the message-efficient VOS approach by running
one MCrun for each of them, following the same experimental setup as described in
Section 4.4. We use random weekdays in spring for each of the 100 repetitions, but
use the same dates for the different values of N within an MCrun and for the two
approaches. The load and solar generation are taken exactly for the generated date
and the driving profiles are produced for spring weekdays. Although our use case is
based on 15 minutes control intervals, the results are relative to k and TM , and are
therefore valid for shorter intervals.

EV-to-Aggregator Messages

Table 5.1.2 summarizes the results for the EV-to-Aggregator message reduction
method. We analyze the MCrun for 4,000 EVs, that is 100 simulations each with 96
time steps. We report results for different sizes of NfC/WtS signals and number of
MTUs per message. We assume it is possible to format the NfC/WtS to different
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Figure 5.1.2: Percentile performance for aggregator-to-EV message reduction

bit sizes (8-32) and consider up to three 1500 bytes-large MTUs per message with
an effective payload of 90%. The message lifetime is calculated based on (5.1.5).
Reductions are reported as 1− result/reference, where the references are the total,
mean, and 3rd quartile of the messages sent by EVs in the traditional VOS.

We achieve savings of at least close to 80%. We can improve reduction by allowing
messages larger than one MTU (fragmentation) or compressing the data. The second
alternative should be preferred as it also reduces number of packets and therefore
the network usage.

Aggregator-to-EV Messages

Figure 5.1.2 presents the results for the message reduction at the aggregator level.
These graphs display the 80-, 95-, 99- and 99.9-percentiles with the number of EVs
on the x-axis and the normalized absolute error on the y-axis, for the original VOS
and the broadcast signal approach.
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Table 5.1.3: Combined approach message reduction results

Reduction vs. Mean Minimum Maximum
EV-only approach 56.5% 48.4% 70.1%
Agg-only approach 47.5% 37.8% 64.0%
Traditional VOS 73.7% 68.9% 82.0%

The results for up to a fleet size of 7 thousand EVs are very similar for both
approaches. Less EVs result in less occurrences of signals with the exact same values.
The 80-percentile remains mostly unaffected while the higher percentiles show a
negative impact on performance, until around 16 thousand EVs. For very large fleets,
the cases of exactly equal signal values are higher but also the randomization tends
to the desired uniform shape. The impact, however, is below 0.01 for the highest
percentile and quite minimal for the rest.

The benefits of this approach become significantly higher as the fleet size increases.
Since we only broadcast one message, independently of the fleet size, this approach
saves 3,999 messages per time step for a 4,000 EV fleet and 19,999 for an EV fleet of
20,000 EVs.

Combined Approach

Table 5.1.3 presents the results for the combined approach. We analyze the MCrun
for 4,000 EVs and compare the results against the two message-efficient alternatives
applied separately and the traditional VOS approach. We consider the case with
TM = 5. We count the total number of messages sent for each of the 100 simulations,
calculate reductions per run and report mean, maximum, and minimum. Reductions
are reported as 1 − result/reference, where the references are the total number of
messages sent by EVs and aggregator in one run.

In all cases, we achieve significant reductions which suggests that it is worth to
combine both approaches. The most important factor influencing the reduction is the
number of retransmissions. In our experiments, we experienced on average around 87
thousand retransmission per run. That is around 21 messages per vehicle or almost
twice the average of the EV-reduction approach. These number of retransmissions
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are biased to our data source. Since we have a limited number of samples to produce
driving profiles, we generate a number of similar profiles for larger fleets. Similar
profiles produce similar VOS signals which increase the probability of retransmission.
We therefore believe that the reduction in a real world scenario is potentially higher.

74



CHAPTER 5. EXTENSIONS TO VOS

5.2 Alternative Signal Design

In this section we explore the use of alternative signal designs for the NfC. We take
the original design of the NfC signal and experiment with its curvature. This can
be seen as modifying the risk affinity of the EVs, i.e., a linear function would be
more risk balanced and a concave function would be more risk averse. We analyze
the effects of these alternative signals in terms of the algorithm’s performance and
the benefits for the EVs. Particularly, we explore the magnitude and probability
of errors with respect to a reference power profile and the energy available in the
batteries relative to the remaining parking time.
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Figure 5.2.1: Original NfC signal

5.2.1 Alternative NfC Signals

In the traditional VOS approach, the NfC is computed by every EV on every time
step based on (4.1.5). From (4.1.3-4.1.6), we observe that, if the energy level Ei

bat

does not change, the NfC signal shows a 1/k behavior in the interval between Ctar
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and CQoS. Figure 5.2.1 shows the NfC behavior of an EV parked during the interval
k = [30, 80] and Ei

bat = 10kWh. For the NfC signal we use Ctar = 0.1 and CQoS = 1.

We consider the NfC signal to be a utility function. Since the concavity of a utility
function indicates its level of risk aversion [71], we can say that the original NfC is a
risk-affine function. The value of NfC initially increases slowly and accelerates as
the deadline or departure time approaches. A concave NfC function would increase
faster at the beginning and slower towards the end, showing a greedy behavior.

Since the threshold policy implemented in the VOS approach ensures that the EV
charging requirements are met before departure, the risk plays no role for EVs leaving
according to schedule. The risk, however, may play a role for EVs leaving before the
planned deadline, since with the current risk strategy they would be more likely to
charge towards the end of the parking period.

From the aggregator’s perspective, one could expect that a risk-affine strategy for
the NfC brings more flexibility to the aggregator and contributes towards improved
performance. Yet, extremely risky functions may cause also very fast growth of the
NfC towards the end of the parking periods, which could have a negative effect on
the algorithm’s performance.

We define six alternative NfC signal designs for this study:

• NfClinear - a linear approximation of the original NfC

• NfCsafe - a concave version based on the original NfC

• NfCdynamic - a function with varying convexity,

• NfCpow2 - convex function built from the square of the linear approximation

• NfCpow4 - convex function built from the 4th power of the linear approximation

• NfCpow8 - convex function built from the 8th power of the linear approximation

The first three signal designs provide insights on the effects of risk reduction on
the algorithm’s performance and the benefits for EVs. The last three signal designs
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provide information on whether the algorithm’s performance can be improved by
increasing the risk. In the following we describe the signal design process.

The NfC is calculated by every EV on every time step. Since it depends on both
the current battery level and the ratio between required and available times, its
parameters constantly change. Therefore, for every EV and every time step, we
generate an NfC function with the parameters valid at the given time. First, we
calculate the current NfC value based on the original algorithm as in (4.1.5). Then,
we use (4.1.5) and the arrival and departure times to generate the curve for the
original NfC with the current parameters. Next, we identify the time interval and end
points where the NfC takes values between Ctar and CQoS. Finally, we identify the
value pairs for the end points of the above interval (knfc.min, NfCmin) and (knfc.max,
NfCmax).

To generate NfClinear we produce a linear function crossing the end points. If we
take a line to be y = mx+ b, or NfClinear = mk + b, we have:

m = NfCmax − NfCmin

knfc.max − knfc.min
(5.2.1)

b = NfCmax −m · knfc.max (5.2.2)

To generate NfCsafe, we reflect the original NfC on NfClinear, resulting in:

NfCsafe = m ·
(
kdep −

kreq
NfClinear

)
+ b (5.2.3)

The NfCdynamic is a linear combination of NfCoriginal and NfClinear, weighted by a
safety factor Fsafety. That is:

NfCdynamic = Fsafety · NfCsafe (5.2.4)
+ (1− Fsafety) · NfCoriginal
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Figure 5.2.2: Signal designs: (a) linear, safe, and dynamic NfC signal designs; and (b) pow2,
pow4, and pow8 NfC signal designs

Fsafety can take fixed or dynamic values between 0 and 1. An example of a dynamic
value is:

Fsafety = NfClinear/max(NfClinear) (5.2.5)

Figure 5.2.2a shows the original, linear, safe and dynamic versions of the NfC signal
for an EV parked during the interval k = [30, 80] and Ei

bat = 10kWh. For the NfC
signal we use Ctar = 0.1 and CQoS = 1 and Fsafety = 0.5.

To generate NfCpow2, NfCpow4 and NfCpow8, we take the NfClinear and increase it to
the corresponding power. This results in a set of functions with similar parameters
but different levels of convexity. Figure 5.2.2b shows these functions for the same
EV mentioned above.

Although we use different NfC signal designs, in this paper we consider the case
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where all EVs follow the same signal design within a given scenario. In other words,
a game theoretic analysis, where different EVs can follow different risk strategies, is
out of the scope of this work.

5.2.2 Results

We compare the original NfC design and the proposed designs by running one
MCrun for each of them, following the experimental setup described in Section 4.4.
Additionally, we evaluate the progress of the batteries’ SOC during the parking
period. To do so, we normalize all parking periods to a 10-interval period and
extrapolate or average values accordingly. We then evaluate the SOC relative to the
target SOCi

tar on each interval. That is, if an EV had a target of 85% and by half of
its parking period has reached 95%, the relative SOC for this period would be close
to 1.12. This allows for an homogeneous evaluation for all EVs.

Algorithm Performance

Figure 5.2.3 summarizes the results for algorithm performance. We see a decrement
in performance when using the NfCsafe design. In the safe design, EVs tend to behave
more greedy and therefore reduce the flexibility of the aggregator. The NfClinear

and NfCdynamic designs offer very similar performance to that of the original design.
We identified a slightly better performance of the dynamic design for fleets below
8 thousand EVs. Figure 5.2.4 illustrates how NfCpow2 to NfCpow8 designs show a
significantly inferior performance.

These results suggest that a lower risk strategy with a linear or dynamic design does
not have a significant impact on the performance. Furthermore, a higher risk strategy
based on power versions of the linear design have a negative effect on performance.
Since all EVs follow the same strategy and the aggregator always favors EVs with
higher NfC, independently from how much higher the value is, a lower risk strategy
provides comparable performance as long as the threshold values are not constantly
being met.
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Figure 5.2.3: Original (a), safe (b), linear (c), and dynamic (d) NfC signal designs
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Figure 5.2.4: Pow2 (a) and pow8 (b) NfC signal designs
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EV Intermediate SOC

It is desired that, while keeping the performance, EV batteries charge as early as
possible. In this way, they would be less affected in case of an early departure. Figure
5.2.5 shows the relative SOC for 25% and 1% of the EVs with the lowest relative SOC
during their parking period. The results show that the lower 1% do benefit from a
linear or dynamic risk strategy with a difference up to over 10% of additional SOC.
Furthermore, a safe risk strategy has negative results which indicates that following
a greedy strategy is decremental for both common and individual objectives. For the
lower 25% the negative impact of the safe approach is more significant. Furthermore,
the original NfC design performs slightly better than the linear and dynamic one at
the beginning of the parking period. Our experiments also showed than on average
there is little difference between the different strategies.
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Figure 5.2.5: Lower 25% (a) and 1% (b) relative SOC values over a parking period
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5.3 Discussion of VOS

This work presents the VOS approach and four main studies around it. First, a
benchmark of the VOS approach against a centralized optimization alternative.
Second, a reliability analysis, where we determine the upper bound of the error with
a given probability. Third, a method for reducing the communication overhead of
the VOS approach in terms of number of messages. Fourth, an alternative signal
study with focus on global and individual performance.

Our benchmark analysis shows that the VOS approach offers a very attractive
trade-off between computational complexity and performance. Furthermore, our
experiments show good scalability with a linearly increasing solving time of less
than one second per one million EVs. Although the benchmarks could be made
more competitive by better tuning of the solvers, their solving time remains in the
best case polynomial while the VOS approach shows a linear solving time, which
could be further improved through parallelization.

Nevertheless, a combination of the VOS approach with an optimization approach
could in some cases be appropriate. Offline optimization methods could be used for
defining accurate objectives like day or hour ahead estimations, when solving time is
not a major concern,. Optimization methods, where the aggregated EV behavior can
be efficiently calculated regardless of the fleet size, could define grouped or clustered
resources to be then individually allocated by the VOS approach.

Beyond its computational advantages, we would like to emphasize the flexibility of
our approach. First, it decouples constraints and objectives so that EVs can readily
change their priorities and objectives (e.g., battery lifetime maximization) without
affecting the aggregator’s design and vice versa. Second, it has low dependency
on forecast accuracy since decisions are made only based on current information.
Third, although it solves the problem only for the current time step, it does take into
account future states of the EVs since this information is integrated in the NfC/WtS
signals. Last, it preserves the EV owners’ data privacy since only calculated scalars
are sent.
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To capitalize on the computational and flexibility benefits of the VOS approach, we
need to demonstrate its applicability. The reliability analysis provides promising
insights regarding this applicability. Through the reliability analysis, we quantify
performance in terms of accuracy and respective probability. This analysis also
allows us to determine the influence of PD, PS, and the fleet size on performance.
Furthermore, it shows that the VOS approach works under different seasonal and
weather conditions. This reliability metric could also be used to identify the crucial
parameters of the VOS approach. In practice, it is a method that would allow an
aggregator to define its commitments based on the fleet size or vice versa.

Our results show that the required fleet size to achieve a certain performance
may decrease as the solar generation capacity increases. This has two positive
consequences. First, it shows that the VOS approach could be a good method for
facilitating distributed renewable energy integration using EVs. Second, it provides a
future-proof alternative to aggregators as the solar penetration continues to increase.

Moreover, we also establish a relationship between the fleet size, the load, and
the performance that enables aggregators to safely update their commitments
proportional to the addition of new EVs to the fleet. For our Munich load leveling
scenario, 6-10 thousand EVs for 3% of Munich’s load provided good results. In other
words, such a fleet size could level the load of an area with around 40 thousand
inhabitants1 with errors under 3% in 99.9% of the cases. This still requires 15% to
25% of the population to drive an EV. Such a level of penetration is only foreseeable
in the long term.

The VOS approach can be made more message-efficient. The introduced modifications
allow us to significantly reduce the number of exchanged messages, enabling a more
efficient use of communication resources with negligible influence on performance
and preserve the computational efficiency, modularity, and privacy-preserving char-
acteristics of the approach. By exploiting this modularity, we split the problem into
EV-to-aggregator and aggregator-to-EV message reduction.

EV-to-aggregator messages are reduced by around 80% by transmitting tree structures

1Proportion of load (Fdemand) vs. served population [65]
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containing future possible values in a single message, with the trade-off of an increased
message size. To keep this size within applicable limits, we restrict it to one or a few
MTUs resulting in message sizes within the kilobyte range. Since the MTU of a given
path varies depending on the type of network and even varies with network utilization,
one improvement could consider dynamically adjusting the message lifetime to the
reported MTU (e.g., path MTU discovery) at a given time.

Aggregator-to-EV messages are reduced by broadcasting a single control signal as
opposed to individual ones. This single message contains a pair of set point values
and probability factors for NfC and WtS. Savings of over 99.9% are possible with a
minor impact on performance.

Combining both approaches is possible but requires a retransmission protocol. Results
show overall savings of more than 70% in comparison with the traditional VOS
approach and improvements of at least 50% with respect to the two methods applied
individually.

The message-efficient modification makes sense when the time steps or control periods
become shorter, i.e., messages are exchanged on a seconds or shorter basis. For time
steps in the minutes range, the benefits are limited. Larger time steps require less
frequent communication but would tend to group message exchanges into smaller
periods. This results in peaks of transmitted data, which may become critical when
using the EV message reduction method, since messages increase in size. This issue
can be addressed with protocols that distribute the load over a longer time frame.

One benefit of our modular approach is the possibility of an alternative signal design.
Since the signal design is decoupled from the control, it is possible to modify it in
order to reach a particular objective. Alternative signal designs could either improve
the performance in terms of following a given power profile or increase the benefits
to the EVs in terms of battery levels along the parking period. Results show that
increased risk strategies may have a negative influence on performance as opposed
to an expected positive one. Furthermore, the risk-moderate strategies studied,
i.e., the linear and dynamic NfC designs, do not have a significant influence on the
performance and provide an additional benefit to EVs: higher SOC levels at an
earlier stage. In other words, too high risk aversion (i.e., greedy behavior) or too
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high risk affinity have a decremental effect on both performance and individual EVs.

One limitation of the VOS approach is its performance for small EV fleets. We
don’t see this as a strong limitation since the advantages of our approach become
more significant as the size of the problem increases. For small fleets, state-of-the-art
optimization remains probably the best choice.

Although this is not a limitation of the approach, this work assumes that EVs also
supply energy back to the grid (V2G). For this to be feasible, the economic benefits
of doing so should be higher than the costs resulting from the increased use of the
battery. Although we do not elaborate on this economic analysis, we believe that
the WtS signal could be used as metric for assigning rewards.

Future work includes more elaborate and alternative designs for NfC and WtS signals
with different objectives, both for EVs and the aggregator, e.g., for improved battery
life or better aggregated performance. Including a DN topology, its corresponding
power flow, and a set of aggregators allocated to certain neighborhoods could also
provide new insights. In addition, different reference profiles and other renewable
sources could be explored. For example, one could consider the predicted generation
including wind as a reference profile and use the VOS approach to compensate, in
addition to the local variations, for the difference between predicted and actual wind
generation. Moreover, one could look into the extension of the approach to other
flexible loads like heating, ventilation and air conditioning. From the game theoretic
perspective, an interesting direction for future work could be the analysis of EVs
following different strategies within the same fleet. Alternatively, new signal designs
based on known economic utility functions could also be explored.
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Chapter 6

EV Charging in Highway
Environments

Electric vehicles may allow for emission reduction in urban areas and, due to their
use-patterns in urban environments, can potentially operate as flexible electric loads
to support the operation of power systems and the integration of renewable energy
sources. However, this requires having a large number of electric vehicles and the
wide adoption of EVs is challenging due to limitations in driving range and charging
infrastructure. Range and infrastructure limitations are major factors in highway
environments. ICT may be used to address these limitations to some extent.

This chapter presents a method for scheduling charging stops during highway travel
such that the final destination is reached as early as possible. Section 6.1 introduces
the charging scheduling algorithm for travel time minimization. Section 6.2 describes
the simulation framework including the method for data-driven traffic generation.
Section 6.3 introduces the use-case for the highway A9 in Germany from Munich to
Berlin and corresponding results. Finally, 6.4 present a discussion.
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6.1 Active Scheduling of Fast-Charging Stops

In this section, we introduce our active scheduling approach. First, we describe
the objective, model, and notation. Then, we introduce our modified A* shortest
path algorithm for constrained searches. Next, we briefly discuss the specific graph
abstraction used for the constrained A* algorithm. Last, we present the complete
process for schedule calculation and maintenance. The units of measurement referred
to in the following are seconds for time, km for distance, km/h for speed, kW for
power, and kWh for energy, unless otherwise specified.

6.1.1 Driving, Charging, and Scheduling Model

The proposed model comprises three main components: EVs, a highway or highway
path, and CSs. An EV enters the highway and, if its trip is longer than its range,
will stop at least once at a CS. The choice of charging stops depends on the strategy
an EV follows; for example, an EV could choose to charge at the last reachable CS.

The charging strategy we propose aims at an intelligent choice of charging stops
to minimize overall travel time. This strategy requires real-time information. The
strategy assumes there is a communication infrastructure that allows for CS and EVs
to communicate with each other and for EVs to receive highway-related information.
None of these assumptions are beyond the capacity of existing technologies. Vehicles
can be connected via mobile communication technologies for vehicles and persons
(e.g., 2G - 4G). Existing fuel stations already have access to communication services,
for example, for processing credit card payments.

When an EV enters the highway, it first surveys the CSs available on its route and
their current states. The EV then calculates a desired set of charging stops and
charging times and makes a booking for the corresponding CSs including expected
arrival time. The EV’s charging schedule may be adapted if highway or CS conditions
change.

Along a given highway of length HL, there is a set of entries/exits EX and charging
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stations CS. Elements in EX are potential start and destination points for EVs,
while elements in CS are potential charging stops. Exits and charging stations
are characterized, among others, by their position on the highway. Additionally, a
highway has a speed profile that defines the maximum driving speed as a function of
time and position on the highway VHW(s, k).

A position s on the highway can take values [0,HL] and can be given in two formats:
absolute (highway kilometer) and relative to the driving direction (kilometer from
origin point). That is, the absolute position increases in one direction and decreases
in the opposite one, whereas the position relative to the driving direction always
increases. In the following, we use s as a relative position unless denoted as sabs.

A charging station CSc ∈ CS is characterized by the supported charger types and
corresponding number of charging poles (CP) Nc

P . For each charger type, the CS has
a queue Qc(k) representing those EVs in the CS waiting for a free CP, where FPc(k)
represents the number of free CPs. Each CS maintains its own booking system which
includes estimated arrival and required charging time. Based on this booking system,
a CP can estimate a queue length Qc

est(k) for a given k in the future.

Individual characteristics of an EV are its trip, state, type, and schedule. The trip of
the ith EV is described by starting position Sistart, starting time T istart, and destination
position Siend. The EV’s state at time k is characterized by the distance traveled
di(k), its position on the highway si(k), the driving speed vi(k), a preferred speed
V i
pr(k), the traveled, driven, waited, and charged times titrav(k), tidriv(k), tiwait(k),
tichrg(k), respectively, and the state of charge (in percent) of the battery SOCi(k).
The EV’s state evolves in time steps of length ∆t. The EV’s type is characterized by
model, maximum speed V i

max, battery capacity Ei
max, minimum allowed battery level

Ei
min, fast-charging power P i

FC , a charging rate function in terms of time, charging
power, and SOC Ei

chg(∆t, P, SOC), and a consumption function in terms of speed
and distance Ei

con(∆d, v). Type parameters depend on the brand and model of the
EV. The schedule SDi is a set of tuples containing a planned CS to stop at, and the
target SOC (CSc, SOC(i,c)

tar ) to continue the trip.
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The state of an EV is updated depending on its driving flag DFi, where

DF i =



idl : EV not on highway
drv : EV moving along the highway
wai : EV arriving/at a CS but not charging
chg : EV at a CS and charging

(6.1.1)

such that

idl ⇀ drv, when current k reaches T istart (6.1.2)
drv ⇀ wai, when EV enters a CS (6.1.3)
wai ⇀ chg, when FPc(k) > 0 (6.1.4)
chg ⇀ drv, when SOCi(k) ≥ SOC

(i,c)
tar (6.1.5)

drv ⇀ idl, when si(k) reaches Siend (6.1.6)

The state change in (6.1.3) occurs if the CS matching the EV’s current position is
included in the EV’s schedule SDi. Equation (6.1.4) implies that a charging pole
becomes available. Equation (6.1.5) indicates that the target SOC has been reached.
Equation 6.1.6 implies that the EV has reached its final destination.

The distance traveled, position, and corresponding initial values of an EV are defined
as:

di(k + ∆t) = di(k) + ∆di(k), (6.1.7)
with di(0, · · · , T istart) = 0

si(k + ∆t) = si(k) + ∆di(k), (6.1.8)
with si(0, · · · , T istart) = Sistart

where:

∆di(k) = vi(k)·∆t(hr) (6.1.9)
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vi(k) =

max
(
V i
pr(k), VHW(si(k), k)

)
, if DFi = drv

0, otherwise
(6.1.10)

V i
pr(k) is given and ∆t(hr) stands for the value converted into hours. Equation (6.1.10)

implies that EVs will travel at their preferred speed unless the highway speed limit
is lower.

Updates to the different time measurements are expressed as

∆titrav(k) =

∆t, if DFi 6= idl

0, otherwise
(6.1.11)

∆tidriv(k) =

∆t, if DFi = drv

0, otherwise
(6.1.12)

∆tiwait(k) =

∆t, if DFi = wai

0, otherwise
(6.1.13)

∆tichrg(k) =

∆t, if DFi = chg

0, otherwise
(6.1.14)

Finally, updates to the SOC of an EV is expressed as

SOCi(k + ∆t) =


SOCi(k)−∆SOC−(i,k), if DFi = drv

SOCi(k) + ∆SOC+
(i,k), if DFi = chg

SOCi(k), otherwise,

(6.1.15)

where:

∆SOC−(i,k) = Ei
con(∆di(k), vi(k))

Ei
max

(6.1.16)

∆SOC+
(i,k) = Ei

chg

(
∆t, P i

FC , SOC
i(k)

)
(6.1.17)

Equations (6.1.15 - 6.1.17) imply that EVs consume energy while driving, depending
on the driving distance and speed, and gain energy depending on charging power
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and current SOC. Ei
con(· ) and Ei

chg(· ) are EV-specific functions. Ei
con(· ) indicates

the consumption of a given EV as a function of traveled distance and speed while
Ei
chg(· ) indicates the energy gain as a function of time, charging power, and current

SOC. Although our evaluation does not cover battery aging or driving style (e.g.,
[72]), one could update the definition of Ei

con(· ) and Ei
chg(· ) to account for these

factors.

The objective of our scheduling strategy is to find a schedule SDi such that the
total travel time, including driving, waiting, and charging time, is minimized. The
strategy has to fulfill the constraints of the individual EV and the highway.

min
SDi

k̂∑(
∆tidriv(k̂) + ∆tiwait(k̂) + ∆tichrg(k̂)

)
,{

k̂ | Sistart ≤ si(k̂) ≤ Siend
}

(6.1.18)

s.t.
Ei
min ≤ SOCi(k) · Ei

max ≤ Ei
max,∀ k

The interpretation of (6.1.18) is as follows: for a given EV, choose a schedule such
that the sum of driving, waiting and charging times along the duration of the trip
are minimized, subject to the energy limitations of the EV. Although the problem
formulation (6.1.18) may appear simple, its solution is not as simple. All quantities
are time-dependent and are influenced by external factors. Equations (6.1.11 - 6.1.15)
indicate that SOC and times depend on the vehicle state. The vehicle’s state depends
on position and time. Position depends on speed while driving, which depends on
highway conditions. The portion of tiwait for a stop on a given CS depends on the
length of the queue at that CS which correspondingly depends not only on the arrival
time of the given EV, but also on when other EVs arrive.

One alternative for solving this problem is to use existing shortest path algorithms
considering travel time as the weight or cost. However, existing shortest path
algorithms, such as Dijkstra and A* search, normally do not account for constraints.
Therefore, we introduce an enhanced A* shortest path search algorithm that accounts
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for the constraints in this problem.

6.1.2 Constrained A* Path Search for Fast-Charging
Schedules

The A* algorithm is widely used for shortest path searches and is based on a
directed graph data-structure abstraction [73, 74]. Similar to Dijkstra’s algorithm, it
incrementally explores neighbors and accumulated weights to choose a path with
the lowest weight. The A* algorithm includes a heuristic function to estimate the
minimum remaining cost or distance at every node which can be used to accelerate
the computation.

The main reasons for choosing A* as our base algorithm are threefold. First, neighbor
exploration allows us to test for constraint fulfillment at every step and exclude
non-feasible alternatives at an early stage. Second, the use of a heuristic function to
calculate the minimum remaining cost is convenient because the earliest an EV can
arrive at its destination is limited by distance and speed. Third, A* is a widely used
algorithm with efficient implementations available for a variety of systems [75, 76],
including embedded systems, which is relevant for the applicability of the proposed
solution.

The conventional A* algorithm keeps track of the variable it aims to minimize along
the entire search. In our case, that would be the traveled time t̂itrav. We introduce a
modification where we maintain a second variable, the available energy in the EV
Êi. Each time a neighboring node is explored, we test that the resulting value of
Êi remains within [Ei

min, E
i
max]. If this is not the case, the corresponding potential

path is avoided. This can be done, as in our case, by not queuing the neighbor into
the queue of potential nodes, or alternatively assigning an extremely high cost to
the corresponding path.

The constrained A* shortest path algorithm receives as input a graph describing
all possible paths, the source and destination nodes, and the EVi, including state
and type. The specific implementation of the A* algorithm is based on [75]. The
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D

CS_in

CS_out

S

in

out

in

out

Driving edge Charging edge

Figure 6.1.1: Graph abstraction

algorithm is described in the following.

The function get_h_time(·) is the heuristic function describing the minimum
remaining time from a given node to the destination. In our case, it is a function of
distance and speed. For an always underestimating heuristic, and resulting certainty
that the found path is the shortest, one can use the EV’s preferred speed V i

pr. Less
strict heuristic functions can be used to accelerate the algorithm.

The function get_costs(·) returns an estimation of both time cost and energy
consumption between two nodes (or the graph’s edge) and a feasibility statement.
The edge is feasible only if the cumulated energy minus the consumption for that
edge is within [Ei

min, E
i
max]. The time costs result from driving, waiting, and charging.

Driving time is calculated based on the expected speeds along the route between
nodes. Charging and waiting times depend on the predicted demand of a specific
charging station. Energy consumption is positive during driving and negative while
charging.
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Algorithm 6.1.1

Algorithm 6.1.1: Constrained A* Shortest Path

function constrained_search(graph, src, dst, ev) returns path:

PriorityQueue queue,
Dict enqueued, explored

queue.push((0, src, 0, graph[src][’current_energy’], None))
while queue:

o, this_node, time, cum_energy, parent ← queue.pop

# If target reached, traverse path:

if this_node == target:

path ← [this_node]
node ← parent
while node is not None:

path.append(node)
node ← explored[node]

path.reverse()
return path

if this_node in explored: continue

explored[curnode] ← parent

for neighbors in graph[this_node]:

if neighbor in explored: continue
e_cons, t_cost, feasible ← graph.get_costs(this_node, neighbor, cum_energy,
ev)
if not feasible: continue
# Update accumulated values:
e_ncost ← cum_energy - e_cons
t_ncost ← time + t_cost
# Compare with so-far-best:
if neighbor in enqueued

t_qcost, h_time ← enqueued[neighbor ]
if t_qcost ≤ t_ncost: continue

else:

h_time ← graph.get_h_time(neighbor, dst, ev)

# Enqueue new so-far-best values:
enqueued[neighbor ] ← t_ncost, h_time
queue.push((t_ncost + h_time, neighbor, t_ncost, e_ncost, this_node))

95



6.1. ACTIVE SCHEDULING OF FAST-CHARGING STOPS

6.1.3 Graph Abstraction for EV Charging Stops

Figure 6.1.1 illustrates the graphs abstraction of our approach. We have four type
of nodes: one source node, one destination node, and a number of CS_in and
CS_out node pairs (each of these node pairs represents a CS). By defining CSs
as pairs of in/out nodes, we are able to differentiate between two types of edges:
driving edges and charging edges.

A driving edge connects either the source node or a CS_out node to either a CS_in
or the destination node. A driving edge cannot connect the CS_out node to the
CS_in node of the same CS. If a driving edge ends on a CS_in node, the EV
stops to charge. The costs of a driving node are the driving time and positive energy
consumption. Both values depend on the driving speed which may be time-dependent
and estimated based on current available data.

The speed and resulting cost and consumption calculations can be averaged over
the entire distance between the two nodes or over blocks of shorter distances at a
trade-off between precision and computation complexity. In our case, we opt for the
more precise approach.

A charging edge connects a CS_in node to the CS_out node of the same CS. The
time cost is a combination of waiting and charging time and is estimated by the
corresponding CS on request. The waiting time depends on the expected length at
the time of arrival which is calculated based on the existing bookings at the time of
the request. The charging time depends on the estimated cumulated energy, charging
power, and target SOC. Charging power is EV specific but a constant from the EV
perspective. The target SOC is fixed to an ideal level, likely to be EV specific, but
currently at 80% for existing commercial vehicles. A second process described in
Section 6.1.4 adjusts this target SOC to the requirements of the chosen route.

To build the graph, an EV scheduler defines the source node as its current position
and initializes the estimated cumulated energy to its actual energy level. Then,
the scheduler submits a request for a list of available CSs between the current
position and the destination and connects the nodes with edges, according to the
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Scheduling process
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Figure 6.1.2: Scheduling process

logic described above. The graph can be updated by removing those edges ending in
nodes located behind the current EV position, which, if done incrementally, incurs a
marginal computational burden.

6.1.4 Schedule Generation Algorithm

Figure 6.1.2 summarizes the scheduling process for each EV. Upon initiating a trip or
entering a highway, the EV retrieves its route. Next, it produces a graph abstraction
and uses it to find the shortest path as described in Sections 6.1.2 and 6.1.3. Then,
the charging times at each chosen stop are adjusted and the corresponding booking
request is sent to the CS. The EV then continues the trip as planned unless an
update schedule event is received, in which case, the process above is repeated. Upon
receipt of a booking request, a CS will update its booking entries and process its
corresponding queue estimates.

The route contains the destination, a list of CSs available on the way, and the
highway information including speeds and traffic notifications. This information can
come, for example, from the map or navigation system used by the EV. Most of the
information, such as CSs on the route and posted speed limits, are static. Traffic
information may change during a given trip.
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Once the target charging stops are defined by the shortest path algorithm, the EV
computes the target SOC (SOC(i,c)

tar ) for each stop. In the previous step, the path is
calculated assuming a fixed target SOC, usually 80%. However, the distance between
two planned stops might require less energy. Therefore, for each stop, the target
SOC is calculated based on the energy required to reach the next planned stop, or
the destination if it is the last stop. This calculation uses the EV’s consumption
function Ei

con(·) and desired driving speed V i
pr, i.e., the worst case, and adds a certain

margin on top.

The decision for calculating the target SOC on a second step is justified as follows.
First, the A* algorithm requires a comparable value for weight of a given edge. This
weight is measured in time and the time cost at a charging edge depends on the
target SOC. Second, the A* is greedy in nature, that is, it evaluates the neighbors
before moving to the next node. Calculating the required energy requires already
knowing the next planned stop, which is not available when evaluating a given edge.

One could produce multiple node pairs connected with edges representing discrete
values of different target SOCs. Alternatively, one could create functions for every
possible path and try to apply an optimization technique to solve for target SOCs
at each stop. The first option would increase the graph size significantly while the
second option would result in several optimization problems with dynamics involved.
Either option would challenge both the space and computational limits of embedded
devices where ideally such a service would be installed.

Once the charging times have been adjusted, the EV has defined its schedule with a set
of planned stops containing expected arrival time and target SOC. This information
is then shared with each of the involved CSs in the form of booking requests.

Upon receipt of a booking request, each CS updates its planned bookings and
recomputes its expected queues. A CS recomputes its expected queues by emulating
the planned bookings and producing queue lengths for time windows of pre-defined
length. The queue length at a given time window depends on the queue length at
the previous time window, the arrivals at the current time window, the number of
charging poles, and an average charging time.
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The CSs become the coupling element on the system as they indirectly reflect the
plans of other EVs. In other words, an EV planning to stop at a given CS bases
its decision on the expected queue length, which correspondingly depends on the
decision of other EVs. Individual EV decisions, therefore, depend on decisions made
by other EVs.

In order to maintain up-to-date planned schedules, EVs need to recompute their
path. If this is not done, the EV is at a disadvantage with respect to those EVs
that have computed their path more recently. This action can be event-triggered.
An event can be, for example, an increase in queue lengths of a CS over a certain
threshold or a timer elapse.

The manner in which these events are triggered needs to be carefully considered. For
example, triggering a re-schedule immediately after any EV has updated a booking
may result in an unstable circumstance whereby all EVs cyclically react to each
others’ actions.

Since an EV is constantly updating its schedules, it is also indirectly adapting to
what other EVs are doing. Although there is no guarantee that an equilibrium can be
achieved, two statements hold true for our approach. First, an EV will only modify
its path if there is a better path available. Second, any computed path remains
feasible, independent of the actions of other EVs. In other words, an EV will follow a
path that was, in the worst case, the shortest path possible the last time it checked,
and, even if there may be a better path available, the chosen path remains compliant
with the particular EV’s constraints.

In terms of complexity, the determination of a the schedule benefits from its
distributed computation and the underlying A* algorithm. Since the schedule
is generated at EV level, its computation time does not directly depend on the
number of EVs and remains constant as the number of EVs increases. The most
computationally intensive task from the EV perspective is the modified A* shortest
path search which only adds a constant time operation to the original A* algorithm.
Computations performed by the CS do increase in complexity as the number of EVs
increase. However, this complexity is proportional to the number of EVs served
by each station and not the total number of EVs. In Section 6.3.2, we provide
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experimental evidence for the performance and scalability of the approach.

6.2 Highway EV Traffic Simulation Framework

In this section, we introduce the highway EV traffic simulation framework used
for our experiments. This traffic simulation network does not pretend to compete
with comprehensive simulation tools like [77, 78]. However, it offers a simplified,
modular, and adaptive alternative for studying different charging strategies for EVs
along a highway. First, it produces highway trips based on highway-specific data
and trip length statistics, producing trips that are closer to reality using publicly
available data. Second, the EV traffic simulation framework allows for the insertion
of highway specific parameters, such as exits, position of CS, and speed limits. Third,
the framework can process time- and segment-specific speeds from external data
sources to reproduce the current state of the highway like heavy traffic. Last, it
enables the comparison of different scheduling strategies, accepting virtually any
algorithm with a very simple interface.

6.2.1 Data-based EV Traffic Generation

The proposed method for generating EV highway trips is based on a combination of
diverse data sources. In the following we describe the method and its application to
German highways.

Traffic on highways varies by time of day, position, day of the week, season, and a long
list of other factors. In many countries, counters at specific points on the highway
provide insight on these variations. German highways are highly instrumented and
hourly counts for each counter are accessible either as a statistical summary or as
detailed entries upon request [79].

Lengths of trips also play an important role and this information cannot be inferred
from the counter data. Therefore, a second source that provides this information is
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needed. For the German case, a mobility survey includes a specific section regarding
long distance trips [66]. This information allows us to classify trips by the size
(population) of the place of origin.

Finally, the type of personal vehicle (e.g., size, energy consumption, category) may
be of interest. Although the mobility survey [66] also surveys information on vehicle
type, the relationship between type of vehicle and long distance trips is not addressed.
Information on vehicle type is commonly available from data for car registrations,
for example in Germany [80].

The first step for generating a trip is defining a potential counter where the EV in
question was counted and the time this happened. This information is retrieved
from the counter data in form of spatial and temporal distributions. The spatial
distribution comprises the number of counts on a given station with respect to the
total counts. Each counter has its own temporal distribution consisting of counts on
a given hour with respect to the daily counts.

The spatial and temporal distributions can either be produced based on statistics
and curves, such as those provided in [79], or produced from raw data with the hourly
counts of an entire year. The proposed framework supports the raw data alternative
including very flexible filtering alternatives for specific days, day of the week, month,
and season.

Once a potential counter and hour of the day have been defined, the tool offers two
alternatives for generating trips: vehicle was counted at the beginning of its trip, or
vehicle was counted at a random point during its trip.

For the first alternative, we locate the closest exit to the position of the counter, and
based on the size of cities close to this exit, we randomly sample a distance from the
travel survey. We then adjust the distance to the closest available exit and choose
the starting time randomly within the given hour.

The second alternative is more complex. First, we define a random proportion of the
trip already covered when the EV was counted. Next, we sample a distance from
the accumulated trip distribution of the travel survey and find the closest potential
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Figure 6.2.1: Trip generation with variable start point

exit corresponding to the already traveled distance. Then, we validate that such a
trip length exists in the travel survey for the category of cities close to that exit and
repeat the process if the validation fails. Last, we adjust the distance according to
the closest exit and choose a start time within the hour interval. This alternative is
illustrated in Figure 6.2.1

After start position, end positions, and starting time for a given trip have been
defined, we choose an EV type based on the vehicle-type distribution. This process
is repeated for all EVs in the simulation.

A validation of this method shows a comparable behavior between the generated
trips and the counter data. An exact match is not possible because counter data also
include commuter and local trips, which are not represented in our synthetic trips.

6.2.2 Simulation Tool

The architecture of the simulation tool is illustrated in Figure 6.2.2. The three
main components are the EVs, the highway, and the CS. There is, in general, a
many-to-one relationship between EVs and a highway as well as between CSs and a
highway. The design supports multiple highways although this functionality has not
been verified. The simulation tool is discrete-time-based, whereby the time steps can
be set in seconds.

A CS component consists of a number of charging poles grouped into pole types (e.g.,
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Figure 6.2.2: Simulation tool architecture

Tesla super charger and standard fast-charging poles) and a waiting queue per pole
type. Each queue has a queue estimator that, based on the bookings of a given CS,
updates estimated queue lengths along a given period (e.g., a day) for pre-defined
intervals (e.g., 30 min). The results of this queue estimator are used by the charging
schedule to evaluate potential waiting time at a given arrival time. CS are located
on the highway at specific CS sites.

In addition to a number of CS sites, the highway consists of a speed profile, entires
or exits, and counting stations. Counting stations are only used to maintain traffic
statistics. Entries and exits are assumed to be a single point on the highway and
always bidirectional, i.e., EVs can enter or leave the highway at this point. Similar
to CS sites, entries and exits are characterized by their position on the highway and
the driving direction in which they are located (although they are mostly located in
both driving directions).

The speed profile of a highway consists of two sub-components: a static speed profile
and a traffic notice profile. The static speed profile is a set of entries describing
fixed speed limits along the highway and is position-dependent. The traffic notice
profile is a set of entries describing temporal speed limits that can be updated during
runtime. This type of entry is used to describe a time-dependent restriction (such as
evening speed limits for noise reduction), externally set speed limits (such as those on
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variable speed boards managed by a transportation authority), and traffic congestion.
The speed profile is used by EVs to set their driving speeds along the highway and
by the charging schedule to estimate driving times and energy consumption along
the planned route.

An EV consists of state, specifications, and a driving plan. The state component
takes care of updating the simulation-dependent parameters of the EV such as time,
position, and current SOC. The specifications are used to calculate vehicle-specific
allowed speeds, charging rate, and speed-dependent energy consumption while driving.
The driving plan executes the charging stops following the charging schedule.

A charging schedule component is responsible for planning and managing the charging
stops for an EV. It resides in the EV but interacts with the highway and CS
components. The scheduler applies an algorithm to define a charging strategy
and uses the EV’s current state and specifications to estimate future states along
the highway. As explained above, the scheduler influences the EV’s driving plan
and makes use of the highway speed profile and the CS queue estimations. The
scheduler produces schedule entries which are also shared with the corresponding CS
to update its bookings. This component is flexible and can be used to realize virtually
any scheduling strategy with two constraints: the scheduler should implement the
generate_schedule and update_schedule functions, and the resulting schedule
entries must follow a specific format. The strategy presented in Section 6.1 is
implemented with the charging schedule component.

The trip generator applies the data-based traffic generation described in Section
6.2.1. Other data sources include highway details (such as exits and speed limits),
geographical information (cities and population), and CS details (position, number
of poles, and pole types).
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6.3 Evaluation

We apply our scheduling method and simulation framework to a use-case based on
the German highway A9 from Munich to Berlin. First, we describe the use-case and
the experimental setup. Then, we present the corresponding results.

6.3.1 Use Case

The A9 connects Berlin and Munich. Our study is concerned with the driving
direction Munich to Berlin. The highway has 36 traffic counters [79], 79 exits/entries,
and 45 CS locations. The exact position of exits, counters, CS locations, and the
driving speed limits are based on [81] and manual inspection in Google Maps. The
45 CS locations reflect existing fuel stations along and near the highway plus existing
or planned Tesla Super Charger locations [82]. The number of charging poles on
each Tesla CS location follows the information in [82]. For the remaining CS, we
consider four 50kW fast-charging ports per location. Some of these CS locations are
only accessible in one driving direction.

To model the time it takes to reach a CS location from the highway, a penalty time
is associated to each CS location. In our case, we select one time-step (5 min) for
CSs located directly on the highway and 2 time-steps (10 min) for those located
nearby but not directly on the highway.

We consider four types of EVs. Three are based on commercial specifications: Nissan
Leaf, BMW i3, and Tesla S, and one is defined as a generic model. The generic
model consumes 0.15 kWh per km. For the other three EV types, the consumption
curves are produced by fitting curves to data available from [83, 84, 85, 86]. The EV
types are uniformly distributed and we define a preferred driving speed of 120 km/h
for all EVs. The EV-specific parameters are described in Table 6.3.1.
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Table 6.3.1: EV parameters for evaluation

Parameter Tesla S BMW i3 Nissan Leaf Generic
Battery capacity (kWh) 85 18 24 16
Maximum speed (km/h) 223 160 135 130
Charging power (kW) 120 50 50 50
Time (min) to SOCtar = 80% 40 30 30 30

The consumption curves are defined by the following functions.

ETesla
con (d, v) = 7.41v5 − 266v4 + 51, 590v3 + 679v2 + 29.83v − 0.061

v4 + 458.1v3 − 1647v2 − 758.8v + 490.3 · d (6.3.1)

EBMW
con (d, v) = (0.00625v2 + 0.725v + 50) · d (6.3.2)
ELeaf
con (d, v) = (0.008837v2 + 0.1393v + 63.26) · d (6.3.3)

In [87], a more detailed description of these functions is provided.

We generate trips for a period of 24 hrs but continue to run the simulation for another
24 hrs to allow all EVs to reach their destination. The time step is 5 minutes and
the queue estimator for the CS generates estimates for 15 minute windows.

We use the same generated set of trips and EVs to run the simulation for two
strategies: last in range (LiR) and active scheduling (AS). In the LiR strategy, EVs
will charge at the last CS they are able to reach. The AS strategy implements the
method proposed in Section 6.1

We run experiments as described in Table 6.3.2.
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Table 6.3.2: A9 fast charging scenarios

Experiment Description
1. LiR vs. AS We compare the two strategies under the same experimental conditions

assuming that the speed profile remains constant along the entire
simulation.

2. AS under varying
traffic conditions

We run the AS strategy in two modalities: i. schedule generation only
on initiation of the trip, and ii. continuous schedule update. We then
insert a traffic notice with 50 km/h speed limit for the segment between
km 250 and km 350, between 15:00 and 16:00, inserted during runtime
at 15:00. This experiment evaluates the adaptive capacity of the AS.

3. Uniform trip
generation

We compare LiR and AS for trips starting in Munich and ending in
Berlin with a uniform random starting time within 24 hours. This
experiment gives us some insights about the global benefit of local EV
decision making.

4. Potential as
planning
methodology

We compare LiR and AS but with an infinite number of charging poles
on this station. This experiment gives some insight on the number and
location of required charging poles if we were to achieve zero waiting
times.
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Figure 6.3.1: Normalized waiting time for different daily number of EVs
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6.3.2 Results
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Figure 6.3.2: Mean equivalent driving speeds for different daily number of EVs

LiR vs. AS

We first evaluate the waiting time. For results to be comparable between EVs and
different traffic volumes, we normalize the waiting time over the driving time. That
is, the time spent waiting at CSs as a fraction of the driving time.

Figure 6.3.1 shows the statistics in form of a boxplot of the normalized waiting time
for different values of daily EV traffic volume. The results show that the waiting
time is significantly reduced when using the AS approach. All descriptive statistics
indicate a significant improvement in waiting time when applying our method.

The normalized waiting time provides a comparable measurement between EVs and
traffic volumes, and a ratio between waiting time and driving time. A more intuitive
measurement is presented in Figure 6.3.2. Here, we see the average equivalent driving
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Figure 6.3.3: Mean equivalent driving speeds for 500 EVs by trip distance

speeds when the charging time and, cumulatively, the waiting time are taken into
account. As depicted in this figure, for an average driving speed of 110 km/h, if we
take into consideration the time needed only to charge, the equivalent speed would be
80 km/h. From this reference, the waiting time reduces the speed further. Using our
approach increases the equivalent driving speed significantly, although the resulting
speed is still low with respect to the driving speed due to the charging time.

The benefits of applying the proposed scheduling strategy become more evident as the
traffic volume increases since the amount of available resources become proportionally
scarcer. The benefits also become more evident as the length of trips increase. Figure
6.3.3 shows the influence of the trip length on the driving speed. In Figure 6.3.4
we see the proportion of the traveled time which is used for driving, charging, and
waiting for trips of different lengths. Here we see that the scheduling algorithm
succeeds in reducing the waiting time but also, due to the charging-time adjustment,
we are able to reduce the time EVs spent charging.
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Figure 6.3.6: Queue lengths per CS and time for 500 EVs

We also compare the individual performance of every EV. In Figure 6.3.5 we see that
most of the 500 EVs reduced their waiting time by several minutes. Few EVs ended
up with a longer waiting time which was never longer than 30 minutes (the charging
time for a single EV). This result suggests that although EVs optimize for their own
benefit only, given the coupling effect of CSs, a collective benefit is also achieved.

Finally, we look into the queue lengths of the different CS vs. time of the day.
Figure 6.3.6 shows the queue lengths for a daily traffic volume of 500 EVs. When
the AS strategy is used, EVs tend to distribute themselves more uniformly among
the available CSs. This is consistent with findings from previous work [23, 21] where
a uniform use of CS is the objective for optimal utilization. Figure 6.3.7 shows the
queue lengths for different daily numbers of EVs along the highway.

Energy consumption at the CS is also positively influenced by the active schedules.
Although the daily peak energy consumption cannot be entirely avoided due to the
charging demand, the energy consumption along the day is better distributed among
the CSs. Figure 6.3.8 shows this effect for a daily traffic volume of 500 EVs.
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Figure 6.3.8: Energy consumption per CS and time for 500 EVs
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Figure 6.3.9: CS utilization on slow traffic

AS under varying traffic conditions

Since the scheduling algorithm considers the total travel time, one would expect it
to readjust when a notice of a change in traffic conditions is added. In Figure 6.3.9,
we see the utilization of CS (busy poles plus queues) and times of the inserted traffic
notice for static and continuously updated schedules. One can see a more intense
use of CS when updating the schedules which indicates that charging at the time of
slow moving traffic was convenient for some of the vehicles.
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Figure 6.3.10: Queue lengths for uniform trip generation

Uniform trip generation

Figure 6.3.10 presents the results for the uniform-trip experiment. Since all EVs
start from the same location, LiR is expected to perform poorly as many EVs will
tend to stop at the same locations. However, a consistent trip length together with a
uniform time distribution allows us to experimentally evaluate the performance of
our approach in terms of the global optima. The authors in [23, 21] define a balanced
distribution of EVs to CS as the objective for global optimization. In Figure 6.3.10,
we see that, despite the high correlation between trips, the AS strategy results in
balanced waiting queues.
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Potential as planning methodology

The proposed framework can potentially be used for planning activities. Provided
that the simulated trips are representative of the highway traffic, the simulation
tool can be used to estimate the demand at the different CSs for a given charging
strategy. In other words, this experiment provides insights on how to dimension the
different target CS locations.

For this purpose, we run the simulation with an unlimited number of charging poles
at each CS and evaluate their maximum and average demand. The results are shown
in Figure 6.3.11. The demand at each CS varies depending on the chosen strategy,
i.e., LiR or AS, however, one can already identify key CSs where demand is high for
both strategies.

One can iteratively use such an approach to plan and dimension CS sites. For
example, one could choose to remove CS sites with the lowest demand and repeat the
experiments iteratively. Alternatively, one could assign a given amount of resources
to each CS proportionally to the result of this experiment.
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Figure 6.3.11: Average and maximum number of busy poles
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Complexity

Figure 6.3.12 and 6.3.13 illustrate the mean, 75-percentile and maximum computation
times of EV and CS operations, respectively, as the number of EVs increases.

The computation time of EV operations remains constant as the number of EVs
increases. The worst case does increase slightly. This is not due to an increase of
complexity itself. As the number of EVs increases and CSs become busy, certain EVs
will in some cases need to search further for different CSs to find the shortest path.

The computation time of CS operations increases proportionally to the number of
EVs but at a moderate rate. The worst case increases faster but this is mostly limited
to peak demand times at the busiest CSs.
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Figure 6.3.12: Computation times for EVs
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6.4 Discussion of Active Scheduling on Highways

The proposed strategy for scheduling fast-charging stops in a highway environment
considers a number of factors from the applicability perspective. First, the required
information, such as CS location, estimated arrival times, and traffic situation,
is already provided by commercial navigation products and is a target of further
improvements with oncoming trends in inter-vehicular communication and GPS
tracking. Second, the complexity of the algorithms that are to be executed in
the EV is moderate and comparable to current capabilities of navigation products
such as route planning. Third, the information exchange is limited since only the
planned stop is communicated externally, meaning that data, such as EV-state, start,
destination, speed, etc., remain private. Fourth, the communication requirements are
also moderate and achievable with existing technology. Last, the solution is scalable
due to its distributed nature.

As part of the EV’s equipment or as a mobile device, communication technology is
readily available for vehicles. Since CS infrastructure is relatively new, i.e., there is
no significant legacy equipment in the field, one would expect CSs to be equipped
with some kind of communication technology which, in addition to smart applications
such as the one presented in this work, would be required at least for electronic
payment purposes.

The proposed approach benefits from scalability since most of the computation is
performed at the EV and some at the CS. Although the computational requirements
of the CS are proportional to the number of EVs, this is only true for those EVs
planning to stop at a particular CS and not the total number of EVs on the road.

Our approach is based on local decision making and execution for each EV without
the direct influence of the actions of other EVs. However, the estimated queue lengths
of each CS work as coupling variables. These estimates reflect the decision of other
EVs and are constantly updated. Our results suggest that this coupling achieves a
global benefit although we cannot qualify the result as a global optimum or social
equilibrium.
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A global approach could potentially improve the results. There are, however, a number
of disadvantages, particularly from the applicability perspective. A centralized
approach faces scalability challenges as the number of EVs and CSs increase. A
distributed global approach would likely require more communication than the
amount proposed here. Finally, a global approach would probably require more
information from EVs to assign resources which could be undesirable from a privacy
perspective.

We believe this work is relevant towards increasing EV penetration. Due to their
limited range and long charging times, EVs are not the best choice for highway trips
and their price does not justify them as a second “city-only” car. That said, even
if we succeed in reducing the travel time, success can only be achieved if charging
technology, battery prices, and energy density continue to evolve. Nevertheless,
the proposed approach can be generalized to other candidate technologies such as
hydrogen or battery swap since they all require new infrastructures and significant
investments.

Since charging time is a major factor on highway trips, we do not consider ancillary
or support services, such as frequency regulation, to the power grid. In our opinion,
these services are provided by EVs which stay idle or parked generally longer than
the time they need to charge; for example, at home or at work. By reducing the
disadvantages of EVs for long trips, we hope that more EVs become available to
provide these kind of services in urban and suburban environments. Alternatively,
one could explore the use of CSs on highways (i.e., not EVs directly) for supporting
the power grid, provided that they are equipped with local energy storage and
generation capabilities; for example, batteries and photovoltaic panels.

A direct benefit of our approach for the power grid is the predictability of power
requirements for the different CSs for a given day. Since CSs are booked and estimated
arrival times are constantly updated, both medium and short term estimates of
power consumption can be derived, facilitating the energy supply and balance tasks
of the operator or utility.

From the simulation framework perspective, the data-driven trip generation is an
important contribution but is also subject to further improvement. We concentrate
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on publicly available data sources which in some cases are built from statistical
studies. In particular, we are unable to separate commuting from long-distance
traffic based only on counter data. Richer data sources, for example GPS traces or
highway specific studies and surveys, could contribute to more realistic solutions.

In terms of accuracy of traffic models, our simulation network uses the highway
speed value for simulating vehicle flows. Therefore, it can potentially be integrated
with more evolved traffic simulation tools that provide the vehicle’s speed as output.
Furthermore, speed would also be the input in the real-life scenario where EVs drive
to a given desired speed bounded either by speed limits or traffic conditions.

From the security perspective, our work assumes that EVs are honest and fair-players.
However, security concerns should be studied further. A reliable authentication and
monitoring mechanism is required to prevent EVs or intruders from intentionally
overbooking CSs, for example. Although we partially protect privacy through
distributed computation and limited information exchange, security best practices
should be applied in both communication and data storage.

Another benefit of the proposed approach is that it can be extended to networked
environments, that is, when more than one highway is used. EVs use their route as
the planning starting point and the relevant information is the location and state of a
CS along the route, independent of the highway on which they are located. Similarly,
bookings depend on planned stops on a given CS and do not depend on the EV’s
origin, destination or specific route. This flexibility, however, does not apply to our
simulation framework as, to date, only single highway simulation is supported. From
the simulation framework perspective, one could look into an extension to networked
environments and potential integration with specialized traffic simulation tools or
open source projects such as OpenTraffic[88].

Potential future work includes the following. From the scheduling perspective, one
could explore the benefits of considering driving speed as one of the decision variables.
Also, a secondary load management between CS could be studied. Finally, a market-
style scheduling with dynamic pricing based on CS state and EV preferences could
be considered. In this case, energy prices could vary from CS to CS, where prices
could be influenced by the charging demand from EVs and even power grid factors,
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such as higher than predicted solar power generation.

From the battery perspective, one could explore the influence of driving styles (e.g.,
[72]) and battery aging. On the one hand, a more sportive driving style may influence
the range significantly. On the other hand, since fast charging influences battery
aging, one could explore how this could be considered in the decision variables.
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Chapter 7

Conclusions

Renewable energies are a promising alternative to reduce CO2 emissions and mitigate
climate change. While the share of energy generated from renewable sources has
significantly increased, renewable generation incorporates new challenges into how
electricity has been traditionally generated, transmitted, and consumed. As the share
of energy from non-dispatchable renewable sources like wind and solar continues to
increase, demand-side management and energy storage are becoming more relevant
as methods to maintain this balance.

Transportation electrification, offers important advantages. First, it reduces local
carbon emissions and fossil-fuel dependency. Second, it shifts energy needs towards
a power system that is increasingly able to produce energy from renewable sources.
EVs, in particular, allow for emission reduction in urban areas and, due to their
use-patterns in urban environments, can potentially operate as flexible electric loads,
or even as storage, to support the operation of power systems and the integration of
renewable energies.

The environmental benefits of EVs can only be materialized if the number of EVs is
large enough and the required technology and infrastructure are in place. On the
one hand, control approaches for coordinated EV charging need to be efficient and
realizable with moderate investments. On the other hand, known drawbacks of EVs
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like range and charging time need to be addressed.

In this work, we analyze the use of EVs from two perspectives. First, we look into the
EV as a tool for supporting power systems, and therefore the integration of renewable
energies, by using them as controllable loads and even energy storage, particularly
on residential environments. Second, we analyze strategies for the efficient use of
fast charging infrastructure for long trips which contributes towards a higher EV
adoption. In both perspectives, we put strong focus on the role of ICT technologies
in the solution to these problems.

The Vehicle-Originating-Signals approach for real-time EV charging control aims at
minimizing the variability of the aggregated power profile with respect to a given
reference. First, we benchmark the VOS approach against a centralized optimization
alternative and focus on mean squared error and solving time for the evaluation.
Then, we perform a reliability analysis, where we determine the upper bound of
the error with a given probability. Next, we introduce a method for reducing the
communication overhead of the VOS approach, where we measure the improvements
in terms of message reduction and the impact on performance in terms of error
percentiles. Last, we show how alternative signals can be produced and their effect
on global and individual performance. For the evaluation, we use a load leveling
scenario for Munich based on real power consumption data and a driving survey.

The VOS approach benefits from distributed computation that enables scalability,
some degree of privacy-preserving, and use-case-specific adaptation such as message
reduction. Results show an attractive trade-off between computational resources
and performance and a reliable behavior, measured not only on average but also
in percentile, at least in the presented use cases. Furthermore, we show that it is
possible to reduce the message requirements with limited effects on performance.

In terms of the efficient use of fast charging infrastructure for long trips, we propose
a dynamic scheduling approach, based on a modified A* algorithm with constraint
verification, for EVs to plan charging stops in a highway environment and minimize
the total travel time. These schedules are continuously updated to account for
changes in traffic and charging station utilization along the trip. The computation
and communication requirements of the proposed solution remain moderate, which
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contributes to applicability. We also introduce a simulation framework that includes
the generation of EV trips using a data-driven approach and support for time-
dependent highway parameters. We apply our approach to a use-case for the German
highway A9 from Munich to Berlin.

Using the proposed approach, waiting times and overall travel times can be signifi-
cantly reduced, leading to the more efficient use of resources. By considering the
estimated state of the CSs as input for the algorithm, we achieve indirect coordination
between EVs. Additionally, by dynamically adjusting the schedules, the proposed
approach accounts for changes on the highway, such as slow traffic on a given segment.

Future work related to the VOS approach includes (i) more elaborate and alternative
designs for NfC and WtS signals with different objectives, both for EVs and the
aggregator, e.g., for improved battery life or better aggregated performance; (ii)
including a DN topology, its corresponding power flow, and a set of aggregators
allocated to certain neighborhoods; (iii) exploring different reference profiles and
other renewable sources. Moreover, one could look into the extension of the approach
to other flexible loads like heating, ventilation and air conditioning. From the game
theoretic perspective, an interesting direction for future work could be the analysis
of EVs following different strategies within the same fleet.

In terms future work on EV charging on highways, one could explore the benefits of
considering driving speed as one of the decision variables. Also, a secondary load
management between CS could be studied. Additionally, a market-style scheduling
with dynamic pricing based on CS state and EV preferences could be considered. In
this case, energy prices could vary from CS to CS, where prices could be influenced
by the charging demand from EVs and even power grid factors, such as higher than
predicted solar power generation. Finally, one could explore the influence of driving
styles (e.g., [72]) and battery aging.

The VOS approach provides promising starting points for designing resource-efficient
flexible load and storage control systems. It can be generalized to different loads and
objectives and could enable new business models for aggregators. With market price
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differences of 15%-30% between base and peak loads, 5%-15%1 in futures contracts
and probably more in bilaterally agreed long-term contracts, we believe that there
are sufficient economic incentives to realize the type of systems evaluated in this
paper.

To fully take advantage of such an approach, a large number of EVs is necessary.
Our work on fast charging scheduling on highways has the potential to improve the
driving experience and EV adoption rates with a limited cost, both economical and
computational. With ongoing projects for fast-charging infrastructures [82, 90], the
use of this type of approach can have a positive impact in terms of investment and
success of these projects and the overall EV adoption.

1From random price samples [89]
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