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Abstract—Sensor applications in robotics, such as artificial
robotic skin, feature the shrinking size of nodes, and increasing
scale of sensor networks. Together with a requirement for low
complexity hardware for individual nodes, this leads to network
optimization challenges. In this paper, we introduce a heuristic-
based network partitioning algorithm for routing in a wired
robotic skin sensor network, which aims at minimizing end-
to-end latency and decreasing packet loss. Our algorithm is
partitioning the network in sub-trees while balancing load on
the root node connections. We benchmark its load balancing and
evaluate its end-to-end latency and packet drops via simulation.
The evaluation results show the superiority of our algorithm with
respect to the state-of-the-art solutions.

I. INTRODUCTION

Sensor network applications in robotic systems often require
low end-to-end (E2E) latency and minimum packet loss in
order to ensure control stability, satisfying user experience,
and failure free operation [1]. Hence, establishing optimal data
delivery routes is an important component for such systems. In
this paper, we tackle the sensor network routing on an example
of Cellul.A.R.Skin [2], [3]: artificial robotic skin, developed
in order to introduce the sense of touch to machines.

Cellul.A.R.Skin consists of individual skin cells, inter-
connected to form a meshed sensor network. Compared to
traditional computer networks, Cellul.A.R.Skin features large
number of homogeneous nodes (≈ 102-103), each of them
with limited processing power and memory. Thus, gathering
the sensing data from all nodes requires a centralized routing
algorithm, which is optimized for avoiding bottlenecks in the
network or minimizing their negative effects.

The related work for our routing problem consists of two
parts: 1) robotic skin networking solutions; and 2) general
delay-optimizing sensor routing algorithms. As a relatively
new research area, robotic skin networking does not have
standard or well-established solutions. Hence, every existing
implementation is very case-specific: some are not concerned
with connectivity at all, while others [4], [5] do not need rout-
ing as no link redundancy is present. Both modularity and link
redundancy are present in [6], however, as the data is meant
to be used on the skin level, no scalability problem arises. For
sensor network routing, the majority of topics in literature are
aimed at wireless sensor networks, thus, research is focusing
on wireless medium aspects, such as interference and resource
management [7]. Algorithms, such as Capacitated Minimum
Spanning Tree (CMST) [8] or Shortest Path Trees (SPTs),
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Fig. 1. Top-level balanced tree with three root connections.

could be applied in our case. However, no straightforward cost
metrics for them are matching our use case. Other solutions,
such as graph partitioning algorithms [9], are not applicable
since a tree-based network is required for embedded routing
simplification. Closest to the herein presented solution is a
node-centric load balancing algorithm in [10], designed for
wireless sensor networks.

In this paper, we propose a centralized algorithm for par-
titioning a skin sensor network (described in Sec. II). It
decreases the E2E delay through balancing the load on the root
node connections (see Fig. 1), and minimizes packet loss due
to buffer overflow. The algorithm (refer to Sec. III) is designed
for deployment in large scale sensor networks with limited
processing power and buffer space on the individual nodes (the
scarcity of buffer is even more relevant in case the cells are
implemented as an Application-Specific Integrated Circuit).
We benchmark the load balancing capabilities of the algorithm
and its run times. Then, we simulate the Cellul.A.R.Skin
network and show the delay and packet loss during network
operation (refer to Sec. IV). A comparison to the currently
deployed Cellul.A.R.Skin routing, as well as to the SPT
solution is shown.

II. ROBOTIC SKIN SENSOR NETWORK

Example network topology of a Cellul.A.R.Skin is depicted
in Fig. 1. Multiple cells are connected together in a grid-
like network topology with up to four neighbors. A neighbor
can be either the Central Entity (CE), or another cell. Every
node in the network is responsible for forwarding its own
data, as well as the data from its child sub-tree. Since all
the cells generate equal amount of traffic, we define the
load on a node as the size of child sub-tree + 1 (for own
data). Fig. 2 shows the structure of an individual cell with
its temperature, normal force, proximity and accelerometer
sensors and additional infrastructure. Every cell has four port
modules that can run with a speed of up to 4Mbit/s. The micro-
controller periodically collects data from all sensors, filters and
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encapsulates the preprocessed data into a packet. This packet is
forwarded up in the hierarchy to the parent via a master port,
predefined by the routing path. Eventually, all data arrives on
one or multiple root nodes, which represent a connection to
the CE, where the data can be processed and analyzed.

In the context of sensor networks, such uplink traffic is
often referred to as convergecast (as an opposite of broadcast).
There are several measures of efficiency for convergecast data
delivery through the network. One of them is the E2E delay
(average and maximum), which has to be low for real time
control. Second measure is the packet drop ratio, which
primarily occur due to the insufficient buffer space. Some
node connections are redundant, hence, in order to establish
loop-free routes, the topology has to be partitioned into tree
structures, each rooted at one of the root nodes.

The current solution uses Breadth-First-Search (BFS) to
construct a routing tree. CE is injecting a token into the
network, and every node, upon reception of the token, sets the
reception port as master port, and re-sends the token further
via all child ports. Subsequent token reception on this node
is ignored. While this approach is simple to implement, it is
highly dependent on the choice of the root nodes: some sub-
trees are growing faster than others, thus, the uplink traffic on
the root nodes is not evenly distributed.

In the next section we explain our solution, which (1)
minimizes the latency and (2) minimizes the packet loss in
the network. Since computational resources of individual cells
are constrained, and large signaling overhead is to be avoided,
we have chosen to implement a centralized algorithm: it is
executed on a CE, and its result (which master port to select)
is communicated individually to each cell.

III. NETWORK PARTITIONING ALGORITHM

The three step work-flow of the algorithm is presented
in Alg. 1. An Initial Solution (IS), combined with a Node
Exchange (NE) step, aims at decreasing the delay, while a
Buffer Overflow Avoidance (BOA) step is applied to all nodes
for ensuring load distribution to avoid packet loss.

Algorithm 1 Graph Balancing algorithm
1: Compute Initial Solution (IS) (Subsec. III-A1)
2: Perform Node Exchange (NE) (Subsec. III-A2)
3: for all nodes in the network, from root to leaves
4: Apply Buffer Overflow Avoidance (BOA) (Subsec. III-B1)

A. Delay minimization
There are four components for the end-to-end delay: prop-

agation, transmission, packet processing and queuing delay.

Propagation and processing delay can be safely ignored in
our case, as they are much smaller than transmission delay.
The transmission delay is the sending time ts and depends on
the packet size and the link bandwidth. Here, 20 bytes packets
+ 5 bytes spacing are used (with +2 bits per byte: start bit
and stop bit), sent via a 4 Mbps interface. The queuing delay
is due to the Round-Robin scheduling routine in each cell.

We exemplify our average delay estimations with a network
of N nodes with r root connections, each root serving a sub-
tree with the loads n1 ≤ n2 ≤ · · · ≤ nr. Assume that all
nodes generating a packet at time t = 0, and no new packet
is generated until all previous are delivered. Hence, each node
sends a packet at an interval equal to the sending time ts
until it runs out of packets to send. In this case, the root
node connection to the central entity becomes the bottleneck.
All root nodes’ connections are fully utilized until the node
servicing n1 child cells finishes its last packet. After that, for
the time (n2−n1)ts only (r−1) links are utilized, and so forth.
Considering that the end-to-end delay for every packet is the
time of arrival to the sink, we obtain the following estimation
of the average delay:

davg = (

r∑
j=1

nj∑
i=1

i · ts)/N =
ts
2

r∑
j=1

nj(nj + 1)/

r∑
j=1

nj (1)

Thus, the average delay is determined by the sending time
and the root load distribution. It is straightforward to see that
davg is minimal when n1 = n2 = · · · = nr, or the top level
is balanced. The root-level balancing, thus, is the target of
our algorithm. It is achieved during the first two steps of the
algorithm, namely IS and NE.

Algorithm 2 Initial Solution
1: Sets of processed nodes P = Ø, and of subtrees ST = Ø
2: for all root nodes ri do
3: initialize new subtree STi ← ri
4: ST← STi
5: F ← neighbor nodes of ri ∀ root nodes ri
6: while F 6= Ø do
7: Initialize a heap C ← F ordered by increasing node degree
8: F = Ø
9: while C 6= Ø do

10: nextNode = PopFrom(C) (Rule A applied)
11: if |STi| = min

∀STi∈ST
|STi| and nextNode has a link to STi then

12: |STi| ← nextNode (Rule B applied)
13: I - set of neighbors of nextNode
14: for i ∈ I do
15: if i /∈ P then
16: F ← F + {i}
17: P ← P + {nextNode}

1) Initial Solution (IS): The first step is used to explore the
network and create an initial tree solution. The step is similar
to BFS with additional custom tiebreakers (see Alg. 2). For the
selection of the next node to proceed the following rules are
applied. Rule A: a node with the smallest degree (number of
links) is processed before a node with a larger degree. Nodes
with under four connections are situated at the edge of the skin
patch and have little degree of freedom. Therefore, we process
them first. Rule B: in case of an equal node degree, a node
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Fig. 3. Sample run of the second NE subroutine. Before (a) and after (b).

with fewer sub-tree neighbors is processed before a node with
more sub-tree neighbors. The latter nodes have the greatest
degree of freedom as they can connect to any sub-tree.

2) Node Exchange (NE): Because the IS top level load
balance is usually sub-optimal, we propose the additional NE
step. It iteratively selects the root-level sub-tree pair with the
highest load difference. For the chosen pair, NE attempts to
even out the difference by passing nodes from the larger sub-
tree to the smaller one (refer to Alg. 3). The step consists of
two subroutines outlined below.

Algorithm 3 Node Exchange step
1: do
2: balancing ← false
3: Heap P of adjacent sub-tree pairs
4: Ordered by decreasing node difference
5: do
6: {ST1, ST2} ← PopFrom (P)
7: P ← (P − {{ST1, ST2}})
8: Dc ← ComputeNodeDifference(ST1, ST2)
9: success = FirstNESubroutine(ST1, ST2)

10: if not success then
11: SecondNESubroutine(ST1, ST2)
12: Dn ← ComputeNodeDifference(ST1, ST2)
13: if Dn<Dc then
14: balancing ← true
15: while P 6= Ø and balancing is false
16: while balancing is true

a) First NE subroutine: The approach is to transfer nodes
together with their child sub-trees. To determine the new load
difference Dn when passing a node x from one sub-tree to
another we use following equation: Dn = |Dc − 2L (x) |,
where Dc is the current difference, | · | is the modulo operator
and L (x) is the load of node x. The first NE subroutine goes
through nodes in the larger sub-tree neighboring the smaller
sub-tree and finds minimum Dn. If minDn ≥ Dc the step
fails and the second subroutine is attempted. Otherwise, the
selected node is transfered to the smaller sub-tree.

b) Second NE subroutine: While the first approach works
most of the time, there are situations in which all available
nodes to be exchanged have too many children and cannot
be passed over. Such a situation is depicted in Fig. 3a. The
approach is to reduce the load on the nodes neighboring the
smaller subtree, in order to make them eligible for exchange
as in first subroutine. For each candidate node xi the algorithm
traverses its sub-tree from parent to children. For each node
xc below xi it searches for replacement parents such that the
routing path does not include xi. By replacing the master port
to point to this new root, L (xi) is reduced. If xc has a valid
exchange parent, the graph traversal for that branch stops. A
replacement parent link is only valid if the two following

conditions hold true: (1) the node it is pointing at does not
forward its data through xi, meaning that the new parent must
not be below xi to prevent a forwarding loop; and (2) the node
does not belong to another sub-tree.

If the algorithm manages to reduce the load on any cell
eligible for exchange such that the new difference is reduced,
the transfer is performed and the NE step exits. In Fig. 3
a snapshot of the second NE subroutine is depicted. The
pseudocode for it is presented in Alg. 4.

Algorithm 4 Second NE subroutine
1: Set of nodes eligible for exchange Xe

2: for xi ∈ Xe do
3: Set of replacement parent mappings Mi

4: C ← neighboring children of xi
5: while C 6= Ø do
6: x← FirstElement(C)
7: C ← C − {x}
8: rn ← ReplacementRoots(x)
9: if rn 6= Ø then

10: Mi ←Mr + {{x, rn}}
11: else
12: C ← C+ all child nodes of x
13: Record new load difference:
14: D

xi
n ← |Dc − 2NewPotentialLoad(xi)|

15: xb ← min
∀xr∈Xe

D
xi
n (choose minimum load difference)

16: if Dxb
n < Dc (difference has been reduced) then

17: Perform all recorded parent changes in Mb

18: Exchange node xb

B. Packet loss minimization

The objective of this step is to reduce the packet loss by
avoiding buffer overflow on the nodes. The detection mech-
anism for buffer overflow is illustrated in network calculus
concepts. We consider the node with three children, and hence,
three active input queues A, B, C (assume A ≥ B ≥ C),
where max queue size correspond to length of the child sub-
tree connected to it. There is exactly one output port, and the
nodes are scheduled in a Round-Robin fashion, resulting in
the arrival and serving curves for the queue A as illustrated in
Fig. 4. Note that the buffer overflow occurs in case the backlog
of queue A, bA, grows larger than the buffer size qA. As it
can be seen from the illustration, there are exactly three cases
for calculating the maximum backlog: (1) tAQ < tCs : queue A
arrivals end before queue C is fully served, (2) tCs ≤ tAQ < tBs :
A arrivals end after C is served, but before B is served, and
(3) tAQ ≥ tBs : A arrivals end after B is fully served. The
conditions (1)-(3) can be expressed in terms of the queue sizes,
and for every of this three cases, maximum backlog bmax

A can
be computed as:

bmax
A =


2A/3, if A < 3C

(C +A)/2, if 3C ≤ A < C + 2B

C +B, if A ≥ C + 2B

(2)

The computation is straightforward from the illustration in
Fig. 4. Hence, the node risks a buffer overflow if the maximum
backlog, corresponding to the longest queue is larger than the
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buffer size: bmax
A > qA. By analogy, for the case with two

child sub-trees (with queues B and A, A>B), we obtain:

bmax
A =

{
A/2, if A < 2B

B, if A ≥ 2B
(3)

1) Buffer Overflow Avoidance (BOA): Next, we use
Eqns. (2) and (3) in the Buffer Overflow Avoidance step of
the algorithm (see Fig. 5). The intuition behind BOA is the
following: if the node risks a buffer overflow, we use the
Node Exchange routines developed above in order to create a
load distribution, for which the maximum backlog for longest
queue is sustained less than the buffer size. Note that the
balanced load distribution (optimizing delay) is not necessary
optimal for BOA (this does not contradict to the balancing
steps, since they are equalizing only the root-level connections
from root nodes to the central instance). The procedure is
applied iteratively for all nodes starting from roots to leaves.

IV. PERFORMANCE EVALUATION

This section presents evaluation of the algorithm (w.r.t. run
times and the load balancing performance), and the results
of network simulation that includes delay and packet drop
ratio. For the evaluation, two topology types are considered:
rectangular and cylinder skin patches. The choice of topology
is justified by the standard use case of the Cellul.A.R.Skin:
covering the parts of the robots. To show the robustness against
the root node placement, root nodes are chosen randomly for
every run. We compare our algorithm against the output of the
current routing implementation as described in Sec. II, referred
to as “Current routing” and Shortest-Path-Tree (SPT) routing.

Run Times. The test is performed on a development PC:
Intel Core i7 with four cores, 8Gb RAM notebook. Fig. 6
shows the dependency between execution time and the number
of nodes in the network, for rectangular topologies. Run
time measurements are performed for different root node
placements, chosen randomly. As we can see, run times
within a second were obtained for networks of 3600 nodes,
thus, making the algorithm feasible to use for envisioned
Cellul.A.R.Skin application in practice. It is observed that the
run time is influenced by the network topology and the root
placement. A cylinder network performed better since worst
case root placement scenarios, such as all roots in one corner,
are not possible for cylinders. We acknowledge that this run
time evaluation is only valid for our particular use case, where
the node degree is architecturally bounded by four. As a future
work, we plan a thorough complexity analysis for a generic
meshed network, with higher possible node degrees. Also note
that the both current solution and SPT perform faster than our
algorithm in cases.

Balance Factor. As a performance metric, we use the
balance factor defined by Jain’s Fairness Index [11]:

β =

(∑k
i=1 L (xi)

)2
k
∑k

i=1 L(xi)
2
. (4)

The nodes xi are the k root nodes and L(xi) represents
the load of node xi (size of the sub-trees). The balance factor
β takes values from (0, 1], and is equal to one if loads are
equal. Fig. 7 shows the balance factor for two setups: (a) for
three rectangular topologies of increasing size; (b) dependency
β from the number of root nodes. Fig. 7a), it is observed
that the developed algorithm achieves perfect balancing in
all cases, and the balance factor is independent from the
network sizes. This is due to the common rectangular shape
and the constant number of root nodes. Fig. 7b) shows how
efficiently the algorithm uses added root links. As we can
see, as the number of roots increases, it is getting more
difficult to ensure perfect balancing in all cases. However, our
algorithm is ensuring a close to perfect balancing significantly
outperforming comparative solutions.

Network Simulation. In order to estimate the delay and
packet loss, Cellul.A.R.Skin network is modeled and simulated
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using event-based Omnet++ framework [12]. The routes as
an output of the algorithm were preset statically, no protocol
related aspects were in consideration. Here, we have two
base modules: the node and the central entity. The central
entity is the final destination for all packets and is used to
compute the delay for each received packet. The node module
simulates the behavior of a Cellul.A.R.Skin cell, with four
input and four output ports, as well as four internal packet
queues: one for each child input port and one to hold the self-
generated packets. Round-Robin scheduler is regulating the

sending order. In order to obtain a fair delay comparison, we
first consider the buffer size to be large enough to ensure no
overflow. From Fig. 8, it is observed that if no packet loss
occurs, our algorithm achieves lowest average delay.

In the second setup, we intentionally limit the buffer size,
such that buffer overflows are expected to occur for all
algorithms, and measure the ratio of dropped packets along
with the maximum delay. Fig. 9 shows that our solution has ten
times less packet drops compared to the other two algorithms
while still maintaining a competitive delay.

V. CONCLUSIONS

In this paper, we introduced a network partitioning al-
gorithm for routing in a meshed skin network consisting
of hundreds to thousands of nodes with limited processing
power and memory. It reduces the E2E delay and minimizes
the packet loss. Delay minimization has been achieved via
root-level load balancing, while buffer overflow is avoided
considering the nodes’ maximum backlog constraints. Prac-
tical evaluations and an event-based simulation show that our
algorithm achieves significantly lower delay values and low
packet drop ratios than competitive solutions. Practically, this
allows a higher data reporting frequency in a Cellul.A.R.Skin
for a full network of cells without risking loss of packets.
Although the algorithm is tailored to the deployment with an
artificial skin, with the appropriate adjustments of link and
node costs, it can be applied in any large scale meshed sensor
network scenario – wired or wireless.
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