
Fakultät für Informatik
Technische Universität München

Lehrstuhl für Wirtschaftsinformatik und Entscheidungstheorie

Core Pricing and Spectrum Auction Design

Andor Roger Goetzendorff
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Abstract

Auctions are useful in settings when fixed price sourcing is not optimal because of an
information asymmetry between buyers and sellers in a given market. Combinatorial
auctions can increase social welfare by allowing bidders to express substitute or syn-
ergistic values for combinations of items. Considering synergistic valuations turns the
allocation problem into a computationally hard optimization problem that generally
cannot be approximated to a constant factor in polynomial time. We analyze specific
scenarios, where the optimality cannot be guaranteed, either because of the computa-
tional hardness of the underlying winner determination and pricing problem, or because
inefficiencies that were due to the auction formats used. We concentrate our research on
complex markets in general and focus on spectrum auctions specifically because of its
pivotal position in combinatorial auction design.

We first concentrate on the computation hardness of large markets. Here we introduce an
auction design framework for large markets with hundreds of items and complex bidder
preferences. Such markets typically lead to computationally hard allocation problems.
Our new framework consists of compact bid languages for sealed-bid auctions and meth-
ods to compute second-price rules such as the Vickrey-Clarke-Groves or bidder-optimal,
core-selecting payment rules when the optimality of the allocation problem cannot be
guaranteed. For realistic instances of the respective winner determination problems
found in the analyzed markets, very good solutions with a small integrality gap can be
found quickly. Closing the integrality gap to find marginally better solutions or prove
optimality can take a prohibitively large amount of time, however. Our subsequent adap-
tation of a constraint-generation technique for the computation of bidder-optimal core
payments to this environment is a practically viable paradigm by which core-selecting
auction designs can be applied to large markets with potentially hundreds of items. We
complement our computational experiments in the context of TV ad markets with ad-
ditional results for volume discount auctions in procurement in order to illustrate the
applicability of the approach in different types of large markets.

The spectrum market is another prominent example where complex bidder valuations can
be found. Ascending auction designs such as the Simultaneous Multiple Round Auction
(SMRA) and the single-stage or two-stage Combinatorial Clock Auction (CCA), the two
most dominant spectrum auction formats, can be seen as simple heuristic algorithms to
solve this problem. Such heuristics do not necessarily compute the optimal solution, even
if bidders are truthful. We study the average efficiency loss that can be attributed to the
simplicity of the auction algorithm with different levels of synergies. Our simulations are
based on realistic instances of bidder valuations we inferred from bid data from the 2014
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Abstract

Canadian 700MHz auction. We compare the SMRA and CCA under different synergy
conditions when bidders maximize payoff in each round. With “linear” synergies, a
bidder’s marginal value for a license grows linearly with the total number of licenses
won, while with the “extreme national” synergies, this marginal value is independent of
the number of licenses won, unless the bidder wins all licenses in a national package.
We find that with the extreme national synergy model, the CCA is indeed more efficient
than SMRA. However, for the more realistic case of linear synergies, SMRA outperforms
various versions of CCA that have been implemented in the field including the one used
in the Canadian 700MHz auction. Overall, the efficiency loss of all ascending auction
algorithms is small even with high synergies, which is remarkable given the simplicity of
the algorithms.

Optimal bidder behavior cannot be guaranteed, however: Although the CCA draws on
a number of elegant ideas inspired by economic theory which provide incentives to bid
truthfully, this is not always the case. Bidders might not respond to these incentives
due to strategic reasons or practical limitations. We introduce metrics based on Afriat’s
Efficiency Index to analyze straightforward bidding and report on empirical data from
the lab and from the field in the British 4G auction in 2013 and the Canadian 700
MHz auction in 2014, where the bids were made public. The data provides evidence
that bidders deviate significantly from straightforward bidding in the clock phase, which
can restrict the bids they can submit in the supplementary phase. We show that such
restrictions can have a significant negative impact on efficiency and revenue.
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1 Introduction

Auctions have been used for at least 2 millenia to exchange goods or services between

parties. The usage of auctions as a market mechanism has been steadily increasing,

with numerous examples: In business to business markets, from perishable goods, such

as fresh flowers, to commodities and public utilities, auctions are now in use in more and

more markets (Krishna, 2009). Also private sellers started to adopt auctions since the

start of the 21st century using platforms such as ebay.com as an alternative to fixed-price

sourcing.

But auctions are used for more than just selling single items: Electronic markets often

allow market participants to express rich information about their preferences for the

offered goods or services beyond single item valuations. More complex valuations such

as complementarities between goods or stepwise discounts for large volumes of items are

readily found in multiple markets. The possibility to allow the direct expression of these

valuations can lead to an increase in allocative efficiency and social welfare, a target

often desired by regulators and market designers.

Combinatorial auctions are a pivotal example of such smart markets (Cramton et al.,

2006). By allowing bidders to bid on packages (i.e., combinations of items) instead of

single items only, combinatorial auctions protect bidders against the well-known “ex-

posure problem”. This effect is present if items were to be auctioned separately and a

bidder is unable to win all items of a highly valued combination (causing him to pay

more for the subset than the subset’s worth to him), or when a bidder wins too many

items which he considers to be substitutes.
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1 Introduction

Markets successfully using combinatorial auctions include logistics (Caplice, 2007), en-

ergy exchanges (Meeus et al., 2009) and industrial procurement (Bichler et al., 2006).

For several years regulators started to sell spectrum auctions around the world using

combinatorial auction designs (Cramton, 2013). In all of these cases the market design

has a profound effect on the bidder behavior and efficiency. Being inherently multi-

disciplinary, the design of such markets created an interest in academia, with significant

contributions coming from researchers from various fields including economics, opera-

tions research and computer science. Cramton et al. (2006) provides a first overview of

the different application areas.

Auction theory provides a basic framework to think about strategies and efficiency of

auctions, but with the increase in computing power and improvements in optimization

algorithms, new problems arose which are complementary to those discussed in microe-

conomics. As an example, the required amount of communication needed for an efficient

solution and the computational complexity of markets with multiple items has been a

topic of interest in operations research and computer science (Lehmann et al., 2006;

Nisan and Blumrosen, 2007). In the information systems literature, contributions re-

garding the decision support and information feedback (Adomavicius and Gupta, 2005),

the analysis of bidder behavior (Scheffel et al., 2011), as well as the design for specific

domains (Bapna et al., 2007; Guo et al., 2007) can be found. As we will see in the

following chapters, all of these issues will also be present in our main contributions.

Spectrum Auction design is one of the most challenging and visible application do-

mains for combinatorial auctions. It is often seen as a pivotal example for the design

of multi-object markets and successful auction designs are likely role-models for other

markets in areas such as procurement and logistics.

Radio spectrum is a key resource in the digital economy. With numerous applications

important for society and its dramatic increase in demand in the last years due to the

rapid increase of wireless devices, the US Federal Communication Commission (FCC)
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decided in 1994 to adopt a market-based approach to assign spectrum instead of previ-

ously established methods such as “beauty contests”, in which the candidates’ offers are

matched against a weighted list of criteria. The Simultaneous Multiple Round Auction

(SMRA) was the first auction used by the FCC and has since then been adopted success-

fully by regulators in multiple national markets around the world, generating hundreds

of billions of dollars worldwide.

Despite this success, the SMRA has also led to a number of strategic challenges for bid-

ders. Telecom operators often have preferences for certain packages of licenses, but are

unable to express them directly in the SMRA. This leads to the aforementioned exposure

problems: if bidders who compete aggressively for a certain package risk ending up with

only a subset, they risk paying more more than what this subset is worth to them. This

adds a possibly unwanted strategic complexity to the auction and is a source of inef-

ficiency in the SMRA. To mitigate this, regulators started incorporating combinatorial

auctions also for selling spectrum. In theory, the Vickrey-Clarke-Groves (VCG) auction

is the only strategy-proof (i.e., truthful) and efficient auction, but for multiple practical

reasons it has rarely been used so far (see Section 2.3). This brought up several other

combinatorial auction formats, some of them specifically designed for the spectrum mar-

ket. In 2008, the FCC decided to adopt an extension of the SMRA format (see Goeree

and Holt (2010)) that allows the auctioneer to specify packages on which bidders can

bid on. Meanwhile, Ofcom, UK’s telecom regulator, adopted the Combinatorial Clock

Auction (CCA) in it’s L-Band auction (Cramton, 2008). The format rapidly gained

popularity and variations of it have been used by regulators around the world including

Austria, Australia, Canada, Denmark, Ireland, Mexico, the Netherlands, Switzerland

and the UK (Mochon and Saez, 2017).

Efficiency, revenue, and strategic simplicity for bidders are typical design goals that

a regulator has in mind. Choosing the best auction design is not always trivial: In

auctions with a purely additive bidding language, bids for each package are just the sum

of the bids on the individual items. This allows for a potentially higher efficiency in larger

markets than some combinatorial auction designs due to its simplicity, but, as mentioned
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earlier, bidders risk of winning only parts of a bundle of interest and therefore having to

pay more than this subset of items is worth to them. This can introduce an unwanted

level of strategic complexity and potential inefficiency into the auction. If on the other

hand bidders have to explicitly enumerate all packages they are interested in, bidders

can typically only specify a small proportion of these bids in larger auctions. Missing

package bids are usually treated as if a bidder had no value for the package; an unlikely

scenario. As we will see in Paper B and C, lab experiments, field data and simulations

have shown that this “missing bids problem” can lead to substantial efficiency losses.

Combinatorial auction design therefore faces a natural trade-off between the possibly

higher efficiency due to the option of directly expressing preferences on packages, and the

efficiency losses due to the introduced complexity. This observation has caused a debate

on the design of spectrum auctions, but the discussion goes beyond this application and

begs the question how large markets with many items can be designed so that bidders are

incentivized and able to express their preferences truthfully while allowing auctioneers

to achieve allocations with high efficiency.

1.1 Outline and Contributions

The debate is still not solved in many cases: In spectrum auctions, regulators still tend

to choose from a variety of possible auction formats. None of these formats has emerged

as a clear winner, as all used formats have different advantages and drawbacks. In the

paper Synergistic Valuations and Efficiency in Spectrum Auctions we try to quantify the

differences in efficiency and revenue of these formats by simulating truthful and rational

bidders. Instead of creating synthetic scenarios, we based both our ruleset and bidder

valuations on the Canadian 700 Mhz Auction of 2014, including all the intricacies that

are often ignored in simulations or laboratory experiments due to the added complexity.

As of today, no other simulation framework is known to us that allows us to generate

results with the desired fidelity. The paper was created in collaboration with Martin

Bichler and Jakob K. Goeree and was published in “Telecommunication Policy”.
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1.1 Outline and Contributions

But what if bidders do not behave rationally? This is analyzed in (Un)expected Bidder

Behavior in Spectrum Auctions: Using the bidding data from laboratory experiments

and two recent spectrum auctions in the field, we demonstrate that bidders do indeed

not always display rational behavior in the Combinatorial Clock Auction. This often

has unexpected consequences, as even small deviations from truthful behavior can cause

severe limitations to the bidder’s bidding possibilities due to the used activity rules. The

impact this has on the efficiency and revenue was analyzed in conjunction to the “missing

bids” phenomenon. The paper is based on the work done in collaboration with Martin

Bichler and Christian Kroemer and was published in “Group Decision and Negotiation”.

In our third contribution we concentrate on very large markets with potentially hun-

dreds of items and complex bidder preferences. In such a setting, solving the allocation

problem to optimality cannot be guaranteed, although near-optimal solutions can be

found relatively quickly. As several payment schemes, such as the VCG auction (see

Section 2.3) depend on strict optimality, using these payment schemes is not always

possible. In the paper Compact Bid Languages and Core Pricing in Large Multi-item

Auctions, we develop an auction framework for such markets, allowing us to apply these

payment schemes even under near-optimality. To demonstrate the efficacy, we introduce

a compact bidding language for TV advertising markets and complement our compu-

tational experiments with additional results for volume discount auctions to illustrate

the applicability of the approach in different types of large markets. The paper was

done in collaboration with Martin Bichler, Pasha Shabalin and Robert W. Day and was

published in “Management Science”.

The dissertation is structured as follows:

� Chapter 1 introduces the reader to auctions, combinatorial auctions, and the spec-

trum auction market and its challenges.

� Chapter 2 gives a concise overview over the main concepts of auction theory.

� Paper A depicts Compact Bid Languages and Core Pricing in Large Multi-item

Auctions.
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� Paper B compares the Efficiency of Spectrum Auctions: SMRA versus CCA.

� Paper C analyzes the (Un)expected Bidder Behavior in Spectrum Auctions.

� Chapter 3 concludes by discussing the selected methods and by giving an outlook

into further research possibilities.

If the reader is already familiar with the basics of auction theory and spectrum auctions,

the paper A, B and C can be read on their own. Concluding remarks and appendices

can be found at the end of these papers, respectively.
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2 Theoretical Framework

Before going deeper into the main contributions of this dissertation, a short overview of

basic notation and concepts typically used in auction theory is presented in this chapter.

The topics here are presented on their own, as they are of interest to the reader for all

of the following work. For a more detailed review please refer to Nisan and Blumrosen

(2007) and Cramton et al. (2006), the main references for this chapter.

2.1 Auctions

The term “auction” stands for any mechanism that collects bids of potential buyers and

where the outcome is determined solely by the information provided by these bidders.

While a wide variety of mechanisms fall under this category, in its most basic form, an

auction can be broadly characterized by its running procedure, its pricing rule and its

direction. An auction can last only one or multiple rounds (a sealed-bid or iterative

auction, respectively). In standard auctions, the prices winning bidders have to pay

are typically at most the value of their winning bid (a first-price auction) and at least

the marginal harm they cause to the other participants with their bid (a second-price

auction). This coincides with the bid of the second-highest bidder in single-item single-

unit auctions. Finally, an auction can be either a forward auction, a reverse auction,

or an exchange. A forward auction is the auction you would expect when going to an

auction house. Here the auctioneer is the seller. A reverse auction is typically used by

an auctioneer to procure services or goods from suppliers instead. In an exchange both
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2 Theoretical Framework

buyers and sellers participate in the price finding process of the auction to reach an

equilibrium.

Using an auction makes sense if it is difficult for the auctioneer to determine an optimal

price point for the goods or services to sell in order achieve an optimal allocation, but

the participating bidders already have or can form an opinion about the value of the

auctioned goods. If each bidder knows only his value of the items to be sold, and each

of the bidders’ types is independent from one another, we refer to this as independent

private values. Formally, we can define the valuation function of a bidder j as

vj : X → R≥0 (2.1)

where X = (S1, . . . , Sn) stands for an outcome chosen by the auctioneer. In this case,

vj(S) denotes the value bidder j has for the allocation or bundle S1. Throughout this dis-

sertation we will adopt the standard assumption of quasilinear utility functions, meaning

that the utility of bidder j is

πj(S) = vj(S)− pj(S) (2.2)

where the term pj represents the monetary amount the bidder has to pay for bundle S.

We further adopt the assumption that all bidder valuations satisfy free disposal

vj(S) ≥ vj(T ) ∀ T ⊆ S (2.3)

i.e., receiving an additional item never reduces the valuation of bidder j.

A combinatorial auction allows a bidder to communicate valuations for whole bundles,

compared to single items. This can cause a higher efficiency if the bidder’s valuation

function is nonadditive: Objects are complements if the marginal value of receiving an

additional item i is larger if the set of objects already received is bigger, i.e. we have a

1Note that, with independent private values, the bidder’s valuation only depends on the bundle he
receives.
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superadditive valuation function:

vj(Ts ∪ {i})− vj(Ts) ≤ vj(Tb ∪ {i})− vj(Tb) ∀ Ts ⊆ S, Tb ⊆ S, Ts ⊆ Tb (2.4)

Likewise, we say objects are substitutes if the marginal value of receiving i is less in this

setting. In this case, we have subadditive valuations.

By introducing a binary decision variable xj(S) for each set S a bidder j demands, a

winner determination problem (WD) can be formulated as an integer linear program

(ILP). This ILP will form the basis of many of the allocation problems presented in

this dissertation. Note that in the current formulation, a bidder j can win at most one

bundle S ⊆ I. This restriction can be easily removed by omitting Equation (2.7).

max
∑

S⊆I

∑

j∈J
xj(S)vj(S) (2.5)

s.t.
∑

j∈J

∑

S:i∈S
xj(S) ≤ qi ∀i ∈ I (2.6)

∑

S⊆I
xj(S) ≤ 1 ∀j ∈ J (2.7)

xi(S) ∈ {0, 1} ∀S ⊆ I, ∀j ∈ J

A bid submitted to an auction is a representations of a bidder’s communicated valuation

vj(S) for a specific bundle S. While solving the WD to optimality is an NP -hard

problem (Sandholm, 2002), finding a solution is possible even for instances with hundreds

of bids (Ibid.).

In order to quantify the ‘goodness’ of an allocation generated by an auction, two metrics

will be used throughout the dissertation. The allocative efficiency (or simply efficiency)

of an auction is measured by comparing the outcome of the algorithm against the social

welfare generated by the optimal allocation X∗, i.e.

E(X) =

∑
j∈J vj(Sj)∑
j∈J vj(S

∗
j )

(2.8)
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We also measure the revenue distribution R(X), which compares the auctioneers revenue

(i.e., the sum of the bidders’ prices pj) against the optimally achievable surplus.

R(X) =

∑
j∈J pj(Sj)∑
j∈J vj(S

∗
j )

(2.9)

To make the WD usable in practice, two issues have to be addressed before putting it to

use: With an exponential number of possible bids (there are 2m possible bundles for m

items), it would be impractical to ask all bidders to submit a bid for each combination.

This will be addressed in the next session. Another point of interest is the strategy-

proofness of the proposed mechanism: As of now, it is unclear how much a winning

bidder should pay for his winning bundle. This will be addressed in Section 2.3.

2.2 Bid Languages

Bid languages are used to allow participants to limit the amount of information they

have to communicate, while still being expressive enough. Designing a fitting language

is a nontrivial task for all but smaller markets, and often makes use of domain knowledge

to reduce the amount of information needed (see Paper A). The two most basic operators

used to form a collection of bids are OR and XOR bids. In a bidder’s submitted XOR

bid collection, only at most one of the bids in such a collection can be won by the bidder.

In an OR bid collection, on the other hand, it is possible for the bidder to win more

than one bid (Nisan and Blumrosen, 2007) of such a collection. Both operators have

very different levels of compactness and expressiveness: To allow a bidder to express any

arbitrary valuation function through atomic bids, an XOR language is needed. In this

case, the bidder has to submit up to 2m− 1 bundle bids (for m items). An OR language

is much more compact, as the bidder only has to submit up to m bids. In this case

however, the bidder only has the possibility to express superadditive valuations.

As an example, take the bids (({a, b}, 3) XOR ({c}, 5)) and (({a, b}, 3) OR ({c}, 5)).

Each of them has a value of 0 for {b} and values the bundle {a, b} at 3. The difference

10



2.3 The VCG mechanism

shows up in the bundle {a, b, c}. Here, the XOR bid has a value of 5 for it, whereas the

OR bid values the bundle at 8.2

Often, a hierarchy of super- and subadditive valuations is specific to the market. If this is

known to the auctioneer, a specific structure of OR and XOR bids or the introduction of

dummy bids can help to achieve a good balance between compactness and expressiveness

(Bichler et al., 2011; Nisan and Blumrosen, 2007). In more complex settings and larger

markets, domain specific compact bid languages such as the ones found in Boutilier and

Hoos (2001) and Paper A might be needed to lower the communication complexity.

Another way to lower the needed communication between bidders and auctioneer will be

introduced in Section 2.5, where we will be discussing iterative combinatorial auctions.

Before depicting this concept, we will introduce two different payment schemes that are

essential if an auctioneer is interested in inducing truthful behavior or a stable outcome

in sealed-bid auctions.

2.3 The VCG mechanism

Efficiency, revenue, and strategic simplicity for bidders are typical design goals that an

auctioneer has in mind. The Vickrey-Clarke-Groves (VCG) auction is the only strategy-

proof and efficient auction (Krishna, 2009). Even though it is seldom used in the field for

several reasons (Rothkopf, 2007), it often serves as a baseline to compare other auction

formats against, or as a starting point for further price adjustments.

In a VCG auction, bidders report their valuations for all relevant packages through

the used bidding language. The goods are then assigned optimally, maximizing the

total value. The requested payment for a winning bid is not necessarily equal to the

clearing price, however. Instead, it is equal to the marginal harm this bid inflicts to the

other bidders (i.e., the combined opportunity cost). For a set of bidders J and a winner

2Note that, if a bidder submitted an OR bid for two packages S1 and S2 with S1∩S2 6= ∅, only at most
one of those bids would win.
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determination algorithm WD(J), the price a winning bidder j has to pay for his winning

bid amount bj(Sj) can therefore be formulated as:

pVCG
j = bj(Sj)− (WD(J)−WD(J \ {j})) (2.10)

The VCG auction is the only strategy-proof and efficient auction, but it is rarely used for

practical reasons. If there is at least one bidder who does not have substitute preferences,

the revenue a VCG auction generates is no longer monotonous regarding the set of

bidders and the amounts bid, and the mechanism is no longer group-strategy-proof. But

even if bidders bid truthfully, the revenue of a VCG auction can be as low as 0 even for

high bids and ample competition.

For example, Ausubel and Milgrom (2006) provide a classic setup where VCG payments

total zero for two bidders, despite a competitor’s bid to pay the seller a large amount for

their combined winnings, and show that these payments of zero can be achieved through

group manipulation or the use of false-name (i.e., shill) bids. This occurs when the first

two bidders bid M for their disjoint respective bundles of interest, with a losing third

competitor offering exactly M for the union of these bundles.

This makes the auction unattractive, even if the auctioneer’s primary interest is social

welfare maximization and not revenue maximization. In a public setting, a scenario as

the one just described would be most likely unacceptable for the general population (as

the revenue would be zero) and the losing bidder (as he would be willing to pay up to

M for the bundle).

2.4 The Core

The constructed example mentioned in Section 2.3 is quite extreme: The seller earns

zero even if the goods in the auctions were in demand. The result does seem neither

fair nor stable: Specifically, compared to the computed outcome, the seller and bidder 3

12



2.4 The Core

would be better off settling for any price ≤ M . The concept introduced in this section

allows a market designer to determine if prices are ‘too low’ or ‘too high’ by looking at

the stability of the outcome. For this we draw upon a concept used in cooperative game

theory.

Auctions can be seen as cooperative games with transferable utility. Whenever a sub-

coalition of the grand coalition (i.e., the auctioneer and all bidders) can form an outcome

that increases the payoff of all participants of this subcoalition, we say the outcome is

not in the core, and that such a coalition is blocking the proposed outcome. Hence, in

the example above, the coalition {seller, bidder 3} is a blocking coalition.

p(S1)

p(S2)

M

M

b1(S1)

b2(S2)

b
3 ({S

1 ∪
S
2 })

Core

VCG Payment

Figure 2.1: VCG Payments and the Core

We base our more formal definition of the core on Milgrom (2004). We define the set of

players J0 as the set of all bidders J in addition to the auctioneer (with index 0). The

seller’s utility π0 is equal to the revenue the auction generates, i.e. π0 =
∑

j∈J pj(Sj).

We further define a coalitional value function w(C) for a coalition C as the maximum

sum of the participants’ bundles Sx
j that they receive in the alternative S out of the set
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of alternatives X .

w(C) =





maxX∈X
{∑

j∈C\{0} vj(S
x
j )
}

if 0 ∈ C

0 if 0 /∈ C
(2.11)

The set of core payoffs can then be defined as:

Core(C,w) =



π :

∑

j∈C
πj = w(C), (∀D ⊆ C) w(D) ≤

∑

j∈D
πj



 (2.12)

I.e., if a set of payoffs is not in the core, a (sub-)coalition of C has a higher coalitional

value than the summed up payoffs. For the aforementioned example, a simple compu-

tation shows that the payoff vector π /∈ Core(J0, w). Figure 2.1 shows the same setting

graphically.

Core payments are often seen as more practical compared to the VCG auction because

of their stability, but as we can see in Figure 2.1, the core is often not unique. A number

of authors provide valuable insights into the possibilities to manipulate core outcomes

and the perceived fairness of outcomes (Day and Raghavan, 2007; Day and Cramton,

2012; Lubin et al., 2015). Bidder-Pareto-Optimal core (BPOC) outcomes, i.e., a core

outcome for which there is no other core outcome that is weakly preferred by every

player3, minimize the incentives to bid strategically among all core outcomes, and are

used in several markets such as spectrum auctions. Paper A will extend one of these

payment schemes in order to be able to compute core-like payments also for problems

whose size allows only the computation of near-optimal solutions.

2.5 Iterative Combinatorial Auction Formats

The main advantage of combinatorial auctions is the ability for bidders to express prefer-

ences on packages, but this makes it also extremely difficult for bidders, as they have to

3In Figure 2.1, the thickened edge of the core polyhedron marks all BPOC outcomes in this example.
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provide a valuation function over the space of all possible bundles of items. (Compact)

bidding languages (see Section 2.2) can be a remedy for this, but they do not address

the issue of the cost of precisely computing the parameters of the model in question to

fit their valuation function. Another possibility to tackle the inherent communication

complexity of combinatorial auctions is by introducing rounds to an auction, and query-

ing the bidders each round. The introduction of iterations makes the bidders’ strategy

space richer (Sandholm and Boutilier, 2006), which can introduce unwanted strategic

complexity. At the same time, intelligent querying can reduce the needed communica-

tion between bidders and auctioneers (Ibid.). Another reason to opt for an iterative

auction format are privacy concerns: Here bidders only have to reveal partial and in-

direct information about their (private) valuation function. Furthermore, while not yet

proven for combinatorial auctions, the dynamic nature of iterative auctions is known to

enhance revenue and efficiency in single item auctions with interdependent valuations

(Milgrom and Weber, 1982). Before introducing the main families of iterative combi-

natorial auctions found to date, we outline the preliminary concepts needed to reason

about this type of auction. We base our description on Krishna (2009) and Cramton

et al. (2006).

A first idea about how prices are formulated can be readily seen by extending the English

(open outcry) auction to multiple items. This concept is a stark contrast compared to

the result of the sealed-bid payment rules such as VCG or BPOC auctions, introduced

in Sections 2.3 and 2.4, where the resulting prices are typically not comparable between

bidders. In order to reason more about the payments bidders are required to make, we

can categorize an auction’s (ask) prices as follows:

linear prices p(i) ≥ 0 ∀i ∈ I (2.13)

non-linear prices p(S) ≥ 0 ∀S ⊆ I (2.14)

personalized, non-linear prices pj(S) ≥ 0 ∀S ⊆ I, j ∈ J (2.15)
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A B AB

b1 a b a+ b+ c
b2 a+ d b+ d a+ b+ d

Table 2.1: No equilibrium with linear prices

Each introduced price level allows the market designer to discriminate on a specific

additional dimension. With linear prices (2.13), bundle prices are simply the sum of the

item prices, i.e. p(S) =
∑

i∈S pi. For non-linear prices (2.14), the statement p(S) 6=
p(S1) + p(S2) is legal even if S = S1 ∪ S2 and S1 ∩ S2 = ∅. Finally, prices can also be

discriminatory towards bidders, i.e. it can be that, under eq. (2.15), pj(S) 6= pj′(S) for

j 6= j′, in addition to all the characteristics of (2.14).

Linear prices are certainly the easiest concept to grasp for participants in an auction, but

for general valuations, defining an allocation function that is guaranteed to result in an

equilibrium, a necessary condition for an efficient iterative auction, is not possible with

linear prices. As an example, Milgrom (2000) showed that with at least three bidders

and at least one non-substitutes valuation, i.e., this bidder regards at least one package

of items as complements, it is not guaranteed that an equilibrium with linear prices

(a Walrasian equilibrium) exists. An intuition can be given by a two-item, two-bidder

example, based on (Ibid.).

We characterize this example by defining two bidders, b1 and b2, and two items, A and

B. The valuations for the individual items and the package AB can be found in Table 2.1.

Here, the valuations a, . . . , d ≥ 0 and c
2 < d < c, i.e., A and B are substitutes for b2

but complements b1. In this case, a social welfare maximizing function such as WD (see

eq. (2.5)) can only allocate AB to b1. In order to achieve an equilibrium with linear

prices, p(A) and p(B) must be so that b2 is not demanding these items anymore, i.e.,

p(A) ≥ a + d, p(B) ≥ b + d. At these prices, b1 is unwilling to acquire them, however:

No equilibrium with linear prices can be formed.

The concept of Competitive Equilibrium extends the notion of a Walrasian equilibrium

to a combinatorial auction. A competitive equilibrium (p,X) is such that an allocation
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X = (S1, . . . , Sn) maximizes the payoff of every bidder and the seller given prices p, i.e.

prices p and allocation X are in competitive equilibrium if:

πj(Sj , p) = max
S⊆I

(vj(S)− pj(S), 0) ∀ j ∈ J (2.16)

π0(X, p) = max
S∈Γ

∑

j∈J
pj(Sj) (2.17)

where Γ ∈ X denotes the set of all feasible allocations.

We note that the allocation X is supported in competitive equilibrium if and only if X

is an efficient allocation (Parkes and Ungar, 2000). Furthermore, all core outcomes (see

Section 2.4) can be priced with a set of prices pj(Sj)
4, and all competitive equilibrium

prices have corresponding core payoffs (Bikhchandani and Ostroy, 2002).

As we will see, many iterative combinatorial auctions are designed to converge to minimal

competitive equilibrium prices, i.e., a set of prices which minimizes the auctioneer’s

total revenue π0(X, p) on the efficient allocation X∗ across all competitive equilibrium

prices. Also, minimal competitive equilibrium prices have a corresponding bidder Pareto-

optimal core payoff vector, see Section 2.4.

The design space for iterative auctions is quite large, with possibilities to decide on dif-

ferent dimensions such as timing issues, information feedback, bidding rules, termination

conditions and the use of proxy agents (Parkes and Ungar, 2000). The biggest challenge

in iterative combinatorial auction design is to support focused bidding by reducing the

communication needed between bidders and auctioneer, without allowing new strategic

behavior to compromise efficiency.

In the following, we will introduce a short number of iterative auction formats used to

sell spectrum worldwide, with a focus on price-based and discrete-round-based iterative

combinatorial auctions with a rolling termination rule. In addition to the bidding lan-

guage (see Section 2.2), and ask price formation, the following additional criteria have

to be specified:

4A trivial example would be pj(Sj) = vj(Sj).
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� The information feedback bidders receive in each round. This includes for example

the provisional allocation and price feedback, and can have an important strategic

impact on bidders.

� The (inter-round) bidding rules. These typically are used to put an incentive on

straightforward bidding, or to speed up the convergence of an auction toward an

equilibrium. They can range from simple monotonicity rules, i.e., bidders can only

express downward sloping demand curves over a series of rounds, as prices increase,

to revealed preference constraints, which are thoroughly analyzed in Paper C.

As we will see in Paper B, details such as the ones listed can cause a significant change

on the perceived fairness and efficiency of an auction. They are however highly market

specific and therefore omitted in the following survey.

Although not a combinatorial auction format, simultaneous ascending auctions such have

been used successfully for numerous applications, from the commissioning of divisible

goods like electricity to spectrum auctions. One prominent example here is the Simulta-

neous Multiround Auction (SMRA), a simultaneous auction format used by regulators

to auction off spectrum. The widespread adoption of this auction format in spectrum

auctions was one of the reasons we included the SMRA in our analysis in Paper B. The

SMRA is a generalization of the English open-outcry auction when taking into consider-

ation many goods. Here, all items are offered at the same time, each item having a prices

associated with it. Bidders can then submit bids for each of these items, surpassing the

existing price, with the highest bidder provisionally winning these items. This continues

until no bidder is willing to submit any new bids. The auction terminates by asking

the bidders to pay the price they bid on each of their provisionally winning items. The

auction suffers from the aforementioned exposure problem, but the procedure and termi-

nation rule is easily understood by bidders, which might offset the inherent inefficiency

of this auction format (see Paper B).

Hierarchical Package Bidding (HPB) is an extension to the SMRA format by Goeree

and Holt (2010). Instead of bidding on items only, bidders are allowed to bid on a series
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2.5 Iterative Combinatorial Auction Formats

of packages that were defined by the auctioneer. The hierarchical, tree-like structure of

the defined packages allows for an optimization in polynomial time, while still allowing

bidders to potentially overcome the exposure problem associated with a simultaneous

ascending auction. Defining a suitable hierarchy of packages is challenging however,

especially when the participating bidders would like to express heterogeneous comple-

mentarities or if the complementarities are unknown to the auctioneer.

While all of the previous auction formats raise prices in their iterative phase by tak-

ing into account the overdemand and increasing the item’s ask price by a specified

amount (typically between 5% and 10%), Primal-Dual Auction Formats such as RAD

and ALPS(m) (see Bichler et al. (2009)) take a different approach: After each round,

a mixed integer linear program is solved with the aim to generate a set of linear prices

by taking into account the current allocation computed by a WD (see eq. (2.5)). While

these pseudo-dual linear price iterative combinatorial auctions have performed well in

laboratory experiments and simulations, they are not guaranteed to converge to a com-

petitive equilibrium and don’t guarantee monotonicity on the generated linear prices

throughout the rounds (Bichler et al., 2009; Parkes and Ungar, 2000).

Similar to the SMRA, the Clock Auction format is, in its most basic form, an extension

of the Japanese Auction to multiple items. Here, each item is associated to “price clock”,

which determines the price of the respective item. Bidders can then in each round decide

which items they would like to acquire at the current prices and express this demand

set to the auctioneer. Contrary to the SMRA format, bidders are not able to specify a

custom price for each of the demanded items, i.e., jump bidding is not allowed. After

collecting the demands of each item, the auctioneer increases the prices of all items with

overdemand, followed by another round, where all bidders have, again, to submit their

demand sets at the current prices. The auction is finished when no item is overdemanded.

Being a simultaneous ascending auction, the clock auction also bears the potential risk

of the exposure problem for bidders.
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The Clock auction format is an important precursor for two other combinatorial auction

formats prominent in spectrum auctions, the single stage and two stage Combinatorial

Clock Auction (SCCA and CCA, resp.). The SCCA allows bidders to express their

demand on packages of items instead of items alone, eliminating the exposure problem

if a fully expressive language is used5. The auction formats combines the intuitivity

of the clock auction format with monotonically increasing linear prices and a simple

termination rule: In case of overdemand, prices are increased as in the clock auction.

In a situation with oversupply, the auctioneer solves a winner determination problem

(see eq. (2.5)) to determine, whether there is an excess demand by also including bids

from previous rounds. If this is not the case, or if supply equals demand, the auction

terminates, and bidders pay the respective sum of ask prices of their winning packages.

The (two stage) CCA extends the clock auction format was developed to overcome the

shortcomings of a linear price combinatorial auction. Here a supplementary, sealed-bid

phase is added to the initial clock auction. This supplementary phase allows bidders to

specify package bids with a fully expressive bid language, while the first clock phase is

used to determine the bid price range. Prices are then determined by using a bidder-

Pareto optimal core selecting rule (see also Section 2.4 and Paper A).

5In its original design, Porter et al. (2003) use an OR-bidding language, but already mentions mutually
exclusive bids. Extensions with a more expressive bidding language were already used in the field,
for example in the Danish Spectrum Auction of 2016.
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1. Introduction
Electronic markets allow market participants to
express rich information about their preferences for
different goods or services beyond a price quote
for individual items only. It is easy for an auction-
eer to elicit complementarities, synergies, or volume
discounts for large volumes of items. More compre-
hensive information about cost structures or utility
functions of market participants can increase alloca-
tive efficiency and lead to higher economic welfare.

In recent years, a growing body of literature in
the management sciences is devoted to the design
of such smart markets (Gallien and Wein 2005), with
combinatorial auctions (CAs) emerging as a pivotal
example (Cramton et al. 2006). A CA allows bid-
ders to bid on combinations of items, offering pro-
tection against the well-known “exposure problem”
present in simultaneous auctions for heterogeneous
items, in which a bidder is exposed to winning too

few complementary goods to realize synergies at a
high price or winning too many items that she consid-
ers substitutes at a high cost. Logistics markets have
used combinatorial auctions for several years (Caplice
2007), industrial procurement is a large field of appli-
cation (Bichler et al. 2006), energy exchanges are using
bundle bidding in day-ahead markets (Meeus et al.
2009), and more recently spectrum auctions across
the world have started using combinatorial auction
designs (Cramton 2013). In all these cases, the market
design has a profound effect on bidder behavior and
efficiency, and many market designs originated from
academic research.

Mechanism design and auction theory provide a
basic framework to think about strategies and effi-
ciency of auctions, but the design of multi-item mar-
kets has led to many new problems complementary
to those discussed in microeconomics. For example,
the computational complexity of allocation problems
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in multi-item markets has been a topic of interest in
operations research and computer science Lehmann
et al. (2006). The information systems literature has
made contributions on decision support, pricing, and
information feedback (Xia et al. 2004, Adomavicius
and Gupta 2005, Bichler et al. 2009), the analysis of
bidder behavior (Scheffel et al. 2011, Adomavicius
et al. 2012), and the design of markets for specific
domains (Guo et al. 2007, Bapna et al. 2008).

Combinatorial auctions have been used for increas-
ingly large markets. For example, in some spectrum
auctions there are around 100 licenses for sale—i.e.,
2100 packages, which is on the order of 10267 × 1030. 1

As a comparison, 3 × 1023 is the number of stars in
the observable universe. It is clear that larger bidders
can only specify a small proportion of their bids of
interest. Note that the winner-determination problem
for auctions with a fully expressive XOR bid language
treats missing package bids as if a bidder had no
value for the package. Recent lab experiments have
shown that this “missing bids problem” can lead to
substantial efficiency losses, even with a much lower
number of possible packages compared with a simul-
taneous multiround auction where bids can only be
submitted on individual items (Bichler et al. 2013).
In a simultaneous multiround auction, the bids are
additive (OR bid language), and for each package
there is an estimate of the valuations for this package,
which is just the sum of the bids on the individual
items. This allows for higher efficiency in larger mar-
kets than some combinatorial auction designs, even
though bidders cannot express their complementari-
ties without the risk of winning only parts of a bundle
of interest and having to pay more than this subset
of items is worth to the bidder. CA designs, there-
fore, face a natural trade-off between the efficiency
gains of allowing bids on packages and the efficiency
losses resulting from missing bids. This observation
has caused a debate on the design of spectrum auc-
tions, but the debate goes beyond this application
and asks the question how large markets with many
items can be designed such that bidders are incen-
tivized and able to express their preferences truthfully
and that auctioneers achieve allocations with high
efficiency.

Our paper provides a contribution to the design
of large markets with dozens or hundreds of items.
In general, the term “large markets” can be used to
refer to those in which the number of packages in a
fully enumerative XOR bid language is more than a
few hundred bids, making it clear that bidders cannot
be expected to submit bids on all possible packages.

1 The spectrum auction in Canada in 2014 included 97 licenses
(Government of Canada 2009). Planned spectrum auctions in
Canada and the United States have even more items for sale.

Simplification was suggested as a theoretical concept
to reduce the message space without losing efficient
equilibria (Milgrom 2010), but apart from this, there
has been little research in the design of large mar-
kets. We outline a framework that includes the design
of compact bid languages and computational tech-
niques to determine VCG and bidder-Pareto-optimal
core payments, which provide incentives for bidders
in a sealed-bid auction to submit their preferences
truthfully.

There are many potential applications of this
approach, ranging from the allocation of a large num-
ber of resources with potentially varying quality, such
as the capacity on flexible manufacturing machines,
the procurement of a large number of raw materials,
or the sale of both TV and Internet banner adver-
tisement with varying quality in terms of customer
reach. To prove the computational applicability to
realistic markets, we focus on two particular markets
of interest: (1) multi-item procurement auctions with
economies of scale and discounts for large quanti-
ties of each item and (2) markets for TV advertising
(hereinafter, TV ad) slots. We emphasize that the tech-
niques we propose are quite general and applicable to
a number of markets, but because they involve heuris-
tics, it is necessary to show that the methods function
effectively on a few realistic implementations in terms
of size and complexity.

The procurement context involves several types of
raw materials that need to be procured, where the
procurement manager needs hundreds or thousands
of tons of each. (For example, Bichler et al. 2006 report
on real-world procurement auctions with 10 to 90,000
line items. See also Sandholm 2007 for another dis-
cussion of advanced procurement auctions in recent
decades). Such markets could be organized as a com-
binatorial procurement auction where bidders can
win one out of many package bids they submit. But
with only 10 material types (items) and six units of
each, however, a bidder faces more than 284 mil-
lion packages to consider under an XOR bidding lan-
guage, which requires a unique bid for any package
that might be won to verify full efficiency. Similarly,
markets for TV ad slots involve the sale of air time in
hundreds of different time slots, weekly or biweekly,
where bidding advertisers have differing preferences
over slots, based on varying audience demographics
and firm-specific needs for sufficient ad reach or cov-
erage. Although these are only examples of large mar-
kets, the size of these markets, in terms of the large
number of distinct interrelated goods and heterogene-
ity of bidder preferences, prohibits the application of
existing CA designs, making it a good test bed for the
methods proposed here.
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1.1. Compact Bid Languages and Allocation Rules
First, we will discuss compact bid languages as a
remedy for efficiency losses resulting from missing
bids. Several generic logic-based bid languages have
been discussed in the literature on CAs (Boutilier and
Hoos 2001). But for large markets like the ones dis-
cussed here, even these could require too many bids
to be submitted. Often, prior knowledge about bidder
preferences and market nuances allow for compact
bid languages with a very low number of param-
eters that bidders need to specify to describe their
preferences. For the procurement markets discussed
here, the various discount policies that are regularly
used in pricing can be elements of a bid language as
described in Goossens et al. (2007) or Bichler et al.
(2011), who substantially extend the expressiveness of
a bid language for markets with economies of scale
and scope. These bid languages follow established
market practices, and bidders do not need to change
their established discount policies. In a similar way,
we will introduce a bid language for TV ad markets,
which is natural to media agencies, allowing them
to express their preferences with a few parameters
only by describing substitutes in a succinct way. Such
domain-specific bid languages require adequate opti-
mization models to compute cost-minimal allocations
in procurement or revenue-maximal allocations in for-
ward TV ad auctions.

Advanced mixed-integer programming solvers
allow for the computation of allocations of large
TV ad markets with hundreds of ad slots and pro-
curement markets with dozens of items and several
quantity schedules to near optimality. Although such
near-optimal solutions can typically be found in min-
utes, finding (or proving) the exact solution might
take hours or even be intractable. This is a widespread
pattern in combinatorial optimization. An integrality
gap of a few percent would be considered accept-
able in the types of large-scale private-sector markets
that we discuss in this paper. Even the recent design
of incentive auctions for the Federal Communications
Commission in the United States includes allocation
problems that are too large and difficult to be solved
to full optimality.2

1.2. Payment Rules
Second, we will discuss payment rules to encour-
age truthful bidding in large markets. The celebrated
Vickrey–Clarke–Groves (VCG) payment rule charges
each bidder the harm they cause to other bidders and
ensures that the dominant strategy for a bidder is to
bid her true valuation of the items. The VCG outcome
can be “outside the core” leading to low revenue

2 http://www.fcc.gov/topic/incentive-auctions (accessed February
25, 2015).

and possibilities for shill bidding among other prob-
lems (Ausubel and Milgrom 2006). Intuitively, VCG
provides discounts to ensure that an individual can-
not benefit from unilateral deviation from truth-telling,
but the resulting discounts can be so large that pay-
ments are absurdly low and remain manipulable by
groups of bidders. For example, Ausubel and Milgrom
(2006) provide a classic setup where VCG payments
total zero for two bidders, despite a competitor’s bid
to pay the seller a large amount for their combined
winnings, and they show that these payments of zero
can be achieved through group manipulation or the
use of false-name (i.e., shill) bids. This occurs when
the first two bidders bid for their disjoint respective
bundles of interest, with a losing competitor offer-
ing exactly the same amount for the union of these
bundles.

Core-selecting auctions were introduced in recent
years (Day and Raghavan 2007) to combat these weak-
nesses of VCG. As a payment paradigm for multi-
item markets in general, they were designed to balance
the incentives of bidders to reveal bids truthfully
(achieved by making the bidders pay the least amount
possible) against the perceived fairness of payments
(such that payments are adequately large to preclude
any set of losing bids from become winning). This
auction design computes prices that are “in the core”
with respect to submitted bids, stating roughly that no
coalition of bidders could claim that their bids offered
a mutually preferable outcome that would also raise
seller revenue. Thus in the example above, the winners
will always combine to pay at least the same amount
in a core-selecting auction.

The game-theoretical properties of bidder-Pareto-
optimal core (BPOC) auctions have been discussed
extensively in the recent years (Day and Milgrom
2007, Goeree and Lien 2015), and core-selecting auc-
tion rules have been adopted for spectrum license
auctions around the world, including Australia,
Austria, Canada, Denmark, Ireland, Portugal, the
Netherlands, and the Unites Kingdom. The approach
in these spectrum auctions has been to use a combi-
natorial clock auction (CCA) with bidding in an itera-
tive auction, in response to rising price clocks for each
item, and finishing with a sealed-bid core-selecting
auction using all bids from these iterative rounds, as
well as additional combinatorial bids submitted in a
sealed-bid round subject to activity rules. Thus, even
if one were to argue to use the CCA format as is used
in spectrum auctions for our applications (although
we do not) the auctioneer would still need to run
the winner-determination and core-pricing algorithm,
and the algorithmic contributions of this paper would
still be relevant as the auction gets large.

Although BPOC payment rules are not strategy-
proof, the incentives for manipulation can be con-
sidered minimal in most large-scale markets, where
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typically neither the number of bidders nor their
exact preferences are known. Note that existing game-
theoretical models assume that bidders are all inter-
ested in only a single package and that all bidders
know which packages their competitors bid on, in
order to keep the analysis tractable (Goeree and Lien
2015). Although these analyses are insightful and
illustrate situations where bidders would not bid
truthful in equilibrium in a BPOC auction, such infor-
mation is rarely available in large real-world mar-
kets. The number of packages that bidders could bid
on can serve as a proxy for how much information
would be needed by a bidder to profitably manip-
ulate a market. Still, a simple pay-as-bid rule sets
strong incentives for bid shading, while the bene-
fits of bid shading are greatly reduced under VCG
or BPOC payment rules in large markets with lit-
tle or no prior distributional information. Recent lab
experiments comparing a BPOC payment rule with
a pay-as-bid payment rule provide evidence for this
hypothesis (Bichler et al. 2014).

1.3. Relationship to Approximation Mechanisms
Recent research in computer science has explored
whether strategy-proofness can be maintained by
giving up on optimal social welfare and using
approximation algorithms with provable approxima-
tion ratios on the quality of the allocation as an allo-
cation rule (Lavi 2007). Unfortunately, in spite of the
theoretical value of results in this field, the approx-
imation ratios of algorithms for most combinatorial
optimization problems are often not acceptable for
real-world market design, and often no such approxi-
mation algorithms are available for specific problems.
The approximation ratio of approximation algorithms
to solve the winner-determination problem in CAs
with general valuations is O4

√
N5 (Halldorsson et al.

2000), where N is the number of items. No strategy-
proof approximation mechanism can have a better
ratio than this algorithmic bound. This means in
an auction with 25 items only, the solution can be
five times worse than the optimal solution in the
worst case. Randomized approximation mechanisms
with the same approximation ratio have already been
found (Lavi and Swamy 2011, Dobzinski et al. 2012).
However, the best deterministic truthful approxima-
tion guarantee known for general combinatorial auc-
tions is O4N/

√

logN5 (Holzman et al. 2004). Note
that much of the literature on approximation mecha-
nisms relies on randomized mechanisms, which also
lead to somewhat weaker notions of truthfulness than
strategy-proofness with deterministic mechanisms.

We consider this literature as complementary to our
research. Although there are no provable guarantees
to solve certain problem sizes of combinatorial opti-
mization problems, experiments typically lead to high

confidence about the problem sizes that can be solved
in due time in practice. There is a great deal of lit-
erature with various benchmark problems analyzing
the empirical hardness of certain optimization prob-
lems in operations research,3 which practitioners rely
on for scheduling, vehicle routing, or other types of
resource allocation problems. We do this as well. We
also give up on strategy-proofness in the strong sense.
Strategy-proofness is a powerful but also restrictive
concept, which is why we instead focus on the weaker
notion of core-selecting payments.

It is worth noting that the VCG mechanism
is no longer strategy-proof if the allocation does
not necessarily maximize social welfare. The simple
proof showing that the VCG mechanism leads to
a dominant-strategy equilibrium for each individual
bidder (see, e.g., Shoham and Leyton-Brown 2008,
p. 276) relies on the argument that the auctioneer
chooses the allocation that maximizes the coalitional
value based on the reported bids of all bidders. So,
if the allocation cannot be computed optimally, then
the VCG mechanism also loses this strong game-
theoretical properties. We refer to coalitional value as
the result of the allocation problem assuming bidders
report their true valuations.

Still, the basic concept of a second-price rule can
encourage truthful bidding because shading one’s
bids might not increase profit, but it might increase
the risk of losing in the auction or getting a less
desired outcome. Note that the information a bidder
would need to manipulate grows exponentially with
the number of items in a combinatorial auction. With
many bidders and many items but little distribu-
tional information about all possible combinations,
profitable manipulation becomes almost impossible.
The amount of information required by a bidder to
profitably manipulate in a specific auction could well
serve as an alternative way to characterize markets,
different from the game-theoretical solution concepts
that are typically used in auction theory. On one hand,
dominant strategies restrict the auction designer to the
VCG mechanism (Green and Laffont 1979), only appli-
cable with optimal allocation rules. On the other hand,
Nash equilibria are computationally hard to compute
in general (Daskalakis et al. 2009), and Bayes–Nash
equilibria of combinatorial auctions require a very
large number of distributional assumptions, render-
ing this solution concept intractable in large markets
as discussed in our paper. Given the lack of sufficient
information about other bidders’ valuations or the
specific packages they are interested in, and the hard-
ness of computing Bayes–Nash equilibrium strategies
in large markets, we argue that a second-price rule

3 See “OR Library” at http://people.brunel.ac.uk/~mastjjb/jeb/
info.html for different types of discrete optimization problems.
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such as in BPOC payments offers a compelling com-
promise, encouraging truthful bidding with substan-
tial discounts, rather than guaranteeing it.

The application of second-price payment rules such
as BPOC or VCG rules with near-optimal rather than
exact solutions to the allocation problem in our frame-
work is not without challenges, however. For exam-
ple, the coalitional value of a coalition without one of
the winners (required to compute the VCG payments)
might return a higher value than the coalitional value
with all bidders. Our adaptation of a constraint-
generation technique for the computation of BPOC
payments by Day and Raghavan (2007) to large-scale
markets is a new, practically viable paradigm by
which core-selecting auction designs with good incen-
tive properties can be applied to large markets. It
is the combination of the compact bid language and
the payment rule that allows bidders to express their
complementarities, but at the same time, it provides
incentives for truthful bidding. Our experiments help
understand how the near optimality of the allocations
impacts the payments of bidders. Overall, this can be
a recipe for many large-scale markets beyond the ones
discussed in this paper.

1.4. Contributions and Outline
In summary, our contributions are as follows: First,
motivated by work with industrial partners, we pro-
pose a compact bid language for the TV ad market.
The TV ads application will be our leading exam-
ple because it provides a rich test bed to demon-
strate our ideas with a realistic valuation model and
a type of winner-determination problem that would
benefit most readily from the approach. The bid lan-
guage allows the expression of preferences for a large
number of packages with only a few parameters.
The winner-determination problem in such markets
is NP-hard and cannot always be solved optimally.
However, as is typical in many combinatorial opti-
mization problems, near-optimal solutions can be
found within a few minutes for limited problem sizes,
which is promising, but previous algorithms for com-
puting core payments break down when solutions are
not exact. We therefore propose two algorithms to
deal with markets where the winner determination
might not be solved to optimality. The approaches
are evaluated in an extensive set of experiments and
their properties are characterized. In addition to the
TV ad market, we also analyze the two algorithms
in the context of volume-discount auctions to show
that the basic framework and the results carry over to
other large markets. Here we draw on a compact bid
language for procurement markets with economies of
scale introduced by Bichler et al. (2011).

Overall, we show that the dynamic reuse algorithm
we develop is not too slow relative to the quicker

trimming algorithm, so the time cost of computing
more accurate and more fair outcomes should not be
out of reach for this or similar applications. Although
the trimming algorithm is quicker and generates more
revenue for a fixed set of bids, its inferior efficiency
and incentive properties make its use harder to jus-
tify, particularly for government applications where
efficiency concerns naturally dominate. The market
design can serve as a template for other large markets
with many items and complex bidder preferences,
an area of research with many applications but little
attention in the literature so far.

In §2, we discuss related work. Section 3 intro-
duces the market design including the allocation and
the pricing rules. In §4.2, we propose two algorithms
to deal with nonoptimal solutions to the winner-
determination problem. Section 5 summarizes the
results of our experiments, and §6 concludes with a
summary and future outlook. A complete glossary of
symbols is also provided in the appendix for quick
reference.

2. BPOC Auctions
In this section, we want to provide further back-
ground on auctions with bidder-Pareto-optimal pay-
ment rules because they are central to this paper. The
concept of the core has a long history in economics,
and indeed a mechanism that selects a core outcome
based on submitted preferences was the foundation
for the 2012 Nobel Prize in Economics, although that
stable-matching market involved allocations that do
not allow for monetary transfers. The extension of
these ideas to the auction context (with payments)
began indirectly in the work of Parkes and Ungar
(2000), Ausubel and Milgrom (2002), with explicit
computation of core outcomes and formal treatment
of the core-selecting approach coming later in Day
and Milgrom (2007), Day and Raghavan (2007), and
Day and Cramton (2012). Core-selecting auctions have
been suggested as an alternative to the VCG mecha-
nism, which suffers from a number of problems such
as low seller revenue (Ausubel and Milgrom 2006).
VCG solutions outside the core, where a subset of bid-
ders has indicated to be able to pay more than what
the winners paid, is often seen as undesirable.

Day and Raghavan (2007) showed that under semi-
sincere bidding strategies and perfect information,
every BPOC price vector forms a Nash equilibrium.
Thus, assigning BPOC payments based on bids being
true values only makes a bidder pay what she should
have bid in equilibrium if she had expertly antici-
pated the true values (and bids) of others. Day and
Milgrom (2007) show that bidder-Pareto optimality
implies optimal incentives for truthful revelation over
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all core-selecting auctions, among other supporting
results, including decreased vulnerability to false-
name bidding and collusive behavior relative to other
auction formats discussed in the literature, in particu-
lar the VCG mechanism. Day and Raghavan also note
that total-payment minimizing BPOC points are further
resistant to certain forms of collusion with side pay-
ments, and this minimum revenue condition has been
implemented in all core-selecting spectrum auctions
to date. Selecting a BPOC point is further supported
by the fact that, if the truth-revealing VCG vector is
in the core, then any BPOC algorithm will produce
VCG as its output.

A core-selecting auction only provides a dominant
strategy if the VCG outcome is in the core. Goeree and
Lien (2015) actually show that no Bayesian incentive-
compatible core-inducing auction exists when the
VCG outcome is not in the core. In specific settings,
where the VCG outcome is outside the core, the equi-
librium bidding strategy is to shade bids below one’s
true valuation, speculating that the reduced bid can
lower one’s payment without affecting the bundle
of goods awarded. Simple threshold problems where
multiple local bidders only interested in one item
compete against a global bidder, who is interested
in all items, provide an illustrative example. Local
bidders could try to free ride on each other. How-
ever, Bayesian analyses of such markets assume that
bidders are interested in a single item and that they
know what other bidders bid on and have commonly
known prior distributions available about other bid-
ders’ valuations for their bundles of interest. In large
TV ad markets, such information is not available to
bidders and bidders are multiminded. Often bidders
do not even know how many competitors exist in
the market, making speculation quite risky. The same
assumptions hold in procurement markets such as the
volume-discount auctions analyzed in this paper. In
such situations, manipulation comes at a high risk of
winning nothing.

A potential alternative to the approach proposed
here is the use of proxy agents bidding in multi-
ple rounds of an ascending auction until an equilib-
rium is reached, as in the ascending proxy auction
(Ausubel and Milgrom 2002) or iBundle (Parkes and
Ungar 2000). Unfortunately, this approach requires a
very large number of auction rounds (unless the prob-
lem size is quite small) and the auctioneer needs to
solve a winner-determination problem in each round
(Schneider et al. 2010). By trying to avoid unnecessary
winner-determination optimizations, constraint gen-
eration after a sealed-bid auction is a more effective
and practical method for price generation, especially
when considering cases of hard winner-determination
problems.

3. Compact Bid Languages and
Allocation Problems

The TV ad slot market will serve as the main example
in our paper, which shares many of the features
of other large markets for the sale of spectrum
licenses, in logistics, or in industrial procurement.
Also, we will briefly review volume-discount auc-
tions designed for industrial procurement to illustrate
that the framework outlined in this paper can eas-
ily be applied to other large-scale markets. For this
latter setting, we are able to find exact solutions in
our computational experiments for smaller instances,
allowing for direct benchmarking against optimality.
These benchmarks are provided to demonstrate the
approach, but clearly we propose the near-optimal
approach to be relevant in practice to larger instances
where exact optimality is out of reach.

3.1. TV Ad Markets
In what follows, we provide a brief overview of
the essential requirements. Parts of the advertisement
capacity of a typical TV station are sold via specially
negotiated, large, long-term contracts of about a year
and are not considered in our study. We focus instead
on the sale of the remaining ad slot inventory to spe-
cific marketing campaigns that run in the short term,
which in Europe are typically sold via posted prices,
in advance of airing. Prices for different slots can
range from 6,000E to 50,000E for a duration of 30 sec-
onds and are set by the TV station based on historical
demand. Buyers are large media agencies that pur-
chase a set of slots with the intent to procure the
best slots for each of their customers’ campaigns. The
number of agencies in a particular market depends on
the country and the particular station, but a typical
short-term market for a TV station in Germany, for
example, consists of approximately 50 media agen-
cies, booking slots for several hundred customers in
a particular channel.

Because the amount of airtime filled by long-term
customers varies, the length of a slot available in the
short-term market can vary between 2 and 5 minutes,
while the length of an ad also varies considerably,
lasting up to 1 minute. For a particular channel in
the markets we investigated, there are on the order
of 150 short-term slots available during the program
per week.

Different slots have a different reach for different
customer segments or the population overall. The
reach of a particular slot varies over time, but there
are estimates based on historical panel data available
to clients of the media agencies. Clients use reach per
segment (based on gender, age, or other demograph-
ics) or per population to determine their willingness
to pay for different slots. Clearly, the value of some
slots, such as those during the finals of the national
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soccer league, may be difficult to estimate and their
valuation varies considerably depending on the target
market of an advertiser. Apart from these high-value
slots, there is also typically a segment of low-value
slots, which are also difficult to price because the
demand is hard to predict. This difficulty in demand
or valuation prediction together with limited supply
suggests that an auction market would outperform
the existing posted-price mechanism.

The allocation of TV ad slots can be modeled as a
multiple knapsack problem, in which each time slot i
in the set I = 81121 0 0 0 1N 9 is treated as a knapsack
with a maximum capacity/duration of ci, which can-
not be exceeded. As mentioned above, each slot can
potentially hold a number of ads, although some may
have been previously allocated to larger customers, so
we assume that ci reflects only short-term capacity in
the current market, making for a potentially heteroge-
neous list of ci values, even for a TV station with slots
of the same size when considering all ads aired. We
also assume that each slot i has a reservation value or
minimum price per time unit ri, which reflects the sta-
tion’s ability to off-load excess capacity at a low price
to existing customers if needed. Station call signs and
other brief announcements can also be used to fill any
excess unused time.

Each bidding advertiser k in the set K = 81121
0 0 0 1K9 has an ad of duration dk to be shown repeat-
edly (at most once per time slot) if she wins a bundle
of time slots in the auction. To ensure adequate reach,
each bidder specifies an abstract “priority vector” or
“weight vector” Wk, containing an arbitrary weight
value wik for each time slot. These “weights” con-
veying “strength of priority” could specifically rep-
resent the expected viewership, expected viewership
of a particular demographic, viewership weighted by
expected sales, etc., reflecting the advertiser’s perfor-
mance metric of choice. She can then bound the total
priority value in the auction outcome to be greater
than or equal to a minimum amount to qualify bids
of various levels.

Thus, after specifying the priority vector and ad
duration, a bidder places one or more tuples 4wmin

j 1 bj5
containing the desired sum of priority values wmin

j

necessary to justify a monetary bid bj . At most, one of
the bids placed by a bidder can win, making the bid-
ding language an XOR of “weight threshold levels.”
For example, if the bidder sets the priority weights
wik at the expected viewership of each slot i, the XOR
structure lets her set an exact price for any particular
price point of interest. She can set a price for a total of
wmin

j = 1 million viewers, a price for wmin
j = 2 million

viewers, etc., regardless of which slots are chosen to
reach this total viewership. This price-point structure
reflects the ability of the language to represent the
fundamental complementarity in this type of market;

a small number of ad slots (or small reach, etc.) may
have little or no value, but several of them together
are worth more than the sum of the parts.

The set Jk contains all bid indexes j by a bidder k,
and the superset J is defined as J 2= ⋃

k∈K Jk. We
assume these bids are submitted in a sealed-bid for-
mat, consistent with the timing of Google’s auction,
in which bids were submitted once to a proxy. In such
markets, it is not practical for media agencies to par-
ticipate in an ascending auction every week or two.
After the bids are submitted, the market is cleared at
a particular point in time, and the allocation is deter-
mined for some period for a time (e.g., two weeks) in
the future.

Formulation WD maximizes the value of accepted
bids given that ad durations do not exceed capacity
in any slot (1a), the bid values are not less than the
seller’s reservation values (1b), the priority threshold
level wmin

j of a bid j is met if and only if that bid is
accepted (1c,d), and at most one bid j is accepted for
each bidder k (1e). Decision variables xij and yj indi-
cate time if slot i is assigned to bid j and bid j itself is
accepted, respectively, while M is a sufficiently large
positive constant parameter. WD4K5 indicates that all
bidders k ∈ K are included. Later we refer to WD4C5
for a coalition C ⊆ K, which indicates the same for-
mulation but with all bids made k 6∈ C set to zero.
Overall, we use the term coalitional value to describe
the objective function value of formulation WD.

WD4K5= max
∑

j∈J
bjyj 4WD5

subject to
∑

j∈J
dkxij ≤ ci ∀ i ∈ I1 (1a)

dk
∑

i∈I
rixij ≤ bj ∀ j ∈ J 1 (1b)

∑

i∈I
wikxij ≤Myj ∀ j ∈ J 1 (1c)

wmin
j −∑

i∈I
wikxij ≤M41 − yj5

∀ j ∈ J 1 (1d)
∑

j∈Jk
yj ≤ 1 ∀k ∈K1 (1e)

xij ∈ 011 ∀ i ∈ I1 j ∈ J 1 (1f)

yj ∈ 011 ∀ j ∈ J 0 (1g)

The priority vector Wk provides quite a bit of flex-
ibility to the bidders in expressing their preferences
over ad slots, and we propose that this novel bidding
language could be relevant in a number of other areas.
Indeed, the language captured in this formulation
is quite general and includes the “k-of-singletons”
expressions described in Hoos and Boutilier (2000),
which were shown to be difficult to express succinctly
with more fundamental logical operators and result
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in hard optimizations. For example, a bidder in the ad
slot auction might want her ad to be on the air at least
five times within one week between 8 p.m. and 10 p.m.
That is, all ad slots between 8 p.m. and 10 p.m. are
substitutes, but the bidder needs at least five of them,
a complementarity valuation for a sufficient volume
from a group of substitutes. The priority-vector for-
mat would then have weights equal to one for the
selected set of substitute times and wmin

j = 5 playing
the role of the k term in Hoos and Boutilier (2000).

Theorem 1. The decision version of the WD problem is
strongly NP-complete.

The proof is by reduction from the multiple knap-
sack problem, and it can be found in the appendix.
The decision version of the multiple knapsack prob-
lem is strongly NP-complete (Chekuri and Khanna
2006). Whereas weakly NP-complete problems may
admit efficient solutions in practice as long as their
inputs are of relatively small magnitude, strongly
NP-complete problems do not admit efficient solu-
tions in such cases. Unless P = NP, there is no fully
polynomial-time approximation scheme (FPTAS) for
strongly NP-complete problems (Garey and Johnson
1979). Even if we cannot hope for FPTAS, we can get
near-optimal solutions with standard mixed-integer
programming solvers for practically relevant problem
sizes as we will show.

3.2. Volume-Discount Auctions
Volume discounts are in widespread use in markets
with economies of scale. Davenport and Kalagnanam
(2000) were among the first authors to discuss
volume-discount bids in an auction. Their bid lan-
guage requires suppliers to specify continuous supply
curves for each item. They apply discounts only to
additional units above a threshold of a specific price
interval. In contrast to these incremental volume-
discount bids, Goossens et al. (2007) proposed tiered
bids, which they refer to as total-quantity bids. The
latter are valid for the entire volume of goods pur-
chased after a certain quantity threshold. For example,
a supplier charges $4 per unit for up to 1,500 units,
but only $2.50 per unit for the entire quantity if the
purchasing manager were to buy 1,500–2,000 units.
In practice, suppliers employ various types of such
discount policies in different settings. In addition to
volume-discount bids and total-quantity bids one can
find lump-sum rebates on total spend, and such dis-
counts can be based on the quantity or spend of one
or a few items that are being auctioned off. Bichler
et al. (2010) introduced a comprehensive bid language
that allows for different types of discount policies,
including volume-discount bids, total-quantity bids,
and lump-sum rebates. They propose a mixed-integer
program to solve problems of up to 30 suppliers,

30 items, and five quantity schedules to near opti-
mality in less than 10 minutes. Because of space con-
straints, we refer the interested reader to Bichler et al.
(2010) for a detailed description of the bid language
and the experimental setup and results. An analy-
sis of various heuristics and metaheuristics to solve
the problem can be found in Hass et al. (2013). Even
though such near-optimal solutions were always pos-
sible with these problem sizes, proving the optimality
of a solution was typically intractable and even after
hours there would be a small integrality gap. This
phenomenon is widespread in combinatorial opti-
mization overall. In our experiments, we will use the
compact bid language introduced by Bichler et al.
(2010) and their experimental setup to compute VCG
and BPOC payments for near-optimal allocations.

4. Payment Rules
If we only aim for near-optimal solutions, not for
exact solutions to the winner-determination problem,
some computational issues can arise. For example, the
objective function value of the best allocation with
one winner excluded might be higher than that of the
best allocation with all bidders included when com-
puting VCG payments. We will first revisit BPOC pay-
ments, before we discuss different algorithms how to
compute these payments with near-optimal solutions
to the winner-determination problem. We will use the
terms payments and prices interchangeably.

4.1. Bidder-Pareto-Optimal Core Payments
We will determine BPOC payments in the following
treatment and compare them with the VCG payments
in our experiments. The technique of using constraint
generation to find the coalitions defining the core was
designed to work in any context where the winner-
determination problem could be solved exactly. Here,
we quickly reiterate that approach before extending it
to situations of near-optimal winner determination in
the next section.

The approach discussed in the literature is to find
core prices by iteratively creating new price vectors pt

for the winning coalition W and then checking at each
iteration t whether there is an alternative outcome
that generates strictly more revenue for the seller and
for which every bidder in this new outcome weakly
prefers to the current outcome. If such a coalition
exists, the alternative winning coalition C is called a
blocking coalition, and a constraint is added to a partial
representation of the core in payment space until no
further blocking coalitions can be found. To discover
the most violated blocking coalition C t relative to the
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Figure 1 (Color online) A Typical Instance Showing the Reduction of the Integrality Gap Over Time

current payments at iteration t, the WD is extended
as in the separation problem SEPt .

z4pt5= max
∑

j∈J
bjyj −

∑

k∈W
4b∗

k − ptk5�k

subject to 41a5− 41g51
∑

j∈Jk
yj ≤ �k ∀k ∈W1

�k ∈ 60117 ∀k ∈W0

(SEPt)

Here, W is the set of winners from the solution
of WD4K5, and b∗

k represents bidder k’s winning bid.
If the sum of the current payments pt is less than
the solution to (SEPt), then a violated core constraint
has been found, and we must add a constraint to
our partial representation of the core. Following Day
and Raghavan (2007), this partial representation is
given in the following linear program to find equi-
table bidder-Pareto-optimal (EBPO) payments. The
program is then solved to find the next tentative set
of payments pt+1 until no further constraints can be
found.

�4�5= min
∑

k∈W
pk + �m (EBPOt)

subject to
∑

k∈W\C�

pk ≥ z4p�5− ∑

k∈W∩C�

ptk

∀ � ≤ t1 (EBPOt .1)

pk −m≤ p
vcg
k ∀k ∈W1

pk ≤ b∗
k ∀k ∈W1

pk ≥ p
vcg
k ∀ j ∈W0

As in SEPt , b∗
k is the winning bid for k, the param-

eters p
vcg
k = b∗

k − 4WD4K5 − WD4K−k55 represent VCG
payments, and m represents a maximum deviation
from VCG, which is minimized as a secondary objec-
tive after minimizing total payments.4 We then use
the value of each pk in the solution for the next itera-
tion (i.e., set pt+1

k = pk).

4 In practice, these two minimizations can be handled as separate
optimizations, but they are presented here as a single optimization
using a sufficiently small � for the sake of concise exposition.

4.2. Core Payments with Near-Optimal
Allocations

For many combinatorial optimization problems, good
solutions often can be found quickly, even though
finding a provably optimal solution may take a very
long time. Figure 1 shows a typical example of WD
with 336 slots and 50 bidders, where a feasible solu-
tion with 95% optimality could be reached within a
few minutes. This is a common phenomenon in many
combinatorial optimization problems.

Without the ability to guarantee an optimal solution
quickly enough for a practical application, one would
naturally consider a provably high-quality solution
that can be found quickly. Most industrial mixed-
integer programming solvers (e.g., CPLEX, Gurobi)
provide absolute and relative worst-case optimality
gap parameters, allowing the optimization routine
to terminate if the optimality gap (the difference
between the best feasible solution and the theoretical
bound) falls below some target or is a small enough
percentage of the best feasible solution, respectively.
For now, we leave the exact specification of how a
“good enough” approximate solution is qualified, but
motivated by Figure 1, the reader may assume a 5%
optimality gap or an at-least-95%-optimal solution for
concreteness. We will thus write WDa for any qual-
ified approximation of a WD value and consider an
implementation using these approximations in place
of true WD values. Similarly, we will write za4pt5 for
separation problem values found using near-optimal
solutions.

Problems can arise, however, during the VCG and
core price calculation when accepting these approx-
imate or near-optimal solutions. For example, under
truly optimal solutions, with the standard assump-
tion of free disposal, WD4K−k5 is always at most the
value of WD4K5. But with a series of near-optimal
computations this is not guaranteed, opening up the
possibility that one might compute an approximate
VCG payment with b∗

k − 4WDa4K5 − WDa4K−k55 > b∗
k .

Similarly, under near-optimal computation the coali-
tional value of SEPt can be higher than the value of
the WD. If this happens, the newly generated con-
straint added to EBPOt can cause an infeasibility if
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∑

k∈W\Ct b∗
k < za4pt5 − ∑

k∈W∩Ct ptk. Two different solu-
tions are presented to address this problem that can
potentially arise during computations.

4.2.1. The TRIM Algorithm. With known b∗
k val-

ues determining individual rationality (IR) constraints
(i.e., payments must not exceed bids), a natural first
approach is to adjust each WD-based result so that it
fits into the IR region.

For the VCG prices, this technique makes use of the
fact that

b∗
k ≥ p

vcg
k ≥ 0 ∀k ∈W (2)

whereas for the (constant) right-hand side (RHS) of
the constraints in the EBPOt , we must always have:

∑

k∈W\C�

b∗
k ≥ z4p�5− ∑

k∈W∩C�

p�k ∀ � ≤ t (3)

Thus, our first algorithm5 is to simply trim the
infeasibilities based on known bids, represented in
Algorithm 1 in the two steps using min functions.

Algorithm 1 (Core Price Calculation—TRIM)
Solve: WDa4K5;
for k ∈W do

–

Solve: WDa4K−k5;
p
vcg

k ← min4b∗
k , b∗

k − 4WDa4K5− WDa4K−k555;
p1 ← pvcg ;
�0 ←∑

k∈W p
vcg

k ;
while true do

–

Solve: SEPt

if za4pt5≤ �t−1 then

– Break: ‘core’ price vector found;
Generate RHS of new constraint:

�t ← min4
∑

k∈W\Ct b∗
k1 z

a4pt5−∑

k∈W∩Ct ptk5;
Add constraint

∑

k∈W\Ct pk ≥ �t to EBPO;
pt1 �t ← Solve: EBPO;
if 4C t1 �t5= 4C t−11 �t−15 then

– Break: no better price vector possible;
Iterate: t ← t + 1.

4.2.2. The REUSE Algorithm. An alternative to
trimming infeasibilities is based on the observation
that whenever an infeasibility is found, the validity
of expressions (2) and (3) imply that an update can
be made to an approximate WD value, from a pre-
viously best-known feasible solution to a new ten-
tatively optimal feasible solution. To implement this
change, the storage of any value based on a winner-
determination solution can no longer be treated as
constant and must be regenerated at each iteration

5 In all algorithmic implementations that follow, we assume that
all feasible integer solutions are stored by the optimizer and used
to generate bounds on subsequent optimizations using alternate
objective functions.

based on current WDa values. This includes VCG
price estimations and the RHS values for generated
core constraints, whose definitions must be reformu-
lated based on current WDa values.

Thus, our second approach is to store a list of
all discovered WDa4C5 values, reusing all coalitions
found so far and reformulating the entire separa-
tion problem and EBPO problem at each iteration,
noting that the set of relevant core constraints, and
indeed the set of winners itself, may be changing
as new information becomes available. Whenever we
run WDa (the first time, to compute each VCG price,
and inside each run of SEP), we get a new collec-
tion of feasible bids, representing a coalition of bid-
ders, and we check these values against our current
list of coalitions and WDa values. If the coalition has
not been found before, our list is extended to include
it as among the “potentially important” coalitions to
consider. If any superset coalition has been listed pre-
viously but with a lower coalitional value, we can
update it to the current WDa4C5 value, as a new better
approximation has been found.

Because we will now store the blocking coalitions C t

and its value instead of z4pt5 after each SEPt has been
solved, we are forced to work with a reformulation
of core constraints based on WDa values rather than
separation levels. For a general winner-determination
problem (i.e., with respect to any alternative bid-
ding language), the core constraints can be expressed
with the alternative, equivalent expression that can be
derived by substitution:

∑

k∈W\C�

pk ≥ WD4C�5− ∑

k∈W∩C�

b∗
k ∀ � ≤ t (EBPOt’.1)

Using this formulation of the core, we can generate
a constraint in EBPO for any C� found so far using
the current best-approximation WDa4C�5 in place of
WD4C�5. For bidding languages with only one rele-
vant bid bk per bidder (as is the case in the scenarios
presented in §5), this constraint can be further sim-
plified, resulting in the following formulation (4) in
place of EBPOt’.1.

∑

k∈W\C�

pk ≥ ∑

k∈C�\W
bk ∀ � ≤ t (4)

This new set of constraints provides an intuitively
pleasing interpretation of core constraints in the TV
ad context: Any subset of winners pays enough to
match the counteroffer including a set of losing bid-
ders that would otherwise benefit the seller, a direct
analogue to second prices.

Although it is not guaranteed that each stored coali-
tion C t provides a potential maximally violated co-
alition at the end of the constraint generation process,
the addition of all constraints found at any point
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drastically improves the overall performance of the
algorithm when compared with having to completely
rebuild a set of blocking coalitions after a change
in W . That is, it is better to reuse potentially redun-
dant constraints than to start over, looking for rel-
evant constraints from scratch each time the set of
winners is updated. Also, because the core pricing is
computed as an LP (without integer constraints), it
is not computationally expensive to have redundant
constraints.

The formulation of the separation problem as an
altered WD problem has the additional benefit
that all feasible solutions remain feasible for a WD
or SEPt instance. MIP solvers store feasible (inte-
ger) bases internally, and if the separation problem
is implemented as the same problem instance with
some changes to objective coefficients, all feasible
bases (stored as a branch-and-bound tree) remain fea-
sible and thus provide immediate bounds on the
SEPt problem, making efficient use of all information
found by the solver. This makes it progressively more
difficult to find relevant feasible solutions. Therefore,
in our experimental evaluation, we allowed for longer
time limits on the optimization routine for later SEPt

instances.

Function (Core Price Calculation—REUSE—Update
Coalitions(optwinners1bidsum))
for C ∈Coalitions do

if C ⊇ optwinners and �C� < bidsum then
�C�← bidsum;

if C =K then
W ← optwinners;
EBPO← null;
reset← true;

for k ∈W do
p
vcg
k ← b∗k −val(K�+val(K−k)

Algorithm 2 as presented below keeps a list Coali-
tions, each element being a list of winners under some
feasible integer solution to WD. For each coalition C ∈
Coalitions, we also store the best known value val4C5,
which can be revised as the algorithm progresses. Fur-
thermore, for ease of exposition, these algorithms refer
to the winning bidders from the most recent optimiza-
tion run as optwinners, and the sum of the (actual, i.e.,
unaltered) bids of these winners is given as bidsum.

Algorithm 2 (Core Price Calculation—REUSE)
Solve: WDa(K);
Coalitions ← 8K9;
val4K5← bidsum;
W ← optwinners;
t ← 0;
EBPO ← null;
reset ← false;
while true do

–

if EBPO = null then

–

ComputeVCG:
for k ∈W do

–

Solve: WDa4K−k5;
Coalitions ← Coalitions ∪ 8K−k9;
val4K−k5← WDa4K−k5;
UpdateCoalitions(optwinners, bidsum);
if reset = true then

– Break k loop;
pt ← pvcg ;
�t ←∑

k∈W ptk;
if reset = true then

–
reset ← false;
Continue;

Solve: SEPt4pt5;
if z4pt5≤ �t then

– Break: ‘core’ price vector found;
Coalitions ← Coalitions ∪ 8optwinners9;
val4optwinners5← bidsum;
UpdateCoalitions(optwinners, bidsum);
if reset = true then

–
reset ← false;
Continue;

if EBPO = null then

–

build EBPO with constraints EBPOt’.1 for all
C ∈ Coalitions with val4C5 as a best
approximation of WD4C5;

else

–

add constraint EBPOt’.1 to EBPO with
C = optwinners and with val4C5 as a
best approximation of WD4C5;

pt+11 �t+1 ← Solve: EBPO;
Iterate: t ← t + 1.

The difference in the quality of the TRIM and REUSE
approaches, in terms of closeness to core-selecting
prices, can be described as follows. Let � t

C represent
the amount that the final prices pt and allocation
xt violate the core-defining constraint (with respect
to submitted bids) indexed by coalition C. Let trimt

denote the amount “trimmed” in the final iteration
of the TRIM algorithm—i.e., trimt = max401 z�4pt5 −
∑

k∈W∩Ct ptk −∑

k∈W\Ct b∗
k50 Finally, let gapt represent the

final absolute optimality gap when solving SEPt . The-
orem 2 provides simple bounds on possible devia-
tion from optimality-based core-selecting prices. This
result indicates that the optimality gap (in absolute
rather than relative terms) of the final separation
measures the potential for violation of core selection
under a near-optimal approach, with any trimming
performed by the TRIM algorithm translating one-to-
one into further potential for core violation.

Theorem 2. For a fixed set of bids, � t
C ≤ gapt ∀C ⊆K

under REUSE, while � t
C ≤ gapt + trimt ∀C ⊆ K under

TRIM.
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Proof. Core constraints are most often written as
∑

k∈C �k ≥ WD4C5, where C must include the seller
and � represents each player’s payoff. Suppose such a
constraint is violated and replace payoffs with surplus
for bidders (i.e., b∗

k − ptk) and total payments for the
seller. We get that for some positive value � t

C :
∑

k∈C
ptk + � t

C = WD4C5− ∑

k∈C
4b∗

k − ptk50

Under the REUSE algorithm, this expression becomes

za4pt5+ � t
C = z4pt1C5

because the final separated cut must be tight. Here
z4pt1C5 represents the true value of the separation
objective function evaluated at the feasible solution
implied by WD4C5. Because that same feasible solu-
tion was a candidate when solving SEPt approxi-
mately, however, by the definition of the optimality
gap we must have

za4pt5+ gapt ≥ z4pt1C5

with the desired result for REUSE following by substi-
tution. The result follows analogously for TRIM, with
the difference that the second line becomes

za4pt5− trimt + � t
C = z4pt1C50 �

5. Experimental Evaluation
In this section, we examine the solution quality of
the presented algorithms under constrained compu-
tation time. Using the simulations provided below,
we analyzed a number of primary attributes to mea-
sure overall performance, such as allocative efficiency,
revenue, and speed. To directly compare the quality
of the generated prices, a series of secondary metrics
were computed. These values allow a comparison of
how much a bidder could possibly gain by shading
her bid by comparing the ratios of the bids with the
BPOC prices and to the VCG prices, respectively.

Figure 2 (Color online) Coalitional Values in Different Experiments
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• Primary metrics
1. The efficiency in terms of the coalitional value

achieved by the set of winners computed after a
restricted time compared with that of the optimal allo-
cation (E).

2. The overall auctioneer’s revenue based on the
computed payments compared with that in the opti-
mal allocation (R).

3. The duration of the computation (D).
• Secondary metrics

4. The ratio of the BPOC payments pk to the
bids bk (core/bid).

5. The ratio of the VCG payments p
vcg
k to the

bids bk (VCG/bid).
6. The ratio of the VCG payments p

vcg
k to the

BPOC payments pk (VCG/core).
Figure 2 provides values of different instances for

the maximum revenue and the sum of payments
achieved with TRIM and REUSE. These absolute val-
ues are difficult to compare because the instances are
based on different value draws. We are interested in
the comparison between the performance of the algo-
rithms across different instances, so we require a base-
line for a sensible comparison of different payment
schemes. A potential baseline is the optimal revenue
of the winner-determination problem, against which
we could compare the value of the winning coalition
after a restricted solving time, the VCG payments,
and the solutions by TRIM or REUSE. In the volume
discount auction, we could select instance sizes for
which we could compute the optimal solution with
more time allotted. Achieving optimality took a pro-
hibitively large amount of time for the TV ad market
experiments, however. All instances could be solved
to near optimality, but not to optimality in several
hours. For these experiments, we used the objective
function value or optimal revenue of the best linear
programming relaxation (LPR) of the winner deter-
mination problem as an upper bound for the optimal
integer solution.

An example of a typical instance of WD is shown
in Table 1. REUSE runs longer and generates less
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Table 1 Comparison of a Representative Experiment

Optimal
Example instance REUSE TRIM revenue (LPR)

Coalitional value 46,073,899 44,590,749 50,387,546
Revenue 36,569,158 42,766,735 —
Run time (h) 2.8 2.0 —
Median(pk/bk ) 0.79 1.00 —
Median(pvcg

k /bk ) 0.58 1.00 —
Median(pvcg

k /pk ) 0.78 1.00 —

revenue than TRIM, but it is more efficient. The TRIM
technique, on the other hand, often results in pay-as-
bid pricing where bids and payments coincide. We
will see that this pattern also emerges in a larger set
of experiments.

All experiments were run on Dual Socket Octo Core
AMD Opteron 2.4 GHz computers running the Linux
operating system with 8 GB DDR2 RAM. All opti-
mization problems were solved with the Gurobi 5.5
mixed-integer programming solver using the default
parameters. The time limit for each single optimiza-
tion was set to 300 seconds for TRIM and REUSE,
unless stated otherwise. An optimization describes
the process of solving a single mixed-integer program
such as the initial WD, the WD−j needed to com-
pute the VCG payments and the discovery of blocking
coalitions in SEPt . Overall, this can lead to a solu-
tion time of two to three hours for each experiment
because many of these optimization problems need
to be solved for a single experiment. A time limit of
300 seconds for one optimization problem allowed us
to conduct a larger number of experiments and get
statistically significant results. For significance tests,
we will provide the p-values of a Wilcoxon signed-
rank test throughout.

5.1. Research Design for the TV Ad Market
For the generation of sample instances for the TV
ad market, we could draw on data from a book-
ing system of an industry partner. This provides us
with a distribution of prices paid in this market. We
will briefly summarize the main characteristics of the
generated data. The distributions of all relevant ran-
dom variables in the experiments can be found in
Table 2.

• A typical campaign duration is from one to four
weeks, averaging two weeks.

• An advertisement slot is 120 seconds long, but
it can be prefilled before the auction starts because
of the existing booking system (effectively reducing
capacity available in a slot).

• The duration of an ad is at most 40 seconds long.
• Up to 50 different bidders (media agencies) are

interested in placing ads during the average cam-
paign time span.

Table 2 Parameters for the Experiments

Parameters
Name 8�3 � 9 or 8�9 Distribution

I Number of slot 336 —
J Number of bids 50 —
K Number of bidders 50 —
ci Slot duration 8603309 Normal
ri Slot reserve price steps (in E/s)

[1, 2, 5, 10, 50, 75]
{1.2} Poisson

dk Ad duration 8203109 Normal
�j Bid base price (in E/s) 8503259 Normal
wmin

j1 rel Min
∑

of campaign priorities (in %) 8303209 Normal
— Correlation of priority to slot reserve

price
— Linear

— Distribution of priorities around the
priority/price value

— Normal

• Each bidder has its own budget and target cus-
tomer group that defines the slots she is interested in.

• The reserve price per second during a particular
time is set by the TV station, which puts different slots
into sets with different reserve prices.

Although the reported evaluation concentrates on
a biweekly market (336 slots), a series of experiments
with 168 slots (one week) and 504 slots (three weeks)
was also performed to verify the robustness of the
results presented here. The integrality gap was small
in these cases as well (Table 3). We will therefore only
report the detailed results for experiments with the
biweekly market and 336 slots. The following param-
eters and distributions were used for the random vari-
ables of our experiments (see Table 2).

The normal distributions are truncated to an inter-
val 6032�7. The Poisson distribution models the fre-
quency of the six discrete reservation prices 6112151
101501757, which follows the empirical distribution
that we observed in the field. The bid base price �j

can be interpreted as how much a bidder would
spend at a maximum to obtain the right to reach one
priority point with her ad for one second. The actual
bid price for a campaign is then computed as bj =
dk�jw

min
j . This means, for the bid price we multiply

the duration of the ad, the base price of the bidder
for one viewer, and the minimum reach or viewership
the bidder wants to achieve. Based on the parame-
ters of Table 2, we generated 20 scenarios used in our
experiments.

Table 3 Average Integrality Gaps for 168, 336, and
504 Ad Slots After 300 and 3,600 Seconds

Time limit (%)

Slots 300 s 3,600 s

168 0.04 0.01
336 0.10 0.01
504 0.20 0.02
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Table 4 Efficiency E, Revenue R, and Duration D in Minutes for the TV Ad Market Experiments

TRIM REUSE REUSE+ Optimal (LPR)

Iteration E R D E R D E R D E R D

1 0.93 0.78 115 0.95 0.65 290 0.96 0.60 580 1.00 — —
2 0.90 0.83 105 0.93 0.70 225 0.93 0.72 890 1.00 — —
3 0.88 0.68 95 0.89 0.67 205 0.91 0.65 480 1.00 — —
4 0.97 0.65 95 0.97 0.66 310 0.98 0.65 410 1.00 — —
5 0.94 0.78 105 0.96 0.63 245 0.96 0.65 460 1.00 — —
6 0.89 0.85 85 0.92 0.73 150 0.94 0.68 450 1.00 — —
7 0.91 0.76 75 0.92 0.66 100 0.93 0.71 340 1.00 — —
8 0.90 0.76 100 0.92 0.70 245 0.92 0.67 490 1.00 — —
9 0.93 0.92 105 0.97 0.71 205 0.98 0.71 390 1.00 — —

10 0.92 0.81 105 0.95 0.66 245 0.96 0.66 560 1.00 — —
11 0.93 0.79 90 0.96 0.65 185 0.97 0.66 400 1.00 — —
12 0.89 0.85 110 0.94 0.68 295 0.95 0.65 480 1.00 — —
13 0.95 0.80 85 0.95 0.75 120 0.96 0.77 330 1.00 — —
14 0.84 0.84 90 0.92 0.68 220 0.92 0.69 590 1.00 — —
15 0.91 0.66 95 0.91 0.64 195 0.93 0.63 680 1.00 — —
16 0.92 0.76 90 0.92 0.77 300 0.93 0.74 610 1.00 — —
17 0.92 0.78 100 0.93 0.73 170 0.94 0.67 470 1.00 — —
18 0.89 0.79 95 0.92 0.64 300 0.93 0.60 430 1.00 — —
19 0.84 0.83 60 0.88 0.74 90 0.90 0.71 370 1.00 — —
20 0.93 0.79 95 0.95 0.72 225 0.95 0.73 410 1.00 — —
� 0.91 0.79 95 0.93 0.69 216 0.94 0.68 491 1.00 — —
� 0.03 0.06 12 0.03 0.04 65 0.02 0.04 129 0.00 — —

5.2. Results of the TV Ad Market Experiments
We will first report the efficiency E, revenue R, and
duration D in minutes in Table 4. The REUSE algo-
rithm is able to improve the winning coalition if a
coalition of bidders with higher revenue is found, and
therefore the REUSE efficiency is higher than TRIM’s
(p-value < 00001). However, the actual revenue R gen-
erated by the payments from the REUSE algorithm
is consistently lower than that of TRIM (p-value <
00001), despite the fact that a higher coalitional value
was achieved. REUSE+ describes the results of run-
ning the REUSE algorithm with a time limit of
3,600 seconds for the first winner-determination prob-
lem and 600 seconds for every subsequent optimiza-
tion problem. This helps understand the impact of
allowing for a longer computation time. This impact
is low as the numbers in Table 4 show, illustrating
that even twice the computation time has little impact
on efficiency and revenue.

To understand why the overall revenue is signif-
icantly higher for TRIM in spite of the lower effi-
ciency, we compared the ratios between the bids
submitted and the resulting VCG and BPOC pay-
ments. Table 5 provides an overview of the average
secondary metrics across all experiments. The ratios
were all significantly higher for TRIM than for REUSE
(p-value < 00001).

In addition to these aggregate secondary metrics,
we provide a more detailed summary in Figure 3,
where a single frame groups an algorithm and a met-
ric. For each algorithm and metric, we aggregated the
individual (i.e., bidder-wise) ratios for all bidders in
small box plots. In each of the frames of Figure 3, the

light gray area of the box plot marks the interquartile
range for a specific metric and the line the median for
one of the 20 experiments. This provides an overview
of the ratio distribution for all 50 bidders. Finally, the
solid line across the box plots in each frame marks
the overall mean of all ratios in all scenarios. What
follows is a brief interpretation of these values.

The core/bid ratio for TRIM shows that the core
prices are close to the bid prices submitted and
different from the results seen in the second row in
Figure 3 for the REUSE algorithm. Multiple factors
influence this high ratio for TRIM: As seen in §4, the
VCG payment vector sets the lower bound for the
BPOC payment computation. Because of the possi-
bility of switching to coalitions with a higher coali-
tional value, the VCG payment vector computed by
the REUSE algorithm is always at most as high as
the TRIM algorithm relative to the coalitional value
of the respective winner coalition. If the coalitional
value computed with TRIM WDa4W5 is smaller than
all WDa4W−k5 for all winners k, the VCG payments are
equal to the winning bid prices. In contrast, REUSE
would switch the winning coalition in such a case,

Table 5 Average Ratios for Secondary Metrics

TRIM REUSE

Secondary metrics � � � �

Core/bid 0.88 0.18 Î 0.69 0.25 È
VCG/bid 0.75 0.31 Î 0.39 0.29 È
VCG/core 0.84 0.30 Î 0.53 0.37 È

Note. È and Î values are significantly lower or higher, respectively, com-
pared with the other algorithm.
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Figure 3 (Color online) Secondary Metrics of the TV Ad Market Experiments

effectively increasing the difference between WDa4W5
and WDa4W−k5. This in turn increases the VCG dis-
count of individual bidders and hence decreases the
VCG payments for each bidder.

Similarly, if a blocking coalition is found during
the BPOC payment computation in TRIM, where the
coalitional value is higher than the coalitional value
of the winning coalition at this point, then this coali-
tion remains blocking even if all BPOC payments of
the winners are at their bid price. In contrast, REUSE
would switch the winning coalition, effectively rais-
ing the upper bound on the BPOC payments, in addi-
tion to lowering all VCG payments as described in the
last paragraph. In the plots describing the VCG/bid
ratio and those describing the core/bid ratio, the val-
ues for TRIM are higher than those for REUSE. In
many TRIM instances, the median ratios are 100—i.e.,
for most winners the VCG and BPOC payments cor-
respond to their bid price.

The overall duration D needed to compute using
the REUSE algorithm takes significantly longer than
when using TRIM (p-value < 00001), even if each opti-
mization run is restricted to the same limit of 300
seconds. The REUSE algorithm updates the winning
coalition 3.5 times on average, whereas the TRIM
algorithm will always maintain the initial coalition.
Updating the winning coalition also initiates new
VCG computations, which explains why the REUSE
algorithm takes 63% longer than the TRIM algorithm.

5.3. Research Design for the Volume
Discount Auctions

To generate bid data for the volume discount auc-
tion format, we draw on the cost function and the
experiments base on Bichler et al. (2011). Being a

procurement auction, all primary and secondary met-
ric ratios (i.e., the E, R, core/bid, VCG/bid, VCG/core)
have to be reversed to allow an easier comparison
between the two auction formats. The multiprod-
uct cost function cs4x11 0 0 0 1 x�I �5 used by Bichler et al.
draws on econometric literature and enables a system-
atic evaluation of markets with different economies of
scale and scope. Based on these cost functions, incre-
mental volume discount bids are generated approxi-
mating the cost curve. We could fortunately use the
very same bid generation as described in Bichler et al.
(2011). These bids serve as an input to the winner
determination problem.

We will briefly introduce the cost function and the
main parameters. There are s ∈ S suppliers competing
for a fixed quantity Wi of one or more items i ∈ I , and
xi describes the quantity produced of each item.

cs4x11 0 0 0 1 x�I �5=∑

i∈I
Bi1 s�xi/zi� +∑

i∈I
�i1 s4xi/�i1 s5

�0

The function allows us to model very different
shapes with convex and concave sections. The item-
specific stepwise fixed cost of supplier s for item i is
denoted by Bi1 s . The parameter zi models the capac-
ity bound, after which an additional machine or plant
is needed, adding an additional Bi1 s fixed costs. Note
that with the inclusion of stepwise fixed costs, the
cost functions are no longer continuous. The term �i1 s

describes the slope of a variable cost function for
product i, and the exponent � is the nonlinear element
in the cost function, representing economies (or dis-
economies) of scale. The distribution for � was trun-
cated at zero such that only positive values were
drawn. Parameter �i1 s moderates the economies of
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Table 6 Parameters of the Cost Curve cs4x11 0 0 0 1 xI 5

Parameter Description � �item �supplier

Bi1 s Per item (stepwise) fixed costs 10000 0.0 0.0
zi Capacity of production line (%) 100 0 0
� Power of the variable cost

function
000 0.1 1.0

�i1 s Slope of the variable cost function 1100000 0.0 0.0
�i1 s Slope delay of the variable cost

function
10000 0.0 0.0

scale. A brief summary of all relevant variables and
their distributions can be found in Table 6.

An example of an average cost function based
on Table 6 can be found in Figure 4. The win-
ner determination problem minimizes total costs of
the procurement manager and is formally described
in Bichler et al. (2011). This mixed-integer program
allows for various allocation constraints. The only
constraint used in our experiments was that a sup-
plier could only win a certain percentage of the vol-
ume of each item (20%, 40%, 60%, and 80%), but
nothing in between. This requirement can be found
in the field where procurement managers try to avoid
odd quantity splits.

5.4. Results of the Volume Discount Auction
Experiments

In each of our experiments, 14 bidders submit vol-
ume discount bids for eight items. We chose this prob-
lem size because it is a realistic problem size, but at
the same time, the exact solution can be computed
within a few hours at most. No time constraints were
imposed. This allows us to report the ratio of the opti-
mal (OPT) to the near-optimal integer solution as effi-
ciency E, in contrast to the TV ads problem where we
could only use the LPR, because the optimal integer
solution of the winner-determination problem proved
intractable for all but unrealistically small problem
instances. While the optimal allocation was indeed
found for all instances, 4 out of the 40 experiments
were aborted because of out of memory exceptions
during the BPOC payment computation, as seen in
lines 37–40 of Table 7. However, even in such cases,
the integrality gap of the near-optimal solution was
low, on the order of 4% at most.

Figure 4 (Color online) Average Costs for One Unit Produced and Increasing Quantity Sold

0
0

100

200

300

400

U
ni

t c
os

t 500

600

700

20 40 60

Quantity sold

80 100

Table 7 Efficiency E, Revenue R, and Duration D in Minutes for the
Volume Discount Auction Experiments

TRIM REUSE OPT

Iteration E R D E R D E R D

1 0.96 0.90 2.21 0.97 0.85 3.06 1.00 0.88 100
2 0.92 0.90 2.56 1.00 0.77 2.22 1.00 0.86 195
3 0.99 0.83 3.06 1.00 0.77 2.56 1.00 0.85 47
4 0.99 0.82 2.21 0.99 0.82 2.39 1.00 0.84 56
5 0.95 0.86 2.72 0.99 0.74 2.72 1.00 0.79 62
6 0.99 0.80 2.41 0.99 0.80 2.04 1.00 0.85 42
7 0.99 0.77 2.21 0.99 0.73 2.22 1.00 0.78 62
8 0.99 0.82 2.90 1.00 0.80 2.22 1.00 0.84 86
9 0.85 0.85 2.38 0.98 0.82 2.56 1.00 0.91 61

10 0.97 0.81 2.56 0.97 0.80 3.23 1.00 0.80 125
11 0.99 0.78 2.04 0.99 0.78 1.87 1.00 0.79 44
12 0.96 0.91 2.21 1.00 0.80 2.22 1.00 0.82 42
13 1.00 0.76 2.89 1.00 0.78 3.06 1.00 0.87 70
14 0.97 0.83 2.22 0.97 0.81 2.22 1.00 0.80 43
15 1.00 0.74 2.89 1.00 0.74 2.73 1.00 0.77 37
16 0.96 0.88 2.89 1.00 0.78 2.22 1.00 0.80 108
17 0.98 0.88 2.55 1.00 0.85 2.39 1.00 0.89 144
18 0.99 0.74 2.55 0.99 0.75 2.55 1.00 0.76 77
19 1.00 0.77 2.21 1.00 0.79 2.55 1.00 0.82 53
20 0.98 0.78 2.38 1.00 0.74 2.90 1.00 0.80 68
21 0.99 0.82 2.21 0.99 0.82 2.21 1.00 0.83 77
22 1.00 0.79 3.57 1.00 0.77 2.72 1.00 0.81 183
23 0.99 0.81 3.57 1.00 0.73 2.55 1.00 0.83 53
24 0.99 0.79 2.56 0.99 0.79 2.39 1.00 0.82 52
25 1.00 0.77 2.90 1.00 0.73 2.55 1.00 0.81 46
26 0.97 0.90 2.56 0.99 0.86 2.38 1.00 0.86 37
27 0.99 0.80 2.56 0.99 0.82 2.38 1.00 0.82 41
28 0.94 0.85 3.06 0.99 0.80 3.23 1.00 0.81 89
29 0.98 0.78 2.21 0.99 0.77 2.21 1.00 0.76 73
30 0.98 0.91 3.23 0.99 0.85 2.38 1.00 0.85 75
31 0.90 0.90 2.56 0.99 0.85 2.56 1.00 0.83 57
32 0.99 0.75 2.38 1.00 0.75 2.73 1.00 0.78 35
33 0.95 0.86 2.72 1.00 0.78 2.21 1.00 0.82 71
34 0.98 0.84 2.38 0.99 0.81 2.89 1.00 0.82 41
35 0.97 0.76 2.89 1.00 0.71 3.07 1.00 0.77 68
36 0.99 0.78 2.55 1.00 0.73 2.38 1.00 0.79 50
37 0.99 0.76 2.62 0.99 0.77 2.63 1.00 — —
38 0.99 0.77 2.63 0.99 0.81 2.80 1.00 — —
39 0.96 0.85 2.93 0.99 0.79 3.12 1.00 — —
40 0.96 0.88 2.97 0.98 0.79 2.95 1.00 — —
� 0.97 0.82 2.63 0.99 0.79 2.56 1.00 0.82 71
� 0.03 0.05 0.36 0.01 0.04 0.34 0.00 0.04 38

As in the previous section, the experiments with
TV ads, the efficiency of REUSE is significantly
higher than for the TRIM algorithm (p-value < 00001).
Additionally, the efficiency of TRIM and REUSE
with a time limit of 300 seconds per optimization
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Table 8 Average Ratios for Secondary Metrics

TRIM REUSE OPT

Secondary metrics � � � � � �

Bid/core 0.85 0.15 Î 0.81 0.15 È 0.82 0.11
Bid/vcg 0.80 0.18 Î 0.72 0.16 È 0.82 0.11
Core/vcg 0.93 0.13 Î 0.90 0.14 È 1.00 0.00

Note. È and Î values are significantly lower or higher, respectively, com-
pared with the competing BPOC algorithm.

are significantly lower than the optimal efficiency
(p-value < 00001). Also the results on revenue are in
line with the TV ad market experiments: The rev-
enue achieved with REUSE is significantly lower than
with TRIM.

The secondary metrics are illustrated in Table 8 and
Figure 5 similar to what we have reported for the TV
ad market experiments in §5.1. However, now we are
also able to compare the ratios of payment vectors
using near-optimal solutions with those if the prob-
lems are solved optimally. Note that in the optimal
solution the core payment vector coincides with the
VCG payments. We conjecture that this is because we

Figure 5 (Color online) Secondary Metrics of the Volume Discount Auction Experiments

did not have economies of scope in our cost func-
tions. Table 8 shows that again the ratios for TRIM
are higher than those for REUSE. The difference is
again significant (p-value < 00001 for bid/core and
bid/VCG, p-value of 0.02 for core/VCG), but not as
high as in the TV ad market experiments. This is
because the integrality gap was lower for the instance
sizes chosen.

A comparison with the price vectors based on the
optimal solution, OPT, shows that the core payments
achieved with TRIM are indeed very high. The dif-
ference of bid/core between TRIM and OPT was sig-
nificant (p-value < 00001). The difference between the
bid/core ratios of OPT and reuse REUSE was not sig-
nificant (p-value of 0.4). The bid/VCG ratios of TRIM
and OPT were not significantly different (p-value of
0.965). However, the core/VCG ratio was significantly
higher for OPT than for TRIM and REUSE (p-value <
0003). This is because there was no difference in OPT,
i.e., both payment vectors coincided, while there was
a difference with the near-optional winner determina-
tion in TRIM and REUSE.

Figure 5 again provides a more detailed view of the
secondary metrics. As we have seen in the TV ad mar-



Goetzendorff et al.: Compact Bid Languages and Core-Pricing in Large Multi-item Auctions
Management Science 61(7), pp. 1684–1703, © 2015 INFORMS 1701

Figure 6 (Color online) Allocative Distance and Relative Payoff
Difference Between TRIM or REUSE and OPT for All Bidders
in a Single Auction Instance
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ket experiments, bidders’ final BPOC and VCG pay-
ments are nearer to the bid price than necessary on
an aggregate level, often as low as their bid prices for
the volume discount auctions if the TRIM algorithm
is used.

The availability of optimal solutions in these exper-
iments allows us to compare how the allocation and
the payments for individual bidders would differ
in OPT, TRIM, and REUSE. These differences are
described in Figure 6 for a specific auction. The upper
part of the figure describes how the final allocation
of TRIM or REUSE differs from the one in OPT by
treating each bidder’s allocation as a vector and com-
puting the Euclidean distance between the different
allocations. For example, suppose there were just two
different items, A and B, and two different allocations
Xi1 and Xi2 describing the quantity of each item that
the bidder i has to provide. Then, for Xi1 = 4101105
and Xi2 = 401155, the Euclidean distance is

√

4410 − 052 + 410 − 15525≈ 11020

The lower part of Figure 6 shows how the payoff
in TRIM or REUSE differs from the one in OPT. To
gain insight about the magnitude of the payoff differ-
ence, the values are normalized against the average
payment the auctioneer has to provide to the win-
ners. In this example, many bidders have a lower
payoff in TRIM because the payments in this reverse
auction are lower in TRIM, which is indicated by a
high bid/core ratio. For REUSE, the individual payoff
can even surpass the payoff obtained when computa-
tions are solved to optimality. Also, a change in the
allocative efficiency does not necessarily cause drastic
changes in every bidder’s payoff, as we see a payoff
difference close to zero for bidder 6, for example. The

Table 9 Summary of the Primary Metrics Comparing TRIM and
REUSE

TRIM REUSE Baseline

� � �

TV ad market LPR
Efficiency E 0.914 È � 0.928 Î � 1.000
Revenue R 0.788 Î — 0.680 È — —
Run time (minutes) D 95 È — 222 Î — —

Volume discount auction OPT
Efficiency E 0.988 È � 0.994 Î � 1.000
Revenue R 0.807 Î 0.786 È � 0.818
Run time (minutes) D 3 � 3 � 54

Note. È and Î indicate significant difference compared with the competing
BPOC algorithm; � indicates significant difference from the baseline.

computational hardness of these problems is such that
these differences from the optimal benchmark can in
some cases not be avoided, but the overall efficiency
of the near-optimal solutions is still very high in all
experiments.

Table 9 provides a summary of the primary met-
rics to compare TRIM and REUSE, showing that the
main results are the same in the TV ad market exper-
iments and the volume discount auction experiments.
Overall, if speed and revenue are primary concerns,
then TRIM may be the right approach. In other sit-
uations, where incentives for truthful bidding and
high efficiency are a concern, the REUSE algorithm is
preferable.

6. Conclusions
The design of large-scale markets where bidders have
complex preferences has been given little attention in
the literature as of yet. In several countries, regulators
sell dozens or hundreds of licenses to telecom com-
panies. The incentive auctions in the US are another
example where complex bidder preferences and allo-
cation constraints lead to computationally hard allo-
cation problems. Similar examples can be found in
many other domains including the sale of TV ads to
media agencies or multi-item and multiunit indus-
trial procurement auctions. Much research in mar-
ket design has focused on ascending combinatorial
auctions with a fully expressive XOR bid language,
and such designs have recently been used for selling
spectrum (Cramton 2013, Bichler et al. 2013) and in
logistics and procurement (Bichler et al. 2006). Such
designs do not scale to large markets because of the
exponential growth in the number of package bids
that can be submitted.

We describe an auction design framework using
compact bid languages and payment rules that incen-
tivize truthful bidding. In markets where bidders
have independent private values, which is the stan-
dard assumption in auction theory, this can yield
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highly efficient allocations. Compact bid languages
can often draw on domain specifics and allow bid-
ders to describe their preferences with a low num-
ber of parameters that they have to specify, as the
TV ad market and the volume discount auctions in
this paper illustrate. Commercial off-the-shelf mixed-
integer programming solvers can now solve large and
realistic instances of such problems to near optimal-
ity on standard hardware, which allows us to use
such bid languages in real-world markets. Such com-
pact bid languages, however, defy the ask pricing
rules typically used in ascending combinatorial auc-
tions (Scheffel et al. 2011), but they can easily be used
in sealed-bid auctions.

In sealed-bid auctions, second price rules such as
VCG or BPOC payment rules can be used to pro-
vide incentives for truthful bidding. In many mar-
kets, auctioneers would prefer core pricing to VCG
mechanisms to avoid noncore outcomes where the
bids of losing bidders are higher than the pay-
ments of the winners. With the introduction of core-
selecting auctions for spectrum licenses in recent
years, stakeholders have developed software to deter-
mine winners and core prices based on the use of
integer programming to solve a series of winner-
determination problems. Extending the use of this
software to larger and more complex markets (such
as the TV ads and procurement contexts we address
here) cannot be accomplished by merely specifying
time limits or optimality-gap thresholds to the solver
engine because it could for the more simple case
of a single optimization problem. Doing so would
often result in an infeasible pricing problem. This gen-
eral problem exists for all larger markets with near-
optimal winner determination.

We compared two potential algorithms for dealing
with these infeasibilities, finding one faster and higher
revenue method (for a fixed set of bids) and one
slower but more efficient method. Our results show
that the former TRIM algorithm may be suited to
a fast-clearing market in which speculation to lower
bids is offset by uncertainty about the competition.
For other applications, such as government spectrum
auctions the goal of public efficiency might outweigh
the computational costs and suggest an advantage for
the latter REUSE algorithm.

Further study may improve the application of core-
selecting auction algorithms to large and complex
markets like the TV ad and volume-discount markets,
but we have provided the first steps to the exten-
sion of the core-selecting auction paradigm beyond
provably optimal winner-determination settings. The
paper shows that the overall auction design frame-
work using compact bid languages and second-price
payment rules provides a computationally feasible
approach to achieve high efficiency in large-scale mar-
kets with dozens or hundreds of items.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2014.2076.

Appendix

Proof of Theorem 1. The reduction is from the decision
version of the strongly NP-hard multiple knapsack prob-
lem: given a set of n items and a set of m knapsacks (m≤ n),
with a profit bj and a weight dj for each item j , and a capac-
ity ci of each knapsack i, can you select m disjoint subsets of
items such that the total profit of the selected items exceeds
a given target profit T , with each subset assigned to a knap-
sack, and the total weight of any subset not exceeding the
capacity of the assigned knapsack?

To see that this problem is a special instance of the
WD problem, let the minimum price per unit ri = 0; also let
each bidder only bid with a single bid (item) j with a bid
price of bj , and each bidder’s priority vector Wk = 811 0 0 0 119
with a wmin

j = 1. This means, he wants his ad with a length
(weight) dj to be assigned to one out of all slots (knapsacks)
i with a duration (capacity) ci. The multiple knapsack deci-
sion problem can be answered affirmatively if and only if
this specific WD instance has an optimal objective value
greater than or equal to T . The problem is in NP because
it is straightforward to check for a given solution, whether
it is correct. �

List of Symbols
bj bid amount for bid j
b∗
k bid amount of bidder k’s winning bid
C coalition of bidders. C ⊆K
C t most violated coalition relative to the current

payment vector at iteration t
I set of goods offered/requested.
i index of a single good i
J set of bids containing all bid indexes
j index of a single bid j
Jk set of bids containing all bid indexes j by a bidder k
K set of bidders
k index of a single bidder k
pt payment vector at iteration t
ptk payment amount for bidder k at iteration t
pk shorthand notation for ptk with the currently

highest t
p

vcg
k VCG payment amount for bidder k

wmin
j minimum sum of weight values to justify a

monetary bid bj
Wk weight vector for bidder k
wik weight value for time slot i and bidder k
xij decision variable indicating that bid j is assigned to

time slot i
yj decision variable indicating that the bid j is

accepted
z4pt5 computed value of SEPt

LPR solution of the linear programming relaxation of
the winner determination problem

OPT optimal solution of the winner determination
problem

SEPt core separation problem
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WD winner determination problem, optimally solved
WDa winner determination problem, approximately

solved
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Abstract

In spectrum auctions, bidders typically have synergistic values for combinations of
licenses. This has been the key argument for the use of combinatorial auctions in
the recent years. Considering synergistic valuations turns the allocation problem
into a computationally hard optimization problem that generally cannot be approx-
imated to a constant factor in polynomial time. Ascending auction designs such as
the Simultaneous Multiple Round Auction (SMRA) and the single-stage or two-stage
Combinatorial Clock Auction (CCA) can be seen as simple heuristic algorithms to
solve this problem. Such heuristics do not necessarily compute the optimal solution,
even if bidders are truthful. We study the average efficiency loss that can be at-
tributed to the simplicity of the auction algorithm with different levels of synergies.
Our simulations are based on realistic instances of bidder valuations we inferred from
bid data from the 2014 Canadian 700MHz auction. The goal of the paper is not to
reproduce the results of the Canadian auction but rather to perform “out-of-sample”
counterfactuals comparing SMRA and CCA under different synergy conditions when
bidders maximize payoff in each round. With “linear” synergies, a bidder’s marginal
value for a license grows linearly with the total number of licenses won, while with
the “extreme national” synergies, this marginal value is independent of the number
of licenses won unless the bidder wins all licenses in a national package. We find that
with the extreme national synergy model, the CCA is indeed more efficient than
SMRA. However, for the more realistic case of linear synergies, SMRA outperforms
various versions of CCA that have been implemented in the field including the one
used in the Canadian 700MHz auction. Overall, the efficiency loss of all ascending
auction algorithms is small even with high synergies, which is remarkable given the
simplicity of the algorithms.

Key words: Market design, Spectrum auctions, Combinatorial auctions,
Simulation experiments

1. Introduction

Radio spectrum is a key resource in the digital economy. Recognizing its enor-
mous value for society, the US Federal Communication Commission (FCC) decided
in 1994 to replace their bureaucratic process (“beauty contest”) with a market-based
approach to assign spectrum: the Simultaneous Multiple Round Auction (SMRA).
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Since then the SMRA has successfully been used by many regulators and has gen-
erated hundreds of billions of dollars worldwide. Despite this success, the SMRA
has also led to a number of strategic problems for bidders. Telecom operators typ-
ically have preferences for certain packages of licenses. In the SMRA this leads to
the so-called exposure problem: bidders who compete aggressively for a certain pack-
age risk ending up with only a subset, possibly paying more than what this subset
is worth to them. The inability to express preferences for packages directly adds
strategic complexity for bidders and is a source of inefficiency in the SMRA. The
exposure problem that is inherent to item-by-item competition has stirred interest
in combinatorial auctions, which allow bidders to submit preferences for combina-
tions or packages directly. The design of combinatorial spectrum auctions has drawn
significant attention from researchers from various fields including economics, game
theory, operations research, and computer science, see e.g. Cramton et al. (2006).

Combinatorial auctions have also drawn interest from regulators. For their 2008
700MHz auction, the FCC decided to augment the SMRA with the possibility to
bid on a national package. This simple combinatorial auction was based on the
Hierarchical Package Bidding (HPB) format that had been designed and tested by
Goeree and Holt (2010). In the same year, the British regulator Ofcom pioneered the
Combinatorial Clock Auction (Cramton, 2008) and regulators world-wide have since
followed their example by adopting different versions of the CCA. The single-stage
CCA (Porter et al., 2003) is a simple ascending format where bidders can submit
multiple package bids in each round and prices are increased on items for which
there is excess demand. Variants of single-stage CCA have been used in Romania in
2012 and in Denmark in 2016. The single-stage CCA creates incentives for demand
reduction (Ausubel et al., 2014), a problem which the two-stage CCA tries to address.
The two-stage CCA allows for only a single package bid in each round and adds a
sealed-bid “shoot out” phase and a core-selecting payment rule (Cramton, 2013).
Both phases are governed by a revealed-preference activity rule. The two-stage CCA
has been used in many countries including Austria, Australia, Canada, Ireland, the
Netherlands, Slovakia, Switzerland, and the UK (Mochon and Saez, 2017; Cave and
Nicholls, 2017; Bichler and Goeree, 2017).

One takeaway message from the recent literature is that the design of spectrum
auctions is still a topic of intense debate. Another is that it requires different ap-
proaches – theory, laboratory experiments, and simulations – to understand the
properties of alternative formats. Mechanism design theory has identified the unique
efficient auction in which bidding truthfully is a (weakly) dominant strategy so that
bidders do not require information about their rivals’ valuations. Despite its desirable
features, the Vickrey-Clarke-Groves (VCG) mechanism is rarely used in the field for
various practical reasons (Ausubel and Milgrom, 2006). Bayesian-Nash implementa-
tion allows for a broader class of auction formats but imposes a strong common-prior
assumption. Moreover, recent game-theoretical models of spectrum auction formats
typically make simplifying assumptions about bidders’ valuations (Goeree and Lien,
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2014), focus on small environments with a few items and players (Levin and Skrzy-
pacz, 2016), or assume complete information to highlight strategic problems (Janssen
and Karamychev, 2016). Laboratory experiments provide valuable insights as well,
e.g. Goeree and Holt (2010), but the size of the markets that can be organized
in an economic experiment is typically limited. And, like in theoretical analyses,
experimental designs often ignore or simplify complicated institutional details (e.g.
activity rules or spectrum caps).

In contrast, simulations allow one to analyze realistic market sizes and to take
institutional details into account. As such they can provide complementary insights
(Consiglio and Russino, 2007). Interestingly, there are no published simulation stud-
ies about spectrum auction markets that we are aware of, even though simulations
are regularly used by consultants and telecoms to explore different bidding strategies.

1.1. Auctions as Algorithms

Spectrum auctions can be seen as large games with many bidders, licenses, and
additional rules such as spectrum caps and activity rules. For example, the 2014
Canadian 700MHz auction allowed bidders to bid on 18 packages in 14 regions leading
to 1814 possible packages. In large games like this, bidders need a lot of information
about competitors to bid strategically, and one might argue that strategic manip-
ulation is less of a concern. But even if we ignore strategic bidding, it is far from
obvious that auctions yield efficient outcomes. It is well-known that the allocation
problem in a combinatorial auction where bidders have preferences for combinations
of licenses is an NP-hard optimization problem (Cramton et al., 2006). The SMRA
and different versions of the CCA can be interpreted as algorithms to solve this prob-
lem, and it is important to understand the approximation ratios of these algorithms
(Domowitz and Wang, 1994). It is unclear whether to expect efficient outcomes even
when bidders bid straightforwardly in each round of the auction.

Theoretical results on the allocation problem in combinatorial auctions are not
encouraging. There is no polynomial-time algorithm that guarantees an approximate
solution to the winner determination problem within a factor of l1−ε from the optimal
allocation, where l is the number of submitted bids and ε a small number (Pekec
and Rothkopf, 2003). The problem is APX-hard and the worst-case approximation
ratio of any polynomial-time algorithm for the allocation problem in combinatorial
auctions is in O(

√
m), where m is the number of objects to be sold. In large spectrum

auctions with many licenses such as the Canadian auction in 2014, this lower bound
on efficiency is obviously very low1 and provides no practical guidance. There are
also results on the worst-case efficiency of the single-stage CCA with bidders who
truthfully reveal their preferences (i.e., bid straightforward) in each round. This
can also be seen as an algorithm to solve the allocation problem. Unfortunately, the

1
√

18 ∗ 14 = 15.87, such that the worst-case approximation of any polynomial-time algorithm
might be OPT/15.87, where OPT is the optimal solution to the allocation problem.
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worst-case approximation ratio can be 2/(m+1) with m being the number of licenses
(Bichler et al., 2013b).

Worst-case bounds might be too pessimistic, and it is interesting to understand
the average-case approximation ratio to the fully efficient solution of different auction
types based on realistic problem instances. Numerical experiments are widely used
in operations research and computer science to analyze the average-case solution
quality of an algorithm, and they help to understand aspects of the algorithm that
do not lend themselves to theoretical analysis or lab experiments. In particular, we
want to study the average-case efficiency of different auction algorithms under the
assumption of straightforward bidding. This provides an estimate of the efficiency
that can be achieved by the auction algorithms that are commonly employed in the
field for realistic market sizes and considering all details of the auction design.

Another important element of realism in our simulations stems from the fact
that we estimate bidder value models from bids observed in the Canadian 700MHz
auction. Unlike other regulators, the Canadian regulator, Industry Canada, revealed
detailed bid data.2 We use the supplementary bids from the Canadian 700MHz
auction to estimate individual license values for each bidder.3 Our goal is not to
provide the most precise estimates of bidders’ private valuations and then reproduce
the outcomes of the Canadian auction. This would lead to over-fitting problems in
the counterfactuals we have in mind. Our goal instead is to robustly infer reasonable
instances of bidder valuations and then compare the performance of different auction
formats under various “out-of-sample” synergy conditions.

In particular, we compare efficiency of the SMRA to that of the single-stage and
two-stage CCA using extensive numerical experiments. The experiments employ a
simulation framework that implements the exact rules of the 2014 Canadian auction,
i.e. band plan, spectrum caps, regional interests of bidders and rules of the two-stage
CCA. In addition, we implemented the rules of SMRA and the single-stage CCA as
they were used in other countries. Since the Canadian auction shares similarities
with other large spectrum auctions, e.g., in Australia, India, and the US, the results
of our study are of interest beyond the Canadian market.

1.2. Outline

The paper is organized as follows. The next section provides details about the
SMRA and CCA formats. Section 3 covers the experimental design, including details
about the Canadian 700MHz auction. The results of the simulation experiments can
be found in Section 4. Section 5 concludes and the Appendices provide further details
about the value model we estimate (Appendix A), the optimization algorithms used

2Besides Industry Canada, the UK’s Ofcom is the only regulator that disclosed bids data for
their CCA. However, the auctions in the UK have only national licenses and there are too few
bidders and objects to conduct a simulation study as in this paper.

3The bid data used in this paper are available for replication studies.
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in the simulations (Appendix B), our modeling assumptions (Appendix C), and the
results (Appendix D).

2. The Auctions

In this section, we briefly summarize the SMRA and different versions of combi-
natorial clock auctions and provide references to the details of the implementations,
which follow the very auction rules used in Canada or other countries.

2.1. The Simultaneous Multiple Round Auction (SMRA)

The SMRA is an extension of the English auction to more than one license. All
licenses are sold at the same time, each with a price associated with it, and the
bidders can bid on any one of the licenses. The auction proceeds in rounds, which
is a specific period of time in which all bidders can submit bids. After the round is
closed, the auctioneer discloses who is winning and the prices of each license, which
coincide with the highest bid submitted on each license. There are differences in
the level of information revealed about other bidders’ bids. Sometimes all bids are
revealed after each round, sometimes only prices of the currently winning bids are
published.

The bidding continues until no bidder is willing to raise the bid on any of the
licenses any more. In other words, if in one round no new bids are placed, the bidders
receive the spectrum for which they hold the highest active bid, then the auction
ends with each bidder winning the licenses on which he has the high bid, and paying
its bid for any license won.

SMRA uses simple activity rules which enforce bidder activity throughout the
auction. Monotonicity rules are regularly used, where bidders cannot bid on more
licenses in later rounds. This forces bidders to be active from the start. Typically,
bidders get eligibility points assigned at the start of the auction, which define the
number of licenses they are allowed to bid on maximally. If the number of licenses
they win in a round and the new bids they submit require less eligibility points than
in the last round, then they risk losing points, which limits the number of items they
can bid on in future rounds.

Apart from the activity rules, there are typically additional rules that matter.
Auctioneers set reserve prices for each license, which describe prices below which an
license will not be sold. They need to define bid increments and how bid increments
might change throughout the auction. A bid increment is the minimum amount by
which a bidder needs to increase his bid beyond the ask price in the next round.
Sometimes, auctioneers allow for bid withdrawals and sometimes bidders get bid
waivers, which allow bidders not to bid in a round without losing eligibility points.
Finally, auctioneers often set bidding floors and caps, which are limits on how much
a winner in the auction needs to win at a minimum and how much he can win at
most. These rules should avoid unwanted outcomes such as a monopoly after the
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auction or a winner who wins so little spectrum that it is not sufficient for a viable
business.

The auction format is popular because it is easy to implement and the rules
are simple. If the valuations of all bidders were additive, the properties of a single-
object ascending auction carry over. Unfortunately, this is rarely the case and bidders
have often synergies for specific licenses in a package or their preferences are substi-
tutes. Only if bidders have substitutes preferences and bid straightforwardly, then
the SMRA terminates at a Walrasian equilibrium, i.e., an equilibrium with linear
prices (Milgrom, 2000). Straightforward bidding means that a bidder bids on the
bundles of licenses, which together maximize the payoff at the current ask prices in
each round. Milgrom (2000) also showed that with at least three bidders and at least
one non-substitutes valuation (for example super-additive valuations for a package
if licenses) no Walrasian equilibrium exists.

We assume a simple straightforward bidding strategy in each round where bidders
submit bids on their payoff maximizing package. The exposure problem is a key
strategic challenge in the SMRA. In our simulations we assume that bidders take
different levels of exposure. Either they only bid up to the additive values of a
package and ignore the synergies or they exceed the additive value of the licenses in a
package and take some exposure risk. This is a treatment variable in the experiments.
More details can be found in Section 3.5 and Appendix C.

2.2. Alternative Versions of the Combinatorial Clock Auction

There are various versions of combinatorial clock auctions that have been imple-
mented in the field: the two-stage combinatorial clock auction (CCA) that was used
in e.g. the Canadian 700MHz auction, the two-stage combinatorial clock auction
with base and OR bids in the second stage (CCA+) as it was used in the Canadian
2.5GHz spectrum auction, and the single-stage combinatorial clock auction (SCCA),
which was recently used in Romania and Denmark.

2.2.1. The Two-Stage Combinatorial Clock Auction (CCA)

The two-stage combinatorial clock auction was introduced by Ausubel et al.
(2006). In contrast to SMRA, the auction avoids the exposure problem by allowing
for bundle bids. Maldoom (2007) describes a version as it has been used in spectrum
auctions across Europe. In a two-stage combinatorial clock auction, bids for bundles
of licenses are made throughout a number of sequential, open rounds (the primary
bid rounds or clock phase) and then a final sealed-bid round (the supplementary
bids round). In the primary bid rounds the auctioneer announces prices and bidders
state their demand at the current price levels. Prices of licences with excess demand
are increased by a bid increment until there is no excess demand anymore. Jump
bidding is not possible. In the primary bid rounds, bidders can only submit a bid
on one bundle per round. This rule is different to the initial proposal by Ausubel
et al. (2006). If bidders bid straightforward on their payoff maximizing bundle in
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each round and all goods get sold after the clock phase, allocation and prices would
be in competitive equilibrium. It might well be that there is excess supply after the
clock phase, however. The sealed-bid supplementary bids phase and a Vickrey-closest
core-selecting payment rule try to induce truthful bidding and avoid incentives for
demand reduction. This is because core payments in Day and Cramton (2012) are
computed such that a losing bid of a winner does not increase his payment for his
winning bid. The winner determination after the supplementary bids round considers
all bids, which have been submitted in the primary bid rounds and the supplemen-
tary bids round and selects the revenue maximizing allocation. The bids by a single
bidder are mutually exclusive (i.e., the CCA uses an XOR bidding language).

Activity rules should provide incentives for bidders to reveal their preferences
truthfully and bid straightforwardly already in the primary bid rounds. Bidders
should not be able to shade their bids and then provide large jump bids in the
supplementary bids round. An eligibility-points rule is used to determine activity
and eligibility to bid in the primary bid rounds. Each license in a band requires a
certain number of eligibility points, and a bidder cannot increase his activity across
rounds. In the supplementary bids round, revealed preferences during the primary
bid rounds are used to derive relative caps on the supplementary bids that impose
consistency of preferences between the primary and supplementary bids submitted.
The consequence of these rules is that all bids are constrained relative to the bid
for the final primary package by a difference determined by the primary bids. This
should set incentives for straightforward bidding in the primary bid rounds.

2.2.2. The Two-Stage Combinatorial Clock Auction with OR Bids (CCA+)

The two-stage combinatorial clock auction reaches full efficiency if bidders bid
on their payoff maximizing package during the primary phase and truthfully on all
packages in the supplementary phase. The number of packages increases exponen-
tially in the number of items and in the Canadian auction this would not be possible
for national bidders. To counter this “missing bids” problem (see Bichler et al.
(2013a)), Industry Canada introduced the possibility to submit one or more mutu-
ally exclusive collections of OR bids4 in the supplementary round, in addition to the
mutually exclusive XOR bids. These OR bid collections (see Footnote 4) are used
in conjunction with the bidder’s final primary package and can be used to express
additive valuations on top of the final primary package bid in a concise manner.

2.2.3. The Single-Stage Combinatorial Clock Auction (SCCA)

We also analyze the single-stage combinatorial clock auction as it has been de-
scribed by Porter et al. (2003). This format was used in Romania5 in 2012, and in

4http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf10730.html#aD-s10
5http://www.ancom.org.ro/en/uploads/forms_files/terms_of_reference1331893175.

pdf
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the recent the Danish 1800Mhz auction6 in 2016. Here, bidders can place a bid on
one or multiple package bids at the current ask prices in each round. The pricing rule
is simple: As long as at least one item is over-demanded, the prices for these over-
demanded items increase by a bid increment. If at some point the supply equals
demand, the auction terminates and assigns the items to all bidders. In the case
of excess supply, the auctioneer considers all bids, including those of the previous
rounds, and solves a winner determination problem. If the all winning bidders in
the current round are in the winner determination problem’s solution, the auction
terminates. Otherwise, a new round begins with increased prices on all items that
were not allocated in the previous round. Note that the Danish 1800MHz auction
had some additional rules about the prices one can specify for package bids in each
round that were not considered in our simulations. We argue that these differences
do not influence the results of the research question in this paper significantly.

3. Experimental design

Our experiments were conducted by using an auction framework which allows the
run of all of the major spectrum auction formats, i.e. the SMRA, the single-stage and
two-stage CCA (SCCA, CCA), and the two-stage CCA with OR bids (CCA+). The
implementation follows the very rules specified in the documents that we referenced
in the previous sections. In addition, we used the exact band plan, the licenses and
caps of the Canadian 700MHz auction. Next, we introduce the value model and the
strategies of the automated bidders, before we summarize the experimental design.

3.1. Market Environment

We will briefly summarize the environment of the Canadian 700 MHz auction
in 2014. We used the very same band plan, the same start prices, and the same
spectrum caps as in this auction.7

Licenses

The band plan consists of five paired spectrum licenses (A, B, C, C1, and C2), and
two unpaired licenses (D, E) in 14 service areas. B and C as well as C1 and C2
were treated as generic licenses, i.e., substitutes. Although the licenses are all in the
700MHz band, they are technically not similar enough to sell all of them as generic
licenses of one type.

6https://ens.dk/sites/ens.dk/files/Tele/information_memorandum_june_2016.pdf
7The detailed auction rules of the 2014 Canadian 700Mhz auction can be found at http://www.

ic.gc.ca/eic/site/smt-gst.nsf/eng/h_sf01714.html.
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Market Participants

The auction was dominated by three national carriers Bell, Rogers, and Telus. Rogers
was the strongest bidder and contributed 62.45% to the overall revenue, while Telus
paid 21.69% and Bell 10.73%. Rogers did not bid on C1/C2 and aimed for licenses
in A, and B/C throughout the auction, while Bell and Telus also bid on C1/C2 in
certain service areas. The smaller bidders mainly bid on remaining C1/C2 licenses.
Bell and Telus had to coordinate and find an allocation such that they both got
sufficient coverage in the lower 700 MHz band (A, B and C licenses), which explains
much of the bid data. The bid data generated for our experiments was based on the
field data.

Caps

In order to facilitate the market entry for new entrants, Industry Canada set up
spectrum caps. All eight bidders were restricted to at most 2 paired frequency licenses
in each service area. Large national wireless service providers such as Rogers, Bell,
and Telus were further limited in that they could only bid on one paired license in
each service area among licenses B, C, C1 and C2. This cap on large wireless service
providers did not, however, include license A. Still, the national bidders could bid
on 2 ∗ 3 ∗ 3 = 18 packages per region including the empty package, which leads to
1814 ≈ 3.75 ∗ 1017 packages across all regions. In contrast, in the Canadian 700MHz
auction, Rogers submitted 12 supplementary bids, Bell 543 and Telus 547 bids.

Activity Rules

All implemented iterative auction formats use an eligibility point or, in all CCA for-
mats, a revealed preference/eligibility point activity rule during the rounds. Bidders
begin each round with a number of eligibility points and they can only bid on a
set of licenses that in sum requires a less or equal number of eligibility points. The
rounds’ activity requirement is 100%, i.e., a bidder loses all eligibility points that he
does not use in a round. Industry Canada allowed bidders to bid on packages even
beyond the current eligibility point limit, as long as this choice is consistent with the
bidder’s revealed preferences up to this point.

The two-stage CCA formats apply this rule also to all supplementary bids: All
bids submitted in this stage have to be consistent with the bidder’s revealed prefer-
ences, taking into account his bid in the final clock round and all eligibility-reducing
rounds starting from the last round in which the bidder’s eligibility was at least as
high as the total points associated with the current bid.8

8Details of the activity rule can also be found at http://www.ic.gc.ca/eic/site/smt-gst.

nsf/eng/h_sf01714.html.
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3.2. Estimates of Base Valuations

In order get reasonable problem instances, we constructed bidder-specific value
models for all participants from the auction data. The Canadian regulator published
all bids from the 700Mhz spectrum auction, which allowed us to estimate realistic
valuations. We do not aim to get precise value estimates with the goal to reproduce
the outcomes of the Canadian 700MHz auction. Rather we aim to obtain realistic
valuations from the observed package bids in the supplementary stage of the Cana-
dian auction which have a reasonable order of magnitude with respect to the starting
and end prices in the auction. For this, we fitted a L1 linear regression to the sup-
plementary bids. As an abstract example, suppose there are three items, A, B, and
C, and a bidder submits the following package bids: b(AB) = 10, b(AC) = 10,
b(BC) = 10, and b(ABC) = X. Then an L1 regression that explains these bids in
terms of underlying license values yields vA = vB = vC = 5 irrespective of X.9 The
estimated valuations of course depend on the estimation technique, but our main
simulation results are robust and hold for very different samples.

Interestingly, we find that the linear model fits the data well (see A for details),
which suggests that the regression results provide reasonable estimates of the bidders’
license values. As in the abstract example, there were some non-negligible residuals
for larger packages but this is to be expected given the synergistic nature of bidders’
values. We purposefully do not try to estimate these package synergies. First, this
would be difficult given that only a small proportion from the exponential set of
possible package bids were submitted.10 More importantly, we are not interested in
reproducing the outcomes of one particular auction, i.e. the Canadian 700MHz, but
want to robustly compare the performance of the SMRA and CCA under various
“out-of-sample” synergy conditions.

3.3. Synergy Model

We will consider two synergy models: with “linear” synergies the marginal value
of each license rises linearly with the total number of licenses won. In contrast,
with “extreme national synergies” the marginal value of a license is independent of
the number of licenses won unless all licenses in a national package are won. To
illustrate, consider an abstract example with K items that all have one eligibility
point. Denote a bidder’s individual license values by ϑk for k = 1, . . . , K. When
there are synergies, the individual license values go up when they are part of a larger
package. Suppose license k is part of a set of L licenses that the bidder wins then

ϑk(L) = ϑk

(
1 + (α− 1)

L

K

)
(1)

9An L2 regression would instead yield vA = vB = vC = (X + 20)/7.
10Telus submitted the most supplementary bids: 547. But this is only 0.00000000000015% of all

possible package bids.
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where the synergy coefficient, α ≥ 0, determines the scale of package valuations.
We are mainly interested in the case where licenses are complements (α > 1), but
the value parametrization in (1) also applies to the substitutes case (α < 1). When
α = 1, there are no synergies (neither positive nor negative) and values are simply
additive.

With the “linear synergy” model that license values rise linearly with the number
of licenses won. In the “extreme national synergy” model, non-additive valuations
are limited to

ϑk(L) =





ϑk if 1 ≤ L < K

αϑk if L = K

With extreme national synergies the marginal value of each license is independent of
the number of licenses won unless all licenses in the national package are won, see
also Goeree and Lien (2014). The fact that synergies are only applied for a selected
few out of all possible packages is an extreme case. In the field we have seen similar
models where super-additive valuations were only determined for a small number of
packages as it is often difficult to determine the right polynomial. However, there is
no public information about the structure of such valuation models and the level of
synergies that we are aware of. We will see that with such a synergy model, package
auctions do achieve higher efficiency, but this is not the case with the linear synergy
value model.

The experiments use the following parameters: α ∈ {1, 2, 2.5} and both syn-
ergy models. A difference with the abstract example above is that in the Canadian
700MHz auction not all licenses had the same eligibility points, but it in the case
of the linear model it is straightforward to account for those.11 Another difference
is that in the Canadian auction there were “national bidders”, i.e. Telus, Bell, and
Rogers, and “regional bidders”. In the experiments we assume that only the national
carriers enjoy synergies. A final detail is that national bidders could cover the coun-
try once or twice with a specific set of paired licenses: In the case of covering the
country twice, the synergy coefficient for the national package was α, whereas if a
bidder covers the nation within a specific paired frequency block once12, his synergy
coefficient is α− 0.5.

3.4. Efficient Allocation

Given the large number of licenses and bidders the computation of the optimal
allocation is challenging. Obviously, we cannot enumerate all valuations for all pos-
sible packages of all bidders. Instead, we solve a mixed integer program, which

11Let ek denote the eligibility points associated with license k = 1, . . . ,K. Suppose license k is

part of a winning set S. Define e =
∑K

k=1 ek and eS =
∑

k∈S ek then ϑk(L) = ϑk

(
1 + (α− 1) eS

e

)
.

12As an example, winning one licence in each region in the A frequency block would cause a
higher surplus, whereas covering the nation once with a mix of A and BC licences would not.
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leverages the structure of the valuation models described above without having to
enumerate all possible packages. The model is described in Appendix B.13 A version
of this model is also used to compute the payoff-maximizing package in each round
for bidders.

3.5. Bidding Strategies

There are no closed-form equilibrium bidding strategies for the SMRA or the
CCA in complex environments such as the Canadian 700MHz auction. But strategic
manipulation would be difficult given the large number of licenses and packages
bidders are interested in, which is why we assume bidders naively optimize in each
round of the auction. Such straightforward bidding means that a bidder bids on the
package with the highest net value taking into account current prices. Formally, a
straightforward bid βSF

j (vj, pj) is defined as

βSF
j (vj, pj) ∈ arg max

S⊆I
(vj(S)− pj(S))

where S is the set of items bidder j wants to bid on from all possible items I,
vj(S) is the bidder’s valuation for the package S and pj(S) the price he has to
pay for it. In the case of an exposure limit λ, we limit the value vj(S) so that
vλj (S) = min

(
vj(S), λ

∑
i∈S vj(i)

)
for all S where pj(S) >

∑
i∈S vj(i).

14

3.6. Experimental Design

The main treatment variables in our experiments are the auction format, the
synergies in the two value models (αl or αn), and the exposure risk that bidders are
willing to take in SMRA. We also consider limits on the number of bids that bidders
are willing to submit.

We compare SMRA against various versions of the combinatorial clock auction
format, which include the single stage CCA where bidders submit one or two bids
per round, SCCA(1) and SCCA(2), the two stage CCA with zero15 or 200 additional
bids, CCA(0), CCA(200). We also analyze the CCA with an OR bid language in the
supplementary stage, in addition to 200 supplementary bids, CCA+(200).

We draw 100 sets of random valuations based on the derived value models from a
uniform distribution of ±5% around the item valuations and subsequently use these

13The optimization model is an effective way to determine payoff-maximizing packages in each
round with both synergy models. Unfortunately, with non-linear, e.g. quadratic, synergies the
integer programming problem becomes intractable.

14As an example, assume a bidder with v(i1) = 5, v(i2) = 5, v(i3) = 20 and v({i1, i2}) = 100.
Assume further a fixed number 5 < ρ < 10, p(i1) = p(i2) = ρ and p(i3) = 2ρ, and a winning cap
of two items per bidder. With λ < 2, βSF

j is {i3}, whereas with a λ > 2, the bidder strictly prefers
the package {i1, i2}.

15This means that bidders submit only supplementary bids on combinations they already bid for
in the clock phase. The result of the clock phase of the two stage CCA is also added for comparison.
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Variables Values

Auction formats SMRA, SCCA(1), SCCA(2), CCA(0), CCA(200), CCA+(200)

Synergy model No, National-2.0, National-2.5, Linear-2.0, Linear-2.5

Exposure No, +50%, +100%, Full

Table 1: Treatment variables

valuations for all treatment combinations, which are described in Table 1. In total,
we have 9∗4+6 = 42 treatment combinations and 4,200 simulation runs with approx.
1,500 hours of simulation run time.

We use efficiency E(X) as the primary aggregate measure.16 Let the optimal
allocation be denoted X∗ then:

E(X) =

∑
j∈J vj(X)∑
j∈J vj(X

∗)

We also measure the revenue distribution R(X), which compares the auctioneers
revenue against the optimally achievable surplus.

R(X) =

∑
j∈J pj(X)∑
j∈J vj(X

∗)

4. Results

In the following, we summarize the main results of the numerical experiments.
The efficiency of the auction formats is quite high and with a synergy value of less
or equal to 2, efficiency is typically higher than 80% of the optimal surplus. This is
surprising given that the auctions are simple heuristics and the worst-case approxi-
mation ratio for the allocation problem are low, as we discussed in the introduction.

Result 1. The two synergy models lead to significantly different results:

• With linear synergies, the efficiency level of the SMRA exceeds those of the
various CCA versions. This is true even for a high value of the synergy coeffi-
cient αl. Among the CCA versions, the two stage CCA is more efficient than
the single stage SCCA.

• With the extreme national synergies, the single- and two-stage CCA yield com-
parable efficiency levels, which exceed those of the SMRA. CCA+ has a signif-
icantly higher effiency than all other formats. Efficiency in the SMRA and in
the CCA formats decreases for higher levels αn, but not for the CCA+.

16A formulation of the mixed integer program can be found in Appendix B.
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For the national synergy model, efficiency levels are ranked as follows: CCA+ �∗∗∗
SCCA �∗∗ CCA �∗∗∗ CCA (clock) �∗∗∗ SMRA. For the linear synergy model, the
ranking is: SMRA �∗∗∗ CCA+ ∼ CCA �∗∗∗ SCCA �∗∗∗ CCA (clock).

We provide box plots with the efficiency levels in the appendix in Figures 1 to 10,
which show the results for different levels of synergy. Figure 1 shows box plots in
a market with purely additive valuations where the efficiency of all auction formats
is very high. SMRA achieves full efficiency while the combinatorial clock auction
formats have a slightly lower efficiency with a median above 97%. This efficiency loss
might be due to the missing bids problem, as bidders can only reveal a small subset
of all their bundle preferences in a combinatorial auction of this size. SMRANo refers
to an implementation of SMRA with bidding agents who do not take any exposure
risk, while they bid up to their full package valuation in SMRAFull.

Figure 2 shows the box plots for the extreme national synergy model with a
synergy coefficient of αn = 2.0 while Figure 3 shows the box plots for αn = 2.5.
With national synergies, the median efficiency of the SMRA with bidders who do
not take exposure risk (SMRANo) is 0.77 or 0.69 respectively. If bidders would take
full exposure, some of the efficiency would be recovered. The efficiency of the CCA
formats is high at around 0.96 and 0.85 for the CCA+ and CCA, respectively.

Figures 4 and 5 show efficiency for the linear synergy model with synergy coeffi-
cients of αl = 2.0 and αl = 2.5. Interestingly, efficiency of SMRA remains very high
for both synergy levels. An explanation for this is the auction format and the caps in
the Canadian auction. The caps limited the size of the packages any national bidder
could win. None of the bidders could win all a huge package with all licenses. All
national bidders were also able to win larger packages in SMRA, which all result in
some level of complementarity in the linear synergy model. The average efficiency of
the combinatorial clock auctions is substantially lower.

SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
0.5

0.6

0.7

0.8

0.9

1.0

Figure 1: Efficiency in the additive value model

The pattern in the box plots is reflected in the regression analysis. Table 2
summarizes the OLS estimates for the extreme national synergy model and Table 3

14
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SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
0.5

0.6

0.7

0.8

0.9

1.0

Figure 2: Efficiency in the National-2.0 value model

SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: Efficiency in the National-2.5 value model

does the same for the linear synergy model (the dependent variable in each case is
efficiency). SMRA describes the baseline auction format in this regression and no
exposure the baseline for the various exposure levels that the bidders take. In Table 2
all combinatorial clock auction formats have a positive and significant influence on
efficiency compared to SMRA. Differences among the combinatorial clock auction
formats are small. In contrast, in Table 2 all the regression coefficients are negative
indicating a negative impact of alternative auction formats on efficiency compared to
SMRA. The CCA auction with the OR bid language (CCA+) was best among the
combinatorial clock auction format as bidders revealed a significantly larger number
of package valuations.

One of the specifics of the Canadian value model is the number of three national
competitors. We ran also simulations with four national bidders17, but the main

17A fourth national bidder was created by first averaging the estimated valuations of the three
national bidders. We then drew 100 sets of random valuations based on this model from a uniform
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SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: Efficiency in the Linear-2.0 value model

SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Efficiency in the Linear-2.5 value model

results regarding the comparison of auction formats remain.

distribution of ±5%, identically to the procedure used for our main simulations.

16



Accepted Version – September 21, 2017

SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
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0.7
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Figure 6: Revenue in the additive value model

SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
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0.7

0.8

Figure 7: Revenue in the National-2.0 value model

SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8: Revenue in the National-2.5 value model
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SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
0.2

0.3
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0.7

0.8

Figure 9: Revenue in the Linear-2.0 value model

SMRANo SMRAFull SCCA(1) SCCA(2) CCA(0) CCA(200) CCA+(200)
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 10: Revenue in the Linear-2.5 value model
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Coefficients E(X) p-value R(X) p-value

Intercept 0.8568 < 0.001 0.5965 < 0.001

Auction Format

CCA (clock) 0.1050 < 0.001 0.0989 < 0.001

CCA(0) 0.1176 < 0.001 0.1497 < 0.001

CCA(200) 0.1177 < 0.001 0.1499 < 0.001

CCA+(200) 0.2253 < 0.001 0.1505 < 0.001

SCCA(1) 0.1256 < 0.001 0.1266 < 0.001

SCCA(2) 0.1310 < 0.001 0.1282 < 0.001

Synergy -0.0556 < 0.001 -0.0911 < 0.001

Exposure

+50% 0.0344 < 0.001 0.0506 < 0.001

+100% 0.0395 < 0.001 0.0933 < 0.001

Full 0.0390 < 0.001 0.0931 < 0.001

Adjusted R2 0.79 0.84

Table 2: Regression results for the extreme national synergy model (base: SMRANo, no exposure)
with efficiency and revenue as dependent variables.
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Coefficients E(X) p-value R(X) p-value

Intercept 1.0125 < 0.001 0.4941 < 0.001

Auction Format

CCA (clock) -0.1425 < 0.001 -0.0796 < 0.001

CCA(0) -0.0246 < 0.001 -0.0784 < 0.001

CCA(200) -0.0244 < 0.001 -0.0781 < 0.001

CCA+(200) -0.0243 < 0.001 -0.0784 < 0.001

SCCA(1) -0.1185 < 0.001 -0.0037 -

SCCA(2) -0.1158 < 0.001 -0.0006 -

Synergy -0.0104 < 0.001 -0.0159 < 0.001

Exposure

+50% 0.0062 < 0.1 0.0030 -

+100% 0.0084 < 0.05 0.0272 < 0.001

Full 0.0106 < 0.01 0.0663 < 0.001

Adjusted R2 0.74 0.66

Table 3: Regression results for the linear synergy model (base: SMRANo, no exposure) for efficiency
and revenue as dependent variables.
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Result 2. Allowing OR bids in the the supplementary phase of the two-stage CCA
significantly raises efficiency and revenue compared to the CCA with XOR bid lan-
guage (p-value: < 0.001) in the extreme national synergy model, but not in the linear
synergy model. Bidding up to 200 additional supplementary bids does not signifi-
cantly improve efficiency compared to a two-stage CCA without additional package
bids.

Straightforward bidding is fully efficient in the two stage CCA if bidders are
able to provide their preference for all packages. In larger combinatorial auctions
such as the Canadian auction, this is not possible with a fully combinatorial XOR
bid language. Bidding only on a small fraction of the 1017 possible packages in the
supplementary phase does not improve the allocation significantly, even if bidders
bid on up to 200 of their most valuable packages. The addition of OR bids in the
supplementary phase does improve the efficiency of the auction outcome, but this
can only be observed in the extreme national synergy model.

Result 3. With national synergies, revenue is lowest in the SMRA when bidders do
not take any exposure. With linear synergies, revenue of the two-stage CCA (and
CCA+) is lowest. The single-stage CCA achieves higher revenue than the two-stage
CCA on average in the linear synergy model.

Figure 6 shows the revenue results of the additive model, where the two-stage
CCA, both CCA(0) and CCA(200), is worst. Figures 7 to 8 provide box plots for
the extreme national synergy model, while Figures 9 to 10 shows those for the linear
synergy model. Since efficiency is low with extreme national synergies, also revenue
is low. The opposite is true for linear synergies. The revenue of the single-stage CCA,
SCCA(1) and SCCA(2), is always higher on average than that of the two-stage CCA,
CCA(0) and CCA(200).

Table 2 summarizes the robust regression estimates for the extreme national syn-
ergy model and Table 3 shows those for the linear synergy model (with revenue as
the dependent variable). We see a similar pattern as for efficiency. With national
synergies, revenue is significantly higher in the CCA formats. But with linear syner-
gies it is significantly higher in SMRA. A summary of the results for efficiency and
revenue across all auction formats and value models can be found in Table 5 and
Table 6.
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5. Conclusions

Much has been written about the design of efficient spectrum auctions in the
past two decades (see e.g. Bichler and Goeree (2017) for an up-to-date overview).
Traditionally, game-theoretic analyses and laboratory experiments have been used
to analyze different auction formats. These methods have their limitations. In par-
ticular, spectrum auctions in the field typically have many licenses, complex activity
rules, and spectrum caps. Such design elements are important, but typically ignored
in theoretical and lab studies. Simulation studies complement theory and experi-
ments. They allow economists to study alternative auction formats under exactly
the same rules as used in the field. One contribution of the paper is the implemen-
tation of the SMRA and various versions of the CCA formats in a unified simulation
framework, as well as an instance generator that estimates bidder valuations based
on drop out bids from the Canadian 700MHz spectrum auction.

The economic environment in this simulation mirrors the Canadian market with
all its institutional details, and it allows us to study the efficiency of wide-spread
spectrum auction formats with different levels of synergies in the valuations of bid-
ders. We assume that bidders maximize payoff in each round. This can serve as a
reasonable approximation of bidder behavior in larger markets such as the Canadian
auction. In any case, it is important to understand the average approximation ratio
of simple auction algorithms in realistic environments when bidders bid straightfor-
ward.

The main results of the experiments go against wide-spread wisdom. Even high
synergies do not always lead to higher efficiency in the combinatorial clock auctions
compared to SMRA, and the relative efficiency ranking depends on the type of syn-
ergies. We analyzed two types of synergies motivated from observations in the field.
In the “extreme national” synergy model synergies only occur when a bidder wins all
licenses in a national package (and not if the bidder wins, say, 99% of the licenses).
The extreme national synergies create the largest possible risk for a bidder who wants
to aggregate licenses in the SMRA and, not surprisingly, the SMRA results in low
efficiencies in this model. More moderate synergies occur when the marginal value of
a license rises linearly with the number of licenses won. Surprisingly, under this as-
sumption of “linear” synergies, the SMRA outperforms various versions of the CCA,
in terms of efficiency as well as revenue. Overall, it is interesting to observe that the
average efficiency loss in both models is remarkably low considering the simplicity of
the algorithms and the worst-case approximation ratio of the allocation problem in
combinatorial auctions.
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A. The Bidders’ Value Models

We estimate value models for the individual bidders from the bid data in an
attempt to get realistic valuations. While we do not aim to estimate the true valu-
ations of bidders from the data, we want to get valuations which resemble those in
the field. In an initial step, we preprocessed the data and based our estimates on the
supplementary bids. We also removed a few outliers, bids that were substantially
higher or lower than the other bids of a bidder, and which might have had strategic
reasons.

Instead of a standard L2 linear regression, we used an L1 linear regression, which
is constrained to have no intercept. L1 regressions are more robust against outliers
(Andersen, 2008). In this regression, the package bid is the dependent variable, the
vector of licenses included in a package bid describes exogenous variables. Such
regressions were run for each bidder. The R2 of the resulting models for the three
national bidders Rogers, Bell, and Telus are 0.60, 0.89, and 0.96, respectively. We
provide the value models in our data companion. These estimated valuations provide
the means of a distribution describing the value of each type of license. For each
valuation set used in a simulation, we draw different valuations for the individual
licenses of different bidders. Synergies for packages were then modeled on top as
described in our experimental design.

B. The Efficient Allocation

In what follows, we provide a quick introduction into the mixed integer program
(MIP) that is used to compute the efficient allocation in all our experiments. A
similar formulation (albeit only for a single bidder) can be used to compute a bidder’s
best response and is used in the simulation framework to compute the bidders’ payoff-
maximizing package in their straightforward bidding strategy.

The allocation of licences can be modeled as a multi-knapsack problem, in which
each licence i ∈ I with capacity or quantity q(i) will be assigned to a bidder j ∈ J .
Part of the objective function is the sum of the bidder’s additive valuations vAj (i)
for a licence i times whether he actually won the licence xi,j (3) or not. Assignining
at most q(i) licences for each licence type is checked at (7). Each licence also has
e(i) eligibility points associated with it and which will be tested against bidder’s
maximum allowed eps emax

j (10). Equations (8) and (9) apply the capping rules
defined by the Canadian regulator. Note that the national bidders JN ⊂ J are
slightly more constrained across the available regions R. Each bidder can potentially
have one or multiple non-additive demand vectors rNj,k ∈ ({−1}∪N0)

|I|, where -1,0 and
N signals indifference, should not receive, and the minimum quantity, respectively. If
a demand vector is fulfilled, the equations (13) through (16) make sure the associated
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non-additive valuation vNj (k) is added to the objective (4). This part of the algorithm
is used to model the National Synergy Value Model. Similarly, a bidder can have an
incremental bonus that reaches its maximum relative complementarity bTj , when all
of the bidders relevant bonus items IBj reach the required quantity rBj (i) (equation
(6)). In order to stay in linear space, the relative factors were linearized, as seen in
(6) and (17) to (19). Please refer to Table 4 for a summary of all involved parameters
and variables.

Parameters

I Items

J Bidders

JN national bidders

bTj added complementarity (1.0 = 100 % = additivity)

eTj total eps of the bidder’s bonus package

e(i) eps of item

emax
j maximum eps of the bidder

rBj (i) quantity j requires for bonus of i

band(i) band of item

R available regions

vAj (i) additive surplus

vNj (k) nonadditive surplus

rNj,k,i required quantity of i in bidder j’s package k

q(i) available quantity of i

Variables

xi,j ∈ N quantity bidder j receives of item i

yj,k ∈ B the bidder won package k

yj,k,i ∈ B variable for non-additive packages, item-wise

bj,i1,i2 ∈ B bonus active for i1, i2

Table 4: Sealed Model Parameters and Variables
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max
∑

j∈J

(
zaddj + znaj

)
(2)

s.t.
∑

i∈I
vAj (i) · xi,j = zaddj ∀j ∈ J (3)

∑

k∈Kj

vNj (k) · yj,k + (4)

bTj − 1

epTj

∑

i1∈IBj

∑

i2∈IBj

rj(i1) (5)

·e(i1) · rj(i2) · vAj (i2) · bj,i1,i2 ≥ znaj ∀j ∈ J (6)
∑

j∈J
xi,j ≤ q(i) ∀i ∈ I (7)

∑

i∈Ir:band(i)!=’DE’

xi,j ≤ 2 ∀r ∈ R, ∀j ∈ J (8)

∑

i∈Ir:band(i)∈{’BC’,’C1C2’}
xi,j ≤ 1 ∀r ∈ R, ∀j ∈ JN (9)

∑

i∈I
e(i) · xi,j ≤ emax

j ∀j (10)

∑

i

yj,k,i ≤ |I| · (1− yj,k) ∀j,∀k (11)

1−
∑

i

yj,k,i ≤ |I| · yj,k ∀j,∀k (12)

rNj,k,i − xi,j ≤ q(i) · yj,k,i ∀j ∈ J,∀k ∈ Kj,∀i ∈ I : rNj,k,i > 0

(13)

1− rNj,k,i + xi,j ≤ q(i) · (1− yj,k,i) ∀j ∈ J,∀k ∈ Kj,∀i ∈ I : rNj,k,i > 0

(14)

xi,j ≤ q(i) · yj,k,i ∀j ∈ J,∀k ∈ Kj,∀i ∈ I : rNj,k,i = 0

(15)

1− xi,j ≤ q(i) · (1− yj,k,i) ∀j ∈ J,∀k ∈ Kj,∀i ∈ I : rNj,k,i = 0

(16)

rBj (i) · bj,i,i ≤ xi,j ∀j ∈ J,∀i ∈ I (17)

bj,i1,i2 ≤ bj,i1,i1 ∀j ∈ J,∀i1 ∈ IBj ,∀i2 ∈ IBj : i1 6= i2
(18)

bj,i1,i2 ≤ bj,i2,i2 ∀j ∈ J,∀i1 ∈ IBj ,∀i2 ∈ IBj : i1 6= i2
(19)
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xi,j ∈ N0 ∀j ∈ J,∀i ∈ I
yj,k ∈ N0 ∀j ∈ J,∀k ∈ K
yj,k,i ∈ N0 ∀j ∈ J,∀k ∈ K, ∀i ∈ I

C. Modeling the Exposure Risk

A limit to how much a bidder should expose himself can be directly included in
the bidders individual bidding selection mixed integer problem. We do this by first
deciding on an exposure factor exposurej he should not surpass, i.e.:

exposurej ≥
zaddj + znaj

zaddj

We take the individual parts of the bidders target function zj of the bidder, i.e.,
its additive part, zaddj and the non-additive part znaj , which we want to limit. After
reformulating the formula above we get the following inequality

znaj ≤ (exposurej − 1)

(∑

i∈I
vAj (i) · xi,j

)

which can then be integrated into the selection MIP to further limit the value of
znaj .

D. Results Tables

What follows are the mean and standard deviation for all aggregate metrics.

28



Accepted Version – September 21, 2017
A

d
d

it
iv

e
N

a
ti

o
n

a
l-

2
.0

N
a
ti

o
n

a
l-

2
.5

L
in

ea
r-

2
.0

L
in

ea
r-

2
.5

S
M

R
A

N
o

0.
99

94
(0

.0
00

3
)

0
.7

7
3
5

(0
.0

0
6
0
)

0
.6

9
0
2

(0
.0

4
8
4
)

0
.9

9
5
2

(0
.0

0
3
7
)

0
.9

8
3
0

(0
.0

2
5
1
)

S
M

R
A

+
5
0
%

0.
99

94
(0

.0
00

3
)

0
.8

1
3
0

(0
.0

0
4
0
)

0
.7

1
9
4

(0
.0

3
1
9
)

0
.9

9
5
4

(0
.0

0
3
3
)

0
.9

9
5
2

(0
.0

0
3
5
)

S
M

R
A

+
1
0
0
%

0.
99

94
(0

.0
00

3
)

0
.8

1
3
0

(0
.0

0
4
0
)

0
.7

2
9
6

(0
.0

2
1
0
)

0
.9

9
9
8

(0
.0

0
0
4
)

0
.9

9
5
2

(0
.0

0
3
5
)

S
M

R
A

F
u
ll

0.
99

94
(0

.0
00

3
)

0
.8

1
3
0

(0
.0

0
4
0
)

0
.7

2
8
6

(0
.0

2
1
4
)

0
.9

9
9
8

(0
.0

0
0
5
)

0
.9

9
9
7

(0
.0

0
0
7
)

S
C

C
A

(1
)

0.
97

37
(0

.0
25

8
)

0
.8

5
0
2

(0
.0

0
7
6
)

0
.8

6
4
7

(0
.0

0
3
0
)

0
.8

7
3
3

(0
.0

6
2
9
)

0
.8

6
7
9

(0
.0

5
3
0
)

S
C

C
A

(2
)

0.
97

54
(0

.0
26

0
)

0
.8

5
5
4

(0
.0

0
9
8
)

0
.8

7
0
2

(0
.0

0
3
1
)

0
.8

7
6
3

(0
.0

6
4
1
)

0
.8

7
0
3

(0
.0

5
0
9
)

C
C

A
(c

lo
ck

)
0.

96
74

(0
.0

28
1
)

0
.8

2
9
6

(0
.0

2
8
4
)

0
.8

4
4
1

(0
.0

3
4
3
)

0
.8

5
9
6

(0
.0

6
2
2
)

0
.8

3
3
8

(0
.0

5
7
6
)

C
C

A
(0

)
0.

97
42

(0
.0

19
2
)

0
.8

4
4
5

(0
.0

2
2
5
)

0
.8

5
4
4

(0
.0

2
7
2
)

0
.9

6
4
2

(0
.0

1
3
2
)

0
.9

6
4
8

(0
.0

1
4
8
)

C
C

A
(2

00
)

0.
97

42
(0

.0
19

2
)

0
.8

4
4
6

(0
.0

2
2
6
)

0
.8

5
4
4

(0
.0

2
7
2
)

0
.9

6
4
4

(0
.0

1
3
2
)

0
.9

6
4
9

(0
.0

1
4
8
)

C
C

A
+

(2
00

)
0.

97
90

(0
.0

21
5
)

0
.9

5
5
4

(0
.0

1
9
5
)

0
.9

5
9
0

(0
.0

2
6
8
)

0
.9

6
4
1

(0
.0

0
6
7
)

0
.9

6
5
4

(0
.0

0
4
2
)

T
a
b

le
5
:

E
ffi

ci
en

cy
-

m
ea

n
,

(s
td

.
d

ev
ia

ti
o
n

)

29



Accepted Version – September 21, 2017
A

d
d

it
iv

e
N

a
ti

o
n

a
l-

2
.0

N
a
ti

o
n

a
l-

2
.5

L
in

ea
r-

2
.0

L
in

ea
r-

2
.5

V
C

G
0.

38
20

(0
.0

03
8
)

0
.6

1
8
2

(0
.0

0
7
8
)

0
.5

6
3
4

(0
.0

0
7
1
)

0
.4

8
7
9

(0
.0

0
4
3
)

0
.4

9
4
6

(0
.0

0
4
3
)

S
M

R
A

N
o

0.
40

48
(0

.0
04

9
)

0
.4

2
7
2

(0
.0

0
5
2
)

0
.3

5
5
9

(0
.0

0
4
0
)

0
.4

8
2
1

(0
.0

0
9
0
)

0
.4

3
4
7

(0
.0

0
9
4
)

S
M

R
A

+
5
0
%

0.
40

48
(0

.0
04

9
)

0
.4

8
2
2

(0
.0

0
5
2
)

0
.4

0
1
9

(0
.0

1
1
9
)

0
.4

8
4
0

(0
.0

0
5
7
)

0
.4

3
9
0

(0
.0

0
5
6
)

S
M

R
A

+
1
0
0
%

0.
40

48
(0

.0
04

9
)

0
.4

8
2
2

(0
.0

0
5
1
)

0
.4

8
7
4

(0
.0

1
8
3
)

0
.5

2
3
5

(0
.0

0
6
6
)

0
.4

4
8
2

(0
.0

0
7
3
)

S
M

R
A

F
u
ll

0.
40

48
(0

.0
04

9
)

0
.4

8
2
3

(0
.0

0
5
3
)

0
.4

8
6
9

(0
.0

1
6
5
)

0
.5

2
3
5

(0
.0

0
7
1
)

0
.5

2
5
8

(0
.0

0
7
5
)

S
C

C
A

(1
)

0.
39

74
(0

.0
26

3
)

0
.5

4
0
8

(0
.0

3
1
5
)

0
.4

9
5
4

(0
.0

1
0
1
)

0
.4

3
7
9

(0
.0

4
9
2
)

0
.4

7
1
3

(0
.0

3
4
8
)

S
C

C
A

(2
)

0.
39

98
(0

.0
26

6
)

0
.5

3
7
4

(0
.0

1
0
9
)

0
.5

0
1
9

(0
.0

1
0
4
)

0
.4

4
3
8

(0
.0

4
9
7
)

0
.4

7
1
7

(0
.0

3
8
0
)

C
C

A
(c

lo
ck

)
0.

39
12

(0
.0

25
7
)

0
.5

0
6
0

(0
.0

2
7
4
)

0
.4

7
4
8

(0
.0

3
4
2
)

0
.3

9
1
5

(0
.0

6
3
1
)

0
.3

6
6
2

(0
.0

5
9
0
)

C
C

A
(0

)
0.

30
98

(0
.0

25
6
)

0
.5

7
6
9

(0
.0

2
1
1
)

0
.5

0
5
5

(0
.0

0
8
4
)

0
.3

6
6
5

(0
.0

2
6
9
)

0
.3

9
3
2

(0
.0

2
2
9
)

C
C

A
(2

00
)

0.
30

98
(0

.0
25

6
)

0
.5

7
7
2

(0
.0

2
1
2
)

0
.5

0
5
6

(0
.0

0
8
4
)

0
.3

7
4
1

(0
.0

2
6
6
)

0
.3

8
6
3

(0
.0

2
1
8
)

C
C

A
+

(2
00

)
0.

30
97

(0
.0

27
1
)

0
.5

7
1
3

(0
.0

1
3
6
)

0
.5

1
2
7

(0
.0

1
7
4
)

0
.3

7
3
9

(0
.0

2
7
8
)

0
.3

8
6
0

(0
.0

2
1
7
)

T
a
b

le
6
:

R
ev

en
u

e
-

m
ea

n
,

(s
td

.
d

ev
ia

ti
o
n

)

30





(Un)expected Bidder Behavior in Spectrum

Auctions

Peer-reviewed Journal Paper

Title: (Un)expected Bidder Behavior in Spectrum Auctions: About Inconsistent Bidding and
Its Impact on Efficiency in the Combinatorial Clock Auction.

Authors: C. Kroemer, M. Bichler, A. Goetzendorff

In: Group Decision and Negotiation 25.1 (2016): 31-63

Abstract: The combinatorial clock auction is a two-stage auction format, which has been used
to sell spectrum licenses worldwide in the recent years. It draws on a number of elegant ideas
inspired by economic theory. A revealed preference activity rule should provide incentives to bid
straightforward, i.e., consistent with the bidders’ valuations on a payoff-maximizing package, in
each round of the clock phase. A second-price rule should set incentives to bid truthfully in both
phases. If bidders respond to these incentives and bid straightforward in the clock phase and
truthful in the second sealed-bid stage, then the auction is fully efficient. Unfortunately, bidders
might neither bid straightforward in the clock phase nor truthful on all packages in the second
sealed-bid stage due to strategic reasons or practical limitations. We introduce metrics based on
Afriat’s Efficiency Index to analyze straightforward bidding and report on empirical data from
the lab and from the field in the British 4G auction in 2013 and the Canadian 700 MHz auction
in 2014, where the bids were made public. The data provides evidence that bidders deviate
significantly from straightforward bidding in the clock phase, which can restrict the bids they
can submit in the supplementary phase. We show that such restrictions can have a significant
negative impact on efficiency and revenue.

Contribution of thesis author: Results (Canada 700 Mhz Auction of 2014), implementation
(Canada 700 Mhz Auction of 2014), presentation, guidance and joint paper management

Copyright Notice: © 2015 Springer Science+Business Media Dordrecht

75



Group Decis Negot
DOI 10.1007/s10726-015-9431-0

(Un)expected Bidder Behavior in Spectrum Auctions:
About Inconsistent Bidding and Its Impact
on Efficiency in the Combinatorial Clock Auction

Christian Kroemer · Martin Bichler ·
Andor Goetzendorff

© Springer Science+Business Media Dordrecht 2015

Abstract The combinatorial clock auction is a two-stage auction format, which has
been used to sell spectrum licenses worldwide in the recent years. It draws on a number
of elegant ideas inspired by economic theory. A revealed preference activity rule should
provide incentives to bid straightforward, i.e., consistent with the bidders’ valuations
on a payoff-maximizing package, in each round of the clock phase. A second-price
rule should set incentives to bid truthfully in both phases. If bidders respond to these
incentives and bid straightforward in the clock phase and truthful in the second sealed-
bid stage, then the auction is fully efficient. Unfortunately, bidders might neither bid
straightforward in the clock phase nor truthful on all packages in the second sealed-bid
stage due to strategic reasons or practical limitations. We introduce metrics based on
Afriat’s Efficiency Index to analyze straightforward bidding and report on empirical
data from the lab and from the field in the British 4G auction in 2013 and the Canadian
700 MHz auction in 2014, where the bids were made public. The data provides evidence
that bidders deviate significantly from straightforward bidding in the clock phase,
which can restrict the bids they can submit in the supplementary phase. We show that
such restrictions can have a significant negative impact on efficiency and revenue.

Keywords Market design · Spectrum auctions · Activity rules

C. Kroemer · M. Bichler (B) · A. Goetzendorff
Department of Informatics, Technische Universität München, Boltzmannstr. 3,
85748 Garching, Munich, Germany
e-mail: bichler@in.tum.de

C. Kroemer
e-mail: kroemer@in.tum.de

A. Goetzendorff
e-mail: goetzend@in.tum.de

123



C. Kroemer et al.

1 Introduction

The design of auction protocols and systems has received considerable academic
attention in the recent years and found application in industrial procurement, logistics,
and in public tenders (Airiau and Sen 2003; Bellantuono et al. 2013). Spectrum auction
design is one of the most challenging and visible applications. It is often seen as a
pivotal example for the design of multi-object markets and successful auction designs
are likely role-models for other markets in areas such as procurement and logistics.

Efficiency, revenue, and strategic simplicity for bidders are typical design goals that
a regulator has in mind. In theory, the Vickrey–Clarke–Groves (VCG) auction is the
only strategy-proof and efficient auction but for practical reasons, it has rarely been
used so far (Rothkopf 2007). Several other auction formats have been designed and
used for selling spectrum. The most prominent example is the Simultaneous Multi-
Round Auction (SMRA) which has been used since the mid-90s to sell spectrum
licenses world-wide. The more recent Combinatorial Clock Auction (CCA) is a two-
phase auction format with an initial ascending clock auction and a sealed-bid supple-
mentary bid phase afterward. It has lately been used to sell spectrum in countries such
as Australia, Austria, Canada, Denmark, Ireland, the Netherlands, Slovenia, and the
UK.

The CCA draws on a number of elegant ideas inspired by economic theory. A
revealed preference activity rule should provide incentives for bidders to bid straight-
forward or consistent, i.e., to bid truthfully on one of the payoff-maximizing packages
in each round of the clock phase. If bidders fail to maximize utility and bid on a pack-
age with a less than optimal payoff, we will also refer to this as inconsistent bidding
behavior, i.e., bids which are not consistent with the assumption of utility maximiza-
tion. A second-price rule should set incentives to bid all valuations truthfully in the
second sealed-bid phase. It can be shown that if bidders respond to these incentives in
both phases of the CCA, then the outcome is efficient and in the core (Ausubel et al.
2006). However, bidders might not have incentives to bid truthful in both phases, and
this can lead to inefficiencies.

1.1 Reasons for Inefficiency in the CCA

The CCA is used in high-stakes auctions and much recent research tries to better
understand when it is efficient in theory and in the lab. For the former, Goeree and
Lien (2013) highlight possibilities for profitable manipulation and deviations from
truthful bidding in core-selecting auctions in a market with several local and one
global bidder. They show that the Bayesian Nash equilibrium outcome in this market
can be further from the core than that of the VCG auction in a sealed-bid auction, and
that in their model truthful bidding is never an equilibrium in a core-selecting auction.
Sano (2012) analyzes the same market situation and shows that in ascending auctions
a core-selecting payment rule can lead to an inefficient perfect Bayesian equilibrium
where local bidders drop out at the start. Janssen and Karamychev (2013) and later
Levin and Skrzypacz (2014) provide a complete information analysis of the CCA rules
considering the activity rules of the CCA and show that there are multiple equilibria
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with no guarantee for efficiency. The equilibria depend on assumptions about bidders’
incentives to drive up prices of competitors, which is risk-free in the CCA as was
shown in Bichler et al. (2013a) (see Sect. 2.4).

Lab experiments yielded low revenue and low efficiency for the CCA in a market
with a larger number of licenses (Bichler et al. 2013a). Interestingly, also the CCA
conducted in the UK in 2013 achieved a revenue below the expectations, leading to
an investigation by the UK National Audit Office (Arthur 2013), whereas some other
CCAs such as the one in Austria in 2013 achieved high revenue. It turns out that one
reason for low efficiency and revenue in the experiments was that bidders submitted
only a small subset of the thousands or millions of packages they could bid on. This can
have strategic but also very practical reasons. In larger combinatorial auctions such
as the Canadian 700 MHz auction in 2013 with 98 licenses, national bidders could
potentially bid up to 1814 packages. It will only be possible to submit bids on a small
subset of all possible packages for any bidder. All other packages are treated by the
winner determination in the CCA as if bidders had no valuation for these combinations,
which is unlikely.

In contrast, the SMRA uses an “OR” bidding language, where bidders can have
multiple winning bids. During the winner determination, bids on different items pro-
vide an estimate for the value that a bidder has for every possible combination of bids
on individual items. Also in the British auction in 2013 only a low number of package
bids was submitted. Problems due to the exponential growth in the number of packages
can sometimes be addressed by a compact bid language, as was discussed in Bichler
et al. (2014). The recently released rules for the upcoming CCA in Canada in 2015
try to address this problem by allowing for restricted OR bids in the supplementary
stage. Of course, the bid language does not solve the strategic reasons for bidders to
bid on many or only a few packages in the supplementary stage. We will discuss some
of these reasons in Sect. 2.4.

1.2 Contribution of this Paper

In this paper, we show that apart from missing bids in the supplementary phase, also
inconsistent bidding in the clock phase can be a source of inefficiency. We show that
bidders in the lab and in the field (Canada and UK) do not bid straightforward in
the clock phase. There are actually several reasons for inconsistent bidding behavior.
For example, bidders might have budget constraints (Shapiro et al. 2013) or values
might be interdependent, which can lead to inconsistent bidding as bidders revise
their valuations when they learn about other bidders’ valuations during the auction.
Even if bidders have independent and private values without budget constraints, there
can be incentives to reduce or inflate demand in the clock phase in order to drive up
payments of competitors (Bichler et al. 2013a; Janssen and Karamychev 2013; Levin
and Skrzypacz 2014).

However, the revealed preference activity rule prohibits bidders from bidding truth-
fully up to their valuation in the supplementary phase, if they do not bid straightforward
in the clock phase, and this can lead auctioneers to select an inefficient allocation. We
provide evidence from the lab and from the field showing that the resulting inefficien-
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cies can be significant, while being much less obvious at the same time. Measuring
this inefficiency due to restrictions on the supplementary bid prices is straightforward
in the lab, where the values of bidders are available. But also the analysis of the field
data from the British LTE auction in 2013 and from the Canadian 700 MHz auction in
2014 suggests that inconsistent bidding was an issue. We introduce metrics based on
Afriat’s Efficiency Index, which allow measuring the level of inconsistency. Numeri-
cal simulations based on data from the lab and from the UK indicate that the impact
of inconsistent bidding on efficiency can be substantial. In the lab we found an overall
efficiency loss of around 5 %, which can be attributed to inconsistent bidding in the
clock phase. In the data from the field, where we don’t know the bidders’ true valua-
tions, we also found a surprising large number of supplementary stage bids at the bid
price limit imposed by the clock phase. This can be seen as an indication that these
bids were also below the true valuation, although one can assume that bidders in these
these countries tried to bid up to their true valuation.

A strong activity rule, which forces bidders to be consistent across auction rounds,
appears to be an intuitive solution to fix the problems discussed in this paper. However,
in the conclusions we will outline issues which arise when a regulator tries to force
bidders to bid straightforward.

1.3 Outline

The remainder of this paper is structured as follows: After briefly introducing the rules
of the CCA in Sect. 2, we will discuss Afriat’s Efficiency Index to analyze whether
bidders in the CCA are bidding straightforward in Sect. 3. We will use this metric to
analyze bidders in the lab in Sect. 4 and bidders from the British and the Canadian
auction in Sect. 5. Finally, we will use computer simulations to analyze the impact of
these deviations on the auction’s final outcome in Sect. 6. Section 7 discusses stronger
activity rules to force consistent bidding in the clock phase and potential problems
arising from such rules.

2 The Combinatorial Clock Auction

Used for the first time in 1994, the SMRA has been the de facto standard auction format
for spectrum sales for almost 20 years (Milgrom 2000). A number of well-known
strategic problems have led to substantial research on alternative auction formats. In
particular, the exposure problem turned out to be central. Bidders are often interested
in specific combinations or packages of licenses. Their value for these packages can
be much higher than the sum of the individual license values in this package. As the
SMRA allows only bidding on single items, a bidder risks winning only part of his
package, having to pay more than what the subpackage is worth to him. Combinatorial
auctions address this problem by allowing bidders to submit bids on packages rather
than on single items. In 2008 the British regulator Ofcom decided on the two-stage
Combinatorial Clock Auction (CCA) (Ausubel et al. 2006), a format which has been
used in many countries world-wide in the last 5 years.
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First, we briefly describe the overall auction process that was the same in the recent
auctions. Then we discuss the activity rules, and draw on the latest version used in
Canada in 2014.1

2.1 The CCA Auction Process

In the clock phase, the auctioneer announces ask prices for all licenses at the beginning
of each round. In every round bidders communicate their demand for each item at the
current prices. At the end of a round, the auctioneer determines a set of over-demanded
licenses for which the bidders’ demand exceeds the supply. The price for all over-
demanded lots is increased by a bid increment for the next round. This clock phase
continues until there are no over-demanded lots left.

The supplementary stage is designed to eliminate incentives for demand reduction
and other inefficiencies in the combinatorial clock auction due to the limited number of
bids that bidders can submit in the first phase. In this sealed-bid stage bidders are able
to increase bids from the clock phase or submit bids on bundles they have not bid on so
far. Bidders can submit as many bids as they want, but the bid price is restricted subject
to the CCA activity rule (see next subsection). Finally, all bids from both phases of the
auction are considered in the winner determination and the computation of payments
for the winners. The winner determination is an N P-hard combinatorial optimization
problem (Lehmann et al. 2006). For the computation of payments, a Vickrey-nearest
bidder-optimal core-pricing rule is used (Day and Cramton 2012).

With certain assumptions on the bidders’ valuations it is possible to determine the
efficient allocation and the VCG payments, even if bidders do not bid up to their true
valuation in the supplementary stage. For example, if bidders have independent and
decreasing marginal valuations for homogeneous items and all bidders bid straight-
forward then it is possible to determine Vickrey payments even bidders would not
increase their bids after the clock phase. Under these assumptions bidders have strong
incentives to bid truthful as the clock auction is ex post incentive compatible. How-
ever, combinatorial auctions are typically used when bidders have complementary
valuations and this is when the clock auction loses its favorable properties. Without
substitutes valuations an efficient outcome can not be guaranteed in a clock auction, not
even with fully straightforward bidding by all participants. Actually, simple examples
show that the clock phase can have very low efficiency, if all bidders bid straightfor-
ward (see Sect. 7). Actually, even if valuations were gross substitutes no ascending
auction can always impute Vickrey prices (Gul and Stacchetti 1999), i.e., payments
for which bidders have no incentives to shade their true valuations.2

1 The auction rules of the Canadian 700 MHz auction in 2014 can be found at http://www.ic.
gc.ca/eic/site/smt-gst.nsf/eng/sf10583.html. The auction rules of the British auction in 2013 can be
found at http://stakeholders.ofcom.org.uk/spectrum/spectrum-awards/awards-archive/completed-awards/
800mhz-2.6ghz/.
2 Ausubel (2006) showed that there is an ascending auction with multiple price trajectories and item-level
prices, which is efficient and yields the VCG allocation and payments. The auction runs one ascending
auction with all bidders, and one with each bidder excluded in turn. However, this auction format is quite
different from the clock auctions used in the field so far.
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Apart from the observation that bidders in spectrum auctions often have comple-
mentary valuations, a number of other reasons can cause differences between the true
VCG payments and the payments computed in the CCA. For example, in larger auc-
tions with many licenses bidders might be unable to submit supplementary bids on all
possible packages. However, such missing bids can have an impact on the payments
of others. There are also differences to the VCG payments, if bidders bid higher or
lower than their valuation for strategic reasons, and there can be multiple non-truthful
equilibria in this auction (Levin and Skrzypacz 2014).

2.2 Activity Rules in the CCA

The CCA combines two auctions in the clock and in the supplementary phase. This
requires additional rules setting incentives to bid truthfully in both phases. Without
activity rules, bidders might not bid actively in the clock phase, but wait for the other
bidders to reveal their preferences, and only bid in the supplementary phase. Originally,
the clock phase of the CCA employed a simple monotonicity rule which does not allow
to increase the size of the package in later rounds as prices increase. It has been shown
that with substitutes preferences straightforward bidding is impossible with such an
activity rule (Bichler et al. 2011, 2013a). Later versions use a hybrid activity rule using
a monotonicity rule and a revealed preference rule (Ausubel et al. 2006). Revealed
preference rules allow bidders to bid straightforward in the clock phase. If they do,
then bidders are able to bid on all possible packages up to their true valuation in the
supplementary stage (Bichler et al. 2013a). In the following we describe the latest
version of the activity rules as they have been used in the Canadian 700 MHz auction
in 2014. These rules have also been used in our simulations in Sect. 6.

First, an eligibility points rule is used in the clock phase to enforce activity in
the primary bid rounds. The number of bidder’s eligibility points is non-increasing
between rounds, such that bidders cannot bid on more licenses when the prices rise.
A bidder may place a bid on any package that is within its current eligibility. Second,
in any round, the bidder is also permitted to bid on a package that exceeds its current
eligibility provided that the package satisfies revealed preference with respect to each
prior eligibility-reducing round. Bidding on a larger package does not increase the
bidder’s eligibility in subsequent rounds.

The revealed preference rule works as follows: A package in clock round t satisfies
revealed preference with respect to an earlier clock round s for a given bidder if the
bidder’s package xt has become relatively less expensive than the package bid on in
clock round s, xs , as clock prices have progressed from the clock prices in clock round
s to the clock prices in clock round t . xs and xt are vectors where each component
describes the number of licenses demanded in the respective category, i.e., region or
spectrum band. The revealed preference constraint is:

m∑

i=1

(xt,i × (pt,i − ps,i )) ≤
m∑

i=1

(xs,i × (pt,i − ps,i ))

123



(Un)expected Bidder Behavior in Spectrum Auctions

where:

– i indexes the licenses;
– m is the number of licenses;
– xt,i is the quantity of the i th license bid in clock round t ;
– xs,i is the quantity of the i th license bid in clock round s;
– pt,i is the clock price of the i th license bid in clock round t ; and
– ps,i is the clock price of the i th license bid in clock round s.

A bidder’s package, xt , of clock round t is consistent with revealed preference in
the clock rounds if it satisfies the revealed preference constraint with respect to all
eligibility-reducing rounds prior to clock round t for the given bidder.

2.3 Activity Rules in the Supplementary Phase

Under the activity rule for the supplementary round, there is no limit on the supple-
mentary bid amount for the final clock package. All supplementary bids on packages
other than the final clock package must satisfy revealed preference with respect to
the final clock round regardless of whether the supplementary bid package is smaller
or larger, in terms of eligibility points, than the bidder’s eligibility in the final clock
round. This is referred to as the final cap rule.

In addition, supplementary bids for packages that exceed the bidder’s eligibility in
the final clock round must satisfy revealed preference with respect to the last clock
round in which the bidder was eligible to bid on the package and every subsequent
clock round in which the bidder reduced eligibility. This is also called the relative cap
rule.

Let x denote the package on which the bidder wishes to place a supplementary bid.
Let xs denote the package on which the bidder bid in clock round s and let bs denote
the bidder’s highest monetary amount bid in the auction on package xs , whether the
highest amount was placed in a clock round or the supplementary round.

A supplementary bid b on package x satisfies revealed preference with respect to
a clock round s, if b is less than or equal to the highest monetary amount bid on
the package bid in clock round s, that is, bs plus the price difference in the respective
packages, x and xs , using the clock prices of clock round s. Algebraically, the revealed
preference limit is the condition that:

b ≤ bs +
m∑

i=1

(ps,i × (xi − xs,i ))

where:

– xi is the quantity of the i th license in package x ;
– b is the maximum monetary amount of the supplementary bid on package x ; and
– bs is the highest monetary amount bid on package x either in a clock round or in

the supplementary round.

In addition, for supplementary bid package x , let t (x) denote the last clock round
in which the bidder’s eligibility was at least the number of eligibility points associated
with package x .
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A given bidder’s collection of supplementary bids is consistent with the revealed
preference limit if the supplementary bid for package x , with a monetary amount b
for the given bidder satisfies the following condition: for any package x , the monetary
amount b must satisfy the revealed preference constraint, as specified above with
respect to the final clock round and with respect to every eligibility-reducing round
equal to t (x) or later.

Note that, in the application of the formula above, the package xs may itself be
subject to a revealed preference constraint with respect to another package. Thus, the
rule may have the effect of creating a chain of constraints on the monetary amount of
a supplementary bid for a package x relative to the monetary amounts of other clock
bids or supplementary bids.

2.4 Incentives for Strategic Manipulation and the CCA’s Prisoner’s Dilemma

These activity rules have strategic implications, which have been analyzed in a number
of papers. Possibilities for spiteful bidding have been shown in Bichler et al. (2011)
and later in Bichler et al. (2013a), who show that standing bidders after the clock phase
can determine bid prices in the supplementary round (aka. safe supplementary bids)
such that their standing bid from the clock phase becomes winning with certainty.
Consequently, the allocation cannot change anymore after the clock phase providing
little incentives for bidding truthful in the second phase assuming independent and
private values.

However, in reality bidders might often care about the prices others have to pay and
consequently their payoff, i.e., bidders might be spiteful. Since the allocation cannot
change anymore, the CCA provides possibilities for supplementary bids which drive
up the competitors’ payments, but at no risk of losing the standing bid from the clock
phase (Bichler et al. 2013a). Also, they cannot pay more for this bid than what they have
bid. In recent spectrum auction implementations, the regulator decided not to reveal
excess supply in the last round, in order to make spiteful bidding risky. It depends on
the market specifics, if this risk is high enough to eliminate spiteful bidding.

Another issue in both the VCG auction and the CCA is that they violate the law of
one price. This means, two bidders might win identical allocations at different prices.
We introduce a brief example following Bichler et al. (2013a) to illustrate this point:
Suppose there are two bidders and two homogeneous units of one item. Bidder 1 and
bidder 2 both have preferences for only one unit and a standing bid of $5 on one unit
after the clock phase. If both bidders only bid on one unit, they both pay zero. Now,
according to the CCA activity rules, the allocation cannot change any more. Suppose,
bidder 2 also bids $9 for two units in the CCA, although he does not have such a
valuation for two units. As a consequence, bidder 2 would still pay zero, while bidder
1 would pay $4. However, outcomes where bidders get the same allocation at very
different prices are typically perceived as problematic (see Sect. 5.3), no matter if they
are due to spiteful bids or truthful bidding.

Violations of the law of one price and possibilities for riskless spiteful bidding
introduce a situation much like in a prisoner’s dilemma: If a bidder does not want to
pay more for his allocation relative to competitors, he can bid high on losing package
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bids to drive up payments of competitors after the clock phase. If all bidders follow
this strategy, then the payments will be at their bid prices. Often there is excess supply
after the clock phase, and the standing clock bids need to be increased by the price
of the unsold licenses in the final clock round to win with certainty (Bichler et al.
2013a). This, of course, can also drive up their own payments to the level of this safe
supplementary bid.

Janssen and Karamychev (2013) shows in a complete information analysis that
bidders with an incentive to raise rivals’ costs can submit large final round bids and
aggressive bids in the clock phase. Levin and Skrzypacz (2014) recently provided an
elegant complete information model characterizing the ex post equilibria and resulting
inefficiencies that can arise in the CCA. First, they show that the CCA can have many ex
post equilibria if bidders have independent private values. If several bidders try to raise
each others payments spitefully, then they show that there are again multiple equilibria
featuring demand reduction in the clock phase with no guarantee of efficiency. Knapek
and Wambach (2012) discuss strategic complexities partly related to an earlier version
of the CCA activity rule.

3 Revealed Preference Theory and Straightforward Bidding in Auctions

As outlined earlier, straightforward bidding is a central assumption for the two-stage
CCA to be efficient (Ausubel et al. 2006). Note that the revealed preference activity
rules in the CCA are such that bidders can be limited in the amount they bid in the
supplementary round if they do not bid straightforward in the clock phase (Bichler
et al. 2011, 2013a). This can also lead to inefficiency, as we will show. Ausubel
and Baranov (2014) draw on the theory of revealed preference as a rationale for the
activity rules used in the latest version of the CCA in the Canadian 700 MHz auction
and for future versions. They show that the current version is based on the Weak
Axiom of Revealed Preference (WARP), while future versions should be based on
the General Axiom of Revealed Preference (GARP) and eliminate eligibility-point-
based activity rules. In what follows, we will revisit important concepts of revealed
preference theory and then discuss how they relate to straightforward bidding in an
auction. We will also introduce a version of Afriat’s Efficiency Index, which allows
us to measure straightforward bidding in empirical bid data.

The concept of revealed preferences was originally introduced by Samuelson in
order to describe rational behavior of an observed individual without knowing the
underlying utility function. He described the simple observation that “if an individual
selects batch one over batch two, he does not at the same time select two over one”
(Samuelson 1938). The term “select over” relates to a concept which is nowadays
known as “revealed preferred to” and can be defined as follows:

Definition 1 Given some vectors of prices and chosen bundles (pt , xt ) for t =
1, . . . , T , xt is directly revealed preferred to a bundle x (xt RDx) if pt xt ≥ pt x .
Furthermore, xt is strictly directly revealed preferred to x (xt PDx) if pt xt > pt x . The
relations R and P are the transitive closures of RD and PD , respectively.
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Intuitively, a selected bundle x1 is directly revealed preferred to bundle x2 if given
x1 and x2, both at price p, x1 is chosen. This definition implies some sort of budget (or
income) for each observation. Consider a world with only two bundles x1 and x2, x1
being the more expensive one. If an individual chooses to consume x1 nevertheless, we
know that she prefers it over x2 such that x1 RDx2. This implies that as a rational utility
maximizer, she will never strictly prefer x2 when x1 is affordable at the same time.
More formally, this is known as the Weak Axiom of Revealed Preference (WARP).3 If
she chooses x2, though, we do not know if that decision is due to an actual preference
or a budget constraint below the price of x1. Hence, there is also no way to predict
which choice will be made in another observation where she might have a higher
income or face different prices as we have learned nothing about the relation RD .

In a setting with more than two bundles, WARP is not enough to determine if a con-
sumer is a rational utility maximizer. A set of choices {x1 RDx2, x2 RDx3, x3 RDx1} is
not violating WARP but is possibly irrational. In order to detect this inconsistency, we
need to consider the transitive closure R which also includes x1 Rx3, possibly contra-
dicting x3 RDx1. Therefore, in a world with more than two bundles the consumption
data of a rational utility maximizer needs to satisfy the Strong Axiom of Revealed
Preference (SARP)4 or, if indifference between distinct bundles is valid, the Gener-
alized Axiom of Revealed Preference (GARP).5 Varian (2006) provides an extensive
discussion of WARP, SARP, and GARP.

Applying these axioms to the clock phase of the CCA is straightforward: In each
clock round (observation), there is a single known price vector for which each bidder
submits a single demand vector. Hence, we can easily build the revealed preference
relation RD and its transitive closure R for every bidder. For the supplementary round
S, we know the bid prices pS x even without an explicit price vector pS , as bidders bid
on bundles instead of single items. As only at most one of the bidder’s bids will win,
for any pair of supplementary bids {x S

1 , x S
2 }, the bidder reveals her preference for the

higher bid. This allows us to infer x S
1 RDx S

2 if the bid on x S
1 is higher or equal to the

bid x S
2 , or vice versa. A bid in the clock phase x and a supplementary bid x S will be

treated as the same observation if both bids have identical demand vectors.

Example 1 Table 1 provides a simple example of CCA bidding data for an auction
with 3 clock rounds and a supplementary phase. In each round of the clock phase, the
considered bidder reveals her preference of the chosen bundle over all other affordable
bundles. In the supplementary phase, bundles with higher bids are preferred over those
with lower bids. The given data is consistent with a set of valuations such as (85, 75, 55)

for the three bundles. However, it is not consistent with the assumed actual valuations
(100, 100, 100) that would require to always choose the cheapest of the three packages.
When using the actual valuations to infer revealed preferences as well,6 the resulting
relation violates GARP in this case, but it cannot be detected without knowing the true
valuations.

3 If xt RD xs then it must not be the case that xs PD xt for WARP to be satisfied.
4 If xt Rxs then it must not be the case that xs Rxt for SARP to be satisfied.
5 If xt Rxs then it must not be the case that xs Pxt for GARP to be satisfied.
6 xi RD x j for any pair (i, j) as all valuations are equal.

123



(Un)expected Bidder Behavior in Spectrum Auctions

Table 1 An example applying the revealed preference theory to a CCA

Round t Prices pt Bundle prices pt x Revealed preference

A B x1 = (2, 2) x2 = (2, 1) x3 = (1, 1)

1 10 10 40* 30 20 x1 PD x2, x1 PD x3

2 20 20 80 60* 40 x2 PD x3

3 30 20 100 80 50*

S 85 55 x1 PD x3

Valuations 100 100 100

Bundles xt , which are selected by the bidder, are marked with *

Table 2 Example for non-straightforward bidding behavior with GARP

Round t Prices pt Bundle prices pt x Revealed preference

A B x1 = (1, 0) x2 = (0, 1)

1 10 50 10* (50)

2 30 80 30 80* p2x2 > p2x1 ⇒ x2 PD x1

Afriat’s Theorem says that a finite set of data is consistent with utility maximization
(i.e., straightforward bidding) if and only if it satisfies GARP (Afriat 1967). However,
GARP allows for changes in income or budget across different observations (see
Table 2) as traditional revealed preference theory is based on the assumption of an
idealized individual who “confronted with a given set of prices and with a given income
[...] will always choose the same set of goods” (Samuelson 1938).

The auction literature typically assumes that bidders have quasi-linear utility func-
tions such that they maximize their payoff given the prices. Quasi-linear utility func-
tions imply that there are no binding budget constraints or “infinite income.” Ausubel
and Baranov (2014) argue that a GARP-based activity rule would require GARP and
quasi-linearity. Also, the efficiency results for the CCA in Ausubel and Milgrom (2002)
and Ausubel et al. (2006) only hold if bidders are quasi-linear and they bid straightfor-
ward. Unfortunately, Table 2 shows that the traditional definition of GARP allows for
changes in income and therefore allows substantial deviations from straightforward
bidding if we assume quasi-linear utility functions.

Example 2 The example in Table 2 is no violation of GARP. It can be explained by
an increase in income from t = 1 to t = 2.

Therefore, we aim for a stronger definition of revealed preference with non-binding
budgets, as they are assumed in theory. With this assumption, the different bids in an
auction also reveal how much one bundle is preferred to another one:

Definition 2 Given some vectors of prices and chosen bundles (pt , xt ) for t =
1, . . . , T and a constant income, we say xt is revealed preferred to a bundle x by
amount c (written xt Rcx) if pt xt ≥ pt x + c.
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Intuitively, xt Rcx can be interpreted as “xt is chosen over x if it costs no more than
the price of x plus c”. We will refer to this definition of revealed preference as GARP
with quasi-linear utility (GARPQU). Note that c will be negative in all cases where
x is more expensive than xt , which would be ignored in the traditional definition of
revealed preferences (see Definition 1). The result of applying this definition to a set
of bid data will be a family of relations Rc instead of a single revealed preference
relation R. Rc has several properties:

– x1 Rcx2 implies x1 Rx2 if c ≥ 0 (definition)
– x1 Rcx2 implies x1 Px2 if c > 0 (definition)
– x Rcx for all c ≤ 0 (reflexivity)
– x1 Rc1 x2 and x2 Rc2 x3 imply x1 Rc1+c2 x3 (transitivity)
– x1 Rc1 x2 implies x1 Rc2 x2 if c1 > c2 (derived from transitivity and reflexivity of

Rc1−c2 )

These properties are sufficient to derive a contradiction x Rcx with c > 0 (“u(x) >

u(x)”) for any non-straightforward bidding behavior that can be detected without
knowing the actual utility function u. For example, it is easy to see that the choices in
Table 2 do not describe straightforward bidding because they are not consistent under
the above properties of Rc: (x1 R−40x2 ∧ x2 R50x1 ⇒ x1 R10x1).

The clock stage and the supplementary stage lead to different questions to the
bidders. In the clock stage a straightforward bidder is asked to indicate which bundle
has the highest payoff given some vector of prices. In contrast, a bidder should submit
his true valuations for all packages. Therefore, a bidder who submits bids on the
packages of the last round at the clock prices in the last round does not necessarily
satisfy GARPQU.

Example 3 Let’s assume there are two lots A and B. At a price of ($100, $50) for both
lots, a bidder demands a quantity vector of (0, 3). In the next round prices increase to
($100, $100), and the bidder demands (1, 2). Let v(·) be the value of a package. In the
first round, the bidder revealed that v(0, 3) + $50 ≥ v(1, 2). In the second round, he
reveals that v(1, 2) ≥ v(0, 3). The auction stops and the bidder submits exactly the
same prices for the packages as supplementary bids:

〈
(0, 3), $150

〉
and

〈
(1, 2), $300

〉
.

The differences in supplementary bids are interpreted as differences in the valuations,
such that v(1, 2) − 150 ≥ v(0, 3). Together with the revealed preferences from the
clock phase, this leads to a violation of GARPQU v(0, 3)+$50 ≥ v(1, 2) ≥ v(0, 3)+
$150. If the bidder revealed his valuations truthfully in the supplementary stage, he
would not submit the very same bid as in the clock phase. With a bid of 〈(0, 3), $270〉
GARPQU will not be violated.

Note that the result of such an analysis of a series of bids is always binary: either a
set of data satisfies GARPQU or it does not. In revealed preference theory, measures
such as Afriat’s Efficiency Index (AI) were developed to describe how well a set
of consumer choices conforms to utility maximization. The AI is a goodness of fit
metric that spans the range [0; 1] with 1 indicating perfect compliance with a tested
axiom (Afriat 1973). It requires a variable e in all revealed preference inequations (see
Definitions 1, 2):
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– xt RDx : pt xt ≥ pt x becomes e · (pt xt ) ≥ pt x
– xt PDx : pt xt > pt x becomes e · (pt xt ) > pt x
– xt Rcx : pt xt ≥ pt x + c becomes e · (pt xt ) ≥ pt x + c

Applying the axioms with e < 1 leads to a relaxed version that is easier to satisfy.
For instance, assume e = 0.9: If bundle xt was chosen for a price of $100 the pair
(xt , x) will only be included in RD if pt x ≤$90. The AI is equal to the maximum
value of e which satisfies the tested axiom. We will use a graph-based algorithm based
on Smeulders et al. (2012) for computing the AI. There are related metrics such as
the Varian Index (VI) which follows the same principle as the AI but uses a vector
instead of a single constant value e (Varian 1990). Unfortunately, the computation of
VI is NP-hard (Smeulders et al. 2012).

4 Evidence from the Lab

In a lab experiment we cannot only observe the bids, but also know the induced
valuations of bidders. In what follows, we will analyze straightforward bidding in the
lab and draw on the data from experiments conducted by Bichler et al. (2013a). We
will focus on 16 auctions with 4 bidders in a multi-band value model with 24 blocks
in 4 different bands. This means, bidders could submit up to 2400 package bids. This
experimental setup is comparable to multi-band auctions with national licenses as they
were conducted in Austria, Ireland, the UK, and Switzerland, although the number of
bands differed from country to country.

4.1 Missing Bids

The auctions in the lab suffered from the missing bids problem with only 8.3 supple-
mentary bids per bidder on average. Bichler et al. (2013a) argue that this has contributed
to the low efficiency of only 89.3 % observed in the CCA, which was substantially
lower than that of the auctions with SMRA, which achieved an average efficiency
of 98.5 %. In comparison with the standing clock bids, the allocation changed after
the supplementary phase in 14 auctions by 34.9 % of all licenses on average. Signif-
icant changes in the allocation could also be observed in the British auction after the
supplementary stage.

4.2 Inconsistent Bidding

Figure 1 shows the AI based on GARPQU for all 64 bidders participating in a CCA
in the lab experiments. The left-hand box plot describes bids from the clock phase
only, the middle box plot the bids submitted in both phases, and the right box plot
the clock bids and all true valuations for all packages of a bidder. A median AI of
1.000 for clock bids shows that there is no evidence for significant deviations from
straightforward bidding in the bids during the clock rounds. When including data
from the supplementary round, however, the median AI drops to 0.938, indicating
inconsistencies between the two phases. The AI with truthful supplementary bids for
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Fig. 1 Boxplot for AI of 16 · 4 bidders from Lab auctions
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Fig. 2 Scatterplots for supplementary bids of 4 bidders in 16 auctions in the lab (left) in comparison to
their induced private valuations (right)

all possible bundles, which is described in the third boxplot (All valuations) drops to
0.816 and suggests that bidders did indeed not bid straightforward with respect to their
true valuations in the clock phase.

Deviations from straightforward bidding such as those indicated by boxplot 3 can
limit the possible bid amount in the supplementary phase substantially. For the lab
data we can see how high bidders have bid in the supplementary phase relative to their
bid price limit.

The left scatter plot in Fig. 2 shows that bidders often bid close to the bid price
limit (Pearson correlation coefficient of 0.9448). The right scatter plot illustrates the
private valuations with respect to the bid price limit imposed by the activity rule and
their behavior in the clock phase. For 57.2 % of all submitted supplementary bids, the
bid price limit was lower than their valuation for the corresponding bundle and hence
it did not allow bidders to bid their valuation truthfully in the supplementary phase.

Figure 2 deserves further explanation. As described in Sect. 2, if bidders had inde-
pendent and decreasing marginal valuations, then they would not need to bid up to their
true valuation in the second phase and even if bidders did not bid at all after the clock
phase, the auctioneer could compute the correct Vickrey payments. The valuations of
bidders in the lab were complements and there was often excess supply after the clock
phase. Given the uncertainty that bidders faced in the lab, their most likely strategy was
to bid truthful on their supplementary packages if possible. Bidders in the lab knew in
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which order they had to submit supplementary bids such that they could maximize the
bids for supplementary packages. However, there were significant differences between
the final payments of bidders in the clock stage and the payments one would get if
bidders submitted all their valuations truthfully in a sealed-bid auction. In Sect. 6 we
analyze the impact that inconsistent bidding has on the efficiency of these auctions.

4.3 Clock Prices

It would be helpful for bidders, if there was some connection between the final clock
prices and the core payments, because this could give bidders a useful hint on how high
they need to bid in the second phase. However, the final prices from the clock phase
can differ substantially from the payments. We compared the core payments of all
winning bids with the corresponding linear bundle prices in the final clock round and
found that the average payment was only 59.1 % of the last clock price. The standard
deviation of this ratio in the lab was 22.6 %. For the British LTE auction in 2013 this
average payment was at 56.5 % of the final clock prices. Also in simulations with
straightforward bidders who bid truthful in the supplementary round the clock prices
do not necessarily provide an indication for payments or winning supplementary bids.

5 Evidence from the Field

The British regulator Ofcom was the first to publish the bid data on a CCA in 2008 and
2013 (Ofcom 2013a). We will primarily focus on the 2013 multi-band spectrum auction
as it is closest to auctions in other countries and similar to the environment analyzed in
the lab (Bichler et al. 2013a). Then we will discuss the Canadian 700 MHz auction in
2014, where bid data was revealed as well, before we summarize public information
about CCA applications in some other countries. Although, all these auctions used a
CCA there are important differences in the caps used, in the licenses and the band
plan, and in details of the auction rules, which requires caution in the comparison of
the results. Of course, we cannot know the true valuations of bidders in these auctions,
however, we highlight some patterns which are similar to what we found in the lab
data. In particular, bidders only bid on a small subset of all possible packages and there
was a very high number of supplementary package bids at the bid price limit and not
below, which can be seen as an indication of bidders over-constraining themselves in
the supplementary phase due to inconsistent clock bids.

5.1 The British LTE Auction in 2013

In the British auction in 2013, 28 licenses in the 800 MHz and 2.6 GHz bands
were sold, and the bid data was released to the public. There were 4 A1 blocks
of paired spectrum in 800 MHz and another A2 block with a coverage obligation.
In addition, there were 14 blocks of paired spectrum in the 2.6 GHz band, and
another 9 blocks of unpaired spectrum in the 2.6 GHz band. The unpaired spec-
trum was considered less valuable than paired spectrum bands. There were seven
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bidders, Vodafone, Telefonica, Everything Everywhere, Hutchinson, Niche, HKT,
and MLL. A spectrum cap was put on the 800 MHz band for Vodafone and Tele-
fonica, who are considered large bidders. The detailed rules can be found at (Ofcom
2013b).

The bid data reveals the main interests of these seven bidders. Vodafone and Tele-
fonica bid on 800 MHz and both 2.6 GHz bands. They consistently bid on two 2 × 5
MHz blocks in 800 MHz spectrum throughout the clock phase and both won two
blocks. Everything Everywhere and Hutchinson also bid on the valuable 800 MHz
spectrum, but ceased to bid on 800 MHz in the clock phase. Niche, MLL, and HKT
can be considered smaller players. MLL and HKT only bid on the unpaired spec-
trum in 2.6 GHz and they did not win anything. Niche bid on both 2.6 GHz bands
and also won blocks in both bands. More details on the auction can be found in
“Appendix”, where we describe the valuations of bidders for our numerical experi-
ments.

5.1.1 Missing Bids

Let us now provide some statistics to shed light on the missing bids problem in the
British auction, which might be one of the reasons for the low revenue encountered
(Arthur 2013; Smith 2013), before we discuss straightforward bidding. With all the
caps considered, larger bidders such as Vodafone and Telefonica could bid on 750
packages in this auction. However, after 52 clock rounds in which the seven bidders
selected 7.7 distinct bundles on average, they submitted only 39.6 supplementary bids
per bidder on average (277 bids in total). Bidders always submitted higher bids on the
packages submitted in the clock phase, but bid on average on 31.9 new bundles only in
the supplementary phase. Telefonica submitted no more than 11 supplementary bids,
while Vodafone submitted 94 of 750 supplementary bids mostly covering combinations
of licenses with 20 MHz in low frequency bands. Everything Everywhere submitted
84 supplementary bids, and Hutchinson only 17 bids.

Note that the winner determination treats a missing bid as if the valuation of a bidder
for this package was zero in a CCA. It is questionable if bidders had no value for all
the other packages or a value below the reservation prices. In this case, the missing
bids problem appears to have been an issue.

The total revenue from the bidder-optimal core prices of £2.23 bn is equivalent to the
Vickrey payments in this auction, which is also due to the low number of supplementary
bids which led to a lower number of core constraints when computing the bidder-
optimal core payments (Day and Cramton 2012). Consequently, the discounts were
very high. The sum of the bids in the revenue maximizing allocation amounts to
£5.25 bn.

It is interesting to note that with only the bids from the clock phase and without the
supplementary phase the auction had a revenue of £1.92 bn, which is only 13.9 % less
than the final result including the bids of the supplementary phase. The supplementary
phase did change the allocation considerably, however, which might have come as a
surprise to some bidders. 19.3 % of all winning licenses from the clock phase (weighted
by their eligibility points) were re-allocated after the supplementary round.
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Table 3 Afriat’s Index (AI)
based on bids of the clock phase
and based on all bids including
the supplementary stage in the
British LTE auction

Bidder AI in clock phase AI of all bids # of suppl. bids

EE 0.811 0.811 48

H3G 0.988 0.845 17

HKT 1 0.626 9

MLL 1 0.619 9

Niche 0.995 0.814 89

Telefonica 1 0.467 11

Vodafone 0.946 0.946 94

5.1.2 Inconsistent Bidding

Next, we analyze straightforward bidding in the British auction using Afriat’s index as
we have discussed it in Sect. 3. Table 3 shows the AI per bidder for the clock phase only
and for all bids including the supplementary phase. Although the median AI is high
(0.995) for bids in the clock phase only, it decreases to 0.811 when we also consider
supplementary bids. Note that this value is lower than what we have found in the lab
auctions even though it is an upper bound for the “true AI”. If the true valuations of
each bidder are taken into account the AI can be considerably lower as we have seen
in Sect. 4 and in the example in Table 1.

The reason for low auctioneer revenue after the supplementary phase might, how-
ever, also have been due to limits on the bid prices imposed by the activity rule. Figure 3
compares the supplementary bid prices and the corresponding bid price limit imposed
by the activity rule and shows that the bids of many bidders are very close to this limit.
The bid data is highly correlated with the bid price limit imposed by the activity rule
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(Pearson correlation coefficient of 0.9824) and yields a median ratio of the bid price to
the bid price limit of 92.3 % (mean: 80.5 %). Interestingly, this ratio was particularly
high for the big bidders Vodafone and Telefonica with a median of 98.1 and 96.5 %
respectively. For supplementary bids of the remaining five bidders, the median ratio
was only 83.0 %, which might be due to the fact that these were financially weaker
bidders. In this auction spiteful bidding (bidders submitting high losing package bids
to drive up payments of competitors) did not seem to be an issue such that the more
likely explanation is that bidders could not bid up to their valuations.

5.2 The Canadian 700 MHz Auction in 2014

The Canadian 700 MHz auction in 2014 comprised 5 paired spectrum licenses (A, B,
C, C1, and C2), and two unpaired licenses (D, E) in 14 service areas. B and C as well
as C1 and C2 were treated as generic licenses. Although the licenses are all in the
700 MHz band, they are technically not similar enough to sell all of them as generic
licenses of one type.

The total revenue of $5.27 bn from the bidder-optimal core prices was 32.4 % less
than $7.14 bn, the sum of provisionally winning bids after the final clock round. The
sum of the bids in the revenue maximizing allocation was $9.13 bn. Again, the clock
prices provided little guidance for what might constitute a winning bid in the supple-
mentary phase.

The auction was dominated by three national carriers Bell, Rogers, and Telus.
Rogers was the strongest bidder and contributed 62.45 % to the overall revenue, while
Telus paid 21.69 % and Bell 10.73 %. Rogers did not bid on C1/C2 and aimed for
licenses in A, and B/C throughout the auction, while Bell and Telus also bid on C1/C2
in certain service areas. The smaller bidders mainly bid on remaining C1/C2 blocks.
Bell and Telus had to coordinate and find an allocation such that they both got sufficient
coverage in the lower 700 MHz band (A, B and C blocks), which explains much of the
bid data. There was a disparity in how much bidders had to pay for different packages,
which can be explained by different valuations that bidders placed on packages and the
payment rule. Still, due to the high competition and revenue the auction is considered
successful.

5.2.1 Missing Bids

Overall, the high competition among the three national telecoms Bell, Rogers, and
Telus and the clever spectrum caps for them explains much of the result. All eight
bidders were restricted to at most 2 paired frequency blocks in each service area.
Large national wireless service providers such as Rogers, Bell, and Telus were further
limited in that they could only bid on one paired license in each service area among
licenses B, C, C1 and C2. This cap on large wireless service providers did not, however,
include block A. Still, the national bidders could bid on 2 × 3 × 3 = 18 packages
per region including the empty package, which leads to 1814 ≈ 3.75 × 1017 packages
in all regions. Rogers submitted 12 supplementary bids, Bell 543 and Telus 547 bids,
which suggests that there was a missing bids problem as it is questionable if all other
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Table 4 Afriat’s Index (AI)
based on bids from the clock
phase and based on all bids
including the supplementary
stage in the Canadian 700 MHz
auction

Bidder AI in clock phase AI of all bids # of suppl. bids

Bell 0.871 0.159 544

Bragg 0.722 0.151 14

Feenix 0.873 0.730 16

MTS 0.893 0.450 32

Novus 0.949 0.379 4

Rogers 0.977 0.454 13

SaskTel 0.499 0.384 12

TbayTel 0.857 0.716 2

Telus 0.930 0.235 548

Videotron 0.728 0.493 24

packages had no valuation for the bidders. Note that only one license remained unsold
after the auction. Rogers bid consistently on the A licenses and one license in B/C,
such that the coordination problem was largely solved by Bell and Telus, who split
the regional service areas on B/C and C1/C2.

5.2.2 Inconsistent Bidding

It is interesting to understand straightforward bidding in the Canadian 700 MHz auc-
tion as well. Although the regulator disclosed all the bid data, the clock prices were not
made public. We used a linear program which helped us reconstruct clock prices from
the bid data. There are some assumptions in this linear program and we cannot com-
pute the price trajectories and the resulting AI with certainty, such that the numbers in
Table 4 are only estimates. However, the order of magnitude in the AI was similar for
different price trajectories that we could derive. The numbers suggest that bidders devi-
ated substantially from straightforward bidding. One explanation is that bidders such
as Bell and Telus actively tried to coordinate and agree on non-overlapping packages of
licenses. It is also interesting to note that some small local bidders bid on competitive
service areas in A and B/C outside the service area in which they operate. One conjec-
ture is that this was done in an attempt to park eligibility rights and keep clock prices
low in their own service area. As the regulator did not disclose the excess supply after
the clock phase and due to the uncertainty in this large scenario, it is not unreasonable
to believe that bidders tried to bid up to their true valuation in the supplementary stage.
Actually, in Canada the supplementary bid on the final clock package was substantially
higher than the final clock round bid for many bidders. Figure 4 shows that, again,
a very large proportion of the other supplementary bids are exactly at their bid price
limit indicating that they might have been truncated due to restrictions imposed by the
activity rule. The low AIs for the different bidders provide further evidence.

5.3 Observations from Other Countries

Apart from Canada and the UK, bids were not made public in other countries. As
mentioned earlier, the UK also released data for two earlier CCAs in 2008, the L-band
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Fig. 4 Scatterplot for supplementary bids (Canada)

auction with 17 licenses, and the 10–40 GHz auction with 27 licenses. In the L-band
auction bidders submitted between 0 and 15 bids in the supplementary phase also
indicating missing bids from at least some of the bidders. In this auction with much
less valuable spectrum than in 2013, one bidder won all 17 lots with a bid of £20 m.
The bidder only had to pay £8.334 m, which was the revenue of the best coalition
of bidders without the winner (Cramton 2008). In the 10–40 GHz auction all but one
bidder made their highest supplementary bid either on the final clock package, or on
a subset thereof (Jewitt and Li 2008).

The Swiss auction in 2012 was remarkable, because one bidder payed almost 482
million Swiss Francs, while another one payed around 360 million Swiss Francs for
almost the same allocation. This can happen in a Vickrey auction as well as in a CCA
when one bidder contributes more to the overall revenue with his bids than another
bidder (see Sect. 2.4).

The Austrian Auction in 2013 on the 800, 900, and 1800 MHz bands is another
interesting case. Bidders could potentially submit up to 12,810 package bids. The
regulator reported that the three bidders actually submitted 4000 supplementary bids
in total. The regulator also disclosed that most of these bids were submitted on very
large packages (RTR 2013). This large number of supplementary bids can be seen
as one reason for the high prices paid in Austria. The attempt to drive up prices of
other bidders and avoid having to pay more for an allocation than ones competitors,
as it happened in Switzerland, can serve as one explanation for this bidding behavior.
However, it leads to the Prisoner’s dilemma discussed in Sect. 2.4.

6 Estimating the Impact of Missing Bids and Inconsistent Bidding

We performed computer simulations of the CCA for the lab value model as well
as for the British 4G auction. For the latter, we estimated valuations for the seven
bidders from the bid data with base valuations, intra-band and inter-band synergies.
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The estimated valuations are described in “Appendix”. We did not perform this analysis
for the large Canadian auction with 98 licenses, because this would require many more
assumptions due to the regional structure and the many licenses involved. Data from
16 auctions in the lab and 10 sets of synthetic valuations for the British scenario were
used. All significance tests reported in this section are using a Wilcoxon signed-rank
sum test.

Efficiency and revenue of an auction are typically used as primary metrics. Through-
out the rest of this paper, we will use the terms allocative efficiency:

E = actual surplus

optimal surplus
× 100 %

and auctioneer’s revenue share:

R = auctioneer’s revenue

optimal surplus
× 100 %

The revenue share shows how the resulting total surplus is distributed between
the auctioneer and the bidders. Optimal surplus describes the resulting revenue
of the winner-determination problem if all valuations of all bidders were avail-
able, while actual surplus considers the true valuations for those packages of bid-
ders selected by the auction. In contrast, auctioneer’s revenue describes the cumu-
lative payments of the bids selected by the auction, not their underlying valua-
tions.

In the following subsections we analyze the impact of missing bids and incon-
sistent bidding in the clock phase. The main results are summarized in Table 5. A
baseline for this analysis are the simulations with truthful bidders, i.e., bidders who
bid straightforward in each clock round and submit truthful supplementary bids on
all bundles. As expected, all simulations where bidders submitted all package bids
truthfully were 100 % efficient in contrast to the efficiency of 89.3 % we measured in
the lab.

6.1 Impact of Missing Bids in the Supplementary Phase

We first evaluate the impact of the missing bids problem. In this set of simulations,
the simulated bidders bid straightforward in the clock phase (see Fig. 5 and the first
two column-pairs in Table 5), such that they could bid up to their valuation in the
supplementary phase. As human bidders only submit a small subset of possible sup-
plementary bids, there are just a few core constraints leading to lower prices and hence
lower auctioneer revenue. In order to better understand the impact of this effect, we
restricted our bidders in the number N of additional packages they can bid on in the
second phase.

More precisely, bidders always started the supplementary phase with truthful bids
on all clock bundles in reverse order of submission which allows them to maximize
the amount they can bid on other packages without violating the activity rule. Then
they submitted additional truthful bids on bundles chosen after a heuristic which we
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Fig. 5 Mean efficiency and revenue for the British and the lab value models with the CCA. a Efficiency
(lab). b Efficiency (UK). c Revenue (lab). d Revenue (UK)

observed in the British auction. First, bidders do not demand more units of a certain
band than they did in the clock phase, and second, the bidders Telefonica and Vodafone
do not submit any bids without two A blocks. Out of this pre-selection, bidders selected
up to N of their 2N strongest bids. We define the strength of a bid as the valuation
divided by the bundle size in terms of the corresponding eligibility points. We have
also tested different bundle selection heuristics, but the differences in efficiency were
minor. The artificial bidders were bidding truthful as far as they could, such that only
limitations in the number of bids submitted matter.

For the simulations with the lab value model, there is a significant difference in
revenue between no supplementary bids at all (first line in Table 5) and the submission
of one new bid. This is due to the fact that in the treatment without additional supple-
mentary bids, we just evaluated the bids submitted in the clock phase. In the treatment
with one additional bid, clock bids were updated to their true valuation. The number of
bids affects auctioneer revenues in both value models. Even for 50 additional bids, the
revenue share is still significantly lower than with supplementary bids on all bundles
(p value = .0000), which is due to missing bids.

With 50 additional bids, the efficiency was beyond 99 % in both value models. While
we found an average efficiency of 89.3 % for the CCA in the lab with 8.3 supplementary
bids on average, simulated auctions with no bids in the second phase at all yielded an
efficiency of 95.3 %, which is significantly higher than in the lab (p value = .0052).
A substantial part of this difference can be attributed to inconsistent bidding in the
clock phase which we will discuss next.
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Table 5 Mean efficiency and revenue for the British and the lab value models with the CCA and bidders
bidding truthful on a subset of the packages in the supplementary round up to their true valuation or a
restricting bid price limit, resp

Supplementary bids
in simulations

British VM Lab VM Lab VM

(Straightforward) (Straightforward) (Actual clock bids)

Efficiency
(%)

Revenue
(%)

Efficiency
(%)

Revenue
(%)

Efficiency
(%)

Revenue
(%)

None 94.7 28.1 95.3 40.5 86.3 37.2

1 94.8 29.3 95.7 63.8 89.2 54.0

2 94.8 29.5 96.0 64.5 90.4 54.5

3 95.2 30.2 96.2 64.3 91.7 54.0

5 95.5 31.2 96.4 64.7 92.8 53.3

10 96.1 33.3 97.5 64.8 92.5 54.4

20 96.9 36.5 98.1 65.5 93.7 56.1

50 99.2 42.8 99.1 68.5 95.1 60.0

100 100 61.3 99.6 71.8 94.3 63.4

200 100 61.4 99.8 73.6 94.5 65.6

500 100 61.4 99.8 75.0 94.3 66.6

all 100 62.9 100 75.7 95.0 71.4

Human subjects 89.3 41.0

39.6 suppl. bids/bidder 8.3 suppl. bids/bidder

Estimated values Induced values

6.2 The Impact of Inconsistent Bidding in the Clock Phase

As we have discussed in Sect. 4, bidders in the lab and in the field did not bid straight-
forward in the clock phase and were therefore limited by the activity rule in the
supplementary phase. Now, we want to understand how much efficiency loss can be
attributed to these limitations in the simulations. In the British value model we only
have the bid data of a single instance, which is why we only report on the lab value
model.

For all 16 instances we replicated the bids of human bidders in the clock phase.
In the supplementary phase the agents tried to bid their true valuations on additional
bundles like in the previous subsection. If this was impossible due to the revealed
preference activity rule, they chose the highest possible bid price instead.

The third column-pair of Table 5 and Fig. 6 summarizes the results. Even for
supplementary bids on all possible bundles, the efficiency was only 95.0 % on average.
This is not significantly different (p value > .95) to the mean efficiency of 95.3 % that
we measured with straightforward bidders but without any supplementary bids. These
findings provide evidence that non-straightforward bidding in the first phase reduces
efficiency of the final outcome. The auctioneer revenue share was significantly lower
as well. For some simulations the average differences in revenue share were more than
10 %, which was only due to inconsistent bidding in the clock phase.
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Fig. 6 Efficiency and revenue for lab instances with different numbers of (as possible) truthful supplemen-
tary bids after actual clock round bids. a Efficiency. b Revenue

7 Can Strong Activity Rules Serve as a Remedy?

Our analysis of bids in a CCA in the lab and in the recent British and Canadian
spectrum auctions indicates that bidders do not bid straightforward in the clock phase
of the CCA. This inconsistent bidding with respect to their true valuations can lead to
inefficiencies, because the deviations from straightforward bidding in the clock phase
restricts bidders from bidding up to their true valuations in the supplementary phase.
The difference in efficiency and revenue in simulations with bidders bidding on their
bid price limit induced by the activity rule and bidders bidding truthful is substantial,
even if we assume the same number of supplementary bids being submitted by the
bidders. If bidders do not bid up to their true valuations in the supplementary stage,
this can have an impact on payments and the allocation of bidders as simulations show.
Both, the missing bids problem and restrictions due to inconsistent bidding can lead
to payments in the CCA, which are quite different from the VCG or core payments if
bidders submitted their valuations truthfully.

Efficiency, simplicity, transparency, and robustness against manipulation are often
considered design goals for spectrum auctions. No auction format is perfect and there
are always trade-offs that an auctioneer needs to make. For example, a Vickrey auction
exhibits dominant strategies, but the payments of bidders are not anonymous and it can
happen that two bidders with similar allocations pay vastly different prices, which can
cause envy. In a similar way, non-core outcomes can be considered unfair, however,
core-selecting auctions cannot have dominant strategies for general valuations. For
regulators it is important to understand the properties of different auction formats and
make an informed choice. Giving up anonymous prices and the transparency of a
simple ascending auction format should only be done if the resulting auction achieves
higher efficiency and has stronger incentives for bidders to bid truthful.

The CCA has developed over the recent years and a number of suggestions have
been picked up to improve the design. For example, new versions of the CCA will
allow for a restricted set of OR bids to address the missing bids issue in large auctions.
There have also been suggestions to address problems such as dead ends arising from
the current activity rule (Ausubel and Baranov 2014) via stronger activity rules in the
clock phase, which enforce straightforward bidding. While the current activity rules
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can be derived from the Weak Axiom of Revealed Preference (WARP), future activity
rules should be based on the General Axiom of Revealed Preference (GARP), which
checks for consistency throughout the entire bidding history of a bidder. Such strong
activity rules would also avoid problems due to inconsistent bids in the clock phase.
However, there are a number issues that need to be considered.

– First, straightforward bidding with a larger number of licenses is challenging for
human bidders and probably requires automated bidding agents or decision support
for larger auctions with dozens or hundreds of licenses, let alone that there are
reasons for bidders not to bid straightforward, such as budget constraints mentioned
in the introduction or interdependencies in the valuations of bidders. One might be
able to address budget constraints during the auction such that automated agents
could be a remedy. However, they would effectively turn the clock phase into
a sealed-bid auction, which is then followed by another supplementary sealed-
bid stage in the current CCA design. The advantages of such a two-stage design
compared to ascending auctions deserve some discussion.

– Second, Bichler et al. (2013b) show that the efficiency of a clock auction with
certain types of bidder valuations and straightforward bidding can be close to
zero.7 Not only that the standing bids after the final clock round do not provide an
indication for the efficient allocation, also the clock prices do not provide helpful
information about the final payments, as can be seen in data from the field and the
lab. At least, it is not obvious how bidders should use these price signals from the
clock phase.

Both points raise the question, which added value the clock phase provides. One
argument in favor of an ascending or dynamic multi-object auction is that bidders do not
need to provide all their valuations on exponentially many packages in one step. Levin
and Skrzypacz (2014) write that ”economists think of dynamic auctions as having an
advantage in this regard because bidders can discover gradually how their demands
fit together.” Although the single-stage combinatorial clock auction was shown to
be highly efficient in lab experiments apparently helping bidders to find efficiency-
relevant bundles, bidders in the lab did not bid straightforward (Scheffel et al. 2012).
Overall, using GARP with a traditional clock auction exhibits some challenges.

Many regulators have adopted an ascending auction over sealed-bid alternatives for
efficiency reasons. Evan Kwerel, senior economist at the FCC, explained the decision
of the US Federal Communications Commission (FCC) to adopt an ascending auc-
tion format for selling spectrum licenses by saying: “In the end, the FCC chose an
ascending bid mechanism, largely because we believed that providing bidders with
more information would likely increase efficiency and, as shown by Paul Milgrom and
Robert J. Weber, mitigate the winner’s curse” (Milgrom 2004). The argument draws

7 Let’s introduce a simple example to better illustrate how straightforward bidding can lead to inefficiency
in the clock auction: Consider a market with two items {A, B} and three bidders. Bidder 1 has a value of
$10 for A, bidder 2 has a value of $4 for B and $10 for {A, B}, and bidder 3 only has a value of $10 for
the package {A, B}. If all bidders bid straightforward starting with prices of zero and unit increments, then
bidder 2 will never reveal his valuation for A, leading to 71% efficiency. Bidders 2 and 3 would actually
drop out at a price of $5 for both items in the clock stage, which is when bidder 1 still bids on item A. It is
easy to extend the example and achieve very low revenue.
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on the linkage principle, which implies that ascending auctions generally lead to
higher expected prices than sealed-bid auctions with interdependent bidder valuations
(Milgrom and Weber 1982). In contrast to bidders with independent values, bidders
with interdependent values might not always bid consistent as their valuations can
change and GARP can be too strong to allow for these changes.

Transparency is also an important argument for ascending auctions as a bidding
team needs to set expectations throughout the auction and inform stakeholders. Bid-
ders in SMRA see the final allocation and prices develop throughout the auction, which
typically takes several weeks. However, this type of transparency is much reduced in
the CCA. How much bidders finally have to pay depends on the bids submitted in the
supplementary stage and is a result of a quadratic optimization problem which is almost
impossible to predict given the many possible packages bidders can bid on and the miss-
ing bids problem. If they are unable to submit a safe supplementary bid, then the allo-
cation can change substantially after the clock phase, as it has happened in the British
LTE auction. This makes the outcome of the CCA hard to predict during the auction.

One advantage that an ascending auction still has over a sealed-bid auction is the
fact that winners do not need to reveal their valuation for the winning package to
the regulator. Regulators need to decide whether this feature outweighs the added
complexity stemming from a two-stage CCA. Ascending combinatorial auctions can
certainly be of help for bidders in coordinating with other bidders and finding a fea-
sible allocation among the many possible ones. However, if an activity rule enforces
straightforward bidding, the possibilities for such coordination will be much reduced.

Designing efficient multi-item auctions is difficult when a regulator needs to con-
sider conflicting design goals such as incentive-compatibility, simplicity, efficiency,
and the law-of-one-price. The bid language, the payment rule, and the decision to use a
sealed-bid or an ascending format are design choices, which all have significant impact
on efficiency and revenue of an auction. A simple bid language can have a substan-
tial positive impact on the efficiency of an auction as was shown in lab experiments
(Bichler et al. 2014), and it is not unreasonable to assume similar effects in the field.
The pros and cons of different activity rules considering realistic assumptions about
bidder preferences in a spectrum auction are still a fruitful area for future research.

Appendix: Details on the Value Model and the Simulations based on the British
4G Auction

The value model used in our simulations in Sect. 6 is based on the British 4G auction
in 2013 in which the 800 MHz as well as the 2.6 GHz band were sold (Ofcom 2013b).
We will provide a brief description of the British auction and how we derived the value
model for each bidder in our simulations, mirroring the main characteristics of this
market. The valuations can be made available upon request.

Licenses Up for Sale

Table 6 illustrates the lots used in the auction. We simplified this band plan to allow
for an easier analysis. The 800 MHz spectrum was split into two generic lots A(i) and
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Table 6 Overview of auctioned lots in the UK 4G auction (Ofcom (2012))

Lot Amount Description EPs Start price

A(i) 4 2 × 5 MHz paired spectrum in the 800 MHz band 2250 $225 mn

A(ii) 1 2 × 10 MHz paired spectrum in the 800 MHz band with
coverage obligation

4500 £250 mn

C 10/12/14 2 × 5 MHz paired spectrum in the 2.6 GHz band 150 £15 mn

D(i) ≤10 2 × 10 MHz paired spectrum in the 2.6 GHz band
(shared low power)

30 £3 mn

D(ii) ≤10 2 × 20 MHz paired spectrum in the 2.6 GHz band
(shared low power)

60 £6 mn

E 9 5 MHz unpaired spectrum in the 2.6 GHz band 1 £0.1 mn

Table 7 Overview of auctioned lots for the simplified UK 4G auction scenario

Lot Amount Description EPs Start price

A 6 2 × 5 MHz paired spectrum in the 800 MHz band 2250 £225 mn

B 14 2 × 5 MHz paired spectrum in the 2.6 GHz band 150 £15 mn

C 9 5 MHz unpaired spectrum in the 2.6 GHz band 1 £0.1 mn

A(ii) where A(ii) has twice as much bandwidth and eligibility points. Furthermore,
the winner of A(ii) is obliged to use his spectrum to build a nationwide network. For
simplicity, we neglected these legal details in our experiments and combined A(i) and
A(ii) into one generic lot A with 6 licenses and the specifications of A(i).

The paired 2.6 GHz spectrum was split into three generic lots C, D(i), and D(ii) with
amounts dependent on the bids submitted in the auction. D(i) and D(ii) are shared low
power lots of different bandwidth whose winners will jointly use the same frequencies.
The British auction rules allowed three different outcomes: First, up to 10 units of D(ii)
are sold along with 10 units of C; second, up to 10 units of D(i) are sold along with
12 units of C, or third, the entire paired 2.6 GHz spectrum is sold in 14 units of C.
Whichever allocation maximizes revenues wins. Based on the fact that 14 units of C
were sold in the British auction and almost no bids containing shared low power lots
were submitted, we discarded D(i) and D(ii) in our numerical experiments, as they did
not seem to be important for this market.

For the unpaired 2.6 GHz spectrum (band E), only one lot with 9 units was used.
However, the number of licenses that can actually be used is lower and dependent on
the number of winners since one reserved block per winning package is required as a
protection ratio between any two different users. In our simulations, we ignored this
limitation and assumed 9 fully useable blocks as C is the least important band in the
auction. The resulting list of bands used in our simulations can be found in Table 7.

In addition, a number of spectrum caps were imposed, some of which were also
based on existing spectrum holdings in the British auction. For simplicity, we only
used one simple spectrum cap that limits the amount of 800 MHz spectrum assigned
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Table 8 Final allocation of the British 4G Auction in the simplified band plan

A B C
(800 MHz paired) (2.6 GHz paired) (2.6 GHz unpaired)

Vodafone 2 4 5 Primary bidder

Telefonica 2 – –

Everything everywhere 1 7 – Secondary bidder

Hutchison 3G 1 – –

Niche spectrum ventures – 3 4 2.6 GHz bidder

MLL telecom – – – Small bidder

HKT company – – –

to a single bidder to no more than 4 blocks or 2×20 MHz which is common in similar
auctions.8

Bidders in the British 4G Auction

Seven bidders participated in the auction and five of them won at least one license.
As expected, the most valuable target—a pair of A blocks for building a nationwide
network with maximum reach—was won by the two big incumbents Vodafone and
Telefonica. Table 8 shows the results of the British auction using the simplified lots
introduced in the previous section.

Since all auction data has been made publicly available, the segmentation of partic-
ipants into four generic bidder types is based not only on the results, but also on actual
bidding behavior throughout the auction. As illustrated in Fig. 7, there are four bidders
who competed in all three bands: the primary bidders Vodafone and Telefonica as well
as the secondary bidders Everything Everywhere and Hutchison 3G. The reason for
separating them into two groups is the obvious strength of the primary bidders with
regard to lot A. For these lots, the primary bidders’ bids were much higher than the
final clock prices in the supplementary round, compared to both secondary bidders.9

The 2.6 GHz Bidder Niche Spectrum Ventures was focused on the 2.6 GHz lots only
while the small bidders MLL Telecom and HKT Company only competed for the
licenses in the C band.

A Value Model for the Simulations

Based on the public bid data, we derived a value model, i.e., valuations for each
bidder, which allowed us to run simulations and estimate the impact of different

8 E.g. German 800 MHz/1.8 GHz/2.0 GHz/2.6 GHz auction in 2010 (Bundesnetzagentur 2010), Danish
800 MHz auction in 2008 (Danish Business Authority 2012).
9 Since EE is the largest mobile service provider in the UK (Ofcom 2011), it might be surprising to describe
them as secondary bidders. However, the classification was solely made based on the bids in this particular
auction.
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Fig. 7 Visualization of bidding behavior throughout the clock rounds of the British 4G auction with
a simplified band plan (A = red, B = apricot , C = blue). a Vodafone. b Telefonica. c Everything
everywhere. d Hutchison 3G. e Niche spectrum ventures. f MLL Telecom. g HKT company. (Color figure
online)

bidding strategies in Sect. 6. First, we defined individual base valuations for each
bidder indicating how much he is willing to pay for a single license in a band. Second,
intra-band synergies were defined for any package with more than one license within
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Table 9 Mean base valuations for the national licenses scenario

A B C
(800 MHz paired) (2.6 GHz paired) (2.6 GHz unpaired)

Primary bidder £300 mn £70 mn £15 mn

Secondary bidder £200 mn £70 mn £15 mn

2.6 GHz bidder – £70 mn £15 mn

Small bidder – – £8 mn

the same band up to a certain limit (e.g., 2 blocks of A, 4 blocks of B or C). More
licenses of the same band exhibit decreasing marginal value beyond these limits. For
the expensive A blocks we even assumed that no bidder is interested in winning more
than two licenses. Third, inter-band synergies were defined increasing the value of
a bundle comprising licenses from bands A and B. The mean base valuations were
defined based on the final clock prices and the supplementary bids and can be found in
Table 9. The primary bidders had a much higher valuation in the A band compared to
other bidders, while we assumed similar valuations for the B and C bands. Even though
the true valuations of bidders are unknown, this allowed for a reasonable sensitivity
analysis in Sect. 6.

Based on the mean base valuations v in Table 9 the valuations for each simulation
were determined based on two parameters, the relative strength of a bidder si and a
random influence ri . Both values are drawn from a uniform distribution in the interval
[v×0.75, v×1.25] and multiplied with the mean base valuations v for each band. For
example, consider a primary bidder with relative strength 0.8 and random influence for
blocks A and B of 1.1 and 1.0, resp. His valuations are vi (A) = 0.8 · 1.1 · £300 mn =
£264 mn and vi (B) = 0.8 · 1.0 · £70 mn = £56 mn. Then we determined the valuation
vi (nX) for different bundles with n licenses within a band X .

vi (n A) =
(

min {2, n} + min

{
1

2
,

n − 1

n

}
· syni (A) + max {0, ln(n − 1)}

)
· vi (A)

(1)

vi (nB) =
(

min {4, n} + min

{
3

4
,

n − 1

n

}
· syni (B) + max {0, ln(n − 3)}

)
· vi (B)

(2)

vi (nC) =
(

min {4, n} + min

{
3

4
,

n − 1

n

}
· syni (C) + max {0, ln(n − 3)}

)
· vi (C)

(3)

The first and second summand correspond to the linear increase in value when
adding more blocks and the synergies on top of that. Both only increase in value until
a threshold is reached. The third summand is only relevant when additional blocks are
added, but with decreasing marginal value. The final valuation for a bundle within a
band is computed as the sum of the licenses within a band multiplied by (1 + syni ).
All intra-band synergies syni (A) are drawn from a uniform distribution [1.75; 2.25].
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Fig. 8 Plot of intra-band
valuations
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Only the synergies for the primary bidders in the A band were higher and drawn from
a uniform distribution in the interval [3.75; 4.25] assuming that two blocks in A was
their primary target. Figure 8 illustrates the resulting valuation function which is only
valid for A for up to 2 blocks.

Finally, a uniformly distributed parameter is drawn for each bidder to determine his
inter-band synergies for bands A and B. Synergies across these bands can be assumed
to be much lower than intra-band synergies, and we use a uniform distribution in the
interval [0.0; 0.2]. The valuation for a bundle containing licenses from bands A and
B is now computed as the sum of the valuations for inter-band bundles multiplied
with (1 + syni ). For example, a bidder’s valuation for a bundle AB BC comprised
of one block of A, two blocks of B, and one license in band C is vi (AB BC) =
(vi (A) + vi (2B) + vi (C)) · (1 + syni ). Based on the random variables above, we
generated 10 different instances of the value model.

The correlation between the supplementary bids in the British 4G auction and the
valuations generated with the above model is 0.957, indicating that the generated
valuations are a reasonable basis for our simulation study.
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3 Discussion and Conclusion

Although much has been written about the design of efficient spectrum auctions in the

past two decades, the design of large-scale markets with complex bidder preferences

has been given little attention in the literature as of yet. Traditionally, game-theoretic

analyses and laboratory experiments have been used to analyze different auction formats.

While these methods are important to gain insights about possible equilibria and the

behavior of the participants, these methods have their limitations. In particular, auctions

in the field often have many licenses, complex activity and bidding rules. Such design

elements are important, but are typically ignored in most theoretical studies due to the

added complexity. Simulation studies complement experiments and theoretical work, as

they allow economists to study complex market designs under exactly the same rules as

used in the field. As we have seen in Papers A to C, replicating realistic bidder behavior

can potentially be nontrivial, depending on the market size and auction format.

Even though the used payment rules are not strategy-proof, we argue that incentives for

strategic behavior is minimized in large-scale markets such as the ones presented in this

dissertation due to the amount of information needed to estimate correctly the valuations

or the underlying distribution. Differing from smaller markets or stylized settings (see

Goeree and Lien (2014)), such information is rarely available in large real-world markets.

The number of packages that bidders could bid on can serve as a guideline for how much

information would be needed by a bidder to profitably manipulate a market.

One contribution of this dissertation is the implementation of the SMRA, HPB and

various versions of the CCA formats in a unified simulation framework, as well as an
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instance generator that estimates bidder valuations based on drop out bids from the

Canadian 700MHz spectrum auction.

The economic environment in this simulation mirrors the Canadian market with all its

institutional details, and it allows us to study the efficiency of wide-spread spectrum auc-

tion formats with different levels of synergies in the valuations of bidders. We assume

that bidders maximize payoff in each round. This can serve as a reasonable approxi-

mation of bidder behavior in larger markets such as the Canadian auction, as explained

above. In any case, it is important to understand the average approximation ratio of

simple auction algorithms in realistic environments when bidders bid straightforward.

The results are surprising: Even high synergies do not always lead to higher efficiency in

the combinatorial clock auctions compared to SMRA, and the relative efficiency ranking

depends on the type of synergies. We analyzed two types of synergies motivated from

observations in the field. In the “extreme national” synergy model synergies only occur

when a bidder wins all licenses in a national package within a specific band. The extreme

national synergies create the largest possible risk for a bidder who wants to aggregate

licenses in the SMRA and, not surprisingly, the SMRA results in low efficiencies in

this model. More moderate synergies occur when the marginal value of a license rises

linearly with the number of licenses won. Under this assumption of “linear” synergies,

the SMRA outperforms various versions of the CCA, in terms of efficiency as well as

revenue. Overall, it is interesting to observe that the average efficiency loss in both

models is remarkably low, considering the simplicity of the algorithms and the worst-

case approximation ratio of the allocation problem in combinatorial auctions.

Laboratory and field data can give insights into the sometimes irrational behavior of

market participants, with sometimes surprising consequences. By developing a metric

based on Afriat’s Critical Cost Efficiency Index, we demonstrate that bidders did indeed

deviate from straightforward bidding in the clock phase in both the British 4G auction

in 2013 and the Canadian 700 Mhz auction in 2014. This, in turn, can limit the amounts
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bidders can bid on in the supplementary phase of these auctions, with significant negative

consequences on both efficiency and revenue.

Apart from spectrum auctions, other examples where complex bidder preferences and

allocation constraints lead to computationally hard allocation problems can be found

in several industries, including the sale of TV ads to media agencies or multi-item and

multi-unit industrial procurement auctions. Because of their full expressiveness, the

XOR bid languages and similar designs have been used in markets such as spectrum

and procurement, but this does not scale to very large markets due to the exponential

growth in the number of package bids that can be submitted.

To address this, we describe an auction design framework using compact bid languages

and payment rules which incentivize truthful bidding. Compact bid languages can of-

ten draw on domain specifics and allow bidders to describe their preferences with a low

number of parameters that they have to specify as the TV ads market and the volume

discount auctions in Paper A illustrate. Commercial off-the-shelf mixed integer pro-

gramming solvers can now solve large and realistic instances of such problems to near

optimality on standard hardware, which allows us to use such bid languages in real-world

markets.

In sealed-bid auctions second price rules such as VCG or BPOC payment rules can be

used to provide incentives for truthful bidding. In many markets, auctioneers would

prefer core pricing to VCG mechanisms, in order to avoid non-core outcomes where the

bids of losing bidders are higher than the payments of the winners. With the introduction

of core-selecting auctions (such as the CCA in spectrum auctions) and algorithms (see

Day and Raghavan (2007); Day and Cramton (2012)), stake-holders have developed

software to determine winners and core prices based on the use of integer programming

to solve a series of winner-determination problems.

Extending the use of this software to larger and more complex markets (such as the

TV ads and procurement contexts we presented) cannot be accomplished by merely

specifying time limits or optimality-gap thresholds to the solver engine, as it could for
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the more simple case of a single optimization problem. Doing so would often result in an

infeasible pricing problem. This general problem exists for all larger markets with near-

optimal winner determination. We developed and compared two potential algorithms

for dealing with these infeasibilities, finding one faster and higher revenue method (for

a fixed set of bids) and one slower but more efficient method.

The toolset and analyses provided by this dissertation allow a further exploration of

complex markets along several dimensions. The study on the extension of core-selection

auctions beyond provably-optimal winner determination settings as the ones shown in

Paper A might enable the usage of sophisticated pricing rules and smart market clearing

mechanisms for markets even more complex as the ones we studied.

At the same time, the ever evolving spectrum auction formats such as the Combinatorial

Clock Auction allow for a deeper investigation: During the last years, the CCA’s bidding

rules were adopted and refined, leading to new activity rules which in theory should

induce truthful behavior. We have demonstrated that this did not always succeed.

The introduction of planned stricter activity rules might limit bidders even further,

while more sophisticated bidding languages might counter the bidders’ tendency to only

select a small subset of valuable packages. Bidders might also not bid truthfully due

to strategic reasons. As shown in the analyses by Goeree and Lien (2014); Knapek

and Wambach (2012) and Janssen and Karamychev (2016), core-selecting auctions in

general and certain implementations of the Combinatorial Clock Auction in particular

can enhance a bidder’s payoff by deviating from truthful bidding. This is especially so

if bidders have budget constraints (Janssen and Karamychev, 2013) or a lexicographic

preference to raising their rivals’ costs. An extension of the provided analyses might

shed light on the changes in efficiency and revenue if this strategic behavior is included

in computational experiments similar to our own.

We show that the frameworks and analyses provided in this dissertation offer a first

approach in faithfully recreating auction formats used in complex settings and spectrum

auctions, including all intricacies. Extending the research by testing new auction formats
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and bidder valuation functions will allow for further insights into complex markets such

as the selling of wireless spectrum.
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A General Auction Simulator

For static scenarios, the implementation of a small number of mixed integer linear prob-

lems (MILP) and the computation of these MILPs with a linear solving library is often

a feasible approach. All presented experiments in this dissertation required user input

(in our lab experiments) or were highly dynamic simulations, however. The presented

research therefore required adequate computer aided experimental frameworks. While

Paper A and C of this dissertation leverages in part prior software1, the simulation

and analysis of large regional spectrum auctions as presented in Paper B required the

creation of an entirely new simulation framework.

We designed the General Auction Simulator (GAS) to allow us the conduction of com-

putational experiments of this scale. The software forms a central research tool for the

simulations taken in this dissertation. The main requirements we elicited for the software

are as follows:

� Spectrum auction formats – In order to be able to compare spectrum auction

formats in terms of efficiency and revenue, a selected number of auction formats

has to be supported. This includes the Simultaneous Multi Round Auction, the

HPB auction, the single stage Combinatorial Clock Auction (CCA), and the two

stage CCA (see also Paper B).

1See Goetzendorff (2013); Schneider (2011) for the TvAuction and Supplier Selection software (Paper A)
and Pikovsky (2008) for MarketDesigner framework extended for Paper C.
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� Bidding behavior – The simulation framework should include the possibility to

easily load and configure the valuation model and bidding behavior for a bidder at

runtime.

� Idempotency – To guarantee replicability, the framework should always behave

deterministically: Given the same input, the same result should be returned.

� Efficiency – Solving the Winner Determination Problem and deciding on which

package to bid are both NP -hard problems (see Paper B). As such, the software

should be as efficient as possible, regarding the usage of CPU, RAM and time.

This becomes especially important in our computational experiments, as we have

to simulate a high number of different scenarios.

� Extensibility – The design of spectrum auction formats is steadily evolving. As

such, it was not possible for us to know all auction formats GAS should support

in advance. A modular and extensible architecture is therefore needed, to allow a

fast addition of new auction formats and bidding languages.

� KISS (“keep it small and simple”) – The software should be designed to be as

simple as possible. Specifically, adding a new feature should only be done if there

is a real need for it.

The GAS framework is designed as a multi-tiered application based on several loosely

coupled Python packages, each tier leveraging modules of the lower tiers. External

dependencies are kept to a minimum. In order to understand the basic architecture of

the framework, we will give a short overview of the framework’s structure, its internal

dependencies, and demonstrate a typical simulation flow.

For the structural dependencies between the different classes, please refer to Figure A.1.

The basic item of both every auction format and bidder valuation is the Item. An Item

represents the good the auctioneer wants to sell and contains properties that are inherent

to it, such as how many of it are available, and what its initial price is. In order to reason

about a collection of items, it sometimes makes sense to introduce more sophisticated
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Tier Package Description

1
value-models base item structure, bidder valuation functions
auction-formats base auction format structure, auction formats

2
behavior bidding behaviors and strategies
auction auction format and bidder front controllers

3
runners synchronous, async. and distributed simulation drivers
simulation simulation scenario entry and persistence strategy

Table A.1: GAS packages

data structures as e.g. a list. The ItemStructure allows exactly this: All implementations

of this interface provide methods that allow to select and filter the underlying data by

a variety of criteria, such as the filtering by frequency band.

An AuctionFormat makes use of the ItemStructure and implements the set of rules

defining the specific auction format. Data objects representing the bidders’ state, the

BidderInfo, can be registered to the auction format. Whenever the AuctionFormat ’s

clear() method is called, the underlying winner determination problem is solved and

its result are written into the AuctionFormat’s RoundInfo object. At the same time, all

BidderInfo objects are updated.

In order for a bidder to reason about on which packages to bid, a bidder’s Strategy can

consult its ValueModel. The Selector allows the Strategy to find the most valuable (i.e.,

payoff maximizing) bundles given a set of prices.

Communication between the clients (i.e., the different Strategy objects) and the server

(i.e., the AuctionFormat) is done by the two classes Agent and Auction, respectively. By

registering an Agent to the Auction, the Agent gets notified on all relevant state changes

(see also fig. A.2) and is able to respond with Actions generated by its Strategy.

A minimal code example for an auction driver can be found in Listing A.1. Note that the

interaction between auction and agents is not dependent on the driver, but is handled

automatically as soon as the auction’s open() method is called. How the observing

Agents are acting when this happens is shown in the sequence diagram in Figure A.3:
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ValueModel

public_info

getValue(package)

ItemStructure

Item

quantity
price_start

(...)

AuctionFormat

state
payments
allocation

start()
open()
close()
clear()
abort()
register(bidder_id, bidder_info)
submitBid(bid)
validate()
validateBid()
getInfo(bidder_id)

Strategy

bidder_id

getActions()

Selector

optimized

updateModel()
_call_()

Auction

register(agent)
submit(agent_name, action, **kw)
publishResults()
waitForActions()
initialize()
shutdown()

(delegates all other calls to AuctionFormat)

RoundInfo

filtered(round_info)

BidderInfo

bidder_id
budget

validateAction()

Agent

name

notify(event, **kw)
submit(action, **kw)

Action

bidder_id

1..*

*

1

*

1

*

1

1

1

1

1

1

1

*

1

1

*

1

*

1

1

*

1

1

1..*

*

* 1

Figure A.1: GAS Structure

After initializing all relevant objects, registering the agents (1, 2), and starting the auc-

tion, the auction’s open() method is called (3). This causes the auction to notify()
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1 def runAuction(auction , agents ):

2 for agent in agents.itervalues ():

3 auction.register(agent)

4 auction.start()

5 while auction.state != STATE_FINISHED:

6 auction.nextRound ()

7 auction.open()

8 auction.close()

9 auction.clear()

10 auction.publishResults ()

11 auction.shutdown ()

12 result = (auction.allocation , auction.payments)

13 return result

Listing A.1: A Minimal Auction Run Example

all listening agents with the STATE_CHANGE event and the additional named values

{state=STATE_OPEN, action_requested=True}, among others.

This causes the agent in this example to query its strategy what kind of actions the

agent should perform (5). At this point, the strategy updates the selector with the

most current round information (6) gets the current most valued demand set (7 to 10).

The strategy then uses this combination to construct a bid and validates it (11), before

submitting it to the auction (14). The submitted bid then gets validated on the auction

server (16) before issuing the response.

123



A General Auction Simulator

created

started

new_round

open

closed

clearedfinished

Figure A.2: Auction States
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Driver

Driver

ValueModel

ValueModel

Selector

Selector

Strategy

Strategy

BidderInfoC

BidderInfoC

Agent

Agent

Auction

Auction

AuctionFormat

AuctionFormat

BidderInfoS

BidderInfoS

initialization of relevant objects (item structure, value models, agents, auction)

1 register(agent)

2 register(agent_id, bidder_info)

auction started

3 open()

4 notify(STATE_CHANGE, **kw)

5 getActions(**kw)

6 updateModel(prices, limits)

loop [until exhaustion or selector.optimized]

7 call

8 combination

9 getValue(combination)

10 value

alt [we have a bid]

11 validateBid(bid)

12 True/False

13 actions || None

14 submit('bid', **kw)

15 submitBid(**kw)

16 validateBid(action)

17 True/False

auction scheduler issues sending responses

18 notify(ACTION_RESPONSE, {'bid', res, res_error})

19 notify(INFO_UPDATE, bidder_info.values_updated)

Figure A.3: Bid Submission Sequence
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