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A B S T R A C T

Magnetic Resonance Imaging (MRI) has significantly contributed to
modern medicine, especially neurology. It is a noninvasive and harm-
less imaging modality, capable of producing a wide variety of tissue
contrasts, being the preferred modality for soft-tissue imaging. MRI is
sensitive to a diversity of biophysical effects and thus, the generated
images are a mixture of them. In particular, Diffusion Magnetic Res-
onance Imaging (dMRI) is influenced by the thermal motion of water
molecules, and has clinical value in the diagnostic of stroke, and the
surgical planning for brain tumors. Moreover, dMRI contains informa-
tion that goes beyond the image resolution of millimeters, down to
the underlying tissue microstructure.

This thesis takes MRI a step further to study brain tissue microstruc-
ture. To that end, the dMRI signal is reformulated in a Blind Source
Separation (BSS) framework, enabling the disentanglement of sub-
voxel tissue signal components, and the estimation of multiple tis-
sue parameters. Furthermore, this unsupervised machine learning
approach is transformed into a supervised deep learning model, tack-
ling the partial volume contamination caused by Cerebrospinal Fluid
(CSF) or free-water in brain dMRI. The impact of this method is as-
sessed in glioblastoma cases, yielding corrected diffusion indexes and
better delineation of edema and tumor infiltration. Finally, Quantitative
Transient-state Imaging (QTI), an ultra-fast acquisition and reconstruc-
tion scheme for multiparameter mapping, is extended to a tissue mul-
ticompartment model.

Summarizing, this thesis contributes with three strategies to extract
more relevant tissue microstructure information from the measured
MRI data.
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Z U S A M M E N FA S S U N G

Die Magnetresonanztomographie (MRT) hat wesentlich zur moder-
nen Medizin Diagnostik, insbesondere im Bereich der Neurobildge-
lung, beigetragen. Es ist eine nichtinvasive Bildgebungsmodalität, die
in der Lage ist, eine Vielzahl von Gewebekontrasten zu erzeugen.
Dies macht sie zur bevorzugten Modalität für die Weichteilbildge-
bung. Die MRT ist empfindlich gegenüber einer Vielfalt von boiphy-
siken Effekten und die erzeugten räumlichen aufgelösten Signale ent-
halten die Superposition dieser Effekten. Insbesondere misst die Dif-
fusionsbildgebung (dMRI) die thermische Bewegung von Wassermo-
lekülen. dMRI ist von hohem Klinische wert, z.B. in der Diagnos-
tik von Schlaganfall und der chirurgische Planung von Hirntumoren.
Darüber hinaus enthält dMRI Informationen, die über die Bildauflö-
sung hinaus bis zur zugrunde liegenden Gewebemikrostruktur rei-
chen.

Diese Arbeit führt die MRT einen Schritt weiter, um Hirngewebe-
mikrostrukturen zu untersuchen. Zu diesem Zweck wird das dMRI-
Signal in ein Blind Source Separation (BSS) -Framework umformu-
liert, das die Entflechtung von Subvoxel- Gewebe-Signalkomponenten
und die Schätzung von mehreren Gewebeparametern ermöglicht. Dar-
über hinaus wird dieser maschinelles Lernansatz in ein Deep-Learning-
Modell umgewandelt. So kann die durch Liquor cerebrospinalis (CSF)
verursachte Partialvolumenkontamination oder das freie Wasser in
dMRI bestimmt und separiert wurden. Der Einfluss dieser Methode
wird im Glioblastom untersucht. Die korrigierten Diffusionsindizes
ermöglichen eine bessere Abgrenzung von Ödemen und Tumorinfil-
trationen. Schließlich wird das Quantitative Transient-state Imaging
(QTI), ein ultraschnelles Akquisitions- und Rekonstruktionsschema
für multiparametrische-Quantifizierung, auf ein Gewebe-Multikom-
partiment-Modell erweitert.

Zusammenfassend liefert diese Arbeit drei Ansätze, um relevan-
tere Gewebe-Mikrostrukturinformationen aus den gemessenen MRI-
Daten zu extrahieren.
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Part I

I N T R O D U C T I O N A N D S U M M A RY O F
C O N T R I B U T I O N S





1
I N T R O D U C T I O N

The decade of 1970s saw a revolution in Radiology with the intro-
duction of important non invasive image modalities. Computer to-
mography [30], single photon emission computer tomography [12],
positron emission tomography [66], and magnetic resonance imaging
(MRI) [24, 42] were developed. Among these image methods, MRI be-
came the method of choice in many clinical application due to its ver-
satility and innocuity. The first commercial MRI scanners were avail-
able during the 1980s, reaching 10000 scanners worldwide by 1996.
Important research and engineering efforts were required during pre-
vious decades. Nuclear Magnetic Resonance (NMR) was first observed
in 1938 by Rabi [61] and measured and formally described by Purcell
[60] and Bloch [10] in 1946. It was not until 1971 that NMR was con-
sidered a breakthrough in medical technology. Raymond Damadian
discovered that some tumors presented distinct relaxation times com-
pared with normal tissue [17]. Two years later, in 1973, Paul Lauter-
bur published in Nature an article proposing for the first time to
use magnetic field gradients to localize NMR signals, creating an im-
age from projections (as in computer tomography). Shortly after, Sir
Peter Mansfield and his group in Nottingham introduced the selec-
tive excitation that made MRI a tomography method [24]. Whilst, in
1975 Richard Ernst presented the concept of phase encoding and two-
dimensional Fourier Transform. The contributions of Purcell, Bloch,
Lauterbur, Mansfield, and Ernst established the basis of modern MRI

and were awarded with the Nobel Price.
Classical MRI is driven by the generation of images weighted by dif-

ferent contrasts. These type of images are subject to a diversity of bio-
physical effects and do not describe independent physical properties
of the tissue. To extract tissue quantitative properties it is necessary
create biophysically inspired signal models that explain the observed
data. This is the case of Diffusion Magnetic Resonance Imaging (dMRI)
[14, 64], which enables to measure the water diffusion parameters in
the brain tissue. However, the unit of volume in MRI, the voxel, is
not an homogeneous object. It contains the complexity of the tissue
microstructure organization [18, 20, 38, 58, 63, 65, 72]. Diffusion MRI

is sensitive to this complexity but models considering multiple tis-
sue components are only of interest for the research community, far
from clinical application. This thesis introduces plausible solutions
with minimum modeling to extract important information beyond
the voxel limit.
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4 introduction

1.1 introduction

This section introduces the theoretical concepts of NMR and MRI that
are used in this thesis. The aim is to cover the principles to the ex-
tent that is necessary to follow this work. The reader can find further
theoretical details in [48] and [36].

1.1.1 Magnetic Resonance Imaging

When Lauterbur [42] and Mansfield [24] proposed MRI, it was ac-
cepted that the spin (angular momentum) of a proton placed in a
magnetic field precesses around the field direction. The precession
frequency was established by Sir Joseph Larmor, and it is known as
Larmor frequency:

ω0 = γB0, (1)

where ω0 is the angular frequency of the precessing protons, and
B0 is the magnetic field strength. The constant γ is known as the
gyromagnetic ratio and depends on the element. In water (1H), γ =

2.68× 108 rad/s/Tesla for the hydrogen proton, or γ = γ/2π = 42.6
MHz/Tesla. The experiments in this thesis were conducted in 3 Tesla
scanners, setting the reference Larmor frequency to ω0 = 127.8 MHz.

The classical mechanics approach is based on the aggregation of
the magnetic moment (~µ) of the spins contained in an unit of volume
V , the voxel. The macroscopic magnetization is known as ~M:

~M =
1

V

∑
V

~µi (2)

The evolution of ~M with time in the presence of an external mag-
netic field, ~Bext was described by Bloch:

d ~M

dt
= γ ~M× ~Bext +

1

T1
(M0 −Mz)ẑ−

1

T2
~M⊥, (3)

where ~M is composed by the longitudinal magnetization (Mz) and
the transverse magnetization ( ~M⊥ =Mxx̂+Myŷ). In the equilibrium
position Mz(∞) = M0 and Mx(∞) = My(∞) = 0. The relaxation
times (T1 and T2) describe the return to equilibrium after excitation,
and appear as a consequence of the interaction of the spins with the
environment. The spin-lattice or longitudinal relaxation time (T1) is
driven by the energy exchange between the protons and the environ-
ment, and describes the recovery ofMz towardsM0. The spin-spin or
transverse relaxation time (T2) is induced by local variations of B0 in
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the microenvironment of the protons that lead to small differences in
the Larmor frequency, which cause dephasing of the transverse mag-
netization pushing Mx and My to zero. Interestingly, T1 and T2 are
tissue dependent and their differences across the body are the major
source of contrast in MRI.

The solution of the Bloch equation (Equation 3) for a constant field
(~Bext = B0ẑ) generates the set of equations:

Mx(t) = e
−t/T2 (Mx(0)cos(ω0t) +My(0)sin(ω0t)) (4)

My(t) = e
−t/T2 (My(0)cos(ω0t) −Mx(0)sin(ω0t)) (5)

Mz(t) =Mz(0)e
−t/T1 +M0(1− e

−t/T1) (6)

Only the transverse components are measurable by Radiofrequency
(RF) coils. However, these components do not exist in the equilibrium
state, requiring the system to by excited. The excitation of a NMR

spin system happens when an RF (B1) pulse is played at the Larmor
frequency to meet the resonance condition. In such a case, the exter-
nal field is composed by the static magnetic field and the RF field:
~Bext = B0ẑ+ ~B1.

When the system is not in equilibrium ~M rotates at the Larmor
frequency around ~Bext. To simplify the mathematical framework a
new reference system is defined, the rotating frame, where the new
coordinates (x̂ ′, ŷ ′) rotate in the fixed frame defined by (x̂, ŷ) counter-
clockwise at frequency ω around ẑ:

~Beff = (B0 −
ω

γ
)ẑ+B1x̂

′. (7)

To solve the Bloch equations in the rotating frame of reference, the
RF field ~B1 is assumed to be much smaller in magnitude than B0.
Then,

(
dMx ′

dt

) ′
= ∆ωMy ′ −

Mx ′

T2
, (8)

(
dMy ′

dt

) ′
= −∆ωMx ′ +ω1Mz −

My ′

T2
, (9)

(
dMz

dt

) ′
= −ω1My ′ +

M0 −Mz

T1
, (10)
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where ω1 is the spin frequency due to B1. The term ∆ω = ω0 −ω

are the off-resonance contributions that represent non-ideal conditions.
If the time duration of B1 is short, the relaxation terms can be ig-

nored relative to the frequency terms during that period, resulting
in:

(
~M

dt

) ′
= γ ~M× ~Beff (11)

After B1 is turned off, the magnetization evolution is as expressed
by Equation 4 – 6, but in the rotating frame:

Mx ′(t) = e
−t/T2 (Mx ′(0)cos(∆ωt) +My(0)sin(∆ωt)) (12)

My ′(t) = e
−t/T2

(
My ′(0)cos(∆ωt) −Mx(0)sin(∆ωt)

)
(13)

Mz(t) =Mz(0)e
−t/T1 +M0(1− e

−t/T1) (14)

Let M+ be the transverse magnetization M⊥ in the rotating frame
of reference when it rotates at the Larmor frequency: ∆ω = 0. When
RF pulses, that flip M from the equilibrium state π/2 rad to the trans-
verse plane, are applied at periods of Repetition Time (TR), and the
NMR signal are measured at Echo Time (TE), the solution to Equation
3 following the RF pulse is

M+(TE, TR) =M0

(
1− e−TR/T1

)
e−TE/T2 (15)

Equation 15 introduces the concept of contrast in MRI. Images dom-
inated by Proton Density (PD) (proportional to M0) can be generated
for long TR and short TE. T1 weighted images require short TR and
TE. Whereas T2 weighting needs long TR and TE.

The image formation based on NMR requires the spatial encoding
of ~M. This is achieved by the use of imaging gradients (gx, gy, gz) that
produce a variation of the static magnetic field along each direction
(measured in mT/m), inducing differences in the Larmor frequency
at any spatial location,

ωg(~r) = γ(B0 + g(~r)), (16)

which causes the spins to accumulate phase during time t:

ωg(~r, t) = −γ

∫t
0

g(~r, t)dt. (17)
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The frequency encoding of the space induced by the imaging gradi-
ents (Equations 16 and 17) is known as k-space (spatial frequencies):

k = −γ

∫t
0

g(t)dt. (18)

and relates to the image space by a spatial multidimensional Fourier
Transform (FT):

ρ(~r) =

∫
~k
y(~k)ei2π

~k~r, (19)

where y(~k) is the measured signal in the k-space (~k = [kx ky kz]),
and ρ(~r) is the actual image (~r = [rx ry rz]).

1.1.2 Diffusion MRI

The term diffusion makes reference to the random translational mo-
tion of particles due to the thermal energy. It was first observed in
1827 by the botanist Robert Brown on pollen grains large enough to be
seen in the optical microscope, and small enough to be subject of the
thermal motion of the surrounding water molecules. Albert Einstein
[22], using Fick’s laws of flux for a net flow of zero, demonstrated that
the diffusion coefficient, D, depends on the absolute temperature, T ,
the viscosity of the medium, η, and the radius of a spherical particle,
R:

D =
kBT

6πηR
. (20)

Given that diffusion is a random process, Einstein also derived the
conditional probability that a particle in ~r at time zero moves to ~r ′

after time t:

P(~r|~r ′, t) =
1

(4πDt)−3/2
e−

~r ′−~r
4Dt , (21)

leading to the mean-squared distance traveled by particles along
one direction in time t:

〈X2〉 = 〈(~r ′ −~r)2〉 = 2Dt. (22)

To quantify translational motion in NMR, as for imaging, magnetic
filed gradients are introduced causing linear spatial variations of the
Larmor frequencies:

ω(~r) = γB0 + γ~g ·~r (23)
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where ~g indicates the magnetic profile variation induced that is
parallel to the main field ~B0.

Flow (~v) and diffusion (D) terms were introduced in the Bloch equa-
tion [67] to form the Bloch-Torrey equation. Thus, in absence of an RF

field, the transverse magnetization in the rotating frame (M+) is:

∂M+

∂t
= −iγ~g ·~r−M+

T2
+D∇2M+ −~v · ∇M+ (24)

The most common technique to make NMR sensitive to diffusion is
called Pulsed Gradient Spin Echo (PGSE) and was introduced by Ste-
jskal and Tanner in 1965 [64]. It works under the principles of dephase
and rephase. Two squared magnetic gradients are introduced, called
diffusion gradients (~g), to encode for diffusion. The first one is played
during a time δ causing particles to gain phase or dephase during that
time. The second one is played after time ∆ during exactly δ seconds
but with reversed polarity, causing a loss of phase or rephase. The un-
derlying principle is that only the particles that remain static during
time ∆ can rephase, while those that moved due to diffusion cannot.
The reason is that these moving particles experience different Larmor
frequencies during the first and second diffusion gradient (Equation
23) leading to a residual phase that causes a signal attenuation de-
scribed by:

A = e−γ
2g2δ2D(∆−δ/3)eiγδ~v·~g∆. (25)

The attenuation in the first term of Equation 25 is the source of con-
trast in Diffusion Magnetic Resonance Imaging (dMRI). The phase in
the second term caused by flow is generally neglected –it may cause
flow and motion artefacts–. The effects of the diffusion gradients are
summarized in the parameter b [9]:

b = γ2
∫TE
0

[∫t
0

~g(t ′)dt ′
]2
dt, (26)

which in the PGSE case takes the form:

b = γ2g2δ2
(
∆−

δ

3

)
(27)

simplifying the attenuation expression to:

A = e−bD. (28)

Diffusion MRI is sensitive to the displacement of particles in the
order of the size of a cell. This makes dMRI the only non-invasive
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imaging modality to study tissue microstructure. A plethora of meth-
ods and models exist for this matter (see [1–3, 23, 74]), but the most
extended one with clinical relevance is Diffusion Tensor Imaging (DTI)
[4].

DTI models the diffusion, D, in Equation 28 as a tensor describing
the diffusion coefficient in each direction:

D =



Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 . (29)

To estimate the six unknown variables of the tensor (Equation 29)
at least six diffusion directions must be encoded by the diffusion gra-
dients, although a minimum of 30 are advisable [37]. Besides, given
that the diffusion contrast is based on attenuation, an extra measure-
ment with no diffusion encoding is necessary for reference (b = 0

s/mm2).
Only one tissue compartment is considered in the formulation of

DTI, oversimplifying tissue complexity. Nevertheless, the factorization
in eigenvalues (λ) and eigenvectors of diffusion tensor (Equation 29)
reveals microscopic information encoded in the tensor. Scalar indexes
can be derived, for instance the Mean Diffusivity (MD)

MD = 〈λ〉 = 1

3

3∑
i=1

λi. (30)

The Fractional Anisotropy (FA) is an index between 0 and 1 that
informs about the anisotropy of the tissue, where 0 indicates a pure
isotropic structure

FA =

√
3

2

√√√√
∑3
i=1(λi − 〈λ〉)2∑3

i=1 λ
2
i

. (31)

The Axial Diffusivity (AD) indicates the maximum diffusivity along
the direction of the associated eigenvector

AD = λ1 (32)

Finally, the Radial Diffusivity (RD) is the mean diffusivity in the
plane perpendicular to the main diffusion direction

RD =
1

2

3∑
i=2

λi. (33)
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1.1.3 Multiparametric mapping in the transient state

The estimation of T1 and T2 parameters in MRI is slow. This process
requires repeated measures for different TE or TR and the fit of the
data to Equation 15. The acceleration alternatives are based on under-
sampled acquisition, fast imaging sequences, or their combination.

The Compressed Sensing (CS) based techniques measure data un-
der the Nyquist limit, which turns the image reconstruction into an
ill-posed problem that requires iterative regularized reconstructions
[8, 21, 33, 69, 75]. Fast imaging sequences include Echo-planar Imag-
ing (EPI) [49], Fast Low Angle Shot (FLASH) [28], Look-Locker [39],
or Steady-State Free Precession (SSFP) based schemes [15]. In the re-
cent years, Magnetic Resonance Fingerprinting (MRF) [45] introduced
a mixed solution that combines undersampled image coverage with a
SSFP like acquisition. However, unlike SSFP the measures are made in
the transient-state of the magnetization, rather than the steady-state.

The acquisition of an MRI signal repeated times produces a signal
evolution in k-space with temporal variation:

y(~k, t) =
∫
~r
ρ(~r)lt(~r)e

−2π~k(t)·~r (34)

where ~k(t) is the trajectory used to cover the k-space. At the spatial
position ~r, ρ is the proton density, and lt is the temporal evolution of
the signal, which can be expressed in a recursive manner:

lt(~r) = lt−1(~r)g(α(t), TR(t), TE(t), T1(~r), T2(~r)). (35)

Equations 34 and 35 show a dependence on the temporal prescrip-
tion of the acquisition parameters: α(t), TR(t), and TE(t); and the
tissue local properties: ρ(~r), T1(~r), and T2(~r). The evolution is modu-
lated by g(·), which accounts for gradient effects, RF excitation, and
relaxation. This can be solved with Extended Phase Graphs (EPG) [70,
71] or Bloch simulators [10].

1.1.4 Tissue microstructure and partial volume effects

The scale size of cells is in the order of tens of micrometers, creating
pools of water organized in patterns of variable complexity and prop-
erties. These pools of water or compartments are permeable allowing
water to filtrate from one to another. However, this is a slow process
that is neglected in this thesis [2, 54].

In clinical MRI the size of a voxel is in the millimeter scale, mak-
ing unfeasible to detect the complexity of the underlying tissue mi-
crostructure. As a result, the estimates of the tissue parameters (T1,
T2, and diffusion indexes) are averages over the volume of the voxel.
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This issue is known as partial volume effects. Several approaches have
been developed to address it, and gain sub-voxel information that re-
flects microstructural organization.

The tissue microstructure characterization have been addressed in
three different manners: relaxometry, diffusion, and their combina-
tion. All of them acknowledge the existence of multiple water com-
partment within a voxel, having each different properties.

The dMRI microstructure theory [2, 38, 41, 63, 65, 74] models tissue
as a composition of compartments with different geometrical shapes
and diffusion properties: free, hindered, and restricted. Moreover, spe-
cific models yielding metrics as axon diameter [1, 3], or neurite orien-
tation dispersion [74] are used in clinical research.

From the relaxometry perspective, data intensive techniques like
the Inverse Laplace Transform (ILT) with Non-Negative Least Squares
(NNLS) are used to fit multiexponential decays to the measures [47,
72]. More recently, a technique based on steady-sate acquisition was
developed to yield information of tissue microstructure up to three
compartments [19].

Nonetheless, dMRI and relaxometry can be combined to survey the
tissue underlying structure. Studies using a diffusion-weighted Carr-
Purrcell-Meiboom-Gill (CPMG) sequence [20, 58] showed correlation
between diffusivity and relaxation. Traditional diffusion-relaxation
correlation studies are highly data demanding [13], but more recent
techniques have presented smart regularization techniques [5, 40] that
bring them closer to in vivo applications

In some cases, the averaging outcome of the partial volume effects
is considered contamination[59]. This is the case of the diffusion es-
timates and the bias that Cerebrospinal Fluid (CSF) or free-water in-
troduces. As it is discussed in the next section (2) Free-Water Elimi-
nation (FWE) and tissue microstructure characterization are the main
themes of this work.





2
O U T L I N E A N D C O N T R I B U T I O N O F T H I S T H E S I S

This thesis focuses on methods to gain information about the tis-
sue composition beyond the resolution limit of MRI. Many have ad-
dressed this problem before using cumbersome models with plenty
of assumptions, or ill-posed model-free approaches (see section 1.1.4).
This dissertation opens three new to ways that minimize the assump-
tions, without compromising convergence. Moreover, these are less
data demanding than existing state-of-the-art solutions.

For the first time, the Blind Source Separation (BSS) formulation and
solutions are applied to the dMRI compartmental problem (section
3.1). BSS provides the theory and tools to separate signals that have
been linearly entangled. Thus, it is applicable to the tissue microstruc-
ture partial volume effects issue. In section 4.2.1, the dMRI signal is for
the first time expressed in a BSS framework [50]. A solution based on
Sparse Component Analysis (SCA) was proposed. However, SCA lim-
its the clinical usability due to protocol constraints. A more general
solution based on Nonnegative Sparse Coding (NSC) was introduced
in section 4.2.2 [51]. Finally, peer-reviewed journal publication based
on Nonnegative Matrix Factorization (NMF) (section 4.1.1) proved the
stability and robustness of this approach to disentangle dMRI signals
from tissue microstructure components [52].

Quantitative Transient-state Imaging (QTI) technique for ultra-fast
quantification of multiple tissue parameter [27] is introduced in chap-
ter 5. This imaging method enables simultaneous voxel-based quan-
tification of T1, T2, and PD. However, as explained in section 1.1.4
partial volume effects are also induced in this technique. In appendix
A.2.1 a disentangling approach different from BSS is explored. This
is based on tissue compartmental modeling and parameter estima-
tion, based on a Transitional Markov Chain Monte Carlo (TMCMC). A
Bayesian estimation and uncertainty quantification framework.

Finally, the most recurrent issue in partial volume effects for dMRI

is CSF or free-water contamination, which induces undesired biases
in the diffusion indexes. Literature proved the ill-posed nature of fit-
ting the DTI model accounting for two microstrucutre compartments
[59]. Several solutions to this problem were introduced in form of spa-
tial regularization [57] or protocol optimization [31]. Section 4.2.3 and
annex A.1.1 introduce a new perspective to this issue. The ill-posed
regularization problem is addressed with a pattern matching solution
based on deep learning [53]. This approach enables an Artificial Neu-
ral Network (ANN) to be trained with synthetically generated dMRI

13
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data. Unlike the state-of-the-art solutions, it does not require spatial
regularization or specific protocols, and it is at least 55-fold faster.



3
M E T H O D O L O G Y

This chapter provides with a theoretical background of the signal pro-
cessing techniques applied in this thesis. An introduction to the spe-
cific application is made. For further information read the referenced
sections containing the publication that developed the work.

3.1 blind source separation for dinsentanging diffu-
sion mri

As a general definition BSS [73] comprises the set of techniques that try
to disentangle signals sources that have been linearly mixed together.
All these techniques share a common working principles: there is
some prior information about the signal sources, and there is re-
dundancy in the entangled measures. In this thesis, BSS is applied
to dMRI data in order to separate signals coming from independent
microstructure compartments in brain tissue.

Let Xi(·) ∀i ∈ [1,N] be the measured signals that are the mixture of
the signal sources Sj(·) ∀j ∈ [1,M]:

Xi(·) =
N∑
j=1

aijSj(·), (36)

where aij are the mixing coefficient that weight the contribution of
Sj to the measure Xi. The variation of a measuring parameter of Xi
can induce different linear combinations of the sources, leading to:



X1(·)

...

XN(·)


 =



a11 . . . a1M

...
. . .

...

aN1 . . . aNM






S1(·)

...

SM(·)


 , (37)

which can be written as a matrix factorization: X = AS. Where the
measures matrix, X ∈ RN×B, is known, and decomposed into the
mixing matrix, A ∈ RN×M, and the sources matrix, S ∈ RM×B.

The dMRI signal can be expressed as a linear combination of the
signals produced in the M tissue microstructure compartments, Sj.
Moreover, a TE dependence of the measures X appears as a result of
the T2 differences in the sub-voxel compartments. Thus a compart-
mental solution of the Equation 24 is

Xi(TEi,b, ~g) = S0
N∑
j=1

fje
−TEi/T2jSj(b, ~g). (38)

15
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From Equation 38 one can infer that the variation of TE yields dis-
tinct combinations of Sj resulting in different Xi. Therefore, mimick-
ing Equation 37



X1(TE1, ·)

...

XN(TEN, ·)


 = S0




f1e
−TE1
T21 . . . fMe

−TE1
T2M

...
. . .

...

f1e
−TEN
T21 . . . fMe

−TEN
T2M






S1(·)

...

SM(·)


 , (39)

where the influence of the compartmental volume (fj) and relax-
ation (T2j) properties are encoded in the mixing matrix, while the
diffusion properties are exclusively located in the sources matrix.

The direction of the columns of A is determined by the ratio be-
tween TE and T2. Hence, after characterizing A and knowing the TE

values used in the protocol

T2i =
TEk − TEl
log( aliaki )

(40)

where aki and ali are elements in the ith column of A for TEk <
TEl. Once the T2 values are computed as in Equation 40, and given
that Sj(b = 0, ~g) = 1, Equation 39 simplifies to



X1(TE1,b = 0)

...

XN(TEN,b = 0)


 = S0




e
−TE1
T21 . . . e

−TE1
T2M

...
. . .

...

e
−TEN
T21 . . . e

−TEN
T2M






f1
...

fM


 , (41)

where
∑M
j=1 fj = 1, enables the estimation of fj and S0.

The family of BSS can be separated in four big groups. Principal
Component Analysis (PCA) [35], Independent Component Analysis
(ICA) [34], Sparse Component Analysis (SCA) [11], and Nonnegative
Matrix Factorization (NMF) [6]. During this work all of them were
considered. However, PCA and ICA were discarded in an early stage,
since the properties of dMRI signals do not meet the requirements of
these techniques (see section 4.1.1).

3.1.1 Sparse Component Analysis

The working principles of SCA [11] require the signals sources (S) to
be sparse and disjoint in a given transformed domain. When these
conditions are met, the measured samples in the transformed space
(X ′) organize themselves along lines. The direction of these lines are
defined by the mixing coefficients (aij), enabling the characteriza-
tion of the mixing matrix and thus, allowing the disentangling of
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the sources. In different way, when S ′ are sparse and disjoint, only
independent mixing coefficients are active at a time in the columns of
A, enabling its estimation.

The advantage of SCA over other BSS techniques falls in its indepen-
dence from the number of signal sources: each line in the transformed
domain represents a source. However, the full characterization of A
requires the number of measures to be equal or lager to the num-
ber of sources (M > N), limiting the maximum number of detectable
sources.

The disentangling effect of dMRI signal sources with SCA is investi-
gated in section 4.2.1. The most important challenge for the usability
of SCA is to find the right transformed domain that meets the sparsity
and disjoint requirements. There is a dependence of the signal and
the prescribed diffusion protocol that makes imposible to generalize
a unique transformation. A solution based on wavelet transform was
found for a protocol consisting of only one diffusion direction and an
incremental b-value. Sections 3.1.2 and 3.1.3 present the generaliza-
tion to any prescribed diffusion protocol.

3.1.2 Nonnegative Matrix Factorization

The theory of Nonnegative Matrix Factorization (NMF) [56] tackles the
problem expressed in Equation 37 when the elements of A and S are
nonnegative. Since only the magnitude of the dMRI signal is consid-
ered, and given that it is an attenuation based contrast, the nonnega-
tivity requirement is satisfied by the data. A wide variety of solutions
exist for this problem (see [73]). The Alternating Least Squares (ALS)
algorithm [6] is chosen over others for its faster convergence. Let F be
the target function

F =
1

2

∑
ij

(
xij − aijsij

)2 . (42)

The iterative solution for Equation 42 is given by algorithm 1.
However, infinite number of solutions exist for this problem due

to a scaling factor that can shift from the columns of A to S. To
guarantee that only physically possible solutions are reached, extra
constraints must be added based on Equation 39. This is shown in
section 4.1.1 where relaxometry and diffusion constraints are incor-
porated to the algorithm 1 to produce the Constrained Alternating
Least Squares (cALS). Specifically for two compartments (tissue and
CSF), large convergence areas are found when the T2tissue ∈ [0, 300]
ms, T2CSF = 2 seconds, and SCSF = e−bDCSF with DCSF = 3× 10−3
mm2/s.

The results shown in section 4.1.1 prove that tissue microstructure
information can be extracted from dMRI data using BSS, and more pre-
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Algorithm 1 Alternating Least Squares

1: procedure ALS(X)
2: Randomize the positive defined At=0 and St=0.
3: while until convergence do
4: Solve for St+1 in ATtAtSt+1 = ATtX
5: Set all negative elements of St+1 to 0.
6: Solve for At+1 in St+1STt+1ATt+1 = St+1XT

7: Set all negative elements of At+1 to 0.
8: t = t+ 1

9: end while
10: end procedure

cisely a physically constrained NMF algorithm. In this sense, PD, vol-
ume, and relaxometry compartmental effects can be separated. More
important, diffusion signals from independent sub-voxel component
are disentangled, paving the way for independent analysis. For in-
stance. in a two compartments model, this approach introduces a new
method for FWE.

There are two main disadvantages of this method. The first one
comes from hardware limitations in clinical scanners. The minimum
reachable TE 60 ms, impeding the inclusion of a third compartment
corresponding to myelin water [47]. The second limitation comes
from the condition of the mixing matrix. When A is bad-conditioned
–due to similar compartmental T2i or similar TEi– the cALS algorithm
might be unstable due to numerical errors derived from the iterative
inversion of A.

3.1.3 Nonnegative Sparse Coding

Nonnegative Sparse Coding (NSC) [32, 43] was explored as a way to
generalize the results achieved with SCA. The idea is to use sparseness
as a regularization factor, reducing the number of physical restric-
tions. This technique imposes two constraints: nonnegativity (as in
section 3.1.2), and sparseness (differently from section 3.1.1), defining
the objective function

F =
1

2

∑
ij

(
xij − aijsij

)2
+ λ

∑
kj

skj (43)

where aik > 0, skj > 0, ∀k,
∑
i aik = 1, and λ > 0. The sparseness

is control through λ.
The iterations over A and S to solve Equation 43 are defined by the

algorithm 2.
However, signal diffusion sources are not sparse in the diffusion di-

rection. Thus, a previous sparsifying step is needed for NSC to yield
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Algorithm 2 Nonnegative sparse coding algorithm

1: procedure NSC(X)
2: Randomize the positive defined At=0 and St=0.
3: while until convergence do
4: A ′ ← At − λ(AtSt − X)STt
5: Set all negative elements of A ′ to 0.
6: Normalize the columns of A ′

7: At+1 = A ′

8: St+1 ← St. ∗ (ATt+1X)./(ATt+1At+1St + λ)
9: t = t+ 1

10: end while
11: end procedure

relevant results. In this work, instead of using an specific transform
(e.g. FT), it is learnt from the data [62], allowing for protocol indepen-
dence. The combination of NSC and sparsifying transform learning is
discussed in section 4.2.2. The results in phantom and in vivo exper-
iments indicate that this method is suitable for disentangling up to
two compartments.

3.2 pattern matching with deep learning for free-water

elimination

The partial volume contamination, specifically the one coming from
free-water (section 1.1.4), poses a problem in dMRI. In some areas of
the brain, this issue influences the diffusion signal, introducing a bias
in the derived diffusion indexes (e.g. FA, MD, AD) [59].

This problem has been typically tackled with a two compartments
approach: tissue and free-water (Equation 44). However, for the DTI

model, this problem is ill-posed for acquisitions containing only one
b-value (besides b = 0 mm2/s). The state-of-the-art solutions regular-
ize this problem [31, 57].

S(b, ~g) = ftissueStissue(b, ~g) + (1− ftissue)SCSF(b, ~g). (44)

In section 4.2.3 and appendix A.1.1 a deep learning pattern match-
ing approach is developed, shifting the perspective of this problem.
This is possible due to the good definition of the isotropic CSF or
free-water: SCSF(b, ~g) = e−bDCSF with DCSF = 3 × 10−3 mm2/s,
which can be analytically calculated and mixed with random signals
(Stissue(b, ~g)) for random volume fractions (ftissue), creating a the-
oretically infinite amount of training data. An ANN can learn from
these synthetic data to recognize the free-water induced patterns and
estimate the tissue volume fraction from the data.

After training the ANN with synthetically generated diffusion data,
clinical measures are processed voxelwise with the trained model.
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The knowledge of ftissue and SCSF allow to compute the diffusion
signal of the tissue

Stissue(b, ~g) =
S(b, ~g) − (1− ftissue)SCSF(b, ~g)

ftissue
, (45)

and fit it to any tissue model that do not account for isotropic dif-
fusion, e.g. DTI. This enables the computation of free-water corrected
maps of FA, which are shown to be relevant for patients with glioblas-
toma (annex A.1.1).

3.3 bayesian methods for multiparameter microstruc-
ture estimation

Variations of the signal evolution described in Equation 34 measured
in steady-state are use to extract tissue microstructure information.
However, acquiring enough data to fit the mcDESPOT [19] model is a
lengthy process. The introduction of QTI as an ultra-fast quantitative
scheme paved the way to yield microstructural parameters from the
transient-state evolution of the NMR signal. In this sense, Equation 34

can be extended for N compartments

y(~k, t) =
M∑
i=0

fiyi(~k, t), (46)

where fi and yi are the volume fraction and the signal evolution
of the ith component. Given that the prescribed acquisition protocol
is the same for all the compartments (α(t), TR(t), and TE(t)), it is
necessary that the compartmental relaxation properties differ (T2i 6=
T2j and T1i 6= T1j ∀ i 6= j) for them to be detected.

The estimation of the volume and relaxation parameters for one,
two and three compartments is developed in Appendix A.2.1. A par-
allel high performance computing framework, named Π4U [29], quan-
tifies the model parameters and uncertainty. To that end, Π4U uses a
stochastic Bayesian inference algorithm, TMCMC [7, 16], that computes
the posterior Probability Density Function (PDF) of the parameters (~θ)
given the data (D) and the model class (M).

p(~θ|D,M) =
p(D|~θ,M)π( ~θ|M)

p(D|M)
, (47)

where the prior PDF of the parameters, π(~θ|M), includes informa-
tion on the uncertainty of the model parameters. The likelihood of
observing the data from the model class is p(D|~θ,M), and the evi-
dence of the mode is p(D|M).
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Let ~g(~θ|M) be the predictions of the model and the measured data
D = {~h} fulfilling

~h = ~g(~θ|M) +~e, (48)

where ~e accounts for all sources of error (measuring, computa-
tional, and modeling), and follows a Gaussian distribution with zero
mean and Σ covariance matrix. Under this error condition, the likeli-
hood is

p(D|~θ,M) =
|Σ(~θ)|−1/2

(2π)n/2
exp

[
−J(~θ,M)

2

]
(49)

where

J(~θ,M) =
[
~h− ~g( ~θ|M)

]T
Σ−1(~θ)

[
~h− ~g( ~θ|M)

]
(50)

quantifies the weighted error between the model fit and the mea-
sured data.

Stochastic methods based on Markov Chain Monte Carlo (MCMC)
enable to draw samples from the posterior PDF, from which one can
derive the marginal distribution of the parameters ~θ, allowing the
computation of the evidence of the model.

To disentangle tissue microstructure, three model classes were de-
fined by increasing M from one to three in Equation 46. The param-
eter space comprises ~θ = {T1i , T2i , fi,σ

2} ∀ i ∈ [0,M], where σ2 repre-
sents the noise variance, redefining the likelihood

p(D|~θ,M) =
1√
2πσ2

e
−
η(D|~θ,M)

2σ2 , (51)

where the error is defined as

η(D|~θ,M) = ||~h− ~g(~θ|M)||22 (52)

The prior PDF of the parameters (π(~θ|M)) was defined uniformly in
a range of values informed by literature [19, 45, 47, 72]. In this way, the
posterior PDF can be sampled in the parameter space, and marginal
maximum likelihood values and uncertainty can be computed for
each parameter.

The results show a smaller error variance for three compartments
than for one and two, agreeing with previous findings [19, 47]. More-
over, although this approach showed some bias coming from the
monocompartmental acquisition and reconstruction design, and noise
model, the distribution and estimates of the components volume frac-
tion and relaxometry parameters where compatible with the brain
anatomy.
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T I S S U E M I C R O S T R U C T U R E C H A R A C T E R I Z AT I O N
W I T H D I F F U S I O N M R I

4.1 peer-reviewed publications

This chapter deals with compartmental tissue microstructure charac-
terization from dMRI. The journal paper with title A diffusion model-
free framework with echo time dependence for free-water elimina-
tion and brain tissue microstructure characterization, develops the
theoretical framework that merges BSS and dMRI and shows simula-
tions of convergence along with phantom and in vivo analysis. The
results prove the clinical potential and limitations of this method, and
establish the constrained ALS algorithm here developed as a robust
technique to disentangle diffusion signals from sub-voxel tissue com-
partments.

25
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4.1.1 A diffusion model-free framework with echo time dependence for free-
water elimination and brain tissue microstructure characterization

Peer-reviewed Journal Paper

Authors: M. Molina-Romero, PA. Gómez, JI. Sperl, M. Czisch, PG.
Sämann, DK. Jones, MI. Menzel, BH. Menze.

In: Magn Reson Med., 00:1–18. https://doi.org/10.1002/ mrm.27181

(2018) [52].

Abstract: Purpose: The compartmental nature of brain tissue microstruc-
ture is typically studied by diffusion MRI, MR relaxometry or their
correlation. Diffusion MRI relies on signal representations or biophys-
ical models, while MR relaxometry and correlation studies are based
on regularized inverse Laplace transforms (ILTs). Here we introduce
a general framework for characterizing microstructure that does not
depend on diffusion modeling and replaces ill-posed acILTs with
blind source separation (BSS). This framework yields proton density,
relaxation times, volume fractions and signal disentanglement, allow-
ing for separation of the free-water component. Theory and Methods:
Diffusion experiments repeated for several different echo times, con-
tain entangled diffusion and relaxation compartmental information.
These can be disentangled by BSS using a physically constrained non-
negative matrix factorization. Results: Computer simulations, phan-
tom studies, together with repeatability and reproducibility exper-
iments demonstrated that BSS is capable of estimating proton den-
sity, compartmental volume fractions and transverse relaxations. In
vivo results proved its potential to correct for free-water contamina-
tion and to estimate tissue parameters. Conclusion: Formulation of the
diffusion-relaxation dependence as a BSS problem introduces a new
framework for studying microstructure compartmentalization, and a
novel tool for free water elimination.

Contribution of thesis author: Model development and implementa-
tion, experimental analysis, manuscript preparation and editing.

Copyright Notice: © Wiley Periodicals, Inc. 2018. All rights re-
served.
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Abstract

Purpose: The compartmental nature of brain tissue microstructure is typically studied

by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal repre-

sentations or biophysical models, while MR relaxometry and correlation studies are based on

regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for char-

acterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs

with blind source separation (BSS). This framework yields proton density, relaxation times, vol-

ume fractions and signal disentanglement, allowing for separation of the free-water component.

Theory and Methods: Diffusion experiments repeated for several different echo times,

contain entangled diffusion and relaxation compartmental information. These can be disentan-

gled by BSS using a physically constrained non-negative matrix factorization.

Results: Computer simulations, phantom studies, together with repeatability and repro-

ducibility experiments demonstrated that BSS is capable of estimating proton density, com-

partmental volume fractions and transversal relaxations. In vivo results proved its potential to

correct for free-water contamination and to estimate tissue parameters.

Conclusion: Formulation of the diffusion-relaxation dependence as a BSS problem intro-

duces a new framework for studying microstructure compartmentalization, and a novel tool for

free water elimination.

Keywords: brain microstructure, diffusion MRI, blind source separation, free-water elimina-

tion, MR relaxometry, non-negative matrix factorization
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Introduction

More than fifty years have passed since Stejskal and Tanner published their early research on pulsed

gradient spin-echo (PGSE) (1). Thereafter, diffusion weighted imaging (DWI) became an essential

tool for non-destructive tissue microstructure characterization. The pioneering studies on ex vivo

tissue and simulations of Krägger (2), Latour et al. (3), Szafer et al. (4), and Stanisz et al.(5)

established the theoretical basis of the compartmental model of neural tissue.

These early contributions were later translated to target specific biomarkers for in vivo human

studies. White matter (WM) anisotropy became fiber orientation with the introduction of diffusion

tensor imaging (DTI) (6). The composite hindered and restricted model of diffusion MR imaging

(CHARMED) (7) extended DTI to two compartments with restricted and hindered diffusion be-

havior. Using the same principles, the neurite orientation dispersion and density imaging (NODDI)

model (8) introduced fiber orientation dispersion metrics and added an isotropic compartment.

Additionally, axon diameter was addressed by AxCaliber (9) and ActiveAx (10). These and other

approaches rely on diffusion signal representations or a variety of geometric biophysical assumptions

about the underlying tissue compartments, producing a wide range of possible configurations (11).

In parallel with the development of multicomponent diffusion tissue models, relaxometry ad-

dressed the compartmental nature of tissue microstructure from a different perspective (12). Multi-

echo spin echo (SE) experiments combined with regularized inverse Laplace transforms (ILTs) for

multi-exponential fitting showed the presence of multiple water compartments in the tissue. Non-

negative least squares (NNLS) (13) is the current gold standard for computing a regularized discrete

ILTs for several components (14, 15). Alternatively, the exponential analysis via system identifica-

tion using Steiglitz–McBride (EASI-SM) for multicomponent estimation was introduced by Stoika

et al. (16, 17). Additionally, mcDESPOT (18), used a spoiled gradient-recalled echo and a balanced

steady-state free precession to yield relaxation, volume fraction, and water exchange parameters for

three compartments.

Nevertheless, the paths of diffusion MRI and MR relaxometry have become entangled over the

years. Studies on ex vivo nerves with a diffusion-weighted Carr-Purcell-Meiboom-Gill (CPMG)

sequence (19, 20) showed the relationship that existed between compartmental T2 decay and dif-

fusivity. However, diffusion-weighted CPMG experiments need long acquisition times and high

specific absorption rates, which makes them unsuitable for human in vivo studies. Typically, two-

dimensional ILTs were used to fit the data, but this approach is highly ill-posed and requires large
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amounts of data for stabilization. Recently, Benjamini et al. (21) introduced the marginal distri-

butions constrained optimization (MADCO), a non-CPMG compressed-sensing based solution that

reduced the amount of data necessary for NMR diffusion-relaxation correlation experiments. Kim

et al. translated diffusion-relaxation correlation spectroscopy (DR-COSY) (22, 23) into imaging

(DR-CSI) (24) using spatial regularization to reduce the amount of necessary data and stabilize

the ILTs. However, they require specific diffusion protocols with increasing b-values along a unique

diffusion direction and repeated echoes or inversion times. Other alternatives combine diffusion

models with multicompartmental relaxation. For instance, inversion recovery DWI has been used

to identify fiber populations (25, 26), and WM integrity has been characterized using the axonal

stick model and multiple echo times (TE) (27).

Compartmental analysis of the diffusion signal is intimately related to a recurring issue: cere-

brospinal fluid (CSF) contamination (28, 29). All the existing contributions agree on using a bi-

tensor signal model: parenchyma and CSF. However, this is an ill-posed problem for a single-

shell and ill-conditioned for multiple-shell acquisitions (30). Spatial regularization was proposed by

Pasternak et al. (31), relying on the local smoothness of the diffusion tensor. Later, a protocol

optimization for multiple shells was presented by Hoy et al. (32), eliminating such a constraint.

Other solutions regularize the problem by adding priors (33) or finding the best fit to the model (34).

Nevertheless, the CSF contribution to the diffusion signal depends on the TE. Thus, disentangling

the tissue CSF volume fraction requires an approach that includes T2 compartmental dependencies

(33, 35, 36).

We propose a general framework for studying diffusion and relaxation characteristics in tissue

microstructures. We call it general because it does not model the compartmental diffusion behavior.

It replaces the ILTs by a blind source separation (BSS) technique, reducing the minimum number of

distinct echo times required to the number of compartments in the tissue, less than for ILTs-based

methods. Other than the requirement to measure at more than one echo time, this framework

is diffusion protocol-agnostic, and can be used in combination with any protocol of interest. Our

approach quantifies proton density (PD), compartmental volume fractions, and transverse relaxation

times. Importantly, it handles diffusion signals from each compartment independently, allowing for

individual analyses, and thus performs CSF partial volume correction as a direct application.
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Theory

Following the Bloch-Torrey equation, we describe the diffusion signal as a weighted sum of the

signals from the compartments comprising the tissue:

X(TE, b,g) = S0

M∑

i=1

fie
− TE

T2i Si(b,g). [1]

Where b summarizes the gradient effects (1, 37) and g defines the gradient directions. Here,

the compartmental diffusion sources Si(b,g) are weighted by their volume fraction, fi, TE and T2i .

The exponent (the ratio between TE and T2i) scales the contribution of each compartment to the

acquired signal. Therefore, measuring at different TEs produces distinct diffusion signals (38) with

different weights from the compartmental signal sources.

As a result, the signal of a single voxel measured with a protocol that accounts for multiple

echoes can be formulated as:



X1(TE1, b,g)
...

XN (TEN , b,g)


 = S0




f1e
−TE1
T21 · · · fMe

−TE1
T2M

...
. . .

...

f1e
−TEN
T21 · · · fMe

−TEN
T2M







S1(b,g)
...

SM (b,g)


 , [2]

where Xj (j ∈ [1, N ]) are the diffusion signals acquired for the N TEs. fi and T2i (i ∈ [1,M ]) are

the volume fraction and T2 decay for the ith compartment, respectively, and M is the number of

compartments.

Equation 2 can be expressed in matrix form as X=AS. This is a matrix factorization of the

measurements, X ∈ RN×n
≥0 , into two new matrices: the mixing matrix, A ∈ RN×M

≥0 , which is defined

by the experimental TEs, the compartmental volume fractions f , and T2 decays; and the sources

matrix, S ∈ RM×n
≥0 , representing the diffusion sources in each sub-voxel compartment. Interestingly,

we noticed from the definition of A that the ratio between the experimental TEs and T2i determines

the direction (or slope for N = 2) of the ith column vector of the mixing matrix. Therefore:

T2i =
TEk − TEl

log( ali
aki

)
, [3]

where TEk < TEl, and aki and ali are the kth and lth elements of the ith column of the mixing

matrix, respectively.
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Additionally, diffusion is an attenuation contrast and as such, S(b = 0) = 1, allowing Eq. 2 to

be rewritten as




X1(TE1, b = 0,g)
...

XN (TEN , b = 0,g)


 = S0




e
−TE1
T21 · · · e

−TE1
T2M

...
. . .

...

e
−TEN
T21 · · · e

−TEN
T2M







f1
...

fM


 , [4]

which, together with
∑M

i=1 fi = 1, allows us to solve for the volume fractions and proton density

(fi and S0) when the number of measurements matches the number of compartments (M = N).

Contrary, when there are more compartments than measurements (M > N), Eq. 4 is undetermined

and fi and S0 cannot be estimated.

Factorizing X into A and S is known as blind source separation (BSS) (39) of mixed measure-

ments into their generating sources (Figure 1). For BSS to identify these sources, they have to be

distinct: Si 6= Sj ∀ i 6= j. Therefore, based on previous work (19, 20), we assumed them to be

different.

There are four main approaches to BSS: principal component analysis (PCA) (40), indepen-

dent component analysis (ICA) (41), non-negative matrix factorization (NMF) (42) and sparse

component analysis (SCA) (43). PCA is not an applicable solution for this problem because the

diffusion sources are not orthogonal. ICA assumes, as prior knowledge, that the signal sources are

statistically independent and have non-Gaussian distributions. However, diffusion MRI signals are

correlated with the tissue structure and temperature and they present non-Gaussian distributions

only in restricted compartments, meaning that ICA is not suitable either. We previously explored

SCA (44) and found that even though the results for simulations and real data for specific diffusion

protocols were encouraging, finding a sparse and disjoint domain to meet the method’s requirements

was not always possible for arbitrary protocols. We observed the same issue for a version of NMF

that enforces sparsity similarly (36).

In the present work, we took a BSS approach based on NMF (assuming X, A, and S are

non-negative). Instead of depending on sparsity, we used a popular NMF solver: the alternating

least squares algorithm (ALS) (42, 45, 46). We chose ALS instead of the multiplicative update

algorithm (47) due to its faster convergence (48). We extended ALS to account for physically

plausible limitations, resulting in Algorithm 1, which we refer to as constrained alternating least

squares (cALS). Compartmental T2 values available from the literature (15) allowed us to limit the

solution space of the columns of A (Eq. 3). Additionally, for in vivo data, the diffusion behavior
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of CSF is known to be approximately isotropic with 3× 10−3 mm2/s diffusivity (28), adding extra

prior information. These constraints and priors make cALS converge toward physically realistic

solutions (Figure 1).

Algorithm 1 Constrained Alternating Least Squares (cALS)

1: procedure cALS(X)

2: Use priors on T2 and experimental TEs to initialize the direction of the columns of A at the

central T2 value of the solution space of each column.

3: while iter < maximum iterations do

4: Solve for S in ATAS=ATX. . Least Squares.

5: Set all negative elements of S to 0. . Non-negativity.

6: [Fix the one element of S to a known signal.] . If analytical expression is known.

7: Solve for A in SSTAT=SXT . . Least Squares.

8: Set all negative elements of A to 0. . Non-negativity.

9: Constrain the directions of the columns of A. . T2 consistency.

10: errori = ‖A− SX‖2

11: if errori < tolerance then

12: break . Check for data consistency.

13: end if

14: if errori >= errori−1 then

15: break . Check for convergence.

16: end if

17: end while

18: return A

19: end procedure

Constrained ALS initializes the column vectors of A at the central T2 of their given constraints,

avoiding random initializations in regions that are not physically feasible and increasing the stabil-

ity. After each iteration, cALS verifies that the resulting T2 of each column vector is between its

boundaries, and sets it back to the center of its constrained solution space otherwise.

Following the factorization of A, we estimated T2 and f for each compartment, (Eqs. 3 and 4),

and recalculated the real A. This is important since the column norms of the factorized A do not

tell us about the volume fractions. Then, S=A−1X is calculated.
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An iterative algorithm like cALS inverts A repeatedly, requiring it to be non-singular and

introducing a new condition. From Eq. 2, A is non-singular when T2i 6= T2j ∀ i 6= j. Hence, in

accordance with the literature (19, 20), we assumed that the transverse relaxation times for each

compartment were distinct.

An open source implementation can be found in https://github.com/mmromero/dwybss.

Methods

Simulations

NMF is known for converging to local minima (45). Thus, it is necessary to asses the impact of

the constraints. We ran simulations with Rician noise for signal-to-noise ratio (SNR) levels of 50,

100, and 150 at the non-diffusion weighted volume and minimum TE. We accounted for T2 values,

volume fractions, and diffusivities supported by literature (15, 28).

Two compartments

Two compartments were simulated mimicking IE and CSF water. The diffusion protocol included

one non-diffusion weighted volume and 30 directions. We modeled diffusion as a Gaussian process

(see Figure S4). For all the simulations we used T2CSF = 2000 ms, and varied T2IE from 50–150 ms

in 30 increments (15). Values of fIE = 0.25, 0.5 and, 0.75 were used. We fixed TE1 = 60 ms, and

explored TE2 from 70–150 ms in 31 increments. We defined ∆TE = TE2 - TE1. The performance

of the cALS algorithm was tested under the following conditions:

1. Overlapped T2 constraints: T2IE and T2CSF were bounded from 0–1000 and 0–3000 ms

respectively, and no assumption on SCSF was made (Figures 2 and S5).

2. Overlapped T2 constraints and prior SCSF : T2IE and T2CSF were bounded from 0–1000

and 0–3000 ms respectively. CSF diffusivity was assumed to be isotropic with value 3 × 10−3

mm2/s (Figure S10).

3. Separated T2 constraints: T2IE and T2CSF were bounded from 0–300 and 300–3000 ms

respectively, and no assumption on SCSF was made (Figure S11).

4. Separated T2 and prior SCSF : T2IE and T2CSF were bounded from 0–300 and 300–3000 ms

respectively. CSF diffusivity was assumed to be isotropic with value 3 × 10−3 mm2/s (Figure
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S13).

5. Fixed T2CSF : T2IE was bounded from 0–300 ms. T2CSF was fixed to 2000 ms. No assumption

on SCSF was made (Figure S12).

6. Fixed T2CSF and prior SCSF : T2IE was bounded from 0–300 ms. T2CSF was fixed to 2000

ms. CSF diffusivity was assumed to be isotropic with value 3 × 10−3 mm2/s (Figures 3 and

S6).

We repeated the last simulation for values of fIE = 0 and 1, accounting only for IE or CSF

(Figures 4 and S7).

Finally, intra-cellular (IC) and extra-cellular (EC) T2 values are similar (15). We assessed the

potential of BSS to separate them. Two diffusion signals were generated (see Figure S14). We used

fIC = 0.25, 0.5, and 0.75. The T2IC vales ranged from 50–90 ms in 30 increments, and T2EC =

100 ms. TE1 was fixed to 60 ms and TE2 was varied between 70–150 ms in 31 increments. No

assumption was made on the diffusion signals, and T2 constraints were defined between 0–150 and

0–200 ms for IC and EC respectively (Figures 5 and S8).

We simulated 1000 times each combination of parameters, and reported the mean value of the

absolute error of f , the relative error of T2, and their standard errors (SEM).

Three compartments: searching for myelin

We incorporated a fast decaying component to model myelin, and fixed the T2 of myelin (T2M ) to

15 ms (15). T2IE was varied from 50–150 ms in 30 increments, and T2CSF = 2000 ms. To account

for short T2 components we needed to reduce the minimum TE of our simulations (see phantom

experiments in the supporting material). Therefore, we fixed TE1 = 10 ms, TE3 = 150 ms, and

varied TE2 from 20–140 ms in 31 increments. We defined ∆TE = TE2 - TE1. Three cases were

explored: 1) fM = 0.1, fIE = 0.6; 2) fM = 0.2, fIE = 0.5; and 3) fM = 0.3, fIE = 0.4; keeping

fCSF = 0.3 for all of them. Simulations were run for two cases:

1. Overlapped T2 constraints: T2M , T2IE , and T2CSF were bounded from 0–40, 0–300, and

0–3000 ms respectively. No assumption on SCSF was made.

2. Separated T2 constraints, fixed T2CSF and prior SCSF : T2M and T2IE were bounded

from 0–40 and 41–300 ms respectively, while T2CSF = 2000 ms. CSF diffusivity was assumed

to be isotropic with value 3 × 10−3 mm2/s (Figures 6 and S9).
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Each combination of parameters was simulated 1000 times. The mean value of the absolute

error of f , the relative error of T2, and their SEM were reported.

In vivo clinical data: free-water elimination

We aim to show that BSS has potential applications in clinical settings. To this end, we ran an

experiment to analyze its performance for estimating tissue parameters and correcting for CSF

contamination.

Data acquisition

Two volunteers, a male (age 28 years) and a female (age 24 years) were scanned in a 3.0 T GE

MR750w (GE Healthcare, Milwaukee, WI). The in vivo study protocol was approved by our insti-

tutional review board and prior informed consent was obtained. We acquired seven diffusion PGSE

echo planar imaging (EPI) volumes for TE values from 75.1–135.1 ms in 10 ms increments. The

following parameters were constant: FOV = 240 mm; 4 mm slice thickness; TR = 6000 ms; 96 × 96

matrix size; ASSET = 2; and 30 directions. Additionally, we measured fluid-attenuated inversion

recovery (FLAIR) SE EPIs for 17 equally-spaced TEs ranging from 20–260 ms. The same imaging

parameters were used as for the diffusion experiments but with no acceleration (ASSET = 0).

Data analysis

Diffusion data for all TEs were first registered with FSL FLIRT (49) to the shortest TE volume.

We then processed them with BSS in pairs (M = N = 2) with a fixed short TE of 75.1 ms. The

long TE was increased from 85.1 to 135.1 ms for a total ∆TE of 60 ms (Figures 7 and 8). We

used literature CSF values (T2CSF = 2 s and DCSF = 3 · 10−3 mm2/s) as the prior knowledge, and

constrained the possible values of T2IE between 0–200 ms (15, 28). We report maps of the BSS

relative factorization error (Figure 7a, 7b and 7g), CSF volume fraction (Figure 7c and 7h), proton

density (Figure 7d and 7i), T2IE (Figure 7e and 7j) and number of compartments (Figure 7f and

7k).

For reference, FLAIR multi-echo EPI data were also registered with FLIRT to the shortest TE

non-diffusion weighted volume. The signal decay for each voxel was then matched to a dictionary

of mono-exponential decays from 0–300 ms with a grid of 1 ms. We compared this map against the

BSS T2IE map (Figure 8).
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We defined the relative error of the matrix factorization for the in vivo data as follows:

ε =
|X− S0AS|2
|X|2

. [5]

This is a measure of the performance of BSS for each voxel. Given that we calculated S=A−1X,

this error formulation is sensitive to: 1) breaches of the BSS conditions due to artifacts, and 2)

numerical instabilities due to the condition of A. Point one is the result of B0 drift, subject motion,

flow, and eddy currents. These effects produce a violation of the BSS condition, making the signal

sources different between TE measurements. The second point is the error amplification factor. A

high ε denotes that the factorization could not find a solution within the constrained space and

thus, results might not be trustworthy.

Finally, BSS does not model the compartmental diffusion signal. However, to demonstrate a sim-

ple way to perform compartment-independent analysis and correct for CSF contamination, we fitted

the measured and disentangled signals to the DTI model (6). We fitted the measured diffusion vol-

umes at the shortest TE, and the BSS separated signals for the IE and CSF compartments to a mono-

exponential model using standard linear regression (FSL FDT Toolbox (http://www.fmrib.ox.ac.uk/fsl)).

For comparison, bi-exponential models using Pasternak’s and Collier’s methods were used (Figures

9, S15 and 10). Fractional anisotropy (FA) and mean diffusivity (MD) maps were derived for each

fit.

Results

Simulations

Two Compartments

The convergence area is the region where the mean relative error of T2IE is lower than 0.1 per unit

(p.u). Its shape for all the simulations (Figures 2, 3, 4, 5, S5, S6, S7, S8, S10, S11, S12, and S13)

follows two effects. First, the condition number of the mixing matrix limits the lower bound of ∆TE

– similar TE values produce more linearly dependent column vectors of A –. And second, the SNR

plays a double role, it increases the error regions where A is bad-conditioned (small ∆TE), and

limits the maximum ∆TE due to the T2 decay of the signals. Thus, when the SNR increases the

convergence area grows and the region of minimum SEM, denoting an improvement on the stability

of the algorithm. The convergence area also depends on the IE volume fraction. The larger is the

10 / 56

4.1 peer-reviewed publications 37



doi: 10.1002/mrm.27181 Accepted in Magnetic Resonance in Medicine

contribution of IE, the better is th T2IE estimate.

Adding priors on SCSF improves the T2IE estimate, even at SNR = 50 (Figure S10). Bounding

the solution space into non-overlapping regions also improves the results of T2IE (Figure S11),

although less than combining it with CSF prior knowledge (Figure S13). The T2CSF estimate shows

a 0.17 p.u. due to the small variation of SCSF along the acquired TEs (4.4 %). This is corrected

when relaxometry prior is incorporated (Figures 3 and S12). The comparison between Figure 2

and 3, show the benefit of including prior knowledge into the factorization algorithm, specially at

low SNR. Then, the accuracy of the estimates will be influenced by the selection of ∆TE, the T2

boundaries, the SCSF prior, and the expected T2IE and fIE values. We used literature values for

T2IE , T2CSF (15), and SCSF (28). According to Figures 3a and 3b one needs a minimum ∆TE of

26 ms for an accurate fIE estimate. Interestingly, fIE is a reliable parameter that tell us about the

bias of T2IE , the larger fIE is, the more accurate T2IE becomes (3a and 3c).

For one tissue compartment BSS is able to precisely (SEM < 0.01) estimate the volume fraction

with mean absolute error below 0.1 when ∆TE > 35 ms (Figure 4a and 4b). When fIE = 1 the

area of mean convergence of the T2IE estimate is almost independent from ∆TE (4c and 4d). We

found an equivalent result for the mean relative error of T2CSF when fIE = 0 (4e and 4f), although

in this case it comes from the T2CSF prior. Notice the large error and instability of T2IE and T2CSF

in the opposite cases, fIE = 0 and fIE = 1 respectively (Figures 4c and 4e). This results when BSS

tries to find a component that is not in the tissue and thus, cannot be estimated.

For two components with similar T2 values and little priors (IC and EC) cALS losses efficiency.

The volume fraction estimates are biased (Figure 5a), and T2IC shows a narrow convergence region

that is almost independent of ∆TE. The lower bound of this region is limited by the proximity of

T2IC and T2EC that worses the condition of A. The upper bound results of the lack of prior on the

signal of one of the compartments, in contrast with the SCSF prior used before (compare Figures 2

and S10) that increased the convergence area towards lower T2 values.

Three Compartments: searching for myelin

The convergence area is the one where the errors of fM , fIE , T2M , and T2IE are lower than 0.1

in absolute value for the volume fractions and per unit for T2. Figures 6a, 6c, 6e, and 6g show

and optimal ∆TE = 36 ms. Notice that when ∆TE increases the error of the myelin parameters

grows due to the reduction of the myelin contribution to the second TE, worsening the SNR of that

component (Figures 6a and 6e). Since all the volume fractions add up to one, errors on fM increase
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the error on fIE (Figures 6a and 6c). The estimate of T2IE is dependent on SNR and its volume

fraction, compounding its calculation for SNR < 50 and fIE < 0.4 (Figure S9g lower left corner).

One should notice that including a third compartment increases the condition number of A,

rising the instability of the factorization (Figure 6f). See the phantom experiments in the supporting

material.

In vivo clinical data: free-water elimination

We observed that the mean relative error for the whole brain (〈ε〉) decreased as ∆TE increased

(Figures 7a, 7b, and 7g), in agreement with phantom findings (see supporting material) and the

results of the simulations for two compartments. Interestingly, for the maximum ∆TE, we can see

that the number of compartments is two in regions next to the ventricles and the cortex, but one

inside the ventricles and in some deep WM areas (Figure 7k). It is also noteworthy that the pure

CSF areas (e.g., the ventricles) have been removed from the T2IE map (Figures 7e and 7j), while

the opposite is observed in the CSF volume fraction (Figures 7c and 7h), indicating a successful

disentangling effect.

We compared the BSS-estimated T2IE maps for increasing ∆TE values with the reference map

obtained from the FLAIR multi-echo SE data. We noted how the structural similarity index (50)

increased and the mean relative error decreased as ∆TE grew (Figure 8a and 8b). Additionally, the

histograms for both subjects tended toward the reference as the difference between the short and

long TEs grew. This reflects an underestimation of T2IE for small ∆TE values that can be explained

by Eq. 3 and Figure S1c. Moreover, the FLAIR T2 map showed high values in the ventricles, possibly

indicating imperfect CSF suppression and, thus, slightly increased reference values (Figure 8a, 8c,

and 8d).

FA and MD maps and histograms were calculated from the BSS IE and CSF disentangled signals

for both subjects (Figures 9, S15, and 10). These maps displayed an overestimation of the CSF

volume fraction for low ∆TE values (the low FA peak in Figures 9b and S15b was removed). This

resulted in a compensation effect for the previously shown underestimation of T2IE . Additionally, the

FA histograms (Figures 9b and S15b) showed a tendency toward higher FA values and a reduction

of the low FA peak associated with free water. At long ∆TE values, FA seems to tend toward a

stable distribution. We also observed an enlargement of the corpus callosum and a general recovery

of peripheral WM tracts and the fornix in the colored FA maps (Figures 9a and S15a).

Additionally, on the MD histograms for IE water (Figures 9d and S15d) we found a reduced
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number of voxels with diffusivities greater than 1×10−3 mm2/s. In contrast, the main peak at

0.7×10−3 mm2/s, associated with the parenchyma, remained in its original position, indicating that

IE water represents a non-CSF tissue. This MD reduction was also visible in the maps (Figure

9c and S15c). Finally, the MD histograms for CSF water (Figure 10) showed a tendency toward

3× 10−3 mm2/s as ∆TE increased, in agreement with the literature (28). All these findings agreed

with a disentangling of IE and CSF signals and thus, a correction of the free water partial volume

effect in the diffusion signal.

Discussion

Stability

Four main approaches exist for the BSS problem (ICA, PCA, NMF, and SCA). Choosing the

appropriate method depends on the prior knowledge of the signal sources. In our experiments, we

relied on NMF, using a constrained version of the ALS algorithm (cALS). Others explored these

algorithms before. Pauca et al. (51) used low-rank and sparsity constraints to distinguish semantic

features in text mining, and later (52) smoothness regularization to identify space objects from

spectral data. Gao and Church (53) also employed sparseness for cancer class discovery through

gene clustering, which was later extended by Kim and Park (54) improving the balance between

accuracy and sparseness through regularization. They also introduced a variation based on the active

set method (55) and low-rank approximation (56). Liu et al. (57) incorporated label information to

create a semi-supervised matrix decomposition method. Sun and Févotte (58) introduced a version

based on the alternating direction method of multipliers (59) (ADMM), that was further stabilized

by Zhang et al. (60).

Supported by previous work, we presented a biophysical inspired solution to constrain the

diffusion-relaxometry NMF compartmental problem. Essentially, our cALS algorithm imposes two

constraints: 1) the rows of A must follow exponential relationships (relaxometry); and 2) when

the analytical expression of one component is known (i.e. CSF) the corresponding row in S is fixed

(diffusion). The stability of cALS is linked to the condition of A and SNR; an ill-conditioned mixing

matrix will lead to error propagation due to numerical instability. We optimized the experimental

TEs to reduce the condition number of A for literature values of T2. However, further research

based on ADMM might yield better results.

We ran extensive simulations for two compartments at clinical TE values with different priors,
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and three compartments at lower TEs. These simulations highlighted the importance of choosing

literature supported priors to improve the convergence, especially at low SNR. Constrained ALS

converges when the number of compartments in tissue is equal or lower than the expected, but it

looses performance for species with similar T2.

Phantom experiments (see supporting material) agreed with simulation results, validating that

BSS was able to accurately estimate T2 for one compartment and separate diffusion signal sources

and estimate T2 and f for two compartments. However, they also showed that scaling the cALS

algorithm to three compartments, including fast T2 decaying species, is unstable in the range of the

clinically available TE values.

Finally, repeatability and reproducibility analyses (see supporting material) show that cALS

yield consistent results across repetitions and subjects, highlighting its stability.

Relaxation time and volume fraction estimates

BSS provides the means to estimate T2 relaxation values and volume fractions. Interestingly, only a

number of TE repetitions equal to the number of compartments that are assumed to be in the tissue

is necessary. This results of the substitution of the ILTs by BSS, in comparison to other techniques

(15, 17, 21, 24). We found a good agreement between the T2IE estimates of the FLAIR multi-echo

SE for 17 TEs and those of BSS for 2 TEs. In this sense, all the measurements along the diffusion

space are considered for both TEs, incorporating redundancy and reinforcing the estimation of

T2. The SNR for the in vivo data were 147 and 104 for subjects one and two. According to the

simulations at ∆TE = 60 ms, the expected absolute error for the volume fraction estimate is below

0.03, meaning that T2IE is highly reliable in white matter areas, and lesser in the CSF borders.

Myelin detection

Simulations proved that our method has the potential to disentangle three compartments by reduc-

ing the minimum TE in diffusion experiments. As a result, myelin water could be incorporated into

the model (Figure 6). However, we are prevented from conducting such experiments by gradient

performance on clinical scanners.

Disentangling the diffusion sources and free water elimination

Unlike other multicompartment diffusion models (2, 7, 8, 11) or more recent contributions (27, 35),

our approach does not model compartmental diffusion. Our framework instead relies on three
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assumptions: 1) microstructural water compartments have distinct T2 relaxation times (14, 15);

2) each have different diffusion characteristics (19, 20); and 3) the effects of the water exchange

are negligible on the timescale of our experiments (9, 61). Furthermore, our solution is diffusion

protocol-agnostic (only two TEs and one non-diffusion weighted volume are necessary), allowing for

flexibility in the design of the acquisition protocol, which might include any number of diffusion

directions and b-values. This gives it an advantage over diffusion-relaxation correlation techniques

based on regularized inverse Laplace transforms (21, 24).

A promising application of the protocol-agnostics nature of our framework is correcting for free

water contamination. Recently Collier et al. (35) included TE dependence in their bi-exponential

diffusion tensor model to regularize the fitting problem. However, they fitted the bi-exponential DTI

model directly. Contrary, our solution does not assume any particular diffusion model, we instead

separated the signal from each compartment, allowing more flexible and independent study. In this

regard, analysis of the signal associated with the CSF compartment can be seen as a disentanglement

quality assurance metric (Figures 9, S15, and 10), or in brain tissue applications, a general indicator

of the goodness-of-fit for IE and CSF.

We fitted our data to Collier’s model (35) without reaching convergence, which resulted due

to our single-shelled dataset. Comparison of BSS with Pasternak’s free-water elimination (FWE)

method (31) is show in Figures 9 and S15. We observed a good agreement between BSS for ∆TE =

60 ms and Pasternak’s FWE for FAs between 0–0.2 and 0.8–1. In the middle FA range both methods

disagree, BSS shows an homogeneous correction, while Pasternak’s results follow the standard DTI

fit from 0.2 to 0.4 and shows a correcting effect from 0.4 to 1 (Figures 9a, 9b, S15a, and S15b).

It is impossible to determine which method is better (no ground-truth). However, there are two

indicators that BSS might be performing better: 1) the BSS FA curve runs in parallel to the

standard DTI fit from 0.2 to 0.8, denoting an stable correction without favoring any FA range; and

2) Pasternak’s MD is spatially over-regularized (Figures 9c, 9d, S15c, and S15d), while BSS’s MD

keeps its maximum at 0.7 mm2/s, the reference for parenchyma (28).

Long ∆TE values benefit our framework, which is not surprising and agrees with the findings

of Collier et al. (35). This is not only due to the relationship between A and T2 (Eq. 3 and Figure

S1c) but also because longer differences between TEs produce more distinct levels of mixing and

thus better codification of the information from each source. That is to say, the short TE contains

more information about the fast-relaxing species, while the long TE is dominated by CSF.
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Conclusions

We have introduced for the first time a blind source separation framework for expressing the re-

lationships between diffusion signals acquired at different TEs. This new approach does not rely

on diffusion modeling or the inverse Laplace transform. Our results show that, with the current

hardware, blind source separation allows for disentangling the diffusion signal sources generated

by each sub-voxel compartment up to two compartments, making it a suitable tool for free-water

elimination. Moreover, it simultaneously estimates proton density, volume fractions, relaxation

times and the number of compartments in the underlying microstructure, paving the way for tissue

microstructure characterization when the hardware constraints are relieved.
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Figure 1: Factorization of measurements, X, into the sources, S, and mixing matrix, A.

Example of a BSS operation for two mono-exponential sources (M = 2) and two TE measurements

(N = 2). In this illustration, the measurements, X, show a bi-exponential decay profile. BSS is

capable of separating these two independent exponential source functions, S; and calculating their

mixing matrix, A. The parameters that determine the degree of mixing (T21 , T22 and f), and the

scaling factor, S0, were estimated as described in Eqs. 3 and 4. We showed an exponential case for

simplicity, but BSS is not limited to this choice; any signal can be processed in the same manner.
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Figure 2: Convergence for two compartments (IE and CSF) with overlapping T2 con-

straints and no SCSF prior (SNR = 50).

The mean of fIE absolute error and its standard error (SEM) (a and b), and the mean of T2IE

(c) and T2CSF (e) relative errors per unit (p.u.), and their standard error (d and f).Red and white

lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each com-

bination of fIE , T2IE , and ∆TE. T2IE and T2CSF were bounded between 0–1000 ms and 0–3000 ms

respectively, and no prior was imposed on SCSF . We defined the convergence area as the one with

error lower than 0.1 for fIE and T2IE . The bias of fIE and T2IE decreases for long ∆TEs as fIE

increases. See Figure S5 for more SNR levels.
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Figure 3: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior (SNR = 50).

The mean of fIE absolute error and its standard error (SEM) (a and b), and the mean of T2IE

(c) and T2CSF (e) relative error per unit (p.u.), and their standard errors (d and f). Red and

white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each

combination of fIE , T2IE , and ∆TE. T2IE and T2CSF were bounded between 0–300 ms and 2000 ms

respectively, and SCSF was set to have isotropic diffusivity with value 3 ×10−3 mm2/s. We defined

the convergence area as the one with error lower than 0.1 for fIE and T2IE . This area is larger than

for Figure 2 stressing the importance of priors. See Figure S6 for more SNR levels.
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Figure 4: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior when only one is actually present in the tissue (SNR = 50).

The mean of fIE absolute error and its standard error (SEM) (a and b), and the mean of T2IE

(c) and T2CSF (e) relative error per unit (p.u.), and their standard errors (d and f). Red and

white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each

combination of fIE , T2IE , and ∆TE. T2IE and T2CSF were bounded between 0–300 ms and 2000 ms

respectively, and SCSF was set to have isotropic diffusivity with value 3 ×10−3 mm2/s. We defined

the convergence area as the one with error lower than 0.1 for fIE and T2IE . Estimates of fIE are

reliable for ∆TE > 45 ms (a and b). Estimates of T2IE and T2CSF are accurate for each case. See

Figure S7 for more SNR levels.
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Figure 5: Convergence for two compartments (IC and EC) with overlapping T2 con-

straints and no other priors (SNR = 50).

The mean of fIE absolute error and its standard error (SEM) (a and b), and the mean of T2IE (c)

and T2CSF (e) relative error per unit (p.u.), and their standard errors (d and f). Red and white lines

mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination

of fIC , T2IC , and ∆TE. T2IC and T2EC were bounded between 0–150 ms and 0–200 ms respectively,

and no other prior was imposed in the signal sources. We define the convergence area as the one

with error lower than 0.1 for fIC , T2IC , and T2EC . Estimate of fIC is biased for all fIC levels. T2

estimates show a narrow band of convergence limited by the lack of prior knowledge (see Figures 2,

S5 and S10) and the condition of A when the T2 values are similar. See Figure S8 for more SNR

levels.
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Figure 6: Convergence for three compartments (myelin, IE, and CSF) with non-

overlapping T2 constraints and SCSF prior (SNR = 50).

The mean absolute errors of the volume fraction estimates and their standard errors (SEM) (a, b,

c, and d); and the mean of T2M (e) and T2IE (g) relative error per unit (p.u.), and their standard

errors (f and h). Red and white lines mark the 0.2 and 0.1 contour respectively. There is a large

convergence area when TE1 = 10 ms, TE2 = 46 ms, and TE3 = 150 ms, which is not reachable

with current clinical hardware. See Figure S9 for more SNR levels.

28 / 56

4.1 peer-reviewed publications 55



doi: 10.1002/mrm.27181 Accepted in Magnetic Resonance in Medicine

10 20 30 40 50 60

∆TE [ms]

0

0.05

0.1

0.15

0.2
Mean relative error [p.u.]

a

ǫ = |X−Ŝ0ÂŜ|2
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Figure 7: BSS relative factorization error for increasing ∆TE values.

The evolution of the relative factorization error with ∆TE, averaged over the whole brain, is shown

in (a). As an example of how this error reduction affects BSS estimates we also show the relative

error maps (b) and (g), CSF volume fractions (c) and (h), PDs (d) and (i), T2IE values (e) and (j)

and the number of compartments (f) and (k) for ∆TEs values of 20 and 60 ms. The mean relative

factorization error decreases as ∆TE increases, improving the parameter estimates.
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Figure 8: Comparison of the BSS-estimated T2IE values against a FLAIR reference.

A comparison of the reference (a, upper middle), for subject one with the BSS T2IE estimate is

shown for increasing values of ∆TE. The visual comparison was quantified by SSIM (50) and mean

relative error (b). Histograms of the BSS-estimated T2IE values are plotted against the reference

(c) and (d). High T2 values in the ventricles for the reference indicate that the suppression of the

CSF signal in the FLAIR experiment was not perfect, although they appeared dark in the images

(see supplementary Figure ??). This might have induced a positive bias for the reference. Finally,

the BSS-estimated of T2IE values for ∆TE above 50 ms showed good agreement with the reference.
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Figure 9: FA and MD of the BSS-disentangled IE signal against the standard DTI and

Pasternak’s free-water elimination (FWE) for subject two.

Comparisons of the FA (b) and MD (d) histograms calculated from the separated IE signals are

plotted against the standard DTI fit and Pasternak’s method for the short TE measured data. MD

(c) and colored FA (a) maps are also included for comparison. We observed a CSF correction effect

in the long ∆TE BSS for FA in agreement with Pasternak’s FWE. However, both method disagree

for MD, where Pasternak’s introduces spatial over-regularization. See Figure S15 for the subject

one.
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Figure 10: Evolution of the MD histogram of the BSS-disentangled CSF component

with ∆TE.

The MD histograms, calculated from the the DTI fits for the signals disentangled for the CSF

compartment, are plotted in (a) and (c). MD maps (b) and (d) are shown for anatomical inspection.

The CSF MD histograms tends towards 3×10−3 mm2/s, in agreement with the literature.
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Supporting Material

Phantom experiment

Methods

We built a phantom based on pure water and eleven different concentrations of agar and sucrose, pro-

ducing eleven unique combinations of T2 and diffusivity (Table S1) (62). We scanned the phantom

(see below) and defined regions of interest (ROIs) in the tubes containing the eleven concentrations.

Each ROI was independently processed with BSS to study the one compartment case. We also

mixed the signals from two ROIs to generate a pair of two-compartment datasets and fed these to

our BSS solver. Finally, for the three-compartment case we combined three ROIs and separated

them with BSS. We were aiming to demonstrate that our framework was able to yield T2 estimates

for one compartment; and volume fraction, T2 estimates and diffusion signal separation for two and

three compartments.

For reference, we measured multi-echo SE acquisitions (Signa HDx 3T, GE Healthcare, Milwau-

kee, WI) for TE values from 10–640 ms in 10 ms increments. The following values were constant:

TR = 3460 ms; NEX = 2; 128 × 128 matrix size; FOV = 240 mm; and 7 mm slice thickness. Eleven

diffusion experiments were undertaken for TE values from 77.5–127.5 ms in 5 ms increments. the

following parameters were constant: FOV = 240 mm; 7 mm slice thickness; 64 × 64 matrix size;

TR = 4000 ms; ASSET = 2; A/P diffusion direction; and 41 equally spaced b-values from 0–2000

s/mm2.

The multi-echo SE signals were averaged within each ROI. Each signal was fitted with NNLS

(13) using a log-scaled grid with T2 values at 500 points between 10–2000 ms. We used the maximum

values of the NNLS T2 spectra as ROI reference values (Figure S1) and fitted the signal from each

ROI with EASI-SM (17) for reassurance.

One compartment

For one compartment (M = 1), we processed the diffusion data from ten pairs of TE measurements

(N = 2) with BSS to include the relaxation effects in the dataset. For each pair, the short TE was

fixed at 77.5 ms, while the long TE was increased from 82.5–127.5 ms along with the measured echo

times. We constrained the solution space for the estimated T̂2 values to 10–2000 ms to account

for all the ROIs. No other prior information was considered. We report the evolution of the T2
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values estimated using BSS for each ROI and the differences between the short and long TEs (∆TE)

compared with their reference values (Figure S1).

Two compartments

For two compartments (M = N = 2), we created two different datasets. First, we used the diffusion

data measured at the shortest TE for ROI6 and ROI11 as the sources, S. These signals did not

contain relaxation information (Figure S2a). Thus, to mix them together, we had to compute the

mixing matrix (A) as in in Eq. 2. We used their reference T2 values, the experimental TEs, and

a volume fraction of fROI6 = 0.7 (Figure S2c). We called this the simulated dataset, given that

the signals were mixed under ideal conditions. Second, we normalized the measured data for each

ROI and TE to its maximum value at the shortest TE to allow for later comparison of the volume

fractions. In this case, the signals already contained the relaxation information (Figure S2b), so

we did not need to compute A. We scaled the normalized measured signals using the given volume

fraction and added them together to create the mixed measurements, X. We called this the measured

dataset (Figure S2c). It accounts for system imperfections like signal drift, imperfect non-diffusion

weighting, and eddy currents. To constrain the solution of the cALS algorithm we used T2ROI11
and

SROI11 as the prior knowledge and searched for T̂2ROI6
between 0–200 ms.

Three compartments

We extended the two-compartments experiment to three (M = N = 3) by adding ROI5. Simulated

and measured datasets were created as for the two-compartments case (Figures S3a, S3b, S3c,

S3d and S3e). This time, we used the volume fractions fROI5 = 0.2 and fROI6 = 0.6. To limit the

solution space of the cALS algorithm, we assumed T2ROI11
and SROI11 to be prior the knowledge. We

also constrained the T̂2ROI5
and T̂2ROI6

values to be between 0–50 ms, and 50–200 ms, respectively.

For the two- and three-compartment experiments we report the stability of the framework, the

relative error of the parameters and the disentangling capability of the method.

Results

One compartment

There was a correlation between the estimated T2 values for one compartment obtained using multi-

echo SE for 17 TEs and BSS for 2 TEs (Figures S1a, S1b, and Table S1). The T2 estimates from

34 / 56

4.1 peer-reviewed publications 61



doi: 10.1002/mrm.27181 Accepted in Magnetic Resonance in Medicine

ROI2 to ROI10 showed relative errors below 0.1 p.u. for a ∆TE of 50 ms (Figures S1a and S1b). The

decreasing error trend is due to the relationship between the slope of a column of A and its T2 value

(Figure S1c). As ∆TE increased, the dynamic range of the slope of A’s columns expanded, yielding

better T2 estimates. On the other hand, in Figures S1a and S1b, ROI1 and ROI11 showed increasing

errors as ∆TE increased. In the case of ROI1, this was due to the low SNRs of the measurements at

the experimental TEs. The noise floor caused changes in the signals for longer TEs that biased the

T2 estimates. The effect observed in ROI11 cannot be explained by SNR or T2-slope dependence.

We attribute this result to an underestimation of the reference T2 value due to incomplete recovery

of the longitudinal magnetization, which is caused by the short experimental TR (TR = 3460 ms)

compared to the T1 value of ROI11 (T111 = 2200 ms). Finally, the error between the NNLS and

BSS T2 estimate for ROI4, ROI6, ROI7, and ROI8 is larger than for the others (Figure S1a) at

∆TE = 50 ms, except for ROI1 and ROI11 already discussed. For these ROIs, NNLS converges to

a bi-exponential decay (See Figure ?? and Table S1) increasing the value of the long T2 coefficient

compared to BSS and EASI-SM.

Two compartments

The disentangled signals for the simulated dataset replicated the profiles of the reference sources

(Figure S2d). Moreover, the maximum relative errors for f̂S,ROI6 and T̂2S,ROI6
were below 0.01 p.u.

for all the possible ∆TE values. Interestingly, BSS was also able to separate the signal sources of

the measured dataset (Figure S2d). This data accounted for non-ideal conditions due to system

imperfections, such as signal drift, eddy currents, or imperfect non-diffusion weighting (Figure S2b,

S2c, S2d, and S2f). In that case, the relative error in the T̂MS,ROI6
estimate remained under 0.1

p.u. for all ∆TEs above 10 ms. We believe that the 0.15 p.u. error in f̂M,ROI6 is due to the

differences between the simulated and measured signals at b = 0 s/mm2, their influence on Eq. 4,

and propagation of the error in the T̂2 estimate. Finally, we also observed a small stabilization effect

in the volume fraction estimates as ∆TE increased (Figure S2f). This behavior is due to reductions

in A’s condition number improving the cALS algorithm’s numerical stability (Figure S2e).

Three compartments

The condition number of A significantly increased compared with the two-compartment model

(Figures S2e and S3g). Results for the simulated data (Figures S3a, S3e and S3f) showed that the

signals for compartments ROI6 and ROI11 had been separated, in agreement with their references.
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Likewise, the relative errors in the T̂2S,ROI6
and f̂S,ROI6 estimates were below 0.01 p.u., confirming

the good separation. It is worth noting that the signal for the fast-decaying compartment (ROI5) was

detected, despite being heavily contaminated by the ROI6. We believe that this result is due to the

comparably large experimental TE, reducing its contribution to the observed signal. Equivalently,

we found a 0.15 p.u. error in the f̂S,ROI5 estimate and 0.45 p.u. in the T̂2S,ROI5
estimate.

Results for the measured data when A’s condition number was lowest showed that the signals

from ROI6 and ROI11 had still been separated, in agreement with the references (Figure S3f).

However, the signal from ROI5 was lost due to acquisition imperfections, bad conditioning of A,

and small contributions of this compartment at the measured TEs. On the other hand, the T̂2M,ROI6

estimate was stability with a relative error of 11%. In contrast, f̂M,ROI6 was more unstable due to

the bad conditioning of the system and propagation of the error in the T̂2M,ROI6
estimate.

Repeatability and reproducibility

Following the simulations, phantom experiment, and in vivo studies for incremental ∆TE, repeata-

bility and reproducibility analyses were conducted to demonstrate the stability and reliability of

our method. In this supporting section we described the experimental setup and results, while the

discussion remained in the main body of the paper.

Methods

Repeatability

A healthy volunteer (male, 28 years old) was scanned six times in a 3.0T GE MR750w scanner (GE

Healthcare, Milwaukee, WI). For each repetition we acquired two diffusion PGSE EPI volumes with

TE values 75.3 and 135.3 ms (∆TE = 60 ms); FOV = 225 mm; 4 mm slice thickness; 22 slices; TR

= 8000 ms; 96 × 96 matrix size; ASSET = 2; 30 directions; and one non-diffusion-weighted volume.

Besides, one non-diffusion-weighted volume was acquired with reversed polarity at each TE. Finally,

a FLAIR multi-echo sequence was acquired with the same geometrical prescription for TE = 20 –

260 ms in 30 ms increments; ASSET = 0; and TR = 8000 ms. An extra volume was acquired with

reverse polarity at TE = 20 ms.

Diffusion and FLAIR data were processed with FSL Topup (63, 64) and Eddy (65) to correct

for distortions. The long TE diffusion volume was registered to the short TE one with FLIRT and

processed with BSS for two compartments (IE and CSF). We used literature CSF values (T2CSF = 2
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s and DCSF = 3× 10−3 mm2/s) as the prior knowledge, and constrained T2IE between 0 – 200 ms.

Then, the resulting tissue volume was fitted to the DTI model using standard linear regression

(FSL FDT). For comparison, the distortion free short TE diffusion volume was also fitted to the

DTI model and free-water corrected with Pasternak’s method. Finally, FLAIR data were matched

to a dictionary of mono-exponential decays from 0 – 300 ms with 1 ms increments.

We reported the FA and MD histograms for the six repetitions of the standard DTI fit for the

short TE, IE BSS, and Pasternak’s method (Fig S16a and b). The free-water correction effects

were quantified dividing the histograms in sectors, and computing relative change per sector in the

number of voxels of BSS and Pasternak’s method reference to the standard DTI fitting (Fig S16d

and e). FA histograms were split in four quarters, while MD in two sectors with threshold in the

IE literature value (MD = 0.7 × 10−3 mm2/s) (28). Statistical t-test analyses were conducted to

determine the differences between BSS and Pasternak’s FWE. Histograms of BSS T2IE and FLAIR

T2 (Fig S16c) were compared by their peak and full width half maximum (FWHM) values (Fig

S16f).

Reproducibility

Twenty healthy volunteers (8 females, 26 years old in average) were scanned in a 3.0T GE MR750

scanner (GE Healthcare, Milwaukee, WI) at the Max Planck Institute of Psychiatry in Munich,

Germany. Two diffusion PGSE EPI volumes with TE values 60.1 and 120.1 ms (∆TE = 60 ms)

with TR = 5000 ms were acquired. All the other acquisition parameters and data processing steps

were as described for the repeatability experiment. Due to scanner availability FLAIR data was

only acquired for half of the subjects. Histograms of FA, MD, and T2, along with their statistical

analyses were reported in Figure S17.

Results

Repeatability

The histograms of FA, MD and T2 (Figure S16a, b, and c) showed highly overlapping curves for each

repetition and method, denoting good repeatability for all of them. After splitting the FA histogram

in four sectors and computing the relative change in the area per sector for BSS and Pasternak’s

method (Figure S16d), we found that the lowest ratio between the mean and the standard deviation

for BSS was 5.3 (sector IV) and 11.4 for Pasternak’s (sector II). The fact that the mean is 5.3 larger
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than the standard deviation suggested that BSS produces highly stable free-water correction. This

result held also for MD, where we found ratios of 9.9 and 65.4 for BSS and Pasternak’s method in

sector II; and T2, with mean to standard deviation ratios of 62.3 and 10.4 in the peak and FWHM

values for BSS.

Interestingly, we found that BSS and Pasternak’s free-water correction yield statistically different

results for FA > 0.25 (sectors II, III, and IV, Figure S16d and e) and both MD sectors, with a

significance level α = 0.01. Finally, BSS T2IE and FLAIR T2IE histogram peaks were not statistically

different, while the FWHM values were with a small effect. These findings indicate a good agreement

of BSS with the FLAIR reference (Figure S16f).

Reproducibility

The FA, MD and T2 histograms showed larger inter-subject variability (Figure S17a, b, and c)

compared to the intra-subject one (Figure S16a, b, and c)) . The lowest ratios between the mean

and the standard deviation of the free-water correction factor were 3.9 for BSS FA (sector IV) and

6.8 for Pasternak’s FA (sector II); and 4.9 for BSS MD (sector II) and 20.5 for Pasternak’s MD

(sector II). Furthermore, mean to standard deviation ratios of BSS T2IE were 47.2 and 8.9 for peak

and FWHM values. These results suggested that BSS experiments are highly reproducible among

subjects.

The statistical differences found in the repeatability study in FA sectors III and IV, and both

MD sectors were still present in this analysis, indicating consistent differences between BSS and

Pasternak’s method (Figure S17d and e).

We found a statistically significant difference (α = 0.01) between the means of the histogram

peaks of the BSS and FLAIR T2IE but with a small size effect (Figure S17f). Which indicates that

BSS might yield a small bias in group comparisons compared to FLAIR multi-echo.
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Supporting Figures (for publication)
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Figure S1: Evolution of the relative error in the T2 estimate with ∆TE for one compart-

ment.

The mean relative error of T2 estimated using BSS is shown in (a) for NNLS and in (b) for EASI-SM

references. ∆TE goes from 5 ms (darker colors) to 50 ms (lighter colors). The dependence of T2

on the direction (slope) of the columns of A (Eq. 3) is shown in (c), where it can be seen how

increasing ∆TE improves the dynamic range of the slope of A, resulting in a better estimate for T2.

Except for ROI1 and ROI11, the remaining ones reduce the T2 mean relative error as ∆TE increases

(a and b, lighter colors are closer to zero), in agreement with plot c.
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Figure S2: Separation of two compartments and parameter estimation for the phantom

data.

The signal sources of the simulated dataset are plotted in (a), and the measured data generated

from the sources in (b). The resulting mixtures for both datasets are shown in (c). We use the

subscripts M and S to refer to estimates for the measured and simulated datasets, respectively.

Measurement errors are highlighted by the differences between the measured and simulated signals,

shown in (c). BSS disentangled the original sources for both datasets, as shown in (d). We chose a

∆TE of 50 ms to minimize the condition of A (shown in (e)) and increase the numerical stability

of the framework. Finally, the relative errors in the estimated parameters, T̂2ROI6
and f̂ROI6 , are

plotted in (f) for all possible values of ∆TE. We observed good agreement between the reference

signals and those disentangled with BSS.
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Figure S3: Separation of three compartments and parameter estimation for the phantom

data.

The simulated dataset was generated from the signal sources in (a). The measured datasets were

calculated from the measured signals for ROI5 (b), ROI6 (c), and ROI11 (d). The mixed signals for

both datasets (shown in (e)) show a mismatch due to measurement errors. They were disentangled

with BSS, as shown in (f). We fixed TE1 = 77.5 ms and TE3 = 127.5 ms, and varied TE2 to

minimize the condition number of A (shown in (g)). The relative errors of the estimated parameters

are plotted for different values of the TE2 in (h).
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ROI Agar [%] Sucrose [%] T2EASI−SM [ms] T2NNLS [ms] T2BSS [ms] εNNSL [%] εEASI−SM [%]

1 5 15 25.02 23.88 ± 1.92 29.9 25.37 19.61

2 5 5 31.59 31.13 ± 2.19 31.6 1.43 0.04

3 3 30 37.68 36.50 ± 3.04 35.4 2.95 5.99

4 3 15 106.23 110.07 ± 7.93 106.0 3.70 0.22

5 3 5 45.40 44.66 ± 2.85 44.5 0.40 2.02

6 1 30 95.46 102.19 ± 10.30 93.9 8.13 1.66

7 1 15 222.22 228.94 ± 12.15 216.3 5.53 2.67

8 1 5 225.19 233.85 ± 13.84 213.4 8.76 5.25

9 0 30 457.08 456.37 ± 26.50 467.6 2.47 2.31

10 0 15 395.95 397.56 ± 21.17 401.0 0.87 1.28

11 0 0.5 876.97 881.23 ± 64.07 1008.6 14.46 15.01

Table S1: Phantom reference values and BSS estimates.

The ROIs in the phantom experiment was built using the concentrations of agar and sucrose shown

here. Signal decays along the diffusion dimension were compared to each other to ensure that they

were all different, as required by BSS (see supplementary Figure ??). For reference, the T2 values

were characterized using an NNLS fit. Confidence intervals were taken at the half maxima of the

NNLS spectral peaks. In addition, a second method, EASI-SM (17), was used to confirm the validity

of the fits. Finally, the T2BSS values were estimated for ∆TE = 50 ms and compared with the NNLS

and EASI-SM references (where ε refers to the relative error).
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Figure S4: Simulated diffusion signals for IE and CSF.

Synthetically generated diffusion signals for 30 directions (b = 1000 s/mm2) and one non-diffusion

weighted measurement. We modeled diffusion as a Gaussian process with MD of IE and CSF equal

to 0.7 × 10−3 and 3 × 10−3 mm2/s respectively (28), and standard deviations of 0.3 × 10−3 and

0.1 × 10−3 mm2/s respectively to distinguish between hindered anisotropic (IE) and free isotropic

(CSF) diffusivity.
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Figure S5: Convergence for two compartments (IE and CSF) with overlapping T2 con-

straints and no SCSF prior.

This figure extends the analysis of Figure 2 for SNR = 100 and 150. The stability for fIE increases

with SNR (a and b) and with fIE for T2IE (c and d).
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Figure S6: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior.

This figure extends the analysis of Figure 3 for SNR = 100 and 150. The size and stability of the

convergence area for fIE and T2IE increase with SNR.
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Figure S7: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior when only one is actually present in the tissue.

This figure extends the analysis of Figure 4 for SNR = 100 and 150. The SNR does not play an

important role in the definition of the convergence area.
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Figure S8: Convergence for two compartments (IC and EC) with overlapping T2 con-

straints and no other priors.

This figure extends the analysis of Figure 5 for SNR = 100 and 150. The influence of SNR on f

and T2IC is small.
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Figure S9: Convergence for three compartments (myelin, IE, and CSF) with non-

overlapping T2 constraints and SCSF prior.
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Figure S10: Convergence for two compartments (IE and CSF) with overlapping T2 con-

straints and SCSF prior.

The mean and the standard error of fIE absolute error (a and b), and the mean and the standard

error of T2IE (c and d), and T2CSF (e and f) relative error per unit (p.u.). Red and white lines

mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combina-

tion of SNR, fIE , T2IE , and ∆TE. T2IE and T2CSF were bound between 0–1000 ms and 0–3000 ms

respectively. SCSF was set to have isotropic diffusivity with value 3× 10−3 mm2/s. We defined the

convergence area as the one with error lower than 0.1 for fIE and T2IE . Notice the growth of the

converge area compared to the lack of priors (Figures 2 and S5).
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Figure S11: Convergence for two compartments (IE and CSF) with non-overlapping T2

constrained and no SCSF prior.

The mean and the standard error of fIE absolute error (a and b), and the mean and the standard

error of T2IE (c and d), and T2CSF (e and f) relative error per unit (p.u.). Red and white lines

mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination

of SNR, fIE , T2IE , and ∆TE. T2IE and T2CSF were bound between 0–300 ms and 300–3000 ms

respectively. No prior was imposed on SCSF . We defined the convergence area as the one with error

lower than 0.1 for fIE and T2IE . Non-overlapping T2 bounds stabilize the factorization, compared

to Figures 2 and S5, although not as much as using priors on the signal sources (Figure S10).
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Figure S12: Convergence for two compartments (IE and CSF) with fixed T2CSF and no

SCSF prior.

The mean and the standard error of fIE absolute error (a and b), and the mean and the standard

error of T2IE (c and d), and T2CSF (e and f) relative error per unit (p.u.). Red and white lines mark

the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of

SNR, fIE , T2IE , and ∆TE. T2IE was bound between 0–300 and T2CSF fixed to 2000 ms. No prior

was imposed on SCSF . We defined the convergence area as the one with error lower than 0.1 for

fIE and T2IE . Fixing the value of T2CSF does not have any effect on the size of the convergence

area, while bounding T2IE does it (see Figure S11).
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Figure S13: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior.

The mean and standard error of fIE absolute error (a and b), and mean and standard error of

T2IE (c and d), and T2CSF (e and f) relative error per unit (p.u.). Red and white lines mark the

0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of SNR,

fIE , T2IE , and ∆TE. T2IE and T2CSF were bound between 0–300 ms and 300–3000 ms respectively.

SCSF was set to have isotropic diffusivity with value 3× 10−3 mm2/s. We defined the convergence

area as the one with error lower than 0.1 for fIE and T2IE . Incorporating prior knowledge on the

behavior of the signal sources (as CSF) improves convergence and stability more than bounding T2

(Compare with Figures S10 and S11)
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Figure S14: Simulated diffusion signals for intra and extra-cellular water compartments.

Synthetically generated diffusion signals for 30 directions (b = 1000 s/mm2) and one non-diffusion

weighted measurement. We modeled diffusion as a Gaussian process with MD of intra-cellular

(IC) and extra-cellular (EC) equal to 0.6 × 10−3 and 0.8 × 10−3 mm2/s respectively (to keep the

MD of parenchyma equals to 0.7 × 10−3 mm2/s (28)) and standard deviations of 0.3 × 10−3 and

0.1×10−3 mm2/s respectively to distinguish between a more (IC) and less (EC) hindered anisotropic

diffusivity.
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Figure S15: FA and MD of the BSS-disentangled IE signal against the standard DTI

and Pasternak’s free-water elimination (FWE) for subject one.

Comparisons of the FA (b) and MD (d) histograms calculated from the separated IE signals are

plotted against the standard DTI fit and Pasternak’s method for the short TE measured data. MD

(c) and colored FA (a) maps are also included for comparison. We observed a CSF correction effect

in the long ∆TE BSS for FA in agreement with Pasternak’s FWE. However, both method disagree

for MD, where Pasternak’s introduces spatial over-regularization. See Figure 9 for subject two.
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Figure S16: Repeatability analysis showing intra-subject variability.

A healthy volunteer was scanned six times. The FA (a) and MD (b) histograms for standard DTI,

BSS and Pasternak’s method are shown. These histograms were fragmented in sectors and the

relative changes in number of voxels per sector and repetition for BSS and Pasternak’s methods

were computed. Statistical t-tests were run per sector to determine the level of significance of the

differences between BSS and Pasternak’s results (d and e). BSS and FLAIR T2IE histograms (c)

showed good agreement. Their peak and the full width half maximum (FWHM) were used for t-test

comparison between BSS and FLAIR (f) highlighting the concordance.
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Figure S17: Reproducibility analysis showing inter-subject variability.

Twenty healthy volunteers were scanned. The FA (a) and MD (b) histograms for standard DTI,

BSS and Pasternak’s method are shown. These histograms were fragmented in sectors and the

relative changes in number of voxels per sector and repetition for BSS and Pasternak’s methods

were computed. Statistical t-tests were run per sector to determine the level of significance of the

differences between BSS and Pasternak’s results (d and e). Notice that the inter-subject variability

is larger than intra-subject (Figure S16). BSS and FLAIR T2IE histograms (c) were depicted. Their

peak and the full width half maximum (FWHM) were used for t-test comparison between BSS and

FLAIR (f).
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4.2 peer-reviewed abstracts

This section contains the abstracts accepted at the International So-
ciety for Magnetic Resonance in Medicine (ISMRM) annual confer-
ence. These abstract explore tissue microstructure disentangling in
two manners: BSS and deep learning. First abstract Tissue microstruc-
ture characterisation through relaxometry and diffusion MRI using
sparse component analysis introduces a BSS solution based on SCA.
However, this approach has protocol acquisition limitations that are
alleviated by using NSC in the abstract Theory, Validation and Aplica-
tion of Blind Source Separation to Diffusion MRI for Tissue Charac-
terisation and Partial Volume Correction. Finally, a deep learning ap-
proach is introduced to tackle the FWE problem in the abstract Deep
learning with synthetic data for free water elimination in diffusion
MRI.
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4.2.1 Tissue microstructure characterisation through relaxometry and dif-
fusion MRI using sparse component analysis

Peer-reviewed Conference Abstract

Authors: M. Molina-Romero, PA. Gómez, JI. Sperl, DK. Jones, MI.
Menzel, BH. Menze

In: ISMRM Workshop on Breaking the Barriers of Diffusion MRI (2016)
[50]

Abstract: Here we present Blind Source Separation (BSS) as a new
tool to analyze multi-echo diffusion data. This technique is designed
to separate mixed signals and is widely used in audio and image pro-
cessing. Interestingly, when it is applied to diffusion MRI, we obtain
the diffusion signal from each water compartment, what makes BSS

optimal for partial volume effects correction. Besides, tissue character-
istic parameters are also estimated. Here, we first state the theoretical
framework; second, we optimize the acquisition protocol; third, we
validate the method with a two compartments phantom; and finally,
show an in-vivo application of partial volume correction.

Contribution of thesis author: Model development and implementa-
tion, experimental design, abstract revision and editing.



Tissue microstructure characterisation through
relaxometry and diffusion MRI using sparse

component analysis

Miguel Molina-Romero1,2,3, Pedro A. Gómez1,2,3, Jonathan I. Sperl2, Derek K.
Jones3, Marion I. Menzel2, and Bjoern H. Menze1

1 Computer Science, Technischen Universität München, Munich, Germany
2 GE Global Research Europe, Munich, Germany

3 CUBRIC School of Psychology, Cardiff University, Cardiff, United Kingdom.

Abstract. Brain tissue microstructure characterisation through diffu-
sion MRI and relaxometry have high scanning time requirements and
need for regularisation to separate tissue components. We present a new
approach that does not require regularisation and is less acquisition time
demanding. To this end, we use sparse component analysis of the diffu-
sion signal to estimate the number of compartments present in the tissue,
their T2 decays, volume fractions and diffusivities, as well as the proton
density for each voxel.

Keywords: Diffusion MRI, multicompartment, microstructure, Sparse
Component Analysis, Blind Source Separation.

Introduction

Brain tissue microstructure characterisation through diffusion MRI[1][2][3][4]
and relaxometry [5] have been a topic of interest for the last 20 years. However,
only few works have considered both methods together [6][7]. These techniques
have high scanning time requirements and need for regularisation to separate
tissue components. In this abstract we integrate the work on tissue characteriza-
tion from the relaxometry and diffusion perspectives. We present a new approach
that does not require regularisation and is less acquisition time demanding. To
this end, we use sparse component analysis (SCA)[8] of the diffusion signal to
estimate the number of compartments present in the tissue, their T2 decays,
volume fractions and diffusivities, as well as the proton density (PD) for each
voxel. For the signal model, we assume that 1) the brain tissue contains distinct
water pools; 2) there is no water exchange between them; and 3) each pool has
a different T2 and diffusivity.

Methods

When a diffusion protocol is acquired for a given echo time (TE) the measure-
ment is a linear combination of the diffusion signals from each compartment
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(Ei, i = 1 to N compartments) scaled by the volume fractions (fi) and the
inverse exponential of the ratio between the TE and each T2i (Eq. 1).

S(TE,∆, q) = S0

N∑

i=1

fie
−TE
T2i Ei(∆, q). (1)

If the same diffusion experiment is repeated for different values of TE, the
mixtures of the linear combination of the sources change, producing different
signal strengths, according to Eq. 2.



S(TE1, ∆, q)

...
S(TEM , ∆, q)


 = S0




f1e
−TE1
T21 · · · fMe

−TE1
T2N

...
. . .

...

f1e
−TEM

T21 · · · fMe
−TEM
T2N






E1(∆, q)

...
EN (∆, q)


 , (2)

or equally X = AS.

Only the noisy measurements are known (X). However, we are interested in
the mixing matrix (A), that only depends on the volume fraction and relaxation
properties of the tissue, and the compartmental diffusion sources (S). Typically,
this is a blind source separation problem. Approaches based on independent
component analysis (ICA) cannot be used since the diffusion sources are not
statistically independent. Principal component analysis (PCA) does not offer
a good alternative given that the sources are not orthogonal. Therefore, non-
negative matrix factorization (NMF) and sparse component analysis (SCA) are
the two suitable solutions. NMF is discounted as it requires prior knowledge of
the number of compartments. Therefore, SCA is used here. It relies on finding a
transform domain where the sources (rows of S) are sparse and disjoint. When
these requirements are met, only a few elements in S are non-zero. Then, only
one of the sources is active at a time and therefore, the contribution of each
specific source to the measured signal can be estimated.
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Fig. 1. Histograms for T2 values (a), volume fractions (b) and diffusivities (c). Dashed
lines mark the reference values while solid lines correspond to the estimates. Diffusion
signal sources are shown in (d).
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We study this approach by simulating a three compartment tissue made of
myelin, intra-extra (IE) axonal water and CSF [5]. The volume fraction for each
compartment are based on a fuzzy segmentation with tissue probabilities for
grey matter (pGM ), white matter (pWM ) and CSF(pCSF ) [9]. We split the WM
and GM probabilities into myelin and IE probabilities by multiply them by a
volume of myelin of 11.3% for WM and 3.1% for GM [10] (pWM

myelin = 0.113pWM

, pWM
IE = 0.887pWM , pGM

myelin = 0.031pGM , pGM
IE = 0.969pGM ). Data was

simulated using three one-dimension diffusion protocol comprising for 32 equally
spaced q-values from 0 to 0.8 × 106 m−1, for TE values of 40, 70 and 80 ms.
The diffusion sources were generated with Camino [11] using restricted, hindered
and free diffusion models for the myelin, IE water and CSF respectively (Fig.
1d). Finally, the T2 decays for each compartment were 30 ms, 90 ms and 2
s for myelin, IE and CSF [5]. Signals were mixed using Eq.1 to generate the
measurements (X). Then, Rician noise was added up to an SNR of 30 dB at
b=0. Finally, the signals were disentangled with SCA using a Gaussian wavelet
transform. This type of wavelet has a Gaussian envelop that is similar to the
measured 1D diffusion signal thus, transformed coefficients are sparse and, as
disjoint as different their diffusion coefficients are.

Results

Fig. 2 presents the volume fractions for CSF (a), IE (c) and myelin (e) compared
to their reference tissue type probabilities (b, d, f). The normalised PD is shown
(Fig. 2g) in comparison to the ground truth (Fig. 2 h). The distribution of the
values in Fig. 2(a, c, e) are presented in Fig. 1b along with the disentangled T2
(Fig. 1a) and diffusivities (Fig. 1c) for each compartment. The probability values
in Fig. 1 correspond to the histograms of the parameter for each compartment
and cannot be compared to others.

Discussion

High correlation levels between the estimates and the references for CSF, IE and
PD are shown in Fig. 2(a-b, c-d and g-h) indicating a good level of separation
for the volume fractions. However, myelin correlation level (Fig. 2e-f) is lower,
pointing out the difficult detection of short T2 decay components within the
limits of feasible TE values. Fig. 1b shows the histogram distribution volume
fractions. The myelin and IE fractions are correctly extracted for WM, while for
GM the peaks are shifted to 0 and 1 respectively, due to the low level of myelin
present in that tissue. The T2 distribution (Fig. 1a) presents a bias between 15
to 30 ms for myelin, while accurately capture the reference value for IE and CSF.
The diffusivity also shows a good agreement between estimates and reference for
the three compartments. Nevertheless, the small amount of myelin signal in the
mixture yields a low SNR disentangled source preventing for a reliable diffusivity
estimate for this compartment.
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Fig. 2. Comparison between the noisy estimates (left) and the noise free ground truth
(right).

Conclusions

To the best of our knowledge, this is the first attempt to use SCA to charac-
terise tissue microstructure using diffusion MRI. Although this proof-of-concept
is subject to further improvement, the results presented here indicate that this
technique is able to disentangle multiple compartments and thus, can be used
to study the T2, volume fractions, diffusion and PD properties of the tissue
microstructure simultaneously. An alternative approach to disentangle relaxom-
etry and diffusion information is presented in [7]. Although, unlike SCA, it relies
on heavy regularisation. Finally, since A is independent of the diffusion signal,
this technique can be applied to any diffusion protocol. This paves the way for
potential applications such as free water elimination or estimation of the com-
partmental propagators.
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Kolind, and Burkhard Mädler. Insights into brain microstructure from the T2

distribution. Magn. Reson. Med., 24(4):515–25, may 2006.
6. S Peled, D G Cory, S A Raymond, D A Kirschner, and F A Jolesz. Water diffusion,

T2, and compartmentation in frog sciatic nerve. Magn. Reson. Med., 42(5):911–8,
nov 1999.

7. Daeun Kim, Eamon K Doyle, Jessica L Wisnowski, Joong Hee Kim, and Justin P
Haldar. Diffusion-Relaxation Correlation Spectroscopic Imaging: A Multidimen-
sional Approach for Probing Microstructure. Magn. Reson. Med., 2017.

8. Pau Bofill and Michael Zibulevsky. Underdetermined blind source separation using
sparse representations. Signal Processing, 81(11):2353–2362, 2001.

9. Collins et al. Design and construction of a realistic digital brain phantom. IEEE
Trans. Med. Imaging, 17(3):463–468, 1998.

10. Kenneth P Whittall, Alex L Mackay, Douglas A Graeb, Robert A Nugent, David
K B Li, and Donald W Paty. In vivo measurement of T2 distributions and water
contents in normal human brain. Magn. Reson. Med., 37(1):34–43, 1997.

11. P A Cook, Y Bai, K K Seunarine, M G Hall, G J Parker, and D C Alexander.
Camino: Open-Source Diffusion-MRI Reconstruction and Processing. In ISMRM
14th Annual Meeting & Exhibition, volume 14, page 2759, 2006.

90 tissue microstructure characterization with diffusion mri



4.2 peer-reviewed abstracts 91

4.2.2 Theory, Validation and Aplication of Blind Source Separation to Dif-
fusion MRI for Tissue Characterisation and Partial Volume Correc-
tion

Peer-reviewed Conference Abstract

Authors: M. Molina-Romero, PA. Gómez, JI. Sperl, AJ. Stewart, DK.
Jones, MI. Menzel, BH. Menze

In: Proc Intl Soc Mag Reson Med (2017) [51]

Abstract: Brain tissue microstructure characterisation through diffu-
sion MRI and relaxometry have high scanning time requirements and
need for regularisation to separate tissue components. We present a
new approach that does not require regularisation and is less acqui-
sition time demanding. To this end, we use sparse component anal-
ysis of the diffusion signal to estimate the number of compartments
present in the tissue, their T2 decays, volume fractions and diffusivi-
ties, as well as the proton density for each voxel.

Contribution of thesis author: Model development and implementa-
tion, experimental design, abstract revision and editing.



Theory, Validation and Application of Blind
Source Separation to Diffusion MRI for Tissue

Characterisation and Partial Volume Correction

Miguel Molina-Romero1,2, Pedro A Gómez1,2, Jonathan I Sperl2,
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Abstract. Here we present blind source separation (BSS) as a new tool
to analyse multi-echo diffusion data. This technique is designed to sep-
arate mixed signals and is widely used in audio and image processing.
Interestingly, when it is applied to diffusion MRI, we obtain the diffusion
signal from each water compartment, what makes BSS optimal for par-
tial volume effects correction. Besides, tissue characteristic parameters
are also estimated. Here, we first state the theoretical framework; second,
we optimise the acquisition protocol; third, we validate the method with
a two compartments phantom; and finally, show an in-vivo application
of partial volume correction.

1 Purpose

The compartmental nature of tissue is generally accepted [1,7,11,14,17,19]. The
diffusion-weighted MRI (dMRI) signal depends on the relaxation times of the
compartments (T2i), their diffusivities (Di), volume fractions (fi) and proton
density (S0). The simultaneous contribution of these parameters results in a
lack of specificity to each independent effect and induces a bias [13,16] on the
diffusion metrics known as partial volume contamination. Specificity and partial
volume correction problems have been addressed independently [2,6,9,13,14].
Here we present blind source separation (BSS) as a new approach in dMRI that
separates mixed signals and yields tissue microstructure parameters, tackling
both problems at once.

2 Methods

2.1 Theory

This method is based on three assumptions: 1) tissue is made of water compart-
ments with different diffusivities [6,14]; 2) there is no water exchange [1]; and
3) each compartment has a different T2 [6,11,14]. Hence, we can describe the
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Fig. 1. (b-d) Mean error of the parameter estimations. (a) Relationship between the
slope of the columns of A and the estimation of T2 for several TE differences. When
the slope of the columns tends towards 1 (T2 � TE), the estimation of T2 is in the
asymptotic region and thus uncertain. This uncertainty can be observed in (b) where
the minimum error is larger than in (c,d) for fixed T22 and dismissed T22 effect. Notice
that the optimal TE pairs are marked by the red dashed lines. The red dots mark the
TE pair used for phantom validation experiment.

measured diffusion signal as the weighted sum of the compartmental sources.
These weights depend only on the volume fraction (f) and the ratio between the
compartmental T2i and the experimental TEj . Therefore, varying TE modifies
the weights and the system can be expressed as a BSS problem:



X(TE1, ∆, q)

...
X(TEM , ∆, q)


 =



f1e

TE1/T21 · · · fNeTE1/T2N

...
. . .

...
f1e

TEM/T21 · · · fNeTEM/T2N






S1(∆, q)

...
SN (∆, q)


S0 (1)

X = AS, (2)

where X are the measurements for several TEs, A the mixing matrix, S the
compartmental diffusion source, M the number of measurements, and N the
number of compartments. Here, among the possible BSS solutions [18], and
unlike in [12], we use a sparsifying transform [15] followed by non-negative sparse
coding [8].

Here we focus on two-compartment environments (N = M = 2). Besides,
when T2i is larger than the TEs (i.e. CSF), the exponential term can be dis-
missed (exp(TEj/T2i) ≈ 1) and thus the T2i. Alternatively, T2i can be fixed to
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Fig. 2. (a) b0 image at TE1 = 26 ms with ROIs overlaid. Each ROI represents a
possible case: ROI1 (f ≈ 0.5), whole phantom; ROI2 (f ≈ 0), water; ROI3 (f ≈ 1),
yeast. (b) Signal intensity at TE = 0 ms. Volume fractions for the associated intra-
cellular (c) and extra-cellular (d) compartments. T2 for the intra-cellular (e) and extra-
celullar (f) cell compartments. Averaged multi-echo signal for each ROI (g,h,i) and the
corresponding T2 spectral fitting with NNLS and EASI-SM (j,k,l) compared with the
volume fractions and T2s estimated by BSS (T22 fixed at 0.6 s according to NNLS and
EASI-SM). Measured and separated diffusion signals for each ROI (m,n.o).

an expected value if prior knowledge is available (i.e. T2CSF ≈ 2 s 6). We study
the effect both approximations on the error of the parameter estimation.

We perform three experiments to: 1) find the range of optimal TEs; 2) vali-
date our method; and 3) show an application. Figure 4 contains the experimental
details.

2.2 Optimisation simulations

Tissue with two compartments was simulated with known T2s (22 and 597 ms)
for restricted and free diffusion signals [4]. We ran a simulation experiment vary-
ing TE and f (11 points) to calculate the mean error for all the parameter com-
binations and find the optimal TE region for free, fixed and dismissed T22.

2.3 Phantom validation

For validation, we used a phantom made of yeast and water (1:1) as a two
compartments sample [5]. A multi-echo experiment was acquired and T2s fitted
with NNLS [10] and EASI-SM [3]. Besides, BSS was applied on the diffusion
dataset fixing T22 = 0.6 s (NNLS). Finally, results from the three methods were
compared.
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Fig. 3. Comparison of DTI metrics with and without CSF contamination correction
by BSS. Histograms of values for the whole brain (i-l) show an increase of FA, and a
decrease of MD, RD and L1. Both effects are consistent with the elimination of the
CSF contribution. Besides, we observe a significant increase of FA in the borders of
the ventricles (zoomed area), where the contamination is expected to be high. Notice
that BSS mostly crops the ventricles and the external CSF and increases the contrast
of the white matter.

2.4 In vivo

A young female volunteer went under a DTI acquisition. CSF signal was ex-
tracted from the data using BSS, fixing T22 = 2 s [11]. Finally, DTI metrics
with and without correction were compared.

3 Results and discussion

3.1 Optimisation simulations

Fig 1a depicts T2 versus the slope of a column of A. As the slope tends towards 1,
the estimation falls into an asymptotic region increasing the uncertainty on the
T2 estimation. Therefore, fixing its value or dismissing its contribution reduces
the mean error of the parameter estimations (Fig. 1b-d). Moreover, fixing the
T2 value performs slightly better than dismissing its effect (Fig. 1c-d).

3.2 Phantom validation

Fig.2g-o compare the results of BSS against NNLS and EASI-SM in a ROI-based
analysis. Fig. 2j,l show agreement of T21 and f with NNLS and EASI-SM for
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Fig. 4. Experimental setups for the optimisation simulation, the phantom validation
and the in-vivo experiment.

ROI1 and ROI3. Besides, in Fig. 1m, S1 (associated with intra-cellular space)
describes a restricted diffusion signal similar as in Fig 2o, and S2 (associated
with extra-cellular space) shows a free diffusion behaviour as in Fig. 2n. Both
findings are in agreement with the simulations and indicate that BSS success-
fully separates signals from two compartments. Interestingly, BSS disentangles
measurements from ROI2 into two similar and equally scaled sources (Fig. 2n)
indicating that only one source exists. For illustration, Fig. 2b-f show that the
voxel-based maps generated with BSS are consistent with the ROI based analy-
sis.

3.3 In vivo

In Fig. 3, with BSS, we observe an increase of the fractional anisotropy (FA)
(a,e,i) and a reduction of the mean diffusivity (MD) (b,f,j), radial diffusivity
(RD) (c,g,k), and tensor’s main eigenvalue (L1) (d,h,l). This is consistent with
the elimination of the CSF contribution. Also, we notice that with BSS the
ventricles are extracted and white matter structures are better defined, especially
the voxels at the border of the ventricles (zoomed area).
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4 Conclusions

Here we show that BSS of diffusion data is a suitable technique to separate com-
partmental sources. We demonstrate that this method is appropriate for partial
volume correction. Besides, tissue volume fraction, relaxation and diffusivity pa-
rameters are estimated allowing for simultaneous tissue characterisation.
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Abstract. Diffusion metrics are typically biased by Cerebrospinal fluid
(CSF) contamination. In this work, we present a deep learning based
solution to remove the CSF contribution. First, we train an artificial
neural network with synthetic data to estimate the tissue volume frac-
tion. Second, we use the resulting network to predict estimates of the
tissue volume fraction for real data, and use them to correct for CSF
contamination. Results show corrected CSF contribution which, in turn,
indicates that the tissue volume fraction can be estimated using this joint
data generation and deep learning approach.

Keywords: Diffusion MRI, Deep Learning, Free-water elimination, Cere-
brospinal fluid, Partial volume contamination.

Introduction

Cerebrospinal fluid (CSF) partial volume contamination poses a problem for de-
tecting changes in tissue microstructure [1], biasing the diffusion measurements
and derived metrics. CSF is mostly composed of free water, with isotropic dif-
fusion and diffusivity three times bigger than parenchyma [2].

FLAIR DWI [3] tackles the problem suppressing the CSF signal during ac-
quisition, at the cost of low SNR and longer acquisition times. Post-processing
solutions have focused on fitting a bi-tensor model; yet, this is an ill-posed prob-
lem with several regularizations [1][2][4][5][6][7].

In this work, we hypothesize and show that artificial neural networks (ANN)
can estimate the tissue volume fraction from the diffusion signal. Then the CSF
contribution can be corrected.

Methods

Theory: CSF has isotropic diffusion with diffusivity DCSF = 3× 10−3 mm2/s
[2] and can be computed from b:

SCSF = e−bDCSF , (1)
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The measured signal is the contribution of CSF and tissue (parenchyma)
components:

S = f · Stissue + (1− f)SCSF . (2)

Eq. 2 is ill-posed since Stissue and its volume fraction, f , are unknowns. In
this work, we present a deep learning approach that uses ANNs to estimate f ,
regularizing the problem:

Stissue =
S − (1− f)SCSF

f
. (3)

Generation of synthetic data: The training dataset were designed to teach
the ANN to detect CSF-like components mixed with a random signal (Fig. 1).
CSF signal was derived from Eq.1 and acquisition parameter b. Tissue signal
was randomly generated to simulate undetermined directions. The generation
steps were:

1. Straining
CSF was computed (Eq. 1).

2. Straining
tissue was randomly created simulating arbitrary directions: U(0, 1).

3. f was randomly generated: U(0, 1).
4. Straining was computed (Eq. 2).
5. The ANN was trained with input to match the output (Fig. 2).

Free water elimination: For comparison, we trained [8] five ANN architec-
tures in MATLAB (MathWorks, Natick, MA) for datasets with 32 directions
(one shell) and 64 directions (two shells), (Fig. 2). We chose the best performing
ANNs and compared them against Pasternak’s [4] and Hoy’s [6][9] methods.

Data acquisition: A volunteer went under a diffusion acquisition (GE 3T
MR750w, Milwaukee, WI) with 30 directions; 2 shells: b = 500, 1000 s/mm2;
four b = 0 s/mm2; TR/TE = 8000/80 ms; FOV = 200 mm; resolution 128x128;
ASSET = 2; and 25 slices with 3.6 mm thickness and no gap.

Pipeline:

1. Diffusion measurement.
2. Synthetic data generation from the experimental b (Fig. 1).
3. ANN training.
4. Volume fraction estimation: ANN(S)→ f .
5. Computation of Stissue (Eq. 3).
6. Fitting of the tensor model [10][11] on Stissue.

Results

The five ANN architectures (Fig. 2) showed similar performance (Fig. 3). ANNs
trained for two shells (ANN2s) outperformed those for one shell (ANN1s), due
to the better CSF encoding of two shells protocols. The best performing ANNs
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were L=2 and L=3 for one and two shells respectively, suggesting a potential
coupling between the number of hidden layers and shells.

DTI metrics after ANNs correction showed differences depending on the num-
ber of shells. ANN1s estimated larger volumes of CSF than ANN2s (Fig. 4c),
that resulted in larger FA (Fig. 4a) and lower MD (Fig. 4b) estimates. This
difference on the f estimate might be explained by the limited CSF information
contained in the single shell protocol. MD values for ANN2s (Fig. 4b) agreed
with the reference [2].

ANNs kept the anatomical integrity of the FA, MD, and fCSF maps (Fig. 5).
We observed the CSF correction in the enlargement of the corpus callosum and
fornix, and a general increment of FA in white matter, compared to the standard
DTI (Fig. 5a,c,e,f). CSF contribution was accurately removed from MD maps,
especially for ANN2s (Fig. 5g,h,k,l). ANNs1 and ANNs2 differ on the f estimate
in white matter (Fig. 5m,o), as previously explained.

Discussion

ANNs trained with synthetic data are capable of estimating the tissue volume
fraction from the measured diffusion signal. Their correction is equivalent to
well-established methods: Pasternak et al. and Hoy et al. (Fig. 4 and Fig. 5).

Using ANNs has a performance advantage. Their training time is in the order
of ten minutes and once trained they can be used for any data acquired with
the same protocol. CSF correction is faster than traditional methods. For one
shell, Pasternaks method ran for 38.4s and ANN1s for 0.7s (55x). For two shells,
Hoys method ran for 392.5s and ANN2s for 1.3s (302x). Besides, to improve
the accuracy, one can carefully design the training dataset to mimic only tissue
characteristics (here it is random), or incorporate prior knowledge of the bi-
exponential problem and noise model into the learning process [12].

Conclusions

This is the first application of ANNs to remove CSF contamination. We proved
that tissue volume fraction can be estimated by ANNs trained with synthetic
data, creating a new tool for free water elimination.
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12. Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative
deep neural networks. (1):1–24, 2017.

4.2 peer-reviewed abstracts 103



V

Figures

f

1� f

+

0   500 0   1000

B

N
o

rm
a
li

z
e
d

S
training
CSF

0   500 0   1000

B

N
o

rm
a
li

z
e
d

Straining

0   500 0   1000

B

N
o

rm
a
li

z
e
d

S
training
tissue

Fig. 1. Generation of synthetic data. The vectorization of the diffusion MRI signal
along the diffusion directions (B) shows a tissue dependent pattern. SCSF is charac-
terized by Eq. 1 and can be calculated from the diffusion protocol (b values). Stissue

depends on the tissue anisotropy and acquired directions, thus it cannot be predicted.
We represented Stissue as a uniformly distributed signal, U(0, 1), with maximums where
b = 0 s/mm2. Tissue volume fraction, f , was also generated uniformly, U(0, 1). Finally,
Straining was computed as in Eq. 2, and presented to the input of the ANN, and f to
the output for training (Fig. 2).
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Fig. 2. ANN architectures. Five architectures with L = 1–5 were tested to determine
their performance. For L = 1 hidden layer, I1=I0/3. For L = 2 hidden layers, I1 = I0/2
and I2 = I0/4. For L = 3 hidden layers, I1 = I0/2, I2 = I0/3 and I3 = I0/4. For L
= 4 hidden layers, I1 = I0/2, I2 = I0/3, I3 = I0/4 and I4 = I0/5. For L = 5 hidden
layers, I1 = 2 × I0/3, I2 = I0/2, I3 = I0/3, I4 = I0/4 and I5 = I0/5. The number
of inputs, I0, matched the number of diffusion directions and non-diffusion-weighted
volumes. In these experiments, we used I0 = 32 for one shell and I0 = 64 for two shells.
One million signal combinations and volume fractions were generated for training, 20%
were separated for validation and 20% for testing.
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Fig. 3. Performance comparison for the five ANN architectures. We generated
5000 artificial diffusion signals for FA = 0–1 and f = 0–1. They were mixed as in Eq. 2
and Fig. 1 and presented to the trained ANNs to estimate f̂ . We plot the error (f − f̂)
of the estimated volume fraction (f̂) against its true value (f), their correlation (ρ),
and the standard deviation of the error (σ). For ANN1s, we found the largest ρ and
minimum σ for L = 2; and L = 3 for ANN2s. We used L=2 for the one shell and L=3
for two shells for in vivo experiments.
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Fig. 4. Comparison of FA, MD and f histograms. FA (a) and MD (b) were
consistent for standard DTI of one and two shells, fixing a common reference. ANN1s
showed larger correction of FA. Hoys method did not correct FA = 0.15–0.45. ANN2s
and Pasternaks method showed stable correction for all FA values. However, ANN1s
and Pasternaks method suffered from over regularization of MD (b), with peaks off the
reference (0.7 mm2/s). Volume fraction estimates (c) for ANN1s and Pasternaks were
similar, but the later struggled to estimate small f . ANN2s estimated less CSF volume
(c) in white matter than other methods (Fig. 5o).
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M U LT I PA R A M E T R I C M A P P I N G I N T H E
T R A N S I E N T- S TAT E

5.1 peer-reviewed publications

Two peer-reviewed scientific articles published at Medical Imaging
Computing and Computer Assisted Intervention (MICCAI) are pre-
sented in this section. The benefits of an image reconstruction method
merging CS and machine learning is shown in Learning a Spatiotem-
poral Dictionary for Magnetic Resonance Fingerprinting with Com-
pressed Sensing. This concept is further developed incorporating spa-
tiotemporal patches matching to an MRF acquisition in Simultaneous
Parameter Mapping, Modality Synthesis, and Anatomical Labeling
of the Brain with MR Fingerprinting. This enables the estimation of
supplementary quantitative parameters.
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5.1.1 Learning a Spatiotemporal Dictionary for Magnetic Resonance Fin-
gerprinting with Compressed Sensing

Peer-reviewed Conference Paper

Authors: PA. Gómez, C. Ulas, JI. Sperl, T. Sprenger, M. Molina-Romero,
MI. Menzel, BH. Menze

In: MICCAI Patch-MI Workshop LNCS 9467 (2015), pp. 112 – 119 [25]

Abstract: Magnetic Resonance Fingerprinting (MRF) is a novel tech-
nique that allows for the fast and simultaneous quantification of mul-
tiple tissue properties, progressing from qualitative images, such as
T1- or T2-weighted images commonly used in clinical routines, to
quantitative parametric maps. MRF consists of two main elements: ac-
celerated pseudorandom acquisitions that create unique signal evo-
lutions over time and the voxel-wise matching of these signals to a
dictionary simulated using the Bloch equations. In this study, we pro-
pose to increase the performance of MRF by not only considering the
simulated temporal signal, but a full spatiotemporal neighborhood
for parameter reconstruction. We achieve this goal by first training
a dictionary from a set of spatiotemporal image patches and subse-
quently coupling the trained dictionary with an iterative projection
algorithm consistent with the theory of Compressed Sensing (CS). Us-
ing data from BrainWeb, we show that the proposed patch-based re-
construction can accurately recover T1 and T2 maps from highly un-
dersampled k-space measurements, demonstrating the added benefit
of using spatiotemporal dictionaries in MRF.

Contribution of thesis author: Discussion of algorithmic implemen-
tation and experimental design, manuscript revision and editing.

Copyright Notice: © Springer International Publishing Switzer-
land 2015. All rights reserved.
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Abstract. Magnetic resonance fingerprinting (MRF) is a novel tech-
nique that allows for the fast and simultaneous quantification of mul-
tiple tissue properties, progressing from qualitative images, such as
T1- or T2-weighted images commonly used in clinical routines, to quanti-
tative parametric maps. MRF consists of two main elements: accelerated
pseudorandom acquisitions that create unique signal evolutions over time
and the voxel-wise matching of these signals to a dictionary simulated
using the Bloch equations. In this study, we propose to increase the per-
formance of MRF by not only considering the simulated temporal signal,
but a full spatiotemporal neighborhood for parameter reconstruction.
We achieve this goal by first training a dictionary from a set of spa-
tiotemporal image patches and subsequently coupling the trained dictio-
nary with an iterative projection algorithm consistent with the theory of
compressed sensing (CS). Using data from BrainWeb, we show that the
proposed patch-based reconstruction can accurately recover T1 and T2
maps from highly undersampled k-space measurements, demonstrating
the added benefit of using spatiotemporal dictionaries in MRF.

1 Introduction

Quantitative magnetic resonance imaging (qMRI) techniques measure relevant
biological parameters, providing a profound characterization of the underlying
tissue. In contrast to conventional weighted MRI, where the image signal is rep-
resented by intensity values and different tissues are described relative to each
other, qMRI generates parametric maps of absolute measures that have a phys-
ical interpretation, leading to reduced bias and reproducible diagnostic infor-
mation. On the other hand, obtaining quantitative maps is a time consuming
task. It requires the repeated variation of typical MR acquisition parameters,
such as flip angle (FA) or repetition time (TR), and the fitting of the mea-
sured signal to a model in order to estimate the parameters of interest, includ-
ing the MR specific longitudinal (T1) and transversal (T2) relaxation times.
Long acquisition times, together with high sensitivity to the imaging device

c© Springer International Publishing Switzerland 2015
G. Wu et al. (Eds.): Patch-MI 2015, LNCS 9467, pp. 112–119, 2015.
DOI: 10.1007/978-3-319-28194-0 14
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and system setup, are the main restrictions to clinical applications of qMRI
techniques.

A recently proposed qMRI method, magnetic resonance fingerprinting
(MRF), aims to overcome these limitations through accelerated pseudorandom
acquisitions [6]. It is based on the idea that pseudorandom variations on acquisi-
tion parameters cause the signal response for different tissue types to be unique.
This unique signal evolution can be matched to a precomputed dictionary cre-
ated from known combinations of the parameters of interest (e.g. T1 and T2).
Therefore, by matching the measured signal to one atom in the dictionary, all of
the parameters used to simulate the corresponding atom can be simultaneously
extracted. Furthermore, since the form of the signal evolution used for pat-
tern matching is known a priori, MRF is less sensitive to measurement errors,
facilitating accelerated acquisitions through the undersampling of the measure-
ment space (k-space). It should be noted that, so far, all matching is done for
one-dimensional temporal signals only.

The notion of reconstructing signals from undersampled measurements comes
from the theory of compressed sensing (CS) [5]. CS has been successfully applied
to accelerate parameter mapping [4] and recently Davies et al. [3] demonstrated a
CS strategy for MRF that does not rely on pattern matching for error suppression
and has exact recovery guarantees, resulting in increased performance for shorter
pulse sequences. The authors further extend their CS model to exploit global
spatial structure by enforcing sparsity in the wavelet domain of the estimated
density maps, slightly improving the performance of their approach.

Spatial information can also be incorporated locally by using image patches.
Patch-based dictionaries have the advantage of being able to efficiently represent
complex local structure in a variety of image processing tasks. Furthermore,
the use of overlapping patches allows for averaging, resulting in the removal
of both noise and incoherent artefacts caused by undersampling. Patch-based
dictionaries have been previously used for the task of MR image reconstruction
[7], where the sparsifying dictionary was learnt directly from the measured data,
resulting in accurate reconstructions for up to six fold undersampling.

In this work, we propose to use a dictionary with both temporal and local
spatial information for parametric map estimation. We create a training set
by using the Bloch equations to simulate the temporal signal response over a
predefined spatial distribution obtained from anatomical images and train a
spatiotemporal dictionary by clustering similar patches. The trained dictionary
is incorporated into a patch-based iterative projection algorithm to estimate T1
and T2 parametric maps. We see two main benefits of our approach:

1. Incorporating spatial data increases the atom length, i.e. the amount of
descriptive information available per voxel, requiring less temporal points
for an accurate reconstruction.

2. Training improves the conditioning of the dictionary by creating atoms dis-
tinct to each other, leading to a better signal matching.

The rest of this paper is structured as follows. In Sect. 2 we describe the
method, in particular the proposed patch-based algorithm for MRF. Section 3
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depicts the experiments and demonstrates the application of recovering para-
metric maps from undersampled data, and in Sect. 4 we offer conclusions.

2 Methods

The goal of MRF is to obtain parametric maps θ ∈ RN×Q from a sequence
of undersampled measurements Y ∈ CM×T , where Q is the number of tissue
relaxation parameters (T1 and T2), T is the sequence length, every map θq ∈ RN

has a total of N voxels, every measurement yt ∈ CM is sampled M times,
and M � N . This is achieved in three steps: image reconstruction, template
matching, and parameter extraction.

Image reconstruction is the task of obtaining the image sequence X ∈ CN×T

from the measurements Y. This is generally formulated as a inverse problem:
Y = EX, where E ∈ CM×N is the encoding operator. The reconstructed image
is then matched to a precomputed dictionary D ∈ CT×L of L atoms, to find
the dictionary atom dl ∈ CT that best describes it. This is done at every voxel
location xn ∈ CT by selecting the entry ln that maximizes the modulus of the
atom and the conjugate transpose of the signal:

l̂n = arg max
l

l=1,...,L

|x∗
ndl| (1)

where both, dl and xn, were previously normalized to have unitary length.
Finally, the T1 and T2 parameters used to construct the matching entry are
assigned to the voxel n, creating θn = {T1n, T2n}. Thus, by repeating the
matching over all voxels of the image, the parametric T1 and T2 maps are
found.

Davies et al. [3] interpret the template matching as a projection of xn onto
the cone of the Bloch response manifold, and propose an iterative projection
algorithm to accurately extract parametric maps. The algorithm, termed Bloch
response recovery via iterated projection (BLIP), iteratively alternates between
a gradient step, a projection step, and a shrinkage step to reconstruct the image
sequence X and estimate the corresponding parameter maps θ.

2.1 Spatiotemporal Dictionary Design

Given a set of fully sampled 2D spatial parametric maps θ ∈ RN×Q, where
N = Ni × Nj and Q = 2, an image sequence X ∈ CN×T of T temporal points
can be created at each voxel using the Bloch equations to simulate the magne-
tization response of an inversion-recovery balanced steady state free-precession
(IR-bSSFP) sequence with pseudorandomized acquisition parameters (see Fig. 1)
[6]. X can be processed to create a spatiotemporal dictionary as follows.

Let Rn ∈ CP×N be the operator that extracts 2D image patches of size
P = Pi × Pj , so that the spatiotemporal image patch x̃n ∈ CP×T at a given
spatial location n is given by

x̃n = RnX. (2)
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Fig. 1. Pseudorandom acquisition sequence and the corresponding signal response. a,
TR values following a Perlin noise pattern. b, Flip angle series of repeating sinusoidal
curves and added random values. c, Signal evolution for different tissue classes: white
matter (WM), grey matter (GM), and cerebrospinal fluid (CSF).

It is then possible to create the patch-based image matrix X̃ ∈ CPT×N by con-
catenating the vector representation of every spatiotemporal patch of dimension
Pi × Pj × T for each spatial location in X. Repeating the operation on θ cre-

ates the patch-based multiparametric matrix θ̃ ∈ RPQ×N . The spatiotemporal
dictionary D̃ ∈ CPT×K is then constructed by using k-means to cluster atoms
in X̃ with similar signal values into K clusters, averaging the corresponding T1
and T2 values in θ̃ to create the clustered patch-based matrix Θ ∈ CPQ×K , and
simulating the signal evolution for each cluster. A new simulation of the signal
evolution ensures that the atoms in D̃ correspond exactly to the entries in Θ.

2.2 Patch-Based BLIP Reconstruction (P-BLIP)

The BLIP algorithm [3] reconstructs the image sequence X in an iterative fash-
ion. Given an image sequence X(i) at iteration i, the reconstructed sequence
X(i+1) in the next iteration is determined by

X(i+1) = PA(X(i) + μEH(Y − EX(i))), (3)

where PA represents the projection onto the signal model A, EH is the Hermitian
adjoint of the encoding operator, and μ equals the step size. P-BLIP builds on
this algorithm, incorporating the patch extraction operator in (2) and an update
step to make (3) applicable to a spatiotemporal signal model.

At every iteration the updated sequence X is transformed into the patch-
based matrix X̃ by (2). X̃ is related to the trained dictionary D̃ by

X̃ = D̃W, (4)
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where W ∈ RK×N represents the weights. Equation 4 can be readily solved using
greedy algorithms that find sparse solutions to linear systems of equations by
adding a sparsity constraint to the �0-norm of each column vector wn:

Ŵ = arg min
W

‖X̃ − D̃W‖2
2, s.t. ‖wn‖0 ≤ γ, n = 1, ..., N. (5)

We set the sparsity constraint to γ = 1, equivalent to finding one dictionary
atom, as done in the template matching used in [3,6].

After estimating the weights, the patch-based image matrix is projected onto
the dictionary by X̂ = D̃Ŵ. At this point, each voxel is overrepresented a total
of P times, requiring an update step to return to the original image sequence X.
This update is achieved by averaging the P temporal signals that contribute to
a given voxel location. Finally, the parametric maps θ are estimated by applying
the weights and patch-wise updates on Θ.

3 Experiments and Results

Image Data. Experiments were performed using twenty digital brain phantoms
from BrainWeb [2]. Of these, ten were used to train the spatiotemporal dic-
tionary and ten to test the performance of three different reconstruction algo-
rithms: the original MRF reconstruction [6], BLIP [3], and the proposed P-BLIP.
Experiments were designed to evaluate the performance of each algorithm as a
function of sequence length and acceleration factors, and, for the case of P-BLIP,
also as a function of spatial patch size. Ground truth datasets were generated by
selecting a slice of crisp datasets labeled with different tissue classes, and resam-
pling them to a matrix size of 256×256 to accelerate computations. Quantitative
maps were then obtained by replacing the tissue labels with their correspond-
ing T1 and T2 values. The values for the three main tissue types grey matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) were equaled to those
reported in [6], while the values for the rest of the classes (fat, bone, muscle,
vessels, dura matter, and connective tissue) were obtained directly from [1].

Modeling the Signal Evolution. At every voxel, the ground truth quantitative
maps served as a basis to simulate the temporal evolution of the signal based
on the IR-bSSFP pulse sequence with acquisition parameters displayed in Fig. 1,
where the TRs follow a Perlin noise pattern, FAs are a series of repeating sinu-
soidal curves with added random values, and the radio frequency phase alternates
between 0◦ and 180◦ on consecutive pulses. Off-resonance frequencies were not
taken into account. This pulse sequence was combined with all possible combi-
nations of a given range of T1 and T2 values to create a temporal dictionary
used in both MRF and BLIP. The selected range was reported in [3], where T1
spans from 100 ms to 6000 ms and T2 from 20 ms to 1000 ms, both sampled at
varying step sizes. Additionally, the dictionary included the exact T1 and T2
combinations corresponding to the different tissue classes.

Spatiotemporal Dictionary. To train the spatiotemporal dictionary used in P-
BLIP, a region of interest that accounted for the entire head area was defined.
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Fig. 2. Exemplary reconstruction results of one dataset with T = 200, R = 10, and
P = 3×3. The upper row shows T1 maps for all algorithms and the ground truth; and
the bottom row the corresponding T2 maps. Most visible in T2 maps, subsampling
artefacts can be effectively removed with P-BLIP.

The space covered by this region of interest was randomly and equally subsam-
pled and each of the subsampled sets was assigned to a training subject. The
selected parametric maps of each subject were then used as an input to train
the dictionary as described in Sect. 2.1 with a total of K = 200 clusters.

Subsampling Strategy. We use a random EPI subsampling strategy for all exper-
iments: the k-space is fully sampled in the read direction (kx) and uniformly
undersampled in the phase encoding direction (ky) by an acceleration factor R.
The sampling pattern is shifted by a random a number of ky lines at every shot
of the sequence.

Experimental Setup. An initial experiment was performed with spatiotemporal
patches of size 3×3×200 and an acceleration factor R = 10 to visually evaluate
the reconstructed maps (see Fig. 2). Subsequently, three experiments assessed
the reconstruction performance with respect to sequence length, acceleration
factor and spatial patch size. The first experiment varied sequence lengths from
100 to 500 in step sizes of 100, the second experiment used acceleration factors
of R = {2, 5, 10, 15, 20}, and the final experiment used spatial patches of sizes
P = {1×1, 3×3, 5×5, 7×7}. The reconstruction error of the first two experiments
was calculated using the signal-to-error ratio (SER) in decibels (dB), defined as

20 log10
‖x‖2

‖x−x̂‖2
; and the third experiment with the SSIM values [8].

Results. Figure 2 displays the reconstructed parametric maps of an exemplary
dataset. The MRF estimates show the characteristic ghosting artefacts caused
by sub-Nyquist sampling. BLIP removes most of these artefacts from the T1
estimation, though they are still visible in the T2 maps. P-BLIP effectively
removes these artefacts from both maps, resulting in reconstructions very close to
the ground truth. These visual observations can be confirmed with quantitative
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Fig. 3. a,c, Performance as a function of sequence length with R = 10, P = 3 × 3;
and b,d, as a function of acceleration factor with T = 200, P = 3 × 3. P-BLIP is
best in estimating T2 maps and shows better results for shorter sequences and higher
acceleration for T1 maps.

Table 1. Average SSIM values for T1 and T2 map estimation with respect to different
spatial patch sizes, T = 200 and R = 10.

Method Baseline Proposed: P-BLIP

MRF BLIP 1 × 1 3 × 3 5 × 5 7 × 7

T1 0.761 0.814 0.848 0.852 0.691 0.625

T2 0.616 0.591 0.769 0.857 0.667 0.601

results. Figure 3c and d show how P-BLIP achieves better T2 estimates inde-
pendently of the sequence length or acceleration factor. On the other hand, T1
maps for P-BLIP remain relatively constant for sequence lengths larger than 100
(Fig. 3a) and all acceleration factors (Fig. 3b), whilst the performance of MRF
and BLIP increases with the sequence length and lower acceleration factors.
The reason for these results is twofold. First, the IR-bSSFP sequence is mostly
T1-weighted, favoring a better T1 matching over T2 matching for all methods.
Second, a trained dictionary containing a longer sequence, but fixed K, is less
flexible, and if the trained dictionary does not exactly contain the ground truth
values, the quantitative error will be higher.

Table 1 indicates the performance of P-BLIP for different patch sizes in com-
parison to the performance of MRF and BLIP. A spatial patch size of P = 1× 1
implies that the training dataset was created from voxel-wise temporal evo-
lutions and that the trained dictionary is a clustered version of the temporal
dictionary. It can be seen that clustering a temporal dictionary alone improves
the reconstruction with respect to MRF and BLIP, and that the spatiotemporal
dictionary further improves these results for P = 3 × 3. At larger spatial patch
sizes the results begin to decline, indicating that the cluster size of K = 200 is
not enough to capture the entire spatial variability of the parametric maps.
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4 Conclusions

This work presents a novel patch-based reconstruction scheme for MRF con-
sistent with the theory of CS. It is based on a spatiotemporal signal model
and relies on the training of the corresponding dictionary from a set of exam-
ples. This patch-based scheme shows improved performance for shorter pulse
sequences and at higher acceleration factors, leading to an increased efficiency
of parameter mapping with MRF.

An important discussion point of our approach is the size of the dictionary in
terms of space, time, and atoms. Larger spatial patches allow, in theory, for the
acquisition of less temporal points, but the amount of atoms in the dictionary
should in turn be large enough to account for large spatial variability. We have
seen from our results that a dictionary size of K = 200 is not enough for spatial
patch sizes larger than 3 × 3 for structures in the brain. A potencial solution
to this shortcoming might be to make K dependant on the atom length or
arbitrarily large at the cost of computational complexity. This point is currently
under investigation and future work will focus on extending the method to incor-
porate 3D spatial patches and applying it to real datasets.
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5.1.2 Simultaneous Parameter Mapping, Modality Synthesis, and Anatom-
ical Labeling of the Brain with MR Fingerprinting
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Authors: PA. Gómez, M. Molina-Romero, C. Ulas, G. Buonincontri,
JI. Sperl, DK. Jones, MI. Menzel, BH. Menze

In: MICCAI: International Conference on Medical Image Computing and
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Abstract: Magnetic Resonance Fingerprinting (MRF) quantifies vari-
ous properties simultaneously by matching measurements to a dictio-
nary of precomputed signals. We propose to extend the MRF frame-
work by using a database to introduce additional parameters and
spatial characteristics to the dictionary. We show that, with an ade-
quate matching technique which includes an update of selected fin-
gerprints in parameter space, it is possible to reconstruct parametric
maps, synthesize modalities, and label tissue types at the same time
directly from an MRF acquisition. We compare (1) relaxation maps
from a spatiotemporal dictionary against a temporal MRF dictionary,
(2) synthetic diffusion metrics versus those obtained with a standard
diffusion acquisition, and (3) anatomical labels generated from MRF

signals to an established segmentation method, demonstrating the
potential of using MRF for multiparametric brain mapping.

Contribution of thesis author: Discussion of algorithmic implemen-
tation and experimental design, manuscript revision and editing.
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Abstract. Magnetic resonance fingerprinting (MRF) quantifies various
properties simultaneously by matching measurements to a dictionary of
precomputed signals. We propose to extend the MRF framework by using
a database to introduce additional parameters and spatial characteristics
to the dictionary. We show that, with an adequate matching technique
which includes an update of selected fingerprints in parameter space,
it is possible to reconstruct parametric maps, synthesize modalities, and
label tissue types at the same time directly from an MRF acquisition. We
compare (1) relaxation maps from a spatiotemporal dictionary against
a temporal MRF dictionary, (2) synthetic diffusion metrics versus those
obtained with a standard diffusion acquisition, and (3) anatomical labels
generated from MRF signals to an established segmentation method,
demonstrating the potential of using MRF for multiparametric brain
mapping.

1 Introduction

Magnetic resonance fingerprinting (MRF) is an emerging technique for the simul-
taneous quantification of multiple tissue properties [7]. It offers absolute measure-
ments of the T1 and T2 relaxation parameters (opposed to traditional weighted
imaging) with an accelerated acquisition, leading to efficient parameter mapping.
MRF is based on matching measurements to a dictionary of precomputed sig-
nals that have been generated for different parameters. Generally, the number of
atoms in the dictionary is dictated by the amount of parameters, and the range
and density of their sampling. As an alternative to continuous sampling of the
parameter space, one could use measured training examples to learn the dictio-
nary, reducing the number of atoms to only feasible parameter combinations [2].
In this work, we propose to use a database of multi-parametric datasets to create
the dictionary, presenting two new features of MRF that can be achieved simul-
taneously with relaxation mapping: modality synthesis and automatic labeling
of the corresponding tissue.

c© Springer International Publishing AG 2016
S. Ourselin et al. (Eds.): MICCAI 2016, Part III, LNCS 9902, pp. 579–586, 2016.
DOI: 10.1007/978-3-319-46726-9 67
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In this extended application of MRF towards image synthesis and segmenta-
tion, we follow a direction that has recently gained attention in the medical image
processing literature [1,3,5,6,9,10]. The working principle behind these meth-
ods is similar: given a source image and a multi-contrast database of training
subjects, it is possible to generate the missing contrast (or label) of the source
by finding similarities within the database and transferring them to create a
new image. The search and synthesis strategy can take several forms: it could
be iterative to incorporate more information [10]; can be optimized for multi-
ple scales and features [1]; may include a linear combination of multiple image
patches [9]; or be configured to learn a nonlinear transform from the target to the
source [5]. There have been several applications of synthetic contrasts, including
inter-modality image registration, super-resolution, and abnormality detection
[3,5,6,9,10]. Furthermore, in addition to the creation of scalar maps in image
synthesis, similar techniques can be used for mapping discrete annotations; for
example, in the segmentation of brain structures [1].

Inspired by these ideas, we present a method for synthesizing modalities and
generating labels from magnetic resonance fingerprints. It relies on the creation of
a spatiotemporal dictionary [2] and its mapping to different parameters. Specifi-
cally, in addition to the physics-based mapping of MRF signals to the T1 and T2
relaxation parameters, we train empirical functions for a mapping of the signals
to diffusion metrics and tissue probabilities. We show that we can achieve higher
efficiency relaxation mapping, and demonstrate how the use of a spatiotemporal
context improves the accuracy of synthetic mapping and labeling.

We see three main contributions to our work. (1) We present a framework
for creating a spatiotemporal MRF dictionary from a multi-parametric database
(Sect. 2.1). (2) We generalize fingerprint matching and incorporate a data-driven
update to account for correlations in parameter space, allowing for the simul-
taneous estimation of M different parameters from any fingerprinting sequence
(Sect. 2.2). (3) Depending on the nature of the m-th parameter, we call it a map-
ping, synthesis, or labeling, and show results for all three applications (Sect. 3.1).
This is the first attempt - to the best of our knowledge - to simultaneously map
parameters, synthesize diffusion metrics, and estimate anatomical labels from
MR fingerprints.

2 Methods

Let Q = {Qs}S
s=1 represent a database of spatially aligned parametric maps

for S subjects, where each subject Qs ∈ RN×M contains a total of N = Ni ×
Nj × Nk voxels and M maps. Every map represents an individual property, and
can originate from a different acquisition or modality, or even be categorical.
Our database includes the quantitative relaxation parameters T1 and T2; a non-
diffusion weighted image (S0); the diffusion metrics mean diffusivity (MD), radial
diffusivity (RD), and fractional anisotropy (FA); and probability maps for three
tissue classes: gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). Thus, for every subject Qs = {T1,T2,S0,MD,RD,FA,GM,WM,CSF}.
We use this database to create a spatiotemporal MRF dictionary as follows.
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2.1 Building a Spatiotemporal MRF Dictionary

With the relaxation parameters T1 and T2 and knowledge of the sequence vari-
ables, it is possible to follow the extended phase graph (EPG) formalism to
simulate the signal evolution of a fast imaging with steady state precession MRF
(FISP-MRF) pulse sequence [4]. In EPG the effects of a sequence on a spin sys-
tem are represented by operators related to radio-frequency pulses, relaxation,
and dephasing due to gradient moments. Therefore, for every voxel in all sub-
jects, application of the EPG operators leads to a dictionary D ∈ CNS×T with
a total of T temporal points (see Fig. 1).

0 250 500 750 1000

R
ep

et
iti

on
 ti

m
e 

(m
s)

11

13

15

Temporal points (T)
0 250 500 750 1000

Fl
ip

 a
ng

le
 (

de
gr

ee
s)

0

35

70

k
x
 (cm-1)

-0.04 -0.02 0 0.02 0.04

k y (
cm

-1
)

-0.04

-0.02

0

0.02

0.04
a

b

c

Fig. 1. FISP-MRF acquisition sequence. a, Repetition times following a Perlin noise
pattern. b, Flip angles of repeating sinusoidal curves. c, k-space trajectory of four
different spiral interleaves, 32 interleaves are required for full k-space coverage.

We further process the dictionary to incorporate spatial information by
expanding each voxel with its 3D spatial neighborhood of dimension P =
Pi×Pj×Pk and compressing the temporal dimension into its first V singular vec-

tors [8]. This results in a compressed spatiotemporal dictionary D̃ ∈ CNS×PV .
Finally, we define a search window Wn = Wi × Wj × Wk around every voxel

n, limiting the dictionary per voxel to D̃n ∈ CWnS×PV . The choice for a local
search window has a two-fold motivation: it reduces the number of computations
by decreasing the search space and it increases spatial coherence for dictionary
matching [10].

Applying subject concatenation, patch extraction, and search window reduc-
tion on the database Q leads to a voxel-wise spatio-parametric matrix R̃n ∈
RWnS×PM . For simplicity, we will use D and R instead of D̃n and R̃n, where
every dictionary entry dc ∈ CPV has its corresponding matrix entry rc ∈ RPM .

2.2 Dictionary Matching and Parameter Estimation

MRF aims to simultaneously estimate several parametric maps from undersam-
pled data. This is achieved by reconstructing an image series and matching it
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to the dictionary. We reconstruct V singular images [8] and extract 3D patches
from them to create the patch-based matrix X ∈ CN×PV . At every voxel xn, we
find the set Mn of the C highest correlated dictionary entries dc, c = 1, .., C, by:

Mn = {dc ∈ D : ρ(xn, dc) > τC} (1)

with the threshold value τC such that |M| = C and

ρ(x, d) =
〈x, d〉

‖x‖2‖d‖2
. (2)

Making use of the selected entries dc and the corresponding parametric vec-
tors rc, an estimated value q̃n,m at voxel location n in map m is determined by
the weighted average of the correlation between every entry dc and the signals
xp within Ωn, the spatial neighborhood of n:

q̃n,m =

∑
p∈Ωn

∑
c ρ(xp, dc)rc,pm

P
∑

c ρ(xp, dc)
, (3)

where rc,pm indexes the quantitative value of voxel p centered around atom c in

map m. Repeating this procedure for every voxel creates an estimate Q̃ of all of
the parametric maps, including synthetic modalities and anatomical labels.

Data-Driven Updates. Ye et al. [10] proposed the use of intermediate results
to increase spatial consistency of the synthetic maps. We take a similar approach,
and define a similarity function relating image space and parameter space:

f(x, d, r, q, α) = (1 − α)ρ(x, d) + αρ(q, r) (4)

where α controls the contributions of the correlations in image and parameter
space. The selected atoms are now determined by

Mn = {dc ∈ D, rc ∈ R : f(xn, dc, q̃n, rc, α) > τC}. (5)

In the first iteration α = 0 as we have no information on the map Q̂ for our
subject. In a second iteration we increase α, adding weight to the similarities in
parameter space and compute Eq. 5 again to find a new set of dictionary atoms.
The final version of the maps is given by a modified version of Eq. 3:

q̂n,m =

∑
p∈Ωn

∑
c f(xp, dc, q̃n, rc, α)rc,pm

P
∑

c f(xp, dc, q̃n, rc, α)
. (6)

This procedure is essentially a 3D patch-match over a V -dimensional image
space and M -dimensional parameter space, where the matching patches are com-
bined by their weighted correlation to create a final result.
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Fig. 2. Exemplary results of one test subject with P = 3 × 3 × 3. The upper row
displays the first five singular images; while the second and fourth row show the output
for different parametric maps and the correlation to the reference image, displayed in
the third and fifth row, respectively. Additionally, the last column in rows four and
five shows labels obtained from selecting the tissue class with highest probability and
the dice similarity coefficient (DSC) from the output labels to the reference. The bar
underneath represents, from left to right, background, GM, WM, and CSF; and the
DSC was computed from the GM, WM, and CSF labels. T1 and T2 scale is displayed
in ms; S0 is qualitatively scaled to 255 arbitrary units; MD and RD are in mm2/s; FA,
GM, WM, and CSF are fractional values between zero and one.

2.3 Data Acquisition and Pre-processing

We acquired data from six volunteers with a FISP-MRF pulse sequence [4] on a
3T GE HDx MRI system (GE Medical Systems, Milwaukee, WI) using an eight
channel receive only head RF coil. After an initial inversion, a train of T = 1024
radio-frequency pulses with varying flip angles and repetition times following a
Perlin noise pattern [4] was applied (see Fig. 1). We use one interleave of a zero-
moment compensated variable density spiral trajectory per repetition, requiring
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32 interleaves to sample a 22 × 22 cm field of view (FOV) with 1.7 mm isotropic
resolution. We acquired 10 slices per subject with a scan time of 13.47 seconds
per slice, performed a gridding reconstruction onto a 128 × 128 Cartesian grid,
projected the data into SVD space, and truncated it to generate V = 10 singular
images. The choice of V = 10 was motivated by the energy ratio, as this was
the lowest rank approximation which still yielded an energy ratio of 1.0 [8]. The
singular images were matched to a MRF dictionary comprising of T1 values
ranging from 100 to 6,000 ms; and T2 values ranging from 20 ms to 3,000 ms.

In addition, we scanned each volunteer with a diffusion weighted imaging
(DWI) protocol comprising of 30 directions in one shell with b = 1000 s/mm2.
The FOV, resolution, and acquired slices were the same as with MRF-FISP,
resulting in a 15 min scan. We applied FSL processing to correct for spatial dis-
tortions derived from EPI readouts, skull strip, estimate the diffusion tensor and
its derived metrics MD, RD, and FA; and used the non-diffusion weighted image
S0 to compute probability maps of three tissue types (GM, WM, CSF) using
[11]. Finally, we applied registration across all subjects to create the database.

3 Experiments and Results

For every subject, we performed a leave-one-out cross validation, wherein the
dictionary was constructed from five subjects and the remaining subject was
used as a test case. Following the procedure described in Sect. 2.2, we created
a database of nine parametric maps (T1,T2,S0,MD,RD,FA,GM,WM,CSF) and
compared the estimated metrics to the reference by their correlation.

We explored the influence of the window size Wn, the number of entries C,
and the α on the estimated maps. We found correlations increased with diminish-
ing returns as Wn increased, while adding more entries yielded smoother maps.
Correlations were higher after a second iteration of data-driven updates with
α > 0, irrespective of the value of α. Nonetheless, variations of these parameters
didn’t have a significant effect on the overall results. To investigate the impact
of using spatial information, we repeated the experiment for spatial patch sizes
of P = 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5. For these experiments we used
Wn = 11 × 11 × 11, C = 5, α = 0.5, and two iterations.

3.1 Results

The reference T1 and T2 maps were estimated from a FISP-MRF sequence with
a temporal dictionary, while we used a spatiotemporal dictionary with varying
spatial patches. Estimated T1 and T2 maps were consistent with the reference,
with increasing spatial smoothness for larger spatial patches. This also lead to
a decrease in correlation to the reference, most notably in T2 estimation (see
Fig. 3a–b), which could also be attributed noisier T2 estimates. In future exper-
iments we will rely on standard relaxation mapping for reference comparison.

The synthetic S0 and diffusion metrics MD, RD, and FA show spatial coher-
ence, achieving correlation values over 0.90 with respect to a standard DWI
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Fig. 3. Correlation as a function of spatial patches for all subjects. a–b, T1 and T2
parameter mapping. c–f, Synthesis of S0 and diffusion metrics. g–i, Tissue labeling.

acquisition (Fig. 2). Similar to [10], we found that FA maps were generally the
least correlated to the reference. This is due to the fact that diffusion encoding
in DWI acts as a proxy for underlying tissue anisotropy, whereas the measured
fingerprints are not diffusion sensitive, failing to exactly recover directionality
present in FA. In fact, the higher the directionality encoded in a given modality,
the lower the correlation to the reference (ρS0 > ρMD > ρRD > ρFA). Fur-
thermore, for all cases in modality synthesis, incorporating spatial information
generated increased consistency and higher correlated results (Fig. 3c–f).

Figure 2 shows the visual similarity between tissue probability maps obtained
directly as an output from matching and those computed with [11] and the labels
obtained by selecting the class with the highest probability. As with modal-
ity synthesis, anatomical labels improved when spatial information was taken
into account (Fig. 3g–i). Particularly in CSF, incorporation of spatial informa-
tion eliminated false positives, yielding better quality maps. On the other hand,
thresholding of probability maps lead to an overestimation of GM labels, notably
at tissue boundaries. Labeling at tissue boundaries could benefit from higher res-
olution scans and a multi-channel reference segmentation.

4 Discussion

This work proposes to replace a simulated temporal MRF dictionary with a
spatiotemporal dictionary that can be learnt from data, increasing the efficiency
of relaxation parameter mapping, and enabling the novel applications of modality
synthesis and anatomical labeling. In terms of methodology, we borrow concepts
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such as the search window and parameter space regularization from the image
segmentation and synthesis literature [1,3,10], but change the input to a V -
dimensional image space and the output to an M -dimensional parameter space,
making it applicable to MRF. Moreover, our framework is valid for any MR
sequence, provided signal evolutions can be computed from the training data.

Results indicate that it is possible to use MRF to simultaneously map T1 and
T2 parameters, synthesize modalities, and classify tissues with high consistency
with respect to established methods. While our method allows us to circum-
vent post-processing for diffusion metric estimation and tissue segmentation, it
is important to note that changes in synthetic diffusion maps can only be prop-
agated from the information available in the database. Therefore, creating the
dictionary from pathology and exploring advanced learning techniques capable
of capturing these changes is the subject of future work.
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5.2 relevant peer-reviewed abstracts

The abstracts contained in this section were presented at the ISMRM

annual meeting. The work titled 3D Magnetic Resonance Fingerprint-
ing with a Clustered Spatiotemporal Dictionary proposes an unsu-
pervised learning technique to build a clustered dictionary for MRF,
this method boosts efficiency and is robust to undersampling and
shorter acquisitions. In this regards, Accelerated Parameter Mapping
with Compressed Sensing: an Alternative to MR Fingerprinting take
this idea further revisiting the requirements of MRF and removing
dispensable elements to reach an optimized technique: QTI.
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Abstract: We present a method for creating a spatiotemporal dictio-
nary for Magnetic Resonance Fingerprinting (MRF). Our technique
is based on the clustering of multi-parametric spatial kernels from
training data and the posterior simulation of a temporal fingerprint
for each voxel in every cluster. We show that the parametric maps es-
timated with a clustered dictionary agree with maps estimated with
a full dictionary, and are also robust to undersampling and shorter se-
quences, leading to increased efficiency in parameter mapping with
MRF.
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Abstract. We present a method for creating a spatiotemporal dictio-
nary for magnetic resonance fingerprinting (MRF). Our technique is
based on the clustering of multi-parametric spatial kernels from train-
ing data and the posterior simulation of a temporal fingerprint for each
voxel in every cluster. We show that the parametric maps estimated with
a clustered dictionary agree with maps estimated with a full dictionary,
and are also robust to undersampling and shorter sequences, leading to
increased efficiency in parameter mapping with MRF.

1 Purpose

Magnetic resonance fingerprinting (MRF) allows for the simultaneous quantifi-
cation of multiple tissue properties via the matching of acquired signals to a pre-
computed dictionary, created by sampling a wide range of the parameter space
[4]. As the parameters of interest increase, so does the dictionary size, leading
to long reconstruction times. One possibility for overcoming this limitation is to
use a clustered dictionary with both spatial and temporal information [2]. This
work aims at increasing MRF efficiency by using a clustered spatiotemporal dic-
tionary and incorporating it into a MRF pipeline that includes B1 mapping and
a view-sharing (VS) anti-aliasing strategy [1].

2 Methods

We tested our approach using 3D MRF data of a Lister-hooded adult rat brain
adult acquired with a Bruker BioSpec 47/40 system (Bruker Inc., Ettlingen,
Germany) [1]. The sequence was based on SSFP-MRF [3]with Cartesian sam-
pling, T = 1000 shots, and 0.5 mm isotropic resolution. A dictionary D ∈ CL×T

was simulated using extended phase graphs with the following ranges: T1 from
100ms to 3,000ms in 20ms steps; T2 from 20ms to 100ms in 5ms steps and from
100 to 500ms in 10ms steps; and B1 as a flip angle factor from 50% to 150% in
1% steps, resulting in a dictionary of size 840522× 1000. The acquired data was
matched to the dictionary to create a reference dataset.
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Fig. 1. Parameter distribution obtained from selected slices in the left hemisphere
used as a training dataset. The upper triangle displays density plots, the diagonal
histograms, and the lower triangle scatter plots. Note that parameters approach a
Gaussian distribution and are densely scattered within a specific range.

Exploiting symmetry of the brain, the reference dataset was divided along
the medial longitudinal fissure, separating the left and right hemisphere. The
estimated parametric T1, T2 and B1 maps of the left hemisphere (see Fig. 1)
were used to create spatiotemporal dictionaries of different sizes by first cluster-
ing multi-parametric (T1,T2,B1) spatial kernels using k-means and subsequently
simulating the temporal signal of every voxel in each cluster. The right hemi-
sphere of the reference dataset was then matched to dictionaries with spatial
kernel sizes of P = 1× 1× 1 (clustered only), P = 3× 3× 3 and P = 5× 5× 5
(see Fig. 2).

We hypothesize that a dictionary that contains only feasible parameter com-
binations and spatial information should enable acceleration in both space and
time. We test this by samplingless k-space points using a Gaussian mask in the
phase encode directions with different acceleration factors (Figs. 3-4), and by re-
ducing the sequence length (Fig. 4). Undersampled datasets were reconstructed
with the original dictionary template matching (TM) [4]and with our VS ap-
proach, and compared to the reference dataset by their similarity index (SSIM)
[5]. Furthermore, we study the amount of clusters required to accurately capture
the entire spatio-parametric variability in our dataset by evaluating the mean
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Fig. 2. Comparison of the estimated T1, T2 and B1 parametric maps from the fully
sampled dataset with a temporal dictionary D ∈ CL×T and three clustered dictionaries
D̂ 3√

P
∈ CK×TP with K = 300, T = 1000, and P = 1× 1× 1, 3× 3× 3, and 5× 5× 5.

Spatial smoothing obtained with and is achieved by averaging all contributing patches
to a given voxel.

square error (MSE) of the training and testing data for different spatial kernels
(Fig. 5).

3 Results

Figure 1 shows how the estimated parameters approximate a Gaussian distribu-
tion, and are scattered in a restricted range within the parameter space. Hence,
using dictionaries trained from this distribution yields parametric maps that
agree with maps estimated using the full dictionary (see Fig. 2). Figure 3 com-
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Fig. 3. Estimated T2 parametric maps from fully sampled reference data and data
undersampled with an acceleration factor R=5 (20% of k-space) for two different re-
construction methods: template matching (TM) and view-sharing (VS). The clustered
dictionaries D̂ 3√

P
∈ CK×TP consisted of K = 300, T = 1000, and P = 1 × 1 × 1,

3× 3× 3, and 5× 5× 5.

pares the reconstructed maps with 20% sampling of k-space, where D and D̂1

combined with VS are the most similar to the reference dataset. Figure 4 shows
smaller variation of the clustered dictionaries with undersampling, though hav-
ing less similarity to the reference dataset in fully sampled cases. Fig. 5 evidences
how the training error decreases for more clusters in all cases, while the testing
error only decreases continuously for D̂1.

4 Discussion

We use spatiotemporal dictionaries of different spatial kernel sizes with K = 300
clusters (0.036% of the original dictionary size) and obtain comparable paramet-
ric maps (see Fig. 2). Furthermore, Figs. 3-4 show that clustered dictionaries,
especially if they contain spatial information, are more robust to undersampling
and shorter sequences. Conversely, the spatial smoothing achieved with larger
spatial kernels along with the constant testing errors for increasing clusters in
Fig. 5 indicate that the training data does not accurately represent the testing
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Fig. 4. Acceleration in space and time. The left column displays the SSIM for each of
the dictionaries and two reconstruction methods: template matching (TM) and view-
sharing (VS) for different levels of k-space sampling. The right column shows the es-
timated SSIM for increasing sequence length and an acceleration factor R=5 (20% of
k-space).

data for kernel sizes larger than P = 3 × 3 × 3. In fact, the amount of train-
ing observations required and the corresponding size of the dictionary in terms
of space, time, and clusters, leads to two important discussion points: 1) using
clustering enables higher acceleration, at the expense of disregarding parame-
ter combinations that are not present in the training set (e.g. pathology); and
2) adding spatial information increases the dimensionality of the dictionary, re-
quiring approaches that can effectively deal with matching in high dimensional
spaces.

5 Conclusions

We propose a method to create clustered MRF dictionaries and show the added
benefit of combining it with a view-sharing strategy to enable both accelerated
acquisitions by undersampling, and accelerated reconstructions through dictio-
nary compression. Further investigation of data-driven approaches could pave
the way towards tissue and disease specific dictionaries in clinical settings.
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Fig. 5. Training and testing error for different cluster sizes K from the fully sampled
reference dataset. For D̂1 both the training and testing error reduce with an increasing
number of clusters, while testing errors for D̂3 and D̂5 do not change significantly with
increasing clusters.
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on three concepts: 1) an inversion recovery, variable flip angle ac-
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pressed sensing reconstruction which exploits spatiotemporal corre-
lations through low rank regularization; and 3) a model-based opti-
mization to simultaneously estimate proton density, T1, and T2 values
from the acquired measurements. Compared to Magnetic Resonance
Fingerprinting (MRF), the proposed method achieves a five-fold accel-
eration in acquisition time, reconstructs an unaliased series of images,
and does not rely on dictionary matching for parameter estimation.
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Abstract. We introduce a method for MR parameter mapping based
on three concepts: 1) an inversion recovery, variable flip angle acquisition
strategy designed for speed, signal, and contrast; 2) a compressed sens-
ing reconstruction which exploits spatiotemporal correlations through
low rank regularization; and 3) a model-based optimization to simulta-
neously estimate proton density, T1, and T2 values from the acquired
measurements. Compared to MR Fingerprinting, the proposed method
achieves a five-fold acceleration in acquisition time, reconstructs an un-
aliased series of images, and does not rely on dictionary matching for
parameter estimation.

1 Purpose

MR fingerprinting (MRF) [12] has recently gained attention due to its ability to
simultaneously estimate multiple parametric maps within clinically feasible scan
times. MRF is based on three main ingredients: a pseudorandom acquisition, the
reconstruction of aliased measurements, and the matching of these measurements
to a precomputed dictionary. While conceptually appealing, MRF suffers from
multiple methodological shortcomings. The purpose of this work is to present an
alternative method to parameter mapping that addresses these limitations by
optimizing the acquisition, reconstructing unaliased measurements, and fitting
the measurements in a model-based optimization not subject to the discretiza-
tion of the dictionary.

2 Methods

In an MRI experiment the observed signal y(t) can be described by the combi-
nation of a spatial function with a temporal signal evolution:

y(t) =

∫

r

ρ(r)ft(r)e−2πk(t)·rdr; (1)
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Fig. 1. Flip angle trajectories and correlation between observations. a-b, Flip angle
trajectory for MRF and variable flip angles (vFA). c-d, Temporal signal evolution of
three exemplary observations. The legend displays the correlation c between each of
them. e-f, Correlation matrix for all observations and the norm of the matrix; where
the observations are less correlated in vFA.

where ρ(r) is the spatial distribution of the spin density at position r, k(t) is the
k-space trajectory, and ft(r) is the temporal signal, given by the recursion:

ft(r) = ft−1(r)g (θa(t);θb(r)) . (2)

The temporal signal ft(r) at time t is determined by the signal value at the
previous time point ft−1(r) modulated by g (·), a function of two different pa-
rameter sets: the temporally varying acquisition parameters θa(t), e.g. flip angle
α(t) and repetition time TR(t); and the spatially dependent biological param-
eters of interest θb(r), such as T1(r) and T2(r). In MRF, the temporal signals
are denoted fingerprints, where the method aims at creating unique signals for
different spatial locations through pseudorandom variations of the acquisition
parameters θa(t). Alternatively, we chose θa(t) to satisfy three criteria: speed,
signal, and contrast. We increased the speed by minimizing TR(t), and optimized
α(t) for signal and contrast using a training dataset x ∈ CL×T with L obser-
vations and T time points; wherein we experimentally attempted to increase
both the orthogonality between observations, and the norm within observations
[3,4,8].
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Fig. 2. Reconstructed images at different repetition indexes t. While the nuFFT oper-
ation reconstructs a series of aliased images, the proposed CS reconstruction removes
the aliasing, allowing for an easier visualization of the temporal dynamics of the signal.

Whereas the original MRF reconstructs aliased images from the measure-
ments, recent work has shown that the acquired data can also be reconstructed in
an iterative framework [1,2,5,7,13,17,18]. Based on these ideas, we implemented
a compressed sensing (CS) [11] reconstruction that constrains the temporal sig-
nal evolution to a low dimensional subspace [14,17], and regularizes the image
series by promoting local low rank of spatiotemporal image patches [14,15]. Fi-
nally, once we reconstruct an unaliased image series, we propose to replace the
matching to a simulated dictionary with an optimization based on least-squares
curve fitting for the simultaneous estimationof ρ(r), T1(r), and T2(r).

We acquired a single slice from a healthy volunteer based on the FISP im-
plementation of MRF [10] on a GE HDx MRI system (GE Medical Systems,
Milwaukee, WI), with an eight channel receive only head RF coil. After an ini-
tial inversion, a train of T = 1000 pulses with varying flip angles and repetition
times was applied (Tacq = 13.15 s per slice). In addition, we acquired a train of
T = 300 variable flip angles (vFA) with TR = 8 ms (Tacq = 2.42 s per slice).
For both acquisitions, we used a zero-moment compensated variable density spi-
ral designed with 22.5 × 22.5 cm FOV, 256 × 256 matrix size, 1 mm in-plane
resolution, 5 mm slice thickness, and golden angle rotations between every in-
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Fig. 3. Signal evolution of a single observation with dictionary matching and model-
based optimization. a-b, The high levels of aliasing in the acquisitions lead to different
parameter estimates between matching and optimization. c-d, Matching and optimiza-
tion results are similar when the evolution is unaliased, where the optimization is not
constrained to the discretization of the dictionary. The T2 values obtained from CS-vFA
present an underestimation with respect to the T2 in MRF and CS-MRF.

terleave. Each acquisition was reconstructed using the nuFFT operator [6] and
with the proposed CS method, and parameter maps were subsequently estimated
with both dictionary matching and model-based optimization. We simulated the
dictionary for a varying range of T1 and T2 values using the EPG formalism
[9,16].

3 Results

We found that two linear ramps yielded T1 and T2 sensitivity while reducing the
cost (see Fig. 1). Compared to MRF, the proposed strategy reduces the num-
ber of repetitions (Fig. 1a-b), while increasing the orthogonality of the signal
evolutions between training observations (Fig. 1c-d). This acquisition, coupled
with the proposed CS reconstruction, allows for the recovery of a series of un-
aliased images (Fig. 2), which in turn facilitate a model-based optimization for
parameter mapping (Figs. 3,4).

4 Discussion

When the measurements are aliased, the optimization is subject to local minima
due to high noise levels of the temporal signals, resulting in biased parame-
ter estimates. On the other hand, as soon as the image series is unaliased, the
optimization converges, yielding parametric maps that are not subject to the
discretization of the dictionary. vFA maps display an underestimation of T2 val-
ues, indicating that the vFA strategy could still benefit from better T2 encoding
using variable repetition or echo times.
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Fig. 4. Estimated parametric maps with dictionary matching and model-based opti-
mization. Dictionary matching yields consistent results with noisy and unaliased sig-
nals, while the optimization only converges when fitting unaliased signals (rows 2 and 4,
right). When fitting noisy signals, the optimization converges to local minima, leading
to an incorrect estimation of parametric maps (rows 1 and 3, right). On the other hand,
the optimization is not subject to dictionary discretization, allowing for a wider range
of parameters in the solution space. T2 maps in vFA are underestimated in comparison
to MRF.

5 Conclusions

We demonstrated an alternative to MRF based on variable flip angles, a com-
pressed sensing reconstruction, and a model-based optimization. Our proposal
reduces the acquisition time by a factor of five, reconstructs unaliased tempo-
ral signals, and, notably, does not rely on dictionary matching for parameter
estimation.
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D I S C U S S I O N A N D C O N C L U S I O N





6
D I S C U S S I O N O F T H E P R E S E N T E D M E T H O D S

The core of this thesis aims to understand tissue composition be-
yond the resolution limit of MRI. To this end, three projects were
completed focusing on dMRI and multiparametric mapping, using ad-
vanced analysis techniques like BSS, deep learning, and Bayesian in-
ference. This dissertation is composed of three publications plus one
under review, five abstracts, and one master thesis.

The formulation of BSS as a multicompartment tissue microstruc-
ture problem with multi-echo dMRI (section 3.1 and chapter 4) data
yields two main advantages: first, it sets the basis for compartmen-
tal signal disentangling without geometrical assumptions [23] or ill-
posed ILT; and second, it opens a new way for simultaneous quan-
tification of volumetry and relaxometry of the tissue water compart-
ments. Solutions based on SCA [50], NSC [51], and NMF [52] were ex-
plored with simulations, phantoms, and in vivo repeatably and repro-
ducibility studies for more than twenty volunteers. NMF was proved
to be a robust solver after the introduction of physically informed
constraints for two compartments, producing free-water corrected T2
maps equivalent to the reference method and paving the way for FWE.

The BSS project shed light into the second contribution of this dis-
sertation. The classical two-compartments fitting of the DTI model
is ill-posed and required regularization [57] of specific acquisition
[31]. This thesis introduces a deep learning approach that estimates
the volume fraction of the tissue from the evolution of the diffu-
sion signal (section 3.2 and chapter 4) [53]. This transforms the two-
compartments problem into a single compartment, shifting the per-
spective of the problem and eliminating the need of regularization.
The clinical images from twenty glioblastoma patients were processed
with this method, yielding more relevant information from the avail-
able data.

This thesis contributed to the multiparametric mapping techniques
in the conceptual discussion, signal processing, and implementation
(chapter 5). A Bayesian inference framework implemented on Π4U
[29] was adapted to work on dynamic MRI signals inspired by MRF.
As part of the co-supervision of a master thesis this framework was
extended to model up to three microstructural compartments, filling
the gap between multiparametric mapping and tissue microstructure
characterization (appendix A.2.1). The results were consistent with
literature values of myelin, parenchyma, and CSF.
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O U T L O O K A N D F U T U R E W O R K

This thesis pushes the state-of-the-art in tissue microstrucutre charac-
terization in three ways. First, the bridge created between BSS theory
and dMRI allows for a new manner of approaching the compartmen-
tal nature of brain tissue. This enables for minimum modeling and
no ILT. With BSS not only the volumetry and relaxometry compart-
mental properties are estimated, also the diffusion signals from each
component are disentangled and can be studied separately. This fea-
ture is exclusive of BSS paving the way for a deeper understanding.
Second, there is a shift in perspective for the FWE issue. This dis-
sertation introduces a deep learning pattern matching approach that
substitutes previous regularization techniques, reaching an improved
performance and independence of the diffusion protocol. Finally, we
extended the work on multiparameter mapping to account for sev-
eral sub-voxel components, opening a new way for ultra-fast myelin
fraction estimation and g-ratio quantification in neuroimaging [46].

The ill-posed nature of NMF is well reported in literature. Here,
the presented BSS is based on a ALS version that uses physical con-
straints to regularize the matrix factorization achieving feasible solu-
tions. Nevertheless, ALS is an unsupervised machine learning algo-
rithm that works on data patterns. As such, it is also subject of being
learned by a deep learning method, merging two of the contributions
of this thesis into a more powerful BSS approach. In that sense, the
stability shown by this algorithms will be expected to improve the
convergence issues for more than two compartments, extending its
reach to myelin diffusion, volume and relaxometry estimation.

A major limitation found with the BSS multi-echo analysis lays in
the restriction of the minimum achievable TE. This value falls near 60

ms in clinical scanners, hindering the observation of myelin. State-of-
the-art research hardware [68] and preclinical scanners allow reach-
ing TE values below 40 ms, opening a small window for the third
compartment. Moreover, diffusion acquisition techniques with sev-
eral echoes integrate multi-echo data into one acquisition, preventing
the burden caused by protocol repetition.

Multiparametric mapping of tissue microstructure is highly rele-
vant due to its efficiency in time-information terms. This work ad-
dresses the compartmental disentanglement using data acquired and
reconstructed accounting only for one compartment. This is a sub-
optimal approach and further research to extend the impact of this
method is necessary.

147





Part IV

A P P E N D I X





A
M A N U S C R I P T U N D E R R E V I E W A N D M A S T E R
T H E S I S

a.1 manuscript under review

The manuscript contained in this appendix, Deep learning with syn-
thetic diffusion MRI data for free-water elimination in glioblastoma
cases, is the continuation of the work presented in Deep learning
with synthetic data for free water elimination in diffusion MRI, and
was submitted to the MICCAI international conference. The clinical
relevance of the deep learning FWE method is shown in 20 patients
affected by gliablastoma. This techniques output more relevant infor-
mation from the clinical data, including edema and tumor infiltration
delineation.
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a.1.1 Deep learning with synthetic diffusion MRI data for free-water elim-
ination in glioblastoma cases

Peer-reviewed Conference Paper

Authors: M. Molina-Romero, B. Wiestler, PA. Gómez, MI. Menzel,
BH. Menze

In: Magnetic Resonance in Medicine, doi: 10.1002/mrm.27181 (2018), in
press, p. 10 [52].

Abstract: Glioblastoma is the most common and aggressive brain tu-
mor. In clinical practice, diffusion MRI (dMRI) enables tumor infiltra-
tion assessment, tumor recurrence prognosis, and identification of
white- matter tracks close to the resection volume. However, the va-
sogenic edema (free-water) surrounding the tumor causes partial vol-
ume contamination, which induces a bias in the estimates of the dif-
fusion properties and limits the clinical utility of dMRI. We introduce
a voxel-based deep learning method to map and correct free-water
partial volume contamination in dMRI. Our model learns from syn-
thetically generated data a non-parametric forward model that maps
free-water partial volume contamination to volume fractions. This is
independent of the diffusion protocol and can be used retrospectively.
We show its benefits in glioblastoma cases: first, a gain of statistical
power; second, quantification of free-water and tissue volume frac-
tions; and third, correction of free-water contaminated diffusion met-
rics. Free-water elimination yields more relevant information from
the available data.

Contribution of thesis author: Model development and implementa-
tion, experimental analysis, manuscript preparation and editing.



Deep learning with synthetic diffusion MRI data
for free-water elimination in glioblastoma cases

Miguel Molina-Romero1,2[0000−0001−8054−0426], Benedikt
Wiestler3[0000−0002−2963−7772], Pedro A. Gómez1,2[0000−0003−3709−3557], Marion

I. Menzel2[0000−0003−0087−9134], and Bjoern H. Menze1[0000−0003−4136−5690]

1 Computer Science, Technischen Universität München, Munich, Germany
2 GE Healthcare Global Research Organization, Munich, Germany

3 Department of Neuroradiology, Klinikum rechts der Isar der Technischen
Universität München, Munich, Germany.

Abstract. Glioblastoma is the most common and aggressive brain tu-
mor. In clinical practice, diffusion MRI (dMRI) enables tumor infiltra-
tion assessment, tumor recurrence prognosis, and identification of white-
matter tracks close to the resection volume. However, the vasogenic
edema (free-water) surrounding the tumor causes partial volume contam-
ination, which induces a bias in the estimates of the diffusion properties
and limits the clinical utility of dMRI.
We introduce a voxel-based deep learning method to map and correct
free-water partial volume contamination in dMRI. Our model learns from
synthetically generated data a non-parametric forward model that maps
free-water partial volume contamination to volume fractions. This is
independent of the diffusion protocol and can be used retrospectively.
We show its benefits in glioblastoma cases: first, a gain of statistical
power; second, quantification of free-water and tissue volume fractions;
and third, correction of free-water contaminated diffusion metrics. Free-
water elimination yields more relevant information from the available
data.

Keywords: Glioblastoma, Brain Tumor, DTI, Deep learning, Fractional
Anisotropy, Free-water elimination, Data harmonization.

1 Introduction

Glioblastomas are the most common primary brain tumor. Ninety percent of
these are IDH-wild-type and have a dismal prognosis, with a 5-year survival
rate of less than 10%. Diffusion magnetic resonance imaging (dMRI) and the
diffusion tensor model (DTI) are used clinically for surgical planing. DTI yields
quantitative estimates of the tissue diffusivity, e.g. mean diffusivity (MD), and
fractional anisotropy (FA), an index of tissue microstructure organization. Pre-
vious research focused on FA as indicator of tumor grade, tumor cellularity,
tumor infiltration and edema assessment [1], and tumor recurrence [2]. However,
results are controversial due to reproducibility issues derived from differences in
methology, image acquisition, or post-processing [1].
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Data harmonization in dMRI is attracting attention to overcome these prob-
lems [3]. One way to reduce uncontrolled variability is to eliminate the free-water
signal [4]. Free-water elimination (FWE) uses a two-compartments tissue model
composed by tissue (or parenchyma) and free-water [5]. Fitting the diffusion ten-
sor in a two-compartments model is an ill-posed problem that has been solved
using spatial regularization [6] or optimized acquisition protocols [7] [8]. Har-
monization of image resolution and diffusion directionality can be achieved by
image quality transfer (IQT) with non-linear learninig algorithms, such as convo-
lutional neural networks [9] or random forest [10]. IQT offers a new dimension in
dMRI, enabling learning complex diffusion model on high quality data, to then
transfer information captured in signal patterns to low quality data. However,
this approach is limited by the availability of rich datasets.

We propose an new method for free-water elimination based on an arti-
ficial neural network (ANN), trained with synthetically generated data, that
is independent of the number of diffusion shells (b-values) and can be applied
retrospectively to any dMRI data. Instead of regularizing the FWE ill-posed
inverse problem, we teach a non-parametric forward model to learn the map-
ping between partial volume contamination and free-water volume fraction from
synthetic data. Besides, unlike IQT, our approach works only in the diffusion
dimension, enabling an important simplification of the ANN model. We fur-
ther show the advantages of FWE in glioblastoma cases: 1) a gain of statistical
power through data harmonization, 2) complementary information of the tis-
sue microstructure composition, and 3) better assessment of edema, tumor, and
tumor infiltrated areas.

2 Methods

Diffusion signal modeling: Following previous work on free-water elimination
we modeled the diffusion signal of a single voxel, along the diffusion directions
(b, g), as the contribution of tissue and free-water compartments:

S(TE, b, g) = S0

(
f̂te

−TE
T2t St(b, g) + f̂fwe

−TE
T2fw Sfw(b, g)

)
, (1)

where b and g summarize the gradient effects; S0 is a scaling factor propor-
tional to the proton density; f̂t, f̂fw, T2t , and T2fw

are the volume fraction and
T2 values of tissue and free-water respectively. Since T2t < T2fw

, measurements
at different echo-times (TE) yield distinct contributions of tissue and free-water.
Thus, disentangling the volume fractions from the T2 effects requires measure-
ments at least two different TEs [8]. However, in clinical routine only one TE is
acquired simplifying Eq.1:

S(b, g) = S0 (ftSt(b, g) + ffwSfw(b, g)) , (2)

where the T2i and f̂i effects are integrated in fi, inducing a positive bias
towards the new free-water volume fraction (ffw) as TE increases. The volume
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f 0
t

<latexit sha1_base64="ci6CEguJdQx/GQMXVXrl096eRmQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbRU0lFUG8FL3qrYGyhDWWz3bRLd5OwOxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM+6xWMa6E1DDpYi4hwIl7ySaUxVI3g7GN7nffuLaiDh6wEnCfUWHkQgFo5hL4Wkf+9WaW3dnIMukUZAaFGj1q1+9QcxSxSNkkhrTbbgJ+hnVKJjk00ovNTyhbEyHvGtpRBU3fja7dUpOrDIgYaxtRUhm6u+JjCpjJiqwnYriyCx6ufif100xvPIzESUp8ojNF4WpJBiT/HEyEJozlBNLKNPC3krYiGrK0MZTsSE0Fl9eJt55/bru3l/UmndFGmU4gmM4gwZcQhNuoQUeMBjBM7zCm6OcF+fd+Zi3lpxi5hD+wPn8ASXMjdw=</latexit><latexit sha1_base64="ci6CEguJdQx/GQMXVXrl096eRmQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbRU0lFUG8FL3qrYGyhDWWz3bRLd5OwOxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM+6xWMa6E1DDpYi4hwIl7ySaUxVI3g7GN7nffuLaiDh6wEnCfUWHkQgFo5hL4Wkf+9WaW3dnIMukUZAaFGj1q1+9QcxSxSNkkhrTbbgJ+hnVKJjk00ovNTyhbEyHvGtpRBU3fja7dUpOrDIgYaxtRUhm6u+JjCpjJiqwnYriyCx6ufif100xvPIzESUp8ojNF4WpJBiT/HEyEJozlBNLKNPC3krYiGrK0MZTsSE0Fl9eJt55/bru3l/UmndFGmU4gmM4gwZcQhNuoQUeMBjBM7zCm6OcF+fd+Zi3lpxi5hD+wPn8ASXMjdw=</latexit><latexit sha1_base64="ci6CEguJdQx/GQMXVXrl096eRmQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbRU0lFUG8FL3qrYGyhDWWz3bRLd5OwOxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM+6xWMa6E1DDpYi4hwIl7ySaUxVI3g7GN7nffuLaiDh6wEnCfUWHkQgFo5hL4Wkf+9WaW3dnIMukUZAaFGj1q1+9QcxSxSNkkhrTbbgJ+hnVKJjk00ovNTyhbEyHvGtpRBU3fja7dUpOrDIgYaxtRUhm6u+JjCpjJiqwnYriyCx6ufif100xvPIzESUp8ojNF4WpJBiT/HEyEJozlBNLKNPC3krYiGrK0MZTsSE0Fl9eJt55/bru3l/UmndFGmU4gmM4gwZcQhNuoQUeMBjBM7zCm6OcF+fd+Zi3lpxi5hD+wPn8ASXMjdw=</latexit>

f
0 t

<latexit sha1_base64="ci6CEguJdQx/GQMXVXrl096eRmQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbRU0lFUG8FL3qrYGyhDWWz3bRLd5OwOxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM+6xWMa6E1DDpYi4hwIl7ySaUxVI3g7GN7nffuLaiDh6wEnCfUWHkQgFo5hL4Wkf+9WaW3dnIMukUZAaFGj1q1+9QcxSxSNkkhrTbbgJ+hnVKJjk00ovNTyhbEyHvGtpRBU3fja7dUpOrDIgYaxtRUhm6u+JjCpjJiqwnYriyCx6ufif100xvPIzESUp8ojNF4WpJBiT/HEyEJozlBNLKNPC3krYiGrK0MZTsSE0Fl9eJt55/bru3l/UmndFGmU4gmM4gwZcQhNuoQUeMBjBM7zCm6OcF+fd+Zi3lpxi5hD+wPn8ASXMjdw=</latexit><latexit sha1_base64="ci6CEguJdQx/GQMXVXrl096eRmQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbRU0lFUG8FL3qrYGyhDWWz3bRLd5OwOxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM+6xWMa6E1DDpYi4hwIl7ySaUxVI3g7GN7nffuLaiDh6wEnCfUWHkQgFo5hL4Wkf+9WaW3dnIMukUZAaFGj1q1+9QcxSxSNkkhrTbbgJ+hnVKJjk00ovNTyhbEyHvGtpRBU3fja7dUpOrDIgYaxtRUhm6u+JjCpjJiqwnYriyCx6ufif100xvPIzESUp8ojNF4WpJBiT/HEyEJozlBNLKNPC3krYiGrK0MZTsSE0Fl9eJt55/bru3l/UmndFGmU4gmM4gwZcQhNuoQUeMBjBM7zCm6OcF+fd+Zi3lpxi5hD+wPn8ASXMjdw=</latexit><latexit sha1_base64="ci6CEguJdQx/GQMXVXrl096eRmQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbRU0lFUG8FL3qrYGyhDWWz3bRLd5OwOxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM+6xWMa6E1DDpYi4hwIl7ySaUxVI3g7GN7nffuLaiDh6wEnCfUWHkQgFo5hL4Wkf+9WaW3dnIMukUZAaFGj1q1+9QcxSxSNkkhrTbbgJ+hnVKJjk00ovNTyhbEyHvGtpRBU3fja7dUpOrDIgYaxtRUhm6u+JjCpjJiqwnYriyCx6ufif100xvPIzESUp8ojNF4WpJBiT/HEyEJozlBNLKNPC3krYiGrK0MZTsSE0Fl9eJt55/bru3l/UmndFGmU4gmM4gwZcQhNuoQUeMBjBM7zCm6OcF+fd+Zi3lpxi5hD+wPn8ASXMjdw=</latexit>

ft
<latexit sha1_base64="pEnPjuYelBDIC/Vn5loHLlRQYKU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL3qraGyhDWWz3bRLN5uwOxFK6E/w4kHFq//Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/waJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpH11O/9cS1EYl6wHHKg5gOlIgEo2il+6iHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6q7d+e1xm2RRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/xS2Nqw==</latexit><latexit sha1_base64="pEnPjuYelBDIC/Vn5loHLlRQYKU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL3qraGyhDWWz3bRLN5uwOxFK6E/w4kHFq//Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/waJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpH11O/9cS1EYl6wHHKg5gOlIgEo2il+6iHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6q7d+e1xm2RRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/xS2Nqw==</latexit><latexit sha1_base64="pEnPjuYelBDIC/Vn5loHLlRQYKU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL3qraGyhDWWz3bRLN5uwOxFK6E/w4kHFq//Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/waJJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpH11O/9cS1EYl6wHHKg5gOlIgEo2il+6iHvWrNrbszkGXiFaQGBZq96le3n7As5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGenTsiJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif18kwugxyodIMuWLzRVEmCSZk+jfpC80ZyrEllGlhbyVsSDVlaNOp2BC8xZeXiX9Wv6q7d+e1xm2RRhmO4BhOwYMLaMANNMEHBgN4hld4c6Tz4rw7H/PWklPMHMIfOJ8/xS2Nqw==</latexit>
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⇥ft+
<latexit sha1_base64="1CUkPQo6O7jPdHjXjVcrpAwGEvo=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoqgnoreNFbBWMLTSib7aZdutmE3YlQQv+GFw8qXv013vw3btsctPXBwOO9GWbmhakUBl332ymtrK6tb5Q3K1vbO7t71f2DR5NkmnGPJTLRnZAaLoXiHgqUvJNqTuNQ8nY4upn67SeujUjUA45THsR0oEQkGEUr+T6KmBsS9ZCc9ao1t+7OQJZJoyA1KNDqVb/8fsKymCtkkhrTbbgpBjnVKJjkk4qfGZ5SNqID3rVUUbsqyGc3T8iJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif180wugpyodIMuWLzRVEmCSZkGgDpC80ZyrEllGlhbyVsSDVlaGOq2BAaiy8vE++8fl137y9qzbsijTIcwTGcQgMuoQm30AIPGKTwDK/w5mTOi/PufMxbS04xcwh/4Hz+AJBlkO4=</latexit><latexit sha1_base64="1CUkPQo6O7jPdHjXjVcrpAwGEvo=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoqgnoreNFbBWMLTSib7aZdutmE3YlQQv+GFw8qXv013vw3btsctPXBwOO9GWbmhakUBl332ymtrK6tb5Q3K1vbO7t71f2DR5NkmnGPJTLRnZAaLoXiHgqUvJNqTuNQ8nY4upn67SeujUjUA45THsR0oEQkGEUr+T6KmBsS9ZCc9ao1t+7OQJZJoyA1KNDqVb/8fsKymCtkkhrTbbgpBjnVKJjkk4qfGZ5SNqID3rVUUbsqyGc3T8iJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif180wugpyodIMuWLzRVEmCSZkGgDpC80ZyrEllGlhbyVsSDVlaGOq2BAaiy8vE++8fl137y9qzbsijTIcwTGcQgMuoQm30AIPGKTwDK/w5mTOi/PufMxbS04xcwh/4Hz+AJBlkO4=</latexit><latexit sha1_base64="1CUkPQo6O7jPdHjXjVcrpAwGEvo=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoqgnoreNFbBWMLTSib7aZdutmE3YlQQv+GFw8qXv013vw3btsctPXBwOO9GWbmhakUBl332ymtrK6tb5Q3K1vbO7t71f2DR5NkmnGPJTLRnZAaLoXiHgqUvJNqTuNQ8nY4upn67SeujUjUA45THsR0oEQkGEUr+T6KmBsS9ZCc9ao1t+7OQJZJoyA1KNDqVb/8fsKymCtkkhrTbbgpBjnVKJjkk4qfGZ5SNqID3rVUUbsqyGc3T8iJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif180wugpyodIMuWLzRVEmCSZkGgDpC80ZyrEllGlhbyVsSDVlaGOq2BAaiy8vE++8fl137y9qzbsijTIcwTGcQgMuoQm30AIPGKTwDK/w5mTOi/PufMxbS04xcwh/4Hz+AJBlkO4=</latexit>

⇥ffw =
<latexit sha1_base64="/KBHDtGqqo0EHUpbED5hKjhk6zA=">AAAB93icbVBNS8NAEJ34WetHqx69LBbBU0lEUA9CwYveKhhbaEPYbDft0s0HuxOlhv4SLx5UvPpXvPlv3LY5aOuDgcd7M8zMC1IpNNr2t7W0vLK6tl7aKG9ube9Uqrt79zrJFOMuS2Si2gHVXIqYuyhQ8naqOI0CyVvB8Gritx640iKJ73CUci+i/ViEglE0kl+tdFFEXJPQz8PHMbn0qzW7bk9BFolTkBoUaPrVr24vYVnEY2SSat1x7BS9nCoUTPJxuZtpnlI2pH3eMTSmZpuXTw8fkyOj9EiYKFMxkqn6eyKnkdajKDCdEcWBnvcm4n9eJ8Pw3MtFnGbIYzZbFGaSYEImKZCeUJyhHBlCmRLmVsIGVFGGJquyCcGZf3mRuCf1i7p9e1pr3BRplOAADuEYHDiDBlxDE1xgkMEzvMKb9WS9WO/Wx6x1ySpm9uEPrM8ft5GSsA==</latexit><latexit sha1_base64="/KBHDtGqqo0EHUpbED5hKjhk6zA=">AAAB93icbVBNS8NAEJ34WetHqx69LBbBU0lEUA9CwYveKhhbaEPYbDft0s0HuxOlhv4SLx5UvPpXvPlv3LY5aOuDgcd7M8zMC1IpNNr2t7W0vLK6tl7aKG9ube9Uqrt79zrJFOMuS2Si2gHVXIqYuyhQ8naqOI0CyVvB8Gritx640iKJ73CUci+i/ViEglE0kl+tdFFEXJPQz8PHMbn0qzW7bk9BFolTkBoUaPrVr24vYVnEY2SSat1x7BS9nCoUTPJxuZtpnlI2pH3eMTSmZpuXTw8fkyOj9EiYKFMxkqn6eyKnkdajKDCdEcWBnvcm4n9eJ8Pw3MtFnGbIYzZbFGaSYEImKZCeUJyhHBlCmRLmVsIGVFGGJquyCcGZf3mRuCf1i7p9e1pr3BRplOAADuEYHDiDBlxDE1xgkMEzvMKb9WS9WO/Wx6x1ySpm9uEPrM8ft5GSsA==</latexit><latexit sha1_base64="/KBHDtGqqo0EHUpbED5hKjhk6zA=">AAAB93icbVBNS8NAEJ34WetHqx69LBbBU0lEUA9CwYveKhhbaEPYbDft0s0HuxOlhv4SLx5UvPpXvPlv3LY5aOuDgcd7M8zMC1IpNNr2t7W0vLK6tl7aKG9ube9Uqrt79zrJFOMuS2Si2gHVXIqYuyhQ8naqOI0CyVvB8Gritx640iKJ73CUci+i/ViEglE0kl+tdFFEXJPQz8PHMbn0qzW7bk9BFolTkBoUaPrVr24vYVnEY2SSat1x7BS9nCoUTPJxuZtpnlI2pH3eMTSmZpuXTw8fkyOj9EiYKFMxkqn6eyKnkdajKDCdEcWBnvcm4n9eJ8Pw3MtFnGbIYzZbFGaSYEImKZCeUJyhHBlCmRLmVsIGVFGGJquyCcGZf3mRuCf1i7p9e1pr3BRplOAADuEYHDiDBlxDE1xgkMEzvMKb9WS9WO/Wx6x1ySpm9uEPrM8ft5GSsA==</latexit>
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S(b,~g)t

<latexit sha1_base64="oqbiqlm8WATplGuQtbZnTI4eE/U=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMQQcJGBPUW8KK3iK4JJGuYncwmQ2YfzPRGwpL/8OJBxasf482/cZLsQRMLGoqqbrq7vFgKjbb9beWWlldW1/LrhY3Nre2d4u7eg44SxbjDIhmppkc1lyLkDgqUvBkrTgNP8oY3uJr4jSFXWkThPY5i7ga0FwpfMIpGerwreyftIWdpb3zcwU6xZFfsKcgiqWakBBnqneJXuxuxJOAhMkm1blXtGN2UKhRM8nGhnWgeUzagPd4yNKQB1246vXpMjozSJX6kTIVIpurviZQGWo8Cz3QGFPt63puI/3mtBP0LNxVhnCAP2WyRn0iCEZlEQLpCcYZyZAhlSphbCetTRRmaoAomhOr8y4vEOa1cVuzbs1LtJksjDwdwCGWowjnU4Brq4AADBc/wCm/Wk/VivVsfs9aclc3swx9Ynz8r1ZHe</latexit><latexit sha1_base64="oqbiqlm8WATplGuQtbZnTI4eE/U=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMQQcJGBPUW8KK3iK4JJGuYncwmQ2YfzPRGwpL/8OJBxasf482/cZLsQRMLGoqqbrq7vFgKjbb9beWWlldW1/LrhY3Nre2d4u7eg44SxbjDIhmppkc1lyLkDgqUvBkrTgNP8oY3uJr4jSFXWkThPY5i7ga0FwpfMIpGerwreyftIWdpb3zcwU6xZFfsKcgiqWakBBnqneJXuxuxJOAhMkm1blXtGN2UKhRM8nGhnWgeUzagPd4yNKQB1246vXpMjozSJX6kTIVIpurviZQGWo8Cz3QGFPt63puI/3mtBP0LNxVhnCAP2WyRn0iCEZlEQLpCcYZyZAhlSphbCetTRRmaoAomhOr8y4vEOa1cVuzbs1LtJksjDwdwCGWowjnU4Brq4AADBc/wCm/Wk/VivVsfs9aclc3swx9Ynz8r1ZHe</latexit><latexit sha1_base64="oqbiqlm8WATplGuQtbZnTI4eE/U=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMQQcJGBPUW8KK3iK4JJGuYncwmQ2YfzPRGwpL/8OJBxasf482/cZLsQRMLGoqqbrq7vFgKjbb9beWWlldW1/LrhY3Nre2d4u7eg44SxbjDIhmppkc1lyLkDgqUvBkrTgNP8oY3uJr4jSFXWkThPY5i7ga0FwpfMIpGerwreyftIWdpb3zcwU6xZFfsKcgiqWakBBnqneJXuxuxJOAhMkm1blXtGN2UKhRM8nGhnWgeUzagPd4yNKQB1246vXpMjozSJX6kTIVIpurviZQGWo8Cz3QGFPt63puI/3mtBP0LNxVhnCAP2WyRn0iCEZlEQLpCcYZyZAhlSphbCetTRRmaoAomhOr8y4vEOa1cVuzbs1LtJksjDwdwCGWowjnU4Brq4AADBc/wCm/Wk/VivVsfs9aclc3swx9Ynz8r1ZHe</latexit>

S(b,~g)fw
<latexit sha1_base64="HU/UVP4kSsc8ziYyBYlx51KnGUk=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSxCBSmpCOqt4EVvFY0ttCFstpN26eaD3U1LifkpXjyoePWfePPfuG1z0NYHA4/3ZpiZ58WcSWVZ30ZhZXVtfaO4Wdra3tndM8v7jzJKBAWbRjwSbY9I4CwEWzHFoR0LIIHHoeUNr6d+awRCsih8UJMYnID0Q+YzSpSWXLN8X/VOuyOgaT87cVN/nLlmxapZM+BlUs9JBeVouuZXtxfRJIBQUU6k7NStWDkpEYpRDlmpm0iICR2SPnQ0DUkA0klnp2f4WCs97EdCV6jwTP09kZJAykng6c6AqIFc9Kbif14nUf6lk7IwThSEdL7ITzhWEZ7mgHtMAFV8ogmhgulbMR0QQajSaZV0CPXFl5eJfVa7qll355XGbZ5GER2iI1RFdXSBGugGNZGNKBqjZ/SK3own48V4Nz7mrQUjnzlAf2B8/gA4yJOO</latexit><latexit sha1_base64="HU/UVP4kSsc8ziYyBYlx51KnGUk=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSxCBSmpCOqt4EVvFY0ttCFstpN26eaD3U1LifkpXjyoePWfePPfuG1z0NYHA4/3ZpiZ58WcSWVZ30ZhZXVtfaO4Wdra3tndM8v7jzJKBAWbRjwSbY9I4CwEWzHFoR0LIIHHoeUNr6d+awRCsih8UJMYnID0Q+YzSpSWXLN8X/VOuyOgaT87cVN/nLlmxapZM+BlUs9JBeVouuZXtxfRJIBQUU6k7NStWDkpEYpRDlmpm0iICR2SPnQ0DUkA0klnp2f4WCs97EdCV6jwTP09kZJAykng6c6AqIFc9Kbif14nUf6lk7IwThSEdL7ITzhWEZ7mgHtMAFV8ogmhgulbMR0QQajSaZV0CPXFl5eJfVa7qll355XGbZ5GER2iI1RFdXSBGugGNZGNKBqjZ/SK3own48V4Nz7mrQUjnzlAf2B8/gA4yJOO</latexit><latexit sha1_base64="HU/UVP4kSsc8ziYyBYlx51KnGUk=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSxCBSmpCOqt4EVvFY0ttCFstpN26eaD3U1LifkpXjyoePWfePPfuG1z0NYHA4/3ZpiZ58WcSWVZ30ZhZXVtfaO4Wdra3tndM8v7jzJKBAWbRjwSbY9I4CwEWzHFoR0LIIHHoeUNr6d+awRCsih8UJMYnID0Q+YzSpSWXLN8X/VOuyOgaT87cVN/nLlmxapZM+BlUs9JBeVouuZXtxfRJIBQUU6k7NStWDkpEYpRDlmpm0iICR2SPnQ0DUkA0klnp2f4WCs97EdCV6jwTP09kZJAykng6c6AqIFc9Kbif14nUf6lk7IwThSEdL7ITzhWEZ7mgHtMAFV8ogmhgulbMR0QQajSaZV0CPXFl5eJfVa7qll355XGbZ5GER2iI1RFdXSBGugGNZGNKBqjZ/SK3own48V4Nz7mrQUjnzlAf2B8/gA4yJOO</latexit>
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Fig. 1. Artificial neural network model. The ANN architecture (a). Training data was
synthetically generated following Eq. 2 (b). Free-water partial volume contamination
effects were visible (b, red arrows). We ran a correlation analysis for 3000 randomly
generated samples (c) reaching a factor of 0.99.

fraction indexes are ratios relative to the signal contribution of each compartment
and thus ffw + ft = 1.

Synthetic singal generation: The diffusion properties of free-water at body
temperature are well characterized [5], presenting isotropic behavior and a dif-
fusion coefficient Dfw = 3×10−3 mm2/s, and Sfw(b, g) = e−bDfw . On the other
hand, St is unknown since it depends on the tissue microstructure organization
and the orientation of the diffusion gradients, g. Thus, we modeled its behavior
with a random variable, St ∈ RNb , following an uniform distribution, U(0, 1),
where Nb is the number of measured b-values, including non-diffusion-weighted
volumes. Furthermore, the tissue volume fraction, ft ∈ [0, 1], varies from voxel
to voxel depending on the amount of free-water infiltrated within the tissue,
thus, we also represented it as a random uniform variable, U(0, 1). Based on the
prior knowledge of Dfw, the models of St and ft, and knowing the acquisition
b-values, it is possible to generate unlimited synthetic diffusion signals, S(b, g),
containing free-water partial volume effects (Eq. 2 and Fig. 1b).

ANN architecture and training: We designed a regression fully connected
ANN capable of estimating the tissue volume fraction, ft, directly from the
diffusion signal S(b, g) (Eq. 2). The input layer contained as many units as
the number of acquired b-values (including non-diffusion-weighted volumes), Nb,
and a single output unit yielding the estimate of ft. The ANN had a pyramidal
architecture with two hidden layers with Nb/2 and Nb/4 respectively (Fig. 1a).
To train the ANN we used 20000 synthetic signals generated as explained above
(70% training, 15% validation, and 15% testing). Convergence for Nb = 33 (Fig.
1) was reached after nine epochs and 4.7 seconds in a consumers laptop (Apple
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Fig. 2. Comparison of FWE with ANN and state of the art methods for two diffusion
protocols. The correction effects on FA of ANN for one shell were equivalent to Paster-
nak’s et al. algorithm (a), while ANN MD estimates were less over-regularized (b).
Tissue volume fraction estimates were also in agreement although Pasternak’s method
failed to estimate ft < 0.18 (c). The ANN for two shells and Hoy’s et al. algorithm
were in good agreement for FA (a) but larger differences were visible for MD and ft (b
and c).

MacBook Pro, Intel Core i5, 8GB RAM; MATLAB, Mathworks, Natwick, MA).
The training process depended on the protocol prescribed b-values. Thus, we
trained four networks to match the DWI data used in the experiments below.

3 Experiments and Results

Comparison with state of the art: Methods from Pasternak et al. [6] and Hoy
et al. [7] are the state of the art for one and two shell acquisitions. For compar-
ison we measured data from a volunteer in a GE 3T MR750w (GE Healthcare,
Milwaukee, WI). The protocol comprised first, one diffusion weighted imaging
(DWI) acquisition for 30 diffusion direction (b=500 s/mm2) and two b=0 vol-
ume (Nb=32); and second a DWI for two shells (b=500 and 1000 s/mm2) with
30 diffusion directions for each shell and four non-diffusion-weighted volumes
(Nb=64). The data was processed with a pipeline including steps for: 1) head
motion and eddy current corrections (FSL eddy); 2) denoising based on random
matrix theory [11]; and 3) free-water elimination based on ANN, Pasternak’s,
and Hoy’s methods (Fig. 2). The ANN results were comparable to those of the
state of the art methods.
Data harmonization: The T2 effects described in Eq.1 and Eq. 2 were inves-
tigated using data from a volunteer scanned in the same scanner as before. The
protocol consisted of a DWI acquisition for 30 direction (b=1000 s/mm2) and
one non-diffusion-weighted volume (Nb = 31). This was repeated for seven eq-
uispaced TE = 74.9 – 134.9 ms. The data was processed as described before,
but only ANN FWE was computed. For comparison two processing lines were
created with and without ANN based FWE. Both were fitted with robust DTI
(RESTORE) [12] to extract diffusion metrics.

The multi-echo diffusion data showed an increase of free-water (Fig. 3c) and
its effects (Fig. 3a, larger low FA peak) with the TE, which agrees with the
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Fig. 3. Histogram comparison at several TEs. FA from standard DTI (a) showed larger
variability across TEs for FA< 0.4, than the free-water corrected (b). The tissue volume
fraction estimates are influenced by T2 decay (Eq. 1) and thus sensitive to TE (c). The
free-water elimination step has a TE harmonization effect on the diffusion signal (b),
shifting the TE variability into the volume fraction estimate (c).

two-compartments tissue model (Eq. 1) accounting for T2 effects, simplified in
Eq. 2. Multi-center studies are often carried out in data acquired with hetero-
geneous protocols. The prescribed TEs are a source of variability that mostly
depend on the gradient strength of the scanner and the image resolution. Data
harmonization is important to remove uncontrolled variability and achieve a
good statistical power. Free-water elimination plays a double role. First, it ac-
counts for T2 effects in the fi, shifting this variability from the diffusion metrics
to the volume fraction estimates (Fig. 3). And second, it removes the ”diffusion
isotropic noise” from the signal showing the actual tissue anisotropy, eliminating
the variability induced by the presence of free-water.

Glioblastoma analysis: Data from 25 patients affected by glioblastoma (IDH
wild-type, WHO 2016 classification) were provided by the Department of Neuro-
radiology, Klinikum rechts der Isar der Technischen Universität München, Mu-
nich, Germany. All patients are part of a prospective glioma database, approved
by the local ethics committee, and gave written informed consent. They were
scanned in a 3T whole-body scanner (Achieva, Philips Medical Systems, Best,
The Netherlands). The protocol included DWI for 32 directions (b=800 s/mm2)
and one non-diffusion-weighted volume (Nb = 33). Furthermore, T2 turbo spin
echo (T2w), T2-FLAIR, and T1 contrast enhanced (CE-T1w) were acquired. The
DWI data was processed as described before, and T2w, CE-T1w, and FLAIR
volumes were registered to the DWI space (Fig. 4).

Tissue and free-water volume fraction estimates: The free-water and tis-
sue maps computed with ANN (Fig. 4d and h) showed tumor and edema ar-
eas that were in agreement with well established methods: T2w, CE-T1w, and
FLAIR (Fig. 4e, f, and g). The estimation of tissue and free-water volume fraction
maps is an important feature of FWE. They provide complementary information
of the underlying tissue organization. Cytotoxic edema and necrosis areas that
are not distinguishable can be better identified with the knowledge of the amount
of tissue in the voxel (Fig. 4d, e, f, g, and h, light-blue arrows). Furthermore, in
clinical routine tumor delineation is based on CE-T1w hyper-intensities (Fig. 4f
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Fig. 4. Comparison of metrics and contrasts for one patient. Fractional anisotropy from
standard DTI (a) showed a dimmed region corresponding to edema (white arrows). This
area was recovered after free-water elimination (b and c). We observed alterations of
the white matter integrity compared to the NAWM (b, white asterisks). Free-water (d)
and tissue (h) volume fraction maps were estimated by the ANN. Edema regions were
well defined and distinguishable from the tumor (red contour). Pools compatible with
cytotoxic edema were observable inside the tumor (light-blue arrows). These findings
agreed with the observations based on T2w (e), CE-T1w (f), and FLAIR (g). Extended
tumor infiltration was derived from the comparison of CE-T1w and tissue volume
fraction map (h, gree arrow).

red contour). When this is compared with tissue volume fraction maps (Fig. 4h
zoomed area), we observed an increased tumor region of up to four millimeters
that is compatible with tumor infiltration. This agrees with the radiated area
after resection (Fig. 4h, green arrow).

Fractional anisotropy recovery: The comparison between standard and FWE
FA maps (Fig. 4a and b) exhibited a recovery of the anisotropic information in
the edema region and around the ventricles (Fig. 4c, white arrows). The elimi-
nation of the isotropic compartment from the diffusion signal leads to a recovery
of the tissue anisotropy captured by the protocol, leading to an enhancement of
the FA maps, especially in areas with large partial volume contamination like
edema and the border of the ventricles (Fig. 4a, b, and c, white arrows). The
correction of the FA maps provides new information of the tissue microstructure
integrity hidden by the edema (Fig. 4b asterisks).

Edema and infiltration unmixing: To assess the impact of FWE in edema,
tumor, and tumor infiltrated areas, regions of interests (ROI) were defined by
a neuroradiologist for each subject using FLAIR, T2w, CE-T1w, ft, and FWE
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Fig. 5. Edema, tumor, and tumor infiltrated regions differentiation. The FA values
for standard DTI (a) were statistically different (α = 0.01) between NAWM areas.
After free-water elimination (b) FA values in edema and tumor infiltrated areas were
significantly larger than those for tumor (family-wise error = 0.03), indicating a better
organized tissue microstructure. Complementary, the tissue volume fractions in tumor
and tumor infiltrated regions were statistically larger than in edema areas, suggesting
that the loss in FA in edema was mostly due to free-water infiltration.

FA maps(Fig. 4). To minimize the influence of outliers we used the median for
each ROI, and ran t-test comparison for FA and tissue volume fraction values
across subjects for the three type of ROIs (Fig. 5). For reference, extra ROIs
were drawn in normal appearing white mater (NAWM) mostly contralateral.

Comparison of NAWM with tumor and edema areas for the 25 patients
showed a statistically significant difference (α = 0.01) in FA for standard DTI
(Fig. 5a). Tumor infiltration and edema are the driving factors behind the loss in
FA. After free-water elimination we compared FWE FA (Fig. 5b) and tissue vol-
ume fraction (Fig. 5c) in edema, tumor and tumor infiltrated areas (family-wise
error = 0.03). Significantly larger FA was found in edema and tumor infiltrated
areas compared to tumor regions. While, tissue volume fraction in edema was
statistically lower than in tumor infiltrated and tumor sections.

We hypothesize that the combination of FWE FA and tissue volume fraction
yields a better understanding of tissue microstructure integrity (Fig. 5). High FA
and low tissue volume fraction might indicate well organized microstructure infil-
trated by free-water (vasogenic edema). Low FA and high tissue volume fraction
is compatible with the unstructured cellularity found in tumors. Finally, areas
with high FA and tissue volume fraction might be caused by tumor infiltration
in highly structured white matter bundles.

Discussion

The presented ANN model combines simplicity with high accuracy. We intro-
duce for the first time an ANN design capable of learning partial volume effect
features from synthetic data, and reach comparable results with the state of
the art methods but at least 55-fold faster. Besides, our approach, unlike [6]
is voxel-based, avoiding blurring artifacts induced by the use of patch based
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regularization, and can be applied to any diffusion protocol beyond DTI. The
robustness of our approach was shown with 25 patients.

The addition of free-water elimination in processing pipeline extracts more
information from the data, which has a potential benefit for glioblastoma pa-
tients in three aspects: diagnosis, surgical planning, and guided radiotherapy.
The diagnosis potentially improves with the quantification of the free-water vol-
ume fraction map, yielding the severity of the vasogenic edema. The precision
of the surgical planning benefits from the corrected FA maps in edema areas
providing a better definition of white matter fiber bundles and limiting the re-
section of healthy tissue. Finally, guided radiotherapy profits from identification
of tumor infiltrated areas.

Acknowledgments

The authors want to thank Dr. Ofer Pasternak for his support in the comparison
of the methods. This work was supported by the TUM Institute of Advanced
Study, funded by the German Excellence Initiative, and the European Commis-
sion (Grant Agreement Number 605162).

References

1. A.S. Field. Diffusion imaging in brain tumors. In D.K. Jones, editor, Diffusion
MRI, chapter 33, pages 547–563. Oxford University Press, 2010.

2. S. Bette et al. Local Fractional Anisotropy Is Reduced in Areas with Tumor
Recurrence in Glioblastoma. Radiology, 283(2):499–507, 2017.

3. Z. Eaton-Rosen et al. Beyond the Resolution Limit: Diffusion Parameter Estima-
tion in Partial Volume. MICCAI, pages 605–612, 2016.

4. C. Metzler-Baddeley et al. How and how not to correct for CSF-contamination in
diffusion MRI. Neuroimage, 59(2):1394–1403, 2012.

5. C. Pierpaoli and D.K. Jones. Removing CSF Contamination in Brain DT-MRIs
by Using a Two-Compartment Tensor Model. In ISMRM, Kyoto, page 1215, 2004.

6. O. Pasternak et al. Free Water Elimination and Mapping from Diffusion MRI.
Magn. Reson. Med., 730:717–730, 2009.

7. A.R. Hoy et al. Optimization of a Free Water Elimination Two-Compartment
Model for Diffusion Tensor Imaging. Neuroimage, (103):323–333, 2014.

8. M. Molina-Romero et al. Theory, validation and application of blind source sepa-
ration to diffusion MRI for tissue characterisation and partial volume correction.
In ISMRM, Honolulu, page 3462, 2017.

9. R. Tanno et al. Bayesian image quality transfer with CNNs: Exploring uncertainty
in dMRI super-resolution. volume 10433 LNCS, pages 611–619, 2017.

10. D.C. Alexander et al. Image quality transfer and applications in diffusion MRI.
Neuroimage, 152(March):283–298, 2017.

11. J. Veraart et al. Denoising of diffusion MRI using random matrix theory. Neu-
roimage, 142:394–406, nov 2016.

12. L. Chang et al. Restore: Robust estimation of tensors by outlier rejection. Magnetic
Resonance in Medicine, 53(5):1088–1095, 2005.

160 manuscript under review and master thesis



A.2 relevant co-supervised master thesis 161

a.2 relevant co-supervised master thesis

As part of this dissertation, the master thesis with title Brain Mi-
crostructure Quantification from Transient-State Magnetic Resonance
Imaging was co-directed. This expands the work from chapter 5 into
a tissue microstructure framework. Brain sub-voxel information ac-
counting for meylin water, intra/extra-cellular water, and CSF are ex-
tracted from the evolution of the QTI signals. To that end, a Bayesian
inference technique based on TMCMC was incorporated to the data
processing. In this section, a summary of the master thesis is reported.
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a.2.1 Brain Microstructure Quantification from Transient-State Magnetic
Resonance Imaging

Master Thesis

Authors: MP. Orihuela Martinez-Costa, M. Molina-Romero, PA. Gómez,
BH. Menze.

Abstract: Diffusion Magnetic Resonance Imaging (dMRI) is a power-
ful and non-invasive imaging technique that has become a key tool
in Neuroscience and is continuously contributing to the expansion of
our understanding of the human brain. One of the next goals in MRI
research is to achieve quantification of tissue properties within clini-
cally feasible scanning times. Quantitative maps can be more repre-
sentative of underlying changes at the cellular level than the standard
qualitative imaging. Bringing such methods to the clinical practice
would allow objective comparison between examinations in follow-
up studies and a better assessment of disease in the brain. This thesis
aims to develop a new method to quantify brain microstructure using
an ultrafast transient-state based image acquisition approach.

Multicomponent relaxometry is a quantitative technique for brain
microstructure imaging that considers that the signal from each voxel
in an image encodes the contribution from different water relaxing
pools also called microstructural compartments. In this thesis, three
multicomponent relaxometry models have been implemented: one-
compartment, two-compartments and three-compartments, where the
parameters to be quantified are the relaxation times and the volume
fraction of each tissue compartment.

Bayesian uncertainty quantification and propagation has been used
to estimate the microstructure parameters of each model. By using
TMCMC sampling in a Bayesian estimation framework, it is possible
to sample from a prior parameter distribution and iteratively con-
verge to the posterior distribution of each microstructure parameter.
Addressing the problem from a Bayesian approach enables quantifi-
cation and uncertainty estimation of each of the model parameters
which lead to quantitative maps of the microstructure parameters of
interest. Three experiments have been performed to validate and test
the microstructure models proposed: simulation experiments, phan-
tom acquisition and one in vivo acquisition, obtaining quantitative
maps of the relaxation times of each tissue compartment as well as
the volume fraction of each compartment.

Additionally, the evidence of each model was calculated and used
to define which one of the three models represents best the data at
each voxel location.



A.2 relevant co-supervised master thesis 163

a.2.1.1 Introduction

The aim of this work is to use the partial volume effects (section 1.1.4)
induced in the QTI signal (section 1.1.3 and chapter 5) to gain mi-
crostructural information of the measured tissue.

a.2.1.2 Methods

The tissue modeling and quantification framework are described in
section 3.3. Here, experimental design for simulations, phantom, and
in vivo examination are described for one, two, and three compart-
ments. All the measurements were performed in a 3T MR750w scan-
ner (GE Healthcare, Milwaukee, WI).

simulations Simulated data were generated using EPG [70, 71]
for each compartment. To that end, T1i , T2i , and σ2 values were de-
fined. Gaussian noise was added to the signals for an SNR = 80 dB.
The compartmental parameters were estimated with Π4U.

phantom experiments A single slice of the Eurospin T05 phan-
tom [44] was acquired and reconstructed with QTI. The signal from
different tubes were artificially mixed for defined weights. These mix-
tures were then processed with Π4U for disentangling.

in vivo experiments One slice was acquired from a healthy vol-
unteer and reconstructed with QTI. The protocol included 500 repetions
for constant TR/TE = 8/2 ms, and linearly increasing α ∈ [1 − 70]

degrees. The temporal evolution of the signal in each voxel was ana-
lyzed with Π4U for one, two, and three microstructure compartments.
It was expected that the model evidence for one compartment was
larger in the ventricles, composed mostly for CSF; for two compart-
ments in Gray Matter (GM); and for three compartments in White
Matter (WM) due to the influence of myelin.

a.2.1.3 Results and Discussion

The reader can find the results ilustrated with figures in the original
document of the master thesis [55].

This work proves with simulation, phantom, and in vivo experi-
ments that is possible to extract compartmental information from the
signal evolution of QTI due to the partial volume effects induced in
the signal. This approach introduces an ultra-fast method for tissue
microstructure characterization.

The results show that the three compartments model represents
better the signal evolution. This agrees with literature findings where
tissue is composed by myelin, intra/extra-cellular water, and CSF [47,
72]. With this model, volume fractions of this components were anatom-
ically meaningful, although biased for myelin. The relaxometry pa-
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rameters for the three compartments were reliable in the regions
where the volume fraction of the corresponding compartments were
significant.

This work faced several limitations. First, the acquisition and re-
construction of QTI are design for a single compartment, introducing
a bias in the volume fraction estimates. Second, the Gaussian assump-
tion of noise might not be accurate since the Low Rank (LR) regular-
ization affects the distribution of noise. And third, Π4U is computa-
tionally expensive, running from 1 to 2 days for a single slice. Further
work is necessary to overcome this limitations and validate this ap-
proach in healthy subjects as well as patients.
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