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Titel in deutscher Sprache:
Hierarchische Methoden und Modelle in der Bayes’schen Inversion

Zusammenfassung.

In dieser Arbeit untersuchen wir Aspekte der Bayes’schen Inversion: Wohlgestellt-
heit, Diskretisierung und Algorithmen. Der erste Forschungsbeitrag dieser Ar-
beit ist die Einfiihrung eines neuen Wohlgestelltheitsbegriffs Bayes’scher inverser
Probleme. Dieses leicht abgeschwachte Konzept erlaubt uns die Wohlgestelltheit
Bayes’scher inverser Probleme mit sehr allgemeinen Modellen zu zeigen. Bei endlich-
dimensionalem, nicht-degenerierten Gauf3’schem Fehler reicht zum Beispiel schon die
Messbarkeit des Modells.

Dann untersuchen wir die Diskretisierung Bayes’scher inverser Probleme. Genauer
betrachten wir hierarchische Bayes’sche inverse Probleme, in denen das A-priori-
Zufallsfeld parametrisiert ist. Standardmethoden, wie Spektralentwicklungen des
Kovarianzoperators, konnen hier oft nicht verwendet werden, da mehrere Zufalls-
felddiskretisierungen notwendig sind und diese eine iiberméaflig hohe Rechenzeit in
Anspruch nehmen wiirden. Wir 16sen dieses Problem mit einer Reduzierte-Basis-
Methode fiir die schnelle Diskretisierung von parametrisierten Zufallsfeldern. Die
Reduzierte-Basis-Methode in diesem Setup ist der zweite Forschungsbeitrag dieser
Arbeit.

Die Losung eines Bayes’schen inversen Problems ist die A-posteriori-Verteilung eines
unsicheren Parameters oder Prozesses. Das Generieren von Zufallsvariablen beziig-
lich dieser Verteilung mit Markov Chain Monte Carlo (MCMC) oder Importance
Sampling benoétigt ebenfalls eine iibermaflig hohe Rechenzeit, wenn das zugrun-
deliegende Modell einen hohen Rechenaufwand verursacht; also zum Beispiel eine
partielle Differentialgleichung ist. Effizienter sind hier Sequentielle Monte-Carlo-
Methoden, die auf Hierarchien von Modelldiskretisierungen und temperierten Likeli-
hoods aufbauen. Der dritte Forschungsbeitrag dieser Arbeit ist eine adaptive Strate-
gie, welche diese Hierarchien kombiniert: die Multilevel-Sequential?>-Monte-Carlo-
Methode. Wir leiten diesen Algorithmus her und vergleichen ihn in Experimenten
mit anderen Sequentiellen Monte-Carlo-Verfahren.

Wir interpretieren die Sequentielle Monte-Carlo-Methode als Markov-Kette zufal-
liger Mafle. Der vierte Forschungsbeitrag dieser Arbeit ist eine Diskussion des
asymptotischen Verhalten dieser Markov-Ketten und der Konvergenz der Sequential-
Monte-Carlo-Methode. Wir beschliefen die Arbeit mit einem Ausblick auf zukiinfti-
ge Forschungsthemen.
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Abstract. We make several novel contributions to aspects of the Bayesian ap-
proach to inverse problems: well-posedness, discretisation, and algorithms. The
first main contribution of this work is a new concept of well-posedness of Bayesian
inverse problems. In contrast to the existing concepts, our slightly simplified concept
allows us to make well-posedness statements with respect to general mathematical
models. Under e.g. finite-dimensional, non-degenerate Gaussian noise assumptions,
we only need to show measurability of the underlying model.

Next, we move on to the discretisation of Bayesian inverse problems. We consider
hierarchical Bayesian inverse problems in which the prior random field is parame-
terised. Typically, random fields are discretised by truncated spectral expansions,
such as the Karhunen—Loeve expansion. Such discretisation strategies may adhoc
be not suitable in hierarchical settings, since the parameterisation may require a
large number of random field discretisations. This is computationally infeasible.
The second main contribution of this thesis is a reduced basis method allowing for
a computationally cheap, parameterised discretisation.

The solution of a Bayesian inverse problem is the posterior distribution. Sampling
from the posterior distribution, with e.g. Markov chain Monte Carlo (MCMC)
or Importance Sampling, may be unsuitable if the Bayesian inverse problems are
constrained by a computationally tasking mathematical model, e.g. by a partial
differential equation (PDE). More suitable are Sequential Monte Carlo strategies
that use hierarchies of model discretisations and tempered likelihoods. An adaptive
combination of these hierarchies leads to the third main contribution of this work:
the highly efficient Multilevel Sequential> Monte Carlo algorithm. We derive this
method and compare it numerically with standard Sequential Monte Carlo methods.
Moreover, we interpret Sequential Monte Carlo in a framework where it is a Markov
chain of random measures. In this setting, we discuss the long-time behaviour of
these Markov chains and, thus, the convergence of Sequential Monte Carlo. This is
the fourth main contribution of this work. We conclude by pointing the reader to
directions for future research.
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Introduction

The probability that two
subsequent events will both happen
is a ratio compounded of the
probability of the 1st, and the
probability of the 2[n]d on
supposition the 1st happens.

Thomas Bayes [13, Proposition 3]

Machine learning and artificial intelligence have brought mathematical models into
everyday life. Smartphones and smart homes have voice assistants that use models
for voice recognition. Digital photo albums use image recognition models to sort
photos with respect to the person the photos are showing. Self-driving cars are not
a metaphor for scientific and technical progress, but exist and are the result of good
models for image and video segmentation.

In science and engineering, mathematical models have been present for a much
longer time. Being able to describe a system of interest mathematically has im-
mense advantages in terms of understanding processes, predicting behaviour, and
making decisions. In this thesis, we consider the process that is called training in
machine learning and calibration, parameter identification, or inverse problem in
the mathematics and engineering community. Here, a basic model is fitted to a
particular system of interest, using observations from said system.

Bayes [13] and Laplace [I52] considered parameter estimation already in the 18
century and introduced the basic concept of — what we call nowadays — Bayesian
inference to approach such problems; see e.g. [54]. The least squares approach,
as used by Gauss (see e.g. Teets and Whitehead [245]), has been of more use in
practical problems. This may be due to the non-affordable computational expenses
coupled to the Bayesian approach. In recent years, ever since the seminal works by
Tarantola [242] and Kaipio and Somersalo [I35], the Bayesian approach has gained
popularity in inverse problems. Due to the technical progress, the computational
expenses have become affordable.

An argument in favour of the Bayesian approach to inverse problems is its stability
with respect to perturbations in the data. This has been discussed extensively by
Stuart [236] and others, e.g., [84] 126], 127, 239, 240]. Since inverse problems are
often discussed in terms of Hadamard’s [110] well-posedness, this term was also
introduced to discuss existence, uniqueness, and stability properties of solutions to
Bayesian inverse problems.

In this thesis, we extend the theory on well-posedness of Bayesian inverse problems.
In principle, we weaken the so far popular concept of - what we will call - Lipschitz
well-posedness. Here, stability is quantified in terms of Lipschitz continuity of the
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Introduction.

solution to the Bayesian inverse problem with respect to perturbations in the data.
In our proposed concept, stability is quantified only in terms of continuity. This will
allow us to extend the class of well-posed Bayesian inverse problems significantly,
while still fitting to Hadamard’s concept. Moreover, we will be able to discuss
stability in cases where we cannot analyse the underlying mathematical models.

Hierarchies

In Applied Mathematics, hierarchies occur in various settings in which they have
different meanings. In the following, we list the two kinds of hierarchies that we
consider throughout this thesis.

In numerical analysis, hierarchies refer to different accuracies with which a mathe-
matical model is approximated. A partial differential equation (PDE) can be solved,
for instance, on a mesh that is refined throughout the process. The different refine-
ment steps give the levels in a hierarchy of meshes. We show such a hierarchy in
Figure [0.I where the coarse solution on the left-hand side becomes more accurate
when approaching the right-hand side. We will refer to a method as hierarchical if
it uses different resolutions of the same mathematical model. A classical example
for such hierarchical methods would be multigrid solvers for linear PDEs; see e.g.,
[109, 246]. In uncertainty quantification, so-called multilevel methods have recently
gained attention; see [18] 19} [45], [87, 88|, 102, 103], 243, 244 247], to name a few. The
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Figure 0.1. An example for a hierarchy of resolutions. We show numerical solutions
of the PDE —Au =1on (—1,1) x (—1.5,1.5) with « = 0 on the boundary. We start
with a coarse resolution in the left figure, which is refined when going to the right.
The PDE solution is given by the colourmap; the mesh is indicated by the white
grid. We used the MATLAB PARTIAL DIFFERENTIAL EQUATION T0OOLBOX 3.0 to
generate the mesh, the mesh refinements, and the PDE solutions.

levels in multilevel refer again to different mesh sizes. Hence, multilevel methods are
hierarchical as well. They exploit the hierarchy to speed-up an estimation process.
In this thesis, we contribute to the field of multilevel methods by proposing a novel,
highly efficient approach to PDE-constraint Bayesian inverse problems; the Multi-
level Sequential? Monte Carlo algorithm. This method is based on the Sequential
Monte Carlo framework. This is a general framework to approximate sequences —
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Introduction.

or maybe, hierarchies — of probability measures. We will interpret Sequential Monte
Carlo in terms of a Markov chain of random measures. This setting will allow us
to consider the long-time behaviour of Sequential Monte Carlo methods with finite
sets of particles.

In statistics and probability theory, hierarchies usually describe compositions
of probability measures and Markov kernels. They are used if a basic probability
measure cannot describe the complexity of the random experiment of interest; basic
probability measures being, e.g. Gaussian, Cauchy, Poisson, or binomial distribu-
tions. A way to construct such a hierarchy is to take a basic probability measure,
parameterise it, and consider its parameters as a random variable. This random
variable is then distributed according to another probability measure. This process
can be extended recursively by parameterising the second probability measure as
well, considering its parameter to be random, and so on. In Figure [0.2] we show
such a process that allows us to describe the probability measure of a random vari-
able 6. We see the probability measure of @ on the right-hand side as a measure
depending on three parameters. These parameters are random as well and their
probability distributions are also parameterised. This process goes on until a fourth
layer. Visually and also conceptually, such hierarchical measures are very similar to

P(ky € )

P(kY € -|ks3, Ka, KS)
P(K,g S ) ’ ’
/ P(Hé € '|H2)
Pl €) B} € 1 i ) —

P(k, € -|Kk1, K2)

i

]P)(B € '|K’/1/a ’4'/2/7 K'g)

P(f € K1, Kk3)

AVA

Pk, € ) ———— P(K] € -|K1,K2)
Figure 0.2. A hierarchical measure shown as a network of conditional measures.

deep neural networks that are popular in the machine learning community. While
a hierarchical measure is constructed as successively composed Markov kernels and
measures, deep neural networks consist of a sequence of composed activation func-
tions, weight matrices, and bias vectors.

In uncertainty quantification, hierarchical measures and models have recently gained
attention, especially in problems with random fields; see, e.g. [28] [76, [77, [78], 214]
258]. However, from a computational point of view, working with parameterised
(or hierarchical) random fields in high-dimensional setting has so far received little
attention. Here, parameterised random fields require hundreds of thousands of stan-
dard random field discretisations, i.e. with finite elements or spectral expansions.
This is often computationally infeasible. To enable us to explore such hierarchical
random fields, we propose the fast sampling framework. Here, we use the classical
reduced basis setting to construct a surrogate for the parametric Karhunen—Loeve
eigenproblem. This reduces the cost of a random field discretisation significantly.

3
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It allows us to perform hierarchical forward uncertainty quantification and solve
hierarchical Bayesian inverse problems. Moreover, we study theoretical properties
of both these problems; in particular the well-definedness of both problems and
well-posedness of the hierarchical Bayesian inverse problem.

Organisation of the thesis

In this section, we lay out the organisation of the thesis. In Figure 0.3 we give a
overview of dependencies of the chapters with respect to each other.

In we build the mathematical foundation for this thesis. We start by discussing
mathematical models that are either physics-based or data-driven. Parameters in

’ Introduction ‘

g1} Inverse uncertainty quantification

\ 32t Well-posedness of Bayesian inverse problems

43} Discretisation

\\ g4k Exploring hierarchical random fields

g5k Sequential Monte Carlo samplers

~

g7t Conclusions and outlook

g6} Exploiting hierarchies with SMC samplers

Figure 0.3. Dependencies among the chapters in this thesis. x — y indicates that
y depends on material from x. Moreover, — is transitive; hence r — y and y — z
imply z — z.

these models are to be considered uncertain. We will represent these uncertainties
with randomness and, hence, introduce the necessary background in probability the-
ory. Moreover, we introduce inverse problems as problems of statistical inference
and explain the Bayesian approach to inverse problems. In addition, we review
Stuart’s [236] concept of well-posedness of Bayesian inverse problems and show an
implication on posterior mean estimation. Finally, we introduce hierarchical mea-
sures as a way of representing uncertainties. Here, we show the well-definedness of
hierarchical forward and Bayesian inverse problems.

In we introduce a new concept of well-posedness of Bayesian inverse problems.
We consider stability only in terms of continuity, rather than Lipschitz continuity.
We explain advantages of this approach and give weak conditions under which we
obtain well-posedness. These conditions will always be satisfied if, e.g., the noise
is finite-dimensional and non-degenerate Gaussian. This has also implications on
the well-posedness of hierarchical Bayesian inverse problems. Then we extend the
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stability results to probability metrics other than the Hellinger distance, which is
by now standard in the literature. Finally, we illustrate our results with a couple of
numerical examples.

In we discuss the numerical approximation of Bayesian inverse problems. This
consideration includes the discretisation of mathematical models, the discretisation
of random fields, and the discretisation of probability measures. Here, we consider
the Galerkin approach for mathematical models and random fields. Moreover, we
consider the Karhunen—Loeve expansion, a spectral approach for the discretisation
of random fields. For the approximation of probability measures, which arise in
forward and inverse uncertainty quantification, we discuss Monte Carlo, Importance
Sampling, and Markov chain Monte Carlo. Finally, we discuss strategies that allow
for a faster discretisation of forward and Bayesian inverse problems. Those include
surrogate models and variance reduction via multilevel methods.

In we explain the discretisation of random fields in hierarchical settings. The
computational cost in these settings can quickly exceed any computational budget.
To overcome this issue, we introduce a reduced basis surrogate for the parameterised
Karhunen—Loeve eigenproblem. Furthermore, we propose a linearly separable ap-
proximation to Matérn covariance operators that allow for a fast offline-online de-
composition. We verify our approach in numerical experiments and show significant
speed-ups. In addition, we present results of high-dimensional hierarchical Bayesian
inverse problems that illustrate the applicability of our method.

In we consider Sequential Monte Carlo samplers. We first introduce the prob-
lem framework, which is a sequence of measures that should be approximated. Then
we discuss Sequential Importance Sampling and Sequential Monte Carlo, which are
particle filters that allow for the discretisation of such a sequence. We introduce
both methods as ways to construct sequences of random measures. In the fol-
lowing, we prove that this concept is well-defined; and that the methods produce
measure-valued Markov chains. Starting from the latter point of view, we then use
concepts from MCMC analysis to increase our understanding of Sequential Monte
Carlo samplers with a finite number of particles. This is a novel approach towards
the investigation of particle filters. Finally, we discuss how the particle filters can
be used in the discretisation of Bayesian inverse problems, e.g. by tempering.

In §6] we introduce a novel multilevel approach that is based on a Sequential Monte
Carlo sampler. After introducing the Multilevel Bridging algorithm and the Multi-
level Sequential Monte Carlo sampler, we discuss problems of these algorithms that
may be caused by the large discrepancy of posterior measures with different dis-
cretisation levels in the underlying model. Our Multilevel Sequential Monte Carlo
method solves this problem with a fully adaptive strategy that combines a tempering
of the likelihood and Multilevel Bridging. In numerical experiments, we show that
the proposed method can outperform Multilevel Bridging and single-level Sequential
Monte Carlo.

In we conclude the thesis and propose directions for future research.
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Chapter 1

Inverse uncertainty quantification

[...] en nommant p la probabilité a
priori de la cause que nous venons
de considérer; on aura E = Hp; et
en suivant le raisonnement
précédent, on trouvera

_ _Hp
- S.Hp’

Pierre-Simon Laplace [152] p. 182]

In the following sections, we discuss the mathematical background of inverse uncer-
tainty quantification. We commence by introducing mathematical models that are
used in science and engineering in §1.11 In §I.2] we consider parts of these mathe-
matical models as uncertain and model the uncertainty probabilistically. The main
feature of inverse — as opposed to forward — uncertainty quantification is the in-
corporation of data into uncertain models. We consider the statistical modelling of
data in the context of inverse problems in §1.3] Additionally, we discuss the frame-
work of Bayesian inference that will be used throughout this work for the inversion
process. In §1.4] we discuss hierarchical models in uncertainty quantification: we
motivate the use of such models, and introduce hyperpriors, as well as Bayesian

model selection.

1.1 Mathematical models

In his iconic book [2], Ackoff commences Chapter 4 with the following summary:

“The word model is used as a noun, adjective, and verb, and in each
instance has a slightly different connotation. As a noun ‘model’ is a
representation in the sense in which an architect constructs a small-scale
model of a building or a physicist a large-scale model of an atom. As
an adjective ‘model’ implies a degree of perfection or idealization, as in
reference to a model home, a model student, or a model husband. As a
verb ‘to model’ means to demonstrate, to reveal, to show what thing is
like. Scientific models have all these connotations.”

Hence, we define models as an idealised representation used to demonstrate the
behaviour of a system of interest.



Chapter 1. Inverse uncertainty quantification.

In the following, we discuss models that can be represented mathematically; those
are also called symbolic models or mathematical models. A mathematical model is
a function u : D — R¥X. The domain D C R? typically represents spatial positions
in or at the system of interest, time points, or both. Given some x € D, the vector
u(r) € RE describes the behaviour at said spatial position or time point.

We distinguish two classes of models:

1. Physics-based models that arise from scientific laws, such as mass conserva-
tion and gravity in classical mechanics, Heisenberg’s uncertainty principle in
quantum mechanics, or reaction equilibria in chemistry.

2. Data-driven models (or sometimes non-physics-based models) are not defined
by underlying scientific laws, but give flexible frameworks that have to be
calibrated with data. Examples are models in machine learning, like deep
neural networks and Gaussian processes.

1.1.1 Physics-based models

Physics-based models can be defined implicitly as the unique solution of a certain
equation. Such an equation is e.g. an ordinary differential equation (ODE) or a
partial differential equation. Let H be a space of functions mapping from D to RX
or equivalence classes of such mappings and H’ be some further space. H is called
solution space, H' is called test space. Moreover, let £ : H x H' — R be an operator,
where

E(u*,v) =0 for a unique v* € H and all v € H'. (1.1)

The solution u* is then the mathematical model defined by £. Throughout this
chapter and the remainder of this work, we consider elliptic (partial differential)
equations as a recurring example. As a fundamental resource for such PDEs in
weak and strong form, we cite Gilbarg and Trudinger [I0I] and, as a historical
resource, Fick [91]. First of all, we consider the Poisson equation.

Example 1.1 (Poisson equation; strong form). Let D C R¢ d = 1,2,3, be an
open, bounded and connected set, with sufficiently smooth boundary. We aim to
construct a function u : D — R that models the distribution of temperature in the
domain D, subject to the following assumptions:

e D has a homogeneous (i.e. constant) thermal conductivity a > 0,

heating and cooling within D is modelled by a continuous function f : D — R,

e cnergy is conserved,

the environment around the structure is cooled down to temperature zero,

the temperature does not change over time.

Subject to temperature v and thermal conductivity a, one can compute the heat
flux density ¢ : D — R? in the domain D by Fourier’s law:

q(z) = aVu(x) (x € D) (Fourier’s law)
8



Chapter 1. Inverse uncertainty quantification.

Moreover, conservation of energy implies that changes in energy are only controlled
by the source term f:

—V-q(z) = f(z) (x € D). (conservation)

The temperature being set to zero at the boundaries implies Dirichlet boundary con-
ditions. Combining Fourier’s law, conservation of energy, and boundary conditions,
we obtain the strong form of the Poisson equation

—Au(x) =a tf(z) (x € D) (1.2)
u(x) =0 (x € OD).

&

We introduced the Poisson equation as a model for thermal conduction. Our deriva-
tion can be found in many textbooks on thermodynamics, e.g. Astarita [9, §7.1].
Note that we show approximate solution of a Poisson equation in Figure (0.1}

Next, we consider the weak form of the Poisson equation. It can be obtained by
multiplying the strong Poisson equation with test functions, integrating on both
sides, and then applying integration by parts. The weak formulation gives us an
example of a model in terms of the operator £, solution space H, and test space
H', given in . Furthermore, the weak formulation is the basis for finite element
discretisations, which we review in §3.1}

Example 1.2 (Poisson equation; weak form). We consider the set-up from Exam-
ple . Let H := H' := H}(D) be the Sobolev space of square integrable functions,
with zero boundary values, and square integrable first order weak derivatives. The
function u* € H solves the weak form of the Poisson equation, if

E(u*,v) = /D<Vu*(x), Vu(z))pdr — /Da_lf(x)v(x)dx =0 foralve H. (1.3)

The Laz—Milgram theorem, see e.g. [238], implies the unique solvability of the weak
formulation of the Poisson equation. &

In this work, we consider parameterised mathematical models. Hence, we define
classes of mathematical models. Such a class is a subset of H and determines e.g.
an underlying physical law that is not sufficient to determine the system’s behaviour.
In a class, a variety of systems of interest can be represented. Note that rather than
defining a set of models, we define classes by parametrisations. Let X be the so-
called parameter space, which we assume to be a Borel measurable subset of some
separable Banach space. Note that X may be infinite-dimensional. A parameterised
model is then a function G : X — H that maps a parameter in X to a model
in H. The class represented by G is the image of G. We denote implictly defined
parameterised models by £ : H x H' x X — R. In this case, the function G : X — H
maps X 2 0 — u* € H, where

E(u*,v;0) =0 for a unique v* € H and all v € H'. (1.4)

A straightforward example for a parameterised model in the context of Example|l.1
and is the class of Poisson equations with continuous source terms. In that

9
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case, the parameter space is the Banach space X := C°(D) of continuous functions
mapping from the closure of D to R and the function G maps the parameter f € X
to u € H given in Equation (1.3]).

We now move from the Poisson equation to the more general stationary diffusion
equation, which is also an elliptic equation. Since we do not consider non-stationary
diffusion equations in this thesis, we sometimes drop the term stationary in the
following. The diffusion equation appears in the mathematical modelling of fluid
flow in a porous medium. Moreover, it is commonly used as an academic example
in uncertainty quantification, see our pointers to literature in §1.2.5] We introduce
the diffusion equation with a brief explanation of the governing physical laws in
the following Example These explanations are very similar to the discussion in
Example [I.T} Similarly to Example we then give the weak formulation of the
diffusion equation. We close this section by discussing the parametrisation that we
consider throughout this thesis.

Example 1.3 (Stationary diffusion equation; strong form). Let D C R4, d = 1,2, 3,
be an open, bounded and connected set, with sufficiently smooth boundary, that
models a groundwater reservoir in 1D, 2D, or 3D. We aim to construct a function
u : D — R that models the pressure head of the water in D, subject to the following
assumptions:

e the permeability of the reservoir is modelled by a continuously differentiable
function a : D — (0, 00),

e in- and outflow of water is modelled by a continuous function f: D — R,
e the pressure outside of the reservoir is equal to zero,

e the pressure does not change over time,

e the water is incompressible.

From pressure head u and permeability a, one can compute the flux ¢ : D — R? in
D by Darcy’s law:

q(z) = —a(x)Vu(z) (x € D) (Darcy’s law)

Moreover, the incompressibility of the water implies that changes in mass and volume
are only controlled by the source term f:

V.q(x) = f(x) (x € D). (incompressibility )

Since the pressure head is zero outside of the reservoir, we consider Dirichlet bound-
ary conditions. Combining Darcy’s law, incompressibility, and boundary conditions,
we obtain the strong form of the diffusion equation

=V -a(x)Vu(z) = f(x) (x € D)
u(z) =0 (x € OD).
In the context of elliptic equations, a is called diffusion coefficient. &

10



Chapter 1. Inverse uncertainty quantification.

Our derivation of the diffusion equation is based on textbooks on hydrology, e.g.
Holting and Coldewey [122, §4], and (computational) fluid dynamics, e.g. Petrila
and Trif [201]. For a theoretical derivation of Darcy’s law, we refer to Whitaker [256].
We typically parameterise the diffusion equation by parameterising the diffusion
coefficient a. In particular, we define a : D x X — (0,00). This gives us a class of
models representing the flow in a reservoir with respect to the particular permeability
structure a(-,0), specified by § € X. Next, we give the weak formulation of the
diffusion equation and give an example for the parameterisation.

Example 1.4 (Stationary diffusion equation; weak form). We consider the setting
from Example . Let the parameter space X := C°(D) be the Banach space of
continuous functions from D to R. The permeability is given by a(f, ) := exp(6(x)).
Moreover, let again H := H' := H}(D). The parameterised model G : X — H maps
0 € X to u* € H, where u* solves the weak form of the diffusion equation

E(u™,v;0) := /Da(Q,x)(Vu*(x),Vv(x»Ddx - /D f(x)v(z)dx =0 for all v € H'.

The existence and uniqueness of u* € H is again guaranteed by the Lax-Milgram
theorem for any # € X. Note that Lax—Milgram holds, since D is compact, 6 is
continuous, and a = exp(f), thus, bounded away from 0 and co. &

In the following, we concentrate only on the weak formulations of the PDEs. We drop
the term weak, when referring to weak Poisson or diffusion equations. Considering
only weak formulations comes at some cost. This is the subject of the following
remark.

Remark 1.5. One can show that strong solutions of Poisson and diffusion equations
also satisfy the corresponding weak equations. Due to missing regularity of D and a,
strong solutions may not exist, even if weak solutions are available. Note for instance
that we have only assumed a € C°(D) for the weak formulation, but a € C'(D) for
the strong formulation. Hence, the converse is in general not true: weak solutions
do not necessarily satisfy the strong equations.

We note that even weaker assumptions on the functions a and f can be made in the
examples above. For instance, one can consider the function a(-) to be measurable,
strictly positive, and bounded above and f € L?(D). This still implies the existence
of weak solutions, as discussed by e.g. [L01, Theorem 8.3]. <&

Throughout this thesis, we always assume that mathematical models are parame-
terised. Therefore, we usually drop the term parameterised and refer already to G
as a model.

1.1.2 Data-driven models

Data-driven models are employed, if the underlying physical process is unknown
or too complicated to be described. Those models require data that reflects the
underlying process. Data-driven models are particularly popular in machine learning
applications, such as pattern recognition problems. Here, we refer to Murphy [I88];
see also the following example.

11
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Example 1.6 (Image recognition). Literate humans are typically able to recognise
handwritten digits. However, we do not know a mathematical model or physical
process describing the map from {0,1,...,9} to the handwritten versions of each
of these digits. Data-driven approaches to model this map (or its inverse) are very
popular. They have for instance been considered in the works of LeCun and co-
authors [159, 160], T61]. &

Data-driven models are again given by a function G : X — H mapping from a
parameter space X to a solution space H. Physics-based models have parameters
to adjust the given laws to a particular process the underlying physics of which is
known. The parameters in data-driven models adjust and control all underlying
processes and relationships.

We define data-driven models on the space H := M(D; R¥) of measurable functions
from D := R? to RX. Typical examples include linear models and artificial neural
networks (ANNs):

Example 1.7 (Basic models). Let the parameter space X := R¥*4 x RX contain
pairs of matrices and vectors. The matrices represent linear maps from D to R¥.
The vectors are in R,

e A linear model G maps

X>(Wb)— (D>~ Wz+beR") e H.

e Let 0 : R — R be an activation function. An artificial neural network G maps
X>(W,b)— (D>z+—o(Wz+b) e R¥) € H,

where ¢ is applied component-wise to vectors. In artificial neural networks,
W is called weight, b is called bias.

&

Linear models are used if the underlying process can be assumed to be affine linear.
Note that the denomination linear model is used in the statistics literature even if
the classes of models consist of affine linear functions. Linear models in statistics
are discussed thoroughly in Rencher and Schaalje [209]. An artificial neural network
models K neurons in the human brain. The ANN represents the state of the each
of the K neurons when perceiving x. Originally, the activation function o is given
by the Heaviside function 1jp.. The state of each of the neurons is then either
active (= 1) or inactive (= 0). Other activation functions lead to more general
approximability properties of the ANN. As historical resources concerning artificial
neural networks, we refer to [142, [182].

More complex models can for instance be constructed by a combination of the basic
models. Products and sums of products of linear models lead to polynomial models.
In the last decades, deep models have especially gained popularity. Deep models
arise when composing a hierarchy of a number N4, € N of basic models. Here,
the basic models are called layers. By composing ANNs, we obtain a deep neural
network (DNN). Those we discuss in the following example.

12
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Example 1.8 (Deep neural network). Let k& € NVaer ™ bhe a vector configurating the
size of the layers of the deep neural network. Here, ky = d, which is the dimension
of the input space D and ky,, = K is the dimension of the output space. The
parameter space X contains Nge, pairs of weight and bias matrices:

Ndep
X = H Ranknfl X Rkn
n=1

Ndep
n=1

The deep neural network G maps (W™, b(™) € X tou: D — RE, where

u(x) = deep’
Ty =0 (W(n)xnfl + b(n)) ) (TL =1,..., Ndep)
Ty = T, (z € D).

Here, o is again an activation function, which may vary throughout the layers. <

Recent reviews on Deep Neural Networks are given by Higham and Higham [120)],
and LeCun et al. [I59]. Deep models can also be based on compositions of linear
models and ANNs. So-called convolutional neural networks (CNNs) appear in image
recognition problems and can contain linear models and ANNs. CNNs use many
localised neural networks that capture subsets of the images. The information cap-
tured from these subimages are combined in so-called pooling layers. These pooling
layers can be linear functions. For a thorough explanation of image recognition with
neural networks, we refer to Bishop [24].

In the following chapters, we focus on physics-based models. Nonetheless, when
discussing hierarchical models, we come back to the notion of deep models. Also,
the problems that we consider for physics-based models can be easily transferred
to the data-driven setting.

1.2 Uncertainty and probability

Ackoff [2, Chapter 4] views scientific models as idealised. A model contains a feature
of the reality, if and only if it is relevant. In practice, relevant features may be
unknown or uncertain in the modelling process. In this section, we discuss such
uncertainties that appear in mathematical models.

Uncertainties are particularly problematic if they influence a decision making pro-
cess. Such decisions can for instance be of engineering or medical nature, or purely
scientific. Examples are: ‘How many pillars should Tower Bridge have?’, ‘How
should the glioblastoma of Patient A be treated?’, or ‘Does a Higgs boson exist?’,
respectively. Uncertainties in the model influence such decisions. For instance, the
Advanced Learner’s Dictionary of Current English [125] defines uncertain as some-
thing

“[...] 1. changeable; not reliable [...] 2. not certainly knowing or
known [...]”

Hence, in common language, uncertainties make a model unreliable. In the decision-
theoretic context, uncertainty is often considered as opposed to risk. Here, a decision
is called

13



Chapter 1. Inverse uncertainty quantification.

1. decision under certainty, if the outcome of any possible decision is known,

2. decision under risk, if the probability distribution over the possible outcomes
of any possible decision is known,

3. decision under uncertainty, if said probability distributions are unknown.

A model containing uncertainties leads to decisions under uncertainties, unless the
probability distribution of the outcomes is determined. We define uncertainty quan-
tification (UQ) as the process of determining said probability distribution. As a
reference concerning decision-making under certainty, risk, and uncertainty, we men-
tion Hansson [114].

In this work, we use probability measures and random variables to represent uncer-
tain parameters. We briefly summarise concepts of probability theory that form the
foundation of this work in §1.2.1] Those concepts are probability measures, random
variables, moments, convergence of random variables, and ways to characterise prob-
ability measures. Then, we introduce metric and topological spaces of probability
measures in §1.2.2] Those allow us to compare and analyse probability measures
in the following sections. Having defined random variables in §1.2.1], we introduce
function-valued random variables, so-called random fields in §1.2.3] Those play an
important role in the modelling of uncertainties in partial differential equations. In
§1.2.4] we discuss the concepts of conditional probability and Markov kernels. These
— closely related — concepts allow for the modelling of hierarchies, such as random
processes. Finally, we investigate mathematical models that contain uncertainties,
as well as the quantification of said uncertainties in §1.2.5. As an example, we
consider the diffusion equation with random diffusion coefficient.

1.2.1 Representation of uncertainty by probability

In this work, we represent uncertainty via randomness; that is via the outcome of
a random experiment. Those random experiments are modelled using probability
theory. The approach to model uncertainties with randomness has been advocated
by Cox [50].

Random experiments and probability spaces. Let 2 be a set from which an
element w shall be drawn randomly. We specify which element is drawn by defining
a probability measure.

Definition 1.9. Let A C 29 be a o-algebra. A probability measure or probability
distribution P is a map from A to [0, 1] that satisfies the following axioms:

(i) P(0) =0,

(i) Let I C N be a countable index set. Moreover, let (4;);cr € A! be a family of
pairwise disjoint events. Then, >, ; P(A;) =P (U;c; 4i)

(iii) P(Q) = 1.

If IP satisfies only (i)-(ii), it is called measure. <&
14
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An element A € A is called event and the assigned value P(A) is the probability
of the event. We formalise the random experiment of drawing w € () according
to a probability measure P by writing down the probability space (€2, A4,P). The
axioms in Definition are equivalent to those first stated by Kolmogorov in his
book Grundbegriffe [144]. Note that while being axiomatised in this book, prob-
ability theory has been considered for hundreds of years, e.g. by Laplace in 1812
[152]. Recent introductions to probability theory are given by [8, 23, 136, 143]. The
following paragraphs are mostly reviews of known results from the books above.

Random variables. In the following, we intend to represent randomness in vari-
ables and parameters. Each of the so-called random variables represents a single
random experiment, given by some probability space. To couple all of these random
experiments, we proceed as follows: We first define an underlying probability space
(9, A,P). Moreover, we define Z to be some space and Z C 27 to be a o-algebra
on Z.

Definition 1.10. A function & : Q — Z is called measurable or (Z-valued) random
variable if £ (7)) ={€€ 72"} ={weQ:Ew)eZ}ec A (7€ 2). &

As before, we denote the set of measurable functions by
M(Q;Z) :={f:Q— Z: f is measurable}.

The random variable & corresponds to a random experiment on the probability space
(Z,Z,P(€ € -)). The probability measure P(§ € -) is called (probability) distribution
of € or pushforward measure of €. If u = P(€ € -), we also write & ~ p. Throughout
this thesis, we use normal letters to denote elements of sets and the corresponding
boldface letters to denote random variables taking values in the according set. Hence,
if £ € Z, € is a Z-valued random variable.

Since all random variables are defined on (€2, .4, P), any random experiment that is
performed in the following is represented by drawing a sample w € € according to
the probability measure P. The outcome of the random experiment on (Z, Z,P(€ €
-)) is then given by &(w). The value ¢ = &(w') € Z for an outcome w' of a
random experiment on (€2, A, P) is called realisation of £&. As usual in probability
theory, we neither define the underlying space (€2, .4,P), nor the mappings from
Q2 to the respective space (like Z). Instead, we define random variables via the
probability space they represent, i.e. (Z,Z,P(§ € -)). Doing so, it is vital to
specify and clarify the interdepence of random variables. Consider two random
variables &, on probability spaces (Z;, Z;, ;) (i = 1,2). The so-called marginal
distributions py and ps do not specify the interdependence of &, and &,. Their
interdependence is specified by the joint distribution p:=P((&,,&,) € -). This is a
probability measure on the product space (Z; X Zy, Z1 ® Z,). Finally, we call £, &,
(stochastically) independent, if their joint distribution equals the product of their

marginals: P((€,,€,) € -) = ju @ ji.

Moments. Let Z now be a separable Banach space equipped with the Borel-o-
algebra BZ, and let € ~ p be a random variable on Z. Let k € N. We define the

k-th moment of € by
o= [ ge)fap) = [ e
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if the (Bochner-)integral on the right-hand side exists and is finite. The first moment
(k =1) is called ezpected value, or mean. Moreover, the second, centralised moment
is called wvariance

Var(¢) .= E [(€ - E[¢))*] =E [¢?] — E[¢]?

and the square-root of the variance is called standard deviation

StD(&) := +/Var(§).

If Z is a Hilbert space with inner product (-, -)z, we define the covariance operator
of & by
Cov(§): 2 =2, z—E[(,§-E[£])z(§ —E[{], 2)7].

Note, that the Riesz representation theorem, see [219, Theorem 4.12], implies the
well-definedness of this map. We sometimes consider moments not with respect to
P, but with respect to other measures. Let Z; be another separable Banach space
that is equipped with the Borel-o-algebra BZ;. Furthermore, let ¢ : Z — Z; be a
measurable function, and & ~ u. We abbreviate,

E.l¢] :=E[p(€)],  Varu(e) :=Var(p(§)),  StD,(p) := StD(¢(£)),

if the corresponding integrals exist.

Convergence of random variables. Moments of random variables can be ap-
proximated by so-called Monte Carlo methods. We discuss those in The
theoretical foundation of these methods are the laws of large numbers. Given a
set of independent and identically distributed (i.i.d.) random variables (§;)ien, the
laws of large numbers treat the behaviour of the sample mean &, := Y1 | &;/n as
n — 0o.

Having the laws of large numbers in mind, we first discuss different kinds of conver-
gence of random variables.

Definition 1.11. Let Z be a separable Banach space that is equipped with BZ.
Moreover, let &, : {2 — Z be a Z-valued random variable for: € N; and let § : 2 — Z
be another random variable. We say,

(i) & — & converges in probability as i — oo, if for all € > 0 it holds

lim P(¢; — &[> <) = 0

(i) & — & converges almost surely (a.s.) as i — oo, if
P(lim [|€; — &[z =0) = 1.
1—00
&

One can show that almost sure convergence of a sequence of random variables implies
convergence in probability, see [143, Remark 6.4]. This justifies the nomenclature
of the following Weak and Strong Laws of Large Numbers:
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Theorem 1.12 (Weak Law of Large Numbers). Let (&;)2, be a sequence of i.i.d.
random variables. The sample mean of the first ¢ € N random variables is given by

&= %22:1 €, HE[|& %] < oo, we have

- Var 5 VA
B, ~ Elé ]I, > o) < “l&lz) (15)
for every € > 0. Hence, £, — E[€,] in probability, as n — oo.
Proof. (1.5)) above follows from Chebyshev’s inequality [8, §2.4.9)]. O]

The upper bound gives information about the speed of convergence of the
approximation. However, this information is rather limited, since it depends on the
choice of €. Instead, one should consider the root mean square error (RMSE) of
sample mean and first moment. In the setting of Theorem [I.12] the RMSE reads

VEIIE, — E[&,]12] = SOD(l1€,112)/v/n. (1.6)

Hence, indicates a rate of convergence of O(1/y/n;n — 00).

We state the Strong Law of Large Numbers also in the setting of random variables
with finite second moment. More general situations are possible, we refer to [8]
Chapter 6] and [121] for details.

Theorem 1.13 (Strong Law of Large Numbers; [I12I, Theorem 2.1]). Let Z be a
separable Hilbert space. Let (&;)52; be a sequence of i.i.d. random variables. If
E[||€,]|%] is finite, the sample mean €, converges almost surely to the mean, as
n — 0o. In other words,

P lim |€, — E[g)ll, =0) = 1.

&

Characterising probability measures. Finally, we discuss ways to represent
and characterise probability measures. To this end, we use functions that are defined
on the space Z or its topological dual Z*. First, we consider probability density
functions to characterise probability measures. Here, Z is some set that is equipped
with a generic o-algebra Z.

Let (Z,Z,vz) be a o-finite measure space, and f : Z — [0,00) be a measurable
function that integrates to 1 on said measure space, i.e.

[ savz=1.

Then, f defines a probability measure p on (Z, Z), by

pu(A) = /Afdyz (Ae 2).

The function f is called vz-(probability) density (function) (vz-pdf) of p. We call
it just (probability) density (function) (pdf), if vz is the Lebesgue measure on Z,
or if no particular v is defined. Note that the Radon-Nikodym theorem [8], §2.2.1]
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implies that if f exists as above, u is absolutely continuous with respect to v;. By
the Radon—Nikodym theorem, f is vz-almost everywhere (a.e.) uniquely defined.
Hence, we can represent p by f and f vz-a.e. by u. Thus, probability density
functions give us a practical way to characterise probability measures.
Unfortunately, probability density functions require the existence of a dominating
measure vz on (Z, Z). Natural dominating measures on Z are the counting measure
(if Z is countable) or the Lebesgue measure (if Z is finite dimensional). Especially
in the infinite dimensional setting, there is no measure that can easily replace these
measures to define basic probability measures.

Alternatively, if Z is a separable Banach space, we can consider the characteristic
function of a probability measure.

Definition 1.14. Let Z be a separable Banach space. Let Z* be the topological
dual space of Z and (-, )z« 7z : Z* x Z — R be the duality pairing of Z and Z*. The
characteristic function or Fourier transform of a probability measure p on (Z, BZ)
is given by

oy 4° = C, t— / exp(i(t, 0) 2+ z)du(6).
z
If Z is a Hilbert space, we employ its self-duality and define ¢, on Z. &

One can show that every probability measure is uniquely defined by its characteristic
function; see [27, A.3.18].

1.2.2 Spaces of probability measures

In §1.2.1] we have discussed types of convergence of sequences of random variables.
Such sequences arise e.g. when approximating moments of probability measures with
samples of those. Closely related to sequences of random variables are sequences
of probability measures, and the convergence of the latter. They arise when ap-
proximating probability measures, in central limit theorems, and when considering
marginal perturbations in probability measures. To discuss such sequences, we now
discuss spaces of probability measures.

Let Z be again some separable Banach space that we always associate with BZ in
this section. We define the space of probability measures on (Z, BZ) by

Prob(Z) := Prob(Z,BZ) := {u : BZ — [0,1] : p is probability measure}.

Moreover, for some o-finite measure vz on (Z, BZ), we define the space of probability
measures that are absolutely continuous with respect to vz by

Prob(Z,vyz) := Prob(Z,BZ,vz) .= {u € Prob(Z) : p < vz}.

Finally, we define the space of probability measures with finite absolute p-th moment

Prob,(Z) := Prob,(Z,BZ) := {,u € Prob(2) : /Z 1€]1%du(€) < oo},

for p € [1,00). Note, that Jensen’s inequality implies that

Prob,(Z) C Prob,(Z) (p>qg>1).
18
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In the following, we consider topologies and metrics on each of these spaces. Those
allow us to discuss the convergence of sequences of probability measures. Moreover,
the metrics can be used to measure the distance between probability measures. Note
that a thorough review concerning metrics on probability spaces is given by Gibbs
and Su [99]. We start with the weak topology on Prob(Z).

The weak topology. Let (j;)iey € Prob(Z)Y and u € Prob(Z) be a further
measure. We say p; — p converges weakly, as i — oo, if

1—00

i | F©(a9) = [ FOntae), (1.7)

for any bounded and continuous function f : Z — R. We abbreviate this with
pi = pu (i = 00).

There is a multitude of equivalent criteria for weak convergence. We mention that
weak convergence is implied by pointwise convergence of the associated characteristic
functions. For other criteria for weak convergence, we refer to the Portmanteau
Theorem, see [8, Theorem 2.8.1]. Importantly, note that weak convergence does not
imply that probabilities of events need to converge, i.e.

pi = i (i = 00) 7 lim p;(B) = u(B), (1.8)

i—00
for general B € BZ. We illustrate this statement with the following example.

Example 1.15. Let Z := R and p; := 6(- — 1/i) be the Dirac measure concentrated
in 1/4, for i € N. Then, y; — p := (- — 0), as i — oco. Let now B := (0, 1]. Then,
we have 1;(B) = 1,4 € N, but u(B) = 0. Hence, lim; oo pt;(B) =1 # 0= pu(B). <

Weak convergence can be equivalently represented — metrised — by the (Lévy-)
Prokhorov distance on the space Prob(Z):

dprok (1, p') ;== inf {e > 0: u(B) < y/(B°) +¢,B € BX},

where B*:={be B:3b' € Z: ||b—1'||z < ¢} is the open generalised -ball around
BeBZ.

Proposition 1.16 (Prokhorov; [205] Theorem 1.11]). dp,ek is a metric on Prob(Z)
and metrises the weak convergence, i.e. j; — p (i — oo), if and only if
lim dpyor (1, pti) = 0.
1—00
&

Motivated by Proposition [1.16] we define the weak topology on Prob(Z) as the
topology induced by the Prokhorov metric dp,qy, i.e.

Oprok := {B C Prob(Z) : V(u € B)3(e > 0){p : dpro(p1, ') < €} C B};

see, e.g. [145, §4.2 (1)]. In practice, it is rather difficult to compute and to interpret
the Prokhorov metric between two measures. The Wasserstein distance has gained
attention as a metric closely connected to the weak topology. [70] is the first article
mentioning the Wasserstein distance between probability measures. It is given as
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the cost of an optimal transport from one probability measure to another. This
connection is thoroughly discussed in Villani [252]. We now define the Wasserstein
distance and discuss its connection to the weak topology. Let p € (0, 00) and let

Coup(p, i) == {A" € Prob(Z?) : u(B) = N'(B x Z),1/'(B) = N'(Z x B), B € BZ}

be the set of couplings of two measures p, ¢/ € Prob(Z). The couplings are the prob-
ability measures on (Z2, BZ?) that have p and p/ as marginals. The Wasserstein(p)-
metric is given by

1/p
Qoo 1 17) :=( we [ e 5||”dA<55>) ,

AeCoup(p,pu’)

if the integral on the right-hand side exists. The integral on the right-hand side
exists if p, ' € Prob,(Z). On this space, convergence in the Wasserstein(p) metric
is stronger than weak convergence

Proposition 1.17 ([252, Theorem 6.9]). Let p € [1,00). dwas@p) is a metric on
Prob,(Z) and for p, p; € Prob,(Z) (i € N), we have lim; o dwas(p) (14, ) = 0, if
and only if

% (i o) and i [ 61(06) = [ 0] ulas
(2 o0 7 VA
Hence, convergence in dya.g(p) implies convergence in the weak topology. &

Total variation and Hellinger distance. In (|1.8), we mention that weak con-
vergence does not necessarily imply convergence of probabilities of events. Conver-
gence in total variation is a stronger concept. Here, indeed probabilities of all events
converge. The total variation distance is defined as the smallest uniform bound over
all differences between probabilities. In particular, the total variation (tv) distance
of u, 1/ € Prob(Z) is
dev(p, 1) := sup [u(A) — 1'(4)].
AeBZ

Let now p, 1/ € Prob(Z,vz), where v is a o-finite measure. Then, the total variation
distance can be expressed as an L!-distance between the Radon-Nikodym derivatives
of u, p' with respect to vz:

diy (4, 1) /‘dl/z dl/z(@‘yz(d5 2Hd7/z dvy

The proof of this statement is based on the Hahn—Jordan decomposition of the
signed measure p — ', see [219, Theorem 6.13].

Finally, we discuss the Hellinger distance. The Hellinger distance on Prob(Z,vy) is
given by

/d /d
dHel(,u # ( dyuz dlljz) dvy =

LY(Zyvy)

du dy’
dVZ dVZ

LQZVz)
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The Hellinger distance is based on the work of Hellinger [118]. It can be understood
as an L2-distance of the square-root of the densities. Note that it is well-defined,
since

feLY(D;[0,00)) = f'/? € L*(D;[0,00)).

The Hellinger distance is a metric that is topologically equivalent to the total vari-
ation distance on Prob(Z,vy), see Lemma 2.14] It is sometimes preferred over the
total variation distance, as it scales like the distance in expected values with respect
to the measures.

Lemma 1.18. Let C' :=2 [, [|0]]51(d0) + 2 [ |05/ (d) < oo. Then,

H/Zeﬂ(de) _/ZW(CW)HX < Cdya(p, 1)

Proof. This Lemma generalises [157, Lemma 1.30]. The proof proceeds analogu-
ously. O]

We use this result in Theorem to compare posterior means (i.e. conditional
means) under perturbation of the data.

1.2.3 Random fields

We aim to model uncertain parameters in mathematical models with random vari-
ables. Parameters in mathematical models sometimes take values in function spaces.
As an example, we recall the function-valued permeability in the diffusion equation
in Example [1.4l Function-valued random variables are called random fields. The
theory of random fields as function-valued random variables has been discussed by
[277, 139, [136], 169] 236, 238]. We now particularly discuss Gaussian random fields
that yield continuous realisations.

We start by defining Gaussian measures on separable Banach spaces. First, we recall
the notion of a real-valued Gaussian random variable which induces a Gaussian
measure on R.

Definition 1.19. The random variable £ : {2 — R follows a non-degenerate Gaus-
sian measure, if

13 " a)2
e <O = No)(-.8) = [ mmow (<S5 ) e )

—00

for some @ € R and b > 0. The Gaussian measure is degenerate if b = 0. In this
case, we define N(a,0) := §(- — a), the Dirac measure concentrated in a. <&

Let Z denote a separable Banach space with Borel-o-algebra BZ. We now introduce
Gaussian measures on Z.

Definition 1.20. The Z-valued random variable 8 : 2 — Z has a Gaussian mea-
sure, if (7', 0) - 7 follows a Gaussian measure for any 7" € Z* in the topological dual
space of Z. &
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In the following, we assume that Z is a separable Hilbert space. This simplifies the
following discussion, even though many of the concepts introduced below can be
generalised to the separable Banach space setting; or even more general spaces.

In Definition we distinguish two cases. If Z is finite-dimensional, we call 8 a
(multivariate) Gaussian random variable with mean vector m := E[6] and covariance
matrix C := Cov(0). If Z is infinite-dimensional, then 0 is called Gaussian random
field with mean function m := E[8] and covariance operator C := Cov(8).

In the next section, we discuss the construction of Gaussian measures. First, we state
required properties of mean and covariance. While any m € Z can be used as a
mean function, the covariance operator C : Z — Z has to be linear, nuclear, positive
semidefinite, and self-adjoint. This is a consequence of the following theorem.

Theorem 1.21 (|27, Theorem 2.3.1]). Let 1 be a measure on (Z, BZ). pis Gaussian,
if and only if there is an m’ € Z and a linear operator C’ : Z — Z, that is nuclear,
positive semidefinite, and self-adjoint, such that the characteristic function ¢, of ;1
satisfies

@u(t) = exp (i(m',t)z — %(C’t,tﬁ) (te Z). (1.9)

In this case, p = N(m/,C").
Moreover, all functions of the form ((1.9)) are valid characteristic functions. Hence,
for all m’,C’ as specified above, the Gaussian measure N(m/, C’) is well-defined. <

Note that an operator is nuclear (or trace-class) if it is compact and the sum of the
norms of its eigenvalues is finite. We denote the set of valid covariance operators on

Z by CO(Z).

Construction of Gaussian measures. We move on to the construction of Gaus-
sian measures. If dim Z < oo, we can identify a Gaussian measure on Z in terms of
a probability density function w.r.t. the Lebesgue measure.

Proposition 1.22. Let Ny, € N, Z := R m € Z, and C € CO(Z) with full
rank. Then, the Gaussian measure can be written as

N(m,C)(B) = / n(f;m,C)d0 (B e BZ), (1.10)
B
where
n(6;m,C) = det(27C)~? exp (—(1/2)(0 —m,C~ (6 —m))) (1.11)
is the associated probability density function. &

If dim Z = oo, there is no Lebesgue measure with respect to which we can define a
densitiy to obtain a Gaussian measure. However, it is possible to define a Gaussian
measure with respect to another Gaussian measure, if one arises from the other by
a translation of the mean. This is a result of the Cameron—Martin theorem:

Theorem 1.23 (Cameron-Martin; [27, Corollary 2.4.3]). Let p := N(m,C) be a
Gaussian measure on Z. Let CM(u) be the Cameron—Martin space of p, i.e. CM(u)
is the Hilbert space defined as the completion of img(C'/?) with respect to the inner
product (-, -)om(u) = (C~Y/2-,C71/2.) 5. Then,

dN(m + h,C)

N(m + h,C) < p and m

1712
(0) = exp ((hﬂ)CM(u) -] (weas),
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if and only if h € CM(u). <&
A = 0.0005 A= 0.001 A = 0.005 A=0.01
0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
-0.05 -0.05 -0.05 -0.05
-0.1 -0.1 -0.1 -0.1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
A=0.05 A=0.1 A=0.5 A=1
0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
0 0 WW 0 WWMWMW 0 W
-0.05 -0.05 -0.05 -0.05
-0.1 -0.1 -0.1 -0.1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 1.1. Samples of mean-zero Gaussian random fields in 1D with exponential
covariance, with ¢ := 1 and A € {0.0005,0.001,...,1}, where | - |5 := |- | is the
standard modulus. The samples are discretised with 4000 piecewise constant finite
elements, distributed regularly over D = [0, 1].

The Cameron—Martin Theorem tells us how to construct one Gaussian measure
using another. However, we do not learn how to commence the process with the
first Gaussian measure. Here, one option it to employ the Karhunen—Loeve (KL)
expansion.

Definition 1.24. Let dimZ = oo and let (a4, ;)2 denote the eigenpairs of C,
where (¢;)22, forms an orthonormal basis of Z. Let € :  — RY be a measurable
function. Furthermore, let the components of & form a sequence (&;)2; of i.i.d.
random variables, where & ~ N(0,1). Then, the expansion

Ok, :=m + Z NCR I
i=1

is called KL expansion. <&
One can easily verify the following proposition.

Proposition 1.25. 6y, is distributed according to N(m,C).

Proof. Apply Theorem to Okr,. O

In the remainder of this work we assume that eigenpairs are ordered descendantly
with respect to the absolute value of the associated eigenvalues.

For illustration purposes we give a example for a Gaussian measure on an infinite-
dimensional, separable Hilbert space.

Example 1.26. Let Z := L?(D;R). We define the exponential covariance operator,

Ce(i}’f) L= 7, o 7c,g;\(’p”)(x, Jp(z)de, (1.12)

%D xD =R, (z,2) — o”exp (A '|z — || p),
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where A > 0 is called correlation length and o > 0 is called standard deviation.
Then, C) € CO(Z) and N(0,C%¢)) is a well-defined Gaussian measure. We show

samples of N(0,C%)) in 1D and 2D in Figures &

Functions like c((;\(if’) in Example are called covariance functions or covariance
kernels. In the following, we discuss spatial properties of random fields, such as
continuity of realisations. These properties can often be derived from properties of
their covariance kernels.

A=0.1

1
0 0.5 1

Figure 1.2. Samples of mean-zero Gaussian random fields in 2D with exponential
covariance, with ¢ := 1 and A € {0.1,0.5,1.0,1.41}, where || - |5 := || - ||2 is the
2-norm. The samples were generated with a Karhunen—Loeve expansion, which was
truncated after Ngo = 800 terms; retaining a minimum of 90.1% of the random
field’s variances. The expansions were computed using 100 x 100 square piecewise
constant finite elements on a regular grid.

Covariance kernels and continuity. We come back to the diffusion equation.
Here, the parameter is a continuous function § : D — (0, 00). We aim to model this
parameter with a random field. Hence, we need to obtain continuous realisations
from the random field.

Indeed, when looking at Figures we see that at least the discretised samples
following a Gaussian measure with exponential covariance operators are continuous
functions.

We now investigate this observation more rigorously and discuss the regularity of
random fields. This plays a central role in the books by Adler [3 [4]. Recent results
were also discussed by Potthoff [203].

First we define covariance kernels, show that they imply valid covariance operators,
and then discuss the continuity of random fields.
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Definition 1.27. Let ¢: D x D — R be a function satisfying
(i) ¢ is symmetric, i.e. for all z,y € D, it holds ¢(z,y) = c(y, v),

(ii) c is positive semidefinite, i.e. for alln € N,zy,...,z, € D, and ay, ..., a, € R,
it holds » i, > a;ajc(zi, x;) > 0,

(iii) ¢ is continuous.
Then, c is a covariance kernel. &

Note that the assumptions in Definition [1.27] also imply that ¢ is a Mercer kernel,
see [238] Definition 11.2]. There are various ways to construct covariance kernels,
we refer to Duvenaud [79, §2] for a review of those. Moreover, note that a huge
class of covariance kernels is the (Whittle-)Matérn class, see Matérn [178]. We will
discuss those in §4.2.3]

A covariance kernel can indeed be used to define a covariance operator.

Proposition 1.28. Let ¢ be a covariance kernel and D be compact. Moreover, let
Z :=L*(D). Then, C : Z — Z, defined by

Z3p—Cpi= /gp(x)c(w, Jdz € Z
D

defines a covariance operator on Z.

Proof. Since D is compact, and c is a Mercer kernel, we can apply Mercer’s Theorem
[238, Theorem 11.3]. O

Some properties of a random field can be investigated by studying the covariance
kernel. Let ¢ : D x D — [0,00) be a covariance kernel. If there is a function
R:{z—y:z,y € D} — [0,00), such that ¢(z,y) = R(x —y) (z,y € D), the
covariance kernel is called stationary. Stationarity implies that a translation of the
random field does not change its probability distribution. If there is a function
R : [0,00) — [0,00), such that ¢(z,y) = R(||x — y||) (z,y € D), the covariance
kernel is called isotropic. Isotropy implies stationarity.

So far, we have defined a Gaussian random field as a random variable taking values
in some separable Hilbert space Z of functions from D to R. Now, we discuss
continuity of samples of a measure N(0,C), i.e., we aim to show

P (lim 0(x) —0(y)| =0, x¢c E) =1

Yy—x

This implies that a sample from N(0, C) is continuous with probability one, or almost
surely continuous.

We often cannot discuss continuity of # € Z, since point-evaluations of # may be not
defined in Z. Alternatively, we need to define a Gaussian random field on a function
space, in which functions have point evaluations. Note that a Gaussian measure can
already be defined on a topological space Z, which is locally convex. We equip this
space with the cylindrical o-algebra F defined by

c{{0ez:(1,0)z+2,....,(T0,0)2-2) € B} :neN, BeBR", Ty,...,T, € Z*}
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and define the Gaussian measure on (Z,F), as in Definition [1.20} see Bogachev
[27, Definition 2.2.1(ii)]. If point-evaluations in Z are defined, those are linear
functionals. Hence, we can access the finite-dimensional distributions

P<(0($17 ')7 s 70($k7 )) € ')7

where 0 : Q) — Z is a measurable map, k € N, and (x1,...,2%) € D". Tn this case,
we have

c(xy, ) -+ c(xy, zp)

(g, ) -+ c(xg, zE)

for some covariance kernel c. However, sets of the form

Yy—x

{96Z:1im|0(x)—9(y)|:0, xeﬁ}g}"

are not measurable, since the described event contains an infinite number of point-
evaluations. Sets in F however contain only finitely many point-evaluations at a
time. We can discuss continuity of random fields @ subject to modifications. A
random field @' is a modification of 8, if

PO(z)=6'(x)) =1 (z € D).

Note that from a probabilistic point of view, we cannot distinguish 8 and @’. Finally,
we move on to the continuity of a modification of a random field. We state a
standard result on the continuity of random fields, linking continuity of a random
field with continuity of the covariance kernel. Results of this kind are known as the
Kolmogorov(-Chentsov) continuity theorem.

Theorem 1.29. Let D be a bounded, open set and let Z := RP :={f: D — R}
be the set of functions from D to R. Furthermore, let & ~ N(0,C) be a random field
and C be given by a covariance kernel ¢ : D x D — R. If some K, e € (0, 00) exist,

such that
K

< ,y € D),
S Togle —gqiee. @¥E€D)

E [(8(z) - 6(y))"]

then, there is a modification 8" of 8, such that 8’ is almost surely continuous.

Proof. The space Z is locally convex, see the discussion in [27), §2.2]. See [3, Theorem
3.4.1] for a proof of this theorem. O

In the following, we will not distinguish between a random field and its modifications.
A continuous random field will be a random field which has a modification that is
almost surely continuous. Sometimes, we are slightly imprecise in the following, and
discuss continuous Gaussian random fields on e.g. (Z,BZ) := (L*(D), BL*(D)).
This means, we can define the random field on a subset or superset Z’, such that
there is a modification of the random field that is almost surely continuous. Indeed,
we always assume in the following that a Gaussian measure is defined on a separable
Hilbert space.
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Gaussian white noise. In the last subsection, we have discussed regular random
fields that have a continuous modification. However, sometimes rather irregular
functions shall be modelled, e.g., by random fields without correlation structure.
Gaussian white noise is an example for these. Let Z := L?(D), and let idz : Z — Z
be the identity operator on Z. Gaussian white noise shall be understood as the
random field corresponding to N(0,idz). Equivalently, we can characterise 6 ~
N(0,idy), as the random field satisfying (z,8)7 ~ N(0, ||z||%), for any z € Z.
However, a Gaussian random field with covariance operator id; does not exist on
Z. Indeed, idz is not nuclear in Z: Let (p,)nen € ZN be an orthonormal basis of
Z. Then, since all eigenvalues of id are equal to 1, we have

trace(idz) = 3 ((id5ids) o, o) = 3 lally = 31 = o0

neN neN neN

see also [27), Corollary 2.3.2]. Therefore, according to Theorem N(0,idz) is
not defined. Nonetheless, it is possible to define a generalised Gaussian random
field resembling Gaussian white noise. We will first introduce the principal idea in
a functional theoretical setting, and then give an example on how the spaces may
be chosen appropriately.

The principal idea consists in defining a Banach space W O Z such that Z can be
compactly embedded into W and such that N(0,Idy) is well-defined on (W, F). F
is now the cylindrical o-algebra on W. The tuple (Z, W) is called abstract Wiener
space. Moreover, let W* be the dual space of W with respect to the inner product
of Z. That means, W* := {T" € Z : (T,w)z € R,w € W}. Since Z is a Hilbert
space, it is self-dual, i.e., Z = Z*, and W* C Z is dense. The inclusion relation
W+* C Z C W is called Gelfand triple.

Gaussian white noise on (Z, W) is then defined as the probability measure g on W
with the characteristic function

[ ety aut) e (—5I1) (W),

Hence, we define Gaussian white noise on a larger set than Z, but test it with
functions in a subset of Z. Coming back to the desired property of Gaussian white
noise: if @ ~ p, the random variable (T, 8) ; ~ N(0, ||T||%). This is now true for any
T € W*. As W* is dense in Z, we can extend this for z € Z: Let (T},)nen € (W*)N,
such that lim, o T}, = 2. Then, P((T},,0) 2 € ) = N(0,]|z||%), as n — co.

Finally, we give the standard example for the choice of W and W*. Let D be the
whole space R and Z := L*(D). Let W* := S(R) be the space of rapidly decreasing
functions, i.e.,

S(R) := {f € C*(R;C) : Vi,j € Ny : |hm

x@ )—o}

One can show that indeed W* C Z and that W* is dense in Z. We obtain the
space W as the dual of W* with respect to (-,-)z. Here, W := §’(R) is the space of
tempered distributions. Intuitively, we sample white noise in the space of tempered
distributions. Those are generalised functions and rougher than L2-functions. We
test the white noise with rapidly decreasing functions. Those are much smoother
than standard L2-functions.
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For this definition and construction of Gaussian white noise, we refer to the book
by Kuo [I51] and also to Kahle et al. [134]. Note that Kuo also explains others
approaches to introduce white noise; e.g. as a weak derivative of the Brownian
motion.

1.2.4 Markov kernels and conditional probability

In this section, we consider Markov kernels and conditional probabilities. These
structures allow to represent hierarchies in random experiments. Such hierarchies
may for instance be of temporal nature: Two random experiments are performed
one after another, and the second experiment depends on the outcome of the first
experiment. Markov kernels are parameterised measures. While the first random
experiment is represented by a probability measure, the second experiment is given
by a Markov kernel, where the parameter represents the outcome of the first exper-
iment.

Conditional probability measures are Markov kernels that describe the probability
distribution of the outcome of an experiment if the outcome of another experiment
is known.

Markov kernels and conditional probability are the basis for Bayesian inference and
parametric statistical models. Additionally, we use Markov kernels to construct
probabilistic deep models.

For the here-presented results, we refer to Ash [8] and Dobrushin [70].

Markov kernels. We start with the definition of a Markov kernel.

Definition 1.30. Let (7, 21) and (Z, 2Z5) be two measurable spaces. A map
M : 7y x Z9 — [0,1] a Markov kernel (mapping) from (Zy, Z1) to (Za, Z5), if it is a
measurable function in the first component and a probability measure in the second
component, i.e.

(i) M(&1,-) € Prob(Z) (& € Z4), (ii) M (-, B) € M(Z5;[0,1]) (B € 2,),

where [0, 1] is associated with its Borel-o-algebra B0, 1]. Let u € Prob(Z;) be a
probability measure. The composition of pu and M is a probability measure on Z,

and is defined by uM(B) := [, M(&, B)du(&:) (B € 2). &

The measure M describes the following process: If &, ~ p and &, ~ M (&4, ), then
&, ~ pubM. The state of & is hidden in the composition uM. We can also consider
the joint measure of &, &,, in which &, is not hidden. Here, we define the semidirect
product of p, M, which is a probability measure on (Z; X Zy, 21 ® Z,). We denote
it by p ® M. It is defined to be the measure satisfying

(n© M)(By x By) = | M(&, Ba)du(§1) (B € 21, Bs € Z5).

By

Finally, we note that we use the convention to denote Markov kernels by M (- |*) :=
M (x,-).
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Conditional probability. We move on to conditional probability. First, we in-
troduce the elementary definition of conditional probabilities. Let A, B € A be two
events, where P(B) > 0. Then, the conditional probability of A given B is defined
by

P(AN B)

P(AIB) = =5

(1.13)
The conditional probability describes the probability of A, if it is already known,
that the event B occurs. This elementary definition is rather restrictive since we
typically cannot expect that P(B) > 0. This is for instance the case, if B is an event
of the form

B={§=¢},

where £ : 2 — Z is a random variable with continuous distribution, and £ € Z is a
realisation of £&. The concept of conditional probability can be generalised to allow
conditioning with respect to such events. This is based on the following theorem.

Theorem 1.31 ([8, Theorem 5.3.1]). Let A € A, and £ : Q@ — Z be a random
variable on a generic measurable space (Z, Z). Then, there is a measurable function
f:Z —|0,1], such that

MAmmecD:/’ (fol)wPdw) (Ce Z).

{¢eC}

The function f is P(€ € -)-a.s. unique. &

The function f evaluated in & € Z in Theorem represents the conditional
probability of the event A, given that B = {& = £}. We define f(§) =: P(A|€ = &),
for £ € Z, P(&€ € -)-almost surely.

Remark 1.32. This definition of a conditional probability reminds us of the weak
formulation of a PDE, as in Examples and [1.4] However, the conditional proba-
bility f is not tested with test functions from a Hilbert space H', but with indicator
functions of type lgeccy : @ — [0,1], for any C' € Z. &

Note that this definition of a conditional probability is consistent with the definition
given in Equation (1.13)). Hence, when considering a random variable &, such that
P(€ = &) > 0 for some £ € Z, we have

P(AN (€= £))
MO="pe=9

We have given a formulation of the conditional probability of a certain event A € A,
given that & = £. This formulation is similar to a weak formulation. The conditional
probability is a function of £ € X. For fixed A this function is measurable. We now
rephrase a theorem giving conditions under which conditional probabilities indeed
represent a probability measure with respect to A for fixed £ € Z. This makes the
conditional probability a Markov kernel from (Z, Z) to (€2, A). This Markov kernel
is called reqular conditional probability.
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Theorem 1.33 ([I58, Theorem 3.1]). Let © be a Radon space, i.e. a separable,
complete metric space, and £ : Q — Z be a random variable. Then, there is a
Markov kernel M : Z x A — [0, 1], such that

P(ANn{EeC}) = M(€&(w), A)P(dw) (CeBZ,Ac A).
{¢eC}

The Markov kernel is P(€ € -)-a.s. unique. &

Throughout this work, we assume that the underlying probability space (2, A, P) is
Radon. In this case, the assumptions of Theorem [1.33] are always satisfied. Hence-
forth, a regular conditional probability always exists.

Remark 1.34. We briefly argue, why we can assume that €2 is Radon. Throughout
this work, we consider at most countably many random variables, taking values in
separable Banach spaces. Let I C N. We define the spaces by (Z;);er, and the
random variables §; € M((2; Z;), for i € I. Then, we can model 2 := []..; Z;, and
& : Q — Z; to be the canonical projection mapping Q@ > (&;)jer — & € Z;, for
1 € I. Now,  is the product of at most countably many separable Banach spaces.
Therefore, €2 is also a separable Banach space; hence a Radon space; e.g. take (2 as

the (7 direct sum of (Z;);er. &

Construction of conditional probabilities. The definitions of (regular) condi-
tional probabilities arise from Theorem[I.3T]and Theorem[1.33] These definitions are
not constructive. In this section, we discuss how to model conditional probabilities
in practical situations. Moreover, we show how to compute conditional probabilities
using probability density functions.

In the last section, we showed that regular conditional probabilities are Markov
kernels. On the other hand, when given a Markov kernel, we can always construct
a set of random variables, such that the Markov kernel represents a conditional
probability with respect to these random variables. This is independent of the
distribution of the random variables.

Theorem 1.35. Let M be a Markov kernel from (Z;, Z1) to (Z3, Z5). Then, random
variables &, : Q@ — Z; and &, : 2 — Z, exists, such that M(B|&) = P(&, € Bl§, =
51), for B € Zg,gl S Zlap(él € -)—a.s.. &

Proof. Without loss of generality, we assume that (2, 4) := (21 X Zs, 21 ® Z3).
Moreover, let 1/ € Prob(Z;) be some arbitrary probability measure. We define &,
to be the i-th canonical projection from 2 onto Z;, 1 = 1,2. Moreover, we define
P € Prob(2) to be the measure satisfying

]P)(Bl X BQ) = M(B2|§1),ul(d§1) (Bl S Zh B2 c ZQ)
B1

Note that P is uniquely defined by Carathéodory’s Extension Theorem [143 Theo-
rem 1.41]. Then, & ~ y' and &, ~ /M. Moreover, { By x Bo} = {{&, € B1}N{&, €
By}}. Therefore, the following equation is satisfied,

P({& € Bi}n{&, € Bo}) = M (Ba|&)p'(d&1)

By

~ [ MEBlG@PW)  (Biez, Bez)
{6:€B1}
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The last statement is a result about integration with respect to pushforward mea-
sures, see [143, Theorem 4.10]. According to Theorem [1.33]

M(B|&) =P(&,; € Bl§ = &) (B e 2y, & €Z,P € )as.),

concluding this proof. O]

Therefore, we can construct conditional probability measures by modelling Markov
kernels. This also implies the notational convention M (- |*) := M (x,-).

Having discussed how to model a conditional probability measure, we now discuss
how to derive it from a set of random variables. In particular, let &, : Q@ — Z3,
&, : Q) = Z5 be random variables. Starting from the joint probability distributions
of these random variables, we would like to compute P(&, € - €, = ). In we
have discussed the representation of probability measures with probability density
functions. We now use the probability density function of (&;,&,) to compute the
conditional density representing the conditional probability measure.

Theorem 1.36 (Conditional densities). Let Z;, Z5 be separable Banach spaces, and
£ Q= 71, &, Q — Zy be random variables on those. Moreover, let vy, v, be
o-finite measures on (71, 2), (Z3, 2Z3), respectively, with

_ dP((§,,6,) € )
and f:= dz/ll ®2y2

P((&1,62) € ) <1 @1y , U ® h-a.e..

Then, P(&, € -) < 1y and P(§, € ) < va, where

dP(§, € ) _ [, &) (dés) =1 g1 (dvi-ace.),
dl/1 Zo

dP(&, € ) _ f(&, )r(d&) =: g2 (dw-ace.).
dl/2 71

Moreover, we have

. _ f&,)
P& €& =&)<y and AP (£ Gdyfﬁl =&) _ ) &) if g1(&1) # 0,
2

0, otherwise
(1.14)

(& € Z1,P(&, € +)-as.;mm-ae.),

dP(§, € - 1€ = &) _ ];i'(fj)), if g2(&2) # 0,
dV1

P& €16, =¢&) <1y and
0, otherwise

(& € Zy,P(&, € +)-as.;vr-ae.).
O

Proof. The first part of the theorem follows from the fact that for ¢ = 1,2, and
J =3 —1 we have

P -PEcAgez) - [ [ feasmagmas.  (Aez)
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by Tonelli’s theorem. As the probability on the left-hand side exists, the integrals
on the right-hand side are well-defined.
To show that the conditional densities are correct, we need to test

f(gla g])
9i(&)
in Theorem [1.33], which is well-defined, since Z;, Zy are separable Banach spaces.

Let A € Z;, and C € Z;. Then,

Mi(-6) = / 1(g(6;) #0) vi(de,)

/ M(AJE, (w))P(dw) = / My(AE;) g5 (&)A€,
{¢;€Cy c

-/ 1<gj<£j>¢o>f;f&f§>%< g (e

_ /C /A 1(g;(&) # 0) £ (&, & )wi(de)w; (d€;)
=P{¢& € A}n{g; € CY).

The last equality is true, since P(g;(§; f (05(&,)=0} 9 (&)v;(dg;) = O

The formulae remind us of the formula for elementary conditional probabilities
(1.13). Indeed, is a special case of , where & = 14 and &, = 13
are binary random variables on (Z, Z)) = (Zs, Z5) := ({0,1},2{%1}). Here, the
measures v = vy = # are identical to the counting measure on ({0, 1},2{%1}).

1.2.5 Uncertainties in mathematical models

In the following, we assume to be in a decision making process. We consider a
mathematical model G : X — H and some parameter ¢ € X. This model shall be
used for the decision making process. Indeed, we assume that the outcome of the
decision is completely determined by G(6).

Let now the parameter § € X be uncertain. Therefore, the model G(0) is uncertain
as well and the decisions making process is under uncertainties. As mentioned in
91.2.1] we represent the uncertainty in # by a probability distribution, i.e. @ ~ pis a
random variable with a given distribution. In this case, G(0) is an H-valued random
variable. This H-valued random variable is now a model under uncertainties. Note
that if we know p(G € -) := P(G(0) € -), we also know the probability distribution
over the outcome of the decision problem. In this case, the associated decision
problem is a decision under risk. A decision under risk is favourable compared to a
decision under uncertainty.

Given a mathematical model G and an uncertain parameter @ ~ u, the task of
determining the push-forward measure u(G € -) is called forward uncertainty quan-
tification, forward propagation of uncertainty, or forward problem. With any of these
terms, we also refer to computing moments of this push-forward measure.

We conclude this section by discussing the diffusion equation from Example
with uncertain parameter. This problem has become a popular academic example
in forward uncertainty quantification. It has been considered by [45] [83] 96] 11T,
112, 150}, 170, 232, 238, 243, 244], to name a few.
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Example 1.37 (Pathwise stochastic diffusion equation). We consider the setting
from Examples 1.4 Hence, we have a model GG given by the weak formulation
on H := H':=H}(D):

E(u*,v;0) = /jja(@,x)(Vu*(x),Vv(:p»Ddx — /D f(x)v(z)dx =0 for all v € H'.

The permeability is given by a(f,-) := exp(f). We now replace # by a random
variable @ ~ N(0,C), which is a random field with continuous realisations on D.
Hence, for P-a.e. w € Q, the random field realisation (-, w) is continuous or can
be replaced by a continuous modification. Thus, the function Go @ : Q — H,
w — G(O(w)) = u* is well-defined with probability one. Hence, we can choose a
o-algebra on H, such that G o 6 is well-defined as a random variable. This is the
so-called pathwise formulation of the stochastic diffusion equation. &

1.3 Statistical inverse problems

In the previous section, we have discussed decisions under risk or uncertainty. In
practice, such decisions are influenced by mathematical models and probabilistic
assumptions, but also by data. In this section, we discuss how data can be used to
construct and enhance mathematical models.

The task of constructing or enhancing a mathematical model with data is called
inverse problem. We define inverse problems in §1.3.1l In practice, data is of-
ten noisy and sparse, leading to an ill-posedness of the associated inverse problem.
This indicates a statistical consideration of the inverse problem, which we pursue
in the following subsections. First, we introduce statistical models representing in-
verse problems in §1.3.2l We aim to solve the according inference problems with
the Bayesian approach. We introduce this approach and discuss its Lipschitz well-

posedness in

1.3.1 Inverse problems

Let G : X — H be a mathematical model. We assume that G' models the true
physical behaviour of the system of interest for a certain 7 € X. We call #' the
true (underlying) parameter.
We now discuss observations from the physical system. Let Y be a separable Banach
space, called data space. We obtain a data set y' € Y when seeing the observable
part of G(0") € H. The observable part of the system is defined via an observation
operator O : H — Y. Moreover, we define the parameter-to-observation map by
G := O o G and refer to it by forward response operator. Hence, the data is defined
by
y' = G(o).

We typically assume that the data is polluted by observational noise n' € Y. The
data is then defined by

y" =GO +nt. (1.15)

In Equation (|1.15)), we have implictly assumed that the observational noise is ad-
ditive. This is not a strict requirement. Without loss of generality, we make this
assumption throughout most of this thesis.
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An inverse problem (IP) consists in the identification of the true parameter 7, once
the data y' has been observed. In particular, we consider the following problem.

Find ' € X : ¢y := G(0") + 7. (1.16)

Here, we defined an inverse problem as a noisy equation that shall be solved with
respect to a parameter. This concept is similar to the basic definition of Stuart [236],
§2] and Sullivan [238], §6.1]. If no observational noise has been added to the data,
we call the inverse problem noise-free.

We now discuss the solvability of inverse problems; or more particularly, their well-
posedness. Hadamard [110] established this term considering the solvability of PDEs.
Today it also refers to the solvability of an inverse problem.

Definition 1.38. An inverse problem ((1.16|) is well-posed, if
(i) a solution T € X exists,
(i) the solution is unique,
(iii) the solution is stable, i.e. the map Y 3 y +— 0 € X is continuous.

Otherwise, the inverse problem is #ll-posed. &

In the noisy case, we can typically not hope for well-posedness. Indeed, since the
observational noise is unknown, we effectively need to identify both 6% and 7.

Proposition 1.39. Let X contain at least two elements and let n' € Y be unknown.
Then, the inverse problem ([1.16]) is ill-posed.

Proof. Let 61,0, € X be not identical. Let i = 1,2. We set n; := y' — G(6;). Then,
G(0;)+mn; = y'. Hence, both (6;,1;) and (s, 12) are a solution to the inverse problem
(1.16). Since 01 # 0o, the solution is not unique. O

Remark 1.40 (Least squares). To overcome the ill-posedness, inverse problems
are classically defined and/or solved via an optimisation problem minimising the
distance between data and model. If this distance is derived from an L2-norm this
is the so-called least squares approach. Such approaches are for instance discussed
in Chavent [36] for nonlinear models and in Groetsch [I07] for linear models. As
an original example for an inverse problem solved via the least squares approach,
we mention Gauss’ calculation of the orbit of the dwarf planet Ceres, see Teets and
Whitehead [245] for an overview. We revisit the least squares approach briefly in
§1.3.3] but do not consider it throughout the rest of this work. &

In Proposition we discussed a noisy inverse problem. A noise-free inverse
problem is for instance well-posed, if the operator G is homeomorphic. In this case,
the operator G is continuous, bijective, and its inverse G~! is also continuous. Since
the function G is bijective, we can find §" = G=1(y"). The continuity of G~! gives us
stability. This is a rather strong assumption. In fact, we typically face the problem
that the data space is of a much lower dimension than the parameter space. Hence,
if e.g. G is affine linear, there is no inverse of G, if the parameter space is higher
dimensional than the data space.

We have an infinite-dimensional parameter space and a finite-dimensional data space
in the elliptic inverse problem that we discuss in the following. Note however that
G is non-linear in this case.
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Example 1.41 (Elliptic inverse problem). We consider the setting from Exam-
ples 1.4, Hence, we have a model G given by the weak formulation on H :=
H':=H}(D):

E(u*,v;0) = La(@,x)(Vu*(x),Vv(x»Ddaz - /D f(x)v(z)dx =0 for all v € H'.

The model G maps X > # — u* which is the unique solution to the weak equation
above. The diffusion coefficient is given by a(6,-) := exp(f), where § € C°(D) is
a continuous function. We now observe u! = G(#") that is based on ' € X. It
is observed in Ny € N locations (o;)r>" € DNevs. Hence, Y := RNt If point-
evaluations are defined in H, we model the observation operator by O : H — Y,
where

O(w) = (u(or)) (1.17)
If point-evaluations are not defined in H, we observe the average pressure in a
small ball around the respective o0;, © = 1,..., No,s. In particular, let ¢ > 0 and

B(o0i,¢) € D be the open e-ball around o; contained in D, for i = 1,..., Nops. The
observation operator O : H — Y is given by

w(z)dz\ Nobs
O(u) := (LB(O’&)—()) = (% /B(Ohe) u(x)dx) , (1.18)

fB(oi,s) d i—1 =1

7

where the second “=" is implied by basic results about the volume of d-dimensional
balls, see e.g. [IT1]. Lebesgue’s differentiation theorem [219, Theorem 7.10] implies
that the observation operator approximates , for £ > 0 small. We
typically do not distinguish the two observation operators in —, but just
refer by point evaluations in any situation to the appropriate one. &

In more physical terms, Example models the inverse problem built on the
following experimental setup: Given is a groundwater reservoir D with a given log-
permeability 7 : D — R. To identify 6!, sensors are placed at positions (o;)/eb*.
The sensors are used to measure the pressure in the positions. The inverse problem
consists in the identification of the permeability given the measurements.

Elliptic inverse problems have been discussed as early as e.g. 1981 by Richter [210].
As for the forward problem, the elliptic inverse problem has become a popular
academic example. We refer to e.g. [20} 57, [7T], 87, 177, 226], 236].

1.3.2 Statistical models

In §1.3.1] we defined an inverse problem as an equation that shall be solved with
respect to the true parameter. This equation typically contains observational noise.
We showed in Proposition that this noise makes the inverse problem hard or
impossible to solve. We now discuss noisy inverse problems from a statistical point
of view. The noise is then modelled as a random variable, data is a realisation of
a random variable, and the identification of the true parameter can be stated as a
statistical inference problem. In the following, we consider statistical models and
likelihoods. Then, we show how an inverse problems can be fit into a statistical
model; and how the associated likelihoods are constructed.
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Let Y be the data space and let P C Prob(Y) be a set of probability measures on
Y. The tuple (Y, P) is called statistical model. The statistical model (Y, P) is called

parametric, if the statistical model can be represented by a parameterised measure
pr : X x BY — [0, 1], where

Po={ur(-10): 0 € X}.

In more rigorous terms, the statistical model is the image of some Markov kernel 1,
that is defined from the parameter space (X, BX) to the data space (Y,BY). X is
still a measurable subset of a separable Banach space.

The statistical inference problem corresponding to the statistical model (Y, P) is the
following. Let uf € P and y' be a realisation of the random variable y ~ uf. Here,
ul is called data generating measure, and y' is called data. Observing data y' can be
interpreted as ‘the event {y = y'} occurs’. The corresponding statistical inference
problem consists in identifying u! given the data y'. If the statistical model is
parametric, we typically represent the data-generating measure p! by the parameter
0T € X. Here, uf = pz(-|07). In this case, the statistical inference problem consists
in identifying 67 € X.

Rather than defining P or pup, it is simpler and sometimes advantageous to define a
statistical model via a (data) likelihood. This is possible, if a parametric statistical
model is — what we call — dominated. This holds, if for any 0 € X: pp(-10) < vy,
where vy is a o-finite measure on (Y, BY'). Hence, py is uniformly dominated by
vy. The likelihood L is defined by the probability density function

dpr(y|0)
Liylp) = Y
In we have proven that Markov kernels can always be interpreted as con-
ditional probability measures. Therefore, we can interpret puy(-|f) as conditional
probability measure of y given that the parameter equals 6 € X. In this set-up, the
likelihood L is a conditional density.
For more information on statistical models, we refer to McCullagh [I81], or alter-
natively to various textbooks on statistical inference, e.g. van der Vaart [250]. We
note that as opposed to our definition, statistical models with parameters in func-
tion spaces are often considered non-parametric, see e.g. [55,197]. There, parametric
statistical models have a finite or finite-dimensional parameter space.

(0 € X;y €Y, vy-ae.).

Statistical modelling of inverse problems. We consider the noisy inverse prob-
lem . Now, the observational noise ' is modelled as the realisation of a random
variable  : 2 — Y. The probability distribution of 1 is defined by ppneise. The data
y' is a realisation of y := G(0") + n, where 67 is the true parameter that shall be
identified. The inverse problem is represented by the parametric statistical model

(Y7 ,P) = <Y7 {,unoise(' - g(e)) 0 e X}) .
Moreover, the data generating measure is defined by uf := Unoise(- — G (QT)),

Gaussian noise. In practice, observational noise is often modelled by a Gaussian
random variable. In the next paragraphs, we show in which cases the according
parametric statistical model is dominated and define the likelihood function. We
consider three different cases: finite dimensional data space, infinite dimensional
data space, and infinite dimensional white noise.
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Finite dimensions, non-degenerate. Let the data space Y := R"ebs be finite-
dimensional. Moreover, let I' € R¥ebs*Nobs he positive definite and fineise = N(0,T).
The statistical model (Y, P) is then parametric given by p (- |0) := N(G(0),T"). This
Markov kernel is uniformly dominated by the Lebesgue measure Leb(Ngps) on R¥ebs:

NL(' ‘9) < Leb(Nobs) (9 c X)

Hence, (Y, P) is parametric and dominated and we can define the likelihood function

by
1
L/16) = n(4/16(0), ) = den(2a0) 2 exp (5T - G(0)} ).
where y' € Y, Leb(Nys)-a.e., and 6 € X.

Infinite dimensions. Let now Y be an infinite-dimensional separable Hilbert
space, and let I' € CO(Y) be a valid covariance operator on Y. We have again a
parametric statistical model (Y, P), where ur(-|0) := N(G(0),I'), § € X. In the
finite-dimensional case, this Markov kernel was uniformly dominated by a Lebesgue
measure; and (Y, P) therefore parametric and dominated. Since there is no Lebesgue
measure in infinite dimensions, we cannot show dominatedness in this way. Nonethe-
less, we can sometimes show that the Markov kernel is dominated by another mea-
sure. As suggested by Stuart [230, Remark 3.8], this may be some other Gaussian
measure.

Corollary 1.42. Assume there is some m € Y, such that G(#) — m is in the
Cameron—Martin space CM(N(m,I')), for § € X. Then, p.(-]0) < N(m,I") and

dur(-10 L
(nﬁi—ﬁz,'r)m — exp (<g<9> = m.y ey — 319(0) - m”%ww”) ’

for 0 € X, and y' € Y, N(m,I')-a.s.

Proof. This is a result of Theorem (Cameron—-Martin), where y = N(m,C) and
h:=G(0) —m. O

Hence, if the assumptions of Corollary are satisfied, we can construct a likeli-
hood as a conditional density with respect to the Gaussian measure N(m,I"). The

likelihood is then given by L(6|-) := 3‘;@;'3, for 6 € X.

Infinite-dimensional white noise. Another modelling choice for the noise on an
infinite dimensional data space is Gaussian white noise. This has been discussed e.g.
by Kahle et al. [I34], who also derived a likelihood for this modelling choice. We
review their result in the following. Additionally, we give the underlying statistical
model.

Let Y := L?(D) be again an infinite-dimensional separable Hilbert space. We re-
mind the reader that Gaussian white noise is a generalised random field on Y,
corresponding to the Gaussian measure with covariance operator Idy. Let W 2 Y
be a Banach space such that the tuple (Y, W) forms an abstract Wiener space, and
let = N(0,1Idy) be Gaussian white noise on (Y, W); see our thorough discussion in
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§1.2.3] Note that u is now a measure on the Banach space W. Hence, we replace the
data space Y by W and obtain a statistical model (W, P). This statistical model is
parametric and given by the Markov kernel uy(-10) := u(- — G(0)), 0 € X.

In this setting, we can show that the white noise model will always lead to a para-
metric and dominated statistical model: We proceed as in the infinite-dimensional
Gaussian case. The Hilbert space Y can be understood as the Cameron—Martin
space of p. Since img(G) C Y, we can apply a Cameron—Martin-type formula for
Gaussian white noise; see [I51], p. 8]. Then, we obtain a probability density function
with respect to pu:

dpr(-16)

iy ———(w) =exp ((g(9)7w>y - %HQ(@)HQy) (0 € X,weW, p-as.). (119)

Hence, (W, P) is parametric and dominated, and the likelihood L is given by

dps(-|)
dp
Remark 1.43. Let 0 € X. Note that (G(0),w)y is not well-defined, if w € W\Y
and G(f) € Y\W*. In this case, the density in ((1.19) appears to be not well-defined.
However, by the discussion in §1.2.3] the space W* is dense in Y. Hence, we define
in this case

<g(0)’ w>Y = nlggo<yn7 'LU>y,
where (y,)22, € (W*)N and lim,, .oy, = G(0). &

1.3.3 DBayesian statistics

In the last section, we have discussed dominated statistical models extensively. Now,
we introduce Bayesian inference as a method to solve the parameter identification
problem associated to a dominated statistical model (Y, P). In the following, we will
be interested in the Bayesian inference of a statistical model that has been derived
from a PDE-based inverse problem, e.g. the one given in Example [I.41]

For an introduction of Bayesian inference, we refer to [97, 179, 195 211]. As a his-
toric resource containing Bayes’ Theorem we cite Laplace [152], and for a historical
overview [54, 212]. Using Bayesian inference to solve inverse problems has been
suggested in [135, 242]

To identify the true parameter #" € X, the Bayesian approach proceeds as follows:
First, we model the parameter as a random variable @ : {2 — X, which is distributed
according to fiprior € Prob(X). fiprior is the so-called prior (measure). The random
varlable 0 reflects the knowledge and uncertainty in the parameter, as discussed in
| Rather than computing a point estimator § € X, we aim to use the data y' to
update our knowledge by the data. We mentioned already in §1.3.2| that observing
data shall be understood as an event {y = y'} € A. To express that this event
has occurred, we condition the parameter with respect to this event and obtain the
so-called posterior (measure):

Hhost = P(0 € -Jy = y1). (1.20)

The posterior measure reflects our knowledge and uncertainty concerning the pa-
rameter 6, given that we have observed the data y.
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In the following, we discuss Bayes’ Theorem, which gives us a way to obtain the
posterior measure. Indeed, Bayes’ Theorem gives a connection of the likelihood L,
PIior fiprior, and posterior ,uliost, in terms of their probability density functions. We
assume that fipe < Vx, where vy is some o-finite measure on (X, BX), and define

d,uprior
dv X ’

Tprior =

Note that vx = pprior and Tpior = 1 is a feasible choice. In Bayes’ Theorem, the
posterior measure is given in terms of a probability density function with respect
to the same measure vy. Below, we briefly discuss a measure-theoretic sublety we
encounter with conditional probabilities and their densities. Then, we move on to
our formulation of Bayes’ Theorem.

Remark 1.44. As stated in Theorem conditional probabilities like p;r)ost =
P( € - |y = y') are only defined for P(y € -)-a.s. every y' € Y. This implies that
if P(y € ) has a continuous distribution, point evaluations in Y of the function
P(@ € Aly = -) may not be well-defined, for A € BX. In this case, one would not
be able to compute the posterior measure for any single data set in Y. Also, the
statement in , should be understood only for P(y € -)-a.s. every 4T € Y. <

Theorem 1.45 (Bayes). Let y' € Y be P(y € -)-almost surely defined. Moreover,
let L(y'|-) be in L' (X, piprior) and strictly positive. Then,

2(4") = /X Ly 16)dtpuion ) € (0, 00).

Moreover, the posterior measure ,uLOSt < vy exists, it is unique, and it has the
vx-density

o L0 Tprion (0 ,
7ot (0) = ( |Z)(y€f)) () (0" € X,vx-a.e.). (1.21)

&

Proof. The following statements hold P(y € -)-a.s. for yf € Y.
We first show that Z(y') > 0. Since we assume that L(y|-) is piprior-a.s. strictly
positive, we can write:

Z(yT) — /XL(yT|9)derior(0) = /{L( oo, L(yT|0)duprior(9)- (1.22)

Now let n € N. As the integrand in ((1.22)) is positive, Chebyshev’s inequality, [8),
Theorem 2.4.9], implies that

" / L(y”Q)deriorw) > Nprior<L(yT|') > nil)- (1~23>
{L(yt])>0}

We aim to show that the probability on the right-hand side of this equation converges
to 1 as n — oo. Knowing this, we can conclude that preasymptotically the right-
hand side is strictly positive for all n > N, for some N € N.
Note that measures are continuous with respect to increasing sequences of sets. We
define the set

B, :={L(y"-) > n""}
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and observe that (B,,)22; is indeed an increasing sequence. Moreover, note that

o0

= U B = (1) > 0

and that fipior(Bs) = 1. Hence, we have

Tim frprior (L(y') > 1Y) = poror (L(y1]) > 0) = 1.
As mentioned earlier, we now deduce that for some ¢ € (0,1), there is an index
N € N such that

lttprior (L(y']-) > n71) =1 <e <1 (n> N)

and thus o (L(y'[-) > n71) > 0, for n > N. Plugged into Equation ([L.23), this
gives us Z(y") > 0. We have also Z(y') < oo, since L(y'|-) € L (X, fiprior), Thus,
the posterior density is well-defined.

We now apply [568, Theorem 3.4] (or alternatively Theorem and obtain

d T Lyt
Fpost @) = (y'10") (0 € X, tiprior-a.s.).

d,uprior B Z(yT)
This implies
(9/) - d”j)ost (9/) _ duj)ost 9/ d,uprior (9/) _ L(y”e,)ﬂ'prior(e,)
pOSt dI/X d,uprior dl/X Z(?ﬂ) ’
where ¢ € X, vx-a.e., by application of standard results concerning Radon—Nikodym
derivatives. This concludes the proof. O]

The quantity in the denominator of Bayes’ formula

Z(y") = /X Ly |6)djtpuin(6)

is the vy-density of P(y € -) and is Called (model) evidence; see Theorem m We
made various assumptions in Theorem [1.45] We comment on those in Our
version of Bayes’ theorem is mainly buﬂt on [58, Theorem 3.4].

In Remark [1.44] we have mentioned that the posterior measure is only P(y € -)-a.
uniquely defined. Hence, the map y' ,upost is not well-defined. We resolve th1s
issue by fixing the definition of the likelihood L(y'|¢") for every y! € Y and piprior-a.s.
every 0 € X. According to Theorem [1.45 we then obtain indeed a unique posterior
measure for any data set y' € Y. We define the Bayesian inverse problem (BIP)
with prior pipior and likelihood L by

L(yT|9)7rprior(9)
Z(y")
Throughout the thesis when refering to a BIP (|1.24]), we always assume to have a

likelihood L : X x Y — R and a prior measure jipior satisfying the assumptions in
Theorem [1.45] Hence, a BIP is always well-defined.
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Lipschitz well-posedness. In Proposition[I.39, we have shown that noisy inverse
problems are often ill-posed. Stuart showed in his work [236] that the Bayesian ap-
proach to a noisy inverse problem may be well-posed. He gave assumptions under
which Bayesian inverse problems satisfy, what we call Lipschitz well-posedness. Sim-
ilarly to the well-posedness definition of the classical problem , we consider an
existence, a uniqueness and a stability condition. Stability is quantified in terms of
the Hellinger distance. We now formalise the concept of Lipschitz well-posedness
for Bayesian inverse problems.

Definition 1.46 (Lipschitz well-posedness). The problem (1.24]) is Lipschitz well-
posed, if

(i) /L;f)ost € Prob(X, iprior) €xists (ezistence),
(ii) uj)ost is unique in Prob (X, fiprior) (uniqueness), and

(iii) ((Y, || - Hyj >yl ,uz,ost € (Prob(X, fiprior), dmer) is locally Lipschitz continuous
stability).
<&

We finish this section by reviewing the well-posedness result of Stuart [236]. First,
we give two sets of assumptions; on the prior and on the likelihood. Then, we
formulate the result in [236].

Assumption 1.47 (Prior). Let jipyio fulfill the following assumptions

(i) Hprior is light-tailed; i.e. some e > 0 exists, such that [, exp(e||0]|% ) tprior(df) <
0,

(ii) centred, open R-balls B(0,R) := {6 € X : ||#]|x < R} € X have positive
probability, i.e. pipmior({6 € X :||0]| < R}) > 0, for any radius R > 0.

&

This set of assumptions is not explicitly stated in [236], but required when the prior
is not Gaussian. This has been mentioned for the second of those assumptions in
[134, Theorem 3.1].

By assumption in ([1.24)), the likelihood L is strictly positive. Therefore, we some-
times define L in terms of its potential, which is the negative log-likelihood:

®(0;y) == —log L(yl) (yeY,0€X).

Note that if Y is finite dimensional and the noise is non-degenerate Gaussian, ¢
is an L? distance of model G and data y'. Therefore, we sometimes call ® (data)
misfit. The second set of assumptions is given in terms of the potential.

Assumption 1.48 (Potential, [236l Assumption 2.6]). Let the potential ® : X x
Y — R satisfy the following conditions:

(i) for every e,7 > 0 there is an M(e,r) € R such that

O(0;y) > M(e,r) —|l0]% (0 € X,y €Y, where [ly]ly <r);
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(ii) for every r > 0 there is a K(r) > 0 such that

O(0;y) < K(r) (0 € X,y €Y, where max{||0| x, [|ylly} <7);

(iii) for every r > 0 there is an L(r) > 0 such that

[©(01;y) — (025 9)] < L(r)[|01 — ba2]x (01,02 € X,y €Y, where
max{ |01 x, |02/ x, |yllv} < 7);

(iv) for every e,r > 0 there is a C(e,r) € R such that

D(0; 1) — P(0; y2)| <exp(e]l0]% + Cle, r)llyr — volly
(0 € X,y1,y2 € Y, where max{|ly1|y, ||y2]ly} < r)

Now, we state the theorem.

Theorem 1.49 (Lipschitz well-posedness; [236, Theorems 4.1, 4.2]). Let fipyior fulfill
Assumption and let & fulfill Assumption [1.48, Then, the Bayesian inverse

problem ((1.24)) with prior jipyiey and likelihood L = exp(—®) is Lipschitz well-posed.
<&

Since Stuart [236] has introduced the concept of Lipschitz well-posedness, his concept
has been discussed and generalised by various researchers. Dashti and Stuart [58]
simplified Assumption [1.48, Various PDE-based BIPs have been investigated with
respect to Lipschitz well-posedness, e.g. the elliptic partial differential equation [57,
130], level-set inversion [129], Helmholtz source identification with Dirac sources [82],
a Cahn-Hilliard model for tumour growth [I34]. Moreover, BIPs with more general
prior models have been discussed, e.g. stable priors in quasi-Banach spaces [239]
240], convex and heavy-tailed priors [126, 127]. We mention Ernst et al. [84], who
have considered uniform and Holder continuity of posterior measures with respect
to data, and given sufficient assumptions in this setting. We refer to these as Holder
and uniform well-posedness, respectively. Finally, we refer to [233] for a discussion
of Lipschitz well-posedness, where stability is measured in different metrics, such as
the Wasserstein distance.

Bayesian point estimators. The solution of the Bayesian inverse problem is a
probability measure. Sometimes, it is necessary to obtain a point estimate for 6
rather than a probability distribution over possible values. A point estimator is a
measurable function 6 : Y — X mapping the observed data into the parameter
space. The point estimator shall often represent the best fit for the data. Here, best
needs to be specified.

Mazimum likelihood estimators form a popular class of point estimators in frequen-
tist statistics. They are defined as the global maximum of the log-likelihood func-
tion, after inserting the observed data. Hence, it is the parameter that explains the
data output optimally. In the inverse problem framework, we can often not expect
that the log-likelihood is concave. In this case, there may be no global maximum.
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Furthermore, if there is a global maximum, finding it computationally is a hard
problem.

Bayesian point estimators can sometimes overcome these problems. In the following,
we will discuss two popular examples of this class: the posterior mean, also known
as the Bayes estimator; and the Mazimum-A-Posteriori (MAP) estimator.

For the following discussion of Bayesian point estimators, we refer to e.g. van der
Vaart [250, §10] for the Bayes estimator, and to Dashti et al. [56] for the MAP.

Bayes estimator.

Definition 1.50. The Bayes estimator or posterior mean is the expected value of
the posterior measure

) i= [ Onfoat),
X
if well-defined. &
If the posterior measure has a finite second moment, one can show that the Bayes
estimator is the L2-optimal estimator of 6%, see [I53, Theorem 2.11]. If in addition
the associated BIP is Lipschitz well-posed, we can show a Lipschitz well-posedness

result for the Bayes estimator.

Theorem 1.51. Consider a Lipschitz well-posed BIP and let the posterior measure
ulost have a finite second moment for all 47 € Y. Then,

(i) the Bayes estimator exists,

(ii) the Bayes estimator is unique,
(iii) the map y' — 6(y') is locally Lipschitz continuous in X.
Hence, the problem of computing the posterior mean is well-posed.

Proof. The Bayes estimator exists and is unique, since the posterior measure has a
finite first moment. Let yf, 4% € Y. Since ,ul)ost, uiost have finite second moment,

C =2 [ 1013 18h0s (A0) + 2 [ 1161|3650 (d6) < 00. Therefore, by Lemma [L.1§

H/ Ougost(dQ) —/ euiost(dQ)H < CdHEl(MI)osthuliaost)
X X X

Moreover, since the is Lipschitz well-posed, we can find a K > 0, such that

dHel(:U’;;r)ostv :uf)ost) < KHyT - yi”y

]

Hence, the Bayes estimator inherits the well-posedness property from the posterior
measure. This is not necessarily true for the MAP estimator, which we discuss next.
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Maximum-A-Posteriori estimator. The Maximum-A-Posteriori estimator is
typically defined as the maximum of the posterior density with respect to the
Lebesgue measure. This definition does not cover posterior measures that do not
have a Lebesgue density - i.e. if X is infinite dimensional. Instead, the MAP is
characterised as a (weak) mode of the posterior measure.

Peﬁnition 1.52. A mode 0* € X of u € Prob(X) satisfies limpyg W <:>

This means that translating the ball B(6*, R) by 6 — 6* does not increase its prob-
ability, even if the ball is very small. For details on modes of probability measures,
we refer to [162].

We discuss the MAP here, since it often corresponds to a regqularised least squares ap-
proach. The regularised least squares approach is a popular deterministic approach
to an inverse problem; see also Remark [1.40] Given an inverse problem (L.16)), it
proceeds by solving the following optimisation problem

~

: .
6(y") € argmingey o || 2(G(0) — y")II5 + AReg(6)-

The function Reg : X — R is called regulariser and A\ > 0 determines the strength of
the regularisation. A popular class of regularisers is the Tikhonov class. It consists
of regularisers of type Reg := 3| D(-—m)||%, for some m € X and D : X — X linear
and bounded. Using a Tikhonov regulariser, one can show a certain correspondence
between MAP estimation and the regularised least squares approach. We explain
this correspondence now intuitively and refer to [56, 58] for a detailed and rigorous
discussion.

Consider a BIP with a finite-dimensional data space Y and parameter space X. We
assume to have a Gaussian prior fipier = N(m,C) and a likelihood that is induced
by an additive Gaussian noise model

1
Ly'|) = exp (_5\\1“1/2(9 - y*)l!?z) :

where I' is symmetric positive definite. Under further assumptions, one can show
that

N S 1,
0(y") € argminge 5 [T74(G(0) = ¥ + S1C72(0 = m)lI%

is a mode of uj)ost. Hence, a Tikhonov-regularised inverse problem gives the MAP
estimator of the associated BIP.

Note that the MAP estimator is conceptually similar to the maximum likelihood
estimator. We mentioned before that the maximum likelihood estimator tends to be
computationally inaccessible since the log-likelihood is not concave. The prior in the
Bayesian setting acts as a regularisation and may give rise to a convex minimisation
problem, which is computationally much easier to solve.

1.4 Hierarchical uncertainty quantification

In §1.1.2) we have considered data-driven mathematical models. More specifically,
we have discussed the use of deep models. Those are built as a composition of simple
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models, such as linear models and artifical neural networks. Deep models allow to
represent more complex behaviour than simple models.

Similarly, we want to construct more complex probability measures to represent
uncertain parameters. We do so by constructing a hierarchy of Markov kernels and
a probability measure, representing the layers. The hierarchical measure is then
given as the composition along this hierarchy. For the sake of simplicity, we assume
throughout this thesis that we have at most two layers, i.e. a depth of one. We
discuss the case of more layers in Remark [1.54]

Definition 1.53 (Hierarchical measure). Let R be a measurable subset of a separa-
ble Banach space. We call R hyperparameter space and equip it with the Borel
o-algebra BR. Moreover, let K : R x BX — [0,1] be a Markov kernel, and
p' € Prob(R). We define the hierarchical measure 1" as the composition of p'
and K, i.e.

=K o= /RK(~ k) (dk).

Sometimes, we consider the joint measure of both layers p € Prob(X x R), given by

WA X Ay) = (p© K)(Ax Ay) = A K(Alr) (dr) (A€ BX, A, € BR).

&

Remark 1.54 (Deep hierarchical measures). Let now Ngep, € N be the depth of the
hierarchical measure. We define Ry, ..., Ry, to be measurable subsets of separable
Banach spaces. Let pMNaer) ¢ Prob(Ry,,,) be the probability measure representing

the deepest layer in the hierarchy. Moreover, let K*) be a Markov kernel from
(Ry+1, BRi11) to (R, BRy), k =0, ..., Ngep. Here, we set (Ro, BRy) := (X, BX).
The associated hierarchical measure p” on (X, BX) is

ILL// = uNdepK(Ndepfl) e K(l)K(O)

;:/ K(O)(. |/<1)K(1)(d/<1|/<2) ..
R

Ndep Rl

... K(Ndep_]-) (dK:Ndep_]-’%Ndep)//LNdep (dK;Ndep>.

This joint measure p € Prob(X x Ry x -+ x Ry, ) of all layers is again defined by
the semidirect product
(A X Ay X - X Ang,,)
— ILLNdep ® K (Naep—1) @0 KO ® K0

= / e K(O)(A|/<;1)K(1)(dn1|/<;2) e
ANdep
“ .. K(Ndcp_l) (d,iNdcp_l |KNdcp)MNdcp (d/{Nde),

where A € BX, A, € BRy,...,An,, € BRy,, As mentioned above, we only
consider hierarchical measures with depths of up to Nge, = 1. Generalisations for
Ngep > 2 can be obtained recursively. From the setting in this remark, we obtain
the two layer setting by defining R, =: R, k' =: k, K1) =: K, and p' =: 1. <&
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Hierarchical measures are supposed to capture more complexity than a classical
probability measure. In §I.4.1] we motivate the use of hierarchical measures in
a particular Bayesian inverse problem. We proceed in by considering the
forward propagation of uncertainties and Bayesian inversion with hierarchical mea-
sures. In the forward case, we show existence of the desired push-forward measure.
In the inverse case, we show that the posterior measure is well-defined.

In Bayesian inverse problems, it is possible to have not only a hierarchical prior, but
also a hierarchical likelihood. Hierarchical likelihoods appear, for instance, when
not only the parameter 6 should be estimated, but also the correct mathematical
model should be found in a finite set of potential models. This process is termed
Bayesian model selection and will be briefly addressed in

1.4.1 Motivation

Gaussian random fields are completely characterised by the mean function and co-
variance operator, and are thus simple models of spatially varying functions. They
are also flexible; depending on the regularity of the covariance operator it is possi-
ble to generate realisations with different degrees of smoothness. However, in some
practical situations the full information on the covariance operator might not be
available, e.g. the correlation length, smoothness, and point-wise variance of the
random field are not known. Of course, these model parameters can be fixed a
priori. However, the posterior measure of a Bayesian inverse problem is often very
sensitive to prior information. We illustrate this in the following simple example.

Example 1.55. We consider a Gaussian random field with exponential covariance
operator on the unit square D = [0, 1]? and correlation length A\ = 0.5; see Ex-
ample [1.26 The goal is to estimate the statistics of this field given 9 noisy point
observations within the framework of Bayesian inversion. The noise is centered
Gaussian with a noise level about 1%. In Figure we plot a realisation of the true
field together with the posterior mean and variance associated with four prior fields
with a different (fixed) correlation length each. The posterior mean and variance
have been computed analytically. Note that this is possible since A is fixed, the prior
and noise are Gaussian, and the forward response operator is linear. &

We make two observations in Figure [1.3] First, we see that it is not possible to
identify the true random field perfectly in this experiment. This is due to the
sparsity of the data; it is not a defect of the Bayesian inversion. The posterior
measure is well-defined, and has been computed analytically without a sample error
in this experiment.

The second observation is at the same time the motivation for hierarchical Bayesian
inversion. We clearly see in Figure that the posterior measure depends crucially
on the underlying prior measure and associated correlation length. If the assumed
correlation length is too small compared to the truth, then the posterior mean
estimate is only accurate close to the observation locations. If, on the other hand,
the assumed correlation length is too large, we obtain an overconfident posterior
mean estimate. Inaccurate, fixed prior random field parameters can substantially
deteriorate the estimation result in Bayesian inverse problems. We treat this problem
by modelling unknown hyperparameters as random variables.
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Figure 1.3. Estimation of a Gaussian random field. The top-left figure shows
a realisation of the true random field. The task is to estimate this field given
9 noisy point evaluations (white dots). The four top-right (bottom-right) figures
show the posterior mean (pointwise posterior variance) for mean-zero Gaussian prior
random fields with exponential covariance operator, standard deviation ¢ = 1, and
correlation lengths A = 1,0.5,0.1,0.05.

In this case, the prior is formed by a hierarchical measure, in which the inner layer
represents the unknown hyperparameters, i.e. £ = (A, o), and the outer layer repre-
sent a Gaussian random field subject to the unknown hyperparameters.

1.4.2 Forward and inverse problem

In this section, we describe a general setting for forward uncertainty propagation and
an associated Bayesian inverse problem, with hierarchical measures. Importantly,
we investigate the well-definedness of these problems if the uncertain elements are
modelled by hierarchical measures. This is a necessary extension of the by now
well-established solution theory for e.g. Gaussian random inputs.

Hierarchical measures in forward and inverse UQ have been discussed by Wikle [258].
We also refer to Robert [211], §10] for general hierarchical Bayesian analyses. Hier-
archical Bayesian inverse problems have been considered in [28, [78] [76] [77, 214] from
a mathematical /statistical perspective and in [133], 234} 241] from a computational
perspective. Hierarchical models are also considered in the frequentist approach to
inference, see e.g. [116], [186] for random field models and spatial statistics.

Let G : X — H be a mathematical model. Moreover, let the hyperparameter space
R, Markov kernel K : RxBX — [0, 1] and measure ' € Prob(R) form a hierarchical
measure p” := 'K € Prob(X). Moreover, we define (k,0) ~ p:= ' © K.

Forward uncertainty propagation. Let p” represent the uncertainty in the
parameter of the model G. To quantify this uncertainty, we aim to determine the
push-forward measure p”(G € -). The well-definedness of pushforward measures has
been discussed extensively for a list of underlying measures. In the following, we
discuss the existence of ¢”"(G € -). Hence, we add hierarchical measures to this list.
Moreover, we also study the existence of moments of (G € ). To this end we
make the following assumptions.
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Assumption 1.56. (i) K(G € -|k) := P(G(0) € -|k = k) is well-defined for
w-a.e. k € R.

(ii) For some k € N it holds
my(K) == /G(G)’V((dﬁ]m) < 00

for p/-a.e. K € R and [ my (k)i (dk) < oo.
<&

Let, for instance, K(-|x) be a Gaussian random field with continuous realisations
for k € R, (/-a.s. Moreover, let G : X — H be the elliptic PDE with unknown log-
diffusion coefficient from Example [1.37, Then, Assumption hold, see [35, 83].
We now show that in such a case, also the hierarchical forward problem is well-posed.

Theorem 1.57. Let Assumption hold. Then, the measure p’(G € -) is well-
defined. Moreover, [ G(6)"u"(df) < oo, where k € N is as in Assumption M(u)
<

Proof. By Assumption|1.56(i), K(G € -|x) is well-defined and a probability measure
for p/-a.e. k € R. Hence,

(G e = / K(G € - [m)(ds)

is well-defined and a probability measure. The finiteness of the moments can be
shown analogously. O]

Bayesian inverse problem. Now we consider a Bayesian inverse problem, in
which the prior is the hierarchical measure p”. Here, the measure u’ of the hy-
perparameter is called hyperprior. We now actually distinguish two different cases:
fprior := (" = ' K and fiprior 1= p:= ' © K. In the first case, we are only interested
in the posterior distribution of the unknown parameter 6:

pat =P(0 € - |y = y') € Prob(X).

In the second case, we aim to compute the joint posterior of @ and the hyperparam-
eters K:

:ulost = ]P)((07K’) S |y = yT) € Pl"Ob(X X R)

Determining either of these posterior measures will be called hierarchical Bayesian
inverse problem.
We ignore the first case fiprior := " since we can obtain Mglst by marginialising ,uLOSt.
Then, we get

:ugcr)st = :u;r)ost(' X R)

Hence, we consider the second case, where fipior := 1 1= p/ © K, and discuss Bayes’
formulae for N;T)ost- Then, we give properties under which the hierarchical Bayesian
inverse problem is well-defined.
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To determine ,uLOS“ we can apply Bayes’ formula from Theorem , where we set
VUXxR ‘= Mprior aNd Tpior = 1. We obtain

L(y'e)

d T
M(Q’ K) = W’
Yy

1.25
d,U/prior ( )

where
2(y") = / /R L{6ly" K (a6l ().

The right-hand side of Equation ([1.25]) is constant in . Indeed, it seems as if
observing the data 3’ has no influence on the distribution of K ~ /. Actually,
0 ~ ;" and k are completely coupled through fipier. By considering the Radon-
Nikodym derivative with respect to fipier, we do not see the dependence.
We now assume that the coupling can be seen through a conditional density. We
assume that vy is a o-finite measure on X dominating K (-|x) for p/-a.e. k € R.
We define the conditional density

dK (- |x)

5 (0]k) = W(@) ((6,k) € X X Ryvx ® p/-a.e.).

Moreover, let vg be a o-finite measure on R dominating p', with

d !/
(k) = di‘R(m) (k € R, vp-a.c.).
Then, Bayes formula reads:
g5y _ LGOI Clr) ()
d(vx @ vg) " Z(y")

Now, one can easily see the coupling through 7. Note that from either of these
Bayes’ formulae, we can obtain a formula for the posterior ,ugj)st. Since ,ugj)st =

ulost(- X R), we just need to integrate over R respect to k. In particular, we have

st [ L{yT|0)7" (0]r)
—(9)_/3 Z(y")

dVX
We will now show that the posterior measures ufmt and uglst based on the hierar-
chical priors p and p” are well-defined.

Theorem 1.58. Let K be a Markov kernel from (R, BR) to (X,BX). Moreover,
let ,ug;jst be the posterior measure of the BIP with prior K (- |k), where k € R is fixed
and likelihood L : X x Y — R. In particular, let

(' (dk).

W5 (B) = 2yl k) / Lol K(d0]x), B € BX,
B

Z(y' k) ::/XL(0|yT)K(d0|/<).

Moreover, let i/ € Prob(R), and p” := 1/ K be the hierarchical measure and p be the
joint measure of y/ and K. Finally, we assume (k — Z(y',x)) € LY(R, BR, i//; R).
Then, the BIPs
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(i) with prior ¢ and likelihood L, and
(ii) with prior x and likelihood L
are well-defined.

Proof. We only need to discuss (ii). (i) follows from (ii), since we can derive ugist =

11} oss (- X R). By Theorem [1.45] the posterior measure 1if o = | f pnk (d0) 4! (dw) is

well-defined and unique if the normalising constant Z(y') is posmve and finite. By
assumption it holds Z(y,-) € (0, 0). Hence Z(yh) = f Z(yT k)i (dw) > 0. Fur-
thermore, also by assumption, we have Z(y') = [, Z p(dr) = |1 Z(y, )] <
00. O]

1.4.3 Bayesian model selection

In Bayesian model selection, not only a model parameter is identified, but also the
correct model. Note that Bayesian model selection is just another example of a
hierarchical Bayesian inverse problem. In this case, the hierarchy does not only
influence the prior, but also parameter space and likelihood. We refer to Robert
[211], §7] and Wassermann [255] for an introduction to Bayesian model selection.
Let N5 € N be the number of considered models. The collection of models is given
by {Gi,...,Gn,.}. Each of the models may have an individual noise model, an
individual set of parameters, and an individual prior model. Hence, we define for
each model index ¢ = 1, ..., Ny a parameter space X, a likelihood L; : X; XY — R,
and a prior ué?ior € Prob(Xj).

Let I = {1,..., Nps} be the index set of the models. In Bayesian model selection,
we define a prior anor € Prob(I). Let ¢ ~ py,. We want to use data y' to update
our belief concerning the choice of the model

t,ms

”post = ]P)(,L € |y1, = yT)>

where y, ~ L;(-]0) is the random variable representing the noisy model output,
given that the model index is ¢ € I and the model parameter is § € X;. We obtain
a single parameter space representing all possible model configurations by

X o= J{i} x X

iel
Moreover, we construct a single parametric model L : X X Y — R, where
L(y|(i,0)) == Li(y|0)  ((i,0) e X,y €Y).

To apply Bayes’ theorem to compute uj)ost, we need to find the likelihood of y given
i, i.e. the likelihood L'(y|i). Let ¢ € I. We need to represent the joint distribution

of (y;,8), where 6 ~ pand y, ~ L;(-|0). We obtain

prior

P((y:.0) € i = i) = / /( LI 40 (),
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where vy is the o-finite measure with respect to which the likelihood is defined as
a conditional density. We integrate with respect to € and obtain as a likelihood of
y € Y given the model i € I:

Ll = [ LOIGO)) >0 (e D).
Xi
The positivity of L'(y|i) is implied by the positivity of L(y|(i,6)). Note that the so-
called marginal likelihood L'(y|i) is identical to the model evidence when computing
the posterior for model i. We obtain the posterior using Bayes’ formula

L'(yli) prior ({7})
Dver LWl prio: ({773
(1.26)) is again a result of Theorem The theorem holds since L' > 0 and since
the sum in the denominator of (1.26]) is finite.

Finally, we mention that it is also possible to compute the joint posterior of 8 and
1, i.e.

boar ({}) = (1.26)

:u;faost = ]P)((,L? 9) S ’yz = yT)

The posterior M;T)ost is then a measure on the joint space X.

In inverse problems, various model selection problems have been discussed. A
Bayesian inverse problem with model selection has been approached in the arti-
cles of Lima and co-authors [165, [166]. Here, the correct model is identified to
represent the growth of a brain tumour in mice. [I87, 248] consider model selection
in hydrogeological inverse problems. Here, the number of terms in the truncated
KL expansion was supposed to be identified. Finally, we mention Mark et al. [176].
They consider Bayesian model selection in various complex dynamical systems: the
policy assessment in coal-mining safety, the invasiveness of tumour cells, and stock
market fluctuations.
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Chapter 2

Well-posedness of Bayesian inverse problems

[...] ces problémes |[...] bien posé,
je veux dire comme possible et
déterminé.

Jacques Hadamard [110, p. 49]

In this chapter, we try to identify general settings in which we can show the well-
posedness of BIPs, using no or very limited assumptions on the underlying mathe-
matical model or the forward response operator. This is in contrast to the rather
restrictive Assumptions [1.47) and [1.48] which are required to show Lipschitz well-
posedness in Theorem [1.49]

In particular, we aim to find assumptions on the likelihood L(y'|#") (or rather the
statistical model) that imply well-posedness and that are independent of the under-
lying forward response operator

GeM(X;Y):={f:X — Y measurable}.

FEzxistence and uniqueness are results of Theorem [1.45 which has already rather
mild assumptions. The crux is the local Lipschitz continuity condition, reflecting
stability. In §2.1 we suggest to substitute Lipschitz continuity by continuity and
argue that this generalisation is sensible. The main result of this chapter is a less
restrictive set of assumptions, implying existence, uniqueness, and continuity of the
posterior measure. The new set of assumptions allows us to show in that BIPs
with finite-dimensional, non-degenerate Gaussian noise are always well-posed; inde-
pendent of the choice of G € M(X;Y). In we extend the theory in a different
direction: throughout this work, we have considered stability of the posterior in the
Hellinger distance. Now, we extend the theory to weak convergence, total variation,
Wasserstein distance, and Kullback—Leibler divergence. Finally, we illustrate the
theoretical results in §2.4]

2.1 Redefining well-posedness

2.1.1 Relaxing Lipschitz

In the following, we give examples for well-defined BIPs in which local Lipschitz con-
tinuity does not hold in the posterior measure or is hard to verify by using results
in the literature. In all of these cases, we show that the posterior measures are con-
tinuous in the data. Given that Hadamard’s classical formulation of well-posedness
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does not require local Lipschitz continuity and that local Lipschitz continuity may
be too strong for general statements, we use these examples to advocate a relaxation
of the local Lipschitz continuity condition.

[ll-posedness in the Lipschitz sense can, for instance, occur when data has been
transformed by a non-Lipschitz continuous function. As an example, we consider a
Bayesian inverse problem that is linear and Gaussian, however, the data is trans-
formed by the cubic root function.

Example 2.1 (Cubic inverse problem). Let X :=Y := R. We consider the Bayesian
approach to the inverse problem

y'=O+n)?,
where 6 is the unknown parameter and 7 is observational noise; both are indepen-

dent. The probability measure of parameter and noise are given by fiprior ‘= fnoise 1=
N(0,1?). The likelihood of the BIP is

L(y'10)

1 1 5 2)
exp | —=|l0 — v/yf )
o= e (=5l - Vi
Since prior and noise are Gaussian, and the forward model is linear (the identity
operator), we can compute the posterior measure analytically, see [6, §3]. We obtain

(1o = N (\3/ yt/2, (1/\/5)2) Moreover, one can show that

1 3 3 2
dHel(MLost? :uf)ost) = \/1 — €Xp (_g (\/E - \/E> )7 (21)

where ufmt is the posterior measure based on a second data set y* € Y. One can
show analytically that this Hellinger distance in is not locally Lipschitz as
lyT —y# — 0. It is however continuous. We plot the Hellinger distance in Figure
on the left-hand side, where we set y* := 0 and vary only y' € (—1,1). We observe
indeed that the Hellinger distance is continuous, but not Lipschitz continuous. In
the plot on the right-hand side, we show the Hellinger distance, when considering
W as the data set, rather than y'. In this case, the Hellinger distance is locally
Lipschitz in the data. &

The Bayesian inverse problem in Example [2.1] is ill-posed in the sense of Defini-
tion (1.46| since the posterior is only continuous, but not Lipschitz in the data. How-
ever, we can heal this ill-posedness by transforming y' — W . Hence, the Lipschitz
well-posedness property reduces to a continuous data transformation problem.
Other examples may be Lipschitz well-posed, but this may be difficult to verify
in practice or for general forward response operators. We recall Assumption [1.48]
According to Theorem [I.49] those assumptions are sufficient, but not necessary to
prove well-posedness. In Assumption M(iv), we consider local Lipschitz continuity
in the log-likelihood log L with respect to the data. Here, the Lipschitz constant is
supposed to be a positive function that is monotonically non-decreasing in [|6]| x.
This assumption is not satisfied in the following example.
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Figure 2.1. Hellinger distances between posterior measures in Example The
posterior measures are based on two data sets: y' that varies in (—1,1) and y* := 0.
In the left figure, we show the relationship between data and Hellinger distance. In
the right figure, we replace the data by y' := W, yt = {3/371 In both plots, we
observe a continuous relationship between Hellinger distance and data, which is also
Lipschitz continuous in the right figure, but not in the left figure.

Example 2.2. Let X :=(0,1) and Y := R. We consider the Bayesian approach to
the inverse problem
y'=0""+1n

where 6 is the unknown parameter and 7 is observational noise. Neglecting linear
prefactors, this inverse problem can be thought of as the recovery of a wavelength 6
from a noisy frequecy measurement y'.

The prior measure of # is given by fipriey = Unif(0,1). The noise is distributed
according to fineise = N(0,1%). Moreover, note that parameter and noise are inde-
pendent random variables. The likelihood of the BIP is

1 1
exp [ —=||67 =4 2) .
e (=5l =]
For fixed 6 € X, the logarithm of the likelihood in this setting is Lipschitz continuous

in the data. However, as 6 | 0, the Lipschitz constant explodes. Hence, the likelihood
does not fulfil Assumption [1.48]iv). &

L(y'10) =

Hence, we cannot use the theory discussed in to show Lipschitz well-posedness
of the Bayesian inverse problem in Example 2.2 We expect a similar problem for
other forward response operators that are not locally bounded. In Corollary we
revisit Example and show that the posterior measure is continuous with respect
to the data.

Up to now we presented rather academic examples in this section. A practically
more relevant problem is the Bayesian elliptic inverse problem. That is the Bayesian
approach to the inverse problem that we have discussed in Example[1.41] When dis-
cussing this example, we allow only continuous diffusion coefficients. In practical
applications, this may be too restrictive. Iglesias et al. [I30] consider more realistic
geometric priors measures. In [I30, Theorem 3.5], the authors show local Lipschitz
continuity for some of those prior measures, but only Holder continuity with coef-
ficient v = 0.5 for others. This is another example where Lipschitz well-posedness
in the sense of Definition has not been shown, but continuity in the posterior
measure is satisfied.

In the next section, we weaken the Lipschitz well-posedness by replacing Lipschitz
continuity with continuity as a stability condition. Looking back at the discussion
here, we consider this weakening tolerable for practical problems.
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Chapter 2. Well-posedness of Bayesian inverse problems.

2.1.2 Definition and main result

Definition 2.3 (Well-posedness). The problem (1.24) is (Hellinger) well-posed, if

(i) ulost € Prob(X, pprior) exists (ezistence),
(ii) uLOSt is unique in Prob(X, fiprior) (uniqueness), and

(iii) (V.| - |lv) 2 y' — /wast € (Prob(X, tiprior), dmer) is a continuous function.
(stability)

&

Lipschitz continuity implies continuity. Hence, Lipschitz well-posedness in Defini-
tion [1.46| is a stronger property than well-posedness in Definition 2.3, In Exam-
ple 2.1, we have investigated a BIP that is not Lipschitz well-posed, but well-posed.
Hence, we also know that Lipschitz well-posedness is a strictly stronger statement.
We now give assumptions, under which a Bayesian inverse problem can be shown
to be well-posed.

Assumption 2.4. Consider a BIP. Let the following assumptions hold for prie-a.e.

¢’ € X and every yf € Y
A1) L(-|¢) is a strictly positive probability density function,

(y”) € Ll(Xy ;uprior)a

g € LY(X, fiprior) exists such that L(y*|-) < g for all y* € Y.

(A1) L
(A2) L
(A3)
(Ad) L(-|0") is continuous.

O

(A1) means that any data set y' € Y has a positive likelihood under any parame-
ter ' € X. We conservatively assume that no combination of parameter and data
values is impossible, but some may be unlikely. This can usually be satisfied by con-
tinuously transforming the forward response operator and/or by choosing a noise
distribution that is concentrated on all of Y. Note that the assumption that L(y|¢’)
being a probability density function can be relaxed to ¢ - L(y'|¢’) is a probability
density function, where ¢ > 0 does depend neither on y', nor ¢'. (A2)-(A3) imply
that the likelihood is integrable with respect to the prior and that it is bounded from
above uniformly in the data by an integrable function. These assumptions are, for
instance, satisfied when the likelihood is bounded from above by a constant. Noise
models with bounded probability density function on Y should generally imply a
bounded likelihood. Note that (A3) implies (A2). We have stated those assump-
tions separately, since (A1) and (A2) alone imply Theorem [1.45] (A4) requires the
continuity of the likelihood with respect to the data. Continuity in the data is for
instance, given when considering noise models with continuous probability density
functions and a continuous connection of noise and model. We give examples in
showing that we can not neglect the continuity in the data. We continue with the
main result of this chapter.

Theorem 2.5. Let (A1)-(A4) hold for a BIP. Then the BIP is well-posed.
o6
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Proof. Note that existence and uniqueness of the measure ,ui,ost are results of The-
orem that holds since (A1)-(A2) are satisfied. We proceed as follows: we show
that the likelihood is continuous as a function from Y to L'(X, Hprior) and that
at the same time y' — Z(y") is continuous. This implies that y' — L(yf|)'/? €
L2(X, Lprior) 18 continuous as well. Then, we collect all of this information and show
the continuity in the Hellinger distance, which is the desired result.

1. We now show continuity in y' € ¥ when integrating L(y'|-) with respect to fiprior-
This is a standard application of Lebesgue’s Dominated Convergence Theorem (DCT;
[219, p. 26]): Let (y,)>2, € YN be a sequence converging to y', as n — oo. (A4)
implies that lim,, . L(y,|-) = L(y|-) pointwise in X. We obtain by the DCT

lim L<yn|')dluprior = / h_{n L(ynl')dﬂprior = / L(y”')dﬂprior?
n oo .X

n—oo X

o0

since the sequence (L(y,|-))22; is bounded from above by g € L'(X, piprior) and
bounded from below by 0, see (A1) and (A3). Hence, the functions

Y oyf e / Ly )dptpror = Z(y") € R, Y 2 y" = L(y']-) € LH(X, ftprion)
X

are continuous. Moreover, note that Theorem implies that Z(y') is finite and
strictly larger than 0.

2. The continuity in L'(X, gtpri0r) implies that for every y' € Y, we have for £; > 0
some d1(g1) > 0, such that

L) = L@ e i) S 81 (0 €Y 2 YT = 9lly < G1(e0)-

Using this, we can show that y' ~ L(yf|-)/2 is continuous in L2(X, piprier). Let
y' € Y and &1, 6,(¢1), y* be chosen as above. We have

1LY — L) 2 o
2
=/ﬂume—L@%Wﬂm@m
X
S/QMwHW—L@%Wﬂxumm&g+uﬁmmm%m

— [ LG = L) dr < =
X

Now, we take the square-root on each side of this inequality. For every e, > 0,
choose dq(g2) := 51(6;/2) > 0. Then,

L)Y = L) P e S 2 (08 €Y 2 Iy’ = glly < 02(e2))

gives us the desired continuity result.

3. Using the continuity result in 1. and the composition of continuous functions,
we also know that yf — Z(y')~"1/2 € (0, 00) is continuous. Hence, we have for every
y' € Y and every e3 > 0 a d3(g3) > 0 with

1Z(y") V2= Z(yH) T < ey (yPeY |yt —yly < ds(es)).
57
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Given this and all the previous results, we now employ a technique that is typically
used to prove the continuity of the product of two continuous functions. Let yf € Y,
€9,63 > 0, 6, = min{dy(e), 03(e3)} and y' € Y ||yt — y¥||y < d4. We arrive at

date (18host> Hpost) = 1251 2 L(y"10)* = Z(y") ™2 L(yH10) " l2(x ppmen)
<1Z(y") 2 < IL(H0) Y = L(y'10) 2 L2 (X pupmion)
+IL(Y10) 2 |2 (x ageror) | 2 (9F) T2 = Z (1) 712
< Z(y") Ve + Z(y') Pes
< ((Z(y") 2 + e3)ea + Z(y') e,

where we have used in the last step that |Z(y!)="/2 — Z(y")7/?| < 3. We now
choose some g4 > 0 and set 0, = min{d2(g}), I3(ch) }, where

A N
e 2 7 TR 27(yhy

Then, we obtain that dHel(MLosh ,uf,ost) < g4 for any y* € Y, such that ||y —y*||y < ds.
This implies the continuity of the posterior measure in Hellinger distance. O

2.2 The additive Gaussian noise case

In practice, the measurement data space is typically finite dimensional and the
measurement error is often modelled by additive non-degenerate Gaussian noise. In
this case, one can verify assumptions (Al)-(A4) independently of prior pipie and
forward response operator G. Hence, this very popular setting leads to a well-posed
Bayesian inverse problem in the sense of Definition [2.3]

Corollary 2.6. Let Y := R* and I' € R¥** be symmetric positive definite. Let
G € M(X;Y) be a measurable function. A Bayesian inverse problem with additive
non-degenerate Gaussian noise 17 ~ N(0,T") is given by the following likelihood:

L0/10) = det(2al) 2 exp (= 3I02(6(0) ~ )7 )

The BIP corresponding to any prior probability measure jiymo on (X, BX) and
likelihood L is well-posed.

Proof. We verify (A1)-(A4). (Al): By definition, the likelihood is a strictly pos-
itive probability density function for any ¢ € X. (A2)-(A3): The likelihood is
bounded above uniformly by g = det(27I')~"/2 which is integrable with respect to
any probability measure on (X, BX). (A4): The likelihood is continuous in y' for
any ¢ € X. O

Remark 2.7. Let X contain at least two elements. The non-Bayesian inverse
problem (|1.16)) corresponding to the additive Gaussian noise setting in Corollary
is ill-posed. We have shown this in Proposition [1.39, Hence, in case of Gaussian
noise, the Bayesian approach using any prior measure always gives a well-posed
Bayesian inverse problem, in contrast to the always ill-posed inverse problem .

&
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Chapter 2. Well-posedness of Bayesian inverse problems.

The fact that we can show well-posedness under any prior measure and any forward
response operator has relatively strong implications for practical problems. We
now comment on the deterministic discretisation of posterior measures, hierarchical
models, Bayesian model selection, and the Bayesian elliptic inverse problem.

Remark 2.8 (Deterministic discretisation). Bayesian inverse problems can be dis-
cretised with deterministic quadrature rules; such are quasi-Monte Carlo [68], sparse
grids [229], or Gaussian quadrature. Those are then used to approximate the model
evidence and to integrate with respect to the posterior. Deterministic quadrature
rules often behave like discrete approximations of the prior measure. If this discrete
approximation is a probability measure as well, we can apply Corollary and show
that the BIP based on the discretised prior is well-posed. &

Remark 2.9 (Hierarchical prior). We have discussed hierarchical Bayesian inverse
problems in §1.4.2] Let L be a likelihood as in Corollary on the parameter space
X. Moreover, we define a hyperprior K, which is a Markov kernel from (R, BR) to
(X,BX) and a prior on R, that is u/. We can now consider either of two different
BIP: in the first case, we set fiprior 1= p' K, in the second case, we set fipior 1= ' © K.
In the first case, the uncertain parameter is only @ : 2 — X. In the second case,
we consider also k : 0 — R to be uncertain, where K ~ p'. Recall that in the first
case, the posterior measure is given by P(0 € - |y = y') € Prob(X), whereas in the
second case, it is given by P((0,k) € -y = y') € Prob(X x R). In either case,
we obtain a well-posed BIP. The first case follows straight from Corollary The
second case follows from the same corollary. Here, we need to extend the parameter
space to X x R. The likelihood is still strictly positive and bounded on this extended
parameter space, and constant on with respect to R. Moreover, the likelihood is still
continuous in the data. Hence, Assumption is satisfied and the BIP is indeed
well-posed. &

Remark 2.10 (Model selection). As in Remark 2.9 we can use Corollary to
show well-posedness of the Bayesian model selection problem that we have discussed
in Here, we only need to assume that the likelihood for any model G € M’
is of the form given in Corollary [2.6] &

Remark 2.11 (Bayesian elliptic inverse problem). We consider the Bayesian ap-
proach to the elliptic inverse problem discussed in Example [I.41] In this inverse
problem, we aim to identify the diffusion coefficient of an elliptic PDE, given finitely
many observations from the PDE solution. Recall that the Lipschitz and Hoélder well-
posedness of the Bayesian elliptic inverse problem has been discussed by [57, [130].
This already implies the well-posedness in our setting. However, we can also apply
Corollary as we do in the following.

We assume that X is a separable Hilbert space and P : X — C°(D) is a map from
X to the space of continuous functions. We define the model G : X — H mapping
0 € X to u satistying

/D (exp o P(0)) () (V' (), Vo)) pder — /D F@)o(z)dz = 0 for all v € H'.

where H is an appropriate solution space and H’ is an appropriate test space. More-
over, we define the observation operator O as in Example [1.41l We assume that

29



Chapter 2. Well-posedness of Bayesian inverse problems.

G := O oG is a well-defined, measurable map from X to Y. Moreover, we assume
that the noise is non-degenerate, finite-dimensional Gaussian. Then, according to
Corollary the Bayesian elliptic inverse problem is well-posed.

Finally, we comment on the choice of X and P. We will later discuss the dis-
cretisation of a random field using a truncated KL expansion; see §3.2.1 In this
case, we have, e.g. X := RVt and P(f) := m(x) + 3.~ 4;(x)6;, where m and
(i = 1,..., Nyo) are continuous functions. Alternatively, we may choose X := R”
and choose a prior measure whose samples have realisations with continuous modi-
fications. Note that X is not a separable Hilbert space, it may be not even Radon.
Hence on this space, we cannot hope for the existence of regular conditional mea-
sures; see Theorem [1.33] However, for a fixed data set, the Bayesian inverse problem

given in ([1.24) may be still solvable. O

In this subsection, we have discussed finite-dimensional data and additive non-de-
generate Gaussian noise. These results cannot trivially be extended to the infinite-
dimensional data case or to the degenerate noise case. The infinite-dimensional data
requires a likelihood definition via the Cameron-Martin Theorem, which requires
conditions on the forward response operator and noise covariance. For a discussion
of infinite-dimensional data spaces, we refer to or also to [236, Remark 3.8]
for compact covariance operators and [134] §2.1] specifically for Gaussian white noise
generalised random fields. Degenerate Gaussian likelihoods do not satisfy (A1) and
can lead to degenerate posterior measures. We discuss concepts of well-posedness
that can handle degenerate posteriors in §2.3

2.3 Perturbed posteriors in other metrics

In Remark 2.7, we consider a setting, where the BIP is always well-posed, but the
inverse problem (1.16]) is always ill-posed. Incidentally, we can give an example
where a converse statement holds:

Example 2.12 (Noise-free inverse problem). Consider a parameter space X and
data space Y. Let G : X — Y be a homeomorphism, i.e. it is bijective, continuous,
and its inverse G7! : Y — X is continuous as well. Let y' := G(0") be a data
set observed noise-free from the forward response operator G based on the true
parameter T € X. Then, the inverse problem is well-posed. &

We now apply a Bayesian approach to the inverse problem in Example [2.12, Let
Lprior D€ a prior measure that is concentrated on all of X. The likelihood is

1, if G(0) =y,

0, otherwise.

L(y'10) ==

The posterior measure in this setting is the Dirac measure concentrated in the true
value:

Hhost = P(6 € -1G(0) = y') = 6(- = G () = &(- — 0").
Hence, after seeing the data, we have identified the true parameter §7 and we are

certain about it. Note that this posterior measure is not computed using Theo-
rem (1.45) which would not hold in this setting. Instead, the Bayesian inversion is
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defined via the disintegration theorem, a topic thoroughly discussed by Cockayne
et al. [47]. Also ,ulost & Prob(X, fiprior). Hence, we cannot compute the Hellinger
distance between posteriors ,LLLOSt, ,uf)ost, where /wast is based on y* # y'. Instead, we
consider the closely related total variation distance and obtain

dtV (IU/I)OS‘W :uiost) = Bseul?X u;r)ost<B) - :uli)ost(B) =1

Hence uf)ost + ,uz,ost in total variation as y* — y'. Thus, indeed the inverse problem
is well-posed, while the associated Bayesian inverse problem is ill-posed in the total
variation distance.

However, we have luli)ost 5 ulost as y* — y. Hence we observe continuity in the
weak topology on the space Prob(X).

Summarising this discussion, we have seen:

e In settings, where Theorem does not hold, there may still be a solution
to the Bayesian inverse problem. However, the Hellinger distance with respect
to the prior may then be not defined. Can we anyway discuss well-posedness?

e Different metrics on Prob(X) give different well-posedness results. Are there
connections between those?

Motivated by these questions, we now investigate in more detail the choice of met-
rics on probability spaces when discussing the well-posedness of Bayesian inverse
problems.

Definition 2.13 (d-Well-posedness). Let P C Prob(X) be a space of probability
measures and d : P? — [0,00) be a metric on P. A Bayesian inverse problem is
d-well-posed if

(1) ugost € P exists, (existence)
(ii) ujmst is unique in P, (uniqueness)

(i) (V.| llyv) 2 y" — ,uLOSt € (P,d) is a continuous function. (stability)
&

We consider the following concepts of well-posedness: weak well-posedness (if d =
dprox is the Prokhorov metric), total variation well-posedness (if d = dy is the
total variation distance), and Wasserstein(p) well-posedness (if d = dwas(p) is the
Wasserstein(p) metric).

Two different notions of well-posedness can be compared in terms of the topologies
in which the continuity is discussed. A coarser topology contains more continuous
functions. Hence, the well-posedness results obtained on some topology can easily
be extended to a coarser topology. The converse is in general not true. We only
consider metric spaces of measures in this section. This simplifies the topological
discussion to the following:

Lemma 2.14. Let A, B be two sets and let (A,d4), (B,d;) and (B, ds) be metric
spaces. Let f : (A,da) — (B,ds) be a continuous function. Moreover, let ¢ :
[0,00) — [0, 00) be continuous in 0, with ¢(0) = 0. Finally, let

di(b,Y) < Hda(b, V) (b1 € B).
Then, f: (A,da) — (B,d;) is continuous as well.
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Proof. For every a € A and € > 0, there is a §(¢) > 0, with
b(f(@), f@) <= (d € A:da(a,d) < 6(e)).

Hence, for the same a,ad’, ¢ and ¢, we have

dy(f(a), f(d')) < t(da(f(a), f(a'))) < t(e)

Since t is continuous in 0, we find for every ¢ > 0 some ¢'(¢’) > 0, such that
[t(x)] < ¢ for x € [0,00) : |z| < §'(¢'). Now, we choose for every a € A and £” > 0:
§"(e") :=6(d'(€")). Then,

di(f(a), f(d')) < t(da(f(a), f(d))) <H(0'(e")) <" (a' € A:da(a,d’) <&"(")),

which results in continuity in (B, d,). O

In the setting of Lemma [2.14] we call d; coarser than dy and ds finer than di,
respectively. We can now compare the well-posedness in different metrics. The
proposition below follows immediately from Lemma [2.14]

Proposition 2.15. Let dy, ds be metrics on P C Prob(X) and let d; be coarser than
ds. Then, a Bayesian inverse problem that is do-wellposed, is also di-wellposed. <

We now assume that P C Prob(X) is a space of probability measures such that the
previously defined metrics are all well-defined on P. Applying Proposition to
the previously mentioned concepts of well-posedness, we obtain the relations shown
in Figure . Here, we refer again to [99] for the appropriate bounds between the
metrics, which imply the following statements:

e Total variation well-posedness and (Hellinger) well-posedness are equivalent.
Hence in settings, where the Hellinger distance is not defined, the total varia-
tion distance shall be the metric of choice.

e Weak well-posedness is indeed the weakest of the considered concepts.

e According Proposition [1.17, we know that the convergence in the dyyasp)
is stronger than weak convergence on P,(X). Hence, Wasserstein(p) well-
posedness implies weak well-posedness.

Total variation well-posed < (Hellinger) well-posed

\
Wasserstein(p) well-posed = Weakly well-posed

Figure 2.2. Relations between concepts of well-posedness

Which concept of well-posedness should we consider in practice? Weak well-posed-
ness implies the continuity of posterior expectations of bounded, continuous quanti-
ties of interest. If this is the task of interest, weak well-posedness should be sufficient.
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Hellinger and tv distance imply the convergence of any (existing) posterior expec-
tation. Hence, if discontinuous functions are integrated, or probabilities computed,
those distances should be chosen. Wasserstein(p) distances have gained popularity
in the convergence and stability theory of Markov chain Monte Carlo (MCMC) al-
gorithms; see e.g. [98], 220]. Hence, Wasserstein(p) well-posedness may be the right
tool when discussing the well-posedness of solving a Bayesian inverse problem via
MCMC.

2.3.1 Kullback-Leibler divergence

The Kullback—Leibler divergence (KLD), relative entropy, or directed divergence is
a popular ‘metric’ in information theory and machine learning. It is used to de-
scribe the information gain when going from p € Prob(X) to another measure
p' € Prob(X, ). If well-defined, it is given by

dp
Dk (/|| pe ::/ log (—) dy.
il = | 1os (%

Note that this is not actually a metric, since it is neither symmetric, nor does it fulfil
the triangle inequality. However, we can describe continuity in the KLD, which also
induces a topology, see [I4]. This allows us to consider the Kullback—Leibler well-
posedness of Bayesian inverse problems. This concept bridges information theory
and Bayesian inverse problems; and allows statements about the loss of information
in the posterior measure when the data is perturbed. In particular, we define this
loss of information by the information gain when going from the posterior uéost

with perturbed data y* to the posterior ,uf)ost with unperturbed data y'. Hence,

the loss of information is equal to DKL(MI—)ostH uiost). A Bayesian inverse problem is
Kullback—Leibler well-posed if the posterior measure exists, if it is unique, and if
the information loss is continuous with respect to the data.

Definition 2.16 (Kullback-Leibler well-posed). A BIP is Kullback-Leibler well-
posed if

(i) u}tost € Prob(X, pprior) exists (ezistence),
(ii) ujjost is unique in Prob (X, fiprior) (uniqueness), and

(iii) for all y' € Y and € > 0, there is §(g) > 0, such that
Din(ihostllipos) € (U €Y 1[Iyt = ytlly <6(e))  (stability).

&

In the setting of Theorem [1.45] Assumption is not sufficient to show Kullback—
Leibler well-posedness; indeed, the Kullback—Leibler divergence may be not even
well-defined. We require the following additional assumption on the log-likelihood.

Assumption 2.17. Consider a BIP. Let the following assumption hold for pi,yie-a.e.
0’ € X and every y' € Y.
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(A5) there is a 6 > 0 and a function h(-,y") € L}(X, MLOSO such that
[log L(y*[)| < (-, y") (v e Y lly" —yilly <9).

&

Assumption (A5) seems much stronger than (A1)-(A4). Indeed, we now require some
integrability condition on the forward response operator. That condition may be
hard to verify when the posterior measure has heavy tails, the model is unbounded,
or when the model cannot be analysed.

Theorem 2.18. Let (A1)-(A5) hold for a BIP. Then, BIP is Kullback-Leibler well-
posed.

Proof. First note that (A1l)-(A4) imply the existence and the uniqueness of the
posterior measure, as well as the continuity of y' — Z(y'). Let y' € Y and y* € Y,
with ||y’ — ¢*|ly < 4. 6 > 0 is chosen as in (A5). We have

P dfthost \ | 1
DKL(Mpost H:upost) = lOg r d,upost
X

Npost
_ / log L(y']) — log L(y'] )yt + (log Z(5) — log Z(y1))
X

where the right-hand side of this equation is well-defined since Z(y'), Z(y*) € (0, 0)
by Theorem[2.5]and since (A5) holds. Moreover, the continuity in the model evidence
implies that (log Z(y*) —log Z(y")) — 0, as y* — y'. Also, note that log L(- |¢") is
continuous by (A4), which implies

lim 1ogL(yT|~)—10gL(yi\')duLost=/ Jim log L(y']) = log L(y'[)dttpen, = 0,
X

yi=yt S x

where we applied the DCT with 2h(- |y") as a dominating function. O

2.4 Numerical illustrations

We illustrate some of the results shown in the previous sections with numerical ex-
amples. Firstly, we consider some simple one-dimensional examples complementing
the examples we have considered throughout the chapter. Those include Bayesian
inverse problems with likelihoods that are discontinuous in parameter or data. Sec-
ondly, we consider an inverse problem that is high-dimensional in terms of data
and parameters. The high-dimensional inverse problem is concerned with the recon-
struction of an image by Gaussian process regression.

2.4.1 Discontinuities in the likelihood

In some previous works, the Lipschitz continuity of the log-likelihood in the data and
(at least) continuity in the parameter has been assumed; see [236]. In this thesis,
we prove results that do not require continuity in the parameter, however, we still
require continuity in the data. We now illustrate these results with simple numerical
experiments. Indeed, we show that Assumption (A4) is crucial by comparing BIP
posteriors with likelihoods that are continuous and discontinuous in the data.
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Example 2.19 (Continuity of y — L(y|-)). We define data and parameter space by
Y :=Rand X := [0, 1]. We consider the BIPs with prior measure fipyior := Unif(0, 1)
on X and one of the following likelihoods

(a) L(y'0) = (2m)~"? exp(—5]ly" - OII}),
(b) L(y'0) = (2m)~"/ exp(—3]lLy"] — OII3)-

Moreover, we assume that the parameter 6 ~ fipio := Unif(0, 1) follows a uniform
prior distribution. &

We solve the inverse problems in Example [2.19] with numerical quadrature. In
particular, we compute the model evidences for y' € {—5,—4.999, —4.998,...5
and the Hellinger distances between ulost and ,uli)ost, where y* = 1. In Figure
we plot the likelihood functions at 6 = 0, the logarithms of the posterior densities,
and the Hellinger distances. The top row in the figure refers to (a), the bottom row
refers to (b). In the continuous setting (a), we see continuity with respect to y' in
all images. Indeed, the BIP in (a) fulfills (A1)-(A4). The inverse problem in (b)
satisfies (A1)-(A3), but not (A4). Also, we see discontinuities with respect to the
data in all figures referring to (b). Especially, the figure of the Hellinger distances
is discontinuous which leads to the conclusion that this inverse problem is not well-
posed. Hence, (A4) is indeed crucial to obtain well-posedness of a Bayesian inverse
problem.

Remark 2.20. A likelihood as in Example [2.19(b) can arise, when considering
cumulative or categorial data, rather than real-valued continuous data as in (a).
Categorial data arises in classification problems. <&

While continuity in the data is important, we now illustrate that continuity in
the forward response operator is not necessary to obtain continuity in the data to

posterior map. We give an example that can be understood as learning the bias in
an artificial neural network. Recall Example [I.7] for the definition of ANNs.

Example 2.21 (Continuity in § — L(-|0)). We define data and parameter space
by Y :=Rand X :=[0,1]. Let w € [1, 00] be a known weight parameter. We define
the forward response operator with weight w by

1

w: X —Y, 0 )
Gu: X = 1T exp(—w(0.5 — 0))

If w < oo, the forward response operator resembles a single layer artificial neural
network with sigmoid activation function evaluated at 0.5. This ANN has known
weight w and uncertain bias 6, see Example Moreover, note that in the limiting
setting w = oo, the sigmoid function is there replaced by the Heaviside function
with step at @, evaluated also at x = 0.5. That is,

1, if0.5>0,

Goo: X =Y, 0 — (2.2)

0, otherwise.

We consider the BIP of estimating the true bias 67, given an observation y :=
Gu(0") + n'. Here, we consider the noise n' to be a realisation of n ~ N(0,12).
Moreover, we assume that the parameter 6 ~ fiprior = Unif(0, 1) follows a uniform
prior distribution. &
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Figure 2.3. Posterior measures with likelihoods that are continuous and discontin-
uous in the data. Top row: Example a), bottom row: Example b). Left:
Likelihood at # = 0. Centre: Log-posterior densities corresponding to the Bayesian
inference problems. The colormaps show a descent in the posterior density, when
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Figure 2.4. Posterior measures with likelihoods that are continuous and discontin-
uous in the parameter. From left to right: Example given w € {1, 10,100, co}.
Top row: Log-posterior densities corresponding to the Bayesian inference problems.
The colormaps show a descent in posterior density, when going from yellow (high)
to dark blue (low). Bottom row: Hellinger distance between the posterior :u’li)ost with

y* =1 and posterior ,ug)ost with 3 varying between —13 and 13.
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We solve the BIPs in Example [2.21] with weights w € {1,10,100, 00} again with
numerical quadrature for y' € {—13,-12.99, -12.98,...,13}. We compute the
Hellinger distance between ugost and uf)ost, where y* = 0. We plot the logarithms
of the posterior densities obtained in Example [2.21] in Figure [2.4] along with the
Hellinger distances. We observe that all of the posteriors are continuous with re-
spect to the data. This includes the posterior that is based on the discontinuous
forward response operator G.,. It is discontinuous in the parameter, but continuous
in the data. The BIP considered here satisfy again Assumptions (A1)-(A4). Hence,
also these numerical experiments verify the statement of Theorem

Remark 2.22. In deep learning, sigmoid functions G, (w < o0o) are considered as
smooth approximations to the Heaviside function G.,, which shall be used as an
activation function. The smooth sigmoid functions allow to train the deep neural
network with a gradient based optimisation algorithm. When training the neural
network with a Bayesian approach, rather than an optimisation approach, we see
that we can use Heaviside functions in place of smooth approximations and obtain
a well-posed Bayesian inverse problem.

It is unclear, whether Heaviside activation functions are actually benificial. The
Universal Approximation Theorem (see e.g. [53, Theorem 1]) discusses the ap-
proximability of continuous functions with neural networks and requires continuous
activation functions. &

2.4.2 A high-dimensional inverse problem

We now consider an inverse problem that is high-dimensional in parameter and
data space. In particular, we observe single, noisy pixels of a grayscale photograph.
The inverse problem consists in the reconstruction of the image, for which we use
Gaussian process regression. We then perturb the data by adding white noise to the
image and investigate changes in the posterior, as we rescale the noise.

Original Observations Prior mean Posterior mean

Figure 2.5. Reconstruction of an image with Gaussian process regression. From
left to right: original image, observational data (white parts are unobserved), prior
mean, and posterior mean.

Example 2.23. Let the parameter space X := R09X19 contain grayscale images

of 100 x 100 pixels. The data space Y := R**25 consists of 25 x 25 pixels that are
observed in a single picture. Returning those 25 x 25 pixels from a 100 x 100 pixels
image is modelled by the function G : X — Y. Let 0" € X be a full image. Given

yt =G0 +n,
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we shall recover the full image 0f. Here, 7 ~ N(0, 521) is normally distributed noise,
with a noise level of about 5/ max(y) = 2%. We assume a Gaussian prior on X:

128 --- 128
Hprior = N . ) C )
128 --- 128

x4 . . . . . .
where C € R'9™" is a covariance tensor assigning the following covariances:

7 — s
Cov (6, j,0.) = 10000 - exp <_ \/<Z )2+ (7 ) ) .

15

Note that this is a discretised version of an exponential covariance kernel for a
Gaussian process in 2D space; see Example [1.26] O

The Bayesian inverse problem in Example [2.23| can be solved analytically since G is
linear, and prior and noise are Gaussian. We obtain the posterior measure by Gaus-
sian process regression. In Figure [2.5] we present the original image, observations,
prior mean image, and posterior mean image. The reconstruction is rather coarse,
which is not surprising given that we observe only 6.25E2 of 1E4 pixels of the image.
We now investigate how the posterior measure changes under marginal changes in
the data. To do so, we perturb the image additively with scaled white noise. In
particular, we add N(0, 0?)-distributed, independent random variables to each pixel.
In Figure 2.6, we show images and associated observations, where the standard
deviations (StD) of the noise is o € {1,10,100}. Using Gaussian process regression,

Original StD additive 1 StD additive 10

StD a

£

Observations Observations Observations Observations

Figure 2.6. Original and perturbed images and data. Top row: Original image
and images perturbed with scaled white noise, given o € {1,10,100}. Bottom row:
Observations obtained from the perturbed image.

we compute the posteriors after perturbing the images with scaled white noise o €
{1IE—17,1E —16,...,1E2}. Between the original posterior with no perturbation in
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the data and all others, we compute the Hellinger distance and the relative Frobenius
distance between the (matrix-valued) posterior means, defined as

| [ 001850 0) = [ 0150 (0)|
| i banbon(®)]|

where u;fmst (respectively ufmt) is the posterior referring to the perturbed data g7
(respectively non-perturbed data y*). Since the perturbation is random, we perform

Relative Frobenius distance :=

Y

10° ‘ ‘ ‘ 100
[0
(8]
= [
g g
E 10°71 3 1097
7} 5]
o ()]
=3 £
210} 810710
g E
ﬁ: g 15
10718 Fo0°
10718 10710 10°° 10° 10° 10710 10 10°
StD additive noise StD additive noise

Figure 2.7. Mean relative Frobenius distances and mean squared Hellinger dis-
tances computed between the posteriors ,uj)ost and posteriors ,uiost in which the
underlying image was perturbed with white noise that has been scaled by StD
o = 0,1E-17,1E-16,...,1E2. ‘Mean’ refers to the fact that the perturbations are
random and the distances have been computed for 20 random perturbations and
then averaged. When ¢ — 0, the distances go to 0. For o < 1078 (respectively
o < 1071%) the distances are equal to zero up to machine precision and are not
shown in the plot on the right-hand side (respectively left-hand side).

this process 20 times and compute the mean of these distances. The standard
deviation in these metrics is negligibly small. We plot the results in Figure [2.7]
where we see indeed continuity w.r.t. the standard deviation of the noise.

In light of Corollary [2.6] this is what we expect: First, note that the Bayesian
inverse problem falls in the category additive finite-dimensional Gaussian noise and
is therefore well-posed. Hence, also in this high-dimensional setting, we are able to
verify our analytical results concerning well-posedness.
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Chapter 3

Discretisation

Problema 36. Formulae integralis
cujuscunque y = f Xdax valorem
vero proxime indagare.

Leonhard Euler [85, p. 178]

Up to now, we have discussed mathematical models, the representation of uncertain-
ties, statistical estimation, well-posedness of inverse problems, and Bayesian inverse
problems. All of these discussions have taken place on a metalevel. Aside from toy
examples in §2.4] we did not actually approach a Bayesian inverse problem compu-
tationally. In this chapter, we change this and consider computational strategies for
BIPs.

A computational solution of a Bayesian inverse problem contains various subtasks:
First, we need to approximate the mathematical model G respectively £. Second, if
the uncertain parameter is represented by a random field, this random field has to
be discretised as well. Finally, the posterior measure, which is the solution of the
Bayesian inverse problem, has to be discretised. In §§3.1{3.3], we discuss these three
topics respectively. Then, in §3.4] we review techniques used in forward and inverse
uncertainty quantification to increase the efficiency of the strategies discussed in the
sections before.

3.1 Discretisation of mathematical models

In this section, we focus on the discretisation of linear elliptic PDEs. Doing so, we
give brief explanations of the Galerkin approach. For a more thorough discussion, we
refer to classical textbooks, such as [30,206]. Concerning the discretisation of models
that are not based on linear elliptic PDEs, we refer to, e.g. Stoer and Bulirsch [235]
(ODEs), Bartels [12] (nonlinear PDEs), and Lord et al. [I70] (stochastic differential
equations and stochastic partial differential equations).
Recall our setting of non-parametric models, given by an implicit formula; see (|1.1]).
Hence, a model is a function u* € H, where H is a Hilbert space of functions mapping
from D to R. The model is defined implicitly as the unique solution u* € H, such
that

E(u*,v) =0 for all v e H',

where H' is another Hilbert space, and € : H x H' — R is a continuous and bounded
operator. In the following, we assume that £ is affine linear in the first component
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and linear in the second component. Finding u* € H analytically is often impossible.
Moreover, since, H, H' are often infinite-dimensional, numerical algorithms cannot
easily approach this problem either.

For these reasons we consider a Galerkin approach to approximate the solution u*.
Let H, and H, be two finite dimensional Hilbert spaces, with

H, C H, H,C H'.

The subscript ¢ denotes the accuracy of H, and H), respectively. We typically see
the spaces Hy and Hj as part of an increasing sequence of spaces. Hence, increasing
¢ leads to an at least as accurate representation of functions in H respectively H’
by functions in H, respectively Hj.

The Galerkin approximation u; € H, satisfies

E(uy,ve) = 0 for all v, € Hy.

Hence, we replace the model and the test space by finite-dimensional spaces. More-
over, we assume that such a u; exists and that it is unique. The problem of finding
uj simplifies to a finite-dimensional linear system of equations: Let N, := dim(H,)
and N; := dim(H}). Moreover, let B, := (p1,...,¢n,) be a basis of H, and
B = (¢, ... »‘PM) be a basis of H, respectively. We can now represent elements
ug € Hy by

N

Uyp = g CiPi,

=1

where ¢ € R is a vector. In the same fashion, we can represent v, € H, with
elements in B;. Using this representation, we obtain

N

Ny
E(ug,ve) = & Z CiPs, ZC}SDQ
i=1

J=1

N

= ZC; (5 (Z Ci@h%) — £(0,¢}) + £(0, @3)) :

7=1
Note that up — E(us, ve) — E(0,vy) is linear. Hence,

E(ug,v)) =0& (Z ci (5 (gpi,cpg-) — 5(0,(,0;»))) = —5(0,(,0;.) (j=1,...,N))

=1
<~ 8gC = bg,
where & € RNe*Ne and b, € RN, are given by

(gf)j,i = E(QD“QO;) - 8(()’ 90;)7 (bé)j = _6(0790;) (Z = 17 SR 7N€7j = 17 .- aNé)

Hence, we obtain u; € Hy by solving &c = b, numerically with respect to ¢ and then
set u; := Byc. The matrix & is called system matrix.

72



Chapter 3. Discretisation.

Elliptic equations. The presented Galerkin approach is very natural for elliptic
equations, like the Poisson and the diffusion equation. These we have discussed in

Examples and [L.4 There we set H := H' := H}(D), and

E(u,v;0) = /Dexp(@(x))(Vu(:c),Vv(x)>Ddx—/Df(x)v(x)dx (u,v e H)
for the diffusion equation and
E(u,v) == E(u,v;0) (u,v € H)

for the Poisson equation. The operators £ in these examples are affine linear in the
first and linear in the second component.

When introducing the weak formulations, we mentioned that one can apply the
Lax-Milgram theorem to show that the weak formulations have a unique solution.
If indeed H, = H, C H, we can apply again the Lax—Milgram theorem and obtain
the unique solvability also for the discretised problem.

Finite elements. How do we choose By and B;? Note that properties of the
system matrix & depend heavily on the choice of bases B, and Bj. A popular class
of basis functions are the so-called finite elements. Finite elements are piecewise
polynomials supported on small bounded sets. The union of these supports covers
the space D. The locally supported functions in combination with a local differential
operator often lead to a sparse system matrix. Linear systems with sparse system
matrices can be solved computationally fast. Examples for finite elements are listed
in, e.g. [30, 1T §5].

3.2 Discretisation of random fields

Consider a Gaussian random field N(m,C) on (X,BX), where X is now a sepa-
rable Hilbert space. For practical computations the possibly infinite-dimensional
parameter space X must be discretised. First, in §3.2.1 we discuss random field
discretisation via a truncation of the Karhunen—Loeve expansion. For details on the
KL expansion and its truncation, we refer to [96], 139, 169, 238]. Moreover, see e.g.
the works [22, 48] 140, 204], 222l 230}, 260] for the computational strategies to obtain
the KL expansion. One of these computational strategies is a Galerkin approach to
approximate the eigenfunctions, which proceeds similarly as the strategy introduced
in §3.1]

Instead of solving the KL eigenproblem with a Galerkin approach, we can also
immediately use Galerkin to approximate a random field; see, e.g. [168]. Here,
we consider the covariance operator instead of an elliptic operator and we aim to
compute a Cholesky or spectral decomposition of the operator, rather than solving
a linear equation. Given, e.g. a Galerkin discretisation, we can identify the random
field with a finite-dimensional Gaussian random vector. In §3.2.2] we discuss the
finite element discretisation and the sampling of finite-dimensional Gaussian random
vectors.
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3.2.1 Karhunen—Loeve expansion

We have introduced the Karhunen-Loéve expansion in Definition [I.24] as a way to
construct a Gaussian measure in infinite dimensions. We can use this framework
also to discretise a Gaussian random field by truncating it after Ny, terms. We
define

Ok, :=m + Z NG I
i=1

where £, &,, -+ ~ N(0,1) arei.i.d. standard Gaussian random variables, and («;, 1;)
are eigenpairs of C ordered descendantly in «;. The familiy (¢;)$°, forms an or-
thonormal basis of X. Let now Ny, € N and let

Nsto

oL = m+ Y Vg,
=1

be the random field obtained after truncating the expansion above. The sum of the
remaining eigenvalues in the truncated KL expansion gives the following L2-error

bound: N
=D a; (3.1)

i:Nsto+1

E [[|6xL — 655

see e.g. the proof of [238, Theorem 11.4]. Furthermore, the truncated KL expansion
Hfgi“’ solves the minimisation problem

min B |6~ 6% (32)

é\ELin(RNsto ;X))

for any given Ny, € N. Hence, the truncated KL expansion O%j" is the optimal

Ngo-dimensional affine linear function which approximates Oy, using i.i.d. standard
Gaussian random variables, see [96], §2.3.2].

Unfortunately, the eigenpairs (o, ;)52 of the covariance operator C are often not
analytically accessible. However, it may be possible to compute the eigenpairs with
a Galerkin approach. This is one of the options which we discuss in the following
subsection.

3.2.2 Finite element discretisation

We now discuss the approximation of a random field with finite elements. Let
By:=(pi:i=1,...,N;) € XN denote an N,-dimensional basis of a finite element
space. We approximate X by X, := span(B;). Note that we can identify X, = RMe,
Let (-,-) denote the Euclidean inner product on R™¢. Note that R is a separable
Hilbert space with inner product (-, -)as, = (-, My-), where

My = ({pi,0j)x 14,5 =1,..., Ny)

is the Gramian matrix associated with the finite element basis B,. The Gaussian
measure N(m,C) on (X,BX) can then be approximated on R™ by the measure
N(my, C;) with mean vector my := ({(;, m)x : ¢ = 1,..., Ny) and covariance matrix

Co:= ((¢i,Cpj)x 11,7 =1,...,Ny).
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In the following, we set X, := R™ with inner product (-,-);,. Moreover, we assume
that the Gaussian measure N(my, Cy) € Prob(X,) has a mean equal to zero, that is
my = 0. The covariance operator C; € RVt is now a matrix. We next discuss
sampling from N(0,Cy).

A simple sampling strategy uses the Cholesky decomposition LL* = C,. Let & ~
N(0,Idx,). Then, it is easy to see that L& ~ N(0,C;). The computational cost of a
Cholesky decomposition is O(N}; N, — o0o), see [104, Algorithm 4.2.1].
Alternatively, we can use a spectral decomposition of Cy, which corresponds to a
discrete KL expansion. We obtain

Ny
> V@€ ~N(0,C),
=1

where (a, ¢i)ZN:‘1 are generalised eigenpairs satisfying

Cg@/]i = Ozng@/)i (Z = 1, . ,Ng). (33)

Note that the eigenvectors form an orthonormal basis of the space (X, (-, )¢). Note
also that if C;, was obtained by a Galerkin approximation of C, this corresponds to
a Galerkin approximation of the KL expansion.

Computing the spectral decomposition of a symmetric matrix is typically more ex-
pensive compared to the Cholesky decomposition, even though both problems have
a cubic cost in Ny,. Compare, e.g. the cost of the Cholesky decomposition [104, Al-
gorithm 4.2.1] (/3 flops) and the cost of computing a Schur decomposition [104,
Algorithm 8.3.3] (4N} /3 flops). From the Schur decomposition, one can compute
the spectral decomposition in less than cubic time.

However, the spectral decomposition is of further use. In §3.2.1) we discuss a trun-
cated KL expansion as a technique to reduce the dimension of X from infinity to a
finite number. Similarly, we can use the KL for dimension reduction from a high-
dimensional to a low-dimensional stochastic space. Let Ng, € N, Ny, < Ny, and
consider the truncated KL expansion

Nsto

oL =) Vi
=1

Asin (3.1)), the truncation error can again be represented by the sum of the remaining
eigenvalues in the sequence:

Ny
%] = Z Qi

7;:]\]sto‘i’l

E [[|6x1 — 635

We have mentioned that the spectral decomposition of a matrix is typically more
expensive than a Cholesky decomposition. However, when using a truncated KL
expansion on the finite dimensional space, we only need to compute the leading Ny,
eigenpairs. This reduces the computational cost to O(N7 Nyo; Ny — 00) when using
an implictly restarted Lanczos method, see [33].

Remark 3.1. If N, € N is large, computational costs of O(Ng,N?) and O(N})
may be prohibitively expensive. There are more efficient methods to sample high-
dimensional Gaussian random vectors.
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The circulant embedding method may be viable for sampling in O(N,log Ny; N, —
o0) if the covariance is discretised on a regular grid in 1D, 2D, or 3D, and given
by a stationary covariance function. It uses the Fast Fourier Transform and has
been discussed by [11I, B4, 69, 105]. Other than that, covariance matrices can be
represented as hierarchical matrices or in other low-rank formats to speed-up com-
putations down to a cost of O(N,log Ny; N, — 00), see, e.g. [15], 37, [65, 90, 140].

More recently, the so called stochastic-partial-differential-equation-based sampling
has been developed in the works [28] 29] [T4T], 193], 194, 2T5]. The major idea is to
generate samples of Gaussian fields with Matérn covariance operators by solving a
certain discretised fractional PDE with white noise forcing. If the fractional PDE
can be represented by a sparse system matrix, this can lead to a computational cost
O(Ny; Ny — o00). Last we mention the adapative cross approzimation or pivoted

Cholesky decomposition, which leads to an incomplete Cholesky decomposition. It
has been studied in [115] 224]. &

3.3 Monte Carlo methods

We now discuss the approximation of probability measures with so-called Monte
Carlo methods. These methods will later be used to approximate posterior measures
of Bayesian inverse problems. As main resources concerning Monte Carlo methods,
we refer to [167, 213, 217].

Monte Carlo methods are fairly old. They date back to, e.g. Metropolis and Ulam
in 1949 [184], as well as to von Neumann in 1951 [254].

We start with standard Monte Carlo in §3.3.1 where we assume that we can sample
independently from the probability measure that is approximated. This is one of
the most basic strategies in forward uncertainty quantification. In Bayesian inverse
problems however, independent posterior samples are typically not accessible. Alter-
natively, we discuss Importance Sampling in and Markov chain Monte Carlo
(MCMC) in . In Importance Sampling, we sample from a different measure
and reweigh the samples to obtain an approximation of the posterior. In MCMC,
we sample dependently.

3.3.1 Standard Monte Carlo

Let € Prob(X) and @ : X — R be a function in L?(X, ). Fundamentally, Monte
Carlo methods aim to approximate integrals of the form [, Q(6)u(df). To this end,
the Weak or Strong Law of Large Numbers shall be applied; see Theorem and
Theorem [1.13t

We produce Ny, € N samples Q(601),...,Q(0n,,,), where 01,...,0y, ~ piid.
Then, we approximate the integral by the sample mean:

1 Nsmp

Oy = 7 3 Q0 ~ [ QO(a0)

n=1

O

This is indeed justified, since Theorem [I.13] implies that

QO)y, — /X QOu(d9)  (Pas., Ny — 00). (3.4)
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(3.4]) implies that Q(0) Nowp 18 @ consistent estimator. Moreover, by integrating over

Q(0)y,  wrt. P, one can show that the estimator is unbiased. To determine the
quality of the Monte Carlo estimation, we can use the formula for the root mean
square error in ([1.6)). It reads

1/2

(@@, - [. @(em(de))] o 35)

So far, we have used Monte Carlo to approximate integrals. Actually, we aim to
approximate measures. To this end, note that we can interpret (Q(0) Nowp 25 ALl
integral with respect to a certain discrete measure. This discrete measure is given
by the following empirical measure

E

N,
1 smp

= o(-—8,). 3.6

o= s 3006 (3:6)

Note that this measure is a random measure, since 64, ...,0y,,  are random vari-

ables. i is indeed well-defined as a random measure, we show this in Proposition 5.7
Applying the Strong Law of Large Numbers — Theorem — we can show that
converges to t, as Ngmp — 00. We specify this result in the following proposition.

Proposition 3.2. Let ;1 € Prob(X) and p be the measure in (3.6, based on
Nsmp € N samples from p. Then,

P(ﬁglz, as Nsmp—>oo> =1
Proof. Let Q € C°(X) and bounded. Then, Q € L*(X,u). Theorem implies

that
(Nsli?loo/ QO)A(d0) = /X Qw)u(de)) =1,

since [, Q(0)(df) = Q(0) Nsmp' Moreover since this result is independent of the

choice of @, limp,,, o0 [ Q(0 = [ Q(0)1(df) implies weak convergence of
= f. O

Proposition refers to a convergence with probability one of a sequence of random
variables to a deterministic value. The random variables take values in a space
of probability measures and converge to a probability measure. The probability
measures in this sequence converge in the weak topology.

Next, we consider the distance between p and . This will allow us to estimate the
error between the original and the approximate measure. Note that the distances
in §1.2.2| are not applicable, since @ is a random measure. Therefore, we introduce
the expected total variation distance between two random measures p, ' : Q —
Prob(X). It is defined by

ety (ke ') = sup E[|pu(A) — p/(A)]].

AeBX

Alternatively, we could use the RMSE estimate in to measure the distance
between p and u, and then take the supremum over bounded functions @ : X — R.
This has been done, for instance, in [5, 20]. We take the expected total variation
distance to be consistent with the discussion in and §2.3] For p, i, we obtain
the following error estimate in dg,.
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Proposition 3.3. Let 1 € Prob(X) and g be the random measure in (3.6, based
on Ngyp € N samples from p. Then,

2
\ Nsrnp '

Proof. This is a result of the more general Proposition where we set vy =1. [

dewv (1, 1) <

3.3.2 Importance Sampling

Let py € Prob(X). We aim to approximate a measure p; € Prob(X, uo), where we
have access to the density

06 x O (0. Xoporas)

and to independent samples

01, . 70Nsmp ~ Uo-

Note that we assume to know the po-pdf v only up to a normalising constant. g
is called importance measure. Now, we aim to use the samples to approximate ;.
We consider the following identity:

/X Q(O)p1(do) = fX; -0 Mo“gédm. (3.7)

It implies that we can represent integrals with respect to p; by a ratio of integrals
with respect to . Hence, using Monte Carlo, we can indeed use pg-distributed
samples to approximate integrals with respect to p;. This idea has been mentioned
for instance by Metropolis et al. [183]. For a more recent review, we refer to Agapiou
et al. [B].

Remark 3.4. We briefly note how to understand the setting above in the Bayesian
framework. In Bayesian inverse problems, we apply Importance Sampling to approx-
imate the posterior measure p; := MI)ost using samples from the prior py ‘= fiprior-
The density v := L(y'|) is given by the likelihood. The relationship

d/JJ;r)ost
—= o L(y'|)
d,uprior
is a result of Theorem [[.45] &

We move on to the Importance Sampling approximation. We assume that v €
L2(X, ig). Moreover, let @ : X — R be a quantity of interest, given such that
(Q-7) € L(X, ug). Then,

Nsm - Nsm
Nslmp > i’ V(0) don 1p7
This is again a result of the Strong Law of Large Numbers, which implies that
denominator and numerator converge to the respective integrals in (3.7). Note that
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this again implies that the estimator is consistent. However, as opposed to the

standard Monte Carlo estimator, the Importance Sampling estimator is biased, see,
g. [0, Theorem 2.1].

Similarly to , we can use Importance Sampling to directly approximate the

probability measure p;. We have

Nsmp

~ 7(0n) 5(-—0
= 2 g0 O

which is again a random measure, see Proposition [5.7. We can again compute an
error bound in terms of the expected total variation distance des,.

Proposition 3.5. Let py € Prob(X), pu; € Prob(X, ), and v oc dpy/dpg, with
v € L3(X, up). Moreover, let fi; be the Importance Sampling estimate given above.
Then,

P
Nemp

detV(Mbﬁl) <2

where p = [ 72(0)po(d6)/ ([ ~(6 ,uode)

Proof. Let A € BX. Then, by Jensen’s inequality and [5, Theorem 2.1], we have

(E () = B () < E [(a(4) = B (4)F] <

By taking the square root on both sides and taking the supremum over A € BX,
we obtain the desired result. ]

To assess the quality of an Importance Sampling estimate, we often consider the
effective sample size (ESS). Consider some Importance Sampling estimate ;. The
effective sample size

ESS 1= Nemp/p (3.8)

is used to compare the Importance Sampling estimate g, of pu; with a standard
Monte Carlo estimate of p;. In particular, note that according to Proposition
the Importance Sampling error deg, (Hy, pt1) is bounded above by 2/v/ESS. This is
the same error bound we obtain in Proposition when sampling N, := ESS
times independently from p; and using these samples to approximate p;. Hence,
the effective sample size is the number of independent samples we would need in
a standard Monte Carlo estimation to obtain the same error as in the Importance

Sampling estimate fi,.

3.3.3 Markov chain Monte Carlo

In Monte Carlo, we sample independently from the correct probability measure.
In Importance Sampling, we sample independently from an auxiliary probability
measure and correct the samples with weights. Now we consider Markov chain Monte
Carlo (MCMC). In MCMC, we drop the independence and sample dependently from
— eventually — the correct probability measure. Those dependent samples form a
Markov chain. In the next paragraphs, we discuss basic properties of Markov chains.
For more details, we refer to the textbooks [185, 213].
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Definition 3.6 (Markov chain). Let 8 = (6;)$2, be a sequence of random variables,
each of which takes values in X. 6 is a Markov chain if for all t € N,¢ > 2, and
01,...,0,_1 € X, we have: ]P)(Gt (S |0t—1 =60,_1,0,_5=0,_5,...,0, = 91) = ]P’(gt S
18ps = 0,). o

This means, the conditional probability distribution of the state 6, given all the other
states is identical to the conditional probability distribution of 8, given only the last
state at t — 1. Hence, the distribution of the chain is independent of what happened
before t — 1. This property is called Markov property. While being semantically
similar, note that this property does not imply that 6, 8, are independent, for
|s —t] > 2.

The Markov property implies that if some of the past states of the Markov chain
are known, we only need the last of those to describe the conditional probability
measure: for t € Nt > 2, U C{1,...,t — 1}, and (6,)scy € XY, we have

P(Gt c - |05 = 93,8 & U) = IP(Ot c - |0(maxU) = G(maxU)).

Markov chains whose conditional probability distributions are invariant with respect
to shifts in the index ¢ are called (time-)homogeneous. Otherwise, the Markov chain
is inhomogeneous. More particularly, those satisfy

IED(OQ € - ’01 - 9) - P(Gt € - |0t71 = (9) (t Z 2)

for # € X. A homogeneous Markov chain can be completely described by a Markov
kernel K mapping from (X, BX) into itself, where

K(A|9) =P(6; € A|0;_, =0) (e X, Ae BX,te N,t>2).

For an initial measure p' € Prob(X), the Markov chain corresponding to K can be
defined uniquely by

01 ~ /le
0, ~ K(-10:-1) (teN,t>2).

The Markov kernel K is called transition kernel of 8. In the following, we always
assume that 6 is homogeneous and that it has a transition kernel K.
As a dynamical system, a Markov chain can have fixed points on the space of
probability measures. Indeed, a probability measure p € Prob(X) is stationary
with respect to 0 if

O~ p= 0~ p,

for some t € N, ¢ > 2. We can write this equivalently as

p= pls.

Next, we define the reversibility of a Markov chain. Intuitively, @ is called reversible
if a step from 0 € X to 6’ € X is as likely as a step from ¢ to 8. Rigorously, @ is
reversible if for A, B € BX it holds

(LK) AxB)=(uo K)(B x A) (3.9)
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where 1 is the stationary measure of 6. (3.9)) is called detailed balance condition and
can be equivalently written as

/A K (B|0)u(df) = /B K (A0)p(d9). (3.10)

If the detailed balance condition holds for an arbitrary probability measure u’ €
Prob(X), the Markov chain @ is stationary with respect to p/ = p. Indeed, by
setting in (3.9) A := X and choosing B € BX arbitrarily we obtain:

uK(B) = poK(X xB) = po K(Bx X) = /BK(XIG);L(dH) - /B 14(d6) = u(B).

Hence, we can prove stationarity of a probability measure by showing the detailed
balance condition.

We justified Monte Carlo and Importance Sampling methods applying the Strong
Law of Large Numbers; see Theorem[1.13] We can show a similar result for a Markov
chain. Under assumptions that we specify below, one can show that the following
holds

%ZQ(&)% /X QO(dD)  (t — oo: P-as.), (3.11)

where @ is a Markov chain that is stationary with respect to p and @ : X — R is
a bounded function. Hence, if we can construct a Markov chain that is stationary
w.r.t. a measure of interest, e.g. a posterior measure, we can use the sample path
of the Markov chain to approximate integrals with respect to this measure. This is
how MCMC methods proceed.

The assumption that has to be satisfied for to hold is Harris recurrence.
Before rigorously formulating this statement in Theorem [3.9, we introduce Harris
recurrence in the following section.

Harris recurrence of Markov chains. We now introduce the concept of Harris
recurrence of a Markov chain that is required in . Moreover, note that we have
implictly assumed that stationary measures exist and that they are unique. In this
section, we investigate this more rigorously.

We start by introducing recurrence and Harris recurrence of events. Let A € BX be
an event in X. A is recurrent, if a Markov chain starting in A is expected to return
to A infinitely often. More precisely, let

NA = Z 1A<9t)
t=1

be the number of visits to A. The set A is recurrent if E [N 4|0, = 0] = oo for any
initial state 6 € A.

Harris recurrence of a set is a stronger concept. It applies if a Markov chain intialised
in any 6 € A visits the set A infinitely often with probability one:

P(Ns=ool@=0)=1 (0 A).

Starting from the concept of (Harris) recurrence of a single set, we now aim to
discuss the (Harris) recurrence of a Markov chain. The Markov chain is (Harris)
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recurrent, if it is (Harris) recurrent for all sets that have a sufficient mass, and if
it mixes throughout all of these sets. The mass is specified by a measure vy on
(X, BX). The mixing of a Markov chain is specified by its irreducibility, which we
define next.

The Markov chain 8 is vx-irreducible, if for every A € {vx > 0} := {B € BX :
vx(B) > 0}, some t € N exists, such that

K'(AlD)>0 (0 € X).

K!:= K --- K refers to the t-fold composition of K. Hence, vx-irreducibility implies
that within a finite number ¢ of steps the chain reaches any set A that has sufficient
measure, i.e. vx(A) > 0, starting at any initial state § € X.

Definition 3.7. A Markov chain 0 is (Harris) recurrent if it is vx-irreducible,
for some measure vx on (X,BX), and if every set A € {vx > 0} is (Harris)
recurrent. <&

In MCMC methods, it is important that the Markov chain indeed converges to the
correct stationary measure. Fortunately, a recurrent Markov chain has a unique
stationary measure. We have the following result.

Theorem 3.8 ([I85, Theorem 10.0.1]). Let @ be a recurrent Markov chain. Then,
a o-finite measure p exists in (X, BX), such that

pK = p.
Moreover, the measure p is unique up to a normalising constant. O

Note that p in Theorem is not necessarily a probability measure; therefore we
do not call it a stationary measure. However, if we know a stationary measure
i € Prob(X) of the Markov chain 8, Theorem implies that it is unique. In
this case, where @ is recurrent and p is a probability measure, the chain @ is called
positive. Since Harris recurrence implies recurrence, Harris recurrence also implies
the statement of Theorem 3.8 A Harris recurrent and positive chain is called Harris
positive. Harris positivity implies the statement in (3.11]) which we now formalise in
Theorem [3.9]

Theorem 3.9 (Strong ergodicity). Let 8 be a Harris positive Markov chain in X
that is stationary with respect to p € Prob(X). Moreover, let @ : X — R be some
bounded function. Then,

72000~ [ QU (1 ooiPas)

for every initial value 6, € X.

Proof. See [185, Theorem 17.3.2], where p is a probability measure, f := @ and
g =1 [l

Remark 3.10 (How about vx?). We note that recurrence and Harris recurrence
as introduced in Definition seem to depend on the choice of vy, which is the
so-called wrreducibility measure. However, vy appears neither in Theorem nor in
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Theorem Indeed, it is not needed. The existence of some o-finite measure vy,
such that 0 is (Harris) recurrent with respect to it, is sufficient.

There is, however, a connection between vx and p. One can show that any irre-
ducibility measure vx of a Markov chain @ is dominated by the stationary measure
p; ie. vy < p. For a proof of this claim, we refer to [I85, Proposition 4.2.2,
Theorem 10.4.9].

Hence, when testing reducibility we can automatically ignore sets in {u =0}. <

MCMC algorithms. In Theorem we show that we can approximate integrals
with respect to a probability measure using samples from a Markov chain that is
stationary with respect to this measure. Now, we aim to use this procedure to
compute integrals with respect to, e.g. the posterior measure in a Bayesian inverse
problem. In this section, we focus on the algorithmic construction of such a Markov
chain. That is, we explain how the transition kernel K has to be chosen, such that
the stationary measure is the measure of interest (e.g. the posterior measure). We
start with the Metropolis—Hastings (MH) framework. Then, we introduce the Gibbs
sampler. Finally, we combine both of these methods and obtain the Metropolis-
within-Gibbs method, which we will use to sample from hierarchical posteriors.

Metropolis—Hastings. Let vy be some o-finite measure on (X,BX) and p €
Prob(X,vx) be the probability measure that we aim to approximate. Similarly to
Importance Sampling, we assume in the following to have only access to a function
~v: X — R, which satisfies
v X ;Tl; (vx-a.e.).

We describe how the Metropolis—Hastings MCMC method constructs a Markov
kernel Kyg. Let # € X be the current state. By using some auxilliary Markov
kernel that is based on #, a value ' € X is proposed. Then, a Bernoulli experiment
with probability a(6,6") is performed. a(6,0") is called acceptance probability. If the
Bernoulli experiment succeeds, i.e. if the output is 1, the output of the Metropolis—
Hastings Markov kernel Ky is the proposed state #. Otherwise, if the output is 0,
the kernel Ky returns the current state 6.

The procedure of sampling the new value 0 is called proposal step. The Bernoulli
experiment is termed accept-reject step. Let @ : X x BX — [0,1] be an auxilliary
Markov kernel mapping from (X, BX) into itself. () represents the proposal step.
Moreover, let Q(-|0) < vx ( € X) and let ¢ : X x X — [0,00) be a conditional

density:
dQ(- 10
q(0'10) = Cj(T)l)(Q') (e X;0 € X, vx-as.).

For the accept-reject step, we define the acceptance probability
7(0")q(0]¢") } :

, 0,0 € X).

@) f 0N

Combining () and a, we obtain the Metropolis—Hastings kernel Kyg : X x BX —
[0, 1], where

a(6,0") = min {1

Kyn(Al9) := /X(1 —a(0,0)5(A—0)+a(0,0)5(A—0)Q(d0|0) (A€ BX,0€ X).
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It can be proved that Ky satisfies the detailed balance condition ([3.9). Hence,
the Metropolis—Hastings kernel induces a reversible Markov chain that is stationary
with respect to pu. Moreover, one can show that p-irreducibility of the MH chain
already implies the Harris positivity of the chain. According to Theorem Harris
positivity implies convergence of the sample mean of the chain to the correct mean
of the measure of interest. We summarise these statements below.

Theorem 3.11. Let 0 be a Markov chain in X with transition kernel Kyy. Then,
0 is stationary with respect to p and reversible. Moreover, if in addition 6 is u-
irreducible, @ is Harris positive.

Proof. 213, Theorem 7.2] shows the detailed balance condition. [213, Lemma 7.3]
shows Harris positivity. O

The critical point in Metropolis—Hastings algorithms is the construction of the pro-
posal distribution @). In the following, we give two examples for potential proposal
distributions. We commence with the Random Walk Metropolis (RWM) proposal.

Example 3.12 (Random Walk Metropolis). Let X := Rt be a finite dimensional
space. Moreover, let p1 € Prob(X) be the measure of interest. A random walk
Metropolis algorithm is given, if the density ¢ : X x X — R is symmetric, i.e.
q(0]0") = q(0'|0). Notably, the acceptance probability simplifies to

a(6,0') := min{1,v(0")/v(0)} (0,0 € X)

in this case. The term Random Walk Metropolis is often used to describe the special
case of a Gaussian random walk proposal:

Q(-10) :=N(0,%) (0 € X),

where ¥ € CO(X) is a covariance matrix. In this case, the proposal consists in
adding a Gaussian random variable to the current state. Hence, the proposed value
0" € X is a realisation of 0 + €, where € ~ N(0, X). &

Metropolis et al. [I83] have proposed the random walk Metropolis algorithm in 1953.
The Metropolis—Hastings framework is younger; it has been introduced by Hastings
[I17] in 1970 as a generalisation of RWM, allowing for non-symmetric proposals.
Non-symmetric proposals are particularly useful in high- and infinite dimensional
parameter space settings, as we will see below.

We aim to apply MCMC algorithms to approximate posterior measures in Bayesian
inverse problems in high- and infinite-dimensional parameter spaces X. Unfortu-
nately, RWM algorithms are often inefficient in high and infinite dimensions, see
[49, §4.2]. In Bayesian inverse problems with Gaussian priors, we can instead apply
the preconditioned Crank—Nicolson (pCN) proposal.

Example 3.13 (Preconditioned Crank—-Nicolson MCMC). Let X be a separable
Hilbert space. We consider a BIP with fipir = N(0,C) € Prob(X) and likelihood
L(y'|) : X — R. Let 8 € (0,1]. The preconditioned Crank-Nicolson proposal is
given by

Q(-16) = N ((1- B)20,5) (€ X).

The associated acceptance probability is

a(0,0') := min {1, L(y'|0')/L(y'|0)} (0,0" € X).
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In the special case § := 1, we propose a value by sampling independently from the
prior measure. Therefore, the associated MCMC algorithm is called independence
sampler. Note that this does not mean that the associated MCMC algorithm gen-
erates independent samples: the coupling is given through the accept-reject step.
We can apply the pCN sampler also in the case, where the prior is not mean-zero.
Here, we translate prior and likelihood. Let piprior := N(m,C), then we redefine
fipror = N(0,C) and L(y|-) = L{y!m + -)

The pCN proposal is based on the work by [21], 49], to which we refer for the deriva-
tion of the acceptance probability. It is derived from a Crank—Nicolson discretisation
of a certain Langevin dynamic. This explains the origin of its name. pCN MCMC
has recently been generalised by Rudolf and Sprungk [221].

Gibbs sampler. Let 8 :Q — X and K : 2 — R be two random variables and let
p € Prob(R x X) be the joint measure of (k,0), i.e. u:=P((k,0) € -). p could
be, for instance, a posterior measure in a hierarchical Bayesian inverse problem. We
now discuss MCMC algorithms used to approximate integrals with respect to p.
The most basic of these methods is the Gibbs sampler. It is a method using samples
from the full conditionals. Those are

M(10)=P(ke-10=0) (0cX), M(|x)=POc |k=r) (k€DR).

It proceeds in the following way: Let (k, @) be the current state of the Markov chain.
The next state is given by (x/, ), where ' is a realisation of kK ~ M’(-|6). Then the
chain proceeds with (k’,0"), where # is a realisation of @ ~ M"(-|k’). Hence, one
coordinate is always fixed and the other coordinate is sampled with respect to the
fixed state. We can define the Gibbs sampler formally by the transition kernel

Keipps = K'K” (3.12)
from (R x X, BR ® BX) into itself, where

K'(- x|, ) = M 16) @ 6(- — 6).
K'(- x|k, 0):=0(-— k)@ M"(- |r) (0 e X,k €R).

Various ways to analyse Gibbs samplers have been discussed in the past. One can
for instance use the Metropolis—Hastings framework to show that p is stationary
with respect to both K’ and K”; as well as the reversibility of either kernel: We
choose @ € {K’, K"} as a proposal kernel, and observe that a = 1. Hence, every
proposed sample is immediately accepted. Therefore, K’ and K" are Metropolis—
Hastings kernels and they satisfy the first part of Theorem However, neither
K’ nor K" is p-irreducible on its own: Note that K’ moves only in R, and K”
moves only in X. Hence, getting from any state (k,0) to the state (x/,6") for which
0" # 0 (respectively ' # k) is impossible when applying K’ (respectively K”). The
composition Kgijpps = K'K” may however be p-irreducible, see [213, Theorem 10.8],
and also Harris positive, see 213, Lemma 10.9].

An interesting fact is that RWM was originally introduced to sample from a system
of energy states, not a posterior measure. Such a system is for instance given in the
Ising model [I31]. Simulating states in the Ising model, on the other hand, has later
become the motivation to introduce the Gibbs sampler, see [94].
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Metropolis-within-Gibbs. In practice, especially when considering BIPs, we
may be not able to sample from the full conditionals M’ and/or M”. In such a
case, the Metropolis-within-Gibbs (MWG) framework can be applied. It replaces
the sampling from the full conditionals by Metropolis—-Hastings kernels that are
stationary with respect to the full conditionals: Let Kj;; be an MH Markov ker-
nel from (R x X,BR ® BX) to (R,BR) and K{j;; be a MH Markov kernel from
(R x X,BR ® BX) to (X,BX). Moreover, we assume that M’(-|0) is station-
ary with respect to Kyy(-]-,0), 8 € X, and M"(-|r) is stationary with respect to
K- |k, ), k € R. The MWG sampler is defined by the following kernel:

Kuwe = K'K”,
where

K'(- x x|k,0) := Ky (- |K,0) @ 5(x — ),
K"(- x % |k,0) := (- — k) @ Ky (x|, 0) (e X,k €R).

As opposed to the ‘pure’ Gibbs sampler (3.12), the MWG has been applied in
hierarchical Bayesian inverse problems by various researchers. We refer to, e.g.
[41], 149, [76), [78], 248].

3.4 Improving efficiency

Consider a BIP that shall be solved with Importance Sampling or MCMC. Further-
more, we assume that the likelihood contains a forward response operator G that we
need to discretise. Thus, we replace G by G,. Note that in Importance Sampling and
most MCMC methods, we need to evaluate G, whenever we produce a sample. Those
evaluations are required to compute the weights in Importance Sampling or to com-
pute the acceptance probability in MCMC. If evaluations of G, are computationally
demanding, applying either algorithm may be prohibitively expensive.

In the following, we briefly discuss two methods to reduce the computational cost
of sampling methods: either we replace G, by a surrogate, or we reduce the variance
of the estimator using, e.g. a multilevel algorithm.

3.4.1 Surrogate models

Let G be a forward response operator in a Bayesian inverse problem, which is approx-
imated by G,. We assume that evaluations of G, are too expensive to be evaluated
Nsmp € N times - as may be required by MCMC or Importance Sampling.
Surrogate methods aim to add another layer of approximation that reduces the cost
of G, evaluations significantly. Indeed, a function G : X — Y is constructed that
is computationally cheap to evaluate and where G, ~ G. The function G is called
surrogate or sometimes emulator.

Surrogate methods typically proceed in two phases: the offline and the online phase.
The offline phase happens prior to the sampling algorithm and is used for the con-
struction of the function G. The online phase contains the sampling algorithm that
is now based on the surrogate G. Importantly, the online phase should not depend
on evaluations of the full model G,.
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Reduced basis method. Reduced basis (RB) methods are a class of surrogates
that are used to speed-up the evaluation of parameterised PDEs. Let G : X — H
be a mathematical model given implicitly by 6 — u*, where u* solves

E(u*,v;0)=0 (ve H').

In §3.1) we have discussed Galerkin approximations using finite element bases to
discretise H, and H’. In the following, we assume H := H’. A finite element space
H, gives a good approximation of H — and thus eventually u* — | but may be too
high-dimensional to allow for many evaluations of Gy.

To approximate G in particular, we actually do not need a good approximation of
H, but rather of img(G) C H. In reduced basis methods, we assume that we can
approximate img(G) well with a very low-dimensional linear space Hrg. We can
then replace Hy by Hgrgp in the discretised formulation of the model and reduce the
computational cost significantly. The reduced space Hgp is defined as the span of
the reduced basis Brg = (p1'°, ..., oo, ) € HVEB,

Reduced basis methods were introduced in [192], and are typically used to solve
PDEs for a large number of parameter configurations, see, e.g. [119, 207]. In
uncertainty quantification, reduced basis methods have been applied and analysed
by, e.g. [38, 40, [75, B1] for forward problems and by, e.g. [39, 164, 173, 218] for
Bayesian inverse problems.

Proper orthogonal decomposition. The proper orthogonal decomposition
(POD) is a computational approach to constructing the reduced basis Bgg, for a
particular mathematical model G given by £. Here, we also refer to [207, §6].
Let Gy be the discretised version of G on an N,-dimensional finite element space.
The POD strategy starts in the following way: A family of Ngy,, elements of X is
chosen:

0 — (pV) Q(Nsnap)) e X Nsnap_

“snap ~ ( snap’ * * * 7 “snap

In the following, we will approximate img(G) by span{Gg(Qérllép), e G(@érllvasf)‘ap))}.
Various ways to find the parameter vector 0., have been discussed in the litera-
ture. Such are randomised and deterministic strategies, as well as adaptive greedy
approaches. In any of these approaches, it is vital that the resulting Ngap <
min{ Nemp, Ne}-

As indicated above, the model G, is evaluated for each of the components of 6,
These evaluations

snap*

Wsnap = Gf(esnap) = (G€<8(1) )7 . ,GZ(Q(NSDZLP))) c Hé\fsnap

snap snap

are called snapshots. In the following, we identify H, with RM. Then, Wy, €
RNexNsnap - Now, we construct the reduced basis from Winap. The POD proceeds by
orthonormalising Wy, and by removing vectors that are redundant or insignificant.
The POD is obtained by computing the reduced singular value decomposition of
Wsnap:

U-Y-V* = Wsnap,

where U € RNexXNsnar and V' € RNsnarXNsnar gre orthonormal matrices, and

Y =diag(os:s=1,..., Nsap)
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is the diagonal matrix containing the singular values of Ws,,,. The reduced basis
consists of columns of U. Let s = 1,..., Nyap and let uy € R™M be the s-th column
vector of U. If the singular value o, = 0, the vector u,; does not contribute to the
reduced basis. Hence, we eliminate those and define

W= (us:s=1,..., Ngap,0s > 0).

For further dimension reduction, we can also eliminate those vectors with singular
values smaller than some threshold ¢ > 0. In this case, we obtain a smaller reduced
basis

W= (us:s=1,..., Nyap,0s > 0).

Such a further dimension reduction is very critical for the speed-up in a reduced basis
method. While clearly Ngg < Ny, this relation may be not sufficient for a speed-
up. We finish this section with an example, in which we clarify that a significant
dimension reduction is necessary for speed-up.

Example 3.14. Let G be the parameter-to-solution map for a parameterised elliptic
PDE on an interval, a square, or a cube. We fix the parameter and discretise the
PDE with linear finite elements on a regular mesh and obtain an N,-dimensional
FEM space. Due to the choice of finite elements, the N, x N, system matrix is sparse.
Using a multigrid method, the discretised equation can be solved in O(Ny; Ny — 00);
see, e.g. Hackbusch [109, §4.3] who discusses the Poisson equation and Trottenberg
et al. [240], §4.7] who gives conditions under which PDEs with more general linear
operators can be solved by multigrid.

Now, we aim to solve the same PDE with a reduced basis. We have constructed the
reduced basis from snapshots — not from locally supported finite element functions.
While having a much lower dimension, the system equation on the reduced basis is
dense. Hence, the computational cost in the online phase increases to asymptotically
O(Njg; Nrp — o0). Therefore, we only obtain a speed-up, if Ngg < Ny. O

Other surrogates. Reduced basis methods are a popular surrogate technique that
is based on Galerkin projection. This is not the only option for surrogates. Other
authors have been using sparse grid interpolation [87, 89, 225, 229], polynomials
[52, 177, 234], piecewise polynomials [180], and Gaussian processes [163, 237].

3.4.2 Variance reduction

Variance reduction techniques follow a different paradigm. Here, not the cost of a
single expensive model evaluation shall be reduced, but their total quantity. In the
following, we only refer to the simple Monte Carlo integration, with independent
samples from the correct measure. Similar techniques can also be applied within
MCMC and Importance Sampling to solve Bayesian inverse problems. We mention
those further below, when reviewing previous works.

Let o € Prob(X) be a measure from which we can draw independent samples, and
Q € L*(X, i) be a scalar-valued function. In §3.3.1] we have discussed the standard
Monte Carlo algorithm to approximate integrals of the form [, Q(6)x(df). Recall
(3.5) where the root mean square error of the Monte Carlo estimator with Ny, € N
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samples of this integral is given by

(WNW - /X Q(e)u(de))Ql 1/2: Va%n(n;cg)

Hence, to obtain a small error, we need either a small variance Var, (@), or a large
number of samples Ngpp,.

Let now () be based on a mathematical model that has to be discretised. Hence,
we have @), ~ () and a potentially high computational cost to evaluate ). In the
previous section, we have discussed surrogate methods that reduce the computa-
tional cost of evaluations of ),. Hence, surrogates allow us to increase the size of
Nsmp-  Variance reduction techniques aim at finding an estimator that has a vari-
ance that is smaller than Var,(Q),). Given a smaller variance, we can perform Monte
Carlo estimations with fewer samples. Below, we briefly introduce variance reduc-
tion techniques and refer to the book by Rubinstein and Kroese [217, Chapter 5] for
details.

Variance reduction techniques proceed as follows. We define an estimator V' : X —
R, with

E

/XV(H)—Qe(G)M(dQ) =0 and  Var,(V) < Var,(Q0).

Thus, a Monte Carlo estimation of [, V(#)u(df) leads asymptotically to the same
value, but converges faster.

Popular variance reduction techniques are antithetic variables and control variates.
Importance sampling can also be used for variance reduction. In the context of PDE-
based uncertainty quantification, Multilevel Monte Carlo (MLMC) methods consti-
tute a further class of variance reduction methods. Here, we consider a sequence of
functions (Qg)_, that approximate @ with different accuracies k = 1,...,¢. Here,
k = 1 refers to the coarsest discretisation level and k = ¢ to the finest discretisation
level. Moreover, we define the estimator V' by the following telescopic sum

Vi=Qr+ (Qeo1 — Qur) + -+ (Q1 — Q1)
= (Qr— Qr—1) + (Qu1 — Qr2) + -+ (Q2 — Q1) + Q1.

Looking at the first line of the displayed equation, one can easily see that V' and
(¢ have identical expected values. In the estimation process, the bracketed terms
in the second row above are coupled probabilistically. If this leads to (Qk, Q1)
being positively correlated for k£ = 2,...,¢, the estimator R has indeed a smaller
variance than ;. Additionally, if the computational cost of the coarse discretisations
k=1,...,¢ is sufficiently small, the overall cost is indeed reduced.

Multilevel Monte Carlo has been first introduced for stochastic differential equation
(SDE) path simulations by Giles [I02]. Later, the method has been applied to the
stochastic elliptic PDE in Example by, e.g. [45, 112, 244]. Other problems
in forward UQ have been approached with Multilevel Monte Carlo in [7, 113} [148].
For an overview on Multilevel Monte Carlo, we refer to [103]. Bayesian inverse
problems have been approached with Multilevel Markov chain Monte Carlo [71],
72] and Multilevel Sequential Monte Carlo [I8, 19]. In addition, the Multilevel
Monte Carlo idea has been extended to deterministic quadrature, such as stochastic
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collocation [IT1],243], sparse grid quadrature [87), 88] and quasi-Monte Carlo [67, 149
150]. Finally, we mention multifidelity methods, which use a hierarchy of surrogate
models, rather than a hierarchy of FEM /time-stepping discretisation levels; see
[199, 200] for multifidelity Monte Carlo.
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Exploring hierarchical random fields

Yet, such deep learning may require
considerable amount of work.

Rina Dechter [59] p. 180]

In §1.4] we motivated and discussed hierarchical models in uncertainty quantifica-
tion. Next, we consider especially parameterised Gaussian random fields. Those
are,

K(-[r) = N(m(r),C(x)) (k € R).
Notably, the resulting random field p” = i/ K is not necessarily Gaussian and allows
us to model a larger class of spatial variations. However, the greater flexibility of
parameterised Gaussian fields brings new computational challenges, as we explain
next.
Assume that we discretise a Gaussian random field by a KL expansion. The basis
functions in this expansion are the eigenfunctions of the covariance operator. For
fixed, deterministic hyperparameters it is sufficient to compute the KL eigenpairs
only a single time since the covariance operator is fixed. However, changing the hy-
perparameters changes the covariance operator. This may require to re-compute the
KL eigenpairs. Dunlop et al. [78], for instance, consider parameterised covariance
operators with eigenpairs that are analytically accessible. Other than that, it is
typically necessary to re-compute the eigenpairs. The associated cost and memory
requirement of these re-computations scales at least quadratically in the number of
spatial unknowns. Here, it is often practically impossible to use uncertain hyperpa-
rameters in a (Gaussian) random field model in 2D or 3D physical space. We do not
consider other sampling strategies, such as those discussed in Remark as they
can be limited in terms of applicability.
To overcome this limitation we now suggest and study a reduced basis surrogate for
the efficient computation of parameter dependent KL expansions. This approach is
similar to that discussed in §3.4.1] In contrast, our reduced basis surrogate approx-
imates the KL eigenpairs rather than a PDE solution. Reduced basis approaches
to solve parameterised eigenproblems have been discussed in [92] [123] 124, 172,
231],249]. Those authors have focused on eigenproblems with differential operators.
Particularly for the KL eigenproblem, reduced basis ideas have been discussed by
Contreras et al. [4§]. However, they do not consider parameterised Gaussian random
fields, but use the reduced basis for domain decomposition in very high-dimensional
KL eigenproblems. Moreover, we mention Sraj et al. [234], who consider a polyno-
mial chaos surrogate to speed-up a hierarchical Bayesian inverse problem.
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In §4.1) we discuss parameterised Gaussian measures, and their representation via
a KL expansion. Furthermore, we collect various tasks that we need to perform
with Gaussian random fields and note their computational cost. Next, in §4.2] we
consider the low-rank approximation of covariance operators using the reduced basis
and POD approach. Moreover, we discuss how to approximate Matérn covariance
functions to make them suitable for the POD approach. In §4.3] we discuss the
reduced basis sampling algorithm that explains the online phase of the algorithm.
We also derive the overall computational cost of the method. Finally, in §4.4) we
verify and illustrate the method using numerical experiments.

4.1 Parameterised Gaussian measures

Let R C RN® be again the space in which the hyperparameters live; assume that R
is non-empty and finite-dimensional. It forms a measurable space together with its
Borel-c-algebra BR. As mentioned above, we consider Markov kernels where K (- |k)
is a Gaussian measure for all k € R. Particularly, we define

R>kw K(-|k) := N(m(k),C(k)) € Prob(X), (4.1)
where
m:R— X, C:R— CO(X)

are measurable functions, and X is a separable Hilbert space. The distribution of
the parameter k :  — R is again called p/. Moreover, the distribution of the
composition and the joint distribution are again defined by

p' = uK € Prob(X), p=p ®K e Prob(R x X),
respectively.

Remark 4.1. We point out that even if K (- |x) is a Gaussian measure for any x € R,
the composition p” is not necessarily a Gaussian measure. We give two examples.

(a) Let R:= X := R, let y' := N(myg,02) be a Gaussian measure and K (- |x) :=
N(k,0?). This construction models a family of Gaussian random variables
where the mean value is another Gaussian random variable. Here, we have
1" = N(myg, 02 + 0?) is a Gaussian measure.

(b) Let R be a finite set. Then p” is called Gaussian mizture and is often not
Gaussian. See §1.1 and §2.1 in [86].

&

In Example|1.26| we have discussed a Gaussian random field with exponential covari-
ance operator. We now revisit this example and construct a parameterised Gaussian
measure, in which correlation length and standard deviation are unknown.

Example 4.2. We consider again the exponential covariance operator in ((1.12)).
Let A > 0and @ > g > 0. For any A € [), diam(D)] and o € [g,7], one can show

that C%y) € CO(X) is a valid covariance operator. The parameters kK = (A, o) are
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random variables on a non-empty set R := [\,diam(D)] x [g,7]. The associated
probability measure y' is given by

p= @

Here, p/f, is given such that A™' ~ Unif[diam(D)~!, A™"]; we show the pdf of  in
Figure[1.9] p. is a Gaussian measure that is truncated outside of [¢, 7]. o models the
standard deviation of #(x), for any x € D. The measure p’ and the Markov kernel
K(-|A, 0) = N(0,C%¢”) induce a joint measure . This can now be understood as
follows:

1. Sample k from p':

(a) Sample the correlation length A ~ p,
(b) Sample the standard deviation o ~ p.

2. Sample the random field § ~ K (- |\, o) with exponential covariance operator,
standard deviation o and correlation length A.

Hence, we modelled a Gaussian random field with exponential covariance, where the
correlation length and standard deviation are unknown. &

4.1.1 Discretisation of parameterised random fields

We have discussed the discretisation of Gaussian random fields in §3.2l We next
extend this to parameterised Gaussian measures.

In the following, we will be interested in solving hierarchical forward and hierar-
chical Bayesian inverse problems, as discussed in §1.4.2] To this end, we require
samples (K1,01), ..., (KN ONowp) ~ #1- We assume that sampling from p/ is pos-
sible and inexpensive. However, for each sample K, ~ u' we also need to sample
0, ~ K(-|k,) := N(m(k,),C(Kky)), for which we want to use a truncated KL ex-
pansion. This requires the assembly of the (dense) covariance matrix C(k,,), and
the computation of its leading Ny, eigenpairs. We abbreviate this process by the
function eigs(C(f), No) which returns U, = (a)’*(k,)1h:(kn)) . The complete
sampling procedure is given in Algorithm [1}

Algorithm 1: Sampling from a parameterised Gaussian measure u
for n € {1,..., Ngnp} do
Sample K, ~ '
U, < eigs(C(Kn), Nsto)
Sample & ~ N(0,Idy,,,)
0, +— m(k,) + V&
end

Parameterised Karhunen—Loéve expansion. In we study the truncation
error of the Karhunen—Loéve expansion of a Gaussian random field. We now extend
this study to parameterised Gaussian random fields. In this case, we compute a
parameterised KL expansion; hence the KL expansion is Gaussian and depends
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on the parameters. In particular, we discuss the choice of Ny, for parameterised
Gaussian random fields. Throughout the rest of this chapter, we assume that p”
has a finite second moment, i.e.

Assumption 4.3. [ ||0]51"(d8) = [[y, 015K (d0]k)p' (dk) < oo. &

This assumption is satisfied for Example |4.2] since K has a finite second moment,
and k lives in R — a compact space.
We move on to the parameterised KL expansion. Let

Nsto

e%vzijwmmgmmx (4.2)

where k ~ p/ and & ~ N(0,Idy,,). Note that @53 is an approximation to the
parameterised Gaussian random field @ ~ z”. The mean square error of @ and Ox;'
can be computed as follows:

E [0 - 62|%] // (
RxRNsto

Vai(k)€vi(k ) (0, Idn,, ) (d&)u'(dr)

i=Nsto+1

For Gaussian random fields Ny, is typically chosen such that the root mean square
error fulfills a certain threshold. For example,

N
Nyto 1= mm{N’ eN: Zoz, >A- Z%}7

=1 =1

where A is a fixed factor. Looking at the error bound in (3.1) we see that A
determines which amount of the total variance of the exact (Gaussian) random field
is captured by the truncated KL expansion. The same strategy can be applied for
parameterised Gaussian random fields. Let

N/
Nl — mm{N’EN ZO(Z ) > A- Zal mER,u'—a.s.)}
=1

be the number of terms that fulfils the threshold A for p/-a.e. parameter x € R.
Then, the mean square error is bounded by

o - o] <-4 Elie). (13)

Alternatively, it is possible to choose N, individually for p'-a.e. kK € R,

N
Ns’zoz—mln{N'GN Zaz ) >A- Zal }

=1
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This gives the truncated representation

sto

bto : Z \/ QL E ¢z 5 ~ N(O,Istto), K~ :u,)'

Clearly, the mean square error of this expansion fulfils the exact same error bound

as in (4.3)), i.e.

. 112

o o] | < - a)-E[101R).

However, the total number of terms in the expansion for a fixed parameter value
k = k might be smaller. Recall that the cost of the sampling depends (linearly)
on the number of KL terms. Observe that N2 is an upper bound for N%_, x € R.
Hence, using N%, is overall not more expensive than using N2l and the truncated
expansion satisfies the same error bound. Moreover, the numbers (N ).cr are a
priori unknown and have to be computed. To avoid this additional cost and to
simplify the following discussion, we use Ny, := N2 independently of x € R.

Optimal Karhunen—Loéve expansion for 6. Note that the parametric KL
expansion discussed above is a Gaussian KL expansion for fixed parameter k. How-
ever, it is strictly speaking not the KL expansion of the non-Gaussian random field
0 ~ 1". We now briefly discuss the actual Karhunen—Loéve expansion of 8. Let

C := Cov(8) := /RC(F;),u’ dk

be the covariance operator of 6. It is well-defined, since by assumption E[||6]%] <

oco. Now, let (a;, 77[]1)1 , be the family of eigenpairs of C. They are again ordered
descendingly in the eigenvalue, and the eigenfunctions form an orthonormal basis of
X.

Then, we can expand
= [ mtowtan) + Y VEE G (1.4
R i=1

To discretise the random field 8, we would now truncate the series in . Then,
we obtain indeed the optimal linear function approximating the random field with
Nito random variables, similarly to (3.2)). Unfortunately, (;);en are not necessarily
standard Gaussian random variables in this case. According to [96, §2.3.2], EZ
distributed as the random variable

(e[ m(n)u’(dm>>x,

for i € N. Hence, without already being able to sample from 6, we may not be able
to compute the distribution of the (&;)2;. Thus, even though being optimal, the
Karhunen—Loeve expansion of @ may be not of practical use in this setting.
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4.1.2 Tasks and computational cost

In we have discussed forward and inverse problems with hierarchical measures.
These will now be considered in the setting of hierarchical Gaussian random fields.
Compared to the non-hierarchical random field case, we have to tackle significantly
larger computational costs per sample. This is the case since we can neither pre-
compute the truncated KL expansion, nor perform all tasks with the standard Gaus-
sian vector € : Q — R™tw, We will now list the computational tasks we need to
execute to use Monte Carlo or MCMC in a hierarchical forward or inverse problem,
respectively.

From now on, we assume that we have discretised the parameter space with finite
elements; see . Hence, we set X := X, := R In the non-hierarchical case,
the following tasks have a computational cost that is independent of N, since we
can perform all the tasks in R¥t. These and other tasks are also listed in Schiéifer
et al. [224].

Sampling. We aim to use the parameterised KL expansion in for sampling.
Moreover, we use the most general algorithm that allows us to do so: we assemble the
covariance operator and then compute the first Ny, leading eigenpairs. The cost for
the assembly of the dense covariance matrix is of order O(N?; N, — o0). We assume
that the cost of a single function call eigs(-, Nyo) is of order O(N? - Nyo; Ny — 00).
This corresponds to an Implictly Restarted Lanczos Method, where p = O(Ng).
Note that this method is implemented in ARPACK (and thus, for instance, in
MATLAB) as eigs; see [33] [108] for details.

Thus, the total computational cost of the sampling method in Algorithm [1] is

O(Namp * (N7 + (Neto + 1)); Np — 00).

The largest contribution to the computational cost is the repeated computation of
the leading eigenpairs of C(k,,).

Memory. When solving a Bayesian inverse problem, we sample Ny, times from
the posterior

(Hl? 91)’ (’{27 02)7 trt (HNsmp7 eNsmp) ~ MLOSt’

Those samples shall be used to approximate uLOSt. Hence, we need to keep them in
the memory. There are now two possibilities: We keep the hyperparameter and the
complete random field (k,,0,) %, € (R x RN )N in the memory at a cost of

O((Nz + NR)Nsmp; Nsmp — OO)

Alternatively, we keep only (k,, &™)N, € (R x RNsw)Ne  where 6, = m(k,) +
U (k,)EM™. This is analoguous to working only with the KL mode ¢ in the non-
hierarchical case. This approach requires only a cost of

O((Nsto + NR)Nsmp; Nsmp — 00)7

note that Ny, < N,. However, 5(”) has no particular meaning without knowing
U(ky,), n =1,..., Ngnp. Hence, either (U (k)= have to be kept in memory or
recomputed. Keeping them in the memory is at least as expensive as keeping the
full random field in the memory. Recomputation is memory efficient, but requires
the same cost per random field access from the memory as sampling. Overall, this

should be more expensive, than keeping the full random field in the memory.
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Pseudo-inverse and pseudo-determinants. Since X is finite-dimensional, we
can define K (- |k) = N(m(k),C(x)) via the following density:

n(6;m(x),C(k)) = (det* (27C(x))) > exp (—%H(C(K)J“)l/z(é? - m(%))Hi) :

where A% is the (Moore-Penrose) pseudo-inverse of A and det™(A) is its pseudo-
determinant, i.e. the product of the non-zero eigenvalues of A. Here, n(-; m(x),C(k))
is a density with respect to the product of the Lebesgue measure on img(C(x)"/?)
and the Dirac measure concentrated in 0 on ker(C(x)/?).

There are particular cases, in which we need to evaluate this density. The example
we discuss in the following is a Metropolis-within-Gibbs algorithm in a hierarchical
Bayesian inverse problem. Consider a BIP, with fipior := p := 1/ ® K and likelihood
L(y'|-). We apply a Metropolis-within-Gibbs algorithm where we have Gibbs moves
alternating in - and k-direction. In 6-direction, we use a pCN proposal; recall
Example Note that we have defined the pCN proposal only for mean-zero
random fields. Therefore, we move the prior mean into the likelihood: We redefine
K(-|k) = N(0,C(k)) and L(y'|0,x) := L(y'|0 + m(k)). In k-direction, we apply
a general Metropolis—Hastings kernel. In this k-Metropolis—Hastings step, we need
to evaluate the density n(6; m(x),C(x)), for any proposed x. We give the resulting
MWG method as pseudo-code in Algorithm [2] In the algorithm, we need to evaluate

Algorithm 2: Metropolis-within-Gibbs to sample from the posterior mea-
sure ,ulzost of (k,0)
Let (K1, 01) := (K1,01) be the initial sample of the Markov chain.

for n € {2,..., Ngnp} do
Sample K, ~ qg(- |kn_1)

ap(Kn_1; K %min{l,gR(“nfl‘“*) n(8,1:0C(k.)) }

r(Kx|kn—1) n(0r—-1;0,C(Kn—1))
Sample Ug ~ Unif[0, 1]

if UR S ar then
| Kp < Ky

else
| Kp < Kpo1

end

Sample 6, ~ N(y/1 — 520,,_1, BC(K,,))
ax(0,150,)  min{1, L(y |6, +m(k,))/ Ly 10,1 +m(k,))}
Sample Uy ~ Unif[0, 1]
if Uy < ax then
| 0, 0,
else
| 0, 0,
end

end

the densities Ngynp times. Pseudo-determinant and pseudo-inverse can for instance
be computed with an incomplete spectral decomposition of C(k); truncated after
N eigenpairs. This leads to an overall computational cost of

O(Nsmp . Ng2 ‘ Nsto; Nsmp — OO)
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In this particular algorithm, the same eigendecomposition can then be reused with-
out further cost to sample 6,. Hence, the problem of computing pseudo-determinant
and pseudo-inverse reduces to a spectral decomposition.

4.2 Low-rank approximation of parameterised covariances

In §4.1.2] we have discussed various computational tasks we need to perform when
solving a hierarchical forward and inverse problem. In the following, we focus on the
eigenproblem since we can solve all the other problems using the spectral decom-
position we obtain from the eigenproblem. To solve the eigenproblems, we employ
a reduced basis surrogate. This is the cornerstone in the algorithm we present in
the following. To begin we explain the basic idea behind reduced basis approaches
for eigenproblems in §4.2.1] This approach is very similar to RB approaches for
parameterised PDEs, which we have briefly discussed in §3.4.1] There, we omitted
discussing the offline-online decomposition of the operators. As we explain in §4.2.2]
this step is vital for a fast construction of the reduced operators. For Matérn-type
covariance operators, an exact offline-online decomposition is not possible. In §4.2.3]
we discuss an approximate approach.

4.2.1 Basic idea

Let C : R — CO(X) be a measurable map, where (X, (-,-)x) := (R™ (- -)5,) is
a finite-dimensional space arising from the discretisation of an infinite-dimensional
function space (see . Recall that in Algorithm we need to solve the generalised
eigenproblem associated with C(k) for multiple parameter values k € R; see .
That is, we want to find (c;(k), (k)% € (R x X )N such that

C(k)Yi(k) = a;(k) M (k). (4.5)

X is in general high-dimensional, which results in a large computational cost for
solving the eigenproblems. However, it is often not necessary to consider the full
space X. If we assume that the eigenpairs corresponding to different parameter
values are closely related, then the space

span{v;(k) :i=1,..., Ngo, k € R} C X

can be approximated by a low dimensional subspace Xgrp, where Ngp := dim Xgp <
N,. We point out that the truncated KL expansion requires Ny, eigenpairs by
assumption. However, the reduced operators are Nrp X Nrp matrices with Nggp
eigenpairs. Hence, Nrg > Ny, is required.

Now, let W € ngB be an orthonormal basis of Xgrp with respect to the inner
product (-, ) xpp = (-,-)x = (-, )a,. W is called reduced basis and Xgp is called
reduced space. We can represent any function ¢ (k) € Xgp by a coefficient vector
w(k) € RVre | such that 1(k) = Ww(k). The reduced eigenproblem is obtained by
a Galerkin projection of the full eigenproblem in , and is again a generalised
eigenproblem. The task is to find (afB(k), wiB (k)= € (R x RVrB)Nsto guch that

1

CPB(k)wi(k) = afB (k) M®Pw;(k), i=1,..., Nyo. (4.6)
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In (4.6)), we have the reduced operator C?B (k) := W*C(x)W and the reduced Gramian
matriz MR8 = W*M,W, that are both Ny x Ngg matrices. The eigenvector
approximation in Xgp can then be obtained by

¢?B(K) :Wwi(’%)a 1= 1a-"7Nsto~

4.2.2 Offline-online decomposition

A reduced basis method typically has two phases. In the offline phase, the reduced
basis W is constructed. In the online phase, the reduced operator C®B(k) is as-
sembled and the reduced eigenproblem (4.6)) is solved for selected parameter values
k € R. To be able to shift a large part of the computational cost from the online
to the offline phase, we assume that the following offline-online decomposition is
available for the family of parameterised covariance operators.

Assumption 4.4. Let Ny, € N. We assume that there are functions Fj, : R — R
and linear operators C, k = 1,..., Ny, such that

Nlin

C(k) = Fu(k)Ck, K€ER
k=1
In this case, C(k) is called a linearly separable operator. O

Offline phase. We use snapshots of the full eigenvectors to construct the reduced
basis. Meaning that we choose a vector k,,,, € RNsnap and solve the full eigenproblem
({4.5) for all entrys of kg,,,. We then have

Winap = (@i (kE0) 18 =1, .., Nanap, i = 1, .., Nigo),

where all of the computed eigenfunctions are included and here represented as col-
umn vectors. Hence, we obtain a matrix Wyy,, € RY*MsteNemar - Moreover, we define
the reduced space Xgp := span(Wgap). Next, we construct an orthonormal basis for
this vector space, using the proper orthogonal decomposition; see §3.4.1] As result
of the POD we obtain a singular value decomposition of Wy, of the form

Wenap =U -2 - V7,

where ¥ := diag(oy,...,0y) is a diagonal matrix containing the singular values
of Wenap and each column of U = (u1,Us, . .., U(Ny,-Nowap)) CONtains the associated
orthonormal basis vectors. We use the basis vectors with non-zero singular values
as basis vectors of Xgg, that is,

W= (u;:0;>0,i=1,..., Nsto - Nenap)-

The magnitude of the singular values of Wy, is an indicator for the error when the
corresponding basis vectors are not included in W. See the corresponding discussion
in §3.2] for eigenvectors and eigenvalues. Neglecting reduced basis vectors, however,
is beneficial due to the smaller dimension of the reduced basis. Depending on the
pay-off of the dimension reduction compared to the approximation accuracy of the
reduced basis one can choose a threshold ¢ > 0 and work with the basis

W= (ul 205 >Q7i = 1""7Nst0 'Nsnap)'
In this case, we redefine Xgp := span(W).
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Remark 4.5. We have discussed the importance of significant dimension reduction
in reduced basis methods for PDEs in Example [3.14] This is mostly due to the full
operators being sparse and the reduced operators being dense.

Notably, in most cases the discretised KL eigenproblem results in a dense matrix
since the covariance integral operator is non-local. Hence, we expect a significant
reduction of the total computational cost even if the size of the reduced basis is only
slightly smaller than the number of unknowns in the unreduced eigenspace. &

As mentioned in §3.4.1] there are many options to choose the snapshot parameter
values Kgnap. In our applications « is a random variable k£ with probability measure

1'. Hence, a straightforward method is to sample independently l@éfl)ap ~ (s =
L, ..., Niap). Alternatively, one can select deterministic points in R, e.g. quadrature
nodes. We will come back to this question in where we discuss some numerical
experiments. Furthermore, note that it is generally possible to use different reduced
bases Wy, Wy, ... for different subsets Ry, Rs, -+ C R of hyperparameters and/or
index sets Iy, I, - -+ C {1,..., Nyo} of eigenpairs. However, we do not pursue these
ideas in this thesis.

Online phase. In the online phase we iterate over various hyperparameter values
k € R. In every step, we assemble the operator CRB(k), and then we solve the
associated eigenproblem (4.6). By Assumption it holds

NMin

C(k) =Y Fi(k)Cy.
k=1

Hence, the reduced operator can be assembled efficiently as follows,

NMin Nin Nin
C'B(k) = WY Fu(k)CW = Fe(n)W'CW =Y Fi(k)Ci".
k=1 k=1 k=1

The reduced operators CiP (k = 1,..., Ni,) can be computed in the offline phase
and stored in the memory. In the online phase, we then only need to compute
a certain linear combination of (CFB)Mn  This reduces the computational cost of
the assembly of the reduced operator significantly; we come back to this in §4.3.2]
After the assembly step, we solve the reduced eigenproblem to obtain the

eigenfunctions YRB(k) := Wuw;(k) € X and eigenvalues al®(k),i = 1,. .., No.

i

4.2.3 Matérn-type covariance operators

Matérn-type covariance operators are widely used in spatial statistics and uncer-
tainty quantification. They are particularly popular for modelling spatially variable
uncertainties in porous media. We are interested in solving the KL eigenproblem
with Matérn covariance operators with hyperparameters, e.g. the correlation length.
Unfortunately, the Matérn-type covariance operators are not linearly separable with
respect to the hyperparameters of interest; see Assumption [4.4] For this reason we
introduce and analyse a class of linearly separable covariance operators which can
approximate Matérn-type covariance operators with arbitrary accuracy.
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Definition 4.6 (Matérn). Let D C R? d = 1,2,3 be an open, bounded and con-
nected domain, and let X := L?(D;R). Furthermore, let A € (0,diam(D)),v €
(0,00],0 € (0,00). Define the covariance kernel ¢(v, A, o) : [0,00) — [0, 00) as

z (v, \o)(z) = % (\/2_V§>VKV (@;) ;

where K, is the modified Bessel function of the second kind. Then, the Matérn-type
covariance operator with smoothness v, standard deviation o and correlation length
A is given by

Clv,\o): X = X, p /an(:r)c(y, A, o) (dist(z, -))dz,

where dist : D x D — [0, 00) is the Euclidean distance in D. <&
A=0.001, v = 0.5 =001, =05 A=01,v=05 A=1,v=05
0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
0 0 0 WMW 0 W
-0.05 -0.05 -0.05 -0.05
-0.1 -0.1 -0.1 -0.1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
A=10.001,v=15 A=0.01,v=15 A=01,v=15 A=1,v=15
0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
o o 0 M 0 \_’\_
-0.05 -0.05 -0.05 -0.05
-0.1 -0.1 -0.1 -0.1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
A= 0.001, v = 0 A=0.01,v=0cc A=0.1,v=o00 A=1,v=00
0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
S
0 0 o \/\/ 0
-0.05 -0.05 -0.05 -0.05
-0.1 -0.1 -0.1 -0.1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 4.1. Samples of mean-zero Gaussian random fields in 1D with Matérn
covariance, with v € {0.5,1.5,00}, A € {0.001,0.01,0.1,1}, and o := 1. The samples
are discretised with 2000 piecewise constant finite elements, regularly distributed
over D = [0, 1].

We show samples of Gaussian random fields with Matérn-type covariance operators
in Figure 4.1 with various correlation lengths and smoothness parameters. There,
we see that the smoothness parameter indeed influences the smoothness of the ran-
dom field samples. The correlation length has the same influence that we have
already seen for the exponential covariance kernel in Figures Actually, the
exponential covariance kernel is contained in the Matérn class.

Remark 4.7. The exponential covariance operator in Examples and is a

Matérn-type covariance operator. Indeed, C(1/2,\,0) = Cg};’). &

In Example 4.2, we have discussed the possibility of using the standard deviation
o and the correlation length A as hyperparameters in a Matérn-type covariance op-
erator. What are the computational implications for the KL expansion? Changing
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o only rescales the KL eigenvalues and does not require a re-computation of the
KL expansion. However, changing the correlation length clearly changes the KL
eigenfunctions. We can see this in Figure [£.2] The good news is that the KL eigen-
functions for different correlation lengths are very similar, for example, the number
and location of extrema is preserved. This suggests that we might be able to con-
struct a useful reduced basis from selected snapshots of KL eigenpairs corresponding
to different correlation lengths.

Corr.len.: 0.01 0 Corr.len.: 0.1 Corr.len.: 1
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w -0.02

1

0 0.5 1 0.5 1

Figure 4.2. Eigenfunctions 1, 11 and 94 of the Matérn-type covariance operator
with correlation lengths A = 0.01,0.1,1 and smoothness v = 1/2.

Being able to construct and use the reduced basis efficiently requires the linear
separability of the covariance operator, see Assumption [4.4. The Matérn operator
is linearly separable with respect to o. Unfortunately, it is not linearly separable
with respect to A since the covariance function ¢(v, A, o) is not linearly separable.
However, it is possible to approximate C(v, A, o) with any precision by a linearly
separable operator. Using the approximate, linearly separable operator allows us to
construct an offline-online decomposition for the exact Matérn covariance operator
without the need to use advanced linearisation techniques, such as the discrete
empirical interpolation method. We show this in the remainder of this section for
v € (0,00)\N. Similar approximations for v € NU {oo} follow from the analyticity
of K,.

Assumption 4.8. The correlation length A satisfies 0 < A < A with fixed A. &

Definition 4.9. Let v € (0,00)\N and Ny, € 2N. Moreover, let Assumption
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hold. We define the Ny, -term approzimation of c(v, A, o) by
c(v, A, 0, Niin) (2)

_ o?mesce(mv) Ni? (V7z/A)2h2 - (V2 /N2 22
['(v) — 210k —v)(k— 1) 2 1D(k+v)(k— 1)’

The associated operator is then defined as

C(V )\ o, Nhn) X — X @ '—)/ V )\ g, Nhn)(dISt(x7))dx

&

Note that the operator 5(V, A, 0, Niin) is linearly separable w.r.t. A. In particular,
we have

Nin
C(V7 )‘7 g, Nlin) = Z Fk(l/, /\, O')Ck(lj)
k=1
Fe(v, M o) = —WC;C(WV) : AZ_Q? if & € 2N,
2 ey, itk €2N -1,
(v/v-dist(z,))* 2 .
Crep = Jpele 2k/2flr<k/2—u>(k/z—1>!dm’ if k € 2N,
. )(\/7 dlSt( ))2u+k 1 .
fD 90 l’ 2k/2+u 1/2F(k/2+1/2+y)(k/2 172)! diL‘, if £k € 2N — 1,
for any o € X.

The operator C(v, A\, g, Ny,) arises from a truncation of a series expansion of K.
This is detailed in the proof of the following lemma, where we derive an error bound
between the exact Matérn covariance operator C(v, A, o) and the linearly separable
approximation C| (v, A\, 0, Niin).-

Lemma 4.10. Let v € (0,00)\N, let Ny, € 2N and let Assumption [4.8 hold. Then,
IC(, A, 0, Niw) — C(1, A, 0) || x

: 2d7T|CSC(7TV)| 2v rnax Crzrl];[)l;n
< dlam(D) T(l + max) €xp A (Nlin)!,

where (pax := diam(D)/\.
Proof. Let v € (0,00)\N. Consider the function

f(u) : [0,00) — [0700)7 CHCVKV(C>

It holds f()(v2vz/\) = const(v, o)c(v, A, 0)(z), where const(v,0) > 0 is a constant
that does not depend on the correlation length A\. Moreover, we assume that we
work in a bounded computational domain D and that A is bounded from below by
a fixed positive constant A > 0 (see Assumption [4.8). Now, for v € (0,00)\N the
function f(,) can be written in terms of a series

_ mese(r) 1 ¢ 2%—2
2y (2% =Tk — o)k —1)! 22k—2+VF(k+u)(k—1)!)€ ‘

k=1
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This follows from the representations of K, and I, in [I, Equations 9.6.2, 9.6.10]. If
we truncate the series after the first Ny, /2 terms, we obtain the following function:

f N (€)

N]in/2

_ mesc(mv) 1 ¢ 2%k—2
B 2 Z (22k—2—VF(k —)(k—1) 222D (k + v)(k — 1)!) ¢

k=1

This (truncated) series expansion is associated with the integral operator
C(v, A\, 0, Nyiy) that is given by the kernel

’C“(V,)\,O',Nlin)<z) = f(Vlein)( QVZ/)\) . (47)

const(v, o)

Now, we bound the asymptotic truncation error. Assume w.l.o.g. that Ny, > v.
Note that in this case I'(k — v) > 1, and, moreover, ( > 0. Using the triangle
inequality we arrive at

Tlese(mv)|| < 1—¢* _
|f(Vlein) (C) - f(V) (C)| S0 k%—i_l <22kz—2—u1“(k _ V)(kf _ 1)') C2k 2
|cse(mv)| e 1 C\*?
< 91—v (1‘|—C2 )k:§1:+1 (F(k—l/)(k—l)') (5)
|ese(mv)| S 1 C\ 2
ST 0 2 (m) <§) |

The infinite sum on the right-hand side above can be bounded by the remainder
term of a Taylor series expansion of the exponential function with Ny, terms and
anchor point ¢ = 0. This gives

7|ese(mv)| 2 ¢?Niin

e ey () £

7T|CSC(7TV)’ 2v n21ax I%l];g(in . /
S T(l + Cmax) eXp 4 (Nlin)! =: const (Nlin)7

where (pax = diam(D)/A. Finally, let ¢ € X. By the Cauchy—Schwarz inequality it
holds

|f(V7Nlin)(C> - f(l/)(<>| <

"5(V7 )\7 g, Nlin)gp - C(l/, )\7 U)SOH,%(

_ /D < /D (E‘”’A’”’Nli“)(dist(x,x/))—c(u7)\,a)(dist(x,x’)))go(x)dx)Qdx’

< /D ( /D (AN (dist(z, 7)) — (v, )\,J)(dist(x,x’)))de) - ( /D <p(ac)2dx> dz’
< Leb(d)(D)? - const’(Niw)? - [|spl|%

< diam(D)*® - const’(N)? - [|o||%-
Taking the square root on both sides and dividing by ||¢||x gives the desired error
bound. O
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The covariance operator approximation brings new issues. The Matérn-type covari-
ance operators C(v, A, o) are valid covariance operators in CO(X). However, this is

not necessarily the case for C(v, \, o, Nii,). One can easily verify the following.

Lemma 4.11. The operator C(v, A, o, Niy) is self-adjoint, nuclear, and continuous.

Proof. The integral operator C(v, A, o, Ni,) is self-adjoint since the associated kernel
function is symmetric. The operator is nuclear since D is a bounded domain, and

/DE(I/, A, 0, Niin ) (dist(x, z))dx = ¢(v, A, 0, Ny ) (0) - Leb(d)(D) < 0.

The boundedness of D also implies the continuity of the operator. O

However, C(v, A\, 0, Niiy) is not necessarily positive definite. Under weak assump-
tions we can cure this by replacing C(v, A, o, Nji,) with an operator Co(v, A, 0, Ny )

which has the exact same eigenfunctions and positive eigenvalues as C(v, A, o, Ni,),

however, all negative eigenvalues are set to zero. Formally, we define Cy(v, \, o, Nyiy,)
by

[e.o]

a)(V,A707Nlin): Z &i(TZi@)Ji), (4.8)

i=1;0;>0

where (@, 1;)2, are eigenpairs of C(v, A, o, Nii) and the eigenfunctions are orthonor-
mal. Note that the same technique has been applied in [42] to remove the degeneracy
of multilevel sample covariance estimators. Fortunately, we can show that the ap-
proximation error of Co(v, A, 0, Ny, ) is of the same order as the error of C(v, A, 0, Ny ).

Lemma 4.12. The Matérn-type covariance operator C(v, A, o) and the approximate
operator Co(v, A, 0, Ny,) in (4.8)) satisfy

||50(V7 )‘70-7 Nlin) - C(V7 >\70->HX S 2||C(V7)‘707 Nlin) - C(V7 )\70-)HX

Proof. Let (A;)32, denote the eigenvalues of the operator C(v, A, o, Niiy). Without
loss of generality, we assume that the spectrum of C(v, A, o, Ny, ) contains a negative
eigenvalue. Since C(v, A, o, Ny, ) is trace-class, it holds |a;| — 0 for i — oo. Hence,

there is an eigenpair (Qumax, ¥max) Which realises the maximum in the expression

max |a;.
ieN: a;<0
Thus,
~ ~ s ~ ~
ICo(v, A 0, Nitw) = C(v, A0, Nin)[lx = || D @itk @ U|| = |-
i=1,0<0 "

Moreover, since C(v, A, o) is positive definite, we have

(Ymases C(, A, 7, Nin ) ma) x = 0> (Urnass C(V, A, 0) ) -
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Hence, we obtain

IC(v, A\, 0, Niin) — C(v, A, 0) ]| x
> | (s (C(1, A 7, Niiw) — C(1, A, 0))Voinas) x|
= (Yrmaxs C(V, Xy 0) i) x = (Wrnaxs C(1, X, 0, Nit) U x
= (Vrmaxs C(, A\, 0) Uma) x — Cimax (Vrmaxs Yinax) x

> [ Q|-

This gives the bound

HaO(V> )\7 g, Nlin) - C(Va )‘7 g, Nlin)HX S HC(V, )‘7 g, Nlin) - C(l/7 )\7 J)HX-
Finally, using the triangle inequality, we arrive at

||50(V7 >‘a g, Nlin) - C(V, )\7 O')HX
< |1Co(v, A, 0, Niw) — C(1, A, 0, Nu) || + |C(v, N, 0, Niw) — C(v, X\, 0)||x

< QHC(Vv )‘7 g, Nlin) - C<V7 )\, 0')”)(.

We summarise the results in Lemma [L.10H4.12 as follows.

Proposition 4.13. Let v € (0,00)\N. Under Assumption there is a linearly
separable, valid covariance operator Cy(v, A, o, Ny, ) € CO(X) consisting of Ny, € 2N
terms, such that

~ 2 2]\71i11
1Co(vs A 0, Nim) — C(v, A, o) < const”()(1 + €2 ) exp [ Smax | Smax”
4 ) ()

where (pax = diam(D)/A and const”(v) > 0 is a constant that depends only on
V. &

The expansion in has infinitely many terms. We truncate this expansion and
retain only the leading Ny, terms, denoting the resulting covariance operator by
CO<I/7 )‘7 g, Nlim Nsto)-
Finally, we discuss the sample path continuity; recall the discussion in §1.2.3] In
the following proposition, we show that this also holds for the realisations of the
Gaussian random fields with measure N(0,Cy(v, A, &, Njin, Nsto)), when representing
the measure on a space fine enough to consider continuity.
Let Z := RP be the set of functions from D to R. Moreover, let F be the cylindrical
o-algebra on Z. For the sake of simplicity, we assume that D := (0,1). We need
to construct a random field on Z that corresponds to N(O,go(u, A, 0, Niin, Nisto)) €
Prob(X). To this end, we construct a covariance function ¢o(v, A, o, Njin, Nyo) that
corresponds to the operator 50(1/, A, 0, Niin, Nsto). To define the covariance function,
we proceed as in and truncate after N, terms:

Nito
S, A 0, N, Nuo)(@,2) = D &i(y(2) -dy(2))  (w,2' € D), (4.9)

i=1;a;>0
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where N!

!, is chosen such that the sum above has Ny, terms, and (o, 1);) satisfy

aui(x / i(x)c(v, \, o, Ny )(dist(z, 2))dz (2' € D,i € N).

Moreover, (@;);en are ordered descendingly with respect to their modulus. The exis-
tence of the eigenpairs can be shown by iteratively applying [259, Proposition 3.2.2];
the enumeration as a sequence is possible, since [259, Proposition 3.2.8]. Thus,
co(V, A\, 0, Niin, Ngto) is well-defined. By construction it is indeed a covariance func-
tion; see Definition Note that the continuity of ¢o(v, A, 0, Njin, Nsto) is implied
by the 1;’s being continuous. This can be seen in ([4.9), where (v, A, o, Ny ) (dist (-, -))
is a continuous function. Let

sto

= Y Vagiix) (zeD), (4.10)

i=1;a;>0

where &, ~ N(0,1), i« € N. According to [3, Theorem 3.3.2], € is then a Gaussian
random field on (Z, F) with mean zero and covariance kernel ¢y(v, A, &, Njin, Nsto)-
Now, we can show that this Gaussian random field has continuous sample paths,
i.e. every realisation has a continuous modification; see Theorem [I.29 Note that
we will refer to the precisely defined random variable 6. Since this random variable
is not implicitly defined by its probability measure, we can consider continuity of 6
immediately, not up to its modifications.

Proposition 4.14. Let 6 be given as in (4.10). Then, realisations of € are contin-
uous.

Proof. We consider a realisation

sto

= Y Vagii(x) (zeD)

i=1;a;>0

of 8. Hence, §; € R,: € N are deterministic values. Now, 6 is a continuous function,
if the 1);’s are continuous functions. As mentioned before, this is true due to (4.9).

[]

We now comment on the error bound given in Lemma [£.10/and Proposition [4.13] As
Ny, increases, the error bound goes to zero, asymptotlcally like O(1/(Niin!); Nijn —

o0). However, when the lower bound of the correlation length ) is small, the pref-
actor of the error bound explodes like O(exp(A2); A | 0). Hence, for small ), a
very large number of terms Ny, is required to obtain a small error. In addition, for
large Ny, numerical cancellations occur and reduce the accuracy of the approxima-
tion. We show this for the exponential covariance in Figure where we plot the
truncation error

sup le(v, A, 0, Ny ) (2) — e(v, A, 0)(2)], (4.11)
2€[0,V2|,AE[A V2]

where v = 1/2 refers to the exponential covariance and o = 1, for different choices
of Ni, and A. We clearly see that the linearisation technique in Definition is not
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Figure 4.3. Error in the exponential covariance kernel when using the truncated
linearisation in Definition for different numbers of terms Ny, = 1,...,100 and
different minimal correlation lengths A = 1E-1.5,...,1E1.5.

suitable for very small correlation lengths. In such a case, one could use alternative
linearisation techniques, e.g. a polynomial chaos expansions in A, a Taylor expansion
of the Fourier representation of the Matérn kernel, or empirical interpolation.
Until now we considered the estimation of A and o, but not the estimation of v.
We comment on this in the following remark. Note further that the estimation of
the smoothness v of a Gaussian random field is studied, for instance, in the PhD
thesis [I16), §4], where a maximum-likelihood type estimation of the smoothness is
performed.

Remark 4.15. For the Matérn kernel, the map v +— (¥ K, (() is analytic for fixed ¢ >
0. Hence a linearisation as discussed in this section is generally possible. However,
we expect that a reduced basis approach is not an efficient way to estimate the
smoothness of a random field. Note that the smoothness parameter determines the
smoothness of the random field realisations and shape of the eigenfunctions. To
accurately represent functions with variable smoothnesses one would need separate
reduced bases for each value of the smoothness parameter since otherwise we cannot
guarantee mathematically that the random field sample is a.s. in the correct function
space. We expect that over a small range of smoothness parameters a reduced basis
could be constructed, however, the potential computational savings are limited.

&

4.3 Reduced basis sampling

In §4.1.2) we have discussed sampling from a Markov kernel, or, equivalently, a
parameterised Gaussian measure

K(-|r) = N(m(k),C(r)),

where k ~ /. Now, in §4.3.1] to reduce the computational cost, we combine Algo-
rithm [1] and reduced bases. We discuss the computational cost of the offline and the
online phase of the suggested reduced basis sampling in §4.3.2] Finally, in we
explain how the reduced basis induces an alternative expansion for the parameterised
Gaussian random field.
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4.3.1 Algorithm

First, we describe the offline phase of the reduced basis sampling. We use a POD
approach to compute a reduced basis W for C(-). Here, it is important that the
dimension of Xgp = span(W) is larger than Ng,. Furthermore, we assume that C(-)
fulfils Assumption [.4] i.e., it has the linearly separable form

Min

Having constructed the reduced basis W, we compute CRB = W*C,W. k = 1,..., Njjn.
Then, we proceed with the online phase (see Algorithm . We iterate over n =

Algorithm 3: Reduced basis sampling from the parameterised Gaussian
measure
forn e {1,..., Nymp} do
Sample Kk, ~ i’
CRB(k,) = TN F (1, )R
\IJSB(RTZ) — eigS(CRB(Hn)7 Nsto)
U, (k) «+ WUEB(k,)
Sample € ~ N(07 Istto)
Op < m(Kky,) + ¥V, (Kk,)E
end

L,..., Ngmp- In each step, we first sample k, ~ p/. Then, we evaluate the re-
duced covariance operator CRP(k,,), compute the eigenpairs (aRP(k,,), wiP(k,)) e
of C*¥(k,,), and return URB(k,) = ( alfB(k, ) wiB (k) i=1,... ,Nst0>. Next,
we compute the representation of U8 (k,,) on the full space X, that is, U, (k,) :=
WURB(k,). Finally, we proceed as in Algorithm : We sample a multivariate
standard Gaussian random variable with Ny, components and return m(k,) +

U, (k)€ ~ N(m(k,),CRBNste(k,)). The covariance operator is given by

CRBNsto (g ) = W, (K ) W (K) ™.

4.3.2 Computational cost of reduced basis sampling

We assume again that X := X, := R™. The number of solves of the full eigenprob-
lem in the offline phase is Ngu.p. We consider the following assumptions throughout
the rest of the chapter. We will see that these are crucial to obtain a speed-up with
reduced basis sampling.

Assumption 4.16. Let Ngap < Nymp; Nsto < Nrp < N;. Moreover, assume that
C(x) and C*B(k) are dense matrices for x € R. &

The computational cost of the tasks in the offline phase is given in Table The
total offline cost is

()(‘N'snaupj\ff2 + NsnapNZZNsto + NsnapNZZNsto; NZ — OO)
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Task Computational Cost
Construct the full operator | O(NgyapN7)

Solve the full eigenproblem | O(Ngap N7 Nito)
POD O(Nynap N? No)

Table 4.1. Computational cost of the offline phase.

Since Ngnap K Nemp the offline cost is asymptotically much cheaper than the cost of
Algorithm [I] where we solve the full eigenproblem for each sample.

The computational cost of the tasks in the online phase is given in Table 1.2 The
total online cost is

O(NsmlegBNlin + NsmpNIQ{BNsto + NsmpNRBNE; NE — OO)

In the online phase, we solve the covariance eigenproblems in the reduced space.

Task Computational Cost
Construct the reduced operator O(Nguup N3 Niin)
Solve the reduced eigenproblem O (NempNEg Nto)
Map the reduced solution to the full space | O(NgmpNrsNe)

Table 4.2. Computational cost of the online phase.

The high-dimensional full space X is only required when we map the reduced sample
to X. The cost of these steps is linear in the dimension N, of X and quadratic in
the dimension of the reduced basis Ngp for every sample. In contrast, the cost of
Algorithm [1] is at least quadratic in /Ny, for every sample. Hence, for every sample,
we need to solve an O(Ny; Ny — o) problem using RB, but an O(NZ; Ny — o)
problem in the full space. This clearly demonstrates the advantages of RB sampling.
In §4.1.2] we have also discussed computing pseudo-determinants and pseudo-inverses
of C(k), as further tasks. Recall that when we sample with the KL expansion, we
compute the spectral expansion of C(x). Using the spectral expansion, we can easily
compute det*(C(k)) = det™ (C*B(k)) since W is orthonormal. We can also compute
CRB(k)T. However, representing C(x)* := WCRB(k)TW* is computationally ineffi-
cient. It costs O(N?; N, — o) in time and memory. In the next section, we will
see that we can often work with C*® (k)™ and do not need to express the full size
operator C(k)™".

4.3.3 Reduced basis random field expansion and MCMC

In §4.1.2] we have discussed the challenging memory consumption in hierarchical
UQ. In the following, we explain an efficient way to represent the random fields on
the reduced basis.

Observe that the reduced basis enables a natural compression of the full random
field 6. Let (k,0) ~ p = ' ® K. Moreover, we assume that the mean function
m(-) can be represented on the reduced basis, i.e. WW*m(k) = m(k), k € R. The
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reduced basis implies the representation
0 =m(k) + Yy (k) =W - (W*m(k) + VU585 (k)E)
for some € ~ N(0,Idy,,, ). We can represent 8 in terms of
O = (W) + WEP(k)€) € LA(0; RY), (4.12)

which gives the reduced basis expansion @ = W Ogg, of the random field 8. Note that
Org ~ N(W*m(k),CR'BNse (k) is a Gaussian random variable on the reduced space
Xrp = R¥&8_ for fixed k = k. Hence, we can fully represent random field samples
0 : Q — R by (k,0gp) : Q — RVr+tNre. Note that typically Ng + Ngp < Ny.
Moreover, since we keep W in the memory, we can reproduce § = Wlgg from 6rp
computationally efficiently in O(NZgNe; Ny — 00).

We now consider again the hierarchical Bayesian inverse problem from §4.1.2] Recall
the Metropolis-within-Gibbs method that we have described in Algorithm To
compute the acceptance probability of the k-proposal, we need to construct and
evaluate the probability density function of @. This involves computing the pseudo-
determinant of C(k), as well as its pseudo-inverse. At the end of §4.3.2] we have
discussed that the pseudo-determinant can be approximated computationally fast,
but that the pseudo-inverse on the full space X is inefficient. Instead, we can
rephrase the Bayesian inverse problem in terms of the reduced basis expansion.
Let L(y'|-) : X — R be the likelihood, K(-|x) := N(m(x),C(k)), and fiprior :=
@' @ K € Prob(R x X) be the prior of the original problem. We again centre the
prior measure, and set

L(y'|k, 0) := L(y'|m(x) + 0), K(-|k) :=N(0,C(k)) (k€ R,0 € X).

We define LEB(yf|k, O8B) := L(yt|m(k)+WORB), and KRE(-|k) := N(0, CRB:Nswo (k).
Note that here %8 given kK = k is always centred Gaussian, and thus we do not
need to be able to represent m(x) on W, k € R. We consider the resulting BIP with
parameter space R x Xgg, prior g, = p/K*P and likelihood LRP(y'|-). Now,
we approach this BIP with MWG. We call this method Reduced Basis MCMC' and
summarise it in Algorithm Notably, the computational cost of the Gibbs step
in k-direction is indepedent of N,. In the 6-direction, we still need to evaluate the
likelihood that requires the full random field 8 = W0gg.

4.4 Numerical experiments

In this section we illustrate and verify the reduced basis sampling for use with for-
ward and Bayesian inverse problems. We start by measuring runtime and accuracy
of the reduced basis approximation to the parametric KL eigenproblems. In Exam-
ple we consider a forward and a Bayesian inverse problem in a low-dimensional
test setting. This allows us to compare the reduced basis sampling with the samples
obtained by using the full, unreduced KL eigenproblems. We then move on to high-
dimensional estimation problems in Examples Note that we are not able
to compute reference solutions in the high-dimensional test cases within a reasonable
amount of time since these are computationally very expensive. Nevertheless, these
examples are a proof-of-concept and showcase potential applications.
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Algorithm 4: Reduced Basis Markov Chain Monte Carlo

Let (Ko, Orp,o) € RV:ET! be the initial state of the Markov chain.
for n € {1,..., Ngnp} do
Sample K. ~ qr(-|Kn_1)

. 3 qr(kn—1|k+) n(eRB,n—l?W*m(n*)chB’NSto(R*))
CLR(K‘,n,h K,*) <— min {1, qr(Fx|fn—1) D(ORB.n_1;W*m(n_1),CRBNsto (K 1))

Sample U i ~ Unif|0, 1]

if Ur < apr then
| Kp & Ky

else
| Rp — Kp—1

end

Sample Oy ~ N(y/1 — 320rp -1, BCRPNte(Ky,))
ax(OrBn-1;0gp) ¢ min{l, LRB(?J”"&m OEB)/LRB(?J”’%, OrBn-1)}
Sample U x ~ Unif]0, 1]
if Uy < ay then

| OrB, <+ Oxp
else

| OrBn < OrB 1
end

end

In Examples |4.19H4.20, we consider the elliptic PDE

=V (exp(b(2))Vu(z)) = f(z)  (z€D) (4.13)

on the unit square domain D = (0, 1)? together with suitable boundary conditions.
Subject to Dirichlet boundary conditions, we have discussed this PDE thoroughly
in Examples [1.4 and the stochastic version in Example [1.37] The PDE
is discretised with linear, continuous finite elements on a uniform, triangular mesh.
The coefficient function 6 is a parameterised Gaussian random field with exponen-
tial covariance operator, and random correlation length and standard deviation,
respectively (see Example . The spatial discretisation of # is done with piece-
wise constant finite elements on a uniform, rectangular mesh. The evaluation of
the covariance operator on this finite element space requires to evaluate an integral.
We approximate this integral using a composite midpoint rule, with one quadrature
node in each finite element.

We further discretise € by a truncated KL expansion where we retain the leading
Ny, terms. The parameter Ny, is selected such that the truncated KL captures
at least 90% of the total variance. We list the random field parameters for Exam-
ples in Table We introduce the estimation problems in more detail
in the following subsections. Moreover, we refer to Remark concerning the
well-posedness of the elliptic Bayesian inverse problem and to Remark for the
well-posedness of hierarchical BIPs. Note that we solve the test problems in Exam-
ples [4.18H4.21] using the reduced basis samplers presented in

112



Chapter 4. Exploring hierarchical random fields.

Example 4.18] Example |4.19] Example [4.20, Example 4.21
o 1 0.1 0.5 0.1
o 1 1 0.5 1
My 1 0.5 0.5 0.5
o2 0 0.1 0 0.1
A 0.3 0.3 0.3 0.1
Ngto 200 100 100 800

Table 4.3. Random field parameters in Examples 4.21

4.4.1 Accuracy and speed up

First we assess the accuracy and time consumption of the reduced basis approxima-
tion. We measure the quality of the reduced basis surrogate by comparing reduced
basis eigenvalues with full eigenvalues in a simplified setting. The full matriz is
the finite element approximation of Céilgl) with 100 x 100 piecewise constant finite
elements. The goal is to compute the leading 100 eigenpairs of Céi‘f)l) for selected
values A € [0.1, \/5] We compute reference solutions for A = 0.1,0.5, 1.4 using the
full matrix. The reduced basis is constructed using 10 snapshots

1
)\snap: (—2_1/2+S :S:O,...,9>.

We compute the leading 100 eigenpairs for all correlation lengths in Agpap, and
assemble the associated eigenvectors in a single matrix. Then we apply the POD
and retain Ngg = 2!,...,2!% orthonormal basis vectors. Recall that the offline-
online decomposition requires a linearisation of the covariance operator (see .
Throughout this section (§4.4)) we retain Ny, = 39 linearisation terms. In this case,
the truncation error defined in is equal to 9.09E-5 for the linearisation.

Corr. len. = 0.1 Corr. len. = 0.5 Corr. len. = 1.4
10° 10° 10°
o @ o @ 5 @y
=1 et =1 et =1 — O
5 10 £ 105 1 5 105 1
m %100 m %100 m “100
~ ~ ~
2 2 o4n-10 i
E E 10 E 10710
o] 5 ) )
~ 10 ~ ~
10°1° 10715
o1 25 29 218 o1 5 29 218 o1 5 29 213
Nrp Nrp Nrp

Figure 4.4. Relative reduced basis error of the eigenvalues aq (), a10(N), a100(A)
for correlation lengths A = 0.1,0.5,1.4 and reduced basis dimensions Ngp =
ol ..., 213

We plot the relative error of the reduced eigenvalue compared to the exact eigenvalue
in Figure [4.4] for various reduced basis dimensions Ngg. Note that it is not possible
to compute eigenvalues with an index larger than Ngg. For A = 0.1 the relative
RB error stagnates at a level that is not smaller than 1E-6. In further experiments
not reported here we observed that this stagnation is caused by the linearisation
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error of the covariance kernel (recall that we use Ny, = 39 terms with an error
of order 1E-5). We remark that the mean square error of the MC and MCMC
estimation results in this section is of order O(1E-4). Hence, an eigenvalue error of
magnitude O(1E-6) is acceptable. We point out, however, that a full error analysis
of the reduced basis samplers (including the linearisation and RB error) is beyond
the scope of this study; see only Remark [4.17] For A = 0.5 and A = 1.4, we achieve
an accuracy of order 1E-6 for Ngg ~ 128. For Ngp > 128, the relative errors are of
the size of the machine epsilon. This error is unnecessarily much smaller than the
sampling error mentioned above and introduces a higher computational cost in the
online phase. Hence, in our test problems Nrp = 128 would be a sufficient choice.

Remark 4.17. We note that the eigenvalues of the covariance operator correspond
to the variance in the direction of the associated eigenvector. This is indeed implic-
itly contained in the statement . Hence, we anticipate to be able to balance
between the eigenvalue error (here, O(1E-6)), the mean square sampling error (here,
O(1E-4)), and the error in the covariance function (here, O(1E-5)); note that after
all each of these values refers to variances. <&

To explore the speed-ups that are possible with reduced basis sampling we repeat
the experiment. This time we vary the dimension of the finite element space and
use N, = 4%, ...,47. The dimension of the reduced basis is fixed with Ngg = 256.
We plot the test results in Figure 4.5 The time measurements correspond to serial
simulations in MATLAB with an Intel i7 (2.6 Ghz) CPU and 16 GB RAM memory.
The dashed lines show the theoretical asymptotic behaviour, that is, O(Ny; N, — 00)
for the reduced basis sampling and O(N?; N, — o) for the full sampling. We see

Corr. length = 0.1 Corr. length = 0.5 Corr. length = 1.4

2
— 102 RB — 10 Eﬁ
g g 5 4
E 10 g 10 >
+ + 2
g 100 g 10°
o o
&0 8L -
= 10 == = 10 ==
1072 1072
44 45 48 47 44 45 48 47

Figure 4.5. Timings for the full and reduced problem with different FE resolutions
and correlation lengths. The elapsed time is shown as solid line, and the asymptotic
behaviour is shown as dashed line.

that the theoretical and observed timings for the full sampling are almost identical.
In contrast, the observed timings for RB sampling are smaller than predicted by the
theory. This is caused by the fact that the dimension N, of the finite element space
is quite small. As N, increases we observe a massive speed-up of the reduced basis
sampling compared to the full sampling. For example, for N; = 47 the reduced basis
sampling requires less than 1E-1 seconds, while the full sampling requires several
minutes. In this case the speed-up in the online phase is of order O(1E3).

For the estimation problems in Examples|4.18-4.21] we use Monte Carlo and Markov
Chain Monte Carlo with 1E4 up to 1.5E5 samples and a random field resolution with
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N, = 256 x 256 finite elements in space. In these cases, MC and MCMC estimations
based on the full KL eigenproblem would take from a couple of days up to a couple
of years to terminate; considering the current computational capability. In contrast,
the (serial) run-time of the reduced basis sampling is ~ 15 minutes in Example m
and ~ 18 hours in Example [4.21] Of course, standard Monte Carlo simulations are
trivially parallelisable. MCMC is a serial algorithm by design, and parallelisation
is not trivial, see, e.g. [251] for suitable strategies. Our experiments show that RB
sampling can reduce the computational cost without the need for parallelisation.

4.4.2 Verification of reduced basis sampling

Next, we test the accuracy of RB sampling using coarse spatial discretisations. This
allows us to obtain reference solutions in a reasonable amount of time.

Example 4.18. Let u be the joint probability measure from Example [4.2] together
with the parameter values given in Table[t.3] We discretise the random field 6 ~ p”
using 322 finite elements. The test problems are as follows.

(a) Forward uncertainty propagation: We consider a flow cell in 2D with log-
permeability 6. See Example for the definition of the flow cell. Given
the random coefficient 8, we want to estimate the probability distribution of
the outflow over the boundary Q(0). We discretise the PDE with 216 finite
elements.

(b) Bayesian inverse problem: We observe a random field realisation on D = (0,1)?
at nine points in the spatial domain

Dops :=={(n/4,m/4) :n,m = 1,2,3}.

In each of the points we observe the value y' := 0.1, which we assume to be
noisy. We want to reconstruct the random field. The prior measure is p as
specified above. The likelihood is given by

L(0.1]8) o exp <_ﬁ 3 (0.1—9(:15))2>.

€ Dobs

We want to estimate the posterior mean and variance of the correlation length
A given the data y. In addition, we compute the model evidence. Note that this
test problem is similar to Example in Chapter [I], see also the corresponding
Figure |1.3]

&

We solve the test problems in Example [4.18(a)—(b) with Monte Carlo. In part
(b), we use Importance Sampling with samples from the prior as proposal; recall
for an introduction and particularly Remark We solve (a) and (b) with
reduced basis sampling as well as standard sampling based on the full (discretised)
eigenvectors of the parameterised covariance operator. The standard sampling serves
as reference solution for the reduced basis sampling. The reduced basis is constructed
using the snapshot correlation lengths A**P = (0.322,0.433,0.664, 1.414); these are
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simply the inverses of four equidistant points in the interval [1/v/2,3.11] including
the boundary points. This choice clusters snapshots near zero which is desirable
due to the singularity of the exponential covariance at A = 0. We apply the POD
to construct three reduced bases with different accuracies o? := 1E-1, 1E-5, 1E-9.
For each of the settings, we run 61 Monte Carlo simulations with 1E4 samples each
to estimate the mean and the variance of the pushforward measure p”(Q € -) in
part (a), as well as the posterior mean, posterior variance and model evidence in the
Bayesian inverse setting in part (b). We compute a reference solution for all those
quantities by using 6.15E5 samples. With respect to the reference solutions, we
compute the relative error of the 61 estimates in each setting. In Table [d.4] we give
the means and the associated standard deviations (StD) of the relative errors. We
observe that the (mean of the) relative error is of order O(1E-2) down to O(1E-3).
Moreover, in Table we list the sample mean of the error between the full co-
variance operators and their representations on the reduced basis, measured in the
Frobenius norm. That is, we list the Monte Carlo estimate using 6.15E5 samples of
the expression

E [[lce — CEBw|p] = /R [C™e (1) — CHEe ()| dpd ().

We observe that the error decreases as we include more vectors in the reduced basis,
as expected.

a? 1E-1 (StD)  1E5 (StD)  1E9 (StD)
Pushforward mean 0.0055 (0.0041)  0.0057 (0.0051)  0.0054 (0.0040)
Pushforward variance | 0.0451 (0.0262) 0.0442 (0.0352) 0.0321 (0.0282)
Evidence 0.0147  (0.0262) 0.0122  (0.0352) 0.0154 (0.0282)
Posterior mean 0.0087  (0.0070) 0.0075  (0.0062) 0.0082 (0.0063)
Posterior variance 0.0856  (0.0691) 0.0733  (0.0608) 0.0807 (0.0619)
Mean covariance error | 2.609E-4 1.240E-7 3.606E-11

Table 4.4. Verification. Relative errors in the Monte Carlo estimation of the
mean and variance of the pushforward measure, and posterior mean, posterior
variance, and model evidence in the Bayesian inverse problem (Example .
Each error value is the mean taken over 61 simulations with 1E4 samples each.
The simulations are performed with reduced basis sampling with POD accuracies
02 = 1E-1,1E-5,1E-9. The relative errors are computed with respect to a reference
solution computed with 6.15E5 samples based on the full eigenproblem. In the last
line of the table, we list the mean error between the full covariance operator and
the operator represented in the reduced basis, measured in the Frobenius norm.

4.4.3 Forward uncertainty propagation

Next we study the forward uncertainty propagation of a hierarchical random field
given as the diffusion coefficient in an elliptic PDE operator.

Example 4.19. Consider a flow cell problem on D = (0,1)? where the flow takes
place in the x;-direction. Hence, we consider the PDE from (4.13]), subject to the
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following boundary conditions,

u(z) =0 (z e {1} x[0,1]),
u(r) =1 (x € {0} x0,1]),

g_g(x) =0 (z€(0,1)x{0,1}).

There are no sources within the flow cell (f = 0). The random field 6 is as in
Example with the parameters given in Table [£.3] The PDE is discretised with
2 x 1282 finite elements, and the random field with 256 finite elements. The quantity
of interest is the outflow over the (western) boundary I'oy := {0} x [0, 1]. It can be
approximated by

Q0) = —/Da(Q)Vu - Vipde,

where ¥|p\r.., = 0 and ¥|p,,, ~ 1; see, e.g. [74]. We discretise the outflow using
a piecewise linear, continuous finite element function ¢ on the same mesh that we
used for the PDE discretisation. <&

The log-permeability is modelled as a parameterised Gaussian random field. We
employ the reduced basis sampling with Ngg = 191. We construct the reduced basis
analogously to the simple test setting in §4.4.2] However, now we let Ny, = 100,
and remove vectors from the POD where the corresponding squared singular value
is smaller than o2 = 1E-10; see also §4.2.2]

We estimate the mean and variance of the output quantity of interest. We compare
24 estimations by computing the associated coefficient of variation (cv) for the mean
and variance estimator, respectively. The cv is defined as the ratio of the standard
deviation of the estimator and the absolute value of its mean. We present the
estimation results in Table The small cv tells us that Ny, = 1E4 samples were

Mean  (cv) Variance (cv)
MC estimate | 157.286 (0.0028) 30122  (0.0355)

Table 4.5. Hierarchical forward problem. Mean and variance estimates with 1E4
samples (Example [4.19). We compare these estimates to 23 further simulation
results by computing the coefficient of variation within the 24 estimates.

sufficient to estimate the pushforward measure of the quantity of interest, as well as
its mean and variance. Note that with the reduced basis sampling a single Monte
Carlo simulation run took about 18 minutes.

4.4.4 Hierarchical Bayesian inverse problem

We consider two hierarchical Bayesian inverse problems based on random fields.
Note that we use again 2562 finite elements to discretise the random fields in both
problems and 2 x 128 finite elements to discretise the elliptic PDE in Example |4.20]

Example 4.20. Consider the Bayesian estimation of a random field and its corre-
lation length. The true underlying random field is propagated through the elliptic
PDE (4.13)) together with Dirichlet boundary conditions

u(z) =0 (x €0D),
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and 9 Gaussian-type source terms

3

We observe the solution u at 49 locations. In particular, the observation operator is
given by
O(u) == (u(n/8,m/8) :n,m=1,...,7).

The (synthetic) observations are generated with log-permeability fields that are

Pressure head

Pressure head

Figure 4.6. Synthetic solution p observed in the hierarchical Bayesian inverse
problem (Example . The black lines indicate the measurement locations. The
figures show the model output for a log-permeability with correlation length A = 0.5
(left) and A = 1.1 (right), respectively.

samples of a Gaussian random field with exponential covariance operator with
A € {05,1.1} and 0 = /1/2. We show the corresponding PDE outputs and
the measurement locations in Figure 4.6f The Gaussian random fields have been
sampled with the full (unreduced) Ny, = 100 leading KL terms. Every observation
is perturbed with i.i.d. Gaussian noise m; ~ N(0, 1E-6). We use the measure u in
Example with parameter values given in Table as prior measure. &

This example matches the elliptic inverse problem discussed in Example

Example 4.21. Consider the Bayesian estimation of a Gaussian random field to-
gether with its standard deviation and correlation length. We observe the field di-
rectly, however, the observations are again noisy. The estimations are performed
with two data sets that have been generated with fixed hyperparameters \ &€
{0.2,1.1} and o = 1/(v/2 - 256). We set ¢ = 1/4/2 and rescale the KL eigen-
functions by 1/256. The random field discretisation uses an N, = 800 dimensional
full (unreduced) KL basis. We observe the random field at 2500 positions. Each ob-
servation is perturbed by i.i.d. Gaussian noise 1, ~ N(0, 1E-6). The prior measure
is the measure p in Example 4.2/ with parameter values given Table 4.3 <&
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Note that in Examples we use the same PDE and random field discretisa-
tion for the generation of the data and the estimation problem. The reason is that
we are mainly interested in the reduced basis error and not in the reconstruction
error of the inverse problem. Note further that in Examples the stan-
dard deviation o = \/m is fixed a priori, and is not estimated. The hierarchical
Bayesian inverse problems in Examples [4.20H4.21] are well-posed since they satisfy
the conditions of Corollary see also Remark [2.9]

Observations from PDE output. We consider Example [4.20] and the settings
in Table 4.3] The Reduced Basis MCMC method presented in Algorithm [4]is used
to sample from the posterior measure. The correlation length A € [0.3,1/2]. Since
this is the same range as in Example we reuse the reduced basis computed in
Example . Recall that the standard deviation o = 1/ V2 of the random field 6 is
fixed and not estimated. Moreover, we assume that the observational noise is given
by n ~ N(0,1E-3 - Id). This corresponds to a noise level of V1E-3/|y|ly ~ 0.6%.
We perform experiments for two synthetic data sets with A = 0.5 and A = 1.1,
respectively. For both data sets we compute a Markov chain of length Ngy,, = 1E5.
To avoid burn-in effects the initial states are chosen close to the true parameter
values for the Markov chains. In a setting with real world data it is often possible
to obtain suitable initial states with Sequential Monte Carlo, see §f]

Correlation length True random field
T T T

I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 0 0.5 1

Posterior mean estimate

RB mode 100 x10*
. . . .

- ettt o i

o 1 2 s 4 5 s 7 s s 10 o o 1
x10*

Figure 4.7. PDE-based hierarchical BIP with short true correlation length. Re-
sults of the MCMC estimation (Example A = 0.5). The top-right plot shows
the synthetic truth together with the measurement locations (black dots). Below
we plot the posterior mean estimate computed with MCMC. The four path plots
on the left side of the figure show the Markov chains for the correlation length A,
and the reduced basis modes (Orp)1, (0rB)10, and (OrB)100, respectively. The red
lines mark the truth.

The estimation results are depicted in Figure and Figure We observe in
both figures that the Markov chain for A mixes very fast, however, it takes some
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Correlation length True random field
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Figure 4.8. PDE-based hierarchical BIP with long true correlation length. Results
of the MCMC estimation (Example A = 1.1). The top-right plot shows the
synthetic truth together with the measurement locations (black dots). Below we
plot the posterior mean estimate computed with MCMC. The four path plots on
the left side of the figure show the Markov chains for the correlation length A, and
the reduced basis modes (Orp)1, (0rB)10, and (OrB)100, respectively. The red lines
mark the truth.

time for the Markov chains of the reduced basis modes to explore the whole space.
To investigate this further we conduct a heuristic convergence analysis. To this end
we consider multiple Markov chains; see in [213, §12.1.2] for a review of MCMC
convergence analysis with multiple Markov chains. For each of the two test data
sets, we compute 4 additional Markov chains starting at different initial states. In
results not reported here, we observed a similar mixing and coverage of the parameter
space of the additional chains. Given these mixing properties, it can reasonably be
assumed that the Markov chains have reached the stationary regime.

Moreover, we have computed posterior mean and posterior variance of the correlation
length parameter A for each of the 5 Markov chains. The accuracy of these estimates
is assessed by computing the coefficient of variation within these five estimates. We
tabulate the posterior mean and variance estimates for A of a single Markov chain
as well as the associated cvs in Table The single Markov chains in this table
are the chains shown in Figures 4.8, The coefficients of variation of the posterior
mean and variance estimates are considerably small. This tells us that the posterior
mean and variance estimates are reasonably accurate.

Discussion of the estimation results. The correlation length is underestimated
in both cases. In the first case, where the true parameter is given by A = 0.5, the
posterior mean is close to the true parameter. The relative distance between truth
and posterior mean is about 18%. In the second setting, where in truth A = 1.1,
the posterior mean is far away from the true parameter. Here, the relative distance
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Mean  (cv) Variance (cv)
MCMC A given y (Truth: A = 0.5) | 0.4105 (0.0040) 0.0081  (0.3235)
MCMC X given y (Truth: A =1.1) | 0.4403 (0.0524) 0.0157 (0.2346)

Table 4.6. Estimation results of the hierarchical Bayesian inverse problem with
observations from PDE output (Example . We tabulate the posterior mean
and variance estimates of the correlation length A of one Markov chain each and
the cvs within the estimates of 5 different Markov chains.

between truth and posterior mean is about 60%. In both cases, we conclude that the
data likelihood was not sufficiently informative to estimate the correlation length
more accurately. Then, the underestimation might be caused by the prior p/. The
prior measure g’ is concentrated close to the lower bound 0.3. This can be seen in
Figure 4.9, where we show the probability density function 7’ : R — R of p/'.

N
T
|

Prior PDF #'(\)
N

1 1 1 1 1 — T

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Correlation length A

o

o

Figure 4.9. Probability density function 7’ of the prior measure y’ of the correla-
tion length A. The measure is concentrated at the lower boundary 0.3.

Finally, we note that the succession of the estimates is correct: The posterior mean
estimate in the problem with the larger true correlation is larger than the posterior
mean estimate in the other case. Hence, we observe a certain consistency with the
data in the estimation.

Observations from a random field. Finally, we consider Example [1.21] Here,
we allow for much smaller correlation lengths A € [0.1, \/5] Moreover, we consider
an uncertain standard deviation o. This requires more KL terms for an accurate
approximation, in particular, we use the leading 800 KL terms. This also means
that we cannot reuse the reduced basis computed in Example [4.19] Instead, we
construct a reduced basis as follows. We solve the KL eigenproblem for 5 snapshots

ATAP = (0.1148,0.1491,0.2124,0.3694, 1.4142)

of the correlation length. The rationale behind this choice is explained in §4.4.3]
Given the collection of snapshot KL eigenvectors we apply a POD and retain only
the basis vectors with ¢? > ¢ = 1E-10. Note that we can compute the dependency
of the standard deviation o on the eigenpairs analytically and that we do not need
to consider them when constructing the reduced basis.

Recall that in this example the observational noise is given by n ~ N(0,1E-4 -
Id). This corresponds to a noise level of V1E-4/||y|ly =~ 6.6%. We employ the
Reduced Basis MCMC sampler in Algorithm (4] to generate Ny, = 1.5E5 samples
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Figure 4.10. Results of the MCMC estimation given random field observations
with short true correlation length (Example A =02 0= 1/v/2). In the
top-right corner we plot the positions and values of the noisy observations (left),
the synthetic truth (middle), and the posterior mean (right). The five path plots
show the Markov chains for A and o, and the reduced basis modes (6rp)1, (OrB)10,
(OrB)100, respectively. The red lines mark the truth.

of the posterior measure. We present the Markov chains and estimation results in
Figure and in Figure [L.1I] We observe a fast mixing of the Markov chains. To
conduct a heuristic convergence assessment, we again compute 4 additional Markov
chains with Ngy,, = 1.5E5 samples each and different initial states. We found that
the additional Markov chains mix similarly compared to the Markov chains shown
in Figures They also cover the same area of the parameter space. Hence,
it can be reasonably concluded that the Markov chains reached a stationary regime.

cv) Variance
MCMC A given y (Truth: A = 0.2) 0.2847 (0.0465) 0.0064

Mean (

( ( ) (

MCMC o given y (Truth: o = 1/v/2) | 0.6438  (0.0077) 0.0042  (0.0207
( ( ) (

( ( (

MCMC X given y (Truth: A = 1.1) 0.7248 (0.0161) 0.0575
MCMC o given y (Truth: o = 1/4/2) | 0.5484 (0.0096) 0.0052

Table 4.7. Estimation results of the Bayesian inverse problem with observations
from a random field (Example 4.21)). We tabulate the posterior mean and variance
of the correlation length A and standard deviation o .

In addition, we present in Table the posterior mean and posterior variance es-
timates of A and o associated with the Markov chains given in Figures [{.T0H4.11}
To assess the accuracy of these estimates we compare them with the posterior mean
and variance estimates of the 4 other Markov chains by computing the coefficients
of variations of the estimators. Again, the coefficients of variation are reasonably
small.
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15 Correlation length 0 Noisy Observations 0 True random field Poosterior mean random field x10°
E T T
6
0.25 0.25 4
05 05 2
0
0.75 0.75 2
Il Il 1 1 -4
0 5 10 15 1 0 025 05 075 1 0 025 05 075 1
4
Standard deviation x10 RB mode 1
1 T T 0.04 T T
0.8 4 0.02
0.6 "l f “u,w“ ‘”H'“ il St | I‘Hyw\“ ““‘, AT R T
0.4 -0.02 i
0.2 L L -0.04 L .
0 5 10 15 0 5 10 15
4 4
RB mode 10 x10 RB mode 100 x10
0.1 T T 0.04 T T
0.05 0.02
o AL LR vt il /YR AR AT ARG LN © ‘ J ‘ i [ ‘ u fik
' \ | ‘ J ARl e, LA o N L TN A
-0.05 -0.02 1 !
-0.1 L -0.04 . L
0 5 10 15 0 5 10 15

%10 x10*

Figure 4.11. Results of the MCMC estimation given random field observations
with long true correlation length (Example A =11, 0 = 1/y/2). In the
top-right corner we plot the positions and values of the noisy observations (left),
the synthetic truth (middle), and the posterior mean (right). The five path plots
show the Markov chains for A and o, and the reduced basis modes (Orp)1, (OrB)10,
(OrB)100, respectively. The red lines mark the truth.

Discussion of the estimation results. While the likelihood was rather uninfor-
mative in the PDE-based Bayesian inverse problem, we see overall more consistent
estimates in Example [£.21] For the short correlation length A = 0.2, the relative
distance between posterior mean and truth is 42%. The long correlation length
A = 1.1 is again underestimated. The relative distance between truth and posterior
mean is 34% in this case. This result could be explained by the uncorrelated noise
that has an influence on the observation of the correlation structure. In particular,
we actually observe a generalised random field ' := 6 + 1/, where 6 ~ N(0,C%)
and ' ~ N(0,0? - Idx), for some o2 > 0. In this situation, the Gaussian white
noise i’ can be understood as a random field with correlation length 0, see
for a discussion of Gaussian white noise. This might explain the underestimation
of the correlation lengths. The standard deviations are slightly underestimated and
some of the reduced basis modes are overestimated — this is a consistent result. The
posterior mean random fields appear to be smoother than the true random fields.
This might be due to the high noise level.
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Chapter 5

Sequential Monte Carlo samplers

[...] there is no such thing as a
random number — there are only
methods to produce random
numbers, and a strict arithmetic
procedure of course is not such a
method.

John von Neumann [254], p. 768]

In this chapter, we discuss Sequential Monte Carlo (SMC) samplers as a way to
approximate sequences of probability measures. We introduce the framework of
measure-valued sequences in §5.1] where we consider Bayesian filtering as an exam-
ple. In §5.2] we discuss Sequential Monte Carlo, and how it is derived starting from
Importance Sampling and Sequential Importance Sampling (SIS). After this rather
practical introduction, we discuss Sequential Monte Carlo in a different framework
in §5.3] where it is represented as a sequence of random measures. Here, SIS and
SMC construct measure-valued Markov chains, and can be understood and analysed
as MCMC methods. Finally, in §5.4) we discuss the use of Sequential Monte Carlo
in BIPs.

5.1 Framework

seq

Let X be a measurable subset of a separable Banach space and p := (,uk)fcvzo
Prob(X )M be a finite or infinite family of probability measures; i.e. Nyq € NU
{o0}. Moreover, let v := (vk)i\[:f be a family of probability density functions,
where v, : X — (0, ooj and 7y is bounded from above, for k = 1,..., Nyq. In the
light of the wording Sequential Monte Carlo, we will refer to these families usually
as sequences, even if they contain only a finite number of probability measures or
densities.

We assume that the sequence of measures p starts with a given measure po and is

otherwise defined recursively:

dyu Ye(0)
gy = o Y4 (6 GeX k=1, .. Nuo). 5.1
dptr—1 Jxe (0 -1 (d0") o) q> &-1)
Moreover, we define this update as a map Wy : Prob(X) — Prob(X), where

1 s Wi(p) o= (BX 5 Ars % e o, 1}) , (5.2)
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and thus gy == Wi (pg—1) for k =1,..., Nyeq.

Bayesian filtering. Sequences like u appear, for instance, in Bayesian filtering.
In Bayesian filtering, we solve a sequence of Bayesian inverse problems, where the
posterior of the (k — 1)-th BIP serves as the prior of the k-th BIP. This means, that
we observe one dataset after another and use the current observation to refine our
knowledge concerning the unknown parameter.

We now introduce this framework more precisely. Let G : X — H be a math-
ematical model. We aim to estimate the true model parameter 7 € X given
datasets y(), ..., yWNsa)  We observe independently the datasets at time points
t = 1,..., Nyq. The observation at each time ¢ is modelled by a strictly positive
and bounded likelihood function L; : X x Y; — (0,00), where the data spaces Y;
may also vary over time.

Let now T' < Ngq + 1 be some finite point in time. In Bayesian inversion or
smoothing, we consider all the data up to T" at once and then estimate the posterior

T
Hoos =P (9 S ~‘y“) =y, .y = y(T)) :
We can express this measure as the posterior in a particular BIP. Let fiprior €

Prob(X) be a prior measure. Since the observations are assumed to be indepen-
dent, the likelihood is formed as the product of the likelihoods at timest =1,...,T"

T
Le(yW, - P10 = [[ Liw™l0)  (0eX .y eY,s=1,...T)
t=1

and Yy :=Y; x --- Yp. We now obtain ,uggt by applying Theorem [1.45] with prior
Lprior and likelihood Lr:Yrx X >R

(T)

In this time-dependent setting, a natural question to ask is: Giwen py.s and a
new data set y" | how do we obtain ,ug;;l) ? Since the likelihoods are all strictly

positive and the data are independent, we have

(T+1)

(T+1) dptpost _
dptpost (6) = Tigrior ) LT+1_(y(1), e yM oy T g) = Lo T)
dﬂggt %(9) LT(y(l), - 7y(T)|0)
d“prior

Hence, to incorporate the new data set into the posterior measure, we can apply
Bayes’ formula with pipior 1= uggt and likelihood L := Ly,1; see (1.24). The task
of incorporating the new dataset is called (Bayesian) filtering. It maps

(T+1) (1) ) (T+1)

(y 7#p0st — :upost

In filtering, the sequence of measures p is given by

k
Mo ‘= Hprior, Hk = :ué)o)sta and Ve = Lk(y(k)|>’

where the index k = 1,..., Ngq refers to the time ¢ =: k.
The filtering of a model parameter has for instance been discussed in [31], 236]. It is
closely related to the filtering problem in data assimilation, see, e.g. [73] 128 157,
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189]. In data assimilation, the states of a dynamical system shall be estimated. This
is in contrast to the static parameter estimation that is considered throughout this
thesis, where the uncertain parameter is fixed.

In the next section, we introduce SIS and SMC to approximate sequences of mea-
sures. As these sequences often arise in (Bayesian) filtering problems, SIS and SMC
are sometimes referred to as particle filters, even if actually no filtering is carried
out.

5.2 Foundations of SMC

We consider the framework from . Hence, p is a sequence of measures given re-
cursively in . We assume that we can sample independently from pg € Prob(X)
and that we can evaluate the densities in 7. We now aim to approximate the se-
quence p with Monte Carlo. To this end, we introduce the Sequential Importance
Sampling method, as well as the Sequential Monte Carlo method.

5.2.1 Sequential Importance Sampling

The most basic algorithm to approximate p is Sequential Importance Sampling
(SIS). We apply Importance Sampling to approximate p; with samples from fi.
Then, we update the weights to approximate p, for k = 2,3, ..., Neeq; S€€ for
an introduction to Importance Sampling. The algorithm proceeds as follows. Let
01,...,0N,,, ~ po beiid. samples. Note that all approximate measures in the
following are random measures and therefore printed bold. These random measures
are indeed well-defined, as will be shown in §5.3] We approximate pg by

Nsmp 1 Nsmp

o= D 5 0= 00) = 3 w8~ 6., (5.3)
n=1 n=1

where w'? = 1 /Nemp for n = 1,..., Ngyp are uniform weights. We obtain the

approximation of u by

Nsrnp
By, o= Z wPo(- — 6,),
n=1
0. )yw!Y
wh = i (On)w (mn=1,..., Namp):

S Ve (8, )wlE

where £ =1,..., Ngegq.
Nseq

Interestingly, we can also represent this update using the operators (Wy), =5 given
in (5.2)). w, is given as above in (5.3]). Then, we have

Hy, = Wy (//lk—l) (k=1,..., Neq),

since the sums in the definition of the weights are integrals with respect to a discrete
measure. Indeed,

/A (O (40) = 3 14(8,)71(8,)w (Y (A € BX).
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Hence, in Sequential Importance Sampling, we simply apply the correct weighting
operator Wy to an approximate measure.

Remark 5.1. Let k£ = 1,..., Nyq. The idea of SIS is to apply the exact operator
Wy : Prob(X) — Prob(X) to an approximation of py rather than the actual mea-
sure. This idea is conceptually similar to, e.g. an FEM discretisation of an elliptic
equation. In that case, we consider the exact weak operator £ : H x H — R on
finite dimensional subspaces H, C H and H;, C H’, see §3.1] In Sequential Impor-
tance Sampling, we replace Prob(X) by the convex hull of the Dirac measures in the
points 01,...,0n,,,. Those points are the realisations of 8y,...,6y,, in the initial
step. We denote the convex hull by

Nsmp

Cp := conv {8(- — 61),...,6(- — On,,) } = {Z W (- —0,) :w >0, ||lw| = 1} :

Note that Cp € Prob(X) and that img(Wy|g,) € Cjy since the Wy, operator only
reweighs the particles, but does not move them. &

Long-time behaviour. Throughout the Sequential Importance Sampling pro-
cess, the particles 01,...,0y,, do not change their position. This has bad impli-
cations if py and . are not similar for some £ = 1,..., N. Next, we specify and
discuss this claim theoretically. Moreover, we give an example in which we see how
the SIS approximation degenerates over time.

Note that the measure g, is indeed equivalent to an Importance Sampling approx-
imation of p, where we use samples from p and the density 7, = Hle v;. Hence,
we can use the Importance Sampling error bound that we have discussed in Propo-
sition 3.5l We obtain

dctv(,uka ﬁk) S 2- ]Vpk ’ (54>
smp

. _ 2
where py := [ 73 (0)10(d0)/ ([ Ti(0)1o(d0))".
Consider the following example, where we consider a sequence of measures for which

we can compute the sequence (pg)72,. This example is a simplified version of [31,
Example 4], where Bayesian filtering is considered, rather than a generic sequence
of measures.

Example 5.2 (Gaussian example). Let up = N(0,1/(k+1)), for k =0,...,00. We
can construct this sequence starting from a standard Gaussian measure o = N(0, 12)
and updating the measure with another standard Gaussian density in every step.
Hence, for k € N, we have

7(0) o< n(6;0,1%) x exp (—%92) (0 e X).

In this case, we can compute p; analytically and obtain

B kE+1
N T

It is easy to see that pp — o0, as k& — oo. Hence, over time the bound on the
right-hand side in (5.4]) goes to infinity. O
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In Example |5.2] we expect that the measure approximation becomes arbitrarily bad
as the algorithm proceeds over time. This result is independent of the number of
samples that is used for the approximation. Intuitively, we can explain this with the
behaviour of the sequence p: We have i ~ §(- — 0), as k — oo. This assertion can
be shown using the characteristic functions of the (ju)ken; recall Theorem [L.21]
Hence, we are able to describe the limiting measure with our set of particles if and
only if one of the particles 81, ...,0y,, equals 0. However, it is unlikely that this
happens. Indeed, one can show that

P ( [jp{en - 0}> < fp({on —0}) =0.

Preasymptotically, the measures p, with £ > 0, are concentrated close to 0. Let
e > 0 be small. The probability that one of the particles has an e-neighbourhood
A, with pg(A) > 0, is then not zero, but arbitrarily small.

Sequences of measures that become more concentrated over time and converge to a
Dirac measure appear in Bayesian filtering. In mathematical terms, this has been
shown in the Bernstein—von Mises Theorem, see [250], §10.2].

We have introduced SIS in this section as an iterated version of Importance Sam-
pling, see . This method is obtained considering the algorithm from [157,
§4.3.2] without underlying dynamical system and without resampling. In the static
framework, the SIS algorithm can also be defined differently. [62] [73], for instance,
introduce an importance Markov kernel to move the particles after each step. Hence,
the importance distribution is not equal to g in every step. Unfortunately, these
importance distributions have to be known a priori and the importance Markov
kernels have to be constructed accordingly. The method is otherwise impractical
[62, §2.4]. However, finding good importance distributions a priori may not be pos-
sible either in practical problems. Therefore, we have defined SIS as an iterated
Importance Sampling, with only a single importance distribution, that is, py.

5.2.2  From SIS to SMC

In SIS, we do not change the particle positions. Hence, they are distributed according
to pp throughout the entire algorithm. As shown in Example [5.2] this can lead to a
bad asymptotic behaviour of the SIS estimates. Indeed, the effective sample size in
this case converges to zero. In Sequential Monte Carlo, we aim to solve this problem
and retain a large ESS, by moving and removing particles.

We now discuss how the algorithm proceeds. As in SIS, we sample Ny, times from
po and construct the approximate measure i, as in . We now iterate over
k=1,..., Neq. First, we apply Wy and obtain p; := Wy(1;,_;). Then, we check
the effective sample size in the measure . We approximate the effective sample
size by

(fx ’Yk(e)ﬁk—l(de))Q _ 7 <% ZnN:{p wgk)>2 B (Zﬁf:;p 'wgf))2 .
T W (0)2Hy,_1(d0) a .%ZNsmp <w%k)>2 N ZNsmp ('w?(f)>2’ (5.5)

ETS\Sk =J-
i=1 =1

where w® represents the weights in fi,; see (3.8) for the definition of the effective
sample size in Importance Sampling. If ESS; is larger than a pre-defined threshold
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Trss > 0, we set k := k 4+ 1 and continue in the loop. Otherwise, if E/DS\Sk is smaller
than the treshold mgsg, we proceed with the selection step and the mutation step.

Selection step. In the selection step, we aim to remove particles with small
weights. Those particles barely contribute to the approximation of the probability
measure and shall be deleted; recall that the weights sum to one. Deletion means,
we move the particle from a particular position to set it at the position of a particle
with a larger weight. As a selection strategy, we use (multinomial) resampling. In
particular, we sample Ny, times from the discrete measure g, and obtain a new
set of samples 51, e ,éNsmp ~ H,. By resampling, we naturally obtain samples at
positions with high weights. For other resampling (or selection) methods, we refer
to [95].

Mutation step. In the mutation step, we now use a Markov kernel to change the
position of the particles. Let K be a Markov kernel from (X, BX) into itself. More-

over, let K} be stationary with respect to py. To each of the particles 8y,...,0n,,,
we now apply K, i.e. we sample

0, ~ Ki(-101), ..., 0n., ~ Ki(-|On..,)-

If K} satisfies ergodicity conditions, the particles are now approximately p-distribu-
ted. Such ergodicity conditions are strong, geometric, and uniform ergodicity; see
[213], §6.6.2-6.6.3]; see also §3.3.3| Thus, we redefine

Nsmp 1

Nsmp

ﬁk::Z

n=1

5(-— 0,).

Next, we set k := k + 1 and continue in the loop. The SMC algorithm terminates if
k exceeds Ngeq-

Remark 5.3. We use the denominations selection and mutation to describe the
SMC algorithm. These terms imply a genetic intuition behind the algorithm. In
this case, the particles represent different individuals and the weights of the particles
represent their fitness. Species with small weights, and thus a low fitness, are killed
in the selection step. The mutation step represents a variety of possible random
evolutions. This and other interpretations of Sequential Monte Carlo are discussed
in [61], §4]. &

Similarly to the Wy in SIS, we define the selection and mutation step as a family
of Markov kernels. Note that Wy : Prob(X) — Prob(X) are operators since the
reweighing step is deterministic. We can represent W, as a Markov kernel in terms
of a point-wise Dirac measure. Selection and mutation step form a Markov kernel
Sy since both the selection and the mutation follow a randomised procedure. Let
Sk : Prob(X) x P(X) — [0, 1] be the Markov kernel defined by

Nsmp

(1, A) = / /XNsmpxstmp H (Z

n=1
We show the well-definedness of this Markov kernel in §5.3] There, we also discuss
the definition of the o-algebra P(X) C 2F7P(X) In the following remark, we briefly
explain the construction of the function given in (5.6]).
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Remark 5.4. We consider the map given in (5.6) and describe successively how it
is constructed. We consider

Nsmp

1 ®Nsmp ®Ngmp
(1, 4) //X o | X = ) | K @0 (0).
Nt . (i) )

-~

(iii)

(i) g is the input of the kernel. We indicate with this term that 6 is a realisation
of a vector of Ny, independent random variables distributed according to p.
This represents the selection step.

(ii)) We take the realisations 6 and use them as inputs of the Markov kernels K},
which we apply independently to each of them. The realisations we obtain
from the K} are in the vector §. This represents the mutation step.

(iii) We construct an empirical measure from the realisations , with equal weights.

Finally, we integrate the indicator 14(...) to obtain the probability of (iii) being in
A. O

The SMC algorithm constructs the following random sequence:

Nsmp
I/‘\I’O = Nsmp ), (01, ce ,ONsmp ~ U, lld),
~ Wi (Fiy_ 1), if ESS; > Tiss,
L= k(ﬂk 1) 1 k = TESS (k; —1, -7Nseq)

p~ Sk (|Wi(fe_1)), otherwise;

We call this method SMC with adaptive resampling. 1f we skip the ESS test and
always apply Sy, we obtain SMC. In this case, the sequence simplifies to

Nsmp

U 1 ..
Ho -= ; Nsrnp5(. —6,), (01,...,0N,,, ~ po, iid.),
By, ~ Sk (-|We(e_y)) (k=1,..., Nug).

In Figure [5.1] we illustrate the steps in SMC to update fi;,_; to fi;. There, we use
circles to represent the positions of the particles and antennas to represent their
weight. We start with a measure having equal weights. In the weighting step, we
change the weights without changing the particle positions. In the selection step,
we apply resampling and remove the first and fifth particle, which are now placed
at the positions of the third and fourth particle. All the weights are now identical
again. Finally, we mutate the particle measure, meaning, we change the particles’
positions.

The Sequential Monte Carlo methodology in the setting of static parameters has
been first proposed by Del Moral et al. [62]. A more thorough introduction to
interacting particle methods are given in the textbooks by Del Moral [60) [61]. As
historical resources concerning particle filtering methods used for static parameter
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B | Ul

Figure 5.1. A cartoon of the SMC update from pi;,_; to .. Each of the com-
partments limited by the dashed lines marks one particle-based discrete probability
measure. On the right-hand side, we note the functions applied to update the mea-
sures. The dots represent the positions of the particles in a one-dimensional space;
the vertical lines (antennas) represent the weights associated to the particles. Dots
lying vertically above each other have the exact same position.

estimation, we mention the articles by Chopin [43] and Neal [190] 191]. Various
researchers have analysed Sequential Monte Carlo methods. To name a few: Chopin
[44] considered the long-time behaviour of particle filters by showing a central limit
theorem. Rebeschini and van Handel [208], as well as Beskos et al. [16, 20] discussed
the use of particle filters in high-dimensional settings. Finally, we mention Whiteley
[257], who gives stability results for SMC.

5.2.3 Simulating normalising constants with SMC

The model evidence Z(y') appears as a normalising constant in Bayes’ rule; see
Theorem [1.45] When introducing Importance Sampling in and MCMC in
33.3.3,, we were able to ignore its computation. In some applications, it is necessary
to compute the model evidence; e.g. in Bayesian model selection which we have

considered in §1.4.3|

Let k =1,..., Nyq. Equivalently to model evidences, we can consider the estimation
of the following normalising constants in the framework of §5.1}

Zy, ::/Xik,(@),uo(dé’).

In SMC, we can easily obtain estimates of Z;. These estimates are based on the
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following identity:
Y1 0
Zi = / H% )1i0(d0) / (H% ) T ()<d9,)uo(d9) /X 1 (8)po(d6)
- /X mel(de) /X 1(8)10(d)
-11 /X 4 (O)pi-1(d6). (5.7)

In SMC, we obtain approximations for the factors in (5.7) when computing the
normalisation of the weights for W,. Indeed, we have the approximations

Nsmp
i=1 \n=1 ~ 5MP

We refer to, e.g. [62] §3.2] for a discussion of this approach.

5.3 A random measure derivation of SMC

In several instances in the last chapter, we have discussed random probability mea-
sures. Those are random variables that take values in Prob(X). Indeed, we have
defined Sequential Importance Sampling and Sequential Monte Carlo as algorithms
that generate sequences of random measures. This point of view has been taken
before by, e.g. Crisan [51] and Beskos et al. [20]. We now set it in a rigorous foun-
dation. In §5.3.1] we discuss some foundations of random measures and show that
the sequences generated in SIS and SMC are well-defined. Indeed, the sequences
generated in SIS and SMC are Markov chains in Prob(X). In §5.3.2] we commence
an MCMC-type discussion of the Markov chains generated by SIS and SMC. Here,
we consider the homogeneity of the Markov chains, as well as their stationary points
and stationary measures.

5.3.1 SMC and random measures

Let X be a separable Banach space. We discuss random variables taking values in
Prob(X). We will represent random measures as Markov kernels, as it is usual in
the literature; see, e.g. [137] for a detailed introduction.

Definition 5.5. A random measure p on (X, BX) is a Markov kernel from (£2,.4)
o (X,BX). Hence, p: Q x BX — [0,1]. &

Note that throughout this thesis, random measures are always random probability
measures. We often denote Markov kernels M in a conditional-measure-sense, such
as M(-|*x) := M(x,-); see for a justification of this notation. As opposed
to this, we treat random measures as random variables taking values in Prob(X).
Hence, we usually drop the dependence on w € Q) and use boldface letters.
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Remark 5.6. Let p be a random measure on (X, BX). The probability distribution
of p is defined on the o-algebra generated by the evaluation maps f4 : Prob(X) —
[0, 1], where p+— p(A). First, let

f1H(B) :={fa € B} :={u € Prob(X) : u(A) € B}

be the pre-image of B C [0,1]. We then consider the smallest o-algebra generated
by all these maps that is

P(X) := opronx) ({f2'(B) : A€ BX and B € B[0,1]}) .

We can now define a random measure equivalently as a measurable map from (2, A)
to (Prob(X), P(X)); see also Definition [L.10} &

We obtain a random measure for instance by sampling a random vector and con-
structing a discrete measure supported on the samples. Here, the weights can be
deterministic or random.

Proposition 5.7. Let 8 :  — X™mr be a measurable function, and w € [0, 1]Vemr
be a set of weights that sums to 1, i.e. ||w|l; = 1. Then, the map

N, smp

p:QxBX =01,  (w,A) = ) w,d(A—0,(w)) (5.8)

is a random measure. The same holds true if the weights are random variables as
well, ie., if w : Q — [0,1]Y= is a measurable function, with ||w(w)|; = 1 for
w € (). In this case, the map

Nsmp

pQxBX = [0,1], (W, A) = Y wy(w)§(A - 0,(w)) (5.9)

is a random measure.

Proof. In this proof, we only consider p', since p arises from g’ if the weights are
P-a.s. constant random variables. We have to show that p/(w,-) : BX — [0,1] is a
probability measure (w € €2), and that p/(-, A) : Q — [0, 1] is measurable (A € BX).
Let w € Q. Then, S22 ap,, (w)d(-—6,,(w)) is a probability measure by construction.
To show the measurability, we first assume that Ngy,, = 1 and w; = 1. Now, we
need to show that w — 6(A — 04 (w)) for any A € BX.

Let A € BX. The image of w +— §(A — 61(w)) is {0,1}. Hence, we only need to
check that

{0(A=6.()) =1} e A, {6(A-6.()) =0} c A

Indeed, since the two sets are complements of each other, one of the statements is
sufficient. We have {0(A — 01(-)) = 1} = {6, € A}. The latter set, however, is
contained in 4 since 6, is measurable. Therefore, §(A — 64(+)) is measurable.

This also implies the measurability of w — S 4, (w)d(A — 0,,(w)) since this is

a sum of products of measurable functions. As A € BX was chosen arbitrarily, we
have that g’ is a random measure. ]
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Random measures as in appear in standard Monte Carlo and Markov chain
Monte Carlo. Random measures as in (5.9) appear in Importance Sampling. Thus,
the random measures that appear in these Monte Carlo approximations are well-
defined. This includes the initial measure g, in SIS and SMC.

Next, we show the measurability of the operators Wy. In particular, we show that
when applying Wy, to a random measure, we obtain again a random measure. The
measurability implies then that the random measures given in Sequential Importance
Sampling are well-defined.

Proposition 5.8. Let Wy be the operator in (5.2)) for some bounded 7; : X —
(0,00). Then, Wy : Prob(X) — Prob(X) is measurable. In particular, for any
random measure g, the map

(Ae BX,we)

is a random measure.

Proof. We show the last assertion, i.e. we show that p’ is a Markov kernel from
(Q,A) to (X, BX).

1. Let w € Q be fixed and p be a random measure. Then, p = p'(w,-) =
Wi () (w,+) is by construction a measure. Since v, and p(w,-) are bounded, the
measure y' is well-defined and finite. Due to the normalisation, we have p/(X) = 1.

Thus, 4 is a probability measure.
2. Let A€ BX and f4: Q — (0,00) be given by

f@)i= [ wpd)  @eo).
fa is measurable according to [136, Lemma 1.38(i)] and strictly positive. Therefore,

fa/fx = ' (A, -) is also measurable. O

Hence, SIS constructs a well-defined sequence of random measures. We now move
on to the two versions of SMC. In particular, we show that S is indeed a Markov
kernel.

Proposition 5.9. Let S, be the function defined in (5.6). Then S, is a Markov
kernel from (Prob(X),P(X)) into itself.

Proof. 1. We define three Markov kernels M, My, Mz, such that S, = M;MM;. In
particular, M, is a Markov kernel from (Prob(X), P(X)) to (X™me, BXNeme ) where

(Prob(X) x BX™m) 5 (i, A) s p®Nsmr (A) € [0, 1].

This Markov kernel represents the selection step. My is a Markov kernel from
(X Nemp BXNemp) into itself, where

(Q,A)H/ / 14 B, VE(dBL]0)) - - K (B,
X X

This Markov kernel represents the mutation step. Finally, M3 is a Markov kernel,
from (XNeme BXNeme) to (Prob(X),P(X)), where

Nsmp Nsmp
1 1
(0,A) — 1,4 <; Nsmp(s(-—en)> —6<A—; ~ 5(._9n)>.

smp

O Nomp)-
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M3 models the representation of ¢ as a random measure concentrated in 0y, ... 0N, .
2. We now show that M, My, M3 are indeed Markov kernels. Ms is a Markov
kernel as it is a product of Markov kernels. Mj; is measurable for fixed A € P(X)
since indicator functions with respect to measurable sets are measurable and since
empirical measures are measurable, see Proposition[5.7} By using the representation
with the Dirac measure, we see that Mj is a probability measure for fixed 6. M; is
by construction a probability measure for fixed p € Prob(X).

For the measurability proof, with fixed A € BX™mr  we assume that Ny, = 2.
The proof for Ny, = 1 is trivial since the M is then the identity map. Moreover,
Nsmp > 2 follows inductively analoguously to the case Ngn, = 2. The map p —
p®%(A) is indeed measurable: Note that we can write

p2A) = [ 140 8uta0)(dse)
— [ [ a0 omtaoutann) = [ utan)n(ase)

where Ay, = {(51, 52) CA:fy= 0>} € BX? is the 0y-section of A. We can represent
the integral [, u(Ag,)u(d6;) as the limit of a weighted sum of products of u(B),
for various B € BX. This follows from the definition of the Bochner integral; see
[26]. Due to the definition of the o-algebra P(X) in Remark [5.6| mappings of the
form Prob(X) 3 p+— pu(B) € [0, 1] are measurable. Therefore, this is also true for
continuous combinations of these functions and their limits. ]

Hence, the version of SMC (without adaptive resampling) that applies Sy in every
step, constructs a well-defined sequence of random measures. We discuss the SMC
with adaptive resampling in the following remark.

Remark 5.10. In SMC with adaptive resampling, we apply

Ri(- 1) = Liigs, oz rmse) W W) + Liggs, () <rpeey (10K (W) | (5.10)

instead of Sx. We now explain why this function is a Markov kernel from
(Prob(X), P(X)) into itself. First, note that

T (e w(®)u(as))
p = BSSy(p) = T 7:(0)21(d6)

is a measurable map from Prob(X) to R. One can prove the measurability of
ESS;, similarly to showing the measurability of M3 in the proof of Proposition .
Therefore,

{ESSi() > 7ess}, {ESSy(-) < Tmss} € P(X).

Thus, the indicator functions in (5.10) are measurable functions from Prob(X) to
[0,1]. Finally, Ry is a Markov kernel, since it is a continuous combination of mea-
surable functions. &

We have rigorously established that SIS and SMC construct sequences of random
measures. These sequences are generated with Markov kernels. Hence, the sequences
form Markov chains. Throughout the rest of this thesis, we will only consider the
version of SMC without adaptive resampling.
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5.3.2 MCMC analysis of SIS and SMC with few particles

We have referred to some analytical results concerning SIS and SMC in §5.2.115.2.2]
Those results usually show consistency and Central Limit Theorems, which hold as
the number of particles increases, i.e. Ny, — 00. SIS and SMC are particle filters,
i.e. Monte Carlo methods. In general, we know that using a small number of par-
ticles is not advisable; see, e.g. the error bound in (3.5) or Proposition . In the
former, we can hope for good estimation results when the standard deviation of the
quantitiy of interest is very small. In the latter, where we consider measure approx-
imations, a small number of samples always gives us a bad estimate. Considering a
Monte Carlo approximation with few particles, we also mention von Bortkewitsch’s
Law of Small Numbers [253].

However, in practice, particle filters are used with very few particles. Deutscher
Wetterdienst, that is the German meteorological service, uses an Ensemble Kalman
Filter (EnKF) type method with only Ny, = 40 samples; see e.g. [228, Table 3| or
the webpage of Deutscher Wetterdienst [66]. The small number of samples is likely
caused by the immense computational cost of their models COSMO and ICON.
The long-time behaviour of the EnKF with a finite number of particles has recently
been studied by Blomker et al. [25] and Schillings and Stuart [226, 227]. We aim to
extend such a discussion to SIS and SMC.

The finite sample behaviour of SIS and SMC has been studied before. We mention
the very recent contributions by Marion and Schmiddler [T74] [175], who, in particu-
lar, study the complexity of SMC methods with finitely many samples. For stability
results for SMC with finite samples, we refer to [257].

In the following, we consider the framework introduced in Now 1 € Prob(X N
is always an infinite sequence of probability measures; hence Ngq = 00. It is again
defined by a sequence of functions 7, as in the recursion formula (5.1)). Considering
only infinite sequences is not a restrictive assumption. If Ngeq < 00, we set 7, = 1
for k > Ngeq. In the last section, we have shown that SIS and SMC indeed construct
Markov chains in the space Prob(X). Here, these Markov chains are now infinite and,
thus conceptionally similar to the Markov chains that appear in MCMC methods;
see §3.3.3] Hence, we can now use the theory of MCMC to investigate the long-time
behaviour of SMC and SIS with a finite number of particles.

It has recently become popular to use MCMC theory to investigate objects that
do not adhoc come from MCMC samplers. Dunlop et al. [76] show that certain
deep Gaussian processes convergence quickly to a stationary measure; indicating
that those are not particularly deep. The works [25], 220, 227] discuss the Ensemble
Kalman Inversion using Langevin-type dynamics, which appear in, e.g. continuous-
time MCMC. See e.g. [167, §9] or [49, §4] for continuous-time MCMC algorithms.
The following paragraphs are an introduction of a new approach to investigate the
long-time behaviour of SMC and SIS. We collect various results and leave a more
thorough investigation open for future work.

Inhomogeneity. First, we note that the Markov chains generated in SIS and SMC
are in general inhomogeneous in time. Observe for instance, that the Markov kernel
K. used in the mutation step is always chosen such that it is stationary with respect
to pg, k€ N. If p; # py, for some j # k, and K; # K}, the SMC Markov chain is

inhomogeneous.
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The SIS Markov chain is inhomogeneous, if v, # 7, for some j # k. This occurs,
for instance, in Bayesian filtering, where a new dataset is available in every step. In
contrast, in the setting of Example[5.2] the SIS algorithm constructs a homogeneous
Markov chain.

Stationary points of Wy. First, we consider the operator Wy, recall (5.2]), and
determine stationary points in Prob(X).

Proposition 5.11. Let u € Prob(X) be given such that a set C' € BX exists, with
pu(C) =1 and ~i|c is constant. Then, Wy (u) = p.

Proof. Let C be given as above and A € BX. Then,

Wk(/ub)(A) _ fA /yk’(e)ﬂ(de) _ fAmC ’7/€<0)/L(d0) (;) fAmC Cp,(d&) _ M(AQO) _ M(A),

Lo @)p(dd) [ (0)p(do) Jo cp(d0)

where ¢ := v, (0), for some § € C. The equality () holds since v, > 0 by assumption
and, thus, also ¢ > 0. O

Note that the stationary points in Proposition [5.11| are measure-valued, but not
stationary measures in the sense of §3.3.3] A stationary measure is a measure on
(Prob(X),P(X)) that is preserved when applying Wy. In this case, such a measure
is the Dirac in the stationary point: 0(- — ) € Prob(Prob(X)).

In SIS and SMC, we consider discrete measures of the form p := Zgi"l‘p wpd (- —06,).
Such a measure is a stationary point of Wy, if for some index set I C {1,..., Ngmp},
we have 7;(0;) = y(0;) fori,j € I and w; =0if i & I.

Reducibility of SIS. In §5.2.1, we have shown that in SIS, the particles are not
moved. The SIS Markov chain moves only in the set

Nsmp
n=1

where 61, ...,0n,,, are the realisations of 81,...,0y,  ~ po drawn ii.d. in the first
step. We have mentioned this property of SIS already in Remark [5.1} In particular,
for all 41 € Prob({61,...,0n,,,}), we have (Wjo---oW;)(u) € Prob({6s,...,0n,.,})
for any j,k € N, j < k.

What does this mean for the reducibility of the SIS Markov chain? Let v be a o-
finite measure on (Prob(X), P(X)). By the argument above, the SIS Markov chain
is not v-irreducible if

v(Prob({01,...,0n,.,})) < v(Prob(X)).

That means, the SIS Markov chain is reducible if measures not in
Prob({f1,...,0n,.,}) have mass with respect to v, i.e. if

v(Prob(X)\Prob({61,...,0n,.,})) > 0.
138



Chapter 5. Sequential Monte Carlo samplers.

Stationary measures in SMC. In the last paragraphs, we have discussed mea-
sures that are stationary with respect to Wy by finding stationary points of Wy.
This gives us information about stationary measures of SIS.

Now we consider stationary measures of SMC. First note that an investigation of the
Markov kernel S, alone may be unrewarding. This is the case since SMC proceeds by
applying S; to weighted measures of type Zgi“l‘p w0 (- — 0,) with arbitrary weights
w, but returns only measures with w,, = 1/Ngnp, n = 1,..., Ngmp. Hence, the set
of stationary measures would be strongly restricted. Therefore, we consider the

composed Markov kernel

Here we naturally have only measures with equal weights w, = 1/Ngnp, n =
1, ..., Nymp as inputs and outputs.

When approximating a sequence p with SMC, we obtain a Markov chain fi. Ideally,
this chain would contain measures of the following type: -

Nsmp 1
By =
Nsmp

n=1

o(-—86,), 0, ~ L, (n=1,..., Nsmp), (5.11)

where k € N. Let Ny, > 2. Note that the description in is not sufficient to
determine the probability distribution of the random object f, since it is lacking a
description of the interdependence of the particles 6, ..., 0y, . We give two exam-
ples for interdependences and determine probability distributions of the associated
random measure.

Example 5.12. (i) Consider the setting in and let
PO, =---=0y,,) =1
Then p), = §(- — 61), and
i (A) = 101 € A] ~ Bi(1, pi(A)),
where A € BX. The last assertion follows from P(6; € -) = .

(ii) Consider again the setting in (5.11)), and let now 61, ...,0x,,,, be independent.
Then,
Nsmp

(Nsmp - By (A)) = Z 1[0, € A] ~ Bi(Nomp, px(A))
n=1

for all A € BX. The statement about the distribution of i, (A) follows again

from P(6; € -) = i, and the independence of the 61,...,0xy,, .
The probability distributions of the random measures in the settings (i) and (ii)
are indeed different. Note that they are even concentrated on different spaces.
In the first setting P(u,(A) € {0,1}) = 1; in the second setting P(u,(A) €
{0,1/Nanp, 2/Nsmp, - - -, 1}) = 1 for any A € BX. <&
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In the following, we consider all probability measures on the space (Prob(X), P(X))
that describe random measures as described in (5.11)). We define the set

Nsmp
~ ~ 1
Py = {Muk €)= > 06— 0), Ou~pu, = 1,...,Nsmp}
n=1 smp
C Prob(Prob(X))

of all of these probability distributions. We end this section by showing that when
applying the Markov kernel Uy, to a random measure g, distributed according to
M € Py, we obtain a random measure g, distributed according to M’ € P. Hence,
if we apply Uy to a random measure p,,_, of the form (5.11]), we obtain a random
measure p,, of the form ([5.11]).

Theorem 5.13. Let £ € N and M € P,. Then, some probability measure M’ € Py,
exists, such that

MU, = M.

Proof. Let M € Py, and p;,_; ~ M. When evaluating Uy, we first apply Wy, and
then successively the Markov kernels M7, My, M3, which we have defined in the proof
of Proposition 5.9, When applying Wy, we do not change the distribution of the
particles 61,...,0n,, ~ . In the resampling step M;, we obtain new particles
0.,...,0n,,, that are only a permutation of the original particles. Hence, each of
them is still distributed according to pg. In the mutation step M, we apply Ki to
all of the particles. By definition, we have uy = ppKy. Hence, 601,...,0n,  ~ p.
In Ms;, we put the resulting particles in a measure

Nsmp
1

l/’\l‘k = Z Nsmpé(. o 071)
n=1

By the discussion above, this is a random measure still of the form (5.11)). Thus, we
can choose M’ =: P(p1;, € ), proving our assertion. O

Hence, we have determined a stationary regime for SMC. In MCMC algorithms, we
usually have a single stationary measure; recall Theorem [3.8] In SMC, we rather
have a stable set of measures. If we can also show ergodic behaviour of these Markov
chains, we can probably comment on whether this stable set is reached. This will
give us a deeper understanding of the long-time behaviour of SMC with small sets
of particles. However, this is not part of this thesis.

5.4 Sequences of measures in Bayesian inversion

We next discuss Sequential Monte Carlo methods that are used to discretise Bayesian
inverse problems. Note that the sequences of measures discussed here do not appear
naturally as in a Bayesian filtering setting. Instead, the sequences are constructed
artificially for an efficient approximation of the Bayesian inversion. We introduce
the sequences arising in tempering in and bridging in §5.4.2] as well as their
adaptive construction in §5.4.3] In the following, we consider a BIP with prior firior,
likelihood L(y']|0) =: exp(—®(6)), and posterior jipes. We discuss Sequential Monte
Carlo techniques that can be used in this setting.
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5.4.1 Tempering

In BIPs the posterior measure is often concentrated in a small area of the high-
dimensional parameter space X. Tempering (T) is a widely-used method to approx-
imate such measures. The fundamental idea — borrowed from Statistical Physics —
is to adjust the temperature 7 in the Boltzmann distributionf] In a Monte Carlo
setting, tempering is the systematic raising of a density to some power 5 :=1/T €
(0,1]. Looking at the Boltzmann distribution, this means that 7 € [1, c0).
In Proposition we have discussed the error of Importance Sampling. Let pg €
Prob(X) and gy < po with v oc dpg/dpg. We bound the de-distance between
w1 and its Importance Sampling approximation with Nsmp samples from pug by
p/Nsmp, where p := fx Y(0)?110(dB)/ (fX’y ) 10(dO) ) . Tempering can decrease
p.

Lemma 5.14. Let py € Prob(X) and v : X — (0,00) bounded. Then, there is a
constant 5 € (0, 1], such that

_ Jx7®O)o(d) [ ¥ (O)ro(dO)
(S Y2 (O)po(d6))* ~ (fX’V (0)10(d8))”

If p > 1, the inverse temperature 5 € (0, 1] can be chosen such that the inequality
above is strict.

Proof. We have pg = 1 for f =0 and pg > 1 for 5 € (0,1] by Jensen’s inequality.
If p = 1, the statement holds with § = 1 since p; = p. Let now p > 1. Since 7 is
bounded, Lebesgue’s Dominated Convergence Theorem implies that [0,1] 5 8 — pg
is a continuous map. Hence, 8 — pg is a continuous function connecting py = 1 and
p1 > 1. By the Intermediate Value Theorem, there is some § € (0, 1), such that

pg < p1=p- [

We note that a similar result was shown with the same technique in [I7, Lemma
3.1]. In the BIP setting, we have py := fipior and 7 := exp(—®). Lemma m
tells us that we can use tempering for a more efficient Importance Sampling approx-
imation. However, when just applying tempering, we change the update density
and approximate a different measure. To solve this problem, we apply tempering
in combination with an SMC sampler with Ny € N intermediate steps. We start
with the prior 1o := fiprior; this is equivalent to an infinite temperature 7 = oo or
an inverse temperature Sy = 7' = 0. In the subsequent steps we scale down the
temperature T successively until Sy, = 7' = 1, and we arrive at the posterior
[Ny = Hpost- Formally, we define a finite, strictly increasing sequence of inverse

2The Boltzmann distribution is a discrete probability measure on the set of energy states S of
some system of particles. Its #-density is proportional to

S3s—e p( E, )
o | —— 5
T'kBoltz ’

where E is the energy of state s and kpoi, = 1.380649E-23 J/K is the Boltzmann constant. A
large temperature 7 allows the particles to move faster. See [100, Chapter VIII], [167, §1.1] and
[183] for details.
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temperatures (S : k =0,..., Nt), where 5y = 0 and Sy, = 1. The SMC sequence
of probability measures (ug : kK =0,..., Nt) is then given by

d _

d—“’“ %7, = exp(—By®),  (k=1,...,Nyp). (5.12)

Ho

Remark 5.15. In §2.2] we consider inverse problems with additive Gaussian noise
on a finite-dimensional data space. In this setting, the tempering can be understood
as an upscaling of the observational noise. Note that in this case

_ 11
The last term on the right-hand side tells us that the measure
pe=P0 € 1G0)+ B, "n=y)  (k=1,... Np)

Hence, an upscaling of the temperature 7 = ;' ... ,6;& is equivalent to an up-
scaling of the noise level in BIPs. Moreover, Sy = 0 corresponds to an infinitely
large noise level, where the likelihood does not contain any information. Hence,
o = [prior 1S consistent. O

The densities (7, : K = 1,..., Nt) are strictly positive. Hence, the intermediate
densities (% : k= 1,..., Nt) in the SMC sampler (see are given by

dpg, Yk
x = = exp(— — Bp_1)®).
Qs Vi 5 P(—(Br — Br-1)®P)

We refer to this method as either SMC with Tempering or simply single-level SMC.
SMC with tempering has been used to solve Bayesian inverse problems in [20], 134]
138]. The idea of using different temperatures combined with particle filters has
also been discussed by [62, 190]. Moreover, it is the basic idea of the Ensemble
Kalman Inversion [25] 147, 226], 227]. Here, the Ensemble Kalman Filter is used to
approximate the sequence defined in . Tempering is also used in Markov chain
Monte Carlo, e.g., to overcome multimodalities in probability measures. See, e.g.,
[80] for a review on the parallel tempering MCMC technique.

5.4.2 Standard Bridging

Bridging (B) is an SMC type method, where the sequence of probability measures
represents a smooth transition from one probability measure ;1 to another probability
measure p*. We assume that both these probability measures are defined on a
common measurable space (X, BX) and that they are equivalent, i.e. p < p* and
w* < p. Moreover, we assume that g and p* are absolutely continuous with respect
to a o-finite measure vx on (X, BX). Then, the Radon-Nikodym Theorem tells us
that du/dvx and dp*/dvy exist and are unique vy-a.e. Moreover, these densities
are strictly positive a.e. on the support of p and p*.

Now, let 1 and p* be based on functions f, f* : X — R which are proportional to
the Radon—Nikodym derivatives given above. That is,

dy*
dI/X ’

focd—ﬂ and f*
dVX
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Let Ng € Nand (¢, : k= 0,...,Ng) € [0,1]™e+D) be a strictly increasing finite
sequence, where (; = 0 and (n, = 1. Then, the bridging sequence of measures
(g - k=0,...,Np) is defined as

diw ) G
dVXO(’Yk—f (f) )

or, equivalently,

d
ok X Vg = _rY_k — f(CkA*Ck) . (f*)(Ck*Ck—l). (5.13)
dpg—1 Tk-1

*

Note that po = p and py, = p*.
We will later use bridging to exchange one likelihood in a given posterior for another.
Then, f, f* are two likelihoods, vx := fiprior, and pi, u* are posterior measures. This
will be necessary in multilevel settings, when having likelihoods that are based on
different model discretisations; see We discuss this in detail in §6.1.1] Aside
from this multilevel setting, bridging has been discussed e.g. by Del Moral et al.
[62] and Gelman and Meng [93]. The method that approximates the sequence ([5.13))
with SMC will be called SMC with bridging.

5.4.3 Adaptive Sequential Monte Carlo

The accuracy and computational cost of SMC with tempering and bridging depends
crucially on the number of intermediate probability measures Nyq € {Np, N1},
respectively, and the choice of the inverse temperatures (8, : £ =0,..., Ngq). Up to
now we assumed that Ngq and (8 : K =0, ..., Nyq) are given a priori. However, we
can also determine the inverse temperatures and associated intermediate probability
measures adaptively “on the fly”. In the literature, several strategies for adapting
the inverse temperatures are known. We review methods based on the coefficient of
variation of the update weights.

To simplify the notation we drop the subscript £ and consider the SMC update
(@ — p* in the remainder of this section. Let v* denote the density of u* with
respect to p. The probability measures j and p* are approximated by g and g”,
respectively, and are based on Ny, particles each. Note that we can define the ESS
for the SMC update step by

(5.14)

where

_StDa(r) _ /Vara(r)

Ezly] ~ Ealy]

is the coefficient of variation of v*. This definition indeed coincides with the defini-

tions of the ESS in (3.8]) and ([5.5)).

Now, the inverse temperature 3 associated with p is known. Our task is to define the
inverse temperature $* associated with p*. Clearly, the density of p* with respect
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to p depends on B*. For this reason we write v* = +*(8*). Then, the ESS of the
SMC update also depends on £* and we write

o Nsmp
L+ evi (v(8Y)

We use this ESS again as an estimate of the Importance Sampling error; see Propo-
sition Similarly to the SMC method with adaptive resampling, we now aim to
retain a certain effective sample size Trss € (0, Nymp)-

Note that ES\S(S*) can be computed without further evaluations of the (potentially
expensive) likelihood for any * € (8, 1]. In our implementation, we choose 5* such

ESS(5") :

that ETS\S(B*) is equal to a target value mggs. In practice, we would like to avoid

inverse temperature choices that meet the target ESS, that is, ETS\S(B*) = Tgss, but
do not increase the inverse temperature by at least some ¢ = g* — 3 > 0. Thus, we
define

__ 2
f*:=  argmin <ESS(ﬁ') - TEss> : (5.15)
B’ €[min{B+e,1},1]

Note that the optimisation problem in ([5.15]) is equivalent to the following problem,
which is also common in the literature:

B* = argmin  (cvg (75(3) — )7, (5.16)
B’ €[min{B+e,1},1]

where 7% := \/(Nomp — Trss)/Trss; see e.g. [196, §2.3]. Hence the fitting of the
effective sample size is equivalent to a fitting of the coefficient of variation of the
weights.

Note that both the optimisation problems and have a continuous target
functional, see Lemma [5.14] and a compact domain. Hence, both optimisation
problems have a solution. However, the solution may be not unique. We refer to
[20,, 132], 138] for discussions and applications of adaptive Sequential Monte Carlo.
A recent analysis of adaptive SMC has been given by Beskos et al. [17].
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Chapter 6

Exploiting hierarchies with SMC samplers

In manchen Féllen werden Grofien
miteinander kombiniert, deren
Fehler den Charakter zufalliger
Variabler haben.

Johann Pfanzagl [202], p. 215]

Already in §5.4.1], we have used SMC samplers to exploit hierarchies, i.e. introduced
a hierarchy of measures to potentially speed-up the sampling from a posterior mea-
sure. There, the hierarchy was given by different temperatures in the likelihood.
In this chapter, we are going to exploit a hierarchy of model discretisations, as in
Multilevel Monte Carlo; see §3.4.20 We discuss SMC samplers that use multiple
discretisation levels in §6.1} In practice, these methods can be actually inefficient
since inaccurate model evaluations can lead to large errors in the posteriors. To
solve this problem, we introduce the Multilevel Sequential? Monte Carlo (MLS?>MC)
algorithm in §6.2] This is a method that combines SMC with tempering and mul-
tilevel Bridging in an adaptive way. Finally, we present numerical result in §6.3|
comparing SMC, MLS?MC and Multilevel Bridging.

6.1 Sequential multilevel methods

In the following, we review two SMC-based multilevel methods that have been used
in the past: Multilevel Bridging and Multilevel SMC.

6.1.1 Multilevel Bridging

We have discussed standard bridging in §5.4.2] It is possible to generalize the idea of
standard bridging to a setting where the probability measures p and p* depend on
discretisation parameters ¢, £*. In BIPs this is, e.g. the case if the forward response
operator G, respectively the likelihood, is discretised using two different mesh sizes
that correspond to ¢ and ¢*. Here, £* > ¢, hence (* refers to a more accurate model
discretisation than ¢. In particular, we have a BIP, with prior fipie: and likelihood
L = exp(—®). The potential & contains a mathematical model that has to be
discretised. We define the potentials that are based on discretised models by ®, and
®4.. We assume that the likelihoods L) = exp(—®;) and L) = exp(—®,.) also
imply well-posed BIPs.
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Suppose now that the BIP has been solved on a coarse mesh /, i.e. with respect to
L®  and that we wish to obtain a more accurate solution with ¢* > ¢. This means
that the posterior ,uggst shall be refined to uggs)t. Koutsourelakis [146] proposes to
bridge between the two*%jrobability measures, that is, apply standard bridging for
w = ugo)st and p* = /Ll(fost. In fact, this idea is carried out in a multilevel way by
bridging between a hierarchy of probability measures associated with a sequence of
decreasing mesh sizes. For this reason, we refer to the method as Multilevel Bridging
(MLB). Indeed, we define MLB as a combination of [146] and SMC with tempering
from on the coarsest discretisation level. See the following paragraph for an
introduction of MLB.

Let £ =1,..., N, denote the hierarchy of discretisation levels, where /Vy, is the de-
sired final level and 1, ..., N, — 1 are the intermediate levels, increasing in accuracy.
Starting with the prior, we first use tempering to compute the posterior measure

ugo)st associated with the potential ®;. This step is based on the following densities:

dug T
o< Yy = exp(—FxP1),
dﬂprior ¥ ( )
where (1§ := pprior 1S the prior measure and (8, : k = 0,..., Nt) is the vector of

(=1

inverse temperatures. Then, we proceed iteratively by bridging pi,o” — uggst for

)

each £ =2 ..., Ny. In every bridging update, we use N](f intermediate steps based

on the (bridging) inverse temperatures ((,gz) k=0,..., Ng)). In particular,

dﬂ?k
d,LLprior

where (i}, o == M]ZN(Z) and p5, = py, -

As opposed to the anultilevel methods discussed in §3.4.2) MLB is not a variance
reduction method per se. Indeed, since the method uses Sequential Monte Carlo
with tempering, the error of the estimator (i.e. p as given in Proposition is
indeed reduced; see Lemma [5.14] However, the multiple levels are actually used to
speed-up the tempering process. Other multilevel methods that are not used for
variance reduction are, for instance, the following: Farcas et al. [87] consider mul-
tiple discretisation levels to place sparse quadrature nodes in a domain; [197, 247]
propose strategies to compute the probabilities of rare events; [198] use a multifi-
delity approach to find efficient MCMC proposals. An SMC method with classical
Multilevel-Monte-Carlo type variance reduction is given in Multilevel Sequential
Monte Carlo (MLSMC), which we discuss next.

6.1.2 Multilevel Sequential Monte Carlo

Beskos et al. [19, 18] and Del Moral et al. [64, [63] proposed and improved the
Multilevel Sequential Monte Carlo method for Bayesian inverse problems. Here,
the different discretisation levels are used for a variance reduction in the classical
Multilevel Monte Carlo sense. The intermediate measures are given by the posteriors
: : ot — @ — — (VL)
on different discretisation levels i1 1= pipose, 2 = Hposts - - - Ny = Hpost - Lhose
measures are now approximated with the SMC framework. In this particular case,
we keep all the measures in the memory, including the measures obtained after a
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weighting step (W), but before the selection and mutation step (Si). We obtain
the initial measure g, by sampling independently from the prior. Then, we proceed

ﬁk’ = Wk(ﬁk—1)7
B, ~ Sk(- ) (k=1,...,Nu).

Let @ : X — R be a bounded quantity of interest. We obtain an approximation of
the posterior integral using the telescopic sum:

/X Q(O)1) (d6) ~ /X mel(dewé( /X Q0)fa (d0) — /X Q(emk_l(de)).

(6.1)
In particular cases, one can show that the estimator on the right-hand side of ([6.1))
has a smaller variance than the standard SMC estimator

/X Q(O)iin, (d6).

Note that this integral as well as the integrals on the right-hand side of are
indeed estimators since they integrate with respect to empirical measures. Due to
the variance reduction, and similarly to MLMC, one can successively reduce the
number of samples. A natural point to do that in SMC is the resampling step,
where one can just successively draw fewer samples. By using few samples with the
computationally expensive fine model discretisation, the overall computational cost
can be reduced significantly.

Note that this method is taylored for the approximation of integrals, but does not
generally give a valid measure approximation. Hence, the MLSMC method fol-
lows a different paradigm than MLB. In the following, we will rather focus on the
approximation of the measures, not on the approximation of integrals.

6.1.3 Issues of concentration and bias
(e-1)

In MLB and also MLSMC, we aim to bridge from one posterior measure fi,qs

I(i)st. Hence, we apply Importance Sampling or SMC

with tempering to obtain approximate samples from ,ugo)st using samples from ul(;;tl ),

We now consider a setting in which the measures (uggst)é\gl are based on forward
models with differently discretised PDEs. It has been observed that the posterior
measures in (Mg’ﬁst)ég are biased with respect to each other, see, e.g. Cockayne et
al. 46, Figure 3]. On the other hand, the concentration of the posterior depends
for a large part on the noise level in the likelihood, not so much on the model
discretisation. Hence, two consecutive posterior measures can have a very small
variance each and a bias with respect to each other. This however may lead to a
large p, in the Importance Sampling error; see Proposition [3.5] We consider this in

the following example.

to another posterior measure u

Example 6.1. Let y := N(0,0?) and p* := N(m, 0?) for some m € X and o* > 0.
Moreover, from Theorem [1.23] we obtain

v(0) := exp ((90_7721) x ii (9) (0 € X).
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We are now applying Importance Sampling to approximate p*, using p and . Using
Nsmp € N samples from p, we get the error

P

dev *7/\* <2 .
w(p' ) < Nomp

In this particular setting, we obtain

S0P _ (s
= 5 = .
(fx 1(O)p(d0)) 207
Let now u, u* be posterior measures on different discretisation levels. As discussed

above, we then anticipate a bias (i.e. m > 0) and a concentration on a small area
(i.e. 0 < 1). This implies that we obtain a large m : o ratio and, hence, p > 1. <

A large p implies that we either need a huge number of samples, or, in SMC, a huge
number of intermediate tempering steps. Both eventually leads to an inefficient
algorithm. Hence, MLSMC and MLB may be inefficient in practice.

6.2 Multilevel Sequential> Monte Carlo

In this section we generalize Multilevel Bridging and propose the Multilevel Sequen-
tia Monte Carlo (MLS*MC) sampler. We explain the advantages of this generali-
sation in §6.2.3 but before we do this, we introduce the sampler formally in
and discuss its accuracy and computational cost in §6.2.2

MLS?*MC is a Sequential Monte Carlo method which combines Tempering and Multi-
level Bridging. Sequential® (“sequential squared”) refers to two individual sequences
in a Sequential Monte Carlo sampler, namely a sequence of inverse temperatures
(B : k=0,...,Nr) and a sequence of discretisation levels ¢/ = 1,..., Ni. Starting
with the prior measure fipior and discretisation level £ = 1, the MLS?MC update
either increases the discretisation resolution ¢ — ¢+ 1 or the inverse temperature
Br — Brs1 (k= 1,..., N, —1). This process is repeated until we arrive at the
inverse temperature Sy, = 1 and maximal discretisation level Ny,. See Figure
for an illustration.

6.2.1 Formal introduction

We introduce a general framework to describe MLS?2MC update strategies. Let
Ng2 = Nt + N, denote the total number of bridging steps (i.e. the number of
discretisation levels) and inverse temperature updates. Let U : {0,..., Ng2} —
{0,..., Nt} x {1,..., N} denote a function, where

Ui(s) =Ui(s — 1) & U(s) =U(s— 1) +1, (,j=121i475)  (6.2)
U(0) = (0,1),
U(Ngz) = (N1, Ny).

We refer to U as update scheme. In each step s = 0, ..., Ng2 of the algorithm U, (s) =
k refers to the inverse temperature and Us(s) = ¢ refers to the discretisation level.
The update function U is convenient for the discussion and analysis of various update
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(NL))

post

(Target distr. p

B
A

0= 5
(Prior distr. fiprior) 1

single-level SMC
MLS*MC ([20] and §5.4.1))

r » Discr. 1vl.
N, — 1 Ng,

Figure 6.1. The update schemes associated with Multilevel Bridging, single-level
SMC, and MLS?MC.

schemes. If we consider only a single update scheme U, we define U, (s) =: T(s) and
Us(s) =: B(s). Furthermore, if it is clear whether s refers to T(s) or B(s) or to both,
then we use the notation

D) = (I)B(s)7 Bs = ﬁT(s)a (S =0,..., NSQ)-

Before we present the formal definition of MLS?2MC, we give two examples for al-
ternative update schemes. See Figure [6.1] for an illustration.

Example 6.2. Let N;, = 1 and define the update scheme U, where s — U(s) =
(s,1). Then, the associated sampler is equivalent to single-level SMC. &

Example 6.3. Let & : {0,..., Ng2} — {0,..., Ny} x {1,..., N}, where

(S,l), if s S NT,
S =
(Nt,s — Np+ 1), otherwise.
The corresponding sampler is equivalent to Multilevel Bridging. <&

Now, we define MLS?MC as a Sequential Monte Carlo sampler; see §5 Hence,
we construct a sequence of probability measures (fyys) : s = 0,..., Ns2), where
Hat(0) = Mprior and flgy( Ng) = ul(fZSLt). The intermediate probability measures are based

on the update scheme u and are given once again by the Radon-Nikodym Theorem:

dpig(s)
d,uprior

(0) o exp (—5S<I>(s)(9)) (s=1,...,Ngz, 0 € X).

In the MLS?MC sampler we distinguish two update types. Let s = 1,..., Ngo. If
T(s) =T(s—1)+1, then

dpass
U () o exp (—(Bs — Be1)®D(B)) (s=1,...,Ng2,0 € X).
d/LL{(s—l)
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We refer to this update as inverse temperature update (ITU). Otherwise, if B(s) =
B(s — 1) 4+ 1, then the update is given by

dpt(s
U () o exp (=B (@9 (0) — 2ED(B))) (s=1,..., Ng,0 € X).
dlu’lxl(s—l)

We refer to this update as level update (LU). However, we usually perform more
than one Bridging step from one discretisation level to the next (see §5 We can
5

redefine the update by the following (telescoping) product of Ny (B( N eN
densities, each of which reflects a partlcular intermediate brldglng measure that is

based on bridging inverse temperatures (Cm m=1,... ,N](;)):
d N(S)
dps) ( ) _ ¢ (g (s—1) )
) ex T(@Y(0) — D 0
e x [Lew G )(@0(6) — 2 (9))

(821,...,N82,9€X)‘

For clarity of presentation we do not include the intermediate bridging measures in
the update scheme . Furthermore, if it is clear which update scheme is used, we
write fis 1= fy(s)-

6.2.2 Computational cost and accuracy

Before we propose an efficient update scheme for the MLS2MC sampler, we briefly
discuss its computational cost and accuracy. Let C, € (0,00) denote the compu-
tational cost of one evaluation of ®, (for £ = 1,..., N,). Moreover, we denote the
total cost of the MLS*MC sampler with associated update scheme U by Cost(U).
We typically measure C; in terms of the number of floating point operations that
are required to evaluate ®,. One could also think of estimating the elapsed time of
model evaluations or, e.g. the memory requirement.

Example 6.4. Let ® denote a potential that is based on the solution operator G
of an elliptic boundary value problem in d-dimensional space (d = 1,2, 3). Further-
more, let hy = 27%hy, ¢ € N, hy > 0, denote the mesh size of the discretised potential
®,. The mesh is regular and we use linear finite elements; see also Example [3.14]
for a discussion of the computational cost. Then the ratio of the computational cost
associated with two consecutive levels in terms of floating point operations is

Crs1
Cy

Given a maximal level N, € N, we normalize the values such that Cy, = 1. We

arrive at
Cg = 2d(€_NL), (= 1,...,NL.

&

In the following we discuss the computational cost of MLS*MC in terms of the
update scheme U and the costs (Cp: ¢ =1,..., N). To begin, we consider inverse
temperature updates. If the Markov kernel update is performed by a Metropolis—
Hastings scheme, then one PDE solve for each of the Ny, particles is required, to
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evaluate the acceptance probability. The acceptance step also requires the model
evaluations of the current particles. This however should remain in the memory, until
the particles are updated. Hence, the computational cost of the inverse temperature
updates is given by

Ng2

§ NsmpCB(s)-
s=1

s is an ITU

In Bridging, we also perform a Markov kernel step for each of the N](;) interme-
diate Bridging steps and each of the Ny, particles. Here, the evaluation of the
Markov update density requires two model evaluations in total, namely one on each
discretisation level B(s — 1) and B(s), respectively. Thus, we perform Nf;) - Namp
evaluations of the model on the two levels. In addition, we have to consider the first
intermediate Bridging step. In contrast to the inverse temperature update, we do
not yet have the model evaluation of the current particles on level B(s). Thus, we
need to add the cost of Ny, - Cp(s) to each of the level updates. In summary, the
computational cost for a level update is given by

Ngo
> Namp (CB<5) + (N5)(Cre + CB(s—1)>> ‘
s=1

sis an LU

Adding the costs for bridging and inverse temperature updates, respectively, we
arrive at the following total cost.

Proposition 6.5. Let the Markov kernels in the MLS?MC sampler be given in terms
of a single Metropolis—Hastings MCMC update. Then, the total computational cost
of the Multilevel Sequential> Monte Carlo sampler is given by

Ngo Ngo
CostU) = > NumpCo+ Y. Nomp (CB(s> + (NS) (Cre) + CB(HQ) :
s is SailITU s isS;llLU

&

Next we discuss the accuracy of the MLS*MC sampler in terms of dey (fpost; &),
where i is the measure based on the MLS?MC approximation of fpost- Note that
is a random measure, as discussed in §5.3.1 An accurate discussion of the SMC error
is beyond the scope of this thesis. We refer to the references noted in We
make use of the following observation: In every MLS?MC update we perform a Monte
Carlo estimation with weighted samples. Hence, in each update the approximation
accuracy measured in terms of the root mean square error is of order

O(ESS™Y%, ESS — o).

Here, ESS is the effective sample size defined in . Recall that we choose the
update steps adaptively (see . Thus, the ESS is approximately constant in
every step. Hence, every Bridging and Tempering step has the same influence on
the accuracy. Thus, the total accuracy is bounded by the sum of the individual
accuracies associated with the update steps. For this reason, we can maximise
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the accuracy of the MLS?MC approximation by minimising the total number of
MLS?*MC update steps. The latter is given by

Ng2
#UpdU) =Nr+ Y. Ny
s=1
s is an LU

In summary, we wish to design an update scheme which minimises both #Upd(-)
and Cost(-).

6.2.3 Is Multilevel Bridging optimal?

We next discuss the computational cost of Multilevel Bridging; see §6.1.1|for details.
We do this to motivate our generalisation, the MLS?MC sampler. First, we state
two assumptions on the inverse temperatures and number of intermediate bridging
steps.

Assumption 6.6. In the MLS?MC sampler,

(i) the inverse temperature () is independent of the discretisation level B(s—1)
for any s = 1,..., Ng2, where s refers to an I'TU, and

(ii) the number of intermediate bridging steps Nés) is independent of the inverse
temperature Srs—1) for any s =1,..., Ns2, where s refers to an LU.

&

Given these assumptions, #Upd(U) is constant for every possible update scheme
U. Hence, we expect the same accuracy for any MLS?2MC sampler independently
of U. One can argue analogously for the cost of the bridging steps: Due to the As-
sumption (ii) the number of Bridging steps is fixed throughout all feasible update
schemes. Thus, the crucial factor contributing to the total cost is the tempering. In
MLB, the tempering is performed completely on level £ = 1 which requires the least
computational effort. We summarize this paragraph in the following proposition.

Proposition 6.7. Let U be the Multilevel Bridging update scheme defined in Ex-
ample . If Assumption are satisfied, then ¢/ minimizes both #Upd(-) and
Cost(+). <&

We now comment on Assumption starting with (i). The major reason for
performing the tempering is the concentrated support of the posterior in the small
noise limit. The width of this concentrated support is associated with the posterior
variance which, in turn, reflects the certainty in the considered parameter. This
certainty in the parameter is based on the precision I'"! of the data which we define
a priori in the likelihood. Since I'"! is chosen independently of the discretisation
resolution h, Assumption [6.6](i) is likely satisfied.

In contrast, Assumption (ii) is not always justified. If &, ; is a good approxi-
mation to @y, then also exp(—FP,_1) ~ exp(—[P,), independently of the inverse
temperature 3. Hence, the support of the associated posterior measures differs only
in a small area of the parameter space, and a small number of intermediate bridging
steps is required from ¢ — 1 — /. However, on two consecutive coarse discretisation
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levels the discrepancy of ®,_; and ®, might be large. This is not a big problem for
small inverse temperatures associated with a larger noise level in the likelihood; it
is still possible that there is a substantial overlap of the support of the associated
probability measures, and hence a moderate number of intermediate bridging steps
is required. However, for large inverse temperatures and a small noise level the asso-
ciated probability measures are likely highly concentrated, and their supports might
have a small intersection. Thus, either a large number of intermediate bridging steps
is required, or bridging might not be possible at all. We have discussed this issue
also in §6.1.3] In any case, Assumption [6.6[(ii) is hardly justified. Note that a large
number of intermediate bridging steps also reduces the overall accuracy of the SMC
sampler.

When is bridging practically impossible? Let s refer to an LU. Given a fixed number
of particles Ny, it is possible that the update density djs/dpus—1 is numerically zero
for all particles. Then, we refer to u,_1 and u,s as numerically singular. Importantly,
we are not able to carry out an MLS2MC update from j,_; to p, in this case.
Now, in MLB all level updates are performed with the untempered likelihood, i.e.
B =1, even for coarse discretisations. As explained above, this might result in an
inaccurate or expensive estimate, or the estimation might not be possible at all. In
the numerical experiments in §6.3], we will illustrate these issues.

Of course, these problems can be cured by starting the MLLB on a fine discretisation
level, where Assumption [6.6](ii) is satisfied. If the operator ®(. is well understood, it
might even be possible to define a suitable minimal starting level. In this case, the
cost of MLB might often be cheaper than the cost of the adaptive update scheme
that we propose in the next section. However, in most cases the operator ®.) is not
well understood or even only given in a black box sense. In this case, determining a
sufficiently fine starting level for MLB is not possible. This motivates us to introduce
an efficient, parameter-free, adaptive update scheme which does not require a priori
information on the model resolution.

6.2.4 An efficient update scheme

Now we discuss the major component in the proposed MLS*MC sampler, namely,
the choice of the inverse temperature and level updates, respectively. Balancing
these updates with the computational cost is a non-trivial task. If we increase the
discretisation level too early in the update scheme, then many inverse temperature
updates on an expensive level are required. Increasing the discretisation level too
late could result in the undesirable situation that many intermediate bridging steps
might be required later on (see the discussions in §6.1.3| and §6.2.3). To simplify
the derivation of the computational cost we work under Assumption [6.6](i) which is
likely satisfied for a large class of relevant BIPs. In this case, to obtain a good accu-
racy of the MLS2MC approximation, we aim at minimizing the number of bridging
steps. However, we also need to consider the computational cost associated with
the proposed path since MLS?MC should operate with minimal cost.

Suppose we are in the update step from ps_; to ps, where s € {2,..., Ng2} and
U(s—1)=: (k—1,£—1). Under Assumption [6.6{i) we study the following decision
problem:

Do we update the discretisation level { — 1 +— £ or the temperature k — 1+ k?

To account for the full impact of this decision, we consider the cost and the loss
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in accuracy of all future update steps. We split the future path into two parts,
namely, from 51 to p5 and from ps to png,. For simplification, we suppose that
for the second part both Assumption[6.6[i) and (ii) are satisfied. By Proposition [6.7]
the optimal strategy for the second part starting in s is to first increase the inverse
temperature to § = 1 (in multiple steps) and then to bridge to the maximal level Ny,.
This is equivalent to carrying out the Multilevel Bridging with initial probability
measure s. Hence the second part of the path is determined, and we only need to
decide on the path from ps_; to ps. We now investigate this.

Let st := min{s € {1,..., Ng2} : B, = 1}. In Figure[6.2] we show the two options:

e Path W: Update the level { — 1 +— £, in step s — 1 — s, then proceed as in
MLB,

e Path V: Update the inverse temperature k — 1 — k in step s — 1 + s, then
proceed as in MLB,

where W(s—1)=V(s—1)=(k—1,4—1), W(s) = (k—1,¢), and V(s) = (k, £ —1).
Note that st differs for the paths V and W.

W(st) =
Inv. Temp. V(s +1) =
T+ Vv = (Nt,l—1 Nr, ¢
1= BNT - (ST) ( B ) ( - ). ;.,UJpost
B A V(s) = (k,t—1) ¢ eW(s+1) = (k¢
Br—1 1 o SW(s) = (k—1,0)
V(is—1)=W(s—-1)=(k—1,£-1)
0= 60. T T T — Discr. 1lvl.
Hprior 1 0 —1 /¢ NL

Figure 6.2. Decision problem in MLS?MC: Which path is cost-optimal? First
level, then inverse temperature update (W, red) or first inverse temperature, then
level update (V, blue).

We assume that N1(35) < N](;H). This is reasonable since the probability measures
that are bridged in path V contain a smaller noise level and are thus more concen-
trated. The computational costs associated with paths VV and W between u,_; and
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[(Ny,e) are given by

Cost Wlia-1,...01) = Namp N5 (Ceo1 + Co) + NampCo 1 + Namp(N1 — k + 1)Cs,

TV TV
LU (—15¢ ITU k—1—Np

(6.5)
Cost (V‘{S—I,A..,ST—I—I}) = Nsmp(NT —k+ 1)C€71

N J/

ITU kzrlHNT
+ zvsmlegS-‘rl) (Cg_l + Cg) + Nsmng_l . (66)

LU ¢—-1—¢

Note that we do not consider the cost of Bridging from pny.¢) t0 pngNy) = BNg
since this cost is identical for both paths. Given our assumptions we can reformulate
the decision problem in terms of computational cost as follows:

Is the number of additional bridging steps NI(SSH) needed in comparison to N](;) more

expensive than the increased computational cost of the inverse temperature update
on level { compared to level £ — 17

This question corresponds directly to the expressions in and (6.6). However,
we need to minimise both the computational cost and the number of updates #Upd.
If bridging and tempering are performed non-adaptively, then all quantities in (6.5)
and are known, as are #Upd(V) and #Upd(W). Hence, we can simply com-
pare the costs and the number of update steps and choose the path that is more
appropriate. However, this is not the focus of this thesis. From now on we consider
adaptive tempering and bridging only.

Without loss of generality we assume that 7% > 0 is the target value for the coefficient
of variation of the weights in every tempering and bridging update. Unfortunately,
there are in general no simple analytic expressions for the interdependency of 7%, 3
and N§>. Furthermore, given the probability measure 1, it is difficult to estimate
how many intermediate bridging steps Nés) are required for the bridging £ — 1 — (.
To make progress we continue as follows. We select a small proportion Nggp, of the
Nsmp samples and estimate the coefficient of variation associated with a bridging
update using N](;) = 1 steps based on these Ny samples. We obtain

V., [exp (—BS(QD(S)(Q) - <I>(S_1)(9)))} = vV,

This estimation requires Ngp, additional evaluations of ®,. If we update the discreti-
sation level immediately afterwards, then these evaluations can be re-used for the
bridging update. If this is not the case, then the additional samples are discarded.
In , we consider various proportions Negp/Nsmp-

To continue we make the following observation. If cviY < 7y, where .y € (0,77,
then the bridging can be performed with only one intermediate step. We use this
observation as a measure of the accuracy of the approximation ®,_; ~ ®,.

e If the accuracy is small (i.e. cviV > 71y), then we bridge immediately, since
we would otherwise propagate the inaccurate model to an inverse temperature
that is unreasonably small.

o If the accuracy is high (i.e. cv'U < 71y), we know that N{ = 1. Moreover,
we define Nj := N}(;H) and N} := Nt — k + 1. Based on comparing the costs
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in (6.5) and (6.6), we perform an inverse temperature update from s — 1+ s
if the condition

Nsmp(CE—l + CK) + NsmpN$C€ 2 NsmpN;CZ—l + NsmpN§<C€—1 + Cﬁ) (67)

is satisfied (since then the ITU cost is cheaper than the LU cost). If (6.7) is
not satisfied, then we perform a level update.

Note that the condition in (6.7) is equivalent to

Cy >N{«+N§—1
Co_1 _N%—N§+17

(6.8)

where we define % := 00. We visualise the condition in in Figure where we
show which combinations of Nj and Ny satisfy for Cy/C—y € {2,4,8}. These
three cases refer to solves of elliptic PDEs in 1D, 2D, and 3D; see Example [6.4 We
see that condition (6.7)) in the 3D case implies Nj + 1 = Ni.

C/Co1=2

CI/CH =4

C/C-1 =8

Figure 6.3. Visualisation of the combinations of N} and Nj satisfying condition
(6.8) (black squares).

Of course, the evaluation of requires Vi and Nj. However, these quantities are
(still) not known a priori, since bridging and tempering are performed adaptively.
In practice, we do not necessarily need to know Nj and Nj. If the increase of
the computational cost C,/C,_; is large (as is the case in realistic applications),
then most combinations of (N}, Ni) satisfy ; see Figure m Thus, if N}(;) =
1, one might as well skip checking condition and always perform an inverse
temperature update. We follow this strategy from now on.

The noise in the BIP can be understood as a combination of observational noise and
model (discretisation) error. This point of view fits very well with our MLS*MC
framework. Indeed, we reduce the noise level while increasing the accuracy of our
model evaluation. See also the method presented in [32] for a further discussion of
this interpretation.

Suppose now that in the update scheme the inverse temperature has not yet reached
its maximum [y = 1. Given the argument above, it is a good idea to increase the
inverse temperature after every level update (non-adaptively). This reduces the
total computational cost since we save Ngmp model evaluations in situations where
a level update is very unlikely. We implement both these ideas in our algorithm.
That is, we do not check the condition (6.8), and we update the inverse temperature
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automatically after every level update. This update scheme is given by the formula

(T(s—1)+1,B(s—1)), if B(s—1)=B(s—2)+1,
U(S) = or CVI;U < TLU, (69)

(T(s—1),B(s—1)+1), otherwise,

for any s = 1,..., Ng2, where #(0) := (0,1) and U(—1) := (0,0). Note that the up-
date scheme in is independent of C,/C,_;. Clearly, its effectiveness depends on
the computational costs at each level, but the cost does not determine the adaptive
choice between level update and inverse temperature update. Recalling Figure 6.3,
we expect that the efficiency of the algorithm increases as the multiplicative incre-
ment C,;/Cy_; increases. The algorithm reduces the total number of intermediate
bridging steps Nj, and thus also increases the accuracy. The numerical results
in show that the update scheme in implements a compromise between
computational cost and accuracy.

In summary, our proposed update scheme uses a heuristic backtracking type method
to find a suitable inverse temperature for the bridging from discretisation level £ — 1
to £. This means that we bridge on the smallest of the adaptively determined inverse
temperatures where bridging is necessary.

Let s — 1 — s refer to a level update. The approximation 1 & i, is accurate if £
is sufficiently large, or if S is sufficiently small. Hence, we deduce that our method
leads to a small number of required intermediate bridging updates Ng). This in
turn implies a small total computational cost and a good accuracy of the measure
approximation.

6.2.5 Maximum level N"**

A natural question in the context of the adaptive update scheme is: Do we
need to go to the level £ = Ny, or can we stop earlier? To address this question, we
proceed as follows.

Let F:={s=1,...,Ngz2: T(s) = Nt,B(s) < N.} denote the subset of the domain
of the update scheme U where the maximal inverse temperature Sy, = 1 is reached
and some Bridging steps remain. Note that F' can be the empty set. If this is not
the case, we refer to F' as the set of final level updates. We reformulate the question
above as follows. Is there an s € F', such that the intermediate probability measure

s 1S a sufficiently accurate approximation to the target posterior measure ug;) ?

We assess the necessity of updating the discretisation level in terms of the informa-
tion gain associated with the update. If the information gain of the level update is
smaller than a certain threshold, then the algorithm terminates. To be consistent
with the update scheme , we measure the information gain in terms of cviV.
This coefficient of variation gives an upper bound for the Kullback—Leibler diver-
gence from p;_1 to pg; see [5] for details. Let 7, > 0, where 7, < Ty, denote a
threshold parameter. The modified update scheme U’ reads as follows:
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(
U'(s — 1) and terminate, if s —1¢€ F and cviV < 7,

U(s) = (T(s—1)+1,B(s—1)), if B(iU— 1)=B(s—2)+1, (6.10)
or cvy” < TLu,

((T(s —1),B(s —1) + 1), otherwise,

for any s = 1,..., Ng2, where U'(0) := (0,1) and U'(—1) := (0,0). If the algorithm
terminates for s < Ngz, we define Ngz := Np + N and N := B(s — 1).
Otherwise, we let N"** := Ni. We test the performance of the modified update

scheme U’ in §6.3

6.3 Numerical experiments

We consider the elliptic inverse problem discussed in Example on the unit square
domain D = (0,1)?. Hence, the permeability exp(f) and the hydrostatic pressure p
are coupled via the elliptic PDE

V- (exp(8(2)) Vulz)) = f(z) (z € D).

The source term f and the boundary conditions are specified below. We observe the
pressure at Nops points (0, : n=1,..., Nops) in the domain D. Thus the observation
operator O maps u — (u(o,) :n=1,..., Nops).

The parameter exp(@) is a log-normal random field. In particular, we assume that
the prior distribution of € is a Gaussian random field with mean and covariance
operator specified below. This Gaussian random field is discretised by a truncated
KL expansion, which takes the form

Nsto

0 ~ 07 = my(z) + Zmn(:v)OEL, (6.11)
n=1

where 0% .. ,BJIE,SLW denote standard Gaussian random variables; see . We
generate the true parameter by sampling from the discretised prior random field.
The observations y are given by the model evaluation of the true parameter plus
(additive) Gaussian measurement noise n ~ N(0,0.01 - Id).

We consider three estimation problems.

Example 6.8. Here the pressure on the boundary of D is zero,
u(z) =0 (x € OD).

The source term f models nine smoothed point sources that are distributed uni-
formly over the domain:

3

where n(-; £, V) is the probability density function of the one-dimensional Gaus-
sian measure with mean E and variance V; see also Proposition [1.22] The prior
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random field @ ~ fiprior = N(m,C), where m = 0 and C is the Matérn covariance
operator with correlation length A = 0.65, smoothness parameter v = 1.5, and vari-
ance 02 = 1; see Definition for details. The random field 0 is discretised by a
truncated KL expansion using the Ny, := 10 leading terms which capture 94.5% of
the variance. Note that for the prior field these random variables are uncorrelated.
For the posterior random field, this is not necessarily the case. However, we only
consider the marginals of the posterior distribution. The action of the operator G is
approximated by piecewise linear, triangular, continuous finite elements on uniform
meshes with 2-8%,2-162,2-322,2-64% and 2-1282 elements. The observation operator
O returns the pressure at 25 points in the spatial domain. The 25 points are shown
in Figure [6.4] along with the actual pressure given the true underlying permeability.
Finally, the covariance operator of the noise is given by the matrix I' = 0.07%-1d. ¢

Example 6.9. The inverse problem and its discretisation is the same as in Exam-
ple [6.8] but with noise covariance matrix I' = 0.035% - Id. %

Example 6.10. We consider a flow cell problem on D = (0, 1)?; recall Example[4.19]
We have flow in the z;-direction and no-flow boundaries along the xo-direction,

u(z) =0 (z € {0} x [0,1]),
u(z) =1 (z € {1} x [0, 1]),
g—g(x) =0 (x € (0,1) x {0,1}).
Furthermore, the source term f = 0. The prior random field is @ ~ fiprior =

N(m/,C"), where m’ = 2 and C’ is the Matérn covariance operator with correlation
length A = 0.1, smoothness parameter v = 1.5, and variance ¢? = 1. The random
field @ is discretised by a truncated KL expansion of the form using the leading
Ngio := 320 terms which capture 95% of the variance. The action of the operator
G is approximated by piecewise linear, triangular, continuous finite elements on
uniform meshes with 2 - 162,2 - 322,2 - 642,2 - 1282 and 2 - 256% elements. The
measurement locations are uniformly distributed as in Example [6.8 however, we
use 49 measurements (see Figure . <&

In all examples the KL basis functions (m,)"*¢ can be chosen to be continuous.

Moreover, the observational noise is finite dimensional and non-degenerate Gaussian.
See Remark for a discussion of the well-posedness of the BIPs in Examples
0. 10

In all examples we test the performance of single-level SMC on the finest mesh (from
now on simply ‘SMC’) as well as ML.B and MLS?MC on the given mesh hierarchy.
We observe that in Examplethe adaptive update scheme of MLS?MC is identical
to the MLB update scheme. Interestingly, in Example it is impossible to perform
the update ¢ = 1 to ¢ = 2 with MLB since the probability measures /LSO)St and ul()i)st
are numerically singular. We anticipated this situation in §6.2.3

For each of the tests above, we consider different numbers of particles and different
target values 7* for the coefficient of variation in the adaptive bridging and tempering
updates. Furthermore, we choose the maximal discretisation level N{"** adaptively
in Example [6.10] using the modified update scheme ¢’ in (6.10). The simulation
setups are summarised in Table (6.1}
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Pressure u
Pressure u

Figure 6.4. Measurement locations and pressure. The surface plots show the
hydrostatic pressure given the true permeability. The vertical lines indicate the
measurement points. On the left: Examples and On the right: Exam-

ple BT

Example 6.8 6.9 6.10

# runs 50 per setup

Nomp 156, 312, 625, 1250, 2500 250, 500, 1000, 2000
T* 0.5, 1 1

TLU T

Ngio 10 320

ht (8, 16, 32, 64, 128) (16, 32, 64, 128, 256)
Update scheme U in U in (6.10); Tmin = 0.001
r 0.07% - 1d 0.035% - Id 0.045% - Id

Table 6.1. Parameter settings in Examples m

All SMC samplers use a Markov kernel in the mutation step. We choose a single step
of a Random Walk Metropolis MCMC sampler with Gaussian proposal density; see
Example |3.12] The covariance operator of this proposal density is given by CP*P =
%Id. It remains unchanged for all intermediate measures. In high dimensions it
would be a good idea to employ the preconditioned Crank-Nicolson MCMC sampler,

see Example |3.13] however, we do not implement this here.

6.3.1 Zero boundary pressure

First, we consider the Examples and [6.9] Recall that the solution of a BIP is the
posterior measure. The mean of the posterior measure is the best unbiased point
estimator of the true underlying parameter in the L?-sense; see and [I79] for
details on conditional expectations and their properties. It is important to note
that unbiasedness refers only to the stochastic approximation. The discretised PDE
solution introduces a bias compared to the exact PDE solution. For this reason we
measure the approximation accuracy of the posterior measure and also the accuracy
of the posterior mean when used as point estimator. In addition, for each Sequential
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Monte Carlo sampler we compare the estimated model evidences and the associated
computational costs.

Posterior mean. We consider synthetic data and thus the true (spatially vary-
ing) parameter Oy, is known. 6, is identical in Examples and (their setup
differs only in the noise covariances). Note that 6., is generated using the trun-
cated KL expansion in . Hence the KL truncation error is not included in our
experiments. In the top row of Figure we plot Oy, together with typical poste-
rior means estimated with SMC, MLB, and MLS?MC, respectively. In the bottom
row of Figure 6.5, we plot the corresponding hydrostatic pressure. We observe that
SMC and MLS?MC give similar results. In contrast, the estimate delivered by MLB
differs (visually) from the SMC estimate. We discuss this below.

SMC MLS2MC SMC MLSZMC MLB
True parameter =0.035%Id = 0.03521d =0.07’1d =0.07’1d =0.07%1d

-1
0 0 0 0 0 0 08
6
0.5 0.5 0.5 0.5 0.5 0.5 4
2
1 1 1 1 1 1
0.5 1.0 0.5 10 0.5 10 0.5 10 0.5 10 05 1

Figure 6.5. True parameter and posterior mean random fields. Top row: The
true underlying log-permeability and various posterior mean estimates based on
Ngmp = 1250 particles and 7 = 0.5 for Examples [6.§ and [6.9} Bottom row: The
hydrostatic pressure corresponding to the log-permeability in the top row.

n

o

o

o

(=]

Now we evaluate the posterior mean estimates more systematically, and quantita-
tively. We use the following error metric:
~KL
RelErr(8,0KL) = A2 — 6KL) /A 26KL I, (6.12)

~KL
where & € R'? is the estimate of the posterior mean (column) vector and 05k €
R!? is the (column) vector of the true parameter values. The (row) vector A2 :=

()\}/ S )\}(/)2) contains the square roots of the 10 leading KL eigenvalues. Hence,
the error measure is a weighted ¢!-distance, where we weigh the particles according
to their contribution in the KL expansion. We plot the results in Figure [6.6]

As expected the estimation quality is better for a smaller noise level, consistently
for all methods. We see that SMC is the most accurate method, while MLS?2MC
performs slightly worse than SMC, and MLB performs slightly worse than MLS?MC.
This is more pronounced for small numbers of particles Ny, and a relatively large
coefficient of variation 7* = 1. The results are consistent with the fact that in every
Importance Sampling update we introduce a sampling error. A large number of
updates gives a large sampling error. The number of updates is minimal in SMC and
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maximal in MLB. Hence we expect SMC to give a better estimation result compared
to MLB. The estimates obtained with MLS2MC are similar to the estimation results
of SMC. Overall, these experiments confirm our motivation for MLS?MC given in

6.2
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(a) Example I =0.07%1d (b) Example I = 0.035%1d

Figure 6.6. RelErr of the posterior mean estimate compared to the true parameter.
The bold lines show the sample mean of the error taken over 50 runs. The shaded
areas show the associated standard deviation, again taken over 50 runs.

~KL
Next we consider the misfit of the (discretised) model output G(@ ) and the ob-
served data:
~KL ~KL
RelMisfit(6 ) == [[T712(y — G0 7)) [13/I0 "2y ]l5- (6.13)
We plot the relative misfit in Figure As expected we do not observe significant
differences for the two noise levels since the noise precision I'"! cancels in the relative
expression. For all methods we see that the misfit is reasonably small. Therefore,
the posterior mean estimate is a good approximation to the maximum a posteriori
estimator.

-3 * =05 3 =1 103 =05 103 =1
12 210 ™ 5 J 15 x10 T x a5 X
MLS2MC MLS2MC 4.4 MLS2MC MLS?MC
sMC sMC SMC SMC
10 —MLB 10 MLB 4.2 4
= + b 4 =
Zs Z s Z3e Z
b= = - ~ 35
bt £ £ 36 8
£ 5 = 5
26 26 Q34 2
3.2 \ ’
4 4 & 3
2.8 2.5
156 312 625 1250 2500 156 312 625 1250 2500 156 312 625 1250 2500 156 312 625 1250 2500
Number of particles Number of particles Number of particles Number of particles
2 2
(a) Example[6.8f T' = 0.072Id (b) Example I = 0.035%1d

Figure 6.7. RelMisfit of the posterior mean estimate compared to the observations
y. The bold lines show the sample mean of the error taken over 50 runs. The shaded
areas show the associated standard deviation, again taken over 50 runs.

Posterior measure. Now we only consider the leading three KL random variables
011{L,0£{L, and 0§<L. These parameters capture 76% of the variance of the prior
random field. In Figure[6.8] we plot the empirical cumulative distribution functions
(ecdfs) of OXL for representative simulations in Example 6.8 and

We assess the accuracy of the posterior measure approximations produced by
MLS*MC and MLB by comparing it with the associated (single-level) SMC method,
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MLS2MC
SMC

. . . . . . ] . . . . . . ]
1 1.1 12 13 14 15 16 17 18 1 11 12 13 14 15 16 17 1.8
oL oKL

(a) Example (b) Example

Figure 6.8. Empirical cumulative distribution function of the posterior measure of
the leading KL random variable estimated with Ny, = 1250 particles and 7* = 0.5.

using the same values for Ny, and 7°. We compute the Kolmogorov-Smirnoff (KS)
distancd?] of all 50 - 50 = 2500 pairs of simulations of (MLS?MC, SMC) and (MLB,
SMC), respectively.

We plot the sample means and standard deviations of the 2500 KS distances of the
leading three KL random variables in Figure [6.9 Since we expect some scattering
within the reference SMC approximation itself, we also show the 2500 KS distances
within the SMC simulations. This line can be used as baseline to account for the
intrinsic scattering within the stochastic methods. The results are similar to the ob-
servations we made for the posterior mean approximation in the previous subsection.
In Example , there is no significant difference between SMC and MLS?2MC. MLB
performs slightly worse; we suspect that this is again caused by the larger number
of intermediate Importance Sampling updates. In Example [6.9, we observe a larger
discrepancy of the approximate posterior measures compared to Example

Model evidence. Every SMC-type method delivers automatically an estimate A
of the model evidence Z(y) in Theorem . We have discussed this in .

Z is a random variable, and in each simulation run of SMC, MLB or MLS?MC we
obtain a realisation of it. We plot the ecdfs for 50 runs of SMC, MLB and MLS?MC
each in Figure Note that the random variable Z is a biased estimator for the
model evidence due to the adaptivity of the algorithm; see [17].

In addition, we compute the distance of Z to a reference solution Z™f given by
the geometric mean of 50 estimates produced by single-level SMC. We consider the
geometric mean since the model evidence is a prefactor. For the same reason we
consider the log of the model evidence rather than the model evidence itself from
now on. We use the error metric

RelErrEvid(Z, Z™) := || log(Z) — log(Z™") |1 /|| log(Z™")]s.

Again we compare the SMC estimates with the reference solution to obtain a base
value for the dispersion within the stochastic algorithms. The results are given in
Figure We see that MLB gives poor estimates of the model evidence compared

& The KS distance has several applications in statistics. It is often used to compare two discrete
probability measures or a continuous and a discrete probability measure. For example, the KS
distance is the test statistic used in the Kolmogorov-Smirnoff test. See [55] for details.
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Figure 6.9. KS distances of posterior measure approximations. The bold lines
show the sample means of KS distances of 50 - 50 combinations of SMC and either
MLS?MC, MLB or SMC. The shaded areas show the associated standard deviations.

to SMC and MLS?MC. This is consistent with the results for the KS distances of the
posterior measures of %L, XL, and 0?1‘ where MLB produced significantly different
approximations compared to SMC and MLS?MC.

Adaptive Update Scheme. In MLS?MC we apply the adaptive update scheme
U introduced in . We always use Ngzp, := 100 particles to predict the number of
intermediate bridging steps. In Figure [6.12] we present realisations of the adaptive
update scheme. Note that these are realisations of the schematic sketch in Figure[6.1]
We observe that the first discretisation level ¢ = 1 is very inaccurate. In all reali-
sations, the update scheme leaves this level with a very small inverse temperature.
This might be the reason why Multilevel Bridging performs poorly here. Indeed,
given the inverse temperature 5 = 1, the bridging from ¢ = 1 to ¢ = 2 requires many
intermediate bridging steps. This in turn induces a large sample error in MLB as
observed throughout this section. Since the evaluation of ®; and ®, is cheap, the
influence on the computational cost of MLB is negligible.

Observe that for 7" = 0.5 the algorithm might choose to go to ¢ = 3 before arriving
at the maximal inverse temperature § = 1. For 7% = 1, the algorithm goes to § =1
first, before moving to the discretisation level £ = 3. We anticipated this situation.
In the first case, for a small value of 7%, the algorithm is more conservative, meaning
that the level updates are performed early. This strategy increases the accuracy but
also the computational cost of the method. The path selected for the larger value
7% = 1 is computationally cheaper, however, it might give a larger sample error.
Note that we do, in fact, observe a larger error in the examples where 7% = 1.

Computational Cost. Our implementation of the SMC-type samplers and the
finite element approximation is not optimized. For these reasons, we compare the
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Figure 6.10. Empirical cumulative distribution functions of the model evidences

of 50 posterior measures, each computed with Ny, = 2500 particles.
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Figure 6.11. Relative error of the estimated model evidences. The bold lines show
the sample mean of the error taken over 50 experiments. The shaded areas show
the associated standard deviation, again taken over 50 runs.

computational cost in terms of floating point operations, and not in terms of the
elapsed time. The cost of a single evaluation of ®, is

Cp:=2%% ¢=1,...,5.

This is motivated in Example [6.4] where we take d = 2. In Figure |6.13] we plot
C, against the number of particles Nyy,p. As expected, the cost scales linearly in
Nomp- If Ngnyp is fixed, then we observe a speed-up of factor 4 for both MLB and
MLS?MC compared to single-level SMC. Increasing the discretisation level by one
unit increases the cost by a factor of 4 in single-level SMC. Hence, using either of the
multilevel methods gives us one discretisation level more for the same computational
cost as single-level SMC. However, in the preceding sections, we observed that the
MLS2MC samplers are more accurate compared to MLB. In Figure we compare
computational cost and accuracy directly. We measure the accuracy in terms of the
relative error of the model evidence. Given the relatively large 7* = 1, the additional
stochastic error that is introduced in MLS?MC outweighs the advantages in terms
of computational cost. For 7% = 1 we see that MLS?MC is not as accurate as SMC
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Realisations of the adaptive update scheme U within the

MLS?MC algorithm. Each dot corresponds to one intermediate probability mea-

sure.

because in MLS?MC we perform a much larger number of intermediate update steps.
On the contrary, for the smaller value 7* = 0.5 and a fixed accuracy of the estimator,
MLS?*MC is strictly cheaper than SMC. Overall, this demonstrates the advantages
of MLS?MC in terms of both cost and accuracy.
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Figure 6.13. Computational cost of the SMC-type samplers. Each of the bold
lines represents the mean computational cost throughout 50 simulations. The costs
are measured in terms of the theoretical number of floating point operations per
PDE solve on the given discretisation level. These costs are normalised such that

Now we consider Example[6.10. We are particularly interested in the performance of
MLS?MC in high dimensions. We compare only MLS?MC and single-level SMC since
the adaptive update scheme in MLS2MC delivers the same sequence of intermediate

166



Chapter 6. Exploiting hierarchies with SMC samplers.

™ =05 ™ =0.5
2 2 2
Z 1045 MLS™MC | 8 1045 MLS2MC | -
o 4l MLB O 4 SMC
g 10 N SMC g 10°r1
2 10%°+ £ 1035 |
Q =}
O 103t O 108t
0 0.1 0.2 0.3 0.4 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
RelErrEvid RelErrEvid
™ =1.0 ™ =1.0
% 104t _ g
& 10 S 10451 MLS2MC | -
= 1035} wLszve | o 10tt SMC ]
g g 4035
ER MLB g 10%°r 1
o 1071 SMC O 403t |
0 0.1 0.2 0.3 0.4 0.02 0.04 0.06 0.08 0.1 0.12
RelErrEvid RelErrEvid

(a) Example (b) Example

Figure 6.14. Comparison of the computational cost and accuracy of MLS?MC,
SMC and MLB for 7* € {0.5,1}. The different levels of accuracy are associated
with different numbers of samples Ngnp. This combines Figures and

probability measures as MLB. In addition, we choose the maximal discretisation
level adaptively within MLS?MC; see for a discussion. Hence, we apply the
update scheme U’ defined in . Note that we use 16 rather than 8 finite elements
in each spatial direction on the coarsest level.

Posterior approximation in high dimensions. We present the posterior mean
estimates and the true underlying parameter in Figure [6.15] We see that the es-
timation results are visually not as informative as the previous examples. Indeed,
one can only recognize the coarse-scale structure of the true parameter. Recall that
in we considered the three leading KL terms. In this example, however, the
three leading KL terms capture only about 8% of the prior variance. Informative
results would require the consideration of a large number of marginal distributions.
However, since this is not illustrative for the reader, we consider the random field
at two fixed points in the spatial domain; these points are z(Y) = (0.5,0.5) and
? = (0.75,0.25).

Before looking at the KS distances of the distributions of (™) and ., (@),
we assess their posterior mean estimates. The relative error of the posterior means
in these points compared to the true values Gyue(z™) and Gye(2?) is given in
Figure While the estimate of Oy, (zV) is quite accurate, the estimate of
On...(2'?) is very inaccurate — consistently in both methods. This is consistent with
the plots of the posterior means in Figure

Next we consider the relative misfit defined in . We plot this error metric
in Figure 6.17, Even though the parameters are approximated quite poorly, the
relative misfit is fairly small. Hence, the data might be not sufficient to identify the
underlying parameter more precisely.

We now move on to assessing the approximation accuracy of the posterior measures.
To this end, we consider again the random variables 8., (z")) and Oy, (z?). We
compute the KS distances of their posterior measures as discussed in §6.3.1. That is,
we compare 50 MLS2MC approximations with 50 SMC approximations, using the
identical numbers of particles. To obtain a base value for the KS distance, we again
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Figure 6.15. Parameter estimation results with estimations from flow cell. Top
row: True underlying parameter (left) and posterior mean estimates of SMC (center)
and MLS2MC (right) in Example The estimations are based on Ngyp = 1000
particles. Bottom row: Hydrostatic pressure corresponding to the log-permeability
in the top row.

compare also the SMC approximations to one another. The results are presented in
Figure As in Examples [6.8] and we see that MLS?MC approximates the
SMC reference solution very well.

Adaptive update scheme. We present again some representative update schemes
in Figure [6.19] We see that MLS?*MC chooses the same updates as MLB. This can
be justified as follows: First of all, we started with a finer PDE discretisation on
the initial level. Hence, the Bridging with large inverse temperatures should be
genuinely easier. Moreover, the noise level in this Example is not as small as
in Example In such a setting, MLB is optimal.

Recall that the maximal discretisation level is chosen adaptively. The samplers us-
ing Namp € {250,500, 1000} particles stop on level 4, whereas the samplers using
Nsmp = 2000 particles continue to level 5. Hence it might not be possible to cap-
ture the difference between the discretisations ®* and ®®) using a small number
of particles. It is possible that the necessary sample size is too small in this set-
ting; see Sanz-Alonso [223]. In Figure , we do not see a significant difference
between the MLS*MC approximations using Ny, € {250,500,1000} particles and
the respective SMC approximations. This might be surprising since the posterior
approximations are based on different PDE discretisations. However, SMC also uses
Namp € {250, 500,1000} particles for its approximation. If the Ny, particles were
not able to capture the difference between the potentials ®®* and ®©) in MLS?2MC,
this should also be the case in SMC. Hence, by using the adaptive update scheme,
we can reduce the final discretisation level without losing accuracy.

Computational cost. We give the computational cost again in terms of number
of PDE evaluations with their respective theoretical number of floating point op-
erations. Furthermore, we normalize C4 = 1 to be consistent with Examples
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Figure 6.16. Relative error of posterior mean estimates compared to the true
parameter in (1) (left) and z(® (right) in Example The bold lines show the
sample mean of the error taken over 50 experiments. The shaded areas show the
associated standard deviation, again taken over 50 runs.
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Figure 6.17. Relative misfit of the posterior mean estimates compared to the ob-
servations in Example The bold lines show the sample mean of the error taken
over 50 experiments. The shaded areas show the associated standard deviation,
again taken over 50 runs.

and [6.9] Hence,
C,=2%49  (1=1,..,5).

We present the cost of the simulations in Figure [6.20L We observe a speed-up of a
factor 4 compared to single-level SMC, considering the number of particles. This is
similar to the results in Example [6.8) and [6.9]

Furthermore, in this figure we see a kink at Ngy,p, = 1000 in the graph representing
the MLS?2MC method. This corresponds to a disproportional increment in loga-
rithmic computational cost we observe when using Ngy,, = 2000 particles. It is
caused by the larger maximal discretisation level our algorithm chooses adaptively.
In Figure [6.13] we also compare computational cost and accuracy of the posterior
mean estimates in terms of the relative misfit. We see that MLS?>MC is less accurate
than SMC. This is consistent with the numerical results in Examples and [6.9}
see There we have noticed that the large 7" = 1 leads to a large stochastic
error in MLS2MC, but not in SMC. We expect that this problem can be solved by
choosing a small 7*.
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Figure 6.18. KS distances of the marginal posterior distributions of @, (z(1)
(left) and @y, (@) (right) in Example We compare the MLS?MC approx-
imation with the SMC approximations and also the SMC approximations to one
another. The bold lines show the sample means of KS distances of 50 - 50 combina-

tions of SMC and either MLS?MC, or SMC. The shaded areas show the associated
standard deviations.
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Figure 6.19. Realisations of the adaptive update scheme ' (6.10]) in MLS?MC
applied to Example Each dot represents one intermediate probability measure.
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Figure 6.20. Cost and accuracy of SMC and MLS?MC evaluations in Exam-
ple[6.10] Each of the bold lines represents the mean computational cost throughout
50 simulations. The y-axes represents the costs in terms of the theoretical number
of floating point operations per PDE solve on the given discretisation level. These
costs are normalised such that Cpy; = 1. The x-axes represents either the number of
particles Ngmp (left) or the relative misfits that are also given in Figure (right).
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Chapter 7

Conclusions and outlook

A problem never exists in isolation;
it is surrounded by other problems
in space and time.

Russell L. Ackoff [2, p. 429]

In the following, we briefly summarise the main contributions of this thesis. We also
point the reader to possible directions for future research.

Well-posedness. We have introduced a new concept of well-posedness for Bayesian
inverse problems. Our concept is slightly weaker than the state of the art, but al-
lows for well-posedness statements without fully analysing the possibly complicated
or unknown forward model. Here, ‘unknown’ refers to models that are hidden in
software. Hence, we obtain very general statements using our concept.

In §2] we have mainly considered the Hellinger well-posedness. Weak well-posedness
is a strictly weaker statement than Hellinger well-posedness. Hence, we would as-
sume that we can relax Assumption to, e.g. problems in which the Bayesian
inverse problem is solved via disintegration.

In this thesis, we only consider the stability of the posterior measure with respect to
the data. Other authors have also considered stability, see, e.g. Sprungk [233], and
instability, see, e.g. Owhadi et al. [195], with respect to the prior and the model. Of
particular interest for our future work is the effect of discretisations of prior and the
likelihood; see e.g. Cockayne et al. [47]. Such a setting occurs, if, e.g. the prior is a
random field and the likelihood is based on a PDE. The results of [233, 230] are only
of asymptotic nature, i.e. no accurate bounds are known. For practical use however,
we need accurate a priori and a posteriori error estimators. Such an error estimator
would bound the error between the true posterior measure and the semidiscrete
posterior that is based on, e.g. a discretised PDE. It could be used to balance
the sampling error and the discretisation error in, e.g. an Importance Sampling
approximation of a PDE-based BIP. Moreover, it would be a great addition for
adaptive algorithms, such as MLS?MC: In §6.2.5 we discuss an adaptive stopping
criterion for this method, which is based on an approximation of the Kullback—
Leibler divergence. An accurate error estimator would potentially be beneficial
here.

Hierarchical measures. Having motivated the importance of hierarchical models
in UQ, we discuss the computational challenges that occur with hierarchical random
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fields. The main challenge is the continued reconstruction of the KL expansion,
whenever the hyperparameters of the covariance operators change. We approach
this challenges with a low-rank strategy. More precisely, we employ a reduced basis
approach for the fast recomputation of KL eigenpairs. In the online phase, this
gives us a linear cost strategy, whereas the standard strategy has quadratic cost. We
construct the reduced basis with a proper orthogonal decomposition. In numerical
experiments, we verify our strategy and illustrate its applicability. Hence, we show
how to explore such hierarchies in random fields.

Our proposed algorithms has two drawbacks. First, we need to solve full eigenprob-
lems in the offline phase. This may be not possible for large scale problems. Second,
we have no error estimator to determine the set of snapshots. Hence, we can only
choose the snapshots heuristically and have no guarantee that the resulting reduced
basis leads to a good approximation. Error estimators from reduced basis methods
for PDE eigenproblems may not be useable from a computational point of view.
The error estimator introduced by Horger et al. [123], for instance, require to store
a number of full operators in the memory during the basis construction. While this
may be easily possible for local PDE operators, it is impossible for the non-local op-
erators we typically consider as covariance operators. Note that the local operators
can be represented by sparse matrices; non-local operators, however, typically lead
to representations by dense matrices. Ideas from [115, 224] may help to solve these
drawbacks in our reduced basis sampling algorithm.

For an efficient use of the reduced basis algorithm, we need an offline-online decom-
position of the covariance operator. The approximate method we propose in
does not allow for very small correlation lengths when computing in the double pre-
cision format. This problem may be solved by expanding the covariance kernel in
a different way, e.g. in Chebyshev polynomials, Chebyshev rational functions, or
Legendre polynomials. Moreover, it would be interesting to consider other classes
of covariance kernels; not only those of Matérn-type.

When motivating hierarchical measures in the introduction of this thesis, we have
shown a complicated network structure in Figure[0.2] As opposed to this relatively
deep hierarchy, the hierarchical measures, we consider in are rather shallow —
they have only one hidden layer. More complicated structures could be studied.
Moreover, the hidden layers we consider are low-dimensional. In contrast, deep
Gaussian processes have hidden layers that are also Gaussian random fields; see,
e.g. Dunlop et al. [76]. Our approach will likely not scale well when the dimension
of the hyperparameter space increases. A high-dimensional hyperparameter space
may lead to a large number of snapshots and to a large reduced basis. Both mitigate
the effectiveness of the reduced basis. Hence, other strategies need to be discussed
in this setting.

Another open problem is the use of reduced basis sampling within multilevel algo-
rithms, such as MLS?MC. In multilevel algorithms for forward and inverse problems,
the random field often has to be discretised on a hierarchy of different meshes. More-
over, random fields have to be projected onto different meshes. A trivial approach
to use reduced basis sampling in such an algorithm is to always work with the most
accurate random field discretisation. In this case however, the cost may not be
balanced well between random field discretisation and model discretisation.
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SMC and random measures. Sequential Monte Carlo methods and other par-
ticle filters have been applied in Bayesian filtering and also in static Bayesian inverse
problems. We have rigorously introduced a new framework to study and analyse
Sequential Monte Carlo methods. This random measure framework allows for in-
vestigations and interpretations of SMC with MCMC methods. This is particularly
useful for the study of the long-time behaviour of particle filters given a fixed num-
ber of particles. Thus, it will enable us to study the use of hierarchical procedures
in Bayesian estimation problems.

So far, we have discussed stationary measures with respect to the SIS and SMC
Markov kernels. An obvious next step would be the investigation of ergodic be-
haviour of the SIS and SMC Markov chains; and hence the question, whether we
converge to one of the stationary regimes that we have determined. Of particular
interest would be the influence of the weighting and resampling steps. For simplicity,
it might make sense to first consider a simple setting, in which analytical solutions
are possible. We would start with a linear Gaussian inverse problem setting with
noise-free data; see Schillings and Stuart [226]. Here, SMC with tempering could
be applied as an annealing method, with fixed § increment and with the tempering
going on until § = oco. In this example, one could also compare the convergence
behaviour of the Ensemble Kalman Inversion with that of SMC.

Having started from the example above, we should look at more complicated se-
quences of measures, i.e. appearing in non-linear Bayesian filtering. Moreover, we
should consider sequences of measures that do not immediately fit in our frame-
work; see §5.1] Those are, for instance, SMC with adapatively chosen temperatures;
see Another level of adaptivity can be introduced by choosing the MCMC
sampler in the mutation step adaptively as well. Also, we have not discussed SMC
with adaptive resampling any further, even though we have shown that it constructs
a Markov chain. Additionally, the long-time behaviour of Multilevel Bridging and
MLS2MC should be studied. Here, one could assume that the number of discretisa-
tion levels is infinite. In the limit, the discretisation would converge to the correct
model.

There are various algorithms that can be understood as generalisations of the pre-
sented SMC algorithms. Such are particle filters in data assimilation, see, e.g. [157],
or Subset Simulation in reliability analysis, see, e.g. [10]. Natural generalisations
to our discussion would include random measure representation of these algorithms;
and a long-time, finite particle study of those.

Multilevel Sequential> Monte Carlo We have proposed the MLS?*MC method
to efficiently solve Bayesian inverse problems. It adaptively combines the Multilevel
Bridging algorithm and SMC with tempering. In numerical experiments, we have
shown that it can outperform both basic algorithms. Hence, we can indeed exploit
hierarchies of discretisations for an efficient approximation of a posterior measure.

So far, we have discussed MLS*MC as a method to produce posterior samples. As-
sume that we aim to integrate a quantity of interest with respect to the posterior.
During the process of MLS?MC, we produce samples of posterior measures on var-
ious discretisation and temperature levels. Moreover, these samples have a certain
correlation structure. In a classical Multilevel Monte Carlo manner, it may be pos-
sible to use these samples to reduce the variance of the estimator for the integral.
This would combine MLS?MC with Multilevel Sequential Monte Carlo, which we
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have reviewed in §6.1.2]
MLS?*MC may be a good tool for Bayesian model selection. Note that as in all SMC

algorithms, we can approximate the evidences for different likelihoods and obtain
the posterior on the space of models by the formula in . This approach may
be expensive in practice: we need to solve the full BIP for every likelihood. Another
possibility are across-model simulations, i.e. sampling immediately from the joint
posterior of models and model parameters; see, e.g. Green [106] and Uribe et al.
[248]. Here, we automatically focus on the posteriors of models that have a high
posterior probability. To the best of our knowledge, multilevel approaches have
not yet been applied to across-model simulations. Indeed, most multilevel methods
focus on computing integrals with respect to a quantity of interest. However, since
the set of models is typically discrete, one may not be interested in computing
integrals with respect to the model posterior. Since MLS*MC focuses on the fast
generation of posterior samples, it is easily applicable in model selection problems
with across-model simulations.

In across-model simulations, a typical issue are different parameter spaces for dif-
ferent models; see §1.4.3] However, also in multilevel settings, we can have different
parameter spaces for different model discretisations. In the elliptic PDE example,
the discretisation of the unknown diffusion coefficient would typically depend on the
PDE discretisation. Hence, for every discretisation level, the diffusion coefficient
lives in a different parameter space. We solve this issue by using a KL expansion,
which we consider to be more or less discretisation invariant. In some settings
however, this may be not the possible. Then, we need to be able to change param-
eter spaces when changing the discretisation. This problem has for instance been
discussed by Dodwell et al. [7I] for Multilevel Markov chain Monte Carlo.
Problems closely connected to the Bayesian inverse problem appear in reliability
analysis. Here, the probability of a failure event should be estimated. In practice,
these events have very small probabilities. Since standard Monte Carlo would require
too many samples, other methods have to be used for such estimation tasks. Such
methods are Subset Simulation [I0] and the Cross-Entropy method [216]. While
Subset Simulation is an adaptive Sequential Monte Carlo method, the sequence
of densities usually consists of indicator functions. Hence, it does not satisfy our
assumptions on 7; see . However, a Sequential Monte Carlo algorithm for relia-
bility analysis that fits into our framework has been proposed by Papaioannou et al.
[196]. Speeding-up reliability analyses with a multilevel or multifidelity approach
has already been discussed by [197, 247]. By applying MLS?2MC in the setting of
Papaioannou et al. [I96], one can construct a further multilevel method for reliabil-
ity analysis. Such a method would easily overcome the nestedness issues of Ullmann
and Papaiannou’s [247] multilevel estimator. Hence, it could be applied in more
general settings.

Finally, we mention that we have not analysed the MLS?MC algorithm yet. Such an
analysis would include a Central Limit Theorem, as the number of particles goes to
infinity, and a derivation of error bounds. The method can be seen as a generalisation
of the adaptive SMC algorithm analysed by Beskos et al. [I7]. Hence, we expect
that an analysis of MLS?MC can be performed in a similar way. A further aspect
that should be analysed for MLS?MC is its computational cost, probably by taking
the work of Marion and Schmidler [I74] into account.
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