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Abstract

Economists commonly study markets in their equilibrium state and the properties in equilibrium
drive the decisions of market participants and policymakers alike. In markets with asymmetric
information, auctions can serve asmechanisms to determine the allocation and prices of traded goods
based on the information that bidders choose to share with the auctioneer about their willingness
to pay. Auctioneers, like governments allocating wireless spectrum or companies selling advertising
inventory, are therefore particularly interested in designing auction mechanisms that achieve certain
desiderata, such as allocative efficiency or revenue maximization, assuming bidders act in their own
economic interest. However, closed-form characterizations of the equilibrium bidding strategies of
such markets are only known for a handful of cases, and finding or even approximating the equilibria
numerically is believed to be intractable in the general case.

In this dissertation, we study a learning approach to equilibrium computation in auctions, called
Neural Pseudogradient Ascent (NPGA) and its applications. Our approach aims to find equilibria in
sealed-bid auctions which are modeled as Bayesian games with continuous type and action spaces
by following the anticipated gradient dynamics of such games. In NPGA, bidders’ strategies are
represented as neural networks. This implicitly transforms the market into a finite-dimensional
complete-information game. Due to the discrete nature of resource allocation, however, auction
mechanisms are inherently non-differentiable, and standard methods, i.e. backpropagation from
observed outcomes, cannot be used to train the neural networks. Instead, NPGA relies on the
computation of alternative gradient estimates using Evolutionary Strategies.

We theoretically study conditions where such dynamics can be expected to converge to pure-
strategy BayesianNash equilibria (BNE).Most notably, we show convergence to at least local equilibria
under the standard assumption of symmetric auctions. Empirically, we study NPGA in a wide
range of auctions, including combinatorial and multiunit auctions. In fact, our study includes all
auction settings with previously established analytical closed-form BNE that could be identified in
the literature. We find that despite the computational hardness of the equilibrium computation
problem, NPGA is able to recover an analytical BNE in all studied settings. This suggests that many
common auction formats exhibit additional structurewhichmakes equilibrium computation tractable
in practice. NPGA has superior scalability properties to previously described methods and we were
also able to compute an approximate BNE in the largest setting where this has been achieved so far,
a combinatorial auction with seven bidders and six items.

In applications, we leverage NPGA’s novel capabilities as a black-box equilibrium computation
tool. For example, we study comparative statics in auction markets where analytical equilibria are yet
unknown. Additionally, we develop a novel method for parameter identification in utility functions
with an application to the behavioral economics of all-pay auctions.
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NPGA leveragesmassive parallelization viaGPUhardware acceleration. As part of this dissertation
project, we further developed bnelearn, an open-source framework for learning in auctions that
contains the largest existing suite of GPU-enabled auction implementations for simulation.
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1 Introduction

Auctions serve an increasingly important function in markets with few participants and asymmetric
information. With the ascent of technology-enabled and algorithmically driven marketplaces, auc-
tions are increasingly employed at scale in the real economy. On the one hand, this takes place in rare,
but complex and high-stakes auctions, for example in the allocation of wireless spectrum licenses
Bichler and Goeree (2017); Milgrom (2021). On the other hand, whole industries rely on millions of
individually relatively simple and small-scale auctions every day to match buyers and sellers and de-
termine prices, most notably in computational advertising (Ashlagi et al., 2011). Despite this growing
prevalence, the competitive behavior of rational market participants in auctions is not yet fully un-
derstood. In a landmark result, the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961), where
winning bidders are charged prices according to the “harm” their presence in the auction causes the
other bidders, has been shown to be the unique direct mechanism that is incentive-compatible while
also leading to economically efficient outcomes and being individually rational. However, despite
this positive result, VCG auctions are inapplicable or intractable in a wide range of settings (Ausubel
et al., 2006; Rothkopf, 2007). Consequently, they are not used widely in practice. When forced to
give up one of the desiderata above, market designers commonly sacrifice incentive compatibility. As
a result, submitting one’s true private information may no longer be in the best interest of bidders,
who, in turn, are then faced with the problem of choosing a bidding strategy.

As economists generally reason aboutmarkets in their equilibrium state, understanding the equilibria
of non-VCG auctions is of utmost importance to the fields of auction theory and market design. Such
auctions are commonly modeled as Bayesian games, where equilibria are described by Bayesian
Nash equilibria (BNE). While the analytical characterization of such BNE in single-item auctions with
independent private values—where bidders each independently observe their true valuations of the
items for sale—are relatively well understood, few closed-form results exist for markets with either
multiple goods, risk-averse bidders, value interdependencies between bidders, or when bidders only
have access to partial or noisy information about their own preferences. However, all of these
conditions are commonly present in real-world auction markets, and thus understanding strategic
behavior in suchmarkets is paramount. Indeed, the 2020 Nobel Memorial Price in Economic Sciences
honored Robert B. Wilson and Paul Milgrom for their contributions to the understanding of some of
these markets (Nobel Memorial Prize, 2020). Nevertheless, a succinct description of the equilibria of
most auction markets remains elusive.
What is more, BNE cannot easily be computed numerically either: The exact computational com-

plexity of computing BNE remains unknown, but it is at least as hard as the computation of Nash
equilibria in complete-information games and believed to be intractable in general (see section 2.5).
In the past decade, the “deep learning revolution” has led to remarkable breakthroughs in artificial

intelligence: Deep neural networks trained via backpropagation-based stochastic gradient descent
methods have shown remarkable performance in a wide range of function approximation tasks in
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supervised machine learning, unsupervised generative tasks, and reinforcement learning. These ad-
vanceswere especially fueled by data-parallel implementations of the neural network training process
that, in turn, were enabled by hardware acceleration on graphics cards (GPU) and later specialized
hardware (Krizhevsky et al., 2012). Peculiarly, these results were often achieved in nonconvex set-
tings and despite a theoretical lack of convergence guarantees to global minima and the confirmed
general-case hardness of the problem (Blum and Rivest, 1992). This has sparked a renewed interest
in the study of learning in multi-agent settings, both in the reinforcement learning and game theory
communities.

1.1 Contributions

In this thesis, we investigate a learning approach to numerically compute Bayesian Nash equilibria
(BNE) in sealed-bid auctions. Such auctions are commonly modeled as Bayesian games where both
the type and action spaces are continuous. As a result, even pure strategies are mappings from
one continuous space to another, i.e. objects in an infinite-dimensional functional space. Previous
numerical approaches have primarily relied on discretization of the game, either in the type space,
action space, or both. While such approaches have been shown to be successful in low-dimensional
games, their representation size suffers from the curse of dimensionality and they are intractable in
auctions with more than a few items unless there are significant symmetries in the game.
Instead, we take an approach inspired by recent advances in reinforcement learningwhich looks for

strategies in the original infinite-dimensional functional space via finite-dimensional function approx-
imation. In particular, we will represent pure strategies by neural networks, although the approach
equally applies to other parametric functional forms (such as Gaussian processes or linearizations on
finitely many support points). With this approach, we can interpret the problem of finding equilibria
in the Bayesian auction game as essentially equivalent to finding Nash equilibria in a continuous, but
finite-dimensional, complete-information proxy game over neural network parameters.
Using this representation, we enable the study of the ex-ante gradient dynamics in the Bayesian

game, which emerge when all agents iteratively make unilateral, infinitesimal strategy improvements
based on local feedback in the current behavioral state of the game. Similar dynamics and their
convergence behavior have been extensively studied in the literature on finite-dimensional complete
information games, as well as in (single-agent) nonlinear optimization and reinforcement learning
(see section 2.3). In differentiable games, these gradients can be efficiently computed from observed
data using established methods like backpropagation. Unfortunately, standard auction formats do
not have this property. As a result, nonstandard methods are necessary. A key contribution is the
development of an algorithm, calledNeural PseudogradientAscent (NPGA)which approximates ex-ante
gradients in Bayesian games from ex-post observational data using an estimator based on evolutionary
strategy computations, even when the game is ex-post non-differentiable. Publication A (Heidekrüger
et al., 2019) discusses the problemof ex-post non-differentiability of auctions, introduces the algorithm
and empirically investigates its behavior in finite complete-information games, where, as expected, it
behaves similar to analytical gradient ascent, and in single-item first-price auctions, wherewe observe
that it converges to approximate Bayesian Nash equilibria. Publication B (Bichler et al., 2021) contains
a more rigorous theoretical analysis of NPGA, and proves (approximate) convergence to local BNE
in symmetric Bayesian games—a property that is often fulfilled in auctions studied in the economic
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literature. Such symmetric auctions constitute potential games and can be modeled using a single
shared neural network for all players. Empirically, we find convergence to global BNE in all studied
settings. In Publication C (Bichler et al., 2023a), we additionally investigate the convergence behavior
of NPGA in a wide range of asymmetric auctions with multiple homogenous or heterogeneous items.
We empirically find that the algorithm likewise recovers global equilibria in all studied settings,
although this behavior comes without a theoretical guarantee. In original research not included in
this dissertation (Heidekrüger et al., 2021c), we also establish a complementary result showing that
monotonicity of a Bayesian game is a sufficient criterion for convergence of NPGA to the (unique)
global BNE, but unfortunately this criterion is hard to verify even in simple auctions.
We argue that the availability of robust numerical equilibrium solvers for continuous Bayesian

games will unlock new possibilities for empirical economics research. For example, in Publication B
andPublicationC,weperform comparative statics in small combinatorial auctions under approximate
equilibria computed via NPGA, allowing us to quantitatively investigate the sensitivity of relevant
market metrics (like seller revenue or efficiency) to its input parameters (like assumptions on prior
distributions, correlation structure, or risk sensitivity of bidders).
Moreover, equilibrium computation techniques may have further applications in behavioral eco-

nomics: For example, it is a well-known fact, that in real-world settings and lab experiments con-
cerning all-pay auctions, human bidders do not follow the analytical equilibria that would result for
rational and risk-neutral bidders. Dropping the assumption of risk neutrality, one may hypothesize
that players are indeed following an equilibrium but in a market that is dictated by risk-aware utility
functions.1 In Publication D, we present a novel statistical inference method that uses equilibrium
computation via NPGA combined with Bayesian Optimization in order to identify parametric utility
functions in such a setting.
To facilitate the research in these publications, we have developed a software framework called
bnelearn for equilibrium learning in auctions (Heidekrüger et al., 2021a). The library is based on
pytorch (Paszke et al., 2017) and contains a learning algorithm agnostic simulation framework that
leverages GPU-hardware acceleration to efficiently compute large numbers of auctions in parallel. To
the author’s knowledge, bnelearn constitutes the largest and fastest repository of sealed-bid auction
implementations (including their known equilibria). It may serve as a benchmark suite for future re-
search and algorithm development in equilibrium learning. A non-exhaustive discussion of included
auction settings is contained in section 2.5. Additionally, the software may serve as a tool for auction
theorists andmarket design practitionerswhomay leverage the existing equilibrium learning capabil-
ities to study specific auction markets in detail. bnelearn has been released under the GNU General
Public License v3.0, and is freely available at https://github.com/heidekrueger/bnelearn.
The remainder of this thesis will be structured as follows: In chapter 2, we will introduce the topic,

discuss related literature and place our work in its scientific context. We will then present the four
original research papers introduced above. Finally, in chapter 3, we will review the most important
results from these publications and other original research (Heidekrüger et al., 2021c; Kohring et al.;
Heidekrüger et al., 2021b), and discuss remaining open questions and further research opportunities.

1Alternatively, it has also often been argued that bidders do, indeed, behave irrationally.

https://github.com/heidekrueger/bnelearn
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2 Scientific Context

In this chapter, we will introduce foundations from game theory and auction theory to motivate,
define and discuss the equilibrium computation problem in auctions and the approach presented in
the included publications. This text expects the reader’s familiarity with basic concepts from convex
optimization and machine learning, such as (stochastic) gradient descent and its convergence char-
acteristics, or simple neural network architectures and training methods like backpropagation. We
recommend Boyd and Vandenberghe (2004) and Goodfellow et al. (2016) as references. Section 2.1
introduces necessary game-theoretic concepts before we formally define auctions in section 2.2. We
then discuss the concept of learning dynamics in games in section 2.3. The related field of rein-
forcement learning, with a particular focus on applications to game-theoretic multi-agent settings, is
outlined in section 2.4. Finally, in section 2.5, we introduce our main focus in this thesis, the problem
of computing Bayesian Nash equilibria in auctions, before ending the chapter with matters relevant
to software implementations of such methods in section 2.6.

2.1 Game Theory

In this section, we will briefly introduce the most important game-theoretic concepts that will be
relevant to the discussion of learning in sealed-bid auctions. In particular, we will start with the
standard notion of complete-information games, before introducing Bayesian games with incomplete
information. We will also discuss their respective standard equilibrium concepts.

Definition 2.1.1 (Complete-Information Game). A Complete Information Game is a tuple � = (=,A, u),
where

• = is the number of players participating in the game,

• A = A1 × · · · ×A= is the set of action profiles, with A8 being the nonempty set of actions available
to player 8, and

• u = (D1 , . . . , D=) is the collection of the players’ utility functions D8 : A→ ℝ.

In a game, each player 8 chooses an action 08 ∈ A8 . All players choose their action simultaneously.1

We will call the vector a = (01 , . . . , 0=) an action profile. Each player’s utility function D8 then maps
action profiles to the utility, or outcome, of the game for player 8: D8 = D8(a). Throughout this thesis,
we will assume that these utility functions are von Neumann-Morgenstern (vNM) utility functions
(Von Neumann andMorgenstern, 1944), i.e. that players are rational actors and aim to maximize their
own utility. Let us now introduce some possible properties of games that will be relevant throughout
the discussion.
1Extensive form games, where players move sequentially, will not be considered in this thesis.
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Definition 2.1.2 (Some properties of games). A game � = (=,A, u) is called a

1. finite game, iff = < ∞ and |A8 | < ∞ for all 8 ∈ [=]. Otherwise, � is called infinite. Finite complete-
information games can be represented in “normal-form” as a multi-matrix of outcomes and are
therefore also referred to as Normal-Form games.

2. (finite-dimensional and convex) continuous game, iff for all players 8, the actions sets A8 are
nonempty, compact and convex subsets of ℝ38 for some 38 < ∞.

3. differentiable game, iff it is continuous and additionally, all players’ utility functions are continu-
ously differentiable in their own actions, i.e. ∀8 ∈ [=] and ∀a−8 ∈ A−8 , we have

D8( · , a−8) ∈ C1(A8 ,ℝ) (2.1)

In differentiable games, we will write ∇u(a) = (∇08D8(a))8 for the concatenation of individual
gradient vectors of all players.

4. zero-sum game, iff there is a constant 2 ∈ ℝ, s.t. for all action profiles a ∈ A, we have
∑
8 D8(a) = 2.2

Strategic Behavior and Nash Equilibria In games, players are primarily faced with the decision of
choosing one of their available actions.

Definition 2.1.3 (Strategy). Let � = (=,A, u) be a complete-information game. A probability distri-
bution �8 ∈ ΔA8 over the actions available to player 8 is called a (mixed) strategy of 8.

If ℙ0′∼�8 (08=0′) = 1 for some 08 ∈ A8 , then �8 is called pure, and wewrite 08=�8 by abuse of notation.

Due to the fact that players may randomize their choice of actions, game outcomes may be non-
deterministic even when players employ fixed strategies. To take this into account, we will often be
interested in players’ expected utilities rather than the a-posteriori realized utility in hindsight:

Definition 2.1.4 (Expected Utility). Let � = (=,A, u) be a complete-information game. For a strategy
profile � = (�1 , . . . ,�=), we write

D8(�) = �a∼�[D8(a)] (2.2)

for the expected utility of player 8, given that all players 9 follow their respective strategies � 9 .

Wewill be particularly interested in strategy profiles that lead to an equilibrium state of a game. The
classical notion equilibria of such games is due toNash (1950) and describes a state�∗where no player
8 can improve her own expected utility by unilaterally deviating from the current strategy profile:

Definition 2.1.5 (Nash Equilibrium). Let � = (=,A, u) be a complete-information game.
A strategy-profile �∗ is called a Nash equilibrium of �, iff for all players 8, and for all strategies

�8 ∈ ΔA8 , we have
D8(�8 ,�∗−8) ≤ D8(�

∗
8 ,�
∗
−8). (2.3)

Famously, every (finite or convex continuous) complete-information game admits at least one Nash
equilibrium, potentially in mixed strategies.

2If 2 ≠ 0, then without loss of generality, one may set D2
8
(a) = D8(a) − 2 to achieve a strategically equivalent zero-sum game

with 2 = 0.
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Bayesian Game Theory Complete-information games assume that any information available to any
player, is also available to all other players, i.e. everything about the game is common knowledge.
This model cannot accurately capture settings of strategic interaction in the presence of partial or
asymmetric information. Several extensions to the complete-information setting exist. Imperfect infor-
mation refers to the fact that players may have uncertainty about the state of nature (e.g. due to partial
observability or noisy measurements), or (in extensive-form games with sequential moves) about ac-
tions that other players have already taken. Under incomplete information, on the other hand, players
have uncertainty about other players’ (and possibly even their own!) utility functions, i.e. their pref-
erences over game outcomes. Auctions are typically modeled as games of incomplete information using
the formulation of Bayesian games, where players’ types capture the unique information available to
them. It should be noted, however, that (a) incomplete and imperfect information are not mutually
exclusive, and (b) formal models incorporating either concept may sometimes be mathematically
equivalent, so the distinction may not be clear in practice and is often a matter of interpretation.

Definition2.1.6 (BayesianGame,Harsanyi (1968)). ABayesian game is givenbya tuple� = (=, V ,A, �, u),
where = and A are defined analogously to complete information games, and

• V = V1 × · · · × V= is the set of type profiles, with V8 being the set of possible types for player 8.

• � is a prior probability distribution over V that is common knowledge between all players. (We
write �E8 for the marginal distribution of the component E8 representing the type of player 8.),

• u = (D1 , . . . , D=) is the collection of players’ individual utility functions D8 : V8 ×A→ ℝ.

When all type-spaces V8 are finite, the game is called finite-type, when all V8 are (convex) subsets of
ℝ38 , the game is called continuous-type.

Bayesian games are usually interpreted as follows: In the ex-antephase, players are only aware of the
informationwhich is commonknowledge, most importantly the prior type distribution �. Then, types
E ∼ � are drawn, and each player 8 is informed of her own type E8 only. In this interim stage, players
need to make a strategic decision about choosing their action 08 ∈ A8 . The name “Bayesian game”
refers to the fact that players may employ Bayesian belief updating about other players’ information:
Given information about E8 , 8’s information about other players’ types v−8 is now best represented
by the posterior �v−8 |E8 . Finally, in the ex-post phase, when players have submitted their actions a, the
outcome of the game and the achieved utilities can be observed. The literature differs on whether
players may observe others’ actions and utilities ex-post, or only their own individual utility D8 . The
latter case will be sufficient in our context. The notions of strategies, expected utility, and Nash
equilibria generalize to Bayesian games as follows:

Definition 2.1.7 (Strategies in Bayesian Games). In a Bayesian game, a function �8 : V8 → A8 , is called
a pure strategy of player 8. We will denote by 18 = �8(E8) the action chosen under �8 given type E8 .

Definition 2.1.8 (Expected Utility in Bayesian Games). Let � = (=, V ,A, �, u) be a Bayesian game,
and �−8 be the strategy profile of all players but 8.

1. Given a realization E8 ∈ V8 , and an action 08 ∈ A8 , player 8’s interim expected utility D 8 when
playing action 08 is given by

D 8(08 ; E8 , �−8) = �v−8∼�v−8 |E8
[D(08 , �−8(v−8))] (2.4)
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2. Given only a strategy �8 of 8, player 8’s ex-ante expected utility D̃8 is given by

D̃8(�8 ; �−8) = �E8∼�E8 [D 8(�8(E8); E8 , �−8)] = �v∼�[D(E8 , �8(E8), �−8(v−8))] (2.5)

Definition 2.1.9 (Bayesian Nash Equilibrium). Let � = (=, V ,A, �, u) be a Bayesian game. A strategy
profile �∗ is an (ex-ante) �-approximate Bayesian Nash equilibrium (�-BNE), iff for all players 8 and for all
pure strategies �′

8
∈ AV , we have

D̃8(�′8 , �
∗
−8) ≤ D̃8(�

∗
8 , �
∗
−8) + �. (2.6)

A 0-BNE will simply be called Bayesian Nash Equilibrium.

It should be noted that in the auction theory literature, Bayesian Nash Equilibria are often defined
at the interim stage, rather than ex-ante (e.g. Krishna, 2009; Bosshard et al., 2020). The former notion
is slightly stronger, as it also demands low exploitability in rare (and even zero-probability) valuation
profiles. As such, the & in an interim &-BNE can be considered as the exploitability in the worst-case
E8 , whereas ex-ante, & is an average-case exploitability measure. For exact BNE (& = 0), the notions
are equivalent for finite-type games, and equivalent almost surely in the general case. In this thesis,
we will focus our attention on ex-ante equilibria in pure, continuous strategies. The problem of
computing such BNE, with a particular focus on auction games, will be discussed in section 2.5.

2.2 Sealed-Bid Auctions

Auctions are mechanisms for resource allocation most commonly used in sparse markets with asym-
metric information, where price discovery is difficult otherwise. Here, we will focus on sealed-bid
auctions, in which all bidders simultaneously submit a single (possibly vector-valued) bid.3 Addi-
tionally, we will limit the description to one-sided auctions where a single seller—or an agent acting
on the seller’s behalf—acts as an auctioneer to sell one or multiple goods to multiple potential buyers
who act as bidders in the auction. (W.l.o.g., this may include procurement auctions, where the roles of
buyers and sellers are reversed: The buyer aims to select one or multiple potential suppliers whose
bids represent the price at which they are willing to sell the item(s).) In our context, we will assume
the auction mechanism to be fixed, and we will only consider strategic interactions among the bid-
ders. Again, it’s noteworthy that other formulations exist where the auctioneer herself is considered
a player in the game (e.g. aiming to set revenue-maximizing reserve prices). Furthermore, auctions
can also serve as two-sided market mechanisms, where both buyers and sellers act as bidders. While
we do not explicitly mention such markets below, they can nevertheless be captured mathematically
by the definitions we give below, e.g. by allowing negative prices.
We’ll give a definition for the general combinatorial sealed-bid auction, in which < heterogeneous

goods are to be sold to = bidders.

Definition 2.2.1 (Sealed-Bid Combinatorial Auction). A Sealed-Bid Auction with = bidders and <

heterogeneous goods consists of:
3It should be noted that other sequential auction mechanisms also exist. They are particularly relevant in the context of
combinatorial auctions with a large number of bundles, like spectrum auctions, where XOR bidding and VCG-price
computations are intractable. The interested reader is referred to Bichler and Goeree (2017) or Nobel Memorial Prize,
2020 for details.
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• The space of feasible bids A = A1 × · · · ×A= ,

• an allocation rule - : A → {0, 1}=×< , where for a bid profile b ∈ A, G8 9 = (-(b))8 9 = 1 indicates
that good 9 is allocated to bidder 8. We will write G8 = (-(b))8 for the bundle of goods allocated
to player 8.4

• a pricing rule p : A→ ℝ= , where ?8 = p(b)8 is the monetary payment bidder 8 has to pay to the
auctioneer.

In the most general case of an XOR bidding language, bidders submit separate nonnegative bids
for each possible bundle of items  ∈ -8(A) ⊆ [<] that may be allocated to them, resulting in indi-
vidual bid sets of A8 = ℝ

2[<] whose dimensionality is exponential in the number of items. As this is
intractable for auctions with a large number of goods, alternative bid languages have been proposed
that reduce the bidding complexity, e.g. XOS (Nisan, 2000), or FUEL (Bichler et al., 2022). Alterna-
tively, sequential auction formats in which bidders gradually reveal information (Porter et al., 2003)
may be used. However, both of these approaches will necessarily lead to mathematically modified
games with reduced expressiveness of bidders’ action spaces, and we will not consider them here.
When the goods are homogenous rather than heterogeneous (so-called multi-unit auctions), or

bidders’ preferences are inherently restricted to certain bundles (Goeree and Lien, 2016; Ausubel and
Baranov, 2019), this structure can be exploited to further reduce the dimensionality (Krishna, 2009, Ch.
13). For a formal description, see Section S.1.3 of Publication B below. From the auctioneer’s point of
view, it should be noted that determining the outcome (-, p) of an auction instance may be nontrivial
and may involve solving a sequence of optimization problems, in particular, computing - is called
the winner determination problem or allocation problem, and computing p is called the pricing problem.
The strategic interaction of bidders in auction markets is commonly modeled as a Bayesian game

(Krishna, 2009; Bichler, 2017). Under the standard assumptions of private-values with XOR bidding,
for which we will formally define the game here, each bidder 8 is assumed to observe their private
valuation E8( ) for each bundle  that they may feasibly win in the auction. Amore general treatment
beyond private value settings will be presented in Publication B.

Definition 2.2.2 (Bayesian Auction Game). Let (A, -, p) be an auction mechanism on < items and =
bidders, where A8 ⊆ ℝ2[<] is the set of possible bids for player 8. Further, let V8 = A8 be the space of
possible private valuations for player 8, let � be a joint prior distribution over the players’ valuations,
and let all players have quasi-linear utility functions:

D8(E8 ; 18 , 1−8) = E8(G8(b)) − ?8(b) (2.7)

The resulting Bayesian game � = (=, V ,A, �, u) then describes the strategic interaction of bidders in
the auction.

Note that this model assumes the availability of a common prior �which gives bidders some notion
about how their strategic opponents’ private information—as well as their own—may be distributed.
These are strong assumptions that may not always hold in practice. Particularly in markets with few
participants and goods that are sold seldomly or only once, forming reasonable prior beliefs about
opponents’ willingness to pay may be unrealistic. What’s more, even observing one’s own valuations
4Depending on the context, it may be advantageous to interpret G8 either as a one-hot-encoded vector in {0, 1}< or as a
subset of [<]. By slight abuse of notation, we will use the symbol G8 for either of these interchangeably.
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may be impossible, noisy, or costly. (As an example, consider the Mineral Rights setting, in which
all bidders observe a noisy estimate of an item’s true common value (Krishna, 2009, Example 6.1).
Achieving or improving such an estimate may require costly and lengthy business activity, such as
surveying an oil field with limited access or information rights, or creating a go-to-market strategy
and a business plan based on a possible acquisition of a wireless spectrum license.) An additional
assumptionmade in auction games is that they inherently go beyondmere vNM-utility functions and
assume transferable utility via the pricing mechanism.

When the action spacesA8 are identical to the bidders’ valuation spacesV8 , as in the definition above,
the auction is called a direct mechanism. In such games, the bidders’ decisions can be interpreted as
either truthfully revealing their private information, or strategically misreporting their observations:
most commonly this means bid-shading, i.e. underreporting one’s true willingness to pay in order
to reach a lower price. However, as we will see, overbidding may also be rational behavior in some
settings. A market designer may have several desiderata about what constitutes a “good” auction
rule. The Vickrey-Clarke-Groves mechanism (VCG, Vickrey, 1961) has famously been shown to be
the unique auction mechanism that simultaneously fulfills the following three desiderata:

Definition 2.2.3 (VCG Desiderata). Let (V , -, p) be a direct auction mechanism.

• Allocative efficiency: under truthful bidding, the allocation of items should be socially optimal
in terms of the total achieved valuation of the winners. Let the social welfare of an allocation
 of the < items to the = bidders be given by F( , [=]) ≡ ∑

8∈[=] E8(:8), then allocative efficiency
holds, iff for all v ∈ V , we have

-(v) ∈ arg max
 ∈{0,1}=×<

F( , [=]). (2.8)

• Strategyproofness, also referred to as truthfulness or (dominant strategy) incentive compatibility:
Revealing their true observations E should constitute a dominant strategy: For all bidders 8,
strategies �8 and opponent bids b−8 , one desires

D 8(E8 ; E8 , b−8) ≥ D 8(E8 ; �8(E8), b−8). (2.9)

As a direct result, truthful bidding �∗(E) = E constitutes a BNE in VCG auctions.

• (Ex-post) individual rationality5: no potential bidder should be made worse off by participating
in the auction and reporting her true valuation, i.e. for all 8, E8 and b−8 :

D8(E8 ; E8 , b−8) = E8 (G8(E8 , b−8)) − ?(E8 , b−8) ≥ 0. (2.10)

In a VCG-auction, an efficient allocation is chosen and the price thewinners pay is equal to the social
cost of their presence to other bidders, i.e. the amount that other bidders’ social welfare decreases
compared to an identical auction where bidder 8 does not participate:

Definition 2.2.4 (VCG prices). In the Vickrey-Clarke-Groves mechanism, prices are given by

?+��8 (b) = 18(G8(b)) −
(
F (-(b), [=]) −max

 
F ( , [=] \ {8})

)
(2.11)

5Some authors relax this, instead requiring only rationality in expectation for every interim stage.
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Dependingon themarketdesigner, other goalsmaybedesirable, for example, revenue-maximization
(Myerson, 1981) or core-stability (Ausubel and Baranov, 2019; Day andMilgrom, 2008; Day andCram-
ton, 2012), but we will not discuss them in detail here. However, one more practically motivated
desideratum of auctions will be most relevant to our discussion: Tractability. In general combinatorial
auctions, solving the Winner Determination Problem (WDP), i.e. computing an efficient allocation
of the items is NP-hard, and the VCG algorithm needs to compute multiple rounds of these. This
quickly leads to intractability for larger auctions, particularly when there are many items.
It should be noted that intractability is not the only drawback of the VCG auction: It also generally

leads to lowpriceswhich are often perceived as unfair by losing bidderswhosewillingness to paymay
be higher than the charge incurred by the winners. Moreover, the desiderata above are only fulfilled
for bidders with quasi-linear (i.e. risk-neutral) utilities, and its outcomes are not core-stable. For a
thorough discussion of VCG’s shortcomings, we refer to Rothkopf (2007) and Ausubel et al. (2006).
In any case, VCG auctions are rarely employed in practice, in favor of auction mechanisms that are

easier to implement. As such mechanisms are, however, usually no longer strategyproof, truthful
bidding no longer constitutes a BNE.

2.3 Learning Dynamics in Games

In his original paper introducing the equilibrium notion, Nash (1950) also proved the existence of at
least one NE in every finite or convex-continuous complete-information game. However, this proof
relies on the Kakutani fixed point theorem (1941) and is nonconstructive. As a result, the computation
of such equilibria has been a sought-after question in economics, mathematics, and computer science,
and has sparked the interdisciplinary field of algorithmic game theory (Nisan, 2007).
In traditional economics, formal models of competitive settings are usually studied in their equilib-

rium state, and a standard—although, as we will see, generally incorrect—assumption by economists
is that markets will attain an equilibrium state eventually because otherwise, some market partici-
pants would run arbitrage until this was the case. This motivates a class of potential equilibrium
computation methods through online learning (Fudenberg and Levine, 1999): The game is played re-
peatedly, and after each iteration C, all agents update their strategies according to some well-defined
learning rule based on the history of outcomes that have been observed at times 1 to C−1. The emergent
behavior of the learning agents over time then describes the dynamics of the game.
However, such methods do not converge to Nash equilibria in the general case. Even in simple

2- or 3-player games, they may fail to converge to singular action profiles and instead eventually
reach a recurrent distribution (discussed below), exhibit chaotic behavior (Sato et al., 2002), or even
reach a non-equilibrium singular point (Fudenberg and Levine, 2009). In fact, it has been shown
that there can be no learning rule that converges to Nash equilibria in arbitrary games (Benaïm et al.,
2012). Beyond learning approaches, computing Nash equilibria is no easier: In fact, the problem of
finding NE in complete information games has been shown to be PPAD-complete (Daskalakis et al.,
2009), giving little hope of computing Nash equilibria efficiently in general games. As a result, the
concept of the Nash equilibrium as the central solution concept of games has itself been criticized
as lacking predictive power or even significance due to the inability to tractably compute it. As
Kamal Jain eloquently put it: “If your laptop cannot find it, neither can the market.”6 Nevertheless,
6The exact origin of the phrase could not be verified, but Jain is thusly quoted by Papadimitriou in Ch. 1 of Nisan (2007).
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studying learning dynamics remains an interesting and relevant topic: On the one hand, learning
dynamics do find Nash equilibria in many relevant cases. Investigating when and whether dynamics
converge to Nash is an interesting problem in itself. Furthermore, the study of dynamics itself
has produced other solution concepts, such as Correlated Equilibria, which we will discuss below.
Recently, Papadimitriou and Piliouras (2019) went one step further and argued that the dynamics
themselves should be considered the relevant outcome and the meaning of the game, suggesting
Markov-Conley Chains (MCC) as a novel solution concept. Oversimplified, these can be thought of
as the limiting distribution of learning dynamics that allow for some stochasticity or errors. Most
recently, a novel evaluation method based on MCCs, called AlphaRank (Omidshafiei et al., 2019), has
been introduced, that is able to capture relative agent strength in games without relying on equilibria.
We will now discuss some of the most important classes of learning dynamics, in particular Best-

Response Dynamics and No-Regret Dynamics with a particular focus on their convergence behavior.

Best-Response Dynamics The oldest and best-known class of dynamics are those where agents
update to some notion of best response in each iteration.

Definition 2.3.1 (Best Response). A strategy �∗
8
is a best response (BR) of 8 to strategy profile �−8 , iff

�∗8 ∈ BR(�−8) ≡ arg max
�8∈ΔA

D8(�8 ,�−8) (2.12)

The first such method, introduced by Cournot (1838), directly lets players choose a pure strategy 0C
8

as a best response to other players’ last-iteration play aC−1
−8 . Fictitious Play (FP, Brown, 1951) instead con-

siders a pure strategy best response to the empirical action distribution of other players as observed in
all earlier iterations of play: 0C

8
∈ BR

(
(a�−8)�=1..C−1

)
. FP generally does not converge in last-iterate actual

play or even in its empirical distribution. Whenever its empirical distribution converges, however, it
forms a mixed Nash equilibrium.(Fudenberg and Levine, 1999, Ch. 2). A further discussion on these
properties as well as some extensions of FP that allowmixed strategies are described in Publication A.
When FP diverges in distribution, a common pattern is that one observes repeating cycles whose
periodicity increases exponentially over time. One approach to alleviate this aims to prevent such
cycling by smoothing the updates in each iteration, usually by playing a convex combination of the
current strategy �C and the computed best response strategy (Shamma and Arslan, 2005; Heinrich
et al., 2015; Bosshard et al., 2017). Another severe drawback of best-response algorithms is that it
may be computationally expensive or even intractable to compute best responses in a given iteration
(Bosshard et al., 2020; Heinrich et al., 2015; Daskalakis and Syrgkanis, 2016).

No-regret dynamics and Correlated Equilibria While convergence of dynamics to Nash equilibria
is generally unobtainable, there exist relaxed equilibrium notions that are efficiently computable in
complete-information games. One such notion is the Coarse Correlated Equilibrium, which is closely
linked to a class of learning algorithms that are based on regret minimization. We will introduce
these concepts below, before discussing the convergence behavior of no-regret dynamics.

Definition 2.3.2 ((Coarse) Correlated Equilibrium (Aumann, 1974)). Let � = (=,A, u) be a complete
information game. A distribution over outcomes D ∈ ΔA is called a
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• Coarse Correlated Equilibrium (CCE) , iff in expectation over action profiles a ∼ D, no player 8 has
an incentive to deviate from the prescribed action profile a = (01 , . . . , 08 , . . . 0=):

∀8 ∈ [=] ∀0′8 ∈ A8 �a∼D[D8(08 , 0−8)] ≥ �a∼D[D8(0′8 , 0−8)] (2.13)

• a Correlated Equilibrium (CE), iff this remains true even after learning of their own prescribed
action 08 :

∀8 ∈ [=] ∀08 , 0′8 ∈ A8 �a∼D[D8(08 , 0−8) | 08] ≥ �a∼D[D8(0′8 , 0−8) | 08] (2.14)

Importantly, such an equilibrium distributionDmay prescribe outcomes that are correlated between
bidders – the expectations are taken over outcomes, not individual strategies. For example, in a game
with twoplayers and action setsA1=A2={3, F} (“drive” and “wait”), a (coarse) correlated equilibrium
D may be supported on the outcomes (3, F) and (F, 3) without ever choosing outcomes (3, 3) or
(F, F). A common interpretation is that such behavior can be induced by a “correlation device” that
recommends an action to each player. For example, in the game above, a traffic light at an intersection
may perform such a function.
CE and CCE are closely related to the notion of regret minimization (Blum and Mansour, 2007)

in learning dynamics and (single-agent) online optimization. Assume that agents play the game
repeatedly and choose actions 0C

8
∈ A8 at times C = 1, 2, . . . , ). Then the (external) regret of agent 8’s

sequence of actions (and, equivalently, of her learning rule) is given by the amount of utility she “lost”
by not having played the best constant action in hindsight:

Definition 2.3.3 (Regret (Hannan, 1958)). Let (aC)C be a sequence of action profiles aC ∈ A. Then it’s
total external regret at time ) is given by

Reg8
( (

aC
)
C=1..)

)
= max

0′
8
∈A8

)∑
C=1

D
(
0′8 , a

C
−8

)
− D

(
0C8 , a

C
−8

)
(2.15)

A stronger notion is internal or swap-regret (Foster and Vohra, 1997), where rather than just consider-
ing the best constant action in hindsight, it considers possible deviations of the form 5 : A8 → A8 that
allow substituting each action 08 with a fixed different action 5 (08) at all times C that 08 has occurred.

Definition 2.3.4 (No-Regret). An action profile sequence (aC) is called regret-free, no-regret, or Hannan
consistent, iff all players eventually stop accumulating regret, i.e. as ) →∞:

Reg8
( (

aC
)
C=1..)

)
= >()) (2.16)

No-(external-)regret sequences converge to CCE (Aumann, 1974), no-swap-regret sequences con-
verge to CE (Foster and Vohra, 1997). In fact, there are many efficiently computable learning algo-
rithms that exhibit no regret. Some of these are the Multiplicative Weights Update (MWU) algorithm
and variants (for a survey, see Arora et al., 2012), (continuous time) replicator dynamics (Smith, 1982;
Nisan, 2007, Ch. 8), projected gradient ascent (also referred to as Generalized Infinitesimal Gradient
Ascent (GIGA) in the context of learning in differential games, Zinkevich (2003)) and a related class
of algorithms called Follow the Regularized Leader (FTRL, McMahan, 2011). FTRL includes algorithms
like online mirror descent (Nemirovski et al., 2009) and dual averaging (Nesterov, 2009). Hartline et al.
(2015) extend the notion of CCE to Bayesian games, although their analysis is restricted to finite types.
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When do no-regret dynamics converge to Nash? An important line of research has focused on
investigating under which conditions learning dynamics converge to Nash equilibria. In this para-
graph, we will outline some important results with connections to learning in auctions. In the formal
notation below, we will focus on gradient dynamics, but the notions apply equally to other no-regret
learning dynamics.
One sufficient condition for the convergence of no-regret dynamics to a (necessarily unique) Nash

equilibrium is strict monotonicity of the game. First introduced by Rosen (1965) under the name
diagonal strict concavity, a monotonic game can be thought of as the multi-agent learning analog of a
strictly (quasi-)concave objective function in single-agent optimization.

Definition 2.3.5 (Monotonicity, (Rosen, 1965)). A differentiable game is strictly monotonic iff for all
pairs of action profiles a, b ∈ Awith a ≠ b, we have

〈∇au(a) − ∇bu(b), a − b〉 < 0 (2.17)

Monotonicity directly implies the concavity of all individual utility functions D8( · ,�−8) for any
opponent strategy profile �−8 . Monotonic games admit a unique Nash equilibrium, and it can be
shown that no-regret dynamics converge to this NE in finite-dimensional, differentiable complete-
information games (Mertikopoulos and Zhou, 2019; Ui, 2008). A similar result holds for ex-post
differentiable Bayesian games (Ui, 2016). In original research not included in this dissertation (Hei-
dekrüger et al., 2021c), we show that this result generalizes to ex-ante gradient dynamics like NPGA
(see section 2.5) in ex-post non-differentiable Bayesian games, under the quite strong assumption
of special convex neural network architectures that preserve concavity of the objective. However,
whether monotonicity holds in a given auction cannot be determined easily, as it would require veri-
fying eq. (2.17) for all types v ∈ V , which is nontrivial andmay very likely be intractable. As such, this
result can be understood to show correctness of NPGA, in the sense that it will find the unique BNE
in monotonic games, but it remains uninformative about NPGAs performance in relevant auction
games.
A second class of games important in our discussion is that of potential games.

Definition 2.3.6 (Potential Game, (Monderer and Shapley, 1996)). A game � = (=,A, u) is called an
(exact) potential game, if there exists a function ) : A→ ℝ, such that for all a, a′ ∈ A and for all 8 ∈ [=]:

D8(08 ; a−8) − D8(0′8 ; a−8) = )(08 ; a−8) − )(0′8 ; a−8). (2.18)

In the definition above, ) is the potential or Lyaponov function of the game, and computing an
equilibrium is equivalent to solving a (single-decision maker) optimization problem with objective
function ). Local minima of ) become local saddle points in the underlying game, i.e. local Nash
equilibria. When ) is (strictly) convex, the unique global Nash equilibrium of the game can thus be
efficiently computed via standard methods from nonlinear optimization. In fact, gradient dynamics
in the game will be compatible with gradient descent on the potential function (Neyman, 1997;
Mazumdar et al., 2020) and lead to (at least local) Nash equilibria in potential games. In Publication B,
we apply this result to non-differentiable Bayesian games: We show that symmetric auctions can
be interpreted as potential games and that our method NPGA converges to approximate Bayesian
Nash equilibria in such games when relying on model-sharing between agents to induce symmetric
training.
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Beyond these properties, Nash-convergence of gradient dynamics, in particular, has been studied
extensively by Singh et al. (2000) for 2x2 Normal Form games, and by Letcher et al. (2019) for two-
player differentiable games. In these classes of games, the exact convergence characteristics of gradient
dynamics are more thoroughly understood.

2.4 Reinforcement Learning

Aparallel, related line of research deals with training agents inmulti-agent settings via reinforcement
learning (RL).Wewill briefly cover themost important aspects of standard, single-agent reinforcement
learning before outlining multi-agent extensions and how they relate to this thesis. In (single-
agent) reinforcement learning, an agent faces a sequential decision-making problem that is typically
formalized as a Markov Decision Process (MDP): In each state BC of such a process, an agent must
choose an action 0C , which will yield the next step BC+1 and (possibly) a reward AC+1 according to some
(generally unobserved) transition probability distribution ℙ(BC+1 , AC+1 | BC , 0C).

The agent is then faced with the task of finding an optimal policy � that maximizes its long-term
expected (and possibly discounted) reward.

�(�) ≡ �(B,0)∼�[
∞∑
C=0

�C'C(BC , 0C)] (2.19)

In reinforcement learning, this is done by repeatedly interacting with the environment and observing
state transition tuples (BC , 0C , AC+1 , BC+1). In practice, one often considers Partially Observable MDPs
(POMDP), where the state-observations by the agent may be noisy or incomplete. Analogously to the
games in section 2.1, when action spaces are finite, it is common practice in RL to consider policies
to be distributions over actions for a given state, and one commonly writes � : S ×A→ [0, 1], where
�(B, 0) = ℙ (�C=0 |(C=B). Importantly, this allows for stochasticity in the agent’s actions which is
usually required to explore previously unseen regions of the state space. When action spaces are
continuous, the two prevalent approaches are to either learn deterministic policies � : S → Awhere the
policy itself usually takes some finite-dimensional parametric form � = �� (Silver et al., 2014), or to
assume a parametric action-distribution and learn its parameters. For example, in a continuous scalar
action space, onemay restrict oneself to Gaussian policies and sample 0 ∼ �(B) = N (��(B), ��(B)), and
then learn the mean ��(B) and the variance �2

�(B) directly as functions of B ∈ S. The former approach
is closely related to our approach of learning parametric continuous pure strategies in Bayesian games
with continuous type and action spaces.

Reinforcement Learning Algorithms For single-agent reinforcement learning in MDPs, there are
several well-established learning algorithms that provably (asymptotically) converge to an optimal
policy (Sutton and Barto, 2018), although tractability, sample-efficiency, and precision are often a
challenge in practice. Such methods roughly split into value iteration methods and policy iteration
methods, although there is some overlap. In value iteration, the agent learns to predict the expected
achievable future reward, the value, of a state B, or of a state-action pair (B, 0). Actions are then chosen
in a way to maximize the expected value at time C + 1 via dynamical programming methods, most
commonly by solving a Bellman equation. In the policy iteration regime, the policy representation
itself (e.g. probability vectors (�(0 |B))0∈A in the finite action case) are updated in each iteration.
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An important class of algorithms is based on policy gradients and directly aims to estimate ∇��(�),
where the gradient ∇� is to be understood with respect to the explicit or parametric representation
of �. In the finite-action setting (Williams, 1992), an unbiased estimator of this gradient can be
efficiently computed from samples of state transitions (BC , 0C , AC+1 , BC+1). In the continuous setting
with deterministic actions, it is likewise possible under some regularity conditions (Silver et al.,
2014). Most relevant to this dissertation, this requires the objective function � to be differentiable
in the agent’s actions. Given such estimates, one may then perform stochastic gradient ascent to
maximize the expected return. Extensions to this regime, like Trust Region Policy Optimization
(TRPO, Schulman et al., 2015) or Proximal Policy Optimization (PPO, Schulman et al., 2017), add
regularization in order to stabilize the training process by reducing variance.
Recently, a particular focus has been on deep reinforcement learning, where the value function, the

policy, or both, are represented via neural networks. Suchmethods have led to several breakthroughs
in both discrete and continuous control tasks (Mnih et al., 2015; Wurman et al., 2022).

Multi-Agent Reinforcement Learning Multi-Agent Reinforcement Learning (MARL) studies extensions
to RL in which multiple agents interact with the environment and all agents’ actions influence the
transition probabilities to the next state and reward vector. This may give rise to both cooperative or
competitive multi-agent settings: Fully cooperative settings are commonly modeled as Decentralized
Partially Observable Markov Decision Processes (Dec-POMDP) in which all agents share a common
objective function. Applications include the control of Multi-Agent Systems (Shoham, 2009), or
cooperative tabletop games likeHanabi (Bard et al., 2020). In such settings, one often takes a centralized
training, decentralized execution view,which allows access to additional data during the training process
whichmay not be locally available to agents in an online setting. When tasks are not fully-cooperative
but instead involve competition, the problem can be formally modeled as a Markov Game: In this
extension of a POMDP, agents generally each observe their own individual rewards. The system can
then be interpreted as a special case of an extensive form game that adheres to the Markov Property.7

Competitive MARL has most prominently been applied to zero-sum games, where it has led
to several breakthroughs such as superhuman performance in tabletop and video games, such as
Go (Silver et al., 2016, 2017; Schrittwieser et al., 2020), StarCraft II (Vinyals et al., 2019).8 Due to
inherent symmetries in most of these applications and the nature of zero-sum games, particularly
the applicability of the minimax theorem (v. Neumann, 1928), the methods in these breakthroughs
have largely relied on results from single-agent learning theory, and, in the case of team-games,
the introduction of explicitly specified or implicitly learned communication protocols between allied
agents. Nevertheless, there is a growing body of literature that explicitly informs MARL by Game
Theory and vice versa. For example, several learning methods explicitly take the effects of interaction
with other agents into account (Lowe et al., 2017; Letcher et al., 2019; Foerster et al., 2017), or explicitly
state learning equilibria as the goal of multi-agent learning (Heinrich et al., 2015; Heinrich and Silver,
2016; Hennes et al., 2020; Letcher et al., 2019). Many of the questions studied in this field have direct
analogs in Economics andAuction Theory in particular (Heidekrüger et al., 2021b), such as evaluating

7For a concise formal description, the interested reader is referred to Conitzer and Sandholm (2008).
8Superhuman performance has recently also been reached in large imperfect information games like Texas-Hold’em Poker
(Brown and Sandholm, 2019a,b), but the methods employed here rely on regret-minimization techniques (Compare
section 2.3) rather than RL.
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agent strength in non-zero-sum environments (Omidshafiei et al., 2019; Lanctot et al., 2017). Zheng
et al. (2020) study a setting closely related to market design, where a socially optimal tax policy is
learned from the behavior of market participants who are themselves learning agents.
We will not explicitly model the equilibrium computation problem in sealed-bid auctions as a

Markov Game – since we do not need to worry about sequential decisions and path dependency.
Nevertheless, sealed-bid auctions can be thought of as special cases of Markov Games with episode
length 1, and many results from (MA)RL apply to it directly. Beyond theoretical algorithmic results,
RL particularly informs the implementation details of our approach.

2.5 Equilibrium Computation in Auctions

In this section, we will look formally at the problem of equilibrium computation in auctions, compare
and contrast the problem with those studied in complete information games and the MARL litera-
ture, and deduce implications for efficient implementations of learning in auctions. Afterward, we
will briefly discuss the computational complexity of the problem. Then, we will discuss analytical
equilibrium solutions that have been derived, as well as numerical methods that have been proposed
in the literature. Based on these discussions, we will briefly motivate our approach andmethodology
taken in the original research publications included in this thesis.
Formally, we are seeking the Bayesian Nash equilibria of auction games as defined in section 2.2.

Compared to the question of computing Nash equilibria in continuous complete-information games,
the problem at hand is further complicated in Bayesian auction games that generally, and typically,
have continuous types and actions. As such, even pure strategies �8 constitute infinite-dimensional
objects in a functional space: �8∈AV . Beyond this fact, another complication is given by the fact that
the utility functions u in auction games are typically non-differentiable. This is a consequence of the
discrete nature of the allocations -: Assuming quasi-linear utilities D8(E8 , 18 , b−8) = E(G8(b)) − ?8(b),
the valuation component will be a step-function in 18 . As a result, standard methods for gradient
computation are inapplicable, as discussed in Section 2.4 of Publication A.

Computational Complexity of Bayesian Nash Equilibria In complete-information games, the exis-
tence of at least oneNash equilibrium is guaranteed, but computing such aNash equilibriumhas been
shown to be PPAD-complete, even in the 2-player case (Daskalakis et al., 2009; Nisan, 2007, Ch. 2).
Deciding whether a second Nash exists in a given game has been shown to be NP-complete. As such,
even in finite complete-information games, finding Nash equilibria is believed to be a hard problem.
The exact complexity of computing BNE in Bayesian games has not yet been conclusively deter-

mined, but it must be at least as hard as that of computing NE in complete-information games. So
far, any attempts at determining the computational complexity of BNE have focused on the finite-
type case only, yet found discouraging results: Deciding whether a pure strategy BNE exists in a
finite (type-and-action) Bayesian game is known to be NP-complete (Conitzer and Sandholm, 2008),
even in symmetric 2-player Bayesian games with uniformly distributed valuations. For a certain
type of private-value Simultaneous Second-Price Auction (SiSPA) on multiple heterogeneous items
with discrete types, (Cai and Papadimitriou, 2014) have established that finding a BNE is PP-hard.
Daskalakis and Syrgkanis (2016) note that in similar SiSPA auctionswith XOS-bidding, even no-regret
learning and thus the computation of Bayesian CCE is NP-complete for discrete types and discrete
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(or discretized) action spaces because discrete-action regret-minimization methods suffer from the
exponential (or worse) growth of available actions in the number of items. They instead consider
envy-freeness as an efficiently computable relaxation of regret-freeness that yields a similar price of
anarchy. Due to these hardness results, one cannot expect BNE to be computable in the general case,
particularly in continuous-type Bayesian games.

Analytical Solutions Inherently, only the Vickrey-Clarke-Grovesmechanism is strategyproof for any
number of items and an arbitrary number of risk-neutral, rational bidders. For all other mechanisms
(or without quasi-linear utilities), however, the analytical derivation of Bayesian Nash equilibria in
auctions becomes tedious and nontrivial, even in relatively simple markets.
The traditional approach relies on fully specifying a setting (e.g. the allocation and pricing rule,

prior distributions, number of players and items, etc.) and then explicitly describing the equilibrium
state, which will result in a system of variational inequalities (VIs), which can be described by partial
differential equations. In general, solving or even explicitly stating the system of VIs is intractable.
Nevertheless, in some settings this approach has led to success and the discovery of one or more
BNE in closed-form: For example, in independent private value auctions with a single item, risk-
neutral bidders and symmetry assumptions on the priors and the equilibrium strategy, the VIs reduce
to a single ordinary differential equation (ODE) that can be solved explicitly, yielding the unique9

symmetric pure-strategy equilibrium for a range of payment functions, including first-price, second-
price, and all-pay (Krishna, 2009, Part I). For first-price auctions, this analysis holds evenwhen bidders
are risk-averse. Whendropping the symmetry assumption on all bidders, results becomemore sparse.
In a first-price auctionwith = = 2 and asymmetric uniformpriors, a unique closed-formBNE is known
when overbidding is disallowed (Kaplan and Zamir, 2012; Plum, 1992). When allowing overbidding,
there are known setting where multiple (at least 3) BNE can be derived (Kaplan and Zamir, 2015).
Beyond single-item auctions or independent private values, there are few additional cases where

analytical derivations have been successfully applied, but these usually come with stronger restric-
tions, e.g. on the number of players or simplified valuation or bid spaces through significant a-priori
restrictions on bidders’ demand sets or homogeneity of items. The included empirical experiments
into the convergence of NPGA (Publications A to C) cover all continuous-type-and-action auctions
with known equilibria that the author is aware of. Publication A covers simple symmetric single-item
auctions. Publication B, including the supplementary material, extends this analysis to markets with
multiple items. Publication C additionally studies further settings with (irreducible) asymmetries.
In addition to analytically “solved” settings, we also compute approximate equilibria in larger set-
tings without analytical solutions, including the newly proposed LLLLRRG setting (combinatorial
with dual-minded bidders, = = 7, < = 6), the largest setting for which this has been achieved thus
far. Publication D includes an application to single-item all-pay auctions, where other proposed
equilibrium learning methods are known to fail to converge to BNE (see below). Furthermore, effi-
cient parallelized implementations of all studied markets have been incorporated into the bnelearn
software package (Heidekrüger et al., 2021a).

9In some cases, there may actually be a class of outcome-equivalent equilibria: For example, in second-price auctions with
asymmetric priors, a “strong” bidder 8 may bid arbitrarily high when E8 exceeds max supp �v−8 . We would treat this
behavior as equivalent to only bidding up to her own valuation because choosing 18 > E8 will never change the resulting
allocation or prices.
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Numerical Algorithms Wewill now introduce numerical methods for equilibrium computation and
introduce the high-level approach of our method, Neural Pseudogradient Ascent (NPGA).
Two recent approaches explicitly perform learning dynamics directly in Bayesian auction games,

although on discretized or linearized strategies: Bosshard et al. (2020, 2017) discretize the type and
action spaces into a finite number of support points and then perform (smoothed) best-response
dynamics on pure strategies in the interim state for every possible valuation E8 . The bidding strategy
is then assumed to be the linear interpolation of the best responses at the sampled support points. The
method successfully recovers the equilibria in the (single-minded) LLG settings discussed above and
was the first to compute a close approximation of a BNE in a larger combinatorial first-price auction
with 6 bidders and items, referred to asLLLLGG.Another recent approach likewiseuses discretization
of the type and action spaces, but learns interim-distributional strategies via Simultaneous Online Dual
Averaging (SODA, Fichtl et al., 2022), i.e. a probability vector ℙ(08 |E8) at every sampled E8 . The
resulting distributions place high probability on the interim action corresponding to the analytical
pure strategy Nash equilibrium. While both methods perform well in low-dimensional Bayesian
games, their discretizations are subject to a combinatorial explosion when increasing the game size,
particularly in the number of items, as the memory requirement of the discretization grows double-
exponentially in < with an XOR bidding language.
Hartline et al. (2015) consider no-regret learning in Bayesian games with explicitly finite types,

formally introduce the notion of Bayesian Coarse Correlated Equilibria, and analyze the price of
anarchy, i.e. the difference in socialwelfare between learnedoutcomes and the efficient offline solution.
Armantier et al. (2008) takes a similar viewpoint to ours and interprets the BNE strategies of a Bayesian
game as the NE actions of a (possibly infinite-dimensional) complete-information game. Given a
parametrized restricted strategy space ΣA , they note that one can view a Nash equilibrium �∗A in
(=,ΣA , D̃) as an approximation to a BNE �∗ in (=, V ,A, �, D) and show that for a sequence of ever-finer
grained restrictions (ΣA)A with ΣA → Σ, the equilibrium in the restricted space will converge to a BNE
in the original game: �∗A → �∗. In empirical work, they consider piecewise linear bidding functions
in two-player single-item first-price auctions and small discriminatory-price multi-unit auctions with
< = = = 4 and observe quick convergence to the analytical BNE as the number of support points grow.
In contemporaneous but independent work from ours, Li and Wellman (2021) also consider evolu-

tionary strategies and neural networks for learning in auctions, although in a different way from the
workpresented in this dissertation: Rather thanperforming agent-based learningdynamics, theynote
that in symmetric auctions, regret-minimization itself can be interpreted as a two-player zero-sum
gameof between the agent 8who aims tominimize his regret and afictitious adversary aiming to find a
best response �−8 to exploit 8. Evolutionary Strategies as a black-box optimization method can then be
used to implement such a best-response oracle in the inner loop, aswell as finding a regret-minimizing
pure strategy �8 in an outer loop. The authors also consider an extension based on Empirical Game-
Theoretic Analysis (Wellman, 2006; Tuyls et al., 2018) in which mixed strategy bidding functions are
modeled via mixtures of pure strategies: Pure strategies are successively added to a (normal-form)
meta-game, and themixedNash equilibrium in thismeta-game then serves as themixed strategy func-
tion in the original Bayesian game. Their method recovers analytical BNE in symmetric single-item
first- and second-price auctions and achieves low regret in moderately-sized settings with multi-
ple homogenous goods. The authors note that their method fails to recover the analytical BNE in
single-item all-pay auctions, and the convergence behavior of the method is not yet fully understood.
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Our approach, Neural Pseudogradient Ascent (NPGA), on the other hand, parametrizes bidders’
strategies via neural policy networks and follows a deterministic policy gradient approach, in order to
follow the ex-ante (projected) gradient dynamics. Traditional policy gradient approaches based on
backpropagation fail in this setting, as explained in detail in Publication A. Instead, NPGA relies
on evolutionary strategy gradient computation (Salimans et al., 2017) in order to sample unbiased
ex-ante gradient estimates despite the auction’s ex-post non-differentiability. An in-depth theoretical
discussion of the NPGA algorithm is presented in Publication B. NPGA provably converges to at
least local pure-strategy BNE in symmetric auctions, and to the unique global pure-strategy BNE in
monotonic auctions. This will be discussed in detail in chapter 3.
In further original research not included in this dissertation (Kohring et al.), we additionally

empirically studied the (stochastic) dynamics of agents who adapt their strategies using Particle-
Swarm optimization (PSO) methods as an alternative gradient-free black-box optimization method.
The method achieves qualitatively similar results to NPGA in the settings presented in Publication B
but incurs a significantly larger memory footprint.

2.6 Software Frameworks for Learning in Games

Several open-source frameworks for learning in games and MARL are available. On the one hand,
there are several frameworks for game-theoretic analysis of finite complete information games. Tools
like Game Theory Explorer (Savani and von Stengel, 2015) or Gambit (McKelvey et al., 2016) allow users
to define, visualize and solve finite complete-information games, both in strategic and extensive-
form, via both a GUI or a programming interface. On the other hand, multi-agent learning may
be implemented using common reinforcement learning libraries. PettingZoo (Terry et al., 2020) is
a multi-agent extension to the popular reinforcement-learning framework OpenAI Gym (Brockman
et al. (2016), now succeeded byGymnasium, Farama Foundation (2021)), that enables the drop-in study
of (single-agent) RL algorithms inMarkovGames, aswell as specializedMARL algorithms. Ray RLlib
(Liang et al., 2017) is a framework for scalable distributed reinforcement learning that supportsMarkov
games natively. However, both of these frameworks focus on single-agent reinforcement learning and
are not geared towards primarily game-theoretic use cases.
DeepMind’s OpenSpiel (Lanctot et al., 2019) is an ecosystem of algorithms and games that covers

a wider area of the learning in games literature beyond MARL. The library includes original and
third-party implementations of many complete and imperfect information games. Most games in
OpenSpiel leverage performant implementations in C++. However, since the library focuses explicitly
on extended-form games with unknown and varying episode lengths, it does not support batch-
vectorized game environments which play a crucial role in our work. Furthermore, OpenSpiel does
not support continuous state or action spaces.
Bayesian auction games can be modeled as Markov Games but have several concrete properties

that warrant the development of a specialized framework. On the one hand, sealed-bid auctions are
direct mechanisms. Using RL terminology, the episode length is always 1. As a result, much of the
theoretical underpinning of MDPs, Markov games, and learning methods developed for them does
not apply to the one-simultaneous-action case, and even the game implementations in the popular
frameworks above would contain much superfluous overhead. On the other hand, the fact that the
episode length of 1 is (a) fixed, and (b) does not allow any path dependencies within a single episode
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of the game, makes it possible to efficiently batch-vectorize the game implementation and leverage
hardware acceleration to simulate many game instances in parallel. To this end, the bnelearn
framework (Heidekrüger et al., 2021a) was developed during the course of this dissertation project to
facilitate the included original research.10

10At the time of writing, both Gymnasium and RLlib have recently added support for batch-vectorized environments, but
their implementations are primarily geared towards large-scale parallelization across a compute cluster, rather than
batching on individual GPUs. Additionally, batch-vectorization in these frameworks is sometimes incompatible with
other important features and incurs significant overhead in programming complexity.
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Computing Approximate Bayes-Nash Equilibria
through Neural Self-Play

Stefan Heidekrüger∗ Paul Sutterer† Martin Bichler‡

Department of Informatics
Technische Universität München

Abstract

Understanding market dynamics means understanding and predicting the behaviour
of the market participants. Nash equilibria have proven to be an effective means in this
regard. Unfortunately, computing equilibria in a complete information or Bayesian
game is computationally hard. We introduce a learning rule based on neural networks
that we call Neural Self-Play. This rule is able to compute approximate Nash equi-
libria for many normal form games as well as for incomplete-information games with
continuous type- and action-space, i.e., sealed bid single-item auctions. Leveraging
GPU hardware architecture, which allows for parallelized computation of large matri-
ces, Neural Self-Play finds approximate Bayesian Nash equilibria in first-price sealed
bid auctions with 10 players within 10s of minutes.

1 Introduction

Market design has received increasing attention in the information systems literature (Bichler
et al. 2010). For market designers, it is important to understand equilibrium behavior of
market participants to predict market outcomes and potential strategic problems. While
early literature on general equilibrium theory focused on competitive equilibria and assumed
players to be non-strategic price takers, auction theory assumes strategic agents and uses
the Nash equilibrium concept to study the price formation process (Nash et al. 1950). More
precisely, auction theory models auctions as Bayesian games and analyzes the Bayes-Nash
equilibria of players.

Unfortunately, for many markets we do not know the Bayes-Nash equilibrium strategy.
For example, Bayes-Nash equilibrium strategies for simple combinatorial first-price sealed-bid
auction are still unknown, except for restricted environments (Kokott et al. 2019). Different
assumptions on the common prior distribution, the risk aversion of the players, or the number
∗stefan.heidekrueger@in.tum.de
†paul.sutterer@tum.de
‡bichler@in.tum.de
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of players and objects all play a role, and the analytical derivation of equilibrium strategies
can be very challenging, often without a closed-form solution if at all possible.

In this paper, we introduce Neural Self-Play (NSP), a method that numerically derives
Bayes-Nash equilibria. In experiments, we focus on environments where we know the ana-
lytical solution and show that NSP closely approximates the analytical equilibrium strategy.
This bears the promise that it can provide such a solution for markets where we cannot
derive analytical solutions. While earlier literature either stems from artificial intelligence or
game theory, equilibrium computation becomes increasingly important as a tool in market
design and other areas of information systems research. This also contributes to the overall
theme of the workshop: markets for policy making and sustainability.

1.1 Related Literature

Nash equilibria (NE) are a central solution concept in non-cooperative game-theory. Infor-
mally, in a Nash equilibrium no agent has an incentive to deviate, given the current behaviour
of all other agents. Therefore, once a NE is found, it is a stable state. However, finding NE
is hard. Actually, it is known to be PPAD complete already for 2-player normal-form games
(Daskalakis et al. 2009) and it is hard to approximate (Rubinstein 2016).

There exist a number of learning rules which try to find NE, two of the most frequently
used are Fictitious Play (FP) (Brown 1951) and Smooth Fictitious Play (SFP), a variant of
the first. The idea of FP is an iterative pre-play process in which each player plays a best
response to the opponents’ expected play, based on past observations. FP applies to games
of complete information, such as normal form games, as well as to games of incomplete
information. While FP works fine for many games, its direct application fails whenever a
game has continuous type- and action-space, as in auctions.

The problem of numerically computing approximate NE in auctions with continuous type-
and action-spaces has previously been studied by Bosshard et al. (2017). Bosshard et al.’s
algorithm is shown to compute verifyable approximate equilibria in the general setting. They
discretize and transform the Bayesian auction game into a normal form game and compute
a pointwise best response. Afterwards, they apply a (smoothed) best response update in the
original continuous game by interpolating the discrete solution such that it guarantees an
upper bound on the utility loss. While their method is shown to converge, the complexity
of calculations in the required discretization grows exponentially with the number of players
and thus becomes intractable for games with many players or multidimensional type or action
spaces.

1.2 Contributions

In this study, we introduce Neural Self-Play (NSP), a learning rule implementing players’
strategies as neural networks, and using evolutionary strategies to update the networks
parameters. We first test the algorithm’s performance on normal form games of complete
information with discrete type- and action-spaces. The algorithm performs similar to FP
and SFP and is able to find pure Nash equilibria (PNE) as well as mixed Nash equilibria
(MNE) in empirical frequencies. While FP and SFP are only able to work with discrete
type- and action-spaces, NSP also works with continuous settings. We test the algorithm
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on games of incomplete information with continuous type- and action-spaces, i.e. on sealed
bid single-item auctions. NSP is able to find approximate Bayes-Nash equilibria (BNE) in
all performed experiments within minutes. It is able to find BNE for settings with many
bidders and scales well even for an increasing number of parameters.

The remainder of this paper is structured as follows: First, in Section 2, we introduce
preliminaries as well as NSP and related learning rules. We then present empirical results
of applying NSP to normal form and auction games in Section 3 before concluding with a
summary of our findings in Section 4.

2 Methodology

In this study, we apply different learning rules for finding Nash equilibria (NE), namely
Fictitious Play (FP), Smooth Fictitious Play (SFP), Mixed Fictitious Play (MFP) which
are well-studied tabular methods. In addition, we introduce a new algorithm for equilibrium
learning based on neural networks that we call Neural Self-Play (NSP). Before we describe
these learning rules, let us briefly introduce a few terms.

Games in normal form (complete information, discrete type- and action space) are defined
by a tuple: G = (N,A, u) where N = {1, ..., n} describes the set of players; A = A1× ...×An
describes the set of action profiles, with Ai being the set of actions available to player i; and
u = (u1, ..., un) is the joint utility function where ui : Ai → R describes the payoff (utility)
function for each player.

Games of incomplete information are described by a quintuple: G = (N,A, V, p, u). N
and A are as above, with Ai potentially being continuous sets Ai ⊂ R; V = V1×...×Vn is the
set of type profiles. At the beginning of the game, each player i is informed of her own type
vi ∈ Vi only (private information). Just as Ai, the Vi are (potentially continuous) subsets
of R.1 p(v) defines a prior probability distribution over type profiles that is assumed to be
common knowledge. The payoff (utility) function is now determined by ui : A×Vi → R, i.e.
players’ utilities depend on all players’ actions but only their own type.

In each game, after receiving the private type information, each player i chooses her
strategy according to some (possibly stochastic) strategy π : Vi → ∆Ai that maps to a
probability distribution over possible actions.2 All the learning rules described here have
in common that the underlying game is played repeatedly—in theory indefinitely—while
players observe each other’s behavior and adjust their strategies πi ("learning") in order to
ultimately find an equilibrium in the game, i.e. a state where no player can improve their
own expected utility by changing their strategy πi any further. Throughout this paper, we
denote by the index −i a profile of types, actions or strategies for all players but player i.

2.1 Fictitious Play

FP was first introduced by (Brown 1951). It can be seen as a process of pre-play by each
player to learn more about the game’s dynamics. In FP, each player starts with initial beliefs
about the other players’ strategies and updates these beliefs based on the observations of

1Private information may also be multidimensional, but we restrict ourselves to the scalar setting here.
2When πi is known to be deterministic, i.e. return an action ai with probability 1, we will use the

following abuse notation: πi(vi) = ai.
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played actions throughout the process. At each step every player i computes her expected
utility ui for any possible action in Ai, given the current beliefs of opponents play σ−i, and
chooses the action ai ∈ Ai that maximizes it, i.e. plays a best response:

ai = arg max
a∈Ai

E [ui(a, σ−i)]

After each round, players update their beliefs about other players’ strategies using Bayesian
updating. As the actual play can only converge to pure Nash equilibria (PNE) due to the way
actions are chosen, it oscillates in games with only mixed Nash equilibria (MNE). However,
the empirical distribution of historical actions may still converge in such games (Fudenberg
and Levine 1999, p.42 - 45) and is thus usually considered when speaking about convergence
of FP. While FP does not converge in general (Shapley 1964), it has been shown to converge
for some general settings such as constant sum games (Robinson 1951) or games that are
solvable through iterated elimination of strictly dominated strategies (Nachbar 1990). For
details on convergence guarantees of FP, we refer the interested reader to any text book on
game theory, e.g. Fudenberg and Levine (1999).

2.2 Smooth Fictitious Play

Smooth Fictitious Play (SFP) is based on FP but differs in that SFP does not determin-
istically play a best response, but adds randomness to the decision process. In our imple-
mentation this is achieved by applying the softmax function to the expected utilities of each
action and sampling an action according to the resulting probability distribution. We fur-
ther apply a temperature parameter τ that controls the level of smoothing, i.e. the degree
of indifference between actions. For τ → ∞, players will be completely indifferent between
actions; as τ → 0, the players probability of playing the best response action approaches 1.
Usually, τ is initialized with 1 and decreases with each step. The probability of player i to
play an action a, given the beliefs of opponents playing σ−i, is then given by:

Pr (ai |σ−i) =
e
ui(ai,σ−i)

τ

∑
ri∈Ai e

ui(ri,σ−i)
τ

,

where we dropped the expectation around ui(·, σ−i) for ease of notation.
SFP can be motivated in multiple ways, among them are: the randomization represents

private information about the utility function of a player; and the introduction of random-
ization allows agents to be less exploitable. In contrast to FP, the actual play in SFP (or the
probability for the actions according to players’ strategies π) is in principle able to converge
to MNE (Fudenberg and Levine 1999, p.131 - 156).

2.3 Mixed Fictitious Play

Mixed Fictitious Play (MFP) is an adjustment of SFP in which players do not sample
an action but can "play" mixed strategies that are observed by others. This adjustment
makes MFP purely fictitious, i.e. a mind experiment, since players cannot actually play
a probability but would have to decide on an action in practice. The advantage is faster
convergence due to lack of noise introduced by sampling. This method is thus only suited for
finding potential NE of a game but not a method for players to learn to reach the equilibrium
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strategy through repeated playing of an actual game.

2.4 Neural Self-Play

We propose Neural Self-Play (NSP) as an alternative iterative learning rule that is applicable
both to normal form games and continuous-action continuous-type Bayesian games. In NSP,
we model players’ strategies using neural networks. In each step, players consider their
opponents to be stationary in their current strategy (as opposed to updating beliefs over
historical play as in FP and variants). The general idea of NSP is that players apply a small
update to their neural network parameters θ that will lead to an improvement in utility.

The canonical way of implementing this idea would be applying a gradient ascent algo-
rithm via backpropagation. In fact, this method is called Policy Gradients in (single-agent)
reinforcement learning and has been previously studied in multi-agent normal form games
where it is called Infinitesimal Gradient Ascent (IGA, Singh et al. 2000; Bowling and Veloso
2002). However, in the following, we demonstrate that this approach fails in the setting of
auctions and instead propose to use an alternative training algorithm based on Evolutionary
Strategies, before introducing the specific model architectures that we use in this study.

2.4.1 Infinitesimal Gradient Ascent

In Infinitesimal Gradient Ascent (IGA), each player adjusts their own strategy in the di-
rection of the gradient of their utility function when considering opponents fixed at their
current strategies3:

πt+1
i := πti + α∇πiui(π

t
i , π

t
−i)

In 2x2 normal form games, this simple learning rule has been shown to either converge to a
NE or end up in cycling behaviour where each player’s average utilities converge to those in
a NE (Singh et al. 2000). However, IGA relies on knowledge of the analytical joint gradient
dynamics and assumes that the joint utility function is differentiable everywhere. This makes
the learning rule unsuitable for continuous-type, continuous-action Bayesian games as these
can involve nontrivial discontinuities as we discuss below. To rectify this, our approach
differs from IGA mainly in the way gradients are computed, particularly in two aspects:

On the one hand, IGA assumes analytical knowledge of—or an efficient way to compute
with arbitrary precision—the global gradient vector field in each step. This assumption,
however, becomes impracticable in infinite information-state spaces, as no closed-form de-
scription might exist or be known. We thus forgo this assumption and instead rely on
stochastic estimation of the gradients: In each iteration, we play a batch of games, i.e. draw
a batch of valuation profiles from the players’ prior distributions and calculate players’ cur-
rent strategy utilities in each of the valuation profiles. Due to the parallel nature of these
calculations, we can leverage modern hardware accelerators such as GPUs to perform these
batched operations at no additional cost in computation time. We then aim to calculate
the gradients for this stochastic joint utility function with respect to each player, which in
expectation will approximate the gradient dynamics of the full Bayesian Game.

3The sceptical reader might wonder how ∇πi
is defined. πi could either be a tabular vector of action-

probabilities, a parametrized function, etc.; the gradient should be understood with respect to the respective
representation determining πi. We use abuse of notation here to illustrate the concept in a general way.
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Figure 1: Utility function ui(bi) in First Price Sealed Bid Auction for stationary opponent
bids b−i with highest opponent bid b(1)−i . For a given current bid bi, the gradient ∇ui(bi) will
be zero whenever the player is not winning the item, and negative whenever she is. Thus,
when all players update their strategies using gradients, they will eventually all bid zero, as
the winner in each round learns to bid less while the losers do not change their strategy.

2.4.2 Evolutionary Strategy Pseudo-gradients

On the other hand, even when available, the exact gradients on this sample may not lead to
proper learning, so we rely on pseudo-gradients computed via an Evolutionary Strategy algo-
rithm instead. Exact gradients are problematic because for a fixed valuation and opponent
strategy profile (vi, π−i), player i’s utility may be discontinuous in her action. Clearly, such
a discontinuity is relevant to playing optimally, but neither the left-sided nor the right-sided
derivatives will contain information about its presence, as outlined in Figure 1. The standard
method of training neural networks, stochastic gradient ascent (SGA)4 via backpropagation,
calculates exact gradients with respect to the training data5; thus, using backpopagation in
the multi-agent setting is simply an implementation of IGA on neural network strategies,
leading to the problems described above and making it unsuitable in our setting.

Recently, Evolutionary Strategies (ES) have been proposed as an alternative to back-
propagation for gradient estimation in neural networks and applied with some success in
reinforcement learning (Salimans et al. 2017). In ES, the parameter vector θ of the model is
perturbed randomly P times, for example by adding P i.i.d. zero-mean, σ2-variance Gaus-
sian noise terms εp. The resulting P perturbed neural networks are then evaluated with
respect to their "fitness" Fp and the model is ultimately updated using a weighted average
of the P noise vectors εp with more desirable perturbations being weighted higher than less
desirable ones: θt+1 = θt + α 1

P

∑P
m=1 Fmεp. While Salimans et al. (2017) mainly motivate

this alternative update with the need for large scale parallelization across CPU clusters
and computational deficiencies of backpropagation, the method also exhibits an important
property that is crucial in our context:

4In the Machine Learning and Nonlinear Programming literature the method is commonly known as
stochastic gradient descent (SGD). Nevertheless, we will use the maximization formulation here.

5Unless impaired by numerical precision.
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The ES pseudo-gradient is in expectation identical to the analytical infinitesimal gradient
for σ → 0; however, in pactice, a small but strictly positive value for σ is used. The resulting
finite perturbations solve the problem of inconsistent gradient signals at discontinuities of the
utility: If an agent is ’barely’ losing an auction, a small perturbation resulting in a higher
bid will also result in the agent winning the auction, thus providing a positive pseudo-
gradient signal. We therefore propose using neural networks trained via ES rather than
backpropagation in the multi-agent continuous-action setting whenever the marginal utility
functions may not be differentiable or even continuous in action-space.

In our implementation, we extend the basic ES algorithm from Salimans et al. (2017)
with two common practices from Reinforcement Learning and Optimization by (a) using the
player’s utility in the previous iteration as a baseline parameter to reduce variance in the
fitness function and (b) replacing the pseudo-gradient update with a momentum update in
order to smoothen the learning trajectories. A complete description of Neural Self-Play with
Evolutionary Strategy training is given in Algorithm 1.

2.4.3 Representing Strategies: The policy network

In NSP, each agent’s strategy is given by a policy model that maps her types vi to (a
distribution over) actions and that is represented by a neural network with a parameter
vector θ: πi(·) = πi,θ(·).

In the normal form game setting, we implement the policy model as follows: Since we
have complete information, there are no information sets and no structure for the neural
network to learn. Thus, the policy model for each player consists of a single weight vector
representing logits for each possible action, θ ∈ R|Ai|. The logits are then normalized by
a softmax function to achieve a vector that can be interpreted as probability distribution:
Pr (a) = eθa∑

j∈Ai e
θj
. This can be interpreted as a no-hidden-layer feed-forward neural network

with a constant scalar input of 1 and an output layer with weight vector θ, no bias parameters
and a softmax activation function. A schematic of this network is shown in Figure 2a. Actions
are then sampled from the resulting distribution.

In the Bayesian, continuous-type-and-action setting, we instead restrict ourselves to de-
terministic policies: The input to the neural network will be a vector representing the player’s
private information, the output will be a vector in action space. In the setting of sealed bid
single-item auctions, both the input (private valuations vi) and outputs (bids bi) happen to
be scalars. The deterministic action is then given by bi = πi,θ(vi). To map inputs to outputs,
we may use an arbitrary neural network architecture; in this study, we restrict ourselves
to fully-connected feed-forward networks with two hidden layers, which were sufficient to
yield desired results. Advanced network architectures such as recurrent neural networks or
attention mechanisms may be required to extend this technique to settings with temporal
structure (such as ascending auctions), but we leave this investigation to future work.
For the reported experiments we use SeLU activations (Klambauer et al. 2017) in the hidden
layers, and a ReLU activation function in the ouput layer. While the ReLU activation in the
output layer fulfills a structural role in ensuring non-negative bids, SeLU was chosen in the
hidden layers because we found it to be most robust in producing good results. The network
architecture used in auction games is illustrated in Figure 2b.
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Algorithm 1: Neural Self-Play with Evolutionary Strategy training
Input: players i ∈ [N ] with initial policy π0

i := πi,θ0i , defined by a model
architecture and initial parameter vector θ0i ;
batch size K; learning rate schedule (αt)t≥1; friction parameter β ∈ [0, 1);
ES population size P ; ES noise stddev σ

1 For each player, initialize momentum buffer m0
i = 0

2 for t := 1, 2, . . . do
3 For each player i, sample a batch of valuations vk,i for k ∈ [K]
4 Calculate joint utility in current strategy profile:

ut−1 :=
1

K

∑

k

u
(
πt−1(vk)

)

5 for each player i do
6 Sample P perturbations of player i’s current policy model:

π̃p := πi,θ̃p , with θ̃p := θt−1i + εp, εp ∼ N (0, σ2I) iid. ∀p ∈ [P ]

7 Evaluate the fitness of perturbations by playing a batch vs current opponents:

Fp :=
1

K

∑

k

ui
(
π̃p(vk,i), π

t−1
−i (vk,−i)

)
− ut−1i︸︷︷︸

baseline

8 Calculate ES pseudo-gradient as fitness-weighted perturbation noise:

∇ES :=
1

σ2P

∑

p

Fpεp

9 Perform a momentum update on the current policy:

mt
i := βmt−1

i +∇ES

θti := θti + αtmt
i

πti := πi,θti
10 end
11 end

3 Empirical Results

We study the learning rules above in two settings, namely complete information normal form
games and incomplete information single item sealed-bid auctions.

3.1 Normal Form Games

We consider a number of very common normal form games, starting with 2 players and 2
actions, namely Prisoners Dilemma (PD), Battle Of the Sexes (BoS), and Matching Pennies
(MP). We also consider a game with 3 players and 2 actions, namely the Jordan-Game (JG)
that has been considered a challenge for FP and its variants (Jordan et al. 1993). We run
10 replications of each game with randomly drawn initial beliefs that are identical for each
learning rule. In each replication, each learning rule performs 5000 (learning) steps. The
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Figure 2: neural network architectures used for normal form games and auctions.

temperature τ (SFP and MFP) is initialized with 1, updated every 10 steps with 0.9 times
the previous value and held constant at a minimum of 0.2. NSP is performed with a batch
size of K = 210, ES noise parameter σ = 5, and P = 10 ES perturbations per step.

3.1.1 2 Player, 2 Action

The following games are described by N = {1, 2} and A1 = A2 = {1, 2}. Due to restricted
space, we do not present each payoff matrix but only name the Nash equilibria (NE). In
PD, the only NE is both players playing action 2 (PNE). In BoS, there are two PNE (both
players play 1 or both players play 2) and one MNE, where player 1 has a 60% probability
of playing action 1 and a 40% probability of playing action 2, while the probabilities are
reversed for player 2. In MP, the unique MNE is that both players have a 50% probability
of playing action 1. Figure 3 illustrates the learning process for these three games and the
four learning rules. Since there are only two actions and the behaviour of player 2 is very
similar to that of player 1, we display only the actual probability of player 1 playing action
1 at any learning step (columns 1-3). The fourth column displays the empirical distribution
of historical probabilities of player 1 playing action 1. Let us describe the results now.

FP (row 1) quickly converges to PNE in PD and BoS (column 1-2) while it oscillates
between actions in scenarios of only MNE, here MP (column 3), as described in the previous
section. However, the empirical distribution (column 4) converges to the MNE. On the
other hand, SFP (row 2) has a tendency of playing mixed and therefore takes about 150
steps to finally play PNE in PD and BoS (column 1-2). However, in games of only MNE,
SFP converges to the MNE in actual play and not only in the empirical distribution (column
3 and 4). Actually, Fudenberg and Kreps (1993) established global convergence to a Nash
distribution in 2×2 games with a unique mixed-strategy equilibrium. MFP (row 3) generally
behaves like SFP, however converges much faster and much smoother, especially in MP
(column 3 and 4). NSP (row 4) behaves similarly to both FP and SFP. In PD and BoS
(column 1 and 2), it is similar to SFP and needs 200 steps in both to converge to the PNE.
In MP (column 3), it is similar to FP and actual play cycles between the actions. However,
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Figure 3: Learning process of player 1 to play action 1 for the four learning rules on three
common 2 player 2 actions normal form games. The actual probability to play action 1
at each learning step is shown in column 1-3 and the empirical distribution of historical
probabilities in column 4.

this cycling is much smoother than in FP. As in FP, the empirical distribution (column 4)
converges to the MNE.

3.1.2 3 Player, 2 Action

While all previous games considered only 2 players, the Jordan-Game (JG) is defined by
N = {1, 2, 3} and A1 = A2 = A3 = {1, 2}. In this game, player 1 wants to choose an action
different to that of player 2 (u1 = 1, else u1 = 0), player 2 wants to choose an action different
to that of player 3 (u2 = 1, else u2 = 0), and player 3 one that is different to player 1 (u3 = 1,
else u3 = 0). The only NE is for all players to play each action with a probability of 0.5
(MNE). Figure 4 shows the probability of actual play (row 1) and the empirical distribution
of historical probabilities (row 2) for each learning rule (columns 1-4) in the JG.

FP (column 1) oscillates in actual play (row 1). However, in contrast to MP, even the
empirical distribution (row 2) does not converge but cycles around the equilibrium. Only in
one repetition the empirical distribution is perfectly in the MNE. Here, the initial beliefs are
such that each player beliefs all other players play action 1, and therefore each player plays
action 2. In the next step, each player updates their beliefs and now beliefs all other players
play action 2, and therefore each player plays action 1, etc.. Note that while all players play
the MNE in the empirical distribution, the actual payoff is 0 at all times. SFP (column 2)
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Figure 4: Convergence of actual and historical probability of player 1 to play action 1 for
the four learning rules on Jordan Game

does not converge either but both actual play (row 1) and the empirical distribution (row 2)
cycle around the equilibrium. This has also been shown by Benaım and Hirsch (1999). The
results are the same for MFP (column 3). However, the cycles around the equilibrium are
much closer here which is in line with previous results of SFP and MFP. NSP (column 4)
performs similar to FP but with even larger cycles of the empirical distribution around the
equilibrium. Both would not be suited to find equilibria in this game.

3.2 Single-Item Sealed-Bid Auctions

We study NSP behaviour in two types of auctions: First Price Sealed Bid (FPSB) auc-
tions and Second Price Sealed Bid Auctions (also called Vickrey auctions).6 The latter is
well known to be incentive compatible, thus bidding truthfully constitutes a BNE for any
combination of valuation distributions. NSP learned a close approxmation to the truthful
strategy after just a few 100s of iterations in all Vickrey settings we performed (uniform and
normal distributed types with up to 10 players). We thus omit detailed quantitative results
for Vickrey auctions for brevity and instead focus on the more challenging case of FPSB
auctions.

In FPSBs, analytical Bayes-Nash equilibria (BNE) are known for n players with arbi-
trary but symmetric prior valuations (Menezes and Monteiro 2005) as well as for 2 players
with asymmetric uniform valuation distributions with a stronger and a weaker player (Plum
1992). We ran experiments in the symmetric settings with uniform and normal distributed
valuations for 2, 3, 5 and 10 players each. In this setting, we take advantage of the symmetry
and implement NSP with model sharing, i.e. symmetric agents share a common parameter
vector θ. In this way, the for-loop in line 5 of algorithm 1 will only have to be computed once

6We also implemented NSP with policy gradient training via backpropagation and found that, in fact,
the problematic behaviour described in Section 2.4.1 always emerges in practice.
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Auction Valuation
Priors n runs iters runtime

(mins)

Utility
in

BNE

Utility
NSP

self play

Utility
NSP

vs BNE

Relative
utility loss
vs BNE (%)

First
Price

Uniform
Symmetric

2 5 2000 7.05 (0.13) 1.667 1.659 (0.007) 1.665 (0.001) 0.083 (0.038)
3 5 2000 7.83 (0.14) 0.833 0.827 (0.008) 0.832 (0.001) 0.208 (0.100)
5 5 3000 13.9 (0.10) 0.333 0.335 (0.006) 0.332 (2. e-4) 0.280 (0.079)
10 3 3000 15.5 (0.15) 0.091 0.100 (0.006) 0.089 (0.001) 2.289 (1.114)

Uniform
Asymmetric 2 6* 5000 18.1 (0.32) weak: 0.969 0.901 (0.025) 0.958 (0.005) 1.160 (0.518)

strong: 5.069 5.102 (0.046) 5.033 (0.007) 0.699 (0.149)

Normal
Symmetric

2 5 5000 10.7 (1.13) 2.779 2.639 (0.074) 2.758 (0.013) 0.778 (0.560)
3 5 5000 24.5 (1.39) 1.401 1.390 (0.057) 1.398 (0.018) 0.876 (1.313)
5 6* 10000 67.6 (5.89) 0.668 0.676 (0.013) 0.667 (0.001) 0.103 (0.149)
10 3 15000 56.5 (1.56) 0.269 0.275 (0.013) 0.267 (0.002) 0.861 (0.565)

Table 1: Results of Neural Self-Play in FPSB auctions. For each metric, we report the mean
(and standard-deviation) of multiple runs as indicated. See Table ?? for experiment hyper-
parameters. *Note: In the uniform asymmetric and normal symmetric 5-player settings, one
run each failed to learn (at least one player bidding constant zero). In these cases, reported
results are calculated over the remaining 5 runs.
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(a) Trajectory of NSP utility in self-play (left) and vs the analytical
Bayes-Nash equilibrium (middle) over three runs of 15k iterations
each. Opaque lines have been smoothed exponentially, actual values
indicated with transparency.
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Figure 5: NSP in 10-player FPSB with symmetric-normal valuation priors

in each time step, giving considerable speedups, especially in settings with many players. In
the asymmetric setting, the weak and strong player naturally have distinct models. Each
experiment was run on a single Nvidia Geforce RTX 2080Ti GPU with batch sizes chosen
as large as possible such that the experiment would fit into GPU-memory.

In all of these settings, we measure players’ utilities in self-play as well as when unilaterally
playing against the known analytical BNE in each observation. We observe convergence of
the players’ utilities to those achieved in the BNE for both notions of utility in all considered
settings: With rudimentary manual hyperparameter tuning, we achieve more than 97.5%
efficiency in all 9 FPSB settings and more than 99% in all but two. Detailed FPSB results
are presented in Table 1. Figure 5 shows selected learning behaviour and resulting policy in
the settings of 10 player symmetric normal valuations.

In asymmetric settings, an interesting phenomenon can sometimes be observed in early
training: Initially, one player i will often randomly play a bid strategy that dominates
all other players (i.e. i wins all auctions in the batch) but that is nevertheless below the
equilibrium bid level. i will then adjust to bid less globally, while other players increase

Workshop on Information Technology and Systems, Munich, Germany 2019 12



Computing approximate Bayes-Nash Equilibria through Neural Self-Play

0

1

2

3

4

5

6

7

0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

Figure 6: (top) NSP utilities (self-play) in first 2000 iterations of 5 repetitions in asymmetric
valuation setting showing both the strong (BNE utility: 5.07) and weak player (0.97).
(bottom) NSP strategies corresponding to the red trajectory on (top). Bidding strategies of
weak (blue) and strong(red) player as learned after 200, 400 and 2000 iterations (f.l.t.r.).

their bid when they get close to winning. This is precisely the behaviour where in IGA, the
’losing’ agent will fail to adjust their bids upwards, resulting in all players bidding 0 after
a while. In NSP with ES, however, we can see that due to the upward correction of the
losing bidder, the level where winning and losing players ’flip’ adjusts upward over time until
it reaches the equilibrium level. An example of this can be seen in Figure 6: The erratic
behaviour in the red trajectories corresponds to this phenomenon and results in oscillations
between achieved utilities much higher than in equilibrium (when ’winning’) and 0 (when
’losing’). Ultimately, the level of bids where these flips happen rise to amounts similar to
the equilibrium at which point players learn to coordinate, each player wins a fraction of the
auctions in each batch.

As expected in deep learning settings, we find that NSP behaviour is sensitive to the
choice of hyperparameters in terms of runtime and performance. In our experiments, hyper-
parameters were chosen and tuned manually and should by no means be considered optimal
for their respective settings. In particular, the choice of learning rate α and friction β were
found to be of high importance. A too high learning rate (and β) can lead to oscillations
around the optimum without convergence. In extreme cases large update steps even lead
to a player submitting all-zero bids in one iteration. This results in a behaviour similar to
a ’dead ReLU’ in backpropagation, where ES can no longer produce valid pseudo-gradient
information and the player will bid constant-zero in all following iterations. On the other
hand, small learning rates naturally lead to very slow convergence, especially in the setting
with many (5, 10) players. A detailed overview of hyperparameters used in the experiments
can be provided upon request.

It should further be noted, that even for small ε, an ε-BNE might be arbitrarily distant
from an exact BNE in type-action space (compare Bosshard et al. 2017). As such, we plotted
players’ policy functions over time for inspection. We often see behaviour where agents do
not conform to the equilibrium strategy for low valuations, particularly in settings with high
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number of players (compare Figures 5b and 6 (bottom right)). This results from the fact that
in equilibrium, a player with a low random valuation will almost never win an auction, and
even if she does, the utility gained will be minuscule. In fact, analysis of learning behaviour
shows that agents learn the correct bid-level for their highest valuation levels very quickly,
then fine-tune the shape of the policy.

4 Conclusion

Nash equilibria are popular means to predict market participants’ behaviour and predict
market outcomes. Unfortunately, computing Nash equilibria is extremely difficult, in fact
PPAD complete. In this study, we propose a new learning rule based on neural networks
that we call Neural Self-Play. First, we show that this learning rule can compete with
common learning rules like Fictitious and Smooth Fictitious Play in normal form games.
While these common learning rules require discrete type- and action-space, we show that
Neural Self-Play is able to find Bayes-Nash equilibria in auction games with continuous type-
and action-space, i.e. sealed bid single-item auctions. We leverage the potential of GPUs
to parallelize computations and find that Neural Self-Play scales well with an increasing
number of parameters, finding approximate Bayes-Nash Equilibria in auction settings with
10 players within 10s of minutes on a single GPU.

After demonstrating the ability of Neural Self-Play to find Bayesian Nash equilibria in
sealed bid single-item auctions, we plan to consider more complex auction designs in future
research, including combinatorial and sequential auctions. For these complex auctions Neural
Self-Play could benefit from more advanced architectures like recurrent neural networks that
provide some sort of advanced memory ability. We plan to compare the results to those of
Bosshard et al. (2017) who implemented a variant of FP for combinatorial auctions with
continuous type- and action-space but whose method is run-time limited for settings with
more than a few players or items.
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The literature on machine learning largely focuses on 
single-agent learning. Multi-agent learning has become more 
popular recently due to the advent of generative adversarial 

networks and applications in complex competitive game playing1–3. 
Although complete-information games have seen some progress, 
equilibrium learning for incomplete-information (also known as 
Bayesian) games with continuous action spaces is in its infancy. For 
complete-information games, the worst-case complexity of finding 
Nash equilibria is known4, and a number of learning algorithms 
have been developed for finding equilibria in specific normal-form 
games such as zero-sum games5–7. Auctions arguably form the 
best-known and practically most relevant application of Bayesian 
games, central to modern economic theory8,9 and with a multitude 
of applications in the field. The derivation of Bayes Nash equilib-
rium (BNE) strategies for the first- and second-price sealed-bid 
auction in the independent private values model led to a compre-
hensive theoretical framework for the analysis of single-item auc-
tions, a landmark result of economic theory10,11.

Although single-item auctions in this model are well under-
stood, we only know equilibrium strategies for very few multi-item 
auction environments. For example, no explicit characterization of 
BNE strategies is known for first-price sealed-bid auctions of mul-
tiple homogeneous goods (multi-unit auctions), nor for first-price 
sealed-bid combinatorial auctions in which bidders can submit bids 
on packages of goods11. Value interdependencies turn out to be even 
more challenging12. In fact, very little is known about BNE strategies 
in standard auction formats with multiple objects for sale and value 
interdependencies. Even for single-object auctions, the specification 
of equilibria can end up in a system of partial differential equations 
and no closed-form solution is available13; however, such environ-
ments are important to understand. In fact, the Nobel Memorial 
Prize in Economic Sciences that was awarded to Paul Milgrom and 
Robert B. Wilson in 2020 highlighted their contribution to auctions 
with interdependent values14.

Numerical techniques to compute BNEs can be very valu-
able. Although there has been substantial recent work on 
imperfect-information finite-dimensional extensive-form games 

such as Poker or other card games15–18, relatively few papers focus 
on continuous-type and -action Bayesian games such as auctions. 
The few initial attempts make strong restrictions such as finite 
action spaces, single-object auctions, or independent private values 
with uniform priors and quasilinear utilities19–25. The motivation 
for such restrictions is the computational hardness of equilibrium 
computation.

We know of the existence of a mixed Nash equilibrium for finite, 
complete-information games and that computation is PPAD hard4. 
For Bayesian games with continuous types and actions, we neither 
know whether (possibly mixed) BNEs exist in the general case 
nor do we know how hard they are to find if they exist. Cai and 
Papadimitriou26 showed that finding a BNE in simultaneous auc-
tions for individual items and bidders with independent private val-
ues is already hard for PP, a complexity class above the polynomial 
hierarchy and close to PSPACE, and we know little about the com-
plexity of finding BNEs in other multi-item auctions. Even approxi-
mating equilibria in these auction games is NP hard26.

The theory of learning in games examines what kind of equilib-
rium arises as a consequence of a process in which agents are trying 
to maximize their own payoff by adapting to the actions played by 
other learning agents27. Research on equilibrium learning has largely 
focused on complete-information normal-form games. So far there 
is no comprehensive characterization of games that are learnable, but 
there are some important results. For example, it is well-known that 
no-regret dynamics converge to a coarse correlated equilibrium in 
arbitrary finite games28–31 in their average history of play. Coarse cor-
related equilibria encompass the set of correlated equilibria. The latter 
is a non-empty convex polytope that in turn contains the convex hull 
of the game’s Nash equilibria such that we get Nash equilibria ⊂ cor-
related equilibria ⊂ coarse correlated equilibria. By contrast to cor-
related equilibria, coarse correlated equilibria may contain strictly 
dominated (pure) strategy profiles with positive probability. This 
means that although CCEs are learnable via no-regret algorithms, 
they are a rather weak solution concept32. The question is therefore 
when learning dynamics converge to a Nash equilibrium. A different 
relaxation of Nash equilibria is given by local equilibria33 that only 

Learning equilibria in symmetric auction games 
using artificial neural networks
Martin Bichler    ✉, Maximilian Fichtl, Stefan Heidekrüger   , Nils Kohring and Paul Sutterer

Auction theory is of central importance in the study of markets. Unfortunately, we do not know equilibrium bidding strategies 
for most auction games. For realistic markets with multiple items and value interdependencies, the Bayes Nash equilibria (BNEs) 
often turn out to be intractable systems of partial differential equations. Previous numerical techniques have relied either on 
calculating pointwise best responses in strategy space or iteratively solving restricted subgames. We present a learning method 
that represents strategies as neural networks and applies policy iteration on the basis of gradient dynamics in self-play to prov-
ably learn local equilibria. Our empirical results show that these approximated BNEs coincide with the global equilibria whenever 
available. The method follows the simultaneous gradient of the game and uses a smoothing technique to circumvent discontinui-
ties in the ex post utility functions of auction games. Discontinuities arise at the bid value where an infinite small change would 
make the difference between winning and not winning. Convergence to local BNEs can be explained by the fact that bidders in 
most auction models are symmetric, which leads to potential games for which gradient dynamics converge.
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require stability when allowing agents to make infinitesimal—rather 
than arbitrary—adjustments to their strategies.

Bayesian auction games have received little attention in equilib-
rium learning until recently. Given how hard it is to find BNEs even 
in simple simultaneous single-item auctions in the worst case26, 
it is far from obvious that no-regret dynamics can find a BNE in 
continuous-type and -action Bayesian games. Recent work used 
deep learning for auction design34–37 but it did not attempt to find 
BNEs in auctions. Challenges in computing NEs in general-sum 
games have also led to alternative solution concepts38. Apart from 
this, artificial intelligence and machine learning are increasingly 
used to predict strategic behaviour of humans39 or outcomes of auc-
tions in the field40, as well as for other problems in automated mar-
ket design, for example, discovery of socially optimal tax policies41.

We introduce neural pseudogradient ascent (NPGA) as a method 
to learn ex ante equilibrium bid functions in symmetric Bayesian 
auction games with continuous-type and action-spaces. The method 
is generic in that it allows for different types of value interdependen-
cies and utility functions (for example, accommodating risk aver-
sion). Neural networks are used to represent the bid functions of the 
players, and the agents learn via self-play. Unfortunately, using neu-
ral self-play in this environment is not straightforward: although we 
assume the expected utility of the players (over the distribution of 
other players’ types) are differentiable in the chosen action, a key 
challenge is that in auctions, their ex post utilities (which are based 
on specific realizations of types) have discontinuities. Only the lat-
ter, however, can be directly observed in the data generated from 
self-play. As a result, standard ways of gradient computation (that 
is, backpropagation from the observed data) fail and would result in 
constant-zero bids by all bidders. We address this problem by deriv-
ing pseudo-gradients via evolutionary strategy optimization rather 
than exact gradients via standard learning methods.

Given the computational hardness of BNE computations in gen-
eral Bayesian auction games26, it is not obvious that gradient-ascent 
schemes such as ours would converge to BNEs. To prove conver-
gence of NPGA to local equilibria, we leverage the fact that the 
vast majority of auction games described in the literature assume 
symmetric bidders and equilibrium bid functions11. This leads to a 
potential game, and gradient dynamics converge to local Nash equi-
libria in potential games. Although there can also be asymmetric 
equilibria, such equilibria are often unnatural and the symmetry 
assumption encompasses a very large set of interesting auction envi-
ronments. An example of such an asymmetric equilibrium is given 
in a second-price auction when one player bids the upper bound of 
the distribution whereas all of the others bid constant zero, inde-
pendent of their respective private valuations.

In our experiments we illustrate NPGA via a combinatorial auc-
tion in the local–local–global (LLG) model42, which has received 
considerable attention due to the use of core-selecting combina-
torial auctions for spectrum sales worldwide43. In the LLG model, 
core-selecting auctions with risk-neutral bidders are known to be 
economically inefficient. It is one of the few multi-object auction 
models in which correlation among bidder valuations has been 
investigated analytically with quasilinear utility functions, but this 
is not the case for risk aversion. Yet such multi-object environ-
ments with interdependencies and non-quasilinear utility func-
tions have not been explored in the scarce literature on equilibrium 
computation. Using NPGA, we can show that risk aversion miti-
gates the inefficiencies that arise in the equilibrium of risk-neutral 
bidders, while correlation among the bidders’ valuations has little 
impact. This result is of independent interest to policymakers. In 
the Supplementary Information we discuss further experiments in 
a number of additional environments to demonstrate the versatility 
of the method.

To apply NPGA, we neither need to specify the equilibrium as a 
system of differential equations, nor do we need to derive complex 

conditional type distributions in settings with interdependencies. 
As a result, NPGA provides a convenient method to explore sym-
metric sealed-bid auction models and study the BNEs that arise 
with different types of interdependencies, distributional assump-
tions or different levels of risk aversion.

The algorithm
We will now introduce the necessary notation before stating the 
algorithm and discussing its convergence properties.

Notation. An incomplete-information or Bayesian game is given by 
a sextuplet G = (I,V ,O,A, f, u). Here I = {1,…, n} denotes the 
set of agents participating in the game. The joint probability density 
function f : V ×O → R≥0 describes an atomless prior distribu-
tion over agents’ types, given by tuples (oi, vi) of observations and 
valuations. We make no further restrictions on f, thus allowing for 
arbitrary correlations; f is assumed to be common knowledge and 
we will denote its marginals by fvi, foi and so on; its conditionals by 
fvi|oi and so on; and its associated probability measure by F. Agent 
i’s private observation is then given as a realization oi ∈ Oi, with 
O = O1 × · · · × On being the set of possible observation profiles. 
Similarly, V  denotes the set of true but possibly unobserved valua-
tions. Crucially, we make this distinction to model interdependencies 
in settings beyond purely private values or purely common values. 
Based on oi, the agent chooses an action or bid, bi ∈ Ai, and the set 
of possible action profiles is given by A = A1 × · · · × An. For each 
possible action and valuation profile, the vector u = (u1, … , un) of 
F-integrable, individual (ex post) utility functions ui : A× Vi → R 
assigns the game outcome to each player. Ex ante (before the game), 
agents neither possess observations nor valuations, only knowledge 
about f. In the interim stage, agents also observe oi that provide (pos-
sibly partial or noisy) information about their own vi. Full access to 
the outcomes u(v, b) is given only after taking actions (ex post). In 
our formulation, we do not assume explicit ex post access to any 
values (for example, vi,v−i,b−i) beyond the outcome u itself. An index 
−i denotes a partial profile of all agents but agent i.

Taking an ex ante view, players are tasked with finding strate-
gies βi : Oi → Ai that map observations to bids. We denote the 
resulting spaces of individual and joint pure strategies by Σi ≡ A

Oi
i  

and Σ ≡ ∏iΣi, respectively. Note that even for pure strategies, the 
spaces Σi are infinite dimensional unless Oi are finite (in which 
case they are finite-dimensional but remain infinite for continuous 
Ai). We will slightly restrict ourselves to square-integrable strate-
gies and equip Σi with the inner product ⟨·, ·⟩Σi

: Σi ×Σi → R, 
(α, β) �→ Eo ∼ fo

[
α(o)Tβ(o)

]
 and the norm ∥ β∥Σi

≡

√

⟨β, β⟩Σi
 

such that they form Hilbert spaces44.
The primary Bayesian games we will consider are sealed-bid auc-

tions on m indivisible items. In general combinatorial auctions, we 
thus have a set K of possible bundles of items and the valuation- 
and action-spaces are therefore of dimension |K| = 2m. We always 
have oi = vi in the private values setting, whereas in the common 
values setting there is some unobserved constant vc = v1 = ⋯ = vn, 
where oi can be considered noisy measurements of vc. Mixed set-
tings are likewise possible. In any case, based on bid profile b, an 
auction mechanism will determine two things: (1) an allocation 
x = x(b) = (x1, … xn), which constitutes a partition of m where bid-
der i is allocated the bundle xi; and (2) a price vector p(b) ∈ Rn, 
where the component pi is the monetary amount bidder i has to pay 
to receive xi. Formally, one may consider the individual alloca-
tions to be one-hot-encoded vectors xi ∈ {0, 1}|K|. In the standard 
risk-neutral model, ui values are then described by quasilinear (QL) 
payoff functions uQLi (vi, b) = (xi(b) · vi − pi(b)), that is, by how 
much a player values their allocated bundle minus the price they 
have to pay. An extension to this basic setting includes risk aver-
sion (RA). Here we model risk-aversion via utilities uiRA =

(

uiQL
)ρ 
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where ρ ∈ (0, 1] is the risk attitude; ρ = 1 describes risk neutrality, 
where smaller values lead to strictly concave, risk-averse transfor-
mations of ui

QL. Risk aversion is an established way to explain why 
bidders in field studies of single-object first-price sealed-bid (FPSB) 
auctions bid higher than their risk-neutral counterparts in analyti-
cal BNEs45.

For fixed-strategy profiles β ∈ Σ, we can extend the notion of util-
ity to the interim and ex ante stages and use this to characterize the 
Nash equilibria of Bayesian games: although other agents follow β,  
we define agent i’s interim utility as the expected utility of choosing 
an action bi conditioned on oi:

ui(oi, bi, β−i) = Evi,o−i|oi
[

ui(vi, bi, β−i(o−i))
]

. (1)

We will also introduce the interim utility loss ℓ  that is incurred by 
not playing a best response b′i:

ℓi(oi;bi, β−i) = supb′i∈Ai
ui(oi, b′i , β−i)− ui(oi, bi, β−i). (2)

Then, an (interim) ϵ-Bayes Nash equilibrium (ϵ-BNE) is a strat-
egy profile β∗

= (β∗
1 ,…, β∗

n) ∈ Σ such that no agent can improve 
their own interim utility by more than ϵ ≥ 0 by unilaterally deviating 
from β*; thus, the following holds in an ϵ-BNE:

∀i ∈ I, oi ∈ Oi : ℓi
(

oi;β∗
i (oi), β∗

−i
)

≤ ϵ. (3)

For ϵ = 0, we will call the BNE exact, or simply drop the 
ϵ prefix. We will also need the ex ante utility (defined as 
ũi(βi, β−i) = Eoi∼foi [ui(oi, βi(oi), β−i)]), which can be inter-
preted as the expected utility over all of f for a particular βi 
against fixed opponents β−i. Similarly, we will define ex ante loss 
˜ℓi(βi, β−i) and ex ante ϵ-BNEs analogously to equations (2) and (3). 
Note that now we can interpret the ex ante state of the Bayesian 
game as a complete-information game ˜G = (I,Σ, ũ) with an 
infinite-dimensional action space Σ that is identical to the strat-
egy space of the Bayesian game. Every exact (interim) BNE also 
clearly constitutes an exact ex ante BNE. The reverse holds almost 
surely, that is, any ex ante equilibrium fulfills equation (3), except 
possibly on a set O ⊂ O with F(O) = 0. To see this, one may con-
sider the equations 0 =

˜ℓi(β∗
) = Eoi

[

ℓi(oi;β∗
i (oi), β∗

−i)
]

 and the 
fact that ℓi(oi, β) ≥ 0 by definition. Importantly, this almost sure 
equivalence of ex ante and (interim) BNEs holds for ϵ = 0 but not 
for strictly positive ϵ: given an ex ante κ-BNE, equation (3) (with 
ϵ = κ > 0) must only hold in expectation but may be violated with 
strictly positive probability. To delineate this difference between ex 
ante and interim approximate equilibria, we will write κ and ϵ to 
denote their respective approximation bounds.

Due to the known computational hardness of computing NEs 
and BNEs, one is often interested in relaxations of equilibria that 
may be easier to find in some circumstances. For example, in local 
BNEs, the loss requirement is relaxed to only consider best responses 
from a neighbourhood of the equilibrium strategy profile: we call β∗ 
a local ex ante BNE if there exists an open set ∅ ̸= Wi ⊂ Σi such 
that β∗

i ∈ Wi and ũi(β∗
i , β∗

−i) ≥ ũi(β′
i , β∗

−i) for all agents i and all 
alternative strategies β′

i ∈ Wi. If all utility functions ui are strictly 
concave in i’s action, the game admits a unique global BNE46 and no 
other local BNEs.

Smoothness of the (ex post) utilities is a standard assumption in 
the analysis of Bayesian games46, but this is commonly violated in 
auctions due to the discrete nature of x. Instead let us introduce a 
weaker notion of smoothness at the interim stage, which lends itself 
for theoretical analysis while being consistent with auction games.

Definition 1 (interim-smooth Bayesian game). We call a 
Bayesian game with continuous types Vi ×Oi and actions Ai ⊆ RK  
interim smooth if: (1) the interim utilities ūi(oi, bi, β−i) are continu-
ously differentiable with respect to their second argument for each 

i ∈ I  and any oi ∈ Oi, β−i ∈ Σ−i; (2) all partial derivatives are uni-
formly bounded by a finite constant Z < ∞:

∀i, oi, β−i, bi, k ∈ [K] :
∥

∥

∥

∥

∂ūi
∂bik

(oi, bi, β−i)

∥

∥

∥

∥

≤ Z; (4)

and (3) the ex post utilities are F-square-integrable: there exists S < 
∞, such that for all i ∈ I, β ∈ Σ:

Evi,o
[

ui
(

vi, βi(oi), β−i(o−i)
)2
]

≤ S (5)

To see why the assumption of interim differentiability is justi-
fied, consider that ex post utilities in auctions are generally piece-
wise smooth. Non-differentiability only occurs at the bid profiles 
in which the auctioneer is indifferent between multiple possible x. 
In theory, one could therefore interpret the interim expected utility 
as a lottery over many smooth ex post utility functions that each 
describe a particular x. The choice probabilities for these are given 
by P(x∣bi, oi, β−i), bidder i’s Bayesian belief that x will be chosen if 
they bid bi. If β−i are continuous and f is atomless, these probabili-
ties—and therefore the interim expected utilities as a whole—are 
smooth in bi.

In interim-smooth Bayesian games, we write 
∇ūi(oi, bi, β−i) ≡ (∂ūi(oi, bi, β−i)/∂bik)k and call it the interim pay-
off gradient. Furthermore, when G is interim-smooth, the ex ante 
gradients ∇βi ũi(βi, β−i) ∈ Σi are also guaranteed to exist and given 
by the Gateaux derivatives in the Hilbert spaces Σi.

Finally, symmetric models are prevalent in auction theory11. We 
will call a Bayesian game symmetric if all players’ i, j ∈ I  marginal 
prior-type distributions are identical (but not necessarily indepen-
dent), that is, fvi,oi = fvj,oj, as are their individual utilities (almost 
surely, up to tiebreaking): ui(βi, β−i) = uj(βi; β−i), with probability 1. 
The literature primarily discusses11 equilibria that are likewise sym-
metric, that is, where β∗

= (β∗
1 , β∗

1 ,…β∗
1 ). We will refer to auctions 

that are both symmetric and interim-smooth as symmetric and 
smooth auction games.

NPGA. Our numerical technique to learn BNEs, NPGA, is based 
on neural networks and repeated self-play, in which players con-
tinually update strategies in response to observed game outcomes, 
that is, all agents follow the game dynamics. By game dynamics, we 
mean the vector field of the simultaneous gradients of the ex ante 
utility functions of all players. The goal will be to find an ex ante 
BNE β∗ for a continuum of observations o that bidders can draw. In 
other words, we search for a profile of equilibrium bid functions in 
infinite-dimensional spaces. We will first introduce the procedure 
in the general case before showing convergence for symmetric and 
smooth auction games in the ‘Convergence’ section.

We start by taking the infinite-dimensional, complete-information 
game interpretation ˜G = (I,Σ, ũ) mentioned in the previous 
section. To implement gradient ascent in the Hilbert space Σ, we 
replace the bid functions by neural networks called policy networks 
that are parametrized by finite-dimensional parameter vectors 
θi ∈ Θi ⊆ Rdi. This lets us define a finite-dimensional approxima-
tion of ˜G, which we will call the proxy game.

Definition 2 (proxy game). Let G = (I,V ,O,A, f, u) be a 
Bayesian game with ex ante utilities ũi and let its strategy functions 
be implemented by neural networks: βi(oi) ≡ πi(oi; θi), where θi are 
the networks’ parameters chosen from finite-dimensional vector 
spaces Θi ⊆ Rdi. Set Θ ≡ ∏iΘi and (with slight abuse of notation) 
write ũi(θi, θ−i) ≡ ũi (πi(·;θi),π−i(·;θ−i)). We then call the result-
ing finite-dimensional complete-information game on parameters, 
Γ = (I, Θ, ũ), the proxy game of G.

Common neural network architectures have been shown to be 
able to approximate any sufficiently regular function arbitrarily 
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well47; thus, this choice of function approximation enables the 
learning of a wide variety of bid functions with minimal structural 
constraints. Neural networks also demonstrably achieve good per-
formance in machine learning settings with very high-dimensional 
input vectors, as is the case in larger auctions with many items. Using 
neural networks we therefore effectively reduce the problem from 
finding an infinite-dimensional vector in Σ to finding finitely many 
(di) weights and biases of the neural networks, and we can now per-
form gradient ascent in the finite-dimensional parameter spaces.

Each agent aims to maximize the objective function of their net-
work, which is given by ũi and estimated via the empirical sample 
mean of ex post utilities of a batch of H auctions, where H is a large 
integer: after playing a batch of games, agents observe their utility, 
estimate its gradient with respect to θi and apply an update to θi that 
is expected to lead to an increase in utility.

Traditionally, gradient estimates in neural networks are com-
puted via backpropagation; however, training neural networks 
in auction games is challenging as the ex post utility functions of 
individual auctions are discontinuous, leading to a failure to back-
propagate gradients through the empirical objective. We solve this 
problem by leveraging an evolutionary strategy (ES) optimization 
technique that effectively smoothes the objective48,49. This allows us 
to derive an adequate estimate of the ex ante payoff gradients even 
under ex post non-smoothness.

Algorithm 1 (NPGA using ES gradients). 
Input: �agents i ∈ I  with initial policies β0

i := πi(·;θ0
i ) induced 

by initial parameters θ0
i ; ES population size P; ES noise 

standard deviation σ; learning rate η; batch size H
for �t ≔ 1, 2, … do
 � Sample a batch (vh, oh)h=1,…,H of valuation and obseravtion 

profiles from the prior f
  Calculate joint utility in current strategy profile:

ũt−1
:=

1
H

∑

h
ũ
(

vh, βt−1
(oh)

)

  for each agent i ∈ I  do
    Sample P perturbations of agent i’s current policy:

πi;p := πi(·;θp)

   �   with θp := θt−1
i + εp where εp ≈ N (0, σ2I) i.i.d. for all 

p ∈ {1, …, P}
  �  For each p, evaluate the fitness of θp by playing against cur-

rent opponents:

φp :=
1
H

∑

h
ui
(

vh,i, πi;p(oh,i), βt−1
−i (oh,−i)

)

− ũt−1
i

︸︷︷︸

baseline

  �  Calculate ES pseudogradient as fitness-weighted perturba-
tion noise:

∇
ESũt−1

i :=

1
σ2P

∑

p
φpεp

    Perform a gradient update step on the current policy:

Δθt
i := ηt∇ESũt−1

i ,

θt
i := θt−1

i + Δθt
i ,

βt
i := πi(·;θt

i)

  end
end

We provide the pseudocode of NPGA in Algorithm 1. At each 
time-step t, every agent i ∈ I  receives a noisy estimate ˆ∇ũi of their 
individual (ex ante) payoff gradient at the current strategy profile. 
The noise is an artefact of limited-precision Monte Carlo sampling 
over V  and O. The agents simultaneously take a step along this 
gradient estimate to determine the strategies for the next stage and 
continue playing.

Convergence. In our experimental results below and the 
Supplementary Information, we find that NPGA always converges 
very close to the global ϵ-BNE, which was surprising at first given 
the known results about non-convergence of gradient play to Nash 
equilibria in general50, and the locality of gradient-based learning. 
Non-convergence can be due to conflicting utility functions of play-
ers. For example, even in simple two-player zero-sum games with 
one-dimensional actions, the simultaneous gradient may cycle 
around the Nash equilibrium51.

A few observations help explain why NPGA converges to an 
approximate BNE in a wide range of auction games. First, the vast 
majority of models studied in the literature are symmetric auction 
games with symmetric equilibria (see the ‘Notation’ section). As a 
result, we no longer need to learn multiple bid functions for each 
bidder in NPGA, but merely a single symmetric bid function β1 ∈ Σ1 
that optimizes the single ex ante utility function ũ1(β1,…, β1), 
which serves as a potential function of the game. Any maximum 
β∗
1 of this potential function directly yields a symmetric pure strat-

egy ex ante BNE β∗
= (β∗

1 ,…, β∗
1 ). For the finite-dimensional proxy 

game, we can formalize the claim in the following section.
Definition 3 (potential game). A complete-information game 

Γ = (I,Θ, ũ) is an (exact) potential game52 if there exists a potential 
function ϕ : Θ → R, s.t. for all i ∈ I , θi, θ′

i ∈ Θi and θ−i ∈ Θ−i, it 
holds that

ũi(θi, θ−i)− ũi(θ′
i , θ−i) = ϕ(θi, θ−i)− ϕ(θ′

i , θ−i). (6)

When the auction game is symmetric and we additionally 
enforce symmetric strategies by sharing a common neural network 
architecture π(⋅) and common parameter vector θi ≡ θ1 among all 
players (symmetric NPGA); it is easy to see that with ϕ ≡ ũ1, the 
proxy game is an exact potential game. Gradient play provably con-
verges to a pure local Nash equilibria in finite-dimensional, contin-
uous potential games33. This leads us to the following proposition.

Proposition 1. In any symmetric and smooth auction game, 
symmetric NPGA with appropriate gradient update step sizes 
almost surely converges to a local ex ante κ-BNE.

A formal proof can be found in the Methods.

Empirical evaluation
We illustrate the versatility of NPGA in the context of combina-
torial auctions in the well-known LLG environment, which has 
been an important model for the discussion about spectrum auc-
tion formats43,53. The NPGA model allows us to analyse how cor-
relation and risk aversion impact the outcome in equilibrium. 
There are many other interesting environments one can explore. 
In the Supplementary Information we present further results for 
single-object auctions with different types of value interdependen-
cies (including common values models), small and larger mult-unit 
auctions, and a larger combinatorial auction setting with eight items 
and six bidders. Note that even for a multi-unit auction with three 
items and bidders, no analytical solutions are known anymore. For 
single-object, multi-unit and combinatorial auctions with only a few 
bidders, as reported below, NPGA computes equilibria within hun-
dreds of iterations, each taking a few seconds or less. Larger settings 
such as multi-unit FPSB auctions with four units and bidders or 
combinatorial auctions with five items and six bidders reported in 
the Supplementary Information converged to an approximate BNE 
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with estimated relative utility loss of less than 1% within 15 min; 
however, the runtime depends on the specific model analysed (for 
example, the prior distribution, the number of bidders and the auc-
tion format).

The LLG model. The LLG model consists of two objects {1, 2}, two 
local bidders i ∈ {1, 2} and one global bidder i = 3, with each only 
interested in one specific bundle (of the single object i (locals) or 
both objects (global)42. We will simply denote the valuation of each 
bidder’s single bundle by vi ∈ R. We consider a private values (but 
not independent private values) setting with oi = vi, which allows 
for correlation. The situation is akin to spectrum sales in countries 
with regional spectrum licences such as Australia or Canada, where 
local telecoms compete against operators who provide their services 
nationwide, and governments have used core-selecting combina-
torial auctions. The core of an auction game describes the set of 
outcomes such that no coalition of bidders (and possibly the auc-
tioneer) can profitably deviate. Core-selecting auction mechanisms 
enforce this notion of stability by their choice of prices. Although 
there are hardly any game-theoretical analyses of combinatorial 
auctions, this model is simple enough to allow for the derivation 
of analytical results54. It was shown that with independent private 
values and risk-neutral bidders, core-selecting payment rules lead 
to considerable inefficiencies in equilibrium42 in combinatorial auc-
tions. The two local bidders attempt to free ride on each other. If 
one bidder bids less, the other has to bid more to overbid the global 
bidder. Due to incomplete information, both local bidders could bid 
too low in total and fail to outbid the global bidder, even if their 
combined valuations are higher than those of the global bidders. 
This results in an inefficient outcome. This fact has been used as an 
argument against core-selecting combinatorial auctions43.

It is interesting to understand equilibria with different assump-
tions. For example, it is reasonable to believe that bidder valuations 
in spectrum auctions are correlated, because telecoms face the same 
downstream market. The model was recently analysed with differ-
ent types of correlation54; however, with standard core-selecting 
payment rules, it turns out that correlation alone cannot mitigate 
the efficiency and revenue loss encountered with independent pri-
vate values. Risk aversion has not yet been analysed, although it 
plays a role in the revenue ranking of single-object auctions. By con-
trast to single-object auctions, it has been unclear how risk-aversion 
plays out in equilibrium. If one local bidder knows that the other is 
risk averse and might thus bid higher, they might bid even lower as a 
result of this knowledge. The environment is not symmetric as there 
are two local bidders and a global bidder. However, the global bid-
der has a simple dominant strategy to bid truthfully under certain 
core-selecting payment rules. The gradient dynamics of the global 
player’s network will then stably approach this dominant strategy 
regardless of the local bidders’ behaviour, and the two local bidders 
can indeed be considered symmetric whenever fv1 = fv2 and thus 
form a ‘local potential game’. NPGA can therefore be expected to 
converge to a BNE despite the environment’s asymmetry.

Ausubel and Baranov54 investigate two models of correlation 
among local bidders’ private values and derive analytical BNEs, 
which we will use as a baseline in our experiments. Let us define 
the joint prior f to be the five-dimensional uniform distribution of a 
latent random variable ω ∼ U [0, 1]5. Then let v3 = 2ω3 be the valua-
tion of the global bidder and

v1(ω) = wω4 + (1− w)ω1, v2(ω) = wω4 + (1− w)ω2 (7)

be the valuations of the local bidders where the weight w is a ran-
dom variable depending on ω5 only. The valuations of the local 
bidders can be thought of as a linear combination of an individual 
component ωi and a common component ω4. Now given an exog-
enous correlation parameter γ ∈ [0, 1], Ausubel and Bananov54 

propose two different ways to choose w such that corr(v1, v2) = γ: the 
Bernoulli weights model:

w(ω) =

{

1 if ω5 < γ,
0 else ,

(8)

and the constant weights model (which does not require w5):

w(ω) =







γ−
√

γ(1−γ)
2γ−1 if γ ̸= 1/2,

1/2 else .
(9)

They analytically derive the unique symmetric BNE strategies 
for multiple bidder-optimal core-selecting payment rules includ-
ing the nearest-zero (NZ), nearest-VCG (NVCG, named after the 
Vickrey–Clarke–Groves (VCG) payments) and nearest-bid (NB) 
rule in the Bernoulli weights model. These rules all choose efficient 
x (according to the submitted bids), but select different price vectors 
p from the set of core-stable outcomes. For example, the NVCG rule 
picks the point in the core that minimizes the Euclidean distance 
to the (unique) VCG payments. Similarly, the NZ point takes the 
origin of the coordinate system as a reference point, whereas the NB 
rule minimizes the distance to the vector of submitted bids b. Only 
the NVCG rule has been used in spectrum sales so far. Apart from 
these core-selecting payment rules, we will also report the results in 
FPSB auctions, for which no analytical BNEs are known, as these are 
used in some spectrum sales43, and in the VCG mechanism, which 
is not core-stable but always prescribes truthful bidding as a BNE.

Evaluation criteria. Let us discuss how we will evaluate any learned 
β to certify that it indeed constitutes an (approximate) equilibrium. 
This evaluation is entirely independent of the learning process of 
NPGA and tries to answer the question of how good a given strategy 
is. Whenever we encounter a setting where an analytical equilib-
rium β∗ is known, we draw on it for direct comparison. In this case, 
we sample the BNE utility of each player, ûi(β∗

) ≈ ũi(β∗
), as well as 

the utility βi played against the BNE, ûi(βi, β∗
−i) ≈ ũi(βi, β∗

−i), with 
a batch size of 222. We then report the resulting relative utility loss:

Li(βi) = 1−
ûi(βi, β∗

−i)

ûi(β∗
i , β∗

−i)
. (10)

We also report the probability-weighted r.m.s.e. of βi and β∗
i  in the 

action space, which approximates the L2 distance ∥ βi − β∗
i ∥Σi

 of 
these two functions:

L2(βi) =

(

1
nbatch

∑

oi

(βi(oi)− β∗
i (oi))

2
) 1

2

. (11)

This metric circumvents the drawback of Li that even a strategy 
with a loss very close to zero could be arbitrarily far from the actual 
BNE in strategy space.

When no analytical BNE is available for certification of the 
learned bid function, we aim to compute the ex ante utility loss 
˜ℓi(βi, β−i) = supβ′i∈Σi

ũi(β′
i , β−i)− ũi(βi, β−i). Evaluating this 

supremum exactly in function space Σi is not tractable and approxi-
mations are computationally expensive. Our estimator ˆℓi of ˜ℓi relies 
on finding approximate interim best responses. To do so, we place 
an equidistant grid indexed with w = 1, …, ngrid over the action space 
Ai ranging from zero to the maximum valuation for all dimensions. 
For oi and each of the alternative bids bw, we evaluate the interim 
utility ūi(oi, bw, β−i) against the current opponent strategy profile. 
This is challenging as it requires access to the distribution of i’s true 
valuation and the opponents’ observations, both conditioned on 
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oi (see equation (1)). For nbatch samples of oi and nbatch samples of 
vi, o−i∣oi for each oi, we then have

ˆℓi(β) = 1
nbatch

∑

oi

max
w

λi(oi, bw, β) (12)

with λi being the estimated expected utility gain by deviating from 
playing according to βi to playing action b′:

λi(oi, b′, β) = 1
nbatch

∑

vi,o−i|oi

(

ui
(

vi, b′, β−i(o−i)
)

−ui
(

vi, βi(oi), β−i(o−i)
))

.
(13)

For an increasing number of samples and alternative actions, this 
estimate converges to ˜ℓi. Our estimate for ϵ in an ex ante ϵ-BNE is 
then ϵ ≡ max

i
ˆℓi.

The conditional distribution vi, o−i∣oi is rarely available upfront. 
For simple cases one can derive the analytical distributions and 
draw samples; however, in most programming environments, one 
is only able to sample from very basic (pseudo)random numbers 
such as the uniform or normal distribution. For more complicated 
multivariate conditional distributions, we use the conditional dis-
tribution method (for details, see Supplementary Section 3). Based 
on these estimates, we can compute a relative ex ante utility loss 
without access to the analytical BNEs:

ˆLi(β) = 1− ûi(β)
ûi(β) + ˆℓi(β)

. (14)

This metric is the average loss incurred by not playing a best 
response but instead playing the strategy learned via NPGA. Note 
that we do not need to make any assumption about the utility func-
tion or independence of valuations for this estimator.

Due to the multiple levels of Monte Carlo sampling, the estima-
tor ˆLi has a higher variance than those that rely on an analytical 
BNE β∗, even when the performance of NPGA itself is not affected. 
Our reported estimates are based on ngrid = 210 possible bids for each 
sampled interim state using a batch size of nbatch = 212, thus each 
estimate of ˆL is based on ngrid · n2batch = 234 simulated auctions. To 
sample that many games efficiently, both NPGA and our evaluation 
procedures leverage parallelization on GPU hardware. Certification 
of BNEs is a challenge in all computational approaches to equilib-
rium computation. A thorough discussion for environments with 

standard quasilinear utility functions and independent private val-
ues are provided in ref. 23.

Results. Let us first provide the aggregate convergence results in 
Table 1, which almost perfectly reproduce the BNE found in ref. 54.  
The utility loss is small in all environments and so is the L2 differ-
ence to the analytical BNE wherever it is known. Figure 1 shows 
the analytical BNE bid function and the NPGA result for a specific 
setting as an illustrative example. Note that in the FPSB auction, 
the global bidder does not have a dominant strategy and yet we 
uncover his equilibrium strategy in spite of the environment being 
asymmetric.

Next we look at risk aversion. Figure 2 shows that with higher 
risk aversion, the market efficiency denoted by E increases for both 
correlation models in a similar way. Correlation of the local bidders 
does not influence E with the widespread VCG nearest payment 
rule at a precision of ±1% of E. For the highest level of risk aversion 
of ρ = 0.1, E rose to about 98% from about 84% under risk neutral-
ity; thus, although higher correlation of valuations does not lead to 
higher E, risk aversion mitigates the efficiency loss, which is impor-
tant to know for spectrum sales by governments. A similar result 
has previously been found for an ascending core-selecting auction 
with a specific tie-breaking rule55, but the analysis could not yet be 
extended to the general sealed-bid case.

Similarly, the approximate revenue of the seller can be analysed. 
In Figure 3 we observe a strong, steady increase of the seller revenue 
R with increasing risk aversion and a slight increase with decreas-
ing correlation between the local bidders. Different levels ρ and 
varying strengths of γ are plotted in the Bernoulli correlation model 
in the LLG setting with the NVCG payment rule. Results are similar 
for the constant weights correlation model. Increasing risk aversion 
has substantial positive impact on revenue, which is important to 
know for policymakers.

Discussion
Auction theory—and game theory in general—is often very sensi-
tive to model assumptions. Although the results of early studies on 
auctions in the symmetric independent private values model with 
quasilinear bidders provided important insights, the assumptions 
are very restrictive56. Value interdependencies and changes in the 

Table 1 | Convergence results of NPGA in risk-neutral 
combinatorial LLG auctions with a correlation of γ = 0.5 
among local bidders’ valuations. We report mean and s.d. of 
experiments over ten runs

Auction game L2 L L̂

LLG Bernoulli NZ 0.011 (0.005) 0 (0) 0.007 (0.007)

LLG Bernoulli VCG 0.008 (0.003) 0.001 (0) 0.007 (0.005)

LLG Bernoulli NVCG 0.016 (0.016) 0 (0) 0.008 (0.007)

LLG Bernoulli NB 0.021 (0.021) 0.001 (0) 0.009 (0.008)

LLG Bernoulli FPSB – – 0.010 (0.008)

LLG constant NZ – – 0.011 (0.010)

LLG constant VCG – – 0.008 (0.007)

LLG constant NVCG – – 0.011 (0.012)

LLG constant NB – – 0.013 (0.015)

LLG constant FPSB – – 0.009 (0.006)
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Fig. 1 | Bid functions in the LLG auction with the nearest-zero core payment 
rule. Bidders are independent and risk neutral. The strategies learned 
by NPGA (dotted) almost perfectly recover the analytical equilibrium 
strategies (dashed).
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utility function can have substantial impact on the resulting equilib-
rium bidding strategies. Although simple single-object auctions in 
the independent private values model are relatively well understood, 
we do not know equilibrium bidding strategies for most environ-
ments involving multiple objects, interdependencies and different 
levels of risk aversion to this day.

With NPGA we introduce a numerical technique to compute 
approximate equilibria in these Bayesian games and show that we 
converge to a local equilibrium quickly and with high precision. The 
method can provide a convenient tool for analysts to explore new 
environments or perform sensitivity analysis with various behav-
ioural assumptions, different priors and value interdependencies. 
The Supplementary Information provides further experiments to 
illustrate the versatility of the method.

It is all but clear that gradient dynamics as in NPGA can find 
global or even local BNEs in auction games. For much simpler 
min–max games that play an important role in machine learning 
techniques such as generative adversarial networks, we cannot 
expect gradient dynamics to find an equilibrium57. Convergence of 
NPGA to approximate local BNEs relies on insights about the sym-
metry assumptions of bidders in most of the auction models in the 
literature and their relation to potential games. These assumptions 
provide the necessary structure for gradient dynamics to converge 
to local equilibria, and explain our results. Beyond the study of 
equilibria in games, our techniques can possibly contribute to auto-
mated and empirical mechanism design58,59.

Methods
Proof of Proposition 1. Let G be a symmetric and smooth Bayesian auction game. 
Per definition, all players in such games have the same marginal type distributions 
and individual utility functions. Furthermore, assume the auction mechanism to be 
anonymous: the identity and order of bidders almost surely have no influence on 
the allocation and payments (tiebreaking on a nullset notwithstanding). Assume 
that all players play the same strategy βi. Then, the symmetric ex ante utility 
function ũi(βi , …, βi) is a potential function and G̃ is a potential game. The same 
holds for the finite-dimensional proxy game Γ. To use this symmetry, we restrict 
all players to use the same neural network π(⋅, θ) with a shared parameter vector 
θ ∈ R

d. Let us first remark that the restriction to symmetric strategies does not 
alter the gradient vector field in any way, as symmetric strategy profiles also have 
symmetric gradients.

We draw on a known result that gradient-play with appropriate (summable 
but not square-summable) step sizes converges almost surely to a local Nash 
equilibrium in finite-dimensional continuous potential games (see Corollary 4.2 
of ref. 33). It thus remains to be shown that (1) NPGA implements gradient-play in 
the proxy game Γ and thus finds a local Nash equilibrium θ* of the proxy game, and 

(2) that this Nash equilibrium of the proxy game Γ—which restricts the strategy 
space to neural networks expressible by Θ—is indeed also a BNE of the original 
unrestricted game G. To show (1) and (2) below, we will rely on some auxiliary 
lemmata. The proofs of these lemmata are of a technical nature and can be found 
in Supplementary Section 2. In the following, for a given neural network π(⋅, θ), we 
denote its utility and loss in G by ũ(θ), ℓ̃(θ) and in Γ by ũΓ

(θ), ℓ̃Γ
(θ), respectively, 

where we drop the indices i due to symmetry.
To prove (1), one would need to show that the gradient estimates computed 

by NPGA have finite variance and at most a small bias with regard to the true 
gradients of the proxy game Γ. This is not necessarily the case, but let us set 
ũσ
i (θi , θ−i) ≡ Eε∼N(0,σ2I)[ũi(θi + ε, θ−i)] call Γ σ

= (I, Θ, ũσ
) the smoothed 

proxy game and define ℓ̃σ analogously. Then Γσ is likewise a symmetric potential 
game and we obtain the lemmata described next.
Lemma 1. The gradient estimates ∇ES in NPGA are unbiased and have finite mean 
squared error with respect to the smoothed utilities ũσ

i  of the game Γσ.
Lemma 2. For any θ ∈ Θ, the loss in Γ is bounded by that in Γσ:

ℓ̃
Γ
(θ) ≤ ℓ̃

σ
(θ) + 2ZL

√

dσ

where Z is the partial derivative bound from Definition 1, d is the number 
of parameters in the neural network, σ is the standard deviation of the ES 
perturbations, and the constant L is a property of the neural network architecture 
π, describing its regularity. By Lemma 1, NPGA implements exact gradient play in 
Γσ and thus finds a local Nash equilibrium θ* of that game via the result in ref. 33. By 
Lemma 2, any Nash equilibrium of Γσ is an approximate Nash equilibrium of Γ.

For the latter (2), the universal approximation theorem47 guarantees that a 
sufficiently large neural network architecture can approximate every βi ∈ Σi with 
arbitrary precision δ. This yields another error bound:
Lemma 3. Let the neural network π be sufficiently expressive, that is for any βi ∈ Σi 
one can find θ ∈ Θ such that ∥ βi − π(·, θ)∥Σi

≤ δ. Then the loss of θ in G is 
bounded by that in Γ: ℓ̃(θ) ≤ ℓ̃Γ

(θ) + Zδ.
In summary, NPGA almost surely converges to an (approximate) local Nash 

equilibrium θ∗ of Γσ, which, by application of local versions of Lemma 2 and 
Lemma 3, retains a (local) ex ante loss of at most κ = Z(δ + 2L

√

dσ), thus 
constituting a κ-BNE of G. In practice, one may choose the parameters δ (via the 
neural network architecture and size d) and σ sufficiently small such that the error 
vanishes.

Neural network architecture and hyperparameters. In our implementation, 
we use fully connected policy networks with two hidden layers of ten nodes 
each, using SeLU activation in the hidden layers and a ReLU activation function 
in the output layer. These simple networks are sufficient for the settings here, 
but even single-layer nets work with a slight decrease in performance. Instead 
of standard gradient ascent, we apply the Adam optimization algorithm60 with 
standard parameters. In each iteration we generate 64 perturbations of the network 
πi for ES gradient estimation, using zero-mean Gaussian noise with a standard 
deviation of σ = 1/di (as suggested in ref. 49). We use batch sizes of 217 chosen such 
that the largest settings would fit into available GPU memory. In the presence 
of asymmetries or multiple items, degenerate initializations (for example, when 
some players never win) can impede convergence. To alleviate this and improve 
comparability, we force close-to-truthful initializations by pre-training the 
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Fig. 2 | The empirical impact of risk-aversion on market efficiency. We 
depict the market efficiency E in approximate equilibrium calculated via 
NPGA for different levels of bidders’ risk aversion. The mean (line) and s.d. 
(shaded bands) of ten runs for each risk-level are depicted.
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Fig. 3 | The effect of bidder correlation and risk attitudes on seller 
revenue. The seller revenue R in approximate equilibrium of LLG auctions 
with nearest-VCG payments and correlated bidders is shown. The 
underlying BNEs for each combination of the risk parameter ρ and the 
correlation strength γ between local bidders have been computed  
via NPGA.
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networks towards the truthful strategy using supervised learning (RMSE-loss, 500 
steps of vanilla stochastic gradient descent). We did not perform setting-specific 
hyperparameter tuning to allow for comparable results. There are possibilities to 
improve the performance of our results when tuning the hyperparameters for a 
specific environment.

We implemented the auctions using the PyTorch framework61 with a focus 
on computing many auctions in parallel. Unless noted otherwise, all experiments 
were performed on a single consumer-grade Nvidia GeForce RTX 2080Ti GPU 
with 1,000 iterations for the single-item auctions and 2,000 iterations for the large 
setting with correlated values (n = 10) and the multi-unit auctions, where each 
experiment was run ten times.

Data availability
All data analyses in this study are based exclusively on data generated by our 
custom simulation framework (see Code Availability). Raw simulation artefacts 
(all-iteration logs and trained models) will be made available by the corresponding 
author on request. Source data are provided with this paper.

Code availability
The source code of our simulation framework62, including instructions to 
reproduce all models and datasets referenced in this study, is freely available at 
https://github.com/heidekrueger/bnelearn, licensed under GNU-GPLv3.
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This supplementary material includes (a) the description and discussion of further experimental
results to further substantiate the empirical claims made in the main paper, (b) formal statements
and proofs of two auxiliary technical lemmata that are used in the proof of Proposition 1 of the main
paper, and (c) mathematical derivations of the conditional distributions oj|oi of type signals that are
required for evaluation of candidate strategies in the settings where players’ types are correlated.

S.1. Additional Experiments
In this section, we illustrate selected auction models to demonstrate the versatility of NPGA and
its performance in larger auction models. A comprehensive analysis of the scalability of NPGA is
challenging, because the runtime depends very much on the specifics of a model, the prior distribution,
the number of bidders, their utility functions, the auction format and whether symmetry is itself
learned or enforced a-priori. However, the following results of different auction games provide a better
understanding of this question.

The independent private values model is the standard model and has been analyzed extensively in
the literature [4]. More challenging environments are auctions with value interdependencies where
known BNE strategies are rare. We first discuss standard single-item auction models in the independent
private values model, but increase the number of bidders to study runtime and solution quality with
different priors. Next, we investigate single-object auctions with value interdependencies, before we
discuss multi-unit auctions, and a larger version of the combinatorial LLG model with more items
and bidders. The notation follows the main paper. Note that in all our experiments we ended up in
the same BNE even if NPGA was run repeatedly with different initialization, which suggests that the
equilibria found are global and not local BNE. This is consistent with the well-known observation
that in optimization of neural networks one is often able to find global optima even though theoretical
guarantees only extend to local optimality.
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Table S.1 Results of NPGA learning in single-item first-price auctions with symmetric bidders.
We show average and standard deviation over ten runs.

Auction game Bidders L sec/iter

Uniform risk-neutral
U(0,10)
ρ= 1

2 0.0001 (0.0009) 0.31
3 0.0017 (0.0006) 0.40
5 0.0034 (0.0020) 0.46
10 0.0084 (0.0110) 0.73

Uniform risk-averse
U(0,10)
ρ= 0.5

2 0.0011 (0.0004) 0.46
3 0.0006 (0.0003) 0.52
5 0.0012 (0.0011) 0.63
10 0.0100 (0.0068) 0.92

Gaussian risk-neutral
N (15,100)
ρ= 1

2 0.0015 (0.0011) 0.31
3 0.0037 (0.0043) 0.39
5 0.0129 (0.0135) 0.44
10 0.0314 (0.0212) 0.68

S.1.1. Single-Object Auctions with Independent Private Values
We first ran experiments on single-object auctions with analytically known BNE, i. e. with uniform
and Gaussian distributed valuations for 2, 3, 5 and 10 bidders each. In the uniform-prior case, we
consider risk-neutral ρ = 1 and risk-averse ρ = 0.5 bidders, for Gaussian priors we only consider
risk-neutral bidders. Table S.1 presents the utility loss incurred when playing a learned strategy
against the analytical BNE after 20,000 iterations. In order to assess runtime, we report the time per
iteration, because it varies depending on the number of bidders and the prior distribution. Although
we ran all settings for the same total number of iterations regardless ob difficulty, we observe fast
convergence for uniformly distributed valuations within a few hundreds of iterations. For normal
distributed valuations, learning is slower, as illustrated in Figure S.1, yet the utility loss is low and
stable after 18,000 iterations. It is harder to get high precision in the tails of the value distribution
which are rarely sampled.

S.1.2. Single-Item Auctions with Interdependencies
Next, we report the performance of NPGA in single-object auctions with different types of interde-
pendencies. The most well-known examples of interdependencies are the common value model (with
conditionally independent observations oi|v) and the affiliated value model for single-item auctions by
the 2020 Nobel laureates Robert B. Wilson [8] and Paul Milgrom [5].

The common value model is also known as the “mineral rights” model [4, Example 6.1]. We explore
the second-price auction in an environment where there is one pure common value v that is the same
for all agents. Three bidders i ∈ {1,2,3} share a common U [0,1]-distributed value for the item of
interest. Conditioned on this value, the observations oi are uniformly, and independently, distributed
on the interval from zero to two-times the common value. Formally, we can define the joint prior
probability density function f as the four-dimensional uniform distribution over Ω = [0,1]4. For a draw



3

0.45

0.50

0.55

0.60

0.65

0 5000 10000 15000 20000
iteration

ut
ilit

y

ex-ante utility
ex-ante utility vs BNE

Figure S.1 Learning curve of NPGA in a 10 player Gaussian first-price auction. Utility of learning opponents
against each other (solid red line) and NPGA utility of learning opponents individually evaluated
against the analytical BNE strategy (dashed blue line). Line and shaded area indicate mean, minimum,
maximum of 10 runs.

ω∼U(Ω) we set each player’s valuation to vi(ω) = ω4 and each observation to be oi(ω) = 2 ·ωi ·ω4.

Notice, all agents have the same value (or type), but they only learn their value if they win the

auction. In this model, the symmetric BNE strategy profile can be stated in closed form as

β∗i (oi) = 2oi
2 + oi

. (S.1)

For this setting, all functions required for the calculation of the utility loss from equation (10) of the

main paper can be derived analytically, thus allowing for precise sampling.

In the affiliated values model the individual observations are correlated. In the model [4, Example 6.2]

with two bidders i∈ {1,2}, we can set Ω = [0,1]3 and again with ω∼U(Ω) the observations are given

by

oi(ω) = ωi +ω3 (S.2)

where both bidders have a common value of v(ω) = 1
2(ω1 +ω2) +ω3. The symmetric BNE strategy

is to bid truthfully under the second-price payment rule, and to follow β∗i (oi) = 2
3oi for first-price

payments.

Table S.2 shows that for single-item auctions with affiliated or common values, NPGA closely

approximates the BNE. The true utility loss L is very low, and so is the L2 norm of the bid function

learned via NPGA compared to the analytical BNE bid function. The more conservative values of

L̂ of 11% compared to L in the common values settings are due to numerical instabilities in the

calculated actual utility to estimated BNE utility ratio: The agents have a near-zero utility in these

specific games and the values are estimated on a smaller sample size thus having a higher variance.
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Table S.2 Single-item auctions. Mean and standard deviation of experiments over ten runs each. Missing entries
are due to a lack of an analytical BNE strategy.

Auction game L2 L L̂
Affiliated values 0.018 (0.009) 0.002 (0.001) 0.013 (0.004)
Common value 0.009 (0.002) 0.000 (0.000) 0.025 (0.013)
Common value n= 10 – – 0.068 (0.063)

Note that L is even negative sometimes, which is an artefact of limited measurement accuracy at the
batch size of 222 games played against equilibrium opponents.
The numbers in Table S.2 assume risk neutrality. We do not report further details on different

risk attitudes, because they lead to similar level of efficiency and revenue: Efficiency is always close
to 100% and revenue is approximately 0.35 and 0.80 in the common value setting and the affiliated
values setting, respectively. Overall, NPGA achieved high precision in a large number of single-item
auction environments analyzed with different prior distributions, beyond the ones reported here.

S.1.3. Multi-Unit Auctions with and without Interdependencies
Multi-unit auctions in which bidders compete for m > 1 homogeneous units are wide-spread in
practice. The standard payment rules for selling multiple units include “pay-your-bid” (first-price),
Vickrey-pricing, and uniform-pricing (all items are sold at the same price). In each of the auctions, the
items are awarded to the bidders corresponding to the p-highest bids. Each bid-component corresponds
to the bidders’ willingness to pay for one additional unit.

Even for the IPV model, equilibria are only known for small and stylized settings [4]. For example,
there is no closed-form solution for the first-price or uniform pricing rule, except for the independent
private values model and n,m≤ 2. Before we discuss interdependencies, we analyze the standard
symmetric multi-unit auctions with independent private valuations and larger number of items and
bidders. We will follow the common practice to draw the valuations vi ∈ [0,1]m for all units uniformly
from the unit interval and sort them in decreasing order, to account for marginally decreasing
valuations in the number of units. A detailed introduction to these standard multi-unit auctions can
be found in [4, Chapter 13].

Table S.3 provides the results for multi-unit auctions with risk-neutral bidders, independent private
values, and different auction formats. We provide the results with independent private values as a
baseline, before we look at interdependent values. Again, missing entries in the table are due to a lack
of an analytical BNE strategy for the respective environments. The estimated relative utility loss L̂,
consistently decreases to about 1% within 15 minutes. For the VCG m= n= 4 auction we observe a
higher L2 but low L and L̂ values. This is due to the Monte Carlo estimation of the estimated utility:
Agents never win all four items during the learning phase, and therefore do not bid for the last item,
even though they should just bid truthful in theory.
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Table S.3 Multi-unit auctions. Mean and standard deviation of experiments over ten runs each.

Auction game L2 L L̂
FPSB m= n= 2 0.077 (0.009) 0.021 (0.005) 0.033 (0.005)
Uniform m= n= 2 – – 0.000 (0.000)
VCG m= n= 2 0.029 (0.002) -0.000 (0.000) 0.006 (0.003)
FPSB m= n= 4 – – 0.072 (0.011)
Uniform m= n= 4 – – 0.000 (0.000)
VCG m= n= 4 0.143 (0.037) 0.006 (0.002) 0.015 (0.012)

Interdependencies have received little attention in the literature on multi-unit auctions. Several
incentive-compatible mechanisms were proposed for the multi-unit case with interdependencies [2, 6],
but BNE strategies for wide-spread first-price auctions are unknown. Here, we report the results of a
specific environment where valuations are equal to the observations, but there is correlation among
the valuations. The correlation then comes from a shared component that is weighted with a private
component in the following way:

vi = oi = γωn+1 + (1− γ)ωi. (S.3)

Here, γ ∈ [0,1] is the correlation strength and ωi, ωn+1 ∈ [0,1]m are the private and a public component,
respectively, that are once again uniform random variables as in the IPV model.
Similar to the analysis of combinatorial auctions in the LLG model, it is interesting to look at

comparative statics wrt. risk aversion and correlation of bidder valuations. Let us first look at the
revenue R that the seller can expect for different levels of risk aversion of the bidders and payment
rules (first-price, VCG, uniform) in multi-unit auctions with independent private values. Risk is
modeled by the risk parameter ρ > 0, where ρ= 1 corresponds to risk neutrality. NPGA can handle risk
aversion without modifications to the algorithm, just by changing the utility functions appropriately.
Figure S.2 shows the revenue for the common payment rules with different levels of risk aversion. The
zero revenue for the uniform pricing scheme is to be expected for risk-neutral bidders, because of
tacit collusion and demand reduction in equilibrium [1].

In Figure S.3 we analyze the impact of correlation on the multi-unit FPSB auction with risk-neutral
bidders. Bars mark the standard deviation over four runs. An interesting phenomenon occurs at high
levels of correlation. For γ < 0.8 the bidders roughly bid half the value for both units. For γ larger
than this threshold, the bidders collude and only bid a small amount on winning one unit and zero on
the additional unit. Thus the revenue drops to very small amounts for the seller. This phenomenon
can also be seen in slightly different correlation models, even if less pronounced. For example, if we
draw two valuations and then use a linear combination depending on the correlation strength, we
get a similar result. The extreme case of a perfect correlation gives an intuitive explanation. If two
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bidders have exactly the same value they win only half of the time with random tie breaking. In this
extreme case, they fare better if they tacitly collude and bid only a low price on one of the items
and zero on the other. Both bidders are symmetric and any higher bid price would only reduce their
revenue at a 50% chance of winning. The phenomenon illustrates the value of comparative statics in
game-theoretical analysis and how NPGA can help analysts study different auction institutions and
model assumptions.

S.1.4. Larger Combinatorial Auctions
Finally, we used the well-known LLG model for combinatorial auctions in the main paper, but we
also expanded this environment to more items and more local bidders to understand the impact on
runtime. Again, for the local bidders to win, the total sum of all their bids must thus exceed the
amount of the global bid. For a fair competition in the experiments, we increased the valuation of
the global bidder such that in expectation she has the same valuation as the local bidders combined.
The bidding strategies are in line with those observed for the LLG model with two items and three
bidders only. Figure S.4 depicts that the market efficiency slightly decreases with more local bidders
from about 97% in the original LLG setting with two local bidders, to about 95% in the setting with
five local bidders and a correlation of γ = 0.5. When increasing the number of bidders to a total of
n= 6 (one global and five local bidders) NPGA is still able to learn in these larger markets as fast as
the model with only three bidders.

S.2. Auxiliary Lemmata
For our formal analysis in the proofs below, we assume that any neural network architecture is (a)
sufficiently regular and (b) achieves universal approximation:
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correlated models, i. e. the constant weights model and the Bernoulli weights model, a correlation
strength of γ = 0.5 is assumed and the selected pricing rule for all settings is nearest-VCG.

Definition 1 (NPGA policy network). An NPGA policy network πi : Oi × Θi →Ai is a
neural network, with the following properties:
1. Lipschitz-continuous dependence of the network on its parameters: The network πi depends

Lipschitz-continuously on the parameters θi in the following sense: There exists some L> 0, such that
for all i∈ I and θi, θ′i we have

Eoi
[‖πi(oi, θi)− πi(oi, θ′i)‖] ≤ L‖θi− θ′i‖. (S.4)

2. Approximability of Σi by Θi: There exists some δ > 0, such that for all i∈ I and βi ∈Σi there
exist parameters θi ∈Θi, such that

Eoi
[‖βi(oi)− πi(oi, θi)‖] ≤ δ. (S.5)

Let us now prove the three auxiliary lemmata from the main text.

Lemma 1. The gradient estimates ∇ES in NPGA are unbiased and have finite mean squared error
with respect to the smoothed utilities ũσi of the game Γσ.

Proof: We consider the smoothed ex-ante utility ũσi . For fixed σ > 0, we have

ũσi (θi, θ−i) := Eε∼N (0,σ2I)[ũi(θi + ε, θ−i)].

This is equal to the convolution of ũi with a Gaussian kernel in the i-th coordinate. As was noted by
[7], its (exact) gradient with respect to θi is thus given by

∇θi
ũσi (θi, θ−i) = 1

σ
Eε∼N (0,I)[ε(ũi(θi +σε, θ−i)− ũi(θi, θ−i))].
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By the substitution ε′ = σε, we see by the transformation formula that

∇θi
ũσi (θi, θ−i) = 1

σ2 Eε∼N (0,σ2I)[ε(ũi(θi + ε, θ−i)− ũi(θi, θ−i))].

If we approximate this term by taking P independent samples εp ∼N (0, σ2I), we get

∇θi
ũσi (θi, θ−i)≈

1
Pσ2

∑

p

εp(ũi(θi +σεp, θ−i)− ũi(θi, θ−i)).

In the same way, we can approximate ũi by sampling H observation and valuation profiles vh with
respect to the distribution the valuations are drawn from:

ũi(θi +σεp, θ−i)≈
1
H

∑

h

ui(vh,i, πi(oh,i, θi +σεp), π−i(oh,−i, θ−i)).

The combination of these approximations is exactly how ∇ES is computed in Algorithm 1:

∇ESũi(θi, θ−i) = 1
PHσ2

∑

p

εp
∑

h

(
ui (vh,i, πi(oh,i, θi +σεp), π−i(oh,−i, θ−i))

−ui (vh,i, πi(oh,i, θi), π−i(oh,−i, θ−i))
)
.

Since we sample independently and with respect to the original distributions, the approximation is
in expectation equal to the true gradient. Thus, the approximation is unbiased with respect to the
smoothed utilities ũσi . ∇ES also has finite mean squared error: Define

Xp,h = εp (ui(vh,i, πi(oh,i, θi + εp), π−i(oh,−i, θ−i))−ui(vh,i, πi(oh,i, θi), π−i(oh,−i, θ−i))) .

Because of equation (5) in Definition 1 in the paper (smooth Bayesian game), we have

Ev[ui(vh,i, πi(oh,i, θi + εp), π−i(oh,−i, θ−i))2]≤ S

and

Ev[ui(vh,i, πi(oh,i, θi), π−i(oh,−i, θ−i))2]≤ S.

This implies E[X2
p,h]≤ 4SE[‖ε‖2] = 4Sdiσ2, where we used the inequality (a− b)2 ≤ 2a2 + 2b2. Since

∇ESũi(θi, θ−i) = 1
PHσ2

∑
p,hXp,h, we have that

E
[∇ESũi(θi, θ−i)2]= 1

P 2H2σ2 E





∑

p,h

Xp,h




2

= 1

σ2 E





∑

p,h

Xp,h

PH




2



≤ 1
PHσ2 E


∑

p,h

X2
p,h


≤ 1

PHσ2 4PHdiσ2S = 4Sdi <∞.

Consequently, our gradient estimate has finite mean squared error.
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Lemma 2. Consider the utility loss ˜̀Γ
i (θi, θ−i) of agent i with respect to the utility function ũi in

the finite-dimensional game Γ, and the utility loss ˜̀σ
i (θi, θ−i) with respect to the smoothed utility ũσi in

the game Γσ. Then
˜̀Γ
i (θi, θ−i) ≤ ˜̀σ

i (θi, θ−i) + 2ZL
√
diσ.

Proof: We start by bounding the difference between the utilities of the game Γ and the game Γσ.
To be precise, we prove the following bound for arbitrary strategies θ:

|ũi(θi, θ−i)− ũσi (θi, θ−i)| ≤ZL
√
diσ (S.6)

By definition, ũσi (θi, θ−i) = Eε∼N (0,σ2I)[ũi(θi + ε, θ−i)]. Since ũi(θi, θ−i) = Eε∼N (0,σ2I)[ũi(θi, θ−i)], we
have the inequality

|ũi(θi, θ−i)− ũσi (θi, θ−i)| ≤Eε∼N (0,σ2I)[|ũi(θi + ε, θ−i)− ũi(θi, θ−i)|]. (S.7)

Next, we show that for fixed ε, |ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤ZL‖ε‖. We compute

|ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤Evi,oi
[|ūi(vi, πi(oi, θi + ε), θ−i)− ūi(vi, πi(oi, θi), θ−i)|] .

Since by assumption, ūi is differentiable with respect to bi and the differential is uniformly bounded
by Z (equation (4) in Definition 1 of the main paper, we have for every ε

|ūi(vi, πi(oi, θi + ε), θ−i)− ūi(vi, πi(oi, θi), θ−i)|

≤
∥∥∥∥
∂ūi
∂bi

∥∥∥∥
∞
‖πi(oi, θi + ε)− πi(oi, θi)‖

≤Z‖πi(oi, θi + ε)− πi(oi, θi)‖.

Consequently, by Assumption S.4 in Definition 1 of an NPGA policy network,

|ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤Z Evi,oi
[‖πi(oi, θi + ε)− πi(oi, θi)‖]≤ZL‖ε‖,

which implies by equation (S.7)

|ũi(θi + ε, θ−i)− ũσi (θi, θ−i)| ≤ZLEε∼N (0,σ2I)[‖ε‖]≤ZL
√
diσ.

This proves equation (S.6). Now let θ∗i be a best response to θ−i in the game Γ. Then

˜̀Γ
i (θi, θ−i) = ũi(θ∗i , θ−i)− ũi(θi, θ−i)

= (ũi(θ∗i , θ−i)− ũσi (θ∗i , θ−i)) + (ũσi (θ∗i , θ−i)− ũσi (θi, θ−i)) + (ũσi (θi, θ−i)− ũi(θi, θ−i))

≤ZL
√
diσ+ ˜̀σ

i (θi, θ−i) +ZL
√
diσ

= ˜̀σ
i (θi, θ−i) + 2ZL

√
diσ.
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Lemma 3. Let the neural net π be sufficiently expressive, i.e. for any βi ∈Σi one can find θ such
that ‖βi− π(·, θ)‖Σi

≤ δ. Then the loss of in G is bounded by that in Γ: ˜̀(θ)≤ ˜̀Γ(θ) +Zδ.

Proof: The proof relies on boundedness of partial derivatives in the definition of interim smooth
Bayesian games. With this regularity condition and universal approximation of the neural network,
the derivation is straightforward. Let θ−i ∈Θ−i be an opponent strategy profile, θ∗i be a best response
to θ−i in Γ, and β∗i be a best response to π−i(·, θ−i) in G, and θi an arbitrary parameter vector for
player i. Then

˜̀
i(θ; θ−i) = ũi(β∗i , θ−i)− ũi(θi, θ−i)

= ũi(β∗i , θ−i)− ũi(θ∗i , θ−i) + ũi(θ∗i , θ−i)− ũi(θi, θ−i)

= (ũi(β∗i , θ−i)− ũi(θ∗i , θ−i)) +
(
ũΓ
i (θ∗i , θ−i)− ũΓ

i (θi, θ−i)
)

= Eoi
[ui(oi, β∗i (oi), θ−i)−ui(vi;πi(oi, θ∗i ), θ−i)] + ˜̀Γ

i (θ)

≤Z ·Eoi
[‖β∗i (oi)− πi(oi, θ∗i )‖] + ˜̀Γ

i (θ)

≤Zδ+ ˜̀Γ
i (θ). (S.8)

S.3. Sampling from Conditional Distributions
When faced with a one-dimensional distribution, sampling is easily done by evaluating the inverse
CDF at uniformly sampled points. In the multivariate case, however, there exists no inverse CDF.
The following procedure, called conditional distribution method [3, Chapter 11], effectively reduces
the problem of sampling from multivariate distributions to multiple one-dimensional sampling tasks.
Conditioned on the observation of agent i, we
1. sample the first opponent’s observation conditioned on i’s observation, f(o−i,1|oi), by using

u0 ∼U [0,1] and setting
o−i,1 = F inv

o−i,1|oi
(u0),

2. sample the second opponent’s observation conditioned on all observations sampled so far,
f(o−i,2|oi, o−i,1), by using u1 ∼U(0,1) and setting

o−i,2 = F inv
o−i,2|oi,o−i,1

(u1),

3. continue in this manner for all opposing agents −i and agent i’s own type f(vi|o).
Then the samples satisfy (o−i, vi) ∼ f(o−i, vi|oi) by definition. For most settings in this work, all
required functions are analytically known, making a precise sampling possible.

In the general case, it’s not possible to state the conditional distribution explicitly, either because
there is no access to the true distributions or because the integrals or inverse cumulative density
functions are inaccessible.
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Subsequently, all required distributions for sampling will be calculated. We will use f , F , and
F inv as the probability density function (PDF), the cumulative distribution function (CDF), and the
inverse CDF (iCDF), respectively.

S.3.1. Derivation of Conditional Distributions in the Common Values Setting
Let us denote by the random variable V ∼ U [0,1] the common type and by Oi = V ·Xi agent i’s
observation with her unobserved private factor Xi ∼U [0,2]. As Xj is conditionally independent of
Oi, we observe that (Oj|Oi=oi) = (V |Oi=oi) ·Xj . Thus, access to samples of V |Oi=oi is sufficient to
sample from Oj|Oi = oi. In the following, we will derive the inverse cumulative distribution function
(icdf) F inv

V |oi
which we can then use to transform samples from the standard uniform distribution into

samples of V |oi. We will rely on Bayes’ theorem. To do so, let’s first observe that the conditional
Oi|v is uniformly distributed on [0,2v] with pdf f(oi|v) = 1

2v on that interval. The marginal pdf of Oi
is then given by

f(oi) =
∫

v

f(o|v)f(v)dv =
∫ 1

o/2

1
2v ·

1
1dv =

− log
(
o
2
)

2
on the interval (0,2] and 0 elsewhere. Given a realized observation oi, we can then use Bayes’ theorem
to calculate the conditional pdf of V |oi on the interval ( o2 ,1] via

f(v|oi) = f(oi|v)f(v) 1
f(oi)

= 1
2v · 1 ·

−2
log
( oi

2
) = −1

v log
( oi

2
)

Integrating over v then yields the conditional cumulative distribution function

F (v|oi) =





0 v < 1
2oi,

1− log(v)
log( oi

2 )
1
2oi ≤ v < 1,

1 1< v.

Identifying the output with u and inverting, we then arrive at the icdf

F inv
V |oi

(u|oi) =
(
oi
2

)(1−u)

Given a standard uniform RV U ∼U [0,1], when then have V |oi ∼ F inv
V |oi

(U |oi).

S.3.2. Derivation of Conditional Distributions in the Affiliated Values Setting
For this game setting, we have (Oj|Oi = oi) = (Uj|Oi = oi) + (T |Oi = oi), where (Uj|Oi = oi) =Uj is
independent of Oi. Using Bayes theorem, one has

(T |Oi = oi) = oi−Ui ∼U(max{0, oi− 1},min{1, oi})

and thus the observation of the opponent is the sum of the two uniform random variables Uj and
(T |Oi = oi).
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Figure S.5 The probability functions in the common values setting for an example conditional value of oi = 1
2 .

S.3.3. Derivation of Conditional Distributions in the LLG Settings
In these settings, there are two groups of correlations: On one side, there is the global bidder whose
prior is independent from all other bidders, and on the other side there are local bidders whose values
depend on one another. In the Bernoulli weights model, the density of the local bidder j conditional
on vi is simply given as a uniform distribution on [0,1] with the addition that with a probability of γ
the value will not be uniform but vj = vi.
In the constant weights model, the approach is similar to the one used for affiliated

values above. We can directly derive the conditionals of player 1’s individual component
ω1|v1 ∼U{max(0, v1−w

1−w },min{1, v1
1−w}], and ω2 is conditionally independent of v1. Observe that wω4 =

v1− (1−w)ω1. We can thus sample ω1|v1 and ω2 and then calculate v2|v1 = (1−w)ω2|v1 +w ·ω4|v1 =
v1 + (1−w)(ω2−ω1|v1), and vice versa for player 2.

References
[1] L. M. Ausubel, P. Cramton, M. Pycia, M. Rostek, and M. Weretka. Demand reduction and inefficiency in multi-unit

auctions. The Review of Economic Studies, 81(4):1366–1400, 2014.
[2] J. Créemer and R. P. McLean. Optimal selling strategies under uncer0 tainty for a discriminating monopolist when

demands are interdepen0 denty. Econometrica, 53:345–361, 1985.
[3] W. Hörmann, J. Leydold, and G. Derflinger. Automatic nonuniform random variate generation. Springer Science

& Business Media, 2013.
[4] V. Krishna. Auction Theory. Academic press, 2009.
[5] P. R. Milgrom and R. J. Weber. A theory of auctions and competitive bidding. Econometrica: Journal of the

Econometric Society, pages 1089–1122, 1982.
[6] M. Perry and P. J. Reny. An efficient auction. Econometrica, 70(3):1199–1212, 2002.
[7] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution Strategies as a Scalable Alternative to

Reinforcement Learning. arXiv:1703.03864 [cs, stat], Mar. 2017.
[8] R. Wilson. Competitive bidding with disparate information. Number 114. Graduate School of Business, Stanford

University, 1966.



2.6 Software Frameworks for Learning in Games

65





67

Publication C: Learning Equilibria in Asymmetric
Auction Games

Peer-Reviewed Journal Paper

Title: Learning Equilibria in Asymmetric Auction Games

Authors: M. Bichler, S. Heidekrüger, and N. Kohring

In: INFORMS Journal on Computing 35(3):523-542 (2023)

Abstract: Computing BayesianNash equilibrium strategies in auction games is a challenging problem
that is notwell understood. Such equilibria can bemodeled as systems of nonlinear partial differential
equations. It was recently shown that Neural Pseudogradient Ascent (NPGA), an implementation
of simultaneous gradient ascent via neural networks, converges to a Bayesian Nash equilibrium for
a wide variety of symmetric auction games. While symmetric auction models are widespread in
the theoretical literature, in most auction markets in the field one can observe different classes of
bidders having different valuation distributions and strategies. Asymmetry of this sort is almost
always an issue in real-world multi-object auctions, where different bidders are interested in different
packages of items. Such environments require a different implementation of NPGA with multiple
interacting neural networks having multiple outputs for the different allocations the bidders are in-
terested in. We analyze a wide variety of asymmetric auction models. Interestingly, our results show
that we closely approximate Bayesian Nash equilibria in all models where the analytical Bayes-Nash
equilibrium is known. Besides we analyze new and larger environments for which no analytical
solution is known and verify that the solution found approximates equilibrium closely. The results
provide a foundation for generic equilibriumsolvers that can beused in awide range of auction games.

Contribution of thesis author: design and implementation, empirical analysis, writing and revising
the manuscript

Copyright Notice: ©2023 INFORMS. Republished with permission.
References: Full Paper: Bichler et al. (2023a), Online Supplementary Material: Bichler et al. (2023b)





INFORMS JOURNAL ON COMPUTING
Vol. 35, No. 3, May 2023, 523–542

issn 1091-9856 |eissn 1526-5528 |23 |202305

INFORMS
doi 10.1287/ijoc.2023.1281

© 2023 INFORMS

Learning Equilibria in Asymmetric Auction Games

Martin Bichler, Nils Kohring, Stefan Heidekrüger
Technical University of Munich, Department of Computer Science, 85748 Garching, Germany

Computing Bayesian Nash equilibrium strategies in auction games is a challenging problem that is not well

understood. Such equilibria can be modeled as systems of nonlinear partial differential equations. It was

recently shown that Neural Pseudogradient Ascent (NPGA), an implementation of simultaneous gradient

ascent via neural networks, converges to a Bayesian Nash equilibrium for a wide variety of symmetric auction

games. While symmetric auction models are widespread in the theoretical literature, in most auction markets

in the field one can observe different classes of bidders having different valuation distributions and strategies.

Asymmetry of this sort is almost always an issue in real-world multi-object auctions, where different bidders

are interested in different packages of items. Such environments require a different implementation of NPGA

with multiple interacting neural networks having multiple outputs for the different allocations the bidders

are interested in. In this paper, we analyze a wide variety of asymmetric auction models. Interestingly, our

results show that we closely approximate Bayesian Nash equilibria in all models where the analytical Bayes-

Nash equilibrium is known. Additionally, we analyze new and larger environments for which no analytical

solution is known and verify that the solution found approximates equilibrium closely. The results provide

a foundation for generic equilibrium solvers that can be used in a wide range of auction games.

Key words : equilibrium learning, neural networks, Bayes-Nash equilibria

1. Introduction

Auction theory is arguably the best-known and practically most relevant application of

Bayesian game theory, central to modern economic theory (Klemperer 2000) and with a

multitude of applications in the field, ranging from industrial procurement to treasury

auctions and spectrum sales (Krishna 2009, Milgrom 2017, Bichler and Goeree 2017). The

derivation of Bayesian Nash equilibrium strategies (BNE) for the first-price and second-

price sealed-bid auction led to a comprehensive theoretical framework for the analysis of

single-item auctions by Nobel laureate William Vickrey, a landmark result of economic

theory (Vickrey 1961). Also, the Nobel Prize in Economic Sciences 2020 to Paul Milgrom

and Robert Wilson was awarded for contributions to auction theory. However, while single-

item auctions are well understood and closed-form BNE strategies are known for a variety

1
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of auction formats, we only know equilibrium strategies for a few restricted multi-item

auction environments with heterogeneous goods. Even for uniform or discriminatory multi-

unit auctions with homogeneous goods and symmetric bidders, we can only characterize

properties of the Bayes-Nash equilibrium but do not have a general closed-form solution

(Krishna 2009). So, the realm of auction markets where we know a Bayes-Nash equilibrium

is very limited.

Equilibrium computation is well-known to be hard even for simple, finite, complete-

information games: Finding Nash equilibria in normal-form games is known to be in the

complexity class PPAD1 (Daskalakis et al. 2009). Mathematically, auctions are typically

described as Bayesian games. Bidders’ valuations are considered samples from some con-

tinuous and atomless prior valuation distribution and their strategies are represented by

continuous bid functions mapping these valuations to bids. Vickrey (1961) have enabled

a deep understanding of common single-item auction formats. However, there still remain

many open questions for more involved multi-item auctions such as combinatorial auc-

tions, in which players bid on bundles of multiple goods simultaneously. We also know

little about the existence of Bayesian Nash equilibria in such auction games (Jackson and

Swinkels 2005). Importantly, the computational complexity of computing BNE is hardly

understood. Typically, for a fully specified setting, we can model the equilibrium problem

as systems of nonlinear partial differential equations for which no exact solution theory is

known (Klainerman 2010). Given the relevance of auctions, understanding their equilib-

ria is crucial, and numerical methods for computing or approximating such steady states

would be a significant step forward in the theory of auctions and also in their design and

in applications.

This paper can be viewed in the context of equilibrium learning via gradient dynam-

ics. Whether learning agents’ strategies in repeated games converge to equilibria has been

studied for complete-information normal-form games (Fudenberg and Levine 2009). In con-

trast, equilibrium learning in Bayesian auction games is largely unexplored (see Section 2).

First, the ex-post utility function is non-differentiable in auctions, which makes it diffi-

cult to apply gradient dynamics. Secondly, it is a known fact that multi-agent gradient

dynamics do not converge in general games: Convergence to Nash equilibria has only been

1 The class of Polynomial Parity Arguments on Directed graphs (PPAD) problems is believed to be hard and is related
to NP.
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established for restricted classes of complete-information normal-form games. In summary,

it is all but clear how gradient dynamics would be implemented in Bayesian auction games,

and even if this was done, whether the algorithm would converge to a BNE in auction

games. We draw on Bichler et al. (2021), who recently introduced Neural Pseudogradient

Ascent (NPGA), an algorithm that relies on simultaneous gradient ascent of bidders with

respect to their ex-ante utility functions. More specifically, NPGA models all players’ bid-

ding strategies as neural networks, and trains them via self play based on approximate

ex-ante gradients computed from observations of the discontinuous ex-post utility function

using evolutionary strategies. It can be applied to a wide range of Bayesian auction games,

since it does not require any auction-specific sub-procedures beyond access to simulating

auction outcomes. Likewise, its computational steps can exploit massive parallelization and

GPU hardware acceleration.

The results by Bichler et al. (2021) focus on symmetric auction models, assuming sym-

metric prior distributions and symmetric equilibrium bidding strategies of the bidders.

This allows them to train only a single neural network to provably find the symmetric equi-

librium bidding strategy. While symmetric models cover some important auctions in the

theoretical literature, many interesting environments include asymmetries. For example,

asymmetric priors are a concern for single-object auctions with strong and weak bidders

drawn from different distributions, but they are even more prevalent in multi-item auctions

where it is unlikely that bidders are interested in the same items with their values drawn

from the same distribution. It is also these more general market environments for which

the literature on auction theory does not provide analytical equilibrium predictions.

1.1. Contributions

In this paper, we explore a number of challenging environments, models which clearly

violate the symmetry assumption. Nothing is known about the convergence and speed

of equilibrium learning in such environments where one needs to train multiple neural

networks with multi-dimensional outputs modeling different actions of bidders. We show

that the NPGA algorithm also converges with multiple neural networks which are required

to model asymmetric environments. We explore a wide range of wicked models from the

literature where the BNE is known analytically and find that NPGA computes a very close

approximation of the Bayes-Nash equilibrium in all of them. In addition, we explore large
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environments where no analytical solution is known and we can verify empirically that a

close approximation to a BNE is found.

We start with a single-object auction with two asymmetric priors (Plum 1992). Apart

from this original model, we also analyze one that allows for (rational) overbidding and

admits multiple equilibria (Kaplan and Zamir 2015). Here, we only know closed-form equi-

librium strategies for uniform prior distributions, for which NPGA finds a BNE. However,

we also discuss a specific model with two bidders competing for a single object where

the valuations are drawn from a non-linear beta distribution. No equilibrium strategy is

known, but we find bidding strategies with a very low estimated utility loss for all players.

This indicates that the computed strategy profile is a close approximation of a BNE.

Second, we explore a specific type of multi-unit uniform-price auction of homogeneous

goods with two classes of bidders, those with a high and with a low type. The environ-

ment is very large with up to 12 units and NPGA is able to compute a sufficiently close

equilibrium in under five minutes. Such mechanisms are used in treasury bill auctions but

also electricity markets. Demand reduction is a well-known phenomenon in such auctions

and it is interesting to observe how it plays out under different model assumptions about

the strength of the competitors.

Third, we analyze a combinatorial auction in the well-known local-local-global (LLG)

model. The model has two items and three bidders and it has become a standard envi-

ronment to discuss spectrum auction design and more generally combinatorial auctions

(Bichler and Goeree 2017). Two local bidders want to win one item each and they compete

against a global bidder interested in the package of both items. Bidders are assumed to

only bid for the single item for which they have a strictly positive expected valuation. In

this standard LLG model, the local bidders are assumed to have symmetric priors, and

NPGA converges quickly to the BNE strategy (Bichler et al. 2021). In contrast to this

standard setting, we analyze a variant where one of the local bidders is favored and bidders

are not precluded a priori from bidding on bundles for which they do not have a strictly

positive value. While a bidder would not actually be interested in winning such a bundle,

it turns out that sometimes it may nevertheless be rational to submit a positive bid for it.

Ott and Beck (2013) showed that, in fact, this version of the local-local-global model has

an equilibrium where the second local bidder bids on the package of both items and even

overbids—in spite of being interested in a single item only. Such equilibrium strategies
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are not obvious. Again, we find that NPGA recovers this analytical solution with high

precision.

Fourth, we experiment with another reverse combinatorial auction model with two homo-

geneous objects and two bidders. This model is interesting because there are two pure

BNE (Anton and Yao 1992, Kokott et al. 2019). Similar to the analysis of the asymmetric

single-object environment (Kaplan and Zamir 2015), NPGA finds an equilibrium, which is

also the efficient one.

Finally, we report the results for a large combinatorial auction model with six bidders,

belonging to two symmetry classes, and eight items, which has recently been proposed as

a challenging problem for equilibrium computation and which, to the authors’ knowledge,

is the largest combinatorial auction for which an approximate BNE has been computed

numerically with a setting-specific algorithm (Bosshard et al. 2020). Going beyond the

existing challenge model, we also study NPGA in an even larger extension by introducing an

additional seventh bidder belonging to a new third symmetry class. In both these settings,

strategy profiles learned by NPGA converge to approximate BNE. Such environments can

already be considered very large and beyond what is typically analyzed in auction theory.

Overall, The empirical results we show in this paper provide evidence that gradient

dynamics implemented in NPGA are significantly more powerful than expected and they

converge in a much wider range of (asymmetric) auction games. This raises hope that

gradient dynamics can be used to compute equilibria in a much broader variety of market

models and that general auction equilibrium solvers are in reach.

1.2. Organization

In the next section, we discuss related literature. Section 3 introduces preliminaries and

notation before we discuss gradient dynamics in the context of auctions in Section 4.

Section 5 introduces metrics to evaluate the quality of our results before we report our

results in Section 6. Finally, we provide a summary and conclusions in Section 7. The

source code and configurations can be found at the repository (Bichler et al. 2023).

2. Related Literature

In what follows, we survey existing hardness results, approaches to equilibrium learning,

and initial research on computing approximate Bayes-Nash equilibria.
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2.1. Hardness of Equilibrium Computation

The computation of Nash equilibria received significant attention after the initial contribu-

tion by John Nash on the existence of such equilibria in complete-information normal-form

games (Nash et al. 1950). However, it was shown that the problem is already PPAD-

complete for two-agent normal-form games (Daskalakis et al. 2009) and it is hard to

approximate (Rubinstein 2016). The computation of Nash equilibria for three or more

agents is even FIXP-complete, i.e., complete for the class of search problems that can be

cast as fixed-point computation problems (Etessami and Yannakakis 2007).

Determining whether a pure-strategy BNE exists in a finite Bayesian game is NP-

complete and these hardness results also hold if there are only two agents and the game

is symmetric (Conitzer and Sandholm 2008). Finding a mixed Bayesian equilibrium in

a Bayesian game is, of course, PPAD-hard, but might be even harder; however, little is

known in general. As indicated in the introduction, Cai and Papadimitriou (2014) show

that finding a BNE in simultaneous single-item Vickrey auctions for which the bidders

have combinatorial valuations is hard for the class PP (the decision version of ]P), which is

much harder than NP. Even certifying a BNE is PP-hard, which casts doubt on the ques-

tion of whether BNE can be at all predictive in the field. Additionally, the authors show

that it is even NP-hard to find an approximate BNE in the simultaneous Bayesian auction

game. Note that environments with continuous action space are not finite games, and the

existence result by Nash does not carry over. We are not aware of proof that a possibly

mixed Bayesian equilibrium always exists in such games. Athey (2001) showed conditions

for pure BNE to exist, Carbonell-Nicolau and McLean (2018) provided conditions that

guarantee the existence of a BNE, while Ui (2016) characterized strong payoff-monotonicity

as a sufficient condition for uniqueness of BNE in ex-post differentiable continuous-action

Bayesian games.

2.2. Equilibrium Learning

Our research is best situated in the literature on equilibrium learning (Fudenberg and

Levine 2009). Learning in complete-information normal form games has a long history and

has been extensively studied in game theory and, more recently, multi-agent reinforcement

learning. One class of methods is formed by best response dynamics. The earliest such

method, published by Cournot in 1838, has agents play a pure strategy best response

against other agents’ strategies used in the previous iteration. In Fictitious Play (FP)
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(Brown 1951), a best response is instead played against the strategy profile induced by

opponents’ empirical frequencies of play in all previous iterations. Whenever the empirical

frequencies of FP converge, the limit constitutes a Nash equilibrium, but the actual (last-

iteration) play only converges in special cases of normal form games such as potential

games (Monderer and Shapley 1996).

Gradient dynamics constitute another class of equilibrium learning algorithms. Gener-

alized infinitesimal gradient ascent (GIGA) (Zinkevich 2003) or GIGA-WoLF (Bowling

2005) are examples of gradient dynamics in normal form games, where in each iteration, for

each agent we move a step along the direction of the utility gradient and then project the

resulting point back to the set of feasible mixed strategies. If aggregating over the stages of

the process, the agent’s regret grows sublinearly, then there is “no regret” asymptotically.

GIGA’s total regret is O(
√
T ), where T is the number of steps in a repeated strategic game.

Hazan et al. (2007) have given an algorithm with a total regret of O(log(T )). Complete-

information games with continuous action spaces and smooth utility functions have also

received some attention in the context of generative adversarial networks (Letcher et al.

2019, Balduzzi et al. 2018, Schäfer and Anandkumar 2019). A common observation in

this line of research is that gradient-based learning does not necessarily converge to an

equilibrium and may even exhibit cycling or chaotic behavior. However, it often achieves

no-regret properties and thereby converges to a weaker form of equilibrium, so called coarse

correlated equilibria (CCE). Similar conclusions were drawn for finite-type (and possibly

continuous-action) Bayesian games. Here, no-regret learners were shown to converge to

Bayesian CCEs (Hartline et al. 2015).

Gradient dynamics are only known to converge to a Nash equilibrium in certain types of

normal-form games such as potential games, bilinear games (Singh et al. 2000), and convex

games (Mertikopoulos and Zhou 2019). Letcher et al. (2019) explore gradient dynamics

in complete-information continuous-action differential games. If ex-post payoffs are twice

continuously-differentiable, they find properties such that gradient dynamics converge to

at least local equilibria. Unfortunately, the ex-post utility in our auction games is not

differentiable. More importantly, these techniques are defined for complete-information

games with finite-dimensional action spaces while we search for strategies over a function

space. Unfortunately, a thorough understanding of the convergence and limiting behaviors

in general, continuous games is missing. Actually, the analysis of gradient dynamics, in

general, can be arbitrarily complex (Andrade et al. 2021).
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2.3. Algorithms for Computing Approximate BNE

Earlier approaches to compute approximate BNE in auctions either comprised solving the

set of nonlinear differential equations resulting from the first-order conditions of simul-

taneous maximization of the bidders’ payoffs (Marshall et al. 1994, Bajari 2001) or of

restricting the action space, e.g., through discretization (Athey 2001). Then, however, one

has no guarantees on the quality of the corresponding ε-BNE of the original auction game.

Armantier et al. (2008) introduced a BNE-computation method that is based on expressing

the Bayesian game as the limit of a sequence of complete-information games, but defining

this sequence requires setting-specific analysis.

Numerical BNE in more complex combinatorial auctions were first computed by

Bosshard et al. (2017, 2020) in two recent papers; in particular, they study the LLG and

LLLLGG markets, both of which are also analyzed in this paper. Their algorithm com-

putes point-wise best responses in a linearization of the strategy space via Monte Carlo

integration. They prove an an upper bound ε on the interim utility loss achieved by their

algorithm using a verification method that assumes identical independent priors (Fvi|v−i
=

Fvi) and risk-neutral attitudes of all bidders. High worst-case interim precision comes at a

computational cost for more complex environments with multi-minded bidders.

NPGA (Bichler et al. 2021) follows a different approach and is rooted in gradient dynam-

ics rather than best response dynamics. It directly learns the bid functions expressed across

the entire value space (as opposed to point-wise) by updating the parameters of the neural

networks via ex-ante gradient ascent. NPGA neither requires discretization of the value

or action space as in Athey (2001) nor does it rely on twice differentiable payoff or loss

functions as required in the literature on differentiable games (Singh et al. 2000, Letcher

et al. 2019). Further, it makes no assumptions about the risk attitude or independence of

the bidders’ valuations. For symmetric auctions, Bichler et al. (2021) show that NPGA

converges (at least) to local BNE.

3. Problem Statement and Notation

We next introduce the necessary notation and concepts from Bayesian game theory relevant

to our paper.

3.1. Auctions as Bayesian Games

A Bayesian game or game with incomplete information is defined by the quintuple G=

(I,A,V, F,u). The set of players is denoted by I = {1, . . . , n}, A≡A1×· · ·×An is the set of
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possible action profiles, where agent i∈ I has access to the action set Ai. V ≡V1× · · ·×Vn
we denote the set of type profiles and F : V → [0,1] defines the joint probability distribution

over V that is known to all players. Throughout this paper, FX will denote the cumulative

distribution function of a random variable X. For example, Fvi will denote the marginal

distribution of player i’s type. In each game, a type profile v∼ F is drawn and all agents i

are privately informed of their own types vi. Based on this private information, each player

must then choose an action bi from Ai. After actions have been chosen, every player will

observe their ex-post utility according to a function ui :A×Vi→R that notably depends

on all agents’ actions but only on i’s own type.

This paper considers not only sealed-bid auctions of a single object, but also multi-

unit auctions and combinatorial auctions with m heterogeneous items,M= {1, . . . ,m}. In

these auctions, each agent, also called bidder, is allocated a bundle xi ∈ K ≡ 2M of items

(possibly xi = ∅). In the private value setting most commonly studied in auction theory,

types vi ∈ Vi can then be interpreted as a vector of private valuations that is composed

of the valuations the bidder has for all possible bundles: vi ≡ (vi(k))k∈K. For a treatment

beyond private values (e.g., interdependent bidder types) we refer the interested reader

to Bichler et al. (2021). Bidders map these valuations to their individual bids bi = βi(vi)

according to some pure strategy or bid function βi : Vi→Ai. In line with most work in

auction theory, we will focus on pure strategies that choose a specific action with certainty.

In an exclusive-OR (XOR) bid language, a bidder submits bids for every possible bundle

but can only win one of the bids. This means that bids are generally in Ai ⊆ R|K|+ , and

every player must thus submit a total of 2m scalar bids.

By Σi ⊆ AVii we denote the strategy space of bidder i and by Σ ≡∏iΣi the space of

available joint strategies. Note that the spaces Σi are infinite-dimensional as a consequence

of infinite Vi.
The auctioneer then applies an auction mechanism which will determine an allocation x

and a price vector p. The allocation determines the bundles of goods xi ∈K received by each

bidder which must be disjoint: xi ∩ xj = ∅. Payments p ∈ Rn determine a scalar amount

of money that each payer will have to pay to the auctioneer in exchange for receiving the

bundle xi. We will rely on the standard environment in auction theory where bidders have

a quasi-linear utility function given by ui : Vi×A→R,

ui(vi, bi, b−i) = vi(xi)− pi, (3.1)
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where the index −i denotes a profile of types, actions, or strategies for all agents but agent

i. That is, each bidder’s utility is given by her valuation of her allocated bundle, minus the

payment she has to make. Quasi-linear utilities correspond to risk-neutral bidders. Note

that NPGA is not restricted to the risk-neutral setting. (See e.g. Bichler et al. (2021) or

Ewert et al. (2022) for applications in the presence of risk-averse agents.) However, the

environments discussed in this paper assume quasi-linear utility, which simplifies notation.

We will differentiate between the ex-ante, interim, and ex-post states of the game, where

bidders first know only F , then additionally their valuations vi ∼ Fvi , and finally also the

observed utility ui(vi, b), respectively.

3.2. Bayes-Nash Equilibrium

The notion of Nash equilibria (NE) is the central equilibrium solution concept in noncoop-

erative game theory. An action profile b∗ is a pure-strategy NE of the complete-information

game G= (I,A, u) iff no player has any incentive to deviate unilaterally while other agents

adhere to the equilibrium: ui(b
∗
i , b
∗
−i) ≥ ui(bi, b∗−i) for all bi ∈ Ai and all i ∈ I. Bayesian

Nash equilibria (BNE) generalize this concept to incomplete-information games. To do so,

we will need to consider the expected interim utility ui of i of a given bid choice bi ∈ Ai
over the conditional distribution of opponent valuations v−i, given i’s observed type vi and

assuming opponents play fixed strategies β−i ∈Σ−i:

ui(vi, bi, β−i)≡Ev−i|vi [ui (vi, bi, β−i(v−i))], (3.2)

In our analysis, we will also use the interim utility loss of action bi that is incurred, in

hindsight, by not playing a best response action. Given vi and β−i it is defined as

`i(bi;vi, β−i) = sup
b′i∈Ai

ui(vi, b
′
i, β−i)−ui(vi, bi, β−i). (3.3)

Typically, `i is not actually observable to any agent because it requires knowledge of (a)

the opponents’ strategies and (b) a corresponding best response.

An interim ε-Bayesian Nash Equilibrium (ε-BNE) is a strategy profile β∗ = (β∗1 , . . . , β
∗
n)∈

Σ in which no deviation could yield an interim utility improvement of more than ε≥ 0 for

any player. Formally, an ε-BNE is described as follows:

`i
(
bi;vi, β

∗
−i
)
≤ ε for all i∈ I, vi ∈ Vi, and bi ∈Ai. (3.4)
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In a true BNE, where ε = 0, every bidder’s strategy maximizes her expected interim

utility everywhere on her type space Vi given the opponents’ strategies. While this interim

stage definition of BNE is most common in the literature, we will instead focus on ex-ante

Bayesian equilibria as strategy profiles that concurrently maximize each player’s ex-ante

expected utility ũ, i.e., at the stage where only the priors F are known, but players have

not yet learned their own private valuation. We thusly define ũ and the ex-ante utility

losses ˜̀ of a strategy profile β ∈Σ by

ũi(βi, β−i)≡Ev[ui(vi, βi(vi), β−i(v−i))] (3.5)

=Evi∼Fvi
[ui(vi, bi, β−i)], (3.6)

and

˜̀
i(βi, β−i)≡ sup

β′i∈Σi

ũi(β
′
i, β−i)− ũi(βi, β−i). (3.7)

Ex-ante BNE strategy profiles β∗ ∈Σ can be characterized by the equations ˜̀
i(β
∗
i , β

∗
−i) = 0

for all i ∈ I. Note that interim BNE also constitute an ex-ante equilibria and the reverse

holds almost everywhere: every ex-ante equilibrium fulfills Equation 3.4, except possibly

on a set of type profiles with measure 0 under F . In this paper, we concern ourselves with

finding ex-ante equilibria of auction games.

4. Neural Pseudogradient Ascent

In this section, we introduce Neural Pseudogradient Ascent (NPGA), an algorithm that

was recently introduced by Bichler et al. (2021) for Bayesian games with continuous type-

and action-spaces. We briefly summarize the algorithm for the paper to be self-contained

before we discuss issues around computational hardness and scalability.

4.1. The Algorithm

Intuitively, NPGA simply follows the ex-ante gradient dynamics of the game. However,

computing these dynamics is not trivial for auctions, where the ex-post utility functions

have discontinuities. Suppose that in each iteration of the learning algorithm players have

access to a gradient-oracle ∇βiũi(βi, β−i) with respect to the current joint strategy profile

βt. Then the gradient dynamics would require that each player perform a projected gradient

update:

βti ≡PΣi

(
βt−1
i + ∆t

i

)
where ∆t

i ∝∇βiũi(βi, β−i), (4.1)
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where PΣi
( · ) projects its argument onto the set of feasible strategies. Some nuances of

Equation 4.1 deserve discussion: Importantly, the gradient dynamics are to be understood

with respect to the ex-ante utility ũ, rather than interim or ex-post utilities. As such, any

update iteration aims to marginally improve on the player i’s expected utility across all

possible type realizations of the game. Furthermore, when computing the gradient oracle

∇βũ via self-play, one may need to rely on access to other players’ strategies, but evaluating

each player’s policy requires only on their own valuation. Finally, βi ∈Σi are functions in an

infinite-dimensional function space, so the gradient ∇βiũi is itself a functional derivative.

We formally consider this to be the Gateaux derivative, a generalization of the directional

derivative in Euclidean spaces, over the Hilbert space Σi equipped with the inner product

〈ψ,βi〉 = Evi∼Fvi

[
ψ(vi)

Tβi(vi)
]
. This choice of space specifies the projection operation in

Equation 4.1 to PΣi
(β)≡ arg minσ∈Σi

〈σ−β,σ−β〉.
To implement these gradient updates in practice, NPGA considers all bidders’ strate-

gies to be policy networks βi(vi)≡ πi(vi;θi) specified by some neural network architecture

and parameters θi ∈Rdi . Importantly, when a suitable neural network architecture is cho-

sen, all relevant θi will yield feasible bids, and the projection operation in the update

can be neglected as a result. In the empirical part of this study, we restrict ourselves to

fully-connected feed-forward neural networks with SeLU activations in the hidden layers

(Klambauer et al. 2017) and ReLU activations in the output layer. The latter guarantees

satisfaction of nonnegativity of the bids – the only feasibility constraint in the auctions

studied below. Note that in contrast to Bichler et al. (2021), we analyze more complex

auction models with multi-minded bidders, such that the output layer includes multiple

neurons defining bids for different packages of items in a multi-item auction. Importantly,

we need to train multiple neural networks that compete rather than only a single one. As

network sizes di ∈N are finite, the problem of choosing an infinite-dimensional strategy is

thus transformed into choosing a finite-dimensional parameter vector θi.

As auction allocations x are inherently discrete, the ex-post utilities ui(vi, bi, b−i) in

auction games have discontinuities and, as a result, are not (sub)differentiable in bi. While

the set of discontinuities is typically a v-nullset, taking the analytical gradient elsewhere

nevertheless would yield systematically misleading updates: As an example, consider a first-

price sealed-bid auction of a single item where the winner i pays her bid pi = bi. Players’

utility functions are then separated into two intervals: When bidding below the highest



Bichler, Kohring, Heidekrüger: Learning Equilibria in Asymmetric Auction Games
INFORMS Journal on Computing 35(3), pp. 523–542, © 2023 INFORMS 13

other bid, one will lose the auction, have a constant payoff of 0, with ∇biui = 0 on this

interval. Thus there will be no usable learning feedback. When i’s bid wins the auction, any

further increase in bi will marginally decrease ui, ∇biui=− 1. Analytical gradient updates

via backpropagation on the ex-post utility will thus always send nonincreasing feedback,

until all players finally bid a constant amount of zero no matter their type.

NPGA alleviates this feedback-breakdown of the ex-post gradients by instead estimating

the effect of parameter changes on the ex-ante utility using finite differences, and computing

gradient estimates ∇θũ using a natural evolution strategy (ES) approach Salimans et al.

(2017). Given parameters P ∈ N and ε > 0, we perturb the parameter vector P times

θi;p ≡ θi + εp using zero-mean Gaussian noise εp ∼ N (0, σ2). NPGA then calculates each

perturbation’s fitness, ϕp ≡ ũi(πi(vi;θi;p), β−i), via Monte Carlo integration, and estimates

the gradients as the fitness-weighted perturbation noise ∇ES
θ ≡ 1

σ2P

∑
pϕpεp. This results in

an unbiased estimator of the ex-ante gradients ∇θũ even when the ex-post gradients ∇bu

are not well-defined. Pseudo-code of NPGA is given in Algorithm 1.

Unlike in Bichler et al. (2021), where the “symmetric” version of NPGA has been ana-

lyzed, here we focus on the asymmetric case where agents can differ (in their prior Fvi,

or in how the auctioneer treats their bids) and each agent must learn their own optimal

bid function. As indicated earlier, this necessitates each bidder to train her own neural

network, rather than allowing a simplification of a single shared network, which is essential

to the theoretical convergence analysis in Bichler et al. (2021). Instead, in each iteration,

we iterate over bidders who perform their own individual gradient updates.

In summary, NPGA “implements” Equation 4.1 by parametrizing strategies using neural

networks and training them with ES-pseudogradients:

βti ≡ πi( · ;θti) with θti ≡ θt−1
i + ∆t

i where ∆t
i ∝∇ES

θti
. (4.2)

The computation of these updates in each iteration only relies on values of the ex-ante

utility ũ= Ev∼F [u]. No further information about the game is necessary. Thus, whenever

the joint ex-post utility u can be calculated in a vectorized fashion, ũ can leverage paral-

lel computations to efficiently perform Monte Carlo integration over V. In practice, this

approach lends itself to accelerated computation using GPUs. We built custom vector-

ized implementations of many common auction mechanisms using the PyTorch framework

(Paszke et al. 2017) that allow us to perform the Monte Carlo estimation multiple orders

of magnitude faster than prior numerical work on auctions.
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Algorithm 1 Neural Pseudogradient Ascent using Evolutionary Strategies

1: input: Initial policy, ES population size P , ES noise variance, learning rate, batch size

2: for t= 1,2, . . . do

3: Sample a batch of valuation profiles from prior

4: Calculate joint utility of current strategy profile

5: for each agent i∈ I do

6: for each p∈ {1, . . . , P} do

7: Perturb agent i’s current policy

8: Evaluate fitness of perturbation p by playing against current opponents

9: end for

10: Calculate ES pseudogradient as fitness-weighted perturbation noise

11: Perform a gradient ascent update step on the current policy

12: end for

13: end for

5. Evaluation

We will provide three metrics for evaluating the quality of the learned strategy profiles β.

Whenever an analytical BNE β∗ is known, we may simply check whether β→ β∗. To do

so, we calculate the agents’ utility losses Li that result from playing the learned strategy

βi rather than the equilibrium strategy β∗i .

The relative utility loss is then given by

L(βi) ≡ 1− ûi(βi, β∗−i)/ûi(β∗). (5.1)

Additionally, we will also measure the distance in strategy space, which tells us how close

the learned strategy is to the analytical one:

L2(βi) ≡ ‖βi−β∗i ‖Σi
. (5.2)

Both of these metrics use Monte Carlo integration over a large number of valuations v∼ F
to approximate û≈ ũ.

When no equilibrium is available for comparison we will instead qualify β by considering

the potential gains of deviating from β itself: ˆ̀
i ≈ ˜̀

i(βi, β−i). We will also estimate the

“true” epsilon of β, i.e., the smallest ε such that β forms an interim ε-BNE. This estimator
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will be denoted by ε̂. As we will see, these additional metrics in the absence of analytical

solutions are costly: Calculating ˆ̀and ε̂ relies on a grid {bi,w|w= 1, . . . , ngrid} of equidistant

feasible bids for each player i, in order to cover the spaces Ai. For given vi and bi, one can

then approximate the interim loss ` via

λ̂i(vi; bi, β−i)≡ max
w∈{1,...,ngrid}

1

nbatch

nbatch∑

h=1

ui (vi; bi,w, β−i(vh,−i))−ui (vi; bi, β−i(vh,−i)) . (5.3)

Here the batch nbatch only runs across opponent valuations v−i. Evaluating λ̂i for a single

valuation vi therefore requires (nbatch + 1) · ngrid simulations of the auction. The ex-ante

loss can then be estimated as ˆ̀= 1
nbatch

∑
h λ̂i(vh,i;βi(vh,i), β−i).

The worst-case interim loss is then given by ε̂= maxh λ̂i(vh,i;βi(vh,i), β−i). Bosshard et al.

(2020) proofed that this estimator can be shown to be an upper bound under further

assumptions on the mechanism and the strategies. They additionally provide empirical

evidence of the approximation quality of the estimator which justifies its usage.

Both computations can use a shared state for the estimations of λ̂ but nevertheless O(n ·
ngrid · n2

batch) auction simulations are necessary to compute these metrics. In comparison,

a learning update in NPGA needs O(n · P · nbatch) simulations only, with the population

size P � ngrid. Due to the high cost of these additional metrics on dense grids bi,w, we

evaluate the metrics ˆ̀ and ε̂ on smaller batch sizes than L, and only once at the end of an

experiment. Finally, to approximate the relative utility loss (Equation 5.1) in the absence

of known BNE, we estimate the relative ex-ante utility loss incurred in hindsight by not

playing a best response, given as

L̂(βi) ≡ 1− ûi(β)

ûi(β) + ˆ̀
i(β)

. (5.4)

We choose this as our main evaluation criterion as its calculation is feasible and its values

are comparable across the variety of settings considered.

6. Results

In this section, we report the results of several challenging auction models that allow

for various types of asymmetries among bidders and fairly general market environments.

In many of these environments, we have analytical solutions which provide unambiguous

baselines. Note that these environments already describe some of the most challenging

equilibrium problems to solve analytically. For more complex models, closed-form solutions



Bichler, Kohring, Heidekrüger: Learning Equilibria in Asymmetric Auction Games
16 INFORMS Journal on Computing 35(3), pp. 523–542, © 2023 INFORMS

of Bayesian Nash equilibrium strategies are typically not available. We introduce these

environments individually and report the results and the runtimes. As we will observe,

NPGA converges to approximate equilibria in all presented settings.

We use common hyperparameters across almost all settings (except where noted other-

wise): fully connected neural networks with two hidden layers of ten nodes each with SeLU

activations (Klambauer et al. 2017), as well as ReLU activations in the output layer. The

parameters θi are then given by the weights and biases of these networks. The resulting

parameter dimensionality di for each bidder thus depends on the dimensionality of the

input and output layers and ranges from di = 141, in the single-item settings, to di = 372 in

the 12-item multi-unit setting. All experiments were performed on a single Nvidia GeForce

2080Ti with 11GB of RAM and batch sizes in Monte Carlo sampling were chosen to max-

imize GPU-RAM utilization: A learning batch size of 218; primary evaluation batch size

(for L, L2) of 222; and secondary evaluation batch size nbatch = 212 and grid size ngrid = 210

(for ˆ̀, ε̂). Each experiment was repeated ten times with 2,000 learning iterations each.

Section 1 in the online supplement (Bichler et al. 2023) gives insights on the influence of

the batch size and the population size, arguably the most important hyperparameters of

NPGA. In the single-item auctions, it takes approximately 0.3 seconds to compute each

learning iteration, whereas the combinatorial LLG auction takes about 2.0 seconds due to

the complexity of the auction mechanism. For the larger LLLLGG and LLLLRRG auctions

under the first-price payment rule, the computation takes under one second per iteration.

We present a thorough discussion of the factors which influence the computational cost

and runtimes in Subsection 6.6.

6.1. Single-Item Auctions with Asymmetric Priors

Our initial analysis focuses on a standard single-object first-price sealed-bid (FPSB) auction

with asymmetric priors, where bidder valuations are drawn from two different distributions.

FPSB auctions have mostly been analyzed with symmetric priors and equilibrium bid

functions. Asymmetric prior distributions are harder to analyze analytically compared to

symmetric environments, but a few environments with analytical solutions are known. We

analyze three different environments, one with two overlapping uniform distributions and a

unique BNE, one with two disjunct uniform distributions and multiple BNE, and another

one where the priors are non-linear beta functions.
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Figure 1 Equilibrium bid function and strategies

learned by NPGA in the asymmet-

ric single-item setting with overlapping

valuations.
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Figure 2 Equilibrium bid function and strategies

learned by NPGA in the asymmetric

single-item setting with non-overlapping

valuations.

Table 1 Average losses achieved in the asymmetric first-price setting with overlapping valuations. Mean and

standard deviation are aggregated over ten runs of 2,000 iterations each. The time per iteration is 0.2886

(0.0280) seconds.

bidder L L̂ L2

strong bidder 0.0024 (0.0026) 0.0178 (0.0037) 0.0104 (0.0055)

weak bidder 0.0074 (0.0031) 0.0524 (0.0134) 0.0128 (0.0029)

6.1.1. Asymmetries Induced by Priors with Different Domains. We first analyze an

environment with two bidders who have overlapping uniform prior distributions supported

on (0, 1/2) and (0,1) describing a weak and a strong bidder, respectively. The analysis goes

back to Plum (1992). In the BNE, the weaker bidder bids more aggressively than the strong

bidder. Figure 1 shows an example of the learned and the analytical BNE bid functions

for both bidders. NPGA achieves a relative loss L below 1% for both types of bidders.

Aggregated performance results over ten runs are displayed in Table 1.

This Bayes-Nash equilibrium is unique (Maskin and Riley 2000, Lebrun 2006) given the

requirement that bidders may never bid above their observed valuation. Kaplan and Zamir

(2015) relaxed this assumption. In their model, the prior distributions are non-overlapping,

which results in additional equilibria. In particular, in BNE 1 and 2, which are also depicted

in Figure 2, the weaker bidder has incentives to overbid. They conclude that the commonly

used assumption of no overbidding, or more generally, the elimination of weakly dominated

strategies, should be taken more carefully in asymmetric auctions.
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Table 2 Average NPGA losses achieved in asymmetric first-price setting with non-overlapping valuations.

Aggregated over ten runs of 2,000 iterations each and compared against the second equilibrium of Kaplan and

Zamir (2015). The time per iteration is 0.2856 (0.0221) seconds.

bidder LBNE2 L̂ LBNE2
2

strong bidder 0.0080 (0.0097) 0.0104 (0.0012) 0.0109 (0.0085)

weak bidder 0.1687 (0.2310) 0.0229 (0.0140) 0.0544 (0.0161)

We analyzed NPGA in this setting with bidders that have non-overlapping uniform prior

distributions, V = (0,0.5)× (0.6,0.7) (see Table 2). In this model, there are three Bayesian

Nash equilibria. Despite the equilibrium selection problem in this game, starting from

truthfully initialized strategies, the bidding converges to BNE 2. The stronger bidder is

able to decrease her relative utility loss below 1%. Only the weaker bidder has difficulties

finding a particular strategy for low valuations because bids in this range are far from

competitive for any opposing bids and rarely, if ever, win. This strategic disadvantage

leads to sparse opportunities to learn in this specific setting, which in turn causes higher

relative errors. In fact, only about 1/5 of the sampled data, i.e., the highest valuations of

the weak bidder, are relevant for learning.

6.1.2. Asymmetries Induced by Different Prior Densities. For the single-item sym-

metric FPSB auction with two bidders and assuming uniform priors on (0,1), the equi-

librium strategies and market outcomes are well understood analytically. Apart from the

uniform distribution, we also want to analyze asymmetric environments with more complex

non-linear prior distributions. Therefore, we analyzed an environment with two bidders

whose values are drawn from a beta distribution B with parameters α,β > 0. Note that

for α= β = 1 the beta distribution equals the uniform distribution. Except for this special

case, no analytical equilibrium is known for the asymmetric case. Now we can analyze

diverse market outcomes by running NPGA for various combinations of these parame-

ters. As an example, we have selected a valuation prior of B(0.8,1.2) for the weak bidder

and B(1.2,0.8) for the strong bidder’s valuations prior. Note that NPGA has no access

to the underlying distributions explicitly, but it learns the opponent’s prior implicitly by

observing frequencies of the played actions.

As a result of the change in the prior distributions, we already see the change in strategy

in Figure 3 compared to the BNE of β(v) = 1
2
v under common uniform priors. As expected,
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Figure 3 Learned bid functions after 2,000 iterations for bidders with asymmetric priors: B(0.8,1.2) for the weak

bidder with an expected valuation of 0.4 and B(1.2,0.8) for the strong bidder with an expected valuation

of 0.6.

because of its strategic disadvantage, the weaker bidder bids more aggressively, whereas

the stronger bidder can lower its bids. As no analytical equilibrium is available to compare

against, we report the approximated utility loss L̂ from Equation 5.4—the amount of a

possible utility gain against the opponent—which decreases below 2.37% for the strong

bidder and to 3.48% for the weaker bidder. The time per iteration of NPGA of 0.3131

(±0.0220) seconds is comparable with the previous single-item experiments.

6.2. Multi-Unit Auctions with Asymmetric Bidders

This section is concerned with a specific type of multi-unit uniform-price auction with

two different classes of bidders for which a closed-form expression of the equilibrium is

not available. Such mechanisms are used in treasury bill auctions and also in electricity

markets. The environment is very large, with up to 12 units, and NPGA is able to compute

a sufficiently close equilibrium in a few minutes.

Demand reduction is an important characteristic of equilibrium bidding strategies in

uniform-price auctions (Krishna 2009): Bidders submit bids on fewer items in order to

reduce competition, lower the price, and increase their payoffs. The phenomenon of demand

reduction can be observed in all our experiments.

In our experiments, we consider two weak bidders with uniform, marginally decreasing

valuations on Vi = {vi ∈ [0,1]m : vi,1 ≥ · · · ≥ vi,m} and one strong bidder with analogously

distributed valuations on [0,2]. Unlike in general CAs in multi-unit auctions it is sufficient

to bid on individual items rather than bundles. Thus, the action space is given by Ai =Rm
+

and the neural network strategies take m inputs (the marginal valuations) and produce m

outputs (the bids for each incremental unit received).
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Figure 4 Revenue R and efficiency E during self-play in different asymmetric multi-unit auctions. The means

(opaque lines) and the standard deviations (shaded area) are depicted.

Simulating market sizes with m∈ {4,8,12}, one can observe that the agents reduce their

demand by lowering bids for multiple goods to zero. For example, in the market with four

goods, the strong bidder and weak bidders only bid on two items and one item, respectively.

Thus, they learn to collaborate to maximize their payoff. For the remaining demand, the

bids are approximately truthful. Similar observations can be made in the other markets for

a corresponding higher demand. Figure 4 shows how the seller’s revenue decreases to zero

when bidders learn to reduce demand and how the efficiency decreases when initialized

with truthful bidding strategies. We do not plot the exact bid functions learned due to

space constraints. Note that demand reduction happens when the bidders’ demand can be

easily distributed among the available goods. In other experiments, where there are only

very few items and many bidders, the prices stay high.

The approximate utility loss decreases consistently below 1% for all runs.2 With the

default batch size, the experiments with 4, 8, and 12 units took on average about 1.1557

(±0.022), 1.3056 (±0.0207), and 2.405 (±0.0259) seconds, respectively.

6.3. The Asymmetric LLG Model

Next, we focus on the LLG model with three single-minded bidders and two heteroge-

neous objects or items (Ausubel et al. 2006). This model has received significant attention

2 Note that we have increased the grid size used for computing the utility loss for the 4, 8, and 12 item case to 214,
216, and 222, respectively. The resulting grid is not as dense as if it was applied in single-dimensional environments.
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in the study of core-selecting combinatorial auctions, which are being used in spectrum

auctions worldwide (Goeree and Lien 2016, Bichler and Goeree 2017). After the auction-

eer has determined the welfare-maximizing allocation, she computes a minimum-revenue

core-selecting payment, where winning bidders merely have to pay enough such that no

coalition of bidders could potentially deviate together with the auctioneer.

The LLG model is small enough to allow for game-theoretical analysis. Here, the global

bidder is interested only in winning the package of both objects while the two local bidders

desire exactly one of the objects each. The local bidders thus only need to outbid the global

bidder. Both local bidders have an incentive to free-ride on each other, reminiscent of public

goods problems. In the original model, the local bidders’ priors are symmetric and the

global bidder has a simple dominant strategy to bid truthfully in any core-selecting auction.

Analytical solutions for core-selecting combinatorial auctions with different payment rules

exist (Goeree and Lien 2016, Ausubel and Baranov 2019). Gradient dynamics were shown

to achieve very good results in this standard model and approximate the BNE of the local

bidders closely (Bichler et al. 2021).

Ott and Beck (2013) introduced a version with asymmetry among the local bidders

that causes overbidding by one of the local bidders, which may help explain the outcomes

observed in several real-world spectrum auctions. Unlike in the original LLG model, Ott

and Beck (2013) define bidder local 2 to be favored, meaning that she pays VCG prices3 for

every realization of bids and for every optimal assignment of the items. As a result, bidder

local 1 has to pay a higher price. The authors derive an intriguing BNE in which bidder

local 1 overbids while both other bidders report their valuations truthfully. More precisely,

bidder local 1 places bids for two bundles: the bundle containing only her desired item, as

well as the package of both items. Her bid for the package of both items always exceeds

the bid for the single desired good, which implies positive demand for the second item

even though it provides no additional value to the bidder. This results from an incentive

of bidder local 1 to raise the other bidders’ payments so that her payment decreases.

Such overbidding can increase the prices for opponents, which might lead to high revenues

and price differences among bidders. They characterize the exact BNE strategy which is

depicted in Figure 5 below. This model is important as it shows that the assumption

3 Vickrey-Clarke-Groves (VCG) payments are calculated such that each bidder pays for the harm they cause to other
bidders by participating in the auction.
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Table 3 Results in the asymmetric LLG setting after 2,000 iterations and averaged over ten repetitions. The

mean and standard deviation are shown.

bidder L L̂ L2

local 1 0.0005 (0.0005) 0.0119 (0.0107) 0.0353 (0.0082)

local 2 0.0001 (0.0001) 0.0172 (0.0151) 0.1146 (0.0600)

global 0.0000 (0.0000) 0.0058 (0.0054) 0.0281 (0.0112)

that each player only needs to bid for her bundle of interest is, in fact, restrictive, even

when the single-mindedness of bidders is common knowledge. Without this assumption,

very different equilibrium behavior can emerge as was recently discussed by Bosshard and

Seuken (2021).
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Figure 5 Learned strategies in the asymmetric LLG setting. The left two subplots depict the bids on the individual

items that must compete with the bundle bids in the rightmost plot. Bidders 1 and 3 learn to bid

almost truthfully and bidder 1 indeed learns to overbid on the bundle as the theory suggests.

Table 3 shows the performance of NPGA in this market. The resulting loss in equilibrium

compared to adhering to the analytical BNE strategy L is well below 0.1% across all agents.

Note that the bidders local 2 and global indeed learn to report their valuations truthfully

for item B and the bundle, respectively. There is a small deviation from the analytical BNE

for bidder local 2, who decreases her bundle bid slightly below her valuation. However, she

would not have to bid on the bundle at all in equilibrium: Note that when bidding the same

value on item B and the bundle, she would never be allocated the bundle in this auction.

As such, the bid on the package of both items learned is irrelevant and the outcome of
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the auction under the learned NPGA strategies will always be identical in terms of prices

and allocations to those in the analytical BNE. Importantly, the bundle bid for bidder

local 1 indeed lies above the truthful bid for high valuations, which describes a non-obvious

bidding strategy. Notably, NPGA can discover this incentive for overbidding. We point out

that there is a minor difference in the NPGA strategy and the BNE in the bundle bid of

bidder local 1 for low valuations. However, this difference has a negligible impact on the

expected utility of any of the agents.

The time per NPGA update iteration averages at 1.9602 (±0.0358) seconds. Here, we

clearly see the computational impact of allocating a bundle of goods, and computing the

corresponding prices, as compared to auctions with a single good or multiple goods that

are sold individually. The computational workload lies mainly in simulating the auction

outcomes and not in learning and updating the strategies themselves, as we will discuss in

Subsection 6.6.

6.4. The Split-Award Auction Model

Even in the asymmetric LLG model discussed above, each bidder is only interested in

one package. An environment of a combinatorial auction with multi-minded bidders was

analyzed in Anton and Yao (1992) and later in Kokott et al. (2019). This model is known

to have multiple pure BNE, and it is interesting to understand how NPGA deals with the

resulting equilibrium selection problem.

The model is a reverse auction and it is described by the bidders’ type (or cost) distri-

bution

Vi = {vi ∈R2 : vi,1 ∼ F, vi,2 =C · vi,1}, i= 1,2,

where vi,1 corresponds to the cost of the 50% lot (or items) and the efficiency parameter

C corresponds to the fraction of total costs for one of the lots. In our experiments we

set parameters F = U(1.0,1.4) with C = 0.3, being consistent to prior experimental work

(Kokott et al. 2019). The environment describes diseconomies of scale in the production

costs, which make the game strategically interesting.

There are two classes of Bayesian Nash equilibria in this game: First, there is a (single) so-

called “winner-takes-all” equilibrium (WTA), which is economically inefficient and in which

one bidder wins both items. The other class comprises a continuum of efficient “pooling

equilibria” where both suppliers coordinate and reach a common price such that each
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Figure 6 The figure depicts the winner-takes-all equilibrium (solid line), the bounds for the range of efficient

pooling equilibria (shaded), and the NPGA strategies (dotted line) for the first-price split-award auction.

As the NPGA strategy is within the continuum of efficient pooling equilibria, two bidders playing

according to this strategy always end up with a split contract for one lot each.

bidder wins one of the goods (Anton and Yao 1992). In Figure 6, this class is represented

by the shaded area. In such a pooling strategy, the two bidders select a price independent

of their type or value. The payoff-dominant strategy for each bidder is achieved in the

pooling equilibrium with the highest bids on a single lot. Apart from these two classes of

pure-strategy Nash equilibria, hybrid equilibria are known to exist and there might also

be mixed equilibria in nondeterministic strategies, which makes this setting strategically

challenging.

Figure 6 depicts the analytically known pure-strategy BNE alongside a strategy learned

via NPGA. Running NPGA multiple times, it always converges to a state close to the

bidder-optimal pooling BNE: the bidders cooperate in the split equilibrium, where each

one wins one lot a high price. NPGA reaches an average utility of 0.384 over ten runs

compared to an expected utility of 0.34 in the analytical BNE. This outcome is notable as

it requires coordination between the players which is strategically much more challenging

than the simple competition to win both items at once, which resembles a single-item

auction: To achieve a pooling equilibrium, players must not only submit a high bid for the

single-lot, but also need to coordinate on a bid for the two-item bundle, such that deviating

from the pooling strategy does not become profitable for the opponent.
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Table 4 Results of NPGA after 5,000 iterations in the LLLLGG first-price auction. Results are averages over

ten replications and the standard deviation is displayed in brackets.

bidder ũ ε̂ L̂

globals 0.2366 (0.0040) 0.0235 (0.0026) 0.0171 (0.0006)

locals 0.1793 (0.0012) 0.0241 (0.0024) 0.0230 (0.0006)

With NPGA, the agents learn to bid accordingly on the 100% share in this equilibrium,

but this bid becomes subject to minor random changes as there is no “reward signal,” that

is, the bid does not determine the price. In Figure 6 one can also see that bidding on the

50% lot is very close to the payoff-dominant (highest) pooling bid, whereas the bid on the

100% share lies within the continuum of possible equilibria. The distance in strategy space

L2 decreases to 0.0251, where we only measure the distance of the winning bid as the other

bid falls within the continuum of possible BNE bids. The relative ex-ante utility loss L
decreases to 0.0185 and L̂ also falls below 2%. The average time per iteration of 0.4627

(±0.0154) seconds is again much lower than in the combinatorial LLG auction.

6.5. Large Combinatorial Auction Models

Finally, we analyze the LLLLGG model which was introduced by Bosshard et al. (2020) as

a benchmark for equilibrium computation, as well as an extension, the LLLLRRG model.

There is little hope for analytical solutions to such problems and the fact that the win-

ner determination and payment rules involve NP-hard problems makes them challenging

problems for equilibrium computation.

In the LLLLGG model six bidders compete for eight items: Inspired by geographical

constraints, four of the bidders are “local” and are interested in two overlapping bundles

of two items each. The other two bidders are “global”, and each aims to win one of two

larger bundles comprising four items each. These bidder classes are asymmetric and no

analytical BNE is known. Therefore, we again report the utility loss that we find after

learning with NPGA.

As shown in Figure 7, the bidders’ utility converges quickly to around 0.24 (local bid-

ders) and 0.18 (global bidders) and the utility losses drop quickly. Due to the computa-

tional requirements of this model, we reduced the number of experiments. Both bidders

show a small relative ex-ante utility loss of L̂ < 1.8% and 2.4% for the global and local

bidders, respectively. Direct runtime comparisons to other state-of-the-art methods like
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Figure 7 Ex-ante utility ũ and loss L̂ of in NPGA self-play in the LLLLGG first-price auction. The shaded area

and line show mean and standard deviation over ten repetitions.

Bosshard et al. (2017, 2020) are difficult due to differences of NPGA and their method in

terms of goals (ex-ante vs. “stronger” ex-interim equilibria), implementation (generic vs.

setting-specific), and hardware architecture (consumer-grade GPU vs. CPU-cluster). For

the LLLLGG first-price auction, Bosshard et al. (2017) report an estimated absolute ex-

interim 0.0037-BNE computed in 54,384 CPU-core hours. NPGA, on the other hand, finds

an estimated (absolute) ex-ante 0.0042-BNE (absolute ex-interim 0.0241) in 38.3 minutes

(corresponding to 0.4616 (±0.0010) seconds per iteration times 5,000 iterations) on a single

GPU (≈ 2,895 CUDA-core-hours).

We also explore a modified version, which we call LLLLRRG, which adds a third class

of bidders interested in winning all eight items. Figure 4 in the online supplement (Bichler

et al. 2023) depicts the valuation structure. This larger setting has not been explored

in the literature previously and, to our knowledge, is the largest combinatorial auction

for which a numerical BNE has been computed to date. Note that this environment is

highly challenging for equilibrium computation because the auction mechanism needs to

solve an NP-hard problem. One iteration of NPGA in this first-price auction takes on

average 0.8097 (±0.0010) seconds on our machine. Table 5 shows the full results under the

same hyperparameters as in the LLLLGG experiments. The relative utility loss decreases

proportionally to the bidders’ strength: to values below 1% for the global bidder and to

values below 3.9% for the local bidders.
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Table 5 Results (mean and standard deviation) in the LLLLRRG setting after 5,000 iterations and averaged

over three repetitions.

bidder ũ ε̂ L̂

locals 0.0939 (0.0009) 0.0194 (0.0013) 0.0382 (0.0016)

regionals 0.1069 (0.0024) 0.0192 (0.0004) 0.0288 (0.0001)

global 0.4396 (0.0044) 0.0356 (0.0031) 0.0093 (0.0009)

Table 6 Overview of all auction environments with the corresponding NPGA hyperparameters and the resulting

number of simulations and runtimes. One NPGA iteration requires nmodels ·nbatch · (P + 1) auction evaluations,

where batches are computed in parallel and model perturbations sequentially.

setting nbatch P
number of
iterations

per iteration total
time (s) auctions time (h:m:s) auctions

single-item uniform
overlapping FPSB
(6.1.1)

262,144 64 2,000 0.2886 34,078,720 0:09:37.20 68,157,440,000

single-item uniform
non-overlapping
FPSB (6.1.1)

262,144 64 2,000 0.2856 34,078,720 0:09:31.20 68,157,440,000

single-item beta
asymmetric FPSB
(6.1.2)

262,144 64 2,000 0.3131 34,078,720 0:10:26.20 68,157,440,000

multi-unit with
4 units (6.2)

262,144 64 2,000 1.1557 34,078,720 0:38:31.40 68,157,440,000

multi-unit with
8 units (6.2)

262,144 64 2,000 1.3056 34,078,720 0:43:31.20 68,157,440,000

multi-unit with
12 units (6.2)

262,144 64 2,000 2.4050 34,078,720 1:20:10.00 68,157,440,000

LLG, adapted
VCG (6.3)

131,072 64 2,000 1.9602 25,559,040 1:05:20.40 51,118,080,000

split-award
FPSB (6.4)

262,144 64 2,000 0.4627 17,039,360 0:15:25.40 34,078,720,000

LLLLGG
FPSB (6.5)

262,144 64 5,000 0.4616 34,078,720 0:38:28.00 170,393,600,000

LLLLRRG
FPSB (6.5)

262,144 64 5,000 0.8097 51,118,080 1:07:28.50 255,590,400,000

6.6. Scalability and Computational Costs

Let us now provide a summary of all experiments with their runtimes (Table 6) and a

discussion of the computational cost. The runtimes range from a few minutes up to 80

minutes for the most complex scenarios with an NP-hard allocation problem and eight

bidders. Let us put these empirical results into perspective. At first sight, it is surprising

that we can solve such equilibrium problems at all. As discussed in the introduction, the
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computational complexity of computing BNE in auction games is, in general, an open

problem. The analysis by Cai and Papadimitriou (2014) for a specific asymmetric multi-

object auction model proves PP-hardness of exact BNE computation and this suggests that

the class of problems is generally very hard. They also show that learning only approximate

BNE cannot be polynomial in the number of items to be sold in the auction. As a result,

no algorithm can be expected to efficiently compute approximate BNE in the general case.

Note that the hardness of approximating a BNE also hinges on the observation that the

number of strategies grows quickly in the number of items in their environment. In many

auction models, the number of relevant strategies is small even with multiple items. For

example, bidders might only be interested in a few out of many items in a combinatorial

auction. Even in large combinatorial auctions with many bidders, one can typically limit

attention to the strategic analysis of a few pivotal bidders.

In this paper, we have analyzed a number of challenging environments which are sig-

nificantly more complex than models for which we can derive an equilibrium strategy

analytically. For example, combinatorial auctions require solving an NP-hard winner deter-

mination problem. Yet, we can solve problems with eight items and seven bidders interested

in multiple packages within 67 minutes.

Let us analyze the computational costs of NPGA in more detail. As a zeroth-order

method, the vast majority of the computational cost required by NPGA results from cal-

culating samples of the ex-post utilities u across the joint valuation space V, in order to

compute estimates of ũ via Monte Carlo integration (i.e., lines 4 and 8 of Algorithm 1).

Here, the main driver of computational cost is the auction mechanism itself, i.e., the cost of

computing the winning allocation and the price vector. The role of the remaining computa-

tions in NPGA — namely sampling joint valuations v ∈ V and noise vectors εp, performing

forward passes bi = πi(vi;θi), aggregating auction sample results into the gradient esti-

mates, and updating the parameters — is negligible in comparison. The cost of computing

an approximate BNE using NPGA is thus determined, on the one hand, by the sample

efficiency of the algorithm, that is, the number of auction simulations required, and, on

the other hand, the computational cost of computing the individual auction samples. As

we will see, both of these aspects vary significantly across different auction settings.

First, let us discuss the computational cost of performing auction simulations ui(vi, b)

for given joint valuations v and bids b according to the players’ current or perturbed
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neural net strategies. This complexity varies significantly between auction settings and

pricing rules. For example, in a single-item first-price auction, determining the allocation

and prices only requires finding a (batch-wise) maximum, which is computable in O(n),

whereas computing core prices in a combinatorial auction requires solving a sequence of

constrained quadratic problems, which themselves already constitute NP-hard problems

(in the number of bidders and items) in general.

For all settings analyzed in this paper, we leverage custom implementations of the auction

mechanisms that allow data-parallel simulation on GPUs. As a result, the time to compute

auction samples is approximately constant in the batch size as long as an entire batch fits

in GPU memory, and grows linearly with batch size thereafter. (The utility loss estimator,

whose computation is independent of the learning algorithm NPGA, exhibits the same

dynamic. Figure 3 in the online supplement (Bichler et al. 2023) depicts the constant-then-

linear time complexity as a function of memory footprint.) For the experiments presented in

this paper, performing a single iteration of NPGA, which involves computing P +1 batches

of auctions for each player, takes between 0.3 and 2.4 seconds on a single Nvidia GeForce

RTX 2080Ti GPU (see Table 6). While our implementation sequentially computes the

utilities for each of the P model perturbations, these operations could easily be parallelized

across larger or multiple GPUs.

The other important aspect is the sample complexity of the algorithm, which further

breaks down into the number of samples needed for gradient estimation in each iteration,

and the number of iterations needed to converge to an equilibrium. As discussed above, the

asymmetric settings we study differ from those in Bichler et al. (2021) in that no theoretical

convergence guarantee is available for simultaneous gradient methods (or any no-regret

learner), even asymptotically. Consequently, it is difficult to characterize the number of

gradient updates needed to converge to an approximate equilibrium, even if an exact oracle

for the ex-ante gradient were available.

The gradient estimation in one iteration of NPGA requires nbatch · (P + 1) auction sim-

ulations for each player (or class of identical players). Both higher batch sizes and higher

population sizes will reduce the variance of the estimator at the expense of higher com-

putational costs. An exemplary analysis of the impact of these hyperparameters on the

learned equilibrium outcomes in the LLLLGG setting is presented in the online supple-

ment (Bichler et al. 2023). As the estimation is performed via Monte Carlo integration,
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it is susceptible to the curse of dimensionality: Given a fixed batch size of samples, the

variance of the estimator will increase with the dimensionality of the valuation space V.

Furthermore, the specific prior distributions F may also affect the fidelity of the Monte

Carlo estimator: For example, we observe that ceteris paribus, settings with uniform priors

exhibit lower variance in the gradient estimator, compared to nonuniform priors. Intu-

itively, this is because the tails of the distribution, particularly for the highest valuations,

play a significant role in the total achievable utility of a player. As a result, more samples

are necessary to adequately calculate the utility contribution of these low-density regions.

For example, NPGA would require more iterations to achieve the same performance in

the asymmetric setting with Beta-distributed priors (Subsection 6.1.2). In practice, one

may employ several variance-reduction techniques, such as importance-sampling or low-

discrepancy sequences of quasi-random valuation samples to further improve the sample

efficiency of Monte Carlo integration (Bosshard et al. 2020). While these methods are con-

ceptually applicable to NPGA, they require setting-specific implementations and are not

explored further in this work.

In summary, the key drivers for the total runtime of NPGA are the number of players,

number of items, choice of prior distribution, and auction mechanism, as they influence

the ability to efficiently calculate low-variance gradient estimates. Importantly, we demon-

strate that NPGA, for the first time, finds close approximations of BNE in two of the

largest settings to date, namely a 12-item, 3-bidder multi-unit auction (Subsection 6.2),

and the 8-item, 7-bidder combinatorial auction with multi-minded bidders (“LLLLRRG”,

Subsection 6.5).

7. Conclusion

Understanding the result of strategic interaction on markets is a fundamental problem

and one that appears everywhere in economics and the management sciences. Equilibrium

solution concepts are our primary approach to studying the outcome of games with mul-

tiple interacting agents. They help understand fundamental questions about the efficiency

of markets, but equilibrium analysis can also provide tangible guidance for bidding in spe-

cific markets such as in procurement auctions or in high-stakes spectrum sales and for

the design of specific auction mechanisms. Algorithms to compute equilibrium strategies

in games would have a substantial impact on theory and practice. However, computing
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equilibrium in auction games with continuous action space and value distributions turned

out very challenging. We know little about the existence of equilibrium in such auctions

and do not have a mathematical solution theory for the underlying differential equations

in more complex markets. Obviously, an equilibrium solution concept that is intractable is

of little value and can hardly serve as a prediction for the outcome of a game. Equilibrium

learning provides a reasonable behavioral model of agents in a market. While the imple-

mentation of equilibrium learning algorithms in auction games is challenging, we show that

NPGA reliably finds equilibrium in a surprisingly wide array of complex auction models.

The experimental results reported in this paper show that the gradient-based algorithm

implemented in NPGA finds BNE even in asymmetric environments with multiple equi-

libria. Such asymmetric environments required us to train multiple neural networks with

multiple outputs, where convergence to the bidder-optimal equilibrium is far from obvious.

An open question concerns a broader theoretical characterization of Bayesian games in

which NPGA converges to a Bayesian Nash equilibrium. However, this is a very challenging

theoretical endeavor that is beyond this article. Learning dynamics do not generally obtain

a Nash equilibrium (Benaim and Hirsch 1999). A number of recent results on matrix games

showed that gradient dynamics can either circle, diverge, or even be chaotic (Sanders et al.

2018). Actually, the study of gradient dynamics in games is akin to studying dynamical

systems and characterizing environments, where gradient dynamics converge to a Nash

equilibrium (if one exists), can be arbitrarily complex (Andrade et al. 2021).

However, even if we do not know a priori if an algorithm converges, we can verify an

approximate BNE ex-post, if the algorithm converges. If we analyze many environments

as in this article, we might be able to induce characteristics of auction models that can

be learned via NPGA and those that cannot. In our experiments, we found that NPGA

always converged to an approximate Bayes-Nash equilibrium in single- and multi-object

auctions and we did not encounter cycling or chaotic behavior as was observed for finite

games. As such, NPGA provides the foundation for widely applicable equilibrium solvers.
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//gallica.bnf.fr/ark:/12148/bpt6k6117257c.

Daskalakis C, Goldberg P, Papadimitriou C (2009) The Complexity of Computing a Nash Equilibrium.

SIAM Journal on Computing 39(1):195–259, ISSN 0097-5397, URL http://dx.doi.org/10.1137/

070699652.

Etessami K, Yannakakis M (2007) On the complexity of nash equilibria and other fixed points (extended

abstract). Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,

113–123, FOCS ’07 (USA: IEEE Computer Society), ISBN 0769530109, URL http://dx.doi.org/10.

1109/FOCS.2007.48.
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List of Symbols

A The set of feasible action profiles in a Bayesian game, i.e., bid profiles in actions. Cross product of

individual players’ action sets: A≡A1× · · ·×An

β A joint strategy profile in a Bayesian Game.

β∗ A strategy profile that constitutes a Bayesian Nash equilibrium.

βi A feasible pure strategy of player i: βi : Vi→Ai.

b An action/bid profile. b∈A
B(α,β) The Beta-distribution with shape parameters α and β.

bi An action/bid for player i. bi ∈Ai.

C Efficiency parameter in split-award auction setting. See Subsection 6.4.

di The dimension of the parameter vector θi of player i’s neural network πi.

ε The approximation-bound in an approximate BNE, indicating that each player’s incentive to deviate

is less than ε≥ 0.

ε̂ An ex-post estimator for the worst-case ex-interim loss. Does not require access to an analytical

BNE. See Section 5.

εp The Gaussian noise vector of perturbation p in NPGA gradient computation.

φp The fitness of perturbation θi;p of player i’s neural network in NPGA gradient computation.

Fv The joint prior distribution over types, marginalized by Fvi .
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G A Bayesian Game G= (I,A,V, F,u).

−i Index identifying a partial action/bid/strategy profile for all bidders except player i.

I The set of players in a game. Indexed by i. Total number of players is n.

i Index identifying a particular player.

K The set of feasible bundles of items, generally the power set of M.

ˆ̀
i An estimator of i’s ex-ante loss ˜̀

i(βi, β−i) computed ex-post from observational data. Does not

require access to an analytical BNE. See Section 5.

λ̂i Auxiliary quantity in the computation of ˆ̀ and ε̂. λ̂i(vi; bi, β−i) constitutes an ex-post estimator for

the interim utility loss `i of playing bi at valuation vi. See Equation 5.3.

L̂ An ex-post estimator for the relative utility loss L(βi), when no access to the analytical BNE is

available. See Equation 5.4.

L The relative utility loss L(βi) of strategy βi compared to an analytical BNE β∗. See Equation 5.1.

`i The interim utility loss of player i. See Equation 3.3.

˜̀
i The ex-ante utility loss of player i. See Equation 3.7.

L2 The L2-loss L2(βi) of a strategy βi compared to BNE β∗, i.e., the distance of βi and β∗i in strategy

space. See Equation 5.2.

M The set of items sold in an auction. Total number of items is m. Items can be homogenous or

heterogeneous.

m Total number of items in an auction.

N (µ,σ2) Gaussian Distribution with mean µ and standard deviation σ.

N The set of natural numbers.

n The total number of players in a game.

nbatch Batch size used in sampling opponent behavior when computing ex-post estimators ˆ̀ and ε̂. See

Section 5.

ngrid Size of the discrete grid of alternative bids evaluated to compute ex-post estimators ˆ̀ and ε̂. See

Section 5.

PΣi
The projection function onto the set Σi.

πi Neural network for player i, implementing i bidding strategy βi via βi(vi) := πi(vi;θi), where θi ∈
Θi =Rdi are the network’s parameters.

P Hyperparameter in NPGA. The population size, or number of perturbations of θi considered for each

iteration of gradient computation.

p Index used for permutations 1, . . . , P in NPGA gradient computation.

pi Price paid by bidder i to the auctioneer after receiving bundle xi.

R The set of real numbers.

Σ The set of feasible joint strategy profiles.
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σ Hyperparameter in NPGA. The standard deviation of the Gaussian noise used in permuting neural

network parameters.

Σi The set of feasible (pure) strategies for player i. Generally an infinite-dimensionally Hilbert space.

θi The parameter vector of player i’s neural network πi.

t Time / iteration number.

ûi An estimator of ex-ante expected utility ũ, computed ex-post via Monte Carlo integration over a

large batch of realizations of v∼ Fv.

U(l, h) Uniform distribution with lower bound l and upper bound h.

ui The expected interim utility ui(vi, bi, β−i) of player i. See Equation 3.2.

ũi The expected ex-ante utility ũi(βi, β−i) of player i. See Equation 3.5.

ui The ex-post utility function ui(vi, bi, b−i) of player i. Generally nondifferentiable.

V The set of possible valuation profiles, i.e., generally the support of Fv.

v The private valuation or type profile, v ∈ V. Generally used to refer to the Random Variable, some-

times also used to refer to a realization of the RV.

vi The private valuation of player i. Generally a random vector of length 2m, indicating i’s willingness

to pay when allocated a certain bundle. We also write vi(xi) for the entry of vi corresponding to the

(scalar) valuation of player i for bundle xi ∈K.

xi The bundle of items allocated to player i. xi ∈K.
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1. Performance and Runtime Analysis

In the following, we look at the influence of some of the hyperparameters on the perfor-

mance and runtime of the computation. We will illustrate that based on the example of

the FPSB LLLLGG auction format.

1.1. Influence of batch size

The batch size corresponds to the number of auction games that are simultaneously played

under the current strategies. Strategy updates are solely based on any changes in the utility

estimate averaged over these batches, thus making the batch size one of the most crucial

parameters of NPGA. Except for the parameter of interest (the batch size here), we leave

all other parameters unchanged from their default values from Section 6 in the main paper.

Results for different batch sizes can be seen in Figure 1 for the first 500 iterations. As

expected, lower batch sizes dramatically increase the variance in the utility estimates (see

left plot) and thus prevent quick learning (see right plot).

Furthermore, the average time per iteration increases slowly as to be expected by vec-

torized GPU implementation. The average time per iteration for batch sizes of 64, 1,024,

and 262,144 are 0.3717 (±0.0878), 0.3741 (±0.0757), and 0.4681 (±0.0283) seconds, respec-

tively. Only once the available memory and available cores run out, the computation would

have to be done in a sequential manner, which would lead to a drastic increase in compu-

tation time.
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Figure 1 Average utility of both bidder types (left) and relative utility loss (right) while learning via NPGA in

LLLLGG first-price auction. Runs for three different population sizes, where each configuration was run

three times (mean ± std), are depicted.

1.2. Influence of population size

The population size refers to the number of sampled parameters that are considered during

one estimation of the pseudogradient. Even though the needed utility estimates for each

sample are independent of one another and could thus in principle be calculated in parallel,

this is not implemented in favor of larger batch sizes that allow for better utility estimates.

Therefore, it influences the running time linearly. Results for different population sizes can

be seen in Figure 2 for the first 500 iterations.

As can be seen, the utility for larger population sizes changes quicker while the utility

loss also decreases faster. The influence when increasing the population size is not as strong

compared to changes in the batch size. This justifies using most of the GPU memory for

sampling a large number of auction games for precise utility estimates.

Furthermore, the average time per iteration increases quickly as to be expected by the

sequential computation of the fitness of individual population samples. The average time

per iteration for population sizes of 16, 32, and 64 are 0.1264 (±0.0042), 0.2426 (±0.0162),

and 0.4687 (±0.0283) seconds, respectively.

The observations extend qualitatively to other auction formats and payment rules except

for an increased run time for core selecting payment rules.
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Figure 2 Average utility of both bidder types (left) and relative utility loss (right) while learning via NPGA in

LLLLGG first-price auction. Runs for three different batch sizes, where each configuration was run three

times (mean ± std), are depicted.

2. Approximation quality of utility loss

As we rely on the approximate utility loss L̂ from Equation 5.4, it is essential to have a

reference of its estimation quality. Therefore, we have run the calculations for a variety of

values for nbatch and ngrid in equilibrium for the weak bidder in the single-item auction with

overlapping valuations. Of course, here the exact L is known to be zero. Figure 3 shows

the results.

Let us emphasize two observations. First, counterintuitively, when increasing the grid size

(comparing a finer grid of possible best responses), the utility loss increases. This is due to

the bias introduced by choosing the best responses that maximize the utility of a particular

sample, thus always selecting just that action that exploits the particular sample the most.

One sees, however, that this effect decreases in severity with increasing grid sizes. Second,

the right plot clearly shows the massive computational advantage of GPU computation

as the calculations can be run in parallel, having nearly constant computational time for

increasing batch sizes, as long as the tensor fits in memory.

In terms of scalability one has, on the one hand, the number of opposing agents that

linearly affect the memory requirements, and on the other hand, the number of objects

for sale that makes it exponentially harder to find a best response with the same level of

accuracy.
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Figure 3 Approximation quality of the utility loss (left) and computing time (right) for different batch sizes and

different grid sizes averaged over ten runs each. The utility loss for the weak bidder in the single-item

auction with overlapping valuations from Subsubsection 6.1.1 is depicted. Note that all axes are log-

scaled.
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Figure 4 Valuations in the LLLLRRG auction model. The columns depict items A through H and the rows

correspond to the local, regional, and global bidders.

3. Valuations in the LLLLRRG auction

As introduced in Subsection 6.5 of the main papaer, Figure 4 gives an overview of which

agents are interested in which set of items (bundles) in the LLLLRRG auction.
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resulting modified games are generally not available. Consequently,
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tractable to compute approximations of Bayesian Nash equilibria.
Building on these advances and Bayesian optimization, we propose
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1 INTRODUCTION
A standard assumption in economic theory is that market partici-
pants are utility-maximizing, rational agents, and thus, one would
expect them to behave according to the market’s equilibrium. How-
ever, studies in behavioral economics have repeatedly shown that
human subjects do not conform to this assumption. A prominent
example is the phenomenon of overbidding in auctions. Particu-
larly in all-pay auctions, where all bidders have to pay their bid
to the auctioneer, not just the winner, this behavior extends to a
bimodal bidding pattern, where low-valued bidders underbid, and
high-valued bidders overbid their optimal strategy expressed by
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the risk-neutral Bayesian Nash Equilibrium [28]. This type of auc-
tion has many practical applications like research and development
activities in organizations or political campaigns [19]. Therefore,
understanding the reasons for this bimodal behavior is essential
and has been the subject of research in behavioral economics and
psychology. This question has been dubbed the Overbidding Puzzle.

Previous research has approached this problem by suggesting
that bidders either lack the cognitive capabilities to assess their
winning probabilities [1] or questioning the validity of assuming
risk-neutrality of the bidders [11, 18, 23]. A common threat in sev-
eral of these, partly contradictory, approaches is that they model
bidders having utility functions incorporating psychological effects
which are quantified via some numerical parameters. However, to
the authors’ knowledge, there has been no unified approach for es-
timating such utility function parameters across several approaches
and making their goodness-of-fit comparable on behavioral data. A
key difficulty to this has been the computational complexity of com-
puting the equilibria of the resulting parametrized auctions, which
are commonly modeled as continuous-type-and-action Bayesian
games. Analytical derivations of equilibria exist in some but not all
settings, making parameter estimation intractable in those settings
where they do not. Most recently, however, there has been progress
in approximating equilibria of such Bayesian games via numerical
techniques based on multi-agent learning.

In this study, we propose a novel estimation framework using
Bayesian Optimization and equilibrium learning techniques that,
for the first time, allows a quantitative comparison of the goodness-
of-fit to experimental data of various behavioral explanation at-
tempts to the Overbidding Puzzle. Here, we apply our method to
overbidding in symmetric all-pay auctions and the assumptions of
risk-averse and regretful bidders. Our empirical results coincide
with established results in the empirical literature in aspects where
quantitative results were previously available. However, our frame-
work is not restricted to either a specific auction mechanism, type
of utility function, or equilibrium learning method, such that future
research may apply it to other problems in behavioral economics
and behavioral psychology.

The remainder of this paper is structured as follows: In section 2,
we will define the problem setup and discuss relevant literature in
several overlapping fields. We formally introduce our estimation
scheme in section 3 and our experimental setup in section 4, before
discussing the results in section 5 and concluding the paper.



2 PRELIMINARIES AND RELATED
LITERATURE

2.1 Auctions and Equilibria
A Bayesian Game [21] is given by a tuple 𝐺 = (𝑁,V,A, 𝐹 ,𝑢).
𝑁 players, indexed by 𝑖 = 1, . . . , 𝑁 participate in the game. V =
{V1, . . . ,V𝑛} is the set of possible type profiles, which describe
private information available to the players when deciding their
strategic behavior. These types are drawn from some prior proba-
bility distribution 𝐹 that is assumed to be common knowledge. In
the context of private-value auctions, we will refer to types as the
valuations of the item(s) to be auctioned to the individual players.
Given knowledge of these types, players 𝑖 must then choose an
action 𝑏𝑖 from the set A𝑖 of available actions. In auctions, these
actions 𝑏𝑖 are called bids. Finally, 𝑢 is a vector of individual util-
ity functions 𝑢𝑖 : V𝑖 × A → R that describes the outcomes of
the game. Crucially, for each player, these utilities depend only
on their own type but on all players’ chosen actions. In order to
maximize her own utility, every player 𝑖 , therefore, needs to de-
cide on a strategy 𝛽𝑖 : V𝑖 → A𝑖 that will prescribe her action 𝑏𝑖
for a given valuation input 𝑣𝑖1. A central solution concept in the
study of Bayesian games is the Bayesian Nash Equilibrium (BNE),
which describes a strategy profile 𝛽★ = (𝛽★1 , . . . , 𝛽★𝑁 ) in which no
agent can improve their expected utility by unilaterally deviat-
ing. We will write 𝑢̃𝑖 (𝛽𝑖 , 𝛽−𝑖 ) = E𝑣∼𝐹 [𝑢𝑖 (𝑣𝑖 , 𝛽𝑖 (𝑣𝑖 ), 𝛽−𝑖 (𝑣−𝑖 ))] for
the (ex-ante) expected utility. Then, formally, 𝛽★ is an (ex-ante)
BNE if for all players 𝑖 and all possible strategies 𝛽𝑖 it holds that
𝑢̃𝑖 (𝛽★𝑖 , 𝛽★−𝑖 ) ≥ 𝑢̃𝑖 (𝛽𝑖 , 𝛽★−𝑖 ).

In the following, we will concern ourselves with all-pay auc-
tions in the independent private value model: Here, the players
compete for a single indivisible good, and the private valuations
{𝑣𝑖 }𝑁𝑖=1 are drawn independently from a continuous distribution
function 𝐹 . The uniform distribution is a common choice for 𝐹 in
many experiments. After drawing their valuations 𝑣𝑖 , the bidders
simultaneously submit their bids𝑏𝑖 and the one with the highest bid
wins the prize. In contrast to winner-pay auctions, all bidders must
pay their bid regardless of whether or not they won the good. This
payoff leads to the following risk-neutral utility function (RNU):

𝑢𝑖 (𝑣𝑖 , 𝑏𝑖 ) =
{
𝑣𝑖 − 𝑏𝑖 if 𝑖 wins, i.e. 𝑏𝑖 > max {𝑏−𝑖 }
−𝑏𝑖 if 𝑖 loses

Due to the symmetry of the bidder’s valuations, the derivation
of the risk-neutral Bayes Nash equilibrium (RNBNE) is straightfor-
ward in this setting. Assuming uniformly distributed valuations
supported on the interval [𝑎, 𝑏] ⊂ R+, its closed-form is given by
the optimal bid function 𝑏★(𝑣𝑖 ) = 𝑁−1

𝑁 (𝑏−𝑎)𝑁−1 𝑣
𝑁
𝑖 [29].

2.2 The Overbidding Puzzle
A common assumption in economical models is that in the long-
term, market participants will follow the strategies prescribed
by equilibria. However, in all-pay auctions, lab experiments have
shown that real-world bidders do not follow this strategy but, in
aggregate, submit higher bids than the RNBNE predicts [13]. From

1In this paper we will restrict ourselves to pure/deterministic strategies as common
in the literature on auctions with continuous type and action spaces. However, in
principle, randomizations or mixed strategies are possible.

an individual perspective, they follow a pattern that Müller and
Schotter [28] termed bifurcation - low-valued bidders tend to bid
less than in the RNBNE, and high-valued bidders tend to overbid.
This phenomenon has been dubbed the Overbidding Puzzle, and
multiple explanations for this phenomenon have been proposed.
Some arguments are based on a broader criticism of economic mod-
eling, e.g. by suggesting that for several reasons, humans cannot be
assumed to be rational utility-maximizing agents, or that markets
generally can not be expected to reach equilibrium states due to
hardness results in computational complexity [30]. Here, however,
we will focus on explanation attempts within the model that suggest
that psychological factors lead to human utility functions that differ
from the RNU described above.

Although many authors investigated the deviation of the bid-
ding behavior of lab subjects from the RNBNE due to psychological
effects, it remains unclear what, if any, psychological factors are
driving the overbidding puzzle. Moreover, there is empirical evi-
dence for competing explanations. One of the observed phenomena
is that bidders cannot estimate their winning probabilities correctly.
For instance, Armantier and Treich [1] provided each bidder an
independently drawn valuation and queried explicitly the bidders’
estimation of their winning chance. They find that the subjects
underestimate their probabilities leading to overbidding by playing
their best responses given their biased estimations. Additionally,
they conclude that competing explanations only play a minor role.
In contrast to this finding, Goeree et al. [20] showed that this con-
cept of biased probability estimations explains the behavior equally
well as other phenomena, especially the idea of risk-aversion.

Risk Aversion. The theory of risk-averse bidders was one of the
earliest to explain overbidding in auction mechanisms [9–11]. Its
central idea is that subjects want to prevent losing the auction, and
thus, bid more than the RNBNE predicts. Additionally, in the all-pay
auction, they simultaneously prevent higher losses in low-valued
settings by bidding too little. The usual approach to model this
is by specifying a concave transformation of the RNU. Arrow [2]
and Pratt [31] define the coefficients of absolute and relative risk
measures that describe the risk attitude of a bidder through the
curvature of the concave utility function, which builds the basis
for deriving specific utility functions. While the absolute measure
depends on the dimension of the analyzed unit, the relative one is
dimensionless, and thus, we will focus on this measure to ensure
the generalizability of our results.

The most used utility function in the experimental literature
is the constant relative risk aversion (CRRA) [20]. It applies the
concave transformation 𝑈𝐶 (𝑢) = 𝑢1−𝜌𝑖

1−𝜌𝑖 to the quasilinear RNU,
where 𝜌𝑖 ∈ [0, 1) depicts the risk attitude of bidder 𝑖 . Another
common family of utilities is the power functions that apply the
transformation𝑈 𝑃 (𝑢) = 𝑢𝜌𝑖 to the RNU. Again, 𝜌𝑖 ∈ (0, 1] describes
the risk attitude of bidder 𝑖 . The special cases 𝜌𝑖 = 0 in the CRRA
model and 𝜌𝑖 = 1 in the power model coincide with the risk-neutral
setting. Although each bidder has an individual risk-attitude, we
follow the experimental literature and assume that the parameter
is equal to all bidders, and thus, 𝜌1 = · · · = 𝜌𝑁 , to investigate the
behavior of the average subject.

In the context of the all-pay auction, the analytical derivation
of an optimal strategy results in an ordinary differential equation



that does not yield a unique solution assuming risk-averse bidders.
Nevertheless, Fibich et al. [18] show that weakly risk-averse bidders
follow the bifurcation pattern in equilibrium through a perturbation
analysis. Hörisch and Kirchkamp [22] support this for a specific
utility function. However, to the best of our knowledge there, does
not exist a single empirical study that extensively tries to measure
the risk attitude of lab subjects in the context of all-pay auctions.
Additionally, the measurement of the risk-attitude of lab subjects
still depicts a methodological challenge. Hence, even though these
theoretical predictions coincide with the experimental data, the
exact form of the optimal strategy is still unknown.

Regret. A separate stream of the literature adopts the idea of
post-auction regret that bidders experience after observing auction
outcomes [14, 16], which causes harm in the form of emotional
suffering from having achieved suboptimal results in hindsight. One
may now suggest that, when making a bidding decision, players
anticipate and aim to avoid this emotional suffering2. In the context
of the all-pay auction, Hyndman et al. [23] differentiate between
the all-pay loser regret and the general loser regret. While the first
type is generally relevant for all losers, and thus, always present,
the latter type applies only to those bidders who would have an
incentive to increase their bid because their valuation is greater
than the winning bid 𝑏𝑤 , which presupposes that the auctioneer
announces the winning bid. The authors implement this context
through the following utility function, where the coefficients 𝛼 and
𝛾 determine the degree to which a bidder emotionally suffers from
the all-pay regret, and respectively, the loser regret.

𝑢𝑅𝑒𝑖 (𝑣𝑖 , 𝑏𝑖 ) =


𝑣𝑖 − 𝑏𝑖 win, i.e. 𝑏𝑖 = 𝑏𝑤
−𝑏𝑖−𝛼𝑏𝑖 − 𝛾 (𝑣𝑖−𝑏𝑤) lose and 𝑏𝑤 < 𝑣𝑖

−𝑏𝑖−𝛼𝑏𝑖 lose and 𝑣𝑖 < 𝑏𝑤
Based on this utility function, Hyndman et al. calculate the ana-

lytical equilibrium strategy and conducted an experiment to empir-
ically validate their theoretical findings. However, they were only
able to provide evidence for the general loser-regret and the combi-
nation of both types, but not for the all-pay loser regret alone since
it predicts that bidders bid, on average, less than in the RNBNE
while the experiment showed overbidding. Furthermore, their study
did not measure the regret coefficients. As those parameters are
individual for each bidder, we follow the same strategy as in the
risk settings and assume that all bidders share the same parameters
to analyze the behavior of the average bidder.

2.3 Equilibrium Learning
The literature on learning Nash equilibria in Games goes back
decades but has focussed primarily on finite complete-information
games. Even in these settings, computing equilibria is known to be
PPAD-complete [12]. For incomplete-information Bayesian games
with continuous types and actions, i.e. infinite-dimensional strategy
spaces, the exact worst-case complexity remains unknown but is
2This notion of regret should not be confused with the abstract concept of the same
name used in Multi-Agent Learning and Online Optimization to analyse algorithms,
which describes the utility gain a player could have achieved, in hindsight, by changing
her strategy. To avoid confusion, we will call the latter concept utility loss in this
paper. Here, regret, refers to the phenomenon of players anticipating harm from the
psychological effects of ex-post utility losses, before the game is played.

likely significantly harder. Cai and Papadimitriou [8] analyze a
specific setting for which the computation of BNE is PP-hard.

However, recent advances in numerical methods on auctions
with continuous types and actions have shown many successes in
approximating equilibria, which may suggest that the discouraging
worst-case results may not be indicative of average-case difficulty,
or that many Bayesian games belong to a special subclass of games,
for which equilibrium computation is feasible. Bosshard et al. [6]
compute high-fidelity approximations of pure-strategy equilibria
in specific combinatorial auctions via smoothed best-response dy-
namics on locally linearized strategies. Bichler et al. [4] represent
strategies via neural networks and learn pure-strategy BNE in a
wide range of auctions via ex-ante gradient dynamics implemented
via evolutionary strategy gradient approximation. Their method
probably converges to local BNE in any symmetric auction, that
is, a strategy profile where no player can improve her expected
utility by making small deviations from her current strategy. In
their empirical work, they indeed observe convergence to global
equilibria, even in asymmetric auctions. Li and Wellman [26] also
represent strategies via neural networks in symmetric games, and
learn approximate equilibria by solving a meta game over mixtures
of strategies in earlier iterations. However, the authors explicitly
note that their method is inapplicable to all-pay auctions.

As described in section 3, our estimation framework to find opti-
mal parameters will rely on computing equilibria of parametrized,
symmetric all-pay auction games in its evaluation stage. To this
end, we will rely on the method from Bichler et al. [4], called NPGA,
unless a closed-form solution for the equilibria are known.

3 ESTIMATION FRAMEWORK
Given the fact that there are several competing notions of possible
parametric utility functions that bidders might have to encode their
psychological effects, we aim to determine which of these best fits
the underlying data, assuming that bidders, on average, conform
to their equilibrium strategy. However, even given fixed values for
the parameters, determining these equilibrium strategies has not
been possible, except in the cases where an analytical expression
of the BNE strategies is known for the specific auction setting.

With recent advances in equilibrium learning described above,
it has now become feasible to approximate BNE in all-pay auctions
with arbitrary parametric utility functions with sufficient accuracy.

Building on these advances, we propose a Bayesian Optimization
scheme to infer the unknown parameters of the utility functions.

Equilibrium Oracles. To that end, let 𝐺𝜃 = (𝑁,V,A, 𝐹 ,𝑢𝜃 ) be
a Bayesian Game where the utility functions of individual play-
ers take some parametric form 𝑢𝑖 (𝑣𝑖 , 𝑏) ≡ 𝑢𝜃 (𝑣𝑖 , 𝑏) —we restrict
ourselves to symmetric utility functions with a shared parame-
ter 𝜃 . Further, we assume the existence of an equilibrium oracle
𝐸𝑂 : 𝜃 → AV that, for a given parameter 𝜃 computes an estimate
𝛽 of a BNE in 𝐺𝜃 . In our empirical analysis in sections 4 and 5, we
will rely on NPGA [4] whenever a closed-form solution is unknown.

Behavioral loss function. The ultimate goal is determining the
value of 𝜃 that maximizes the goodness of fit of the resulting equilib-
rium to some behavioral datasetD ≡ {(𝑣𝑘 , 𝑏𝑘 )}𝐾𝑘=1. Here, we define
goodness-of-fit in terms of some regression loss function ℓ (𝑏, 𝑏)



that compares the estimated equilibrium bids 𝑏 prescribed under
𝜃𝑡 , to those observed in the behavioral data, 𝑏. We will consider
two choices of loss functions in this study:

Since the trajectory of the bid function is quadratic under the
assumption of risk-neutral and regretful bidders, it is reasonable to
assume that the equilibria under the risk-averse utilities also have
a quadratic shape in the context of the all-pay auction. Based on
this fact, the first approach estimates a quadratic regression model
using the experimental data and subsequently calculates the root
mean squared error (RMSE) between the predictions of the resulting
model and the estimated bid function of the NPGA algorithm.

As the proposed estimation framework does not depend on a
single type of auction mechanism, the assumption of a specific form
of the optimal bid function is not always possible or even feasible.
For this purpose, the second approach predicts the corresponding
bid 𝑏 of the estimated bid function and compares those with the
bids 𝑏 in the data using a coefficient of determination 𝑅2 = 1 −∑(𝑏−𝑏)2/∑(𝑏−𝑏)2, where𝑏 indicates the average bid of all lab subjects.
It quantifies to which degree the estimated bid function explains
the variance of the data, and thus, the BO algorithm aims at finding
the set of parameters that maximizes this metric.

Bayesian Optimization. Tasked with achieving this goal, the
Bayesian Optimization scheme is comprised of two stages that are
applied alternatingly at each time step 𝑡 : In the evaluation stage, the
goodness of fit of 𝜃𝑡 is evaluated via a call to the equilibrium oracle
𝛽 = 𝐸𝑂 (𝜃𝑡 ), computing the estimated equilibrium bids 𝑏𝑘 = 𝛽 (𝑣𝑘 )
that subjects should have bid in the experiment if they were follow-
ing 𝛽 , and then evaluating the resulting loss ℓ (𝑏, 𝑏).

In the estimation stage, the algorithm fits a stochastic model of
the loss function over the entire domain Θ of the parameters to be
inferred, relying on the history of all previously seen samples and
their corresponding losses. It then uses this stochastical model to
select a "promising" next sample 𝜃𝑡 . Ideally, the model specifica-
tion must be sufficiently expressive, provide a measure of output
uncertainty over its domain, be suitable for iterative refitting in the
presence of new data points, and be inexpensive to evaluate. Keep-
ing in line with the BO literature, a reasonable choice is given by a
Gaussian Process model [5, 32]. Given this model, the next sample
to be evaluated is chosen according to some acquisition criterion,
that should strike a balance between exploitation (selecting a point
that is likely close to the optimum based on past information) and
exploration (selecting a point that will reduce model uncertainty
in the next iteration). Here, we choose the expected improvement
criterion, which is again a common choice in the BO literature
[7, 32]. The interested reader is referred to [7] for a review of fur-
ther choices in Bayesian Optimization. The complete pseudocode
of this procedure is given in 1.

4 EXPERIMENT SETUP
Settings and Hyperparameters. To test the estimation framework

empirically, we apply it to the three utility functions mentioned
above on the example of the all-pay auction using real-world ex-
perimental data. Thus, each utility will be tested multiple times
through the settings prescribed by the data sets mentioned in the
next section. Additionally, we calculate the goodness of fits using
the 𝑅2 and the regression method to compare their estimations. It

Algorithm 1 Bayesian Optimization scheme to infer parameters 𝜃
of a Game 𝐺𝜃 from behavioral data.
Input: Domain Θ⊆R𝑑 , data D ≡ {(𝑣𝑘 , 𝑏𝑘 )}𝐾𝑘=1
Parameters: initial sample choice 𝜃0∈Θ, regression loss function
ℓ , equilibrium oracle 𝐸𝑂 , stochastical model specification 𝑆𝑀 ,
sample acquisition function 𝐴𝐹 , maximal number of time steps 𝑇
Output: Vector of optimal parameters 𝜃★ ∈ Θ

1: 𝐻 := ∅ ⊲ History of observed samples and losses.
2: 𝑡 := 0.
3: for 𝑡 ∈ 0, 1, . . . ,𝑇 do
4: // Evaluation stage
5: 𝛽 := 𝐸𝑂 (𝜃𝑡 ) ⊲ Compute approx. BNE.
6: for 𝑘 ∈ [𝐾] do
7: 𝑏𝑘 := 𝛽 (𝑣𝑘 ) ⊲ Get bids prescribed by 𝛽
8: end for
9: ℓ̂𝑡 := ℓ (𝑏, 𝑏) ⊲ Get loss of 𝜃𝑡 .
10: 𝐻 := 𝐻 ∪ {(𝜃𝑡 , ℓ̂𝑡 )} ⊲ Record sample, loss.
11: // Estimation stage
12: 𝑆𝑀 = fitSM(𝐻 ) ⊲ Fit stochastic loss model.
13: 𝜃𝑡+1 = 𝐴𝐹 (𝑆𝑀) ⊲ Acquire next sample.
14: end for
15: return best observed sample: 𝜃★ := arg min𝐻 ℓ̂𝑡

is noticeable that we apply a Tobit model for the regression eval-
uation because not all valuations have been observed during the
experiments. Finally, we repeat these steps multiple times to en-
sure the statistical validity of our results. Overall, we conducted 90
experiments.

Since the regret parameters 𝛼 and 𝛾 have no upper limits, it is
reasonable to reduce the search space by restricting their domains,
which improves the performance of the estimation process. Initial
experiments showed that 𝛼,𝛾 ∈ [0, 5] are promising choices for the
parameter domains. Besides this, we stick to the standard scope for
the risk parameters, such that 𝜌 ∈ [0, 1) in the CRRA function and
𝜌 ∈ (0, 1] in the power utility. To initialize the estimation of the pa-
rameters, we collect five random samples and conduct then twelve
iterations in the BO algorithm. In each of these iterations, we query
a parameter grid of the analyzed parameters that contains 29 refer-
ence values describing the entire domain of the variables through
the acquisition function to determine the next promising parame-
ters. In each iteration, we add a white noise term 𝜈 ∼ 𝑁 (0, 𝜎2

noise)
to the grid values to explore the entire search space, where we set
𝜎2
noise = 0.005 in the experiments.
We apply the NPGA method for approximating the bid functions

in the evaluation stage of the framework, relying on the open-source
library provided by Bichler et al. [4]. This requires the specification
of hyperparameters; for an extensive description, see their paper: In
each instance, we perform 500 iterations of supervised pre-training
of the model to initialize the algorithm with approximately truthful
bids, followed by 3500NPGA iterations using a batch size of 222. Due
to the symmetry of the analyzed settings, all players share a single
neural networkwith two hidden layers á ten hidden nodes and SELU
activation functions and a ReLU function at the output node of the
model to learn their optimal strategies. To verify that the resulting
bid functions are in equilibrium, we use a grid size of 𝑛grid = 210



and batch size 𝑛batch = 212 for calculating the relative utility loss
to ensure the goodness of the approximated bid functions.

All parameters were chosen to best possible fit the available
hardware, an Nvidia Geforce RTX 2080Ti GPU with 11GB of RAM.
Under these conditions, a single NPGA evaluation stage instance
took roughly ten minutes and an entire BO instance 170 minutes.

Data. We base the empirical analysis of the estimation frame-
work on the three data sets described in Aycinena et al. [3] ("4-P
FF") and Hyndman et al. [23] ("2-P FF", "2-P PP"), where FF and PF
represent full-feedback and partial-feedback environments. Both
data sets have been made available to us for this study by the respec-
tive authors. They investigate the behavior of human lab subjects
in all-pay auctions with four and two agents per session, respec-
tively. Since the equilibria depend on the number of players, we
estimate the parameters of the utilities for each data set separately.
As a data preprocessing step for both data sets, we remove bid-
ders that submit bids, which are above their valuation, as these
bids are strictly dominated under any utility function and indicate
misunderstandings of the auction mechanism by the subjects. The
analysis of the data sets revealed that most bidders commit errors
in terms of bidding above their valuation in the first five periods.
Hence, we consider those as a learning phase that is irrelevant for
our analysis, in which bidders can commit wrong inputs and learn
about their payoffs and winning probabilities, such that they will
not be removed if they overbid their valuation only in this phase.

Aycinena et al. [3] analyze the behavior of subjects under three
different value structures, where two of them assumed that the bid-
ders share a common value for the prize, and one structure uses a
private value setting. We restrict our evaluation of the estimation to
the latter setting, which corresponds to the incomplete information
all-pay auction: The valuations are composed additively of a com-
mon component 𝑣𝑐 and private components 𝑣𝑝𝑖 that are each drawn
i.i.d. from U[0, 50]: 𝑣𝑖 = 𝑣𝑐 + 𝑣𝑝𝑖 Thus, bidders observe (correlated)
valuations in [0, 100]. The resulting restricted and preprocessed
data set comprises 1260 observations describing the behavior of 36
subjects that participated in 35 sessions each, where the subjects
were randomly matched into groups of four subjects.

We derive the other data sets from the experiments of Hyndman
et al. [23], which consist of randomly matched sessions with in-
dependently drawn valuations on the same interval, [0, 100], but
without correlation between bidders. The sessions are split into
those with full feedback, where the winning bid was announced
after each round, and those with partial feedback, where bidders
only observed whether they won the auction or not. Since the ex-
perimental literature found evidence that bidders behave differently
in both settings [16, 23], we also separate these environments in
our analysis. After preprocessing, the data sets contain 969 obser-
vations in the full-feedback setting and 1007 observations in the
partial-feedback setting. It is important to note that we scaled the
valuations and respective bids, wlog., to the intervals [0, 1] in both
data sets to enhance the empirical runtimes of our experiments.

5 RESULTS
Figure 1a shows that the distances between the best-estimated bid
functions and the Tobit regression models are, on average, low.
Hence, the estimated parameters describe the bidder’s behavior in

Table 1: Estimated risk measures under the CRRA utility for
both evaluation techniques and all settings.

Eval 2P FF 2-P PF 4-P FF
Tobit 0.350 0.353 0.014
𝑅2 0.479 0.353 0.068

the data sets reasonably well. It is striking that the regret-based
models perform worse in the two-player setting and better in the
four-player setting than the risk-based models. This could imply
that the idea of risk-averse bidders is a more suitable explana-
tion in the two-player environment than in the four-player setting.
However, it is necessary to further investigate this observation by
applying the framework to more experiments in the future.

In addition to this, the plot indicates that the performances of
the estimations are overall better in the two-player settings, which
can be explained by the fact that we used the same set of hyper-
parameters in all runs. Due to the higher number of players, more
iterations in the NPGA algorithm would enhance the performance
in these settings. In fact, optimizing the sets of hyperparameters
in all scenarios could improve the performances of all estimations
further. However, this imposes the threat of overfitting, and thus,
would limit the generalizability of the results. Comparing the per-
formances within the settings shows that both risk models perform
very similarly. This observation also holds for the regret models,
although the differences are larger in these cases.

Besides the evaluation of the estimated bid functions via the
comparison with the regression models, we find similar good per-
formances in the evaluation via the 𝑅2 metric, which is summarized
in figure 1b. Again, the estimations achieve overall a better perfor-
mance in the two-player settings. However, the approximated bid
functions in the full-feedback environment yield greater 𝑅2 values
than in the partial-feedback scenario. Similar to the regression eval-
uation technique, the regret models outperform the risk models in
the four-player setting, which supports the presumption that the
concept of regretful-bidders explains the data in the four-player
environment better than the idea of risk-averse bidders. Besides
this, the plot indicates that the models perform very similarly for
both psychological concepts.

Furthermore, the similarity of the regret models implies that the
NPGA algorithm is a reasonable choice for an equilibrium learning
algorithm in settings where no analytical solution is known.

Overall, the results of both evaluation methods show that our
approach can generally estimate the parameters of utility functions
reasonably well in settings where assumptions regarding the curva-
ture of the optimal strategy are feasible and infeasible. This shows
that our estimation framework builds a reasonable basis for compar-
ing and measuring psychological assumptions regarding the utility
functions of bidders. In the context of our experiments, it implies
that the concept of risk-averse bidders is a better explanation for
bifurcation than regretful bidders in the two-player setting.

5.1 Risk-Aversion
CRRA. Table 1 summarizes the estimated parameters of all set-

tings per evaluation method for the CRRA utility. The values differ
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Figure 1: Overview of the average model performances per used utility function and data setting for both evaluation techniques.
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Figure 2: Approximated bid functions for the risk utilities and the RNBNE in black. The dotted lines describes the result of the
evaluation with the regression technique and the solid lines the evaluation with the 𝑅2 metric.
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Figure 3: Approximated bid functions for the regret utility using NPGa and the closed-form of the equilibrium and the RNBNE
in black. The dotted lines describes the result of the evaluation with the regression technique and the solid lines the evaluation
with the 𝑅2 metric.

between the evaluation methods in the sense that the models using
the RMSE as its metric yield lower estimations than those based
on the 𝑅2 metric in the full-feedback environment. We followed
the approach of Hyndman et al. [23] and did not apply any model
selection or optimization technique for estimating the Tobit model.
Consequently, these reference models could fail to summarize the
variance of the corresponding data sets, which would explain the

deviation between the evaluation techniques. Nonetheless, the esti-
mations are all very similar within the settings.

The table also shows that the estimated values are in the regres-
sion approach almost identical in the two-player settings, which
would imply that the type of feedback is generally irrelevant for



Table 2: Estimated risk measure under the power utility for
both evaluation techniques and all settings.

Eval 2P FF 2-P PF 4-P FF
Tobit 0.650 0.653 0.995
𝑅2 0.511 0.647 0.926

shaping the risk-attitude of the bidders and hence also for explain-
ing bifurcation. Conversely, the values differ with the other evalua-
tion technique and imply that the announcement of the winning bid
leads to more risk-averse bidders affecting their behavior, which re-
sults in their bimodal behavior. Since there exists empirical evidence
in the literature for the latter observation [15, 23], it is reasonable
to assume that the Tobit models require additional tuning effort
to improve their explanatory power of the data. This shows that
the estimation using the RMSE measure can only be as good as the
estimation of the underlying regression model.

Power Utility. Table 2 summarizes the estimated parameters
based on the power utility function. It is striking that the same
observations hold as above. The estimations deviate between the
Tobit and 𝑅2 methods that the latter yields more risk-averse bidders
in the two-player settings. Additionally, the values resulting from
the regression technique imply that the type of feedback does not
affect the bidder’s risk-attitude crucially, while the other indicates
an influence. Besides this, transforming the values in table 2 by
𝑟P = 1 − 𝑟P shows that the estimations of both types of risk-averse
utility functions result in very similar measures per setting and
evaluation technique. Therefore, the approximated bid functions in
figure 2 are very close to each other. The plots follow the analytical
observations of Fibich et al. [18] by only deviating little from the
RNBNE strategy and, combined with the estimated parameters, this
indicates that the lab subjects were only weakly risk-averse.

The estimated parameters coincide with prior measurements in
the literature since our results imply risk-averse bidders. For in-
stance, Goeree et al. [20] conducted a two-player first-price auction
with full feedback and observed a measure of 𝑟 = 0.52, which is
similar to ours. Lu and Perrigne [27] found similar results for a two-
(𝑟 = 0.5928) and a three-player (𝑟 = 0.5994) timber auction. Finally,
Isaac et al. [24] estimated the risk parameter for auctions with a
large but unknown number of bidders. They observed weakly risk-
averse bidders (𝑟 = 0.375) for experienced and risk-averse bidders
(𝑟 = 0.455) for new bidders in their analysis.

5.2 Post-Auction Regret
Table 3 provides an overview of the estimated regret coefficients 𝛼
and 𝛾 for all settings and both evaluation techniques. It is striking
that the majority of the estimated parameters is low, which implies
that the lab subjects tend to be more risk-neutral than regretful
in the given scenarios. The bid functions in figure 3 strenghten
this view by indicating that the absolute distances between each
of the curves and the RNBNE are low, and thus, there is no crucial
deviation above or below the optimal risk-neutral strategy. This is
especially true for the two-player partial-feedback environment,
where the loser regret is almost zero in all estimations, and thus,

Table 3: Estimated regret coefficients for both evaluation
techniques using NPGA and the closed-form expression for
determining the equilibrium strategy per setting.

2-P FF 2-P PF 4-P FF
Approx Eval 𝛼 𝛾 𝛼 𝛾 𝛼 𝛾

NPGA Tobit 0.825 0.777 0.004 0.003 0.218
NPGA 𝑅2 0.412 1.24 0.004 0.493 1.47
Closed Tobit 0.706 0.729 0.000 0.573 0.709
Closed 𝑅2 0.000 1.18 0.000 1.87 1.20

the approximated bid function coincides with the risk-neutral case.
Consequently, bidders act more risk-neutral in settings with less
information about their environment, which corresponds to the
observation under the assumption of risk-averse bidders.

Besides this, it is noticeable that the estimated values deviate
between the estimation models, although all of them achieved sim-
ilar performance. Figure 3 supports this observation because the
resulting graphs are very close to each other. One potential expla-
nation is that multiple parameter constellations yield very similar
bid functions, and thus, it is infeasible to determine the unique set
that describes the bidders’ behavior in the data best.

While the estimation of the risk-averse utilities implied that
bidders act almost risk-neutral in the four-player setting, the plot
and the table show the opposite for the regret scenarios. Since the
performances of the latter models were better for both evaluation
techniques, this observation implies that those models provide more
sophisticated explanations for the behavior in this environment.
Nonetheless, the estimations do not yield a unique parameter con-
stellation, as mentioned before. Aside from that, the estimated bid
functions in both figures 2a and 3a are also very similar, which
corresponds to the similarity of performances of all models using
the 𝑅2 value as the loss function. This illustrates the complexity of
the research area: Although our estimation framework enables to
quantifying the performance of specific psychological concepts and
their parametrization, given operationalizations of those concepts,
it is necessary to develop more sophisticated loss functions in the
future for improving the comparability of those concepts.

6 DISCUSSION AND CONCLUSION
In this study, we developed a regression framework based on BO
and NPGA to infer unobserved parameters of Bayesian games and
applied it to experiments in the context of symmetric all-pay auc-
tions with incomplete information. Thereby, we implemented three
utility functions that describe the idea of risk-aversion and regret
to test reasonable psychological concepts for explaining overbid-
ding in this type of auction. We showed that the approximated bid
functions describe the variance of the data sufficiently, and thus,
the estimated parameters depict a reasonable starting point for
analyzing bidder’s behavior in experimental auction settings. The
resulting strategies coincide with the bifurcation pattern that is
usually observed in the empirical literature, and thus, the analyzed
utilities generally contribute to explaining the overbidding puzzle.

There exist differences in the explanatory power of the used
utility functions, which is expressed by the loss function of our



framework. The empirical analysis showed that the assumption of
risk-averse lab subjects performs better than the concept of regretful
bidders in the two-player environments. However, the differences
are only marginal using both loss functions. Possible explanations
are the lack of tuning the hyperparameters of the NPGA algorithm
for each setting, which results in minor estimation errors, and the
poorly estimated Tobit models that bias the overall estimation.

Our framework serves as a tool for measuring and comparing as-
sumptions about the bidder’s behavior that are not directly observ-
able, as long as they can be expressed as utility functions. However,
our experiments showed that it is necessary to develop more so-
phisticated loss functions for our framework in the future to clearly
distinguish the performance of the analyzed behavioral concepts.

The derivation of psychological concepts and their operational-
ization, which could explain the overbidding puzzle is not trivial.
However, our framework has the strength that it does not rely on
information about a closed-form of the analyzed equilibrium be-
cause it applies NPGA to approximate it. Hence, future research
should conduct further experiments to analyze more complex utili-
ties comprising multiple behavioral concepts. Nonetheless, this is
mainly limited by two reasons. First, bidders tend to behave dif-
ferently between sessions, i.e. they behave very risk-averse in one
session and almost neutral in another session [25]. This behavior
makes a reasonable estimation of the individual risk-attitude or
other concepts infeasible. Second, it is yet unclear which type of
utility functions can be approximated by learning algorithms.
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3 Discussion and Conclusion

While the computation of BayesianNash equilibria is believed to be intractable in the general case, un-
derstanding the equilibriumoutcomes of auctionmarkets remains of utmost importance to economists
andmarket design practitioners. In this dissertation, we studied an approach to computing such equi-
libria in auctions via an approximation of the ex-ante dynamics of the Bayesian game. The proposed
algorithm, NPGA, approximates the Bayesian game as a complete information game on neural net-
work parameters which map to functional strategies in the original Bayesian game. As auctions are
ex-post non-differentiable, standard policy gradientmethods like backpropagation cannot be applied.
Therefore, to follow the gradient dynamics of this complete-information game, NPGA employs a non-
standard gradient computation technique based on evolutionary strategies. The algorithm leverages
massive parallelism to calculate these ex-ante gradients from ex-post data.
We proved two sufficient conditions for the convergence of NPGA to a close approximation of

Bayesian Nash equilibria. These generalize existing results for differentiable complete-information
games to ex-post non-differentiable Bayesian games: In Bayesian potential games, NPGA provably
finds approximate local Nash equilibria (Publication B). In monotonic auction games, it provably
converges to a close approximation of the unique (global) BNE (Heidekrüger et al., 2021c).
Beyond these theoretical results, a thorough empirical analysis of the method has been performed.

In Publication A, the empirical behavior of NPGA in comparison to established best-response dy-
namics in normal-form games was analyzed. In Publication B, we studied symmetric environments
in detail, where at least local convergence is guaranteed. In Publication C, we investigated asym-
metric environments, where the established convergence guarantees no longer hold. We saw that
NPGA converges to one of the (global) analytical BNE whenever the latter is known – even when the
theoretical convergence criteria do not apply or cannot be numerically verified.
This is remarkable, as it seems to be in opposition to established hardness results (Cai and Pa-

padimitriou, 2014; Daskalakis and Syrgkanis, 2016), and therefore it begs the question of how these
positive results can be explained.
Itmaybepossible that the kinds of sealed-bid auctionswe study exhibit some structure that formally

guarantees convergence, like monotonicity.1 However, attempts to characterize when monotonicity
holds beyond strategyproof settings in auction games have remained fruitless, even in simple two-
player auctions. As such, understanding why ex-ante gradient dynamics work well in such a wide
range of auctions remains an open problem. Further researchmay test the limits of global convergence
in settings that are known to admit many socially undesirable local equilibria, like Blotto games or

1It should be noted that even then, NPGA is only known to converge when working with stylized convex neural networks
that are unworkable in practice (Heidekrüger et al., 2021c; Bach, 2017). However, with general neural networks, the
gap to guaranteed convergence is not game-theoretic in nature, but “only” consists of finding a global maximum in
single-agent nonconvex optimization. While this is theoretically a computationally hard problem, this feat is routinely
achieved in supervised machine learning with overparametrized neural networks, and we would expect to observe
global convergence in our settings as well.
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contests, or a continuous-type variant of the SiSPAs with XOS-bidding studied by Daskalakis and
Syrgkanis (2016). In such games, NPGA as a local method may well get stuck in local equilibria, i.e.
saddle points of the gamewhere infinitesimal deviations of an agent do not yield utility improvements
but step-changes may indeed do so.

Another obvious drawback ofNPGA is the low sample efficiency of the ES-based gradient estimator
in contrast to backpropagation. This hurts performance because, in each learning iteration, a large
batch of auctions needs to be computed for the many perturbations of an agent’s model, rather than
just for the current model itself. A common effect visible in numerical equilibrium strategies of
NPGA is that in low-dimensional settings, where explicit ex-interim methods (like those by Fichtl
et al. (2022) or Bosshard et al. (2020)) are tractable, NPGA achieves somewhat lower accuracy than
the latter. In particular, NPGA’s learned strategies often differ somewhat in strategy space from
the analytical solution, particularly in regions of the type space where an agent is unlikely to win
the auction (compare Publication A). For such types, even the optimal bid achieves low expected
utility compared to higher valuations. As a result, any subtle signal for optimal play in such regions
is easily drowned out by aleatoric uncertainty in the ES-gradient estimates. This issue is likely
to persist in higher dimensions where no comparisons are possible due to the lack of analytical
results and the intractability of other learning methods. As such, improving the sample variance
of NPGA would constitute a boon for scalability. One possible approach would be the reduction
of aleatoric variance in utility and gradient estimation through the use of low-discrepancy (rather
than pseudorandom) Monte-Carlo integration. However, while this approach may help, it is unlikely
to be sufficient to fully alleviate the above effect (Belgacem, 2021). A separate approach informed
by deep reinforcement learning may be more promising: The deterministic policy gradient theorem
was originally proposed in the context of actor-critic models (Lillicrap et al., 2015)– which learn a
(differentiable) &-function of the environment and use it as a surrogate objective. In the context of
auctions, onemay introduce a target network&(E8 , 18)≈̂D 8(E8 ; 18 ; �−8) and train it from ex-post samples
of auction outcomes. Replacing the ex-post samples with observations from this &-function would
enable the use of standard backpropagation which may promise a significant improvement of the
algorithm in sample efficiency, runtime, and memory consumption, provided that the& network can
be adequately adjusted to changing opponent behavior. Such an approach akin to Multi-Agent Deep
Deterministic Policy Gradient (MA-DDPG) (Lowe et al., 2017) may be a promising future research
direction. However, we want to stress that despite the drawbacks in efficiency, NPGA’s ES-gradient
computation has the advantage that it can be shown to be anunbiased estimator of the ex-ante gradient
dynamics. Such statements are typically not possible to make in actor-critic methods. However, it
is crucial for the theoretical analysis of NPGA, which is paramount because numerically computed
results will not be trusted by the economics community without a solid theoretical underpinning of
the computation method.

By design, the studies in this dissertation are limited to sealed-bid auctions in which every bidder
only makes a single bidding decision and there is no time component. However, sequential decisions
may be necessary for many real-world auction formats: On the one hand, auction formats themselves
may be sequential in nature, such as in English, Dutch, or Japanese single-item auctions (Duetting
et al., 2019), or Simultaneous Multi-Round combinatorial auctions (Bichler et al., 2014)). On the other
hand, in many markets, it is common practice to hold multiple auctions sequentially to sell inventory
(Jeitschko, 1998; Guerci et al., 2014). A common example is the market for computational display
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or search engine advertisement inventory, where millions of ad slots are sold in a virtual stream of
auctions as new inventory arrives (Stange and Funk, 2014). In such settings, bidders are no longer
interested in optimal behavior in a single auction, but rather aim to optimize their performance over a
campaign, i.e. a sequence of auctions. As a result, following the BNE strategies of each single auction
instance may no longer be optimal. Such sequential settings are beyond the reach of this dissertation.
Modeling them as something akin to a Markov Game and studying multi-agent learning in such
settings presents an exciting future research direction with close ties to MARL.
Beyond the further development of equilibrium learningmethods themselves, the presentedmeth-

ods can already unlock novel lines of research in auction theory. As demonstrated in the included
publications, NPGA allows the computation of equilibria in a wide range of settings where this
was not previously possible. NPGA is applicable to any market environment that can be efficiently
implemented in a simulator and requires no market-specific adjustments (although hyperparameter
tuning may lead to a further increase in performance). For example, we have shown its ability to
compute equilibria in all-pay auctions with arbitrary non-quasi-linear utility functions in Publica-
tion D, which has enabled performing statistical inference on parameters of these utility functions
themselves. Moreover, NPGA has enabled the analysis of comparable statics in moderately-sized
auctions with value interdependencies (Publication B, Publication C), and the computation in larger
markets than ever before (Publication D). While the computational study of larger combinatorial
auctions remains elusive, we hope that further development in numerical equilibrium computation
may make such investigations approachable in the future.
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