

Institut für Informatik
der Technischen Universität München

Lehrstuhl für Informatik mit Schwerpunkt

Wissenschaftliches Rechnen

Hierarchical Pattern Matching in VLSI

Marko Milošević

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universi-
tät München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Tobias Nipkow Ph.D.

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Hans-Joachim Bungartz

 2. Univ.-Prof. Dr. Erich Barke, Leibniz Universität Hannover

 3. Univ.-Prof. Dr. Thomas Huckle

Die Dissertation wurde am 25.03.2009 bei der Technischen Universität München ein-
gereicht und durch die Fakultät für Informatik am 06.07.2009 angenomen.

iii

Abstract

 Structural pattern matching is an important part of the microchip design
verification process. It is necessary to isolate semantic structural contexts in a given
design netlist in order to be able to perform flexible and intelligent checks like, for
example LVS (Layout Versus Schematics), ERC (Electrical Rule Checks), gate level
netlist timing analysis and others. Because of that, many different algorithms were
devised to support this particular segment of chip verification. The theoretical basis
for these algorithms is pattern matching in graphs, i.e. subgraph isomorphism. Algo-
rithms developed so far are working with flat input netlists. This is not efficient and
limits the application of the mentioned algorithms due to the flat netlist´s extensive
size. Making the pattern matching hierarchical can improve the processes of chip de-
sign verification and simulation.
 We provide the solution for the problem of the structural pattern matching in
hierarchical netlists by defining the new methodology which employs the concept of
Layered Views to present the hierarchical layout of a given netlist in a "friendly" way
to an arbitrary application domain (user) algorithm. This general framework solves
typical problems that algorithms working with hierarchical netlists are facing. Particu-
larly, we propose the Virtually Flattened View (VFV), a sophisticated concept that
prepares the hierarchical data for the user algorithms and allows them to see that data
as if they were flat. We achieve this by materializing (creating a proxy copy) a small
data portion which is kept consistent with the source hierarchical netlist by specific
algorithms and data structures. The view offers the possibility to emboss the materia-
lized data portion into the primary design's hierarchy, as a separate instance, altering
the primary hierarchy. The outcome of this process is again a valid hierarchical netlist.
We, further, apply the defined concepts to Incremental Pattern Matching, originally
developed for flat input netlists only. In this way we obtain the methodology to solve
the problem of pattern matching in hierarchical netlists.
 For several reference scenarios, quantitative and qualitative improvements of
our approach are demonstrated. The quantitative improvement is discussed through
runtime and memory requirement tests. The qualitative improvement comes from the
fact that the new methodology allows full-chip analysis and concise, hierarchical re-
sult reports.

v

Zusammenfassung

 Der Verifikationsprozess integrierter Schaltungen beinhaltet eine ganze Reihe
wichtiger Prüfungen wie LVS (Layout vs. Schematics), ERC (Electrical Rule Check),
Statische Timinganalyse und andere, die flexibler und effizienter durchgeführt werden
können, wenn der funktionale Aufbau der Schaltung der Prüfung zugänglich ist (und
nicht nur eine rein transistorbasierte Netzliste ohne weitere Struktur vorliegt).
Aus diesem Grund ist eine strukturbasierte Mustererkennung, die es erlaubt, die für
den Verifikationsprozess wichtigen Kontexte aus der Schaltung zu isolieren, ein we-
sentlicher Differentiator für die Qualität der eingesetzten Verifikationsprogramme
hinsichtlich Performanz und Fehlerabdeckung. Dies hat in der Vergangenheit zu etli-
chen Aktivitäten in diesem Gebiet geführt, so dass eine Vielzahl unterschiedlicher
Algorithmen und Implementierungen zur Mustererkennung vorliegt. Gemeinsam ist
ihnen die Identifizierung von Mustern in Graphen, also die Erkennung von
Teilgraphisomorphismen.
 Die bisher entwickelten Algorithmen setzen flache Netzlisten ohne innere
Struktur (Hierarchie) voraus. Das ist bei grossen Datenmengen nicht effizient und
limitiert das Anwendungsgebiet. Gelingt es also, die Strukturerkennung auf hierarchi-
schen Daten zu ermöglichen, so kann eine sehr grosse Verbesserung der Verifikati-
onsperformanz erzielt werden.
 In dieser Arbeit stellen wir eine Lösung für die hierarchische Erkennung von
Mustern in hierarchischen Netzlisten vor, die auf der Einführung der neuen Technik
sogenannter "Layered Views" beruht. Mit ihrer Hilfe werden die hierarchischen Daten
den Applikationen auf eine sehr benutzerfreundliche und einfach zu nutzende Weise
präsentiert. Insbesondere schlagen wir an dieser Stelle "Virtually Flattened Views"
(VFV) vor. Diese präsentieren die hierarchischen Daten in einer Weise, die der Ap-
plikation erlaubt, sie zu interpretieren, als kämen sie von einer flachen Datenbasis.
Typische Probleme, die beim Arbeiten mit hierarchischen Daten gelöst werden müs-
sen, lassen sich auf diesem Weg einmal lösen, die Applikationen können in weiten
Teilen unverändert von einer flachen Implementierung auf eine hierarchische Imple-
mentierung portiert werden, nur durch die Umstellung auf die Nutzung des VFV als
Beispiel eines "Layered Views". Der VFV wird durch eine sehr lokale Ausflachung
der hierarchischen Datenbasis implementiert, die dynamisch den Anforderungen der
flachen Applikation entsprechend aktualisiert wird.
 Auf diesem Weg können wir aber nicht nur die hierarchischen Daten lokal
flach zur Verfügung stellen, wir können auch die Ergebnisse der Mustererkennung,
die nun ja flach entstehen, ohne weiteres in die hierarchische Datenbasis unter Modi-
fikation der existierenden Hierarchie zurückschreiben. Das Ergebnis der Musterer-
kennung ist also wieder eine hierarchische Netzliste. Weiter gehend wenden wir die
neuen Techniken auf die inkrementelle Mustererkennung an, die ursprünglich nur für
flache Daten implementiert wurde. Insgesamt gesehen haben wir damit das Problem
der Mustererkennung in hierarchischen Netzlisten vollständig gelöst.
Für einige Referenzszenarios, die aus realen Industrieapplikationen stammen, de-
monstrieren wir die quantitativen und qualitativen Verbesserungen, die mit unserem
Ansatz erzielt werden können. Die quantitativen Aspekte werden anhand von Laufzeit
und Speicherverbrauchsvergleichen diskutiert. Die qualitativen Verbesserungen erzie-
len wir zum einen durch sehr kompakte (hierarchische) Ergebnisse, zum anderen kön-
nen nun erstmals Netzlisten für das komplette Design bearbeitet werden, während
vorher nur Teilausschnitte geprüft werden konnten.

vi

vii

Acknowledgemens

I thank my professor, Prof. Dr. Hans-Joachim Bungartz for leading me
through this project methodologically and giving me self-confidence in crucial mo-
ments. I want to thank Dr. Martin Frerichs, Dr. Tilman Neunhöffer, Hannes Arm-
ruster and the rest of the ATS department of Qimonda AG for the substantial support
of my work. I am especially grateful to Dr. Alexander Seidl for having the organisa-
tional side of my project in a perfect grip. In the end, I want to thank my family and
friends for understanding and believing in me.

Marko Milošević

viii

ix

Contents

1 INTRODUCTION ... 13

1.1 MOTIVATION .. 13
1.2 OBJECTIVES AND SCOPE ... 15
1.3 OUTLINE .. 16

2 GRAPH MATCHING CONCEPTS IN VLSI .. 19

2.1 BASICS OF GRAPH NOTATION .. 19
2.2 GRAPH MATCHING .. 21
2.3 SUBCIRCUIT RECOGNITION, THE APPLICATION OF SUBGRAPH MATCHING 23
2.4 INCREMENTAL PATTERN MATCHING ... 27
2.5 CLASSIFY PROJECT – CLARULA DESCRIPTIVE LANGUAGE .. 30
2.6 TREATING BIG NETS IN THE INCREMENTAL PATTERN MATCHING ALGORITHM 35
2.7 INEXACT PATTERN MATCHING APPLIED TO SUBCIRCUIT RECOGNITION 39
2.8 ADDRESSING DESIGNS WITH EXTENSIVE SIZE BY EMPLOYING HIERARCHY 40

3 HIERARCHY .. 43

3.1 HIERARCHICAL ABSTRACTION IN VLSI .. 43
3.1.1 Introduction .. 43
3.1.2 Folded hierarchical model ... 43

3.2 EDA DATABASES ... 50
3.2.1 History ... 50
3.2.2 Standardization .. 51
3.2.3 OpenAccess .. 52

3.3 NLDB .. 53
3.3.1 Object-oriented folded hierarchical model API ... 54
3.3.2 Hierarchical concepts in NLDB ... 55

3.4 PERSONALIZATION ... 58
3.5 POLYMORPHIC HIERARCHY .. 59

4 HIERARCHICAL MULTILAYER VIEWS 63

4.1 INTRODUCTION ... 63
4.2 ACCESS LAYER – PURE ABSTRACT INTERFACE.. 65
4.3 STATIC BASE .. 67
4.4 LAYERED VIEWS AND THEIR OBJECT-ORIENTED ARCHITECTURE .. 68
4.5 EXAMPLES OF VIEWS .. 70

5 VIRTUALLY FLATTENED VIEW ... 73

5.1 INTRODUCTION ... 73
5.2 V IRTUALLY FLATTENED VIEW - HIGH-LEVEL ARCHITECTURE ... 75
5.3 V IRTUALLY FLATTENED VIEW CLASS REPRESENTATION ... 77
5.4 DEVICEFLATCONTAINER - ITERATOR .. 81
5.5 V IRTUAL ELEMENT BUILDER .. 83

5.6.1 Objects with roles... 85
5.6.2 Consistency of the virtually flat view data portion objects with NLDB database
(Virtual_ContextSaver) ... 89

5.7 CONTEXT-SWITCHING / MULTI-CONTEXT NODES .. 94
5.8 MULTI-CONTEXT (OVERLAPPED) FLAT DATA PORTION ... 101
5.9 COMMITTING OF THE MFDP (AND IT ’S REPETITIVE USE) ... 104
5.10 DISTRIBUTED VARIANTS ... 107

5.10.1 Technique for the topology adaptation .. 107
5.10.2 Dynamic variant creation .. 109

x

5.10.3 Virtual variant tree ... 110
5.10.4 Layered nodes .. 112

5.11 SUMMARY .. 114

6 APPLICATION OF THE VFV TO SEARCH ORIENTED PATTERN M ATCHING
METHODS .. 117

6.1 INTRODUCTION ... 117
6.2 HYBRID LAYER ... 117

6.2.1 Positioning of the Hybrid layer .. 118
6.2.2 Cir_VirtualBuilder, the concretisation of the Virtual_ElementBuilder 120

6.3 ADAPTATIONS OF THE FLAT ALGORITHM .. 121
6.4 HIERARCHICAL RESULT REPORTS ... 122
6.5 EXAMPLE OF THE MATCHING PROCESS BY INCREMENTAL HIERARCHICAL STRUCTURAL

PATTERN MATCHING ... 124
6.6 CASE STUDY ... 124

7 CONCLUSION ... 133

Appendix

APENDIX A (PERSONALISATION BY VARIANTS) 137

APPENDIX B (FINGERPRINT VERIFICATION PRINCIPLE) 143

APPENDIX C (HIERARCHICAL MATCHING EXAMPLE)......... ... 144

xi

Table of figures

FIGURE 1.1-1 – TYPICAL TOOL EVOLUTION CURVE ... 14
FIGURE 2.1-1 – EXAMPLE OF THE GRAPH NOTATION. .. 19
FIGURE 2.1-2 – BIPARTITE GRAPH .. 20
FIGURE 2.1-3- HYPER GRAPH ... 21
FIGURE 2.2-1 – CLASSIFICATION OF THE PATTERN MATCHING IN GRAPHS. .. 22
FIGURE 2.3-1 – A) STANDARD GRAPH WITH ONE CLASS OF VERTICES. B) BIPARTITE GRAPH. 24
FIGURE 2.3-2 – BIPARTITE GRAPH REPRESENTATION OF AN INVERTER CIRCUIT 24
FIGURE 2.3-3 – NAND PATTERN AND ITS IMAGE IN THE EXAMPLE TARGET CIRCUIT. 25
FIGURE 2.4-1 – INCREMENTAL PATTERN MATCHING. .. 28
FIGURE 2.5-1 – PATTERN MATCHING TOOL CCLASSIFY – EXECUTION FLOW.. 30
FIGURE 2.5-2 – CLARULA LANGUAGE STRUCTURE .. 30
FIGURE 2.5-3 – OPTIONAL PORT USAGE EXAMPLES. ... 33
FIGURE 2.6-1 – EXAMPLE OF THE MATCHING PROCESS.. 36
FIGURE 2.6-3 – BPF VECTOR PARTITIONING .. 38
FIGURE 3.1-1 – FLAT REPRESENTATION OF THE 2-BIT ADDER. ... 44
FIGURE 3.1-2 – HIERARCHICAL REPRESENTATION OF THE 2-BIT FULL ADDER. .. 45
FIGURE 3.1-3 – ENCAPSULATED HIERARCHICAL GRAPH EXAMPLE... 47
FIGURE 3.1-4 – FOLDED ENCAPSULATED HIERARCHICAL GRAPH EXAMPLE. .. 49
FIGURE 3.2-1 – THE CONCEPTUAL DIAGRAM OF THE OPEN ACCESS DATABASE 53
FIGURE 3.3-1 – UML MODEL OF THE NLDB DATABASE. .. 54
FIGURE 3.3-2 – LOGICAL AND GATE CELL.. 56
FIGURE 3.3-3 –TOP-DOWN CELLS CONTAINER. ... 58
FIGURE 3.5-1 – AN INDIAN OR AN ESKIMO? .. 59
FIGURE 3.5-2 – IDENTICAL DRIVER AND LATCH CIRCUIT THAT HAS TWO DIFFERENT HIERARCHICAL

LAYOUTS.. 60
FIGURE 3.5-3 – THE PATH OF PLANET MARS IN THE GEOCENTRIC SYSTEM - THE ANALOGY. 60
FIGURE 4.1-1 – CHAINING THE TRANSFORMATIONS OF THE HIERARCHY ... 63
FIGURE 4.2-1 – ACCESS LAYER CLASS DIAGRAM .. 66
FIGURE 4.3-1 – STATIC BASE VS. ACCESS LAYER ... 67
FIGURE 4.4-1 – TEMPLATED HASSOURCE CLASS DEFINES THE LAYERING PROPERTY. 68
FIGURE 4.4-2 – V IEW POSITIONING RELATIVE TO AL LAYER, STATIC BASE AND OTHER VIEWS. 69
FIGURE 5.1-1 – THE CONCEPTUAL DIAGRAM OF THE V IRTUALLY FLATTENED V IEW. 74
FIGURE 5.2-1 – HIGH LEVEL ARCHITECTURE OF THE V IRTUALLY FLATTENED V IEW. 75
FIGURE 5.3-2 – V IRTUALLY FLATTENED V IEW LAYER PLACEMENT INSIDE NLDB CLASS HIERARCHY ... 78
FIGURE 5.3-1 – SPECIFIC_PIN FUNCTION CODE .. 79
FIGURE 5.3-2 – SEQUENCE DIAGRAM OF V IRTUAL_PIN OBJECT AQUISITION ... 80
FIGURE 5.4-1 – CLASS DIAGRAM OF DEVICEFLATCONTAINER ... 81
FIGURE 5.4-2 – EXAMPLE OF DYNAMIC DEVICEFLATCONTAINER CONTENT ... 82
FIGURE 5.5-1 – V IRTUAL_ELEMENTBUILDER ARCHITECTURE .. 83
FIGURE 5.5-2 – EXAMPLE METHOD OF THE GETV IRTUAL() FAMILY ... 84
FIGURE 5.5-3 - OBJECT WITH ROLES – DESIGN PATTERN PROPOSAL .. 87
FIGURE 5.6-5.5-4 – V IRTUAL_CONTEXTSAVER AND V IRTUAL_EXCLUDER CLASSES 88
FIGURE 5.5-5 – THE EXAMPLE OF THE DEVELOPMENT OF THE CONTEXT SAVING TREE 90
FIGURE 5.5-6 – ALGORITHM OF THE FUNCTION GETV IRTUAL(ACCESS_NODE* PTR) 93
FIGURE 5.7-1 - RELATION BETWEEN V IRTUAL_NODE CLASS AND BASE_NODE CLASS. 95
FIGURE 5.7-2 - EXAMPLE OF A MULTI-CONTEXT NODE. ... 96
FIGURE 5.7-3 – POSITIONING OF THE VPIN_ITERATOR CLASS IN THE CSI .. 97
FIGURE 5.7-4 –ARCHITECTURE OF VPIN_ITERATOR AND IT’S RELATION TO V IRTUAL_NODE. 98
FIGURE 5.7-5 – OPERATOR++() METHOD OF THE VPIN_ITERATOR CLASS... 98
FIGURE 5.7-6– OPERATOR++() OF THE CLASS DOWNTHEHIERARCHY ... 99
FIGURE 5.7-7 – BLOCK DIAGRAM OF THE OPERATOR++() METHOD FROM UPTHEHIERARCHY CLASS 100
FIGURE 5.8-1 – MULTI-CONTEXT TOPOLOGY EXAMPLE .. 101
FIGURE 5.8-2 – MOTIVATION FORT HE INTRODUCTION OF MEMENTO. ... 103
FIGURE 5.9-1 – EMBOSSING STEP .. 105
FIGURE 5.9-2 – EXAMPLE OF PORT CREATION. .. 106
FIGURE 5.10-1 – TOPOLOGY ADAPTATION PRINCIPLE EXAMPLE. ... 107

xii

FIGURE 5.10-2 - RECOURSIVE REPRESENTATION OF THE ABSTRACT INTERFACE OF THE CLASS

ACCESS_VARIANT. .. 108
FIGURE 5.10-3 – THE EXAMPLE OF THE TECHNIQUE OF TOPOLOGY ADAPTATION. 109
FIGURE 5.10-4 – DISTRIBUTED VARIANT TREE. .. 111
FIGURE 5.10-5 – EXAMPLE OF THE DISTRIBUTED NODE. .. 113
FIGURE 6.2-1 – INTERFACE OF THE CIRINSTANCE CLASS OF THE CLASSIFY PROJECT 118
FIGURE 6.2-2 – PLACEMENT OF THE HYBRID LAYER CLASSES IN THE ACCESS_DEVICE INHERITANCE

DIAGRAM ... 119
FIGURE 6.6-1 – STRUCTURAL PATTERN MATCHING TOOL – CLASSIFY - ALGORITHM EVOLUTION AND

AVAILABLE VERSIONS. ... 125
FIGURE 6.6-2 – QUANTITIES OF THE EXAMPLE HIERARCHICAL NETLIST FAMILIES. 126
FIGURE 6.6-3 – NR. HIER. AND FLAT MATCHES FOR DIFFERENT HIERARCHICAL NETLISTS. 128
FIGURE 6.6-4 – LINEAR DISTRIBUTION OF THE RATIO BETWEEN THE NUMBER OF FLAT REPORTS AND THE

HIERARCHICAL REPORTS. ... 128
FIGURE 6.6-5 – TIME COMPLEXITY OF DIFFERENT ALGORITHM VERSIONS. .. 129
FIGURE 6.6-6 – MEMORY CONSUMPTION OF THE DIFFERENT CLASSIFY VERSIONS. 130
FIGURE 6.6-7 – RUNTIME REQUIREMENTS FOR THE EXAMPLES IN THE DOMAIN WHERE NO FLATTENING IS

POSSIBLE. ... 131
FIGURE A-1 – VARIANT CRITERIA ... 138
FIGURE A-2 - RELATION BETWEEN BASE_CELL AND BASE_VARIANT ... 139
FIGURE A-3– VARIANT CRITERIA STORING DATA STRUCTURE .. 140
FIGURE A-3 – TOPDOWNVARIANTS CONTAINER ... 141

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

13

1 Introduction

1.1 Motivation

 The number of transistors that can be placed inexpensively in an integrated
circuit has been increasing exponentially for more than four decades, confirming the
observations and predictions of Moore's Law [1]. In fact, it has been doubling ap-
proximately every two years. For dynamic memory (DRAM) chips the growth in
complexity has been even faster, as their capacity doubles about every one and a half
years. Integrated circuit design must keep step with the increasing complexity. The
fabrication setup process of VLSI designs is very expensive, as well. Each mask set
that is necessary to be printed prior to massive production of micro-chips costs several
millions of dollars. Further, the time needed for the development of a modern semi-
conductor product is critical. “Time to market” is typically given in very narrow win-
dows. If one misses the optimal time to ship a new product, one also leaves the most
of the revenue to the competitors. In memory production business, avoiding men-
tioned cost penalties is even more crucial as the margin in that business is very low.
For given reasons no trial and error approach is allowed in order to prove the correct-
ness of a design that is to be produced. Thus, verifying and proving that the design
architecture is correct and feasible to manufacture in the given realistic technology
prior to actual fabrication (achieving “first time write” principle) is utterly important.
 The above stated requirements have coined numerous methodologies to model
and check the IC designs. One of the central methods to fight the design complexity is
employment of the concept of hierarchical abstraction. The overall development of
electronic designs is colored by hierarchical approach, both from designing and build-
ing the schematics to the verification process. Different tools were introduced over
time to support the verification process, thus to check the designs from various as-
pects. Depending on actual technologies the set of tools employed to perform the veri-
fication adapts and evolves. As the technology develops and inevitably shrinks to
smaller scales different new problems related to the physical effects that could be ne-
glected in the past emerge. In order to treat these new issues we have often new tools
that get integrated into the design and verification methodology.
 The fact that the designs are hierarchical shapes EDA tools. The tools can
greatly benefit from the hierarchy as it offers completely irredundant view on a de-
sign, but to achieve that “oasis” an often big price mirrored in the required solution
algorithm complexity has to be paid. In some cases this complexity is moderate and
there are even tools that naturally benefit from the hierarchical representation, on the
other hand there are tools for which the years of development are necessary in order to
reach the stage where they can successfully employ the hierarchical concept. Making
tools hierarchical can be seen also as one step in the tool evolution process. The typi-
cal development of the tool is driven by the importance of the check it performs and
the complexity of the data that is verified. As the data which is the point of analysis
constantly gets more complex and thus cumbersome, new and new solutions have to
be integrated into the tool methodology to keep the effort spent to manage the data in
acceptable range. The graph given in Figure 1.1-1 is showing the typical effort
“waves” [2] that the tool/check experiences during its evolution. In the example we
see that the check was at first performed manually, that was possible e.g. in the times

Chapter 1 - Introduction

14

and cases when the designs were not having more than 100 transistors. As the data
complexity has grown (exponentially), to prevent the exponential growth of check
effort (given as a dotted line) a computer tool gets introduced. The tool in the moment
when it is introduced brings amazing enhancement and we can notice the drop of ef-
fort to the values that are even smaller than the effort employed at the beginning of
the evolution. Cycles like this repeat after each (revolutionary) improvement forming
the wavy shape.
 Depending on the evolutive stage, at the given current state of the art we have
two kinds of tools: first that have reached the development stage to work directly on
the hierarchical designs and the second which consists of the tools whose algorithmic
implementations work exclusively on the designs that were previously flattened, thus
simplified. The flattening process collapses all hierarchical levels and makes the
model of the IC design whose layout is identical to that of a chip which is being
printed into silicon. An additional class of tools (filtering tools) that enable flattening
and other helpful transformations of the hierarchical designs have emerged, as well.
 Today, to the first group typically belong important physical (design) rule
checks (DRC) and layout vs. schematics (LVS) methods. Accordingly, in Electrical
Rule Check (ERC) domain, where one checks the electrical correctness of the design,
we have a lot of methods that are implemented so that they can benefit from the hier-
archy, e.g. ESD checks, floating nodes check and device high voltage checks (where
one checks if the given device in the design gets exposed to voltages it can’t with-
stand). As another example device reliability checks can be considered, where one
adapts the device robustness to its duty cycle (the frequency of exposing the device to
the stressed, non-conducting, mode). In all of these checks one does not need to have
the broad information about the environment in which a given device is defined.
 In cases where this is needed, the environment typically crosses hierarchical
boundaries and is orthogonal to them. In these cases introducing the algorithm that
works directly on the hierarchical data is far from trivial. In some cases the solutions
for these problems were found, like in mentioned DRC checks, but still, as we have
pointed out, in most of the cases we perform the algorithm on flattened netlists. One
of the examples is the parasitic extraction problem. The dependencies between para-
sitic nets are typically cross-hierarchical and instance dependent.
 Another, for the motivation of this thesis the most important, example of the
tools that work on flattened schematic data are those that employ structural pattern

Manual

Hierarchy

Parallelization

Computerised

Figure 1.1-1 – Typical tool evolution curve

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

15

matching in electronic designs. These tools are frequently used in ERC, but also can
enhance different other areas of EDA. In some sense structural pattern matching
makes the schematic design processing more intelligent. By employing the matching
one can become aware of the context in which a given design device is used and thus
gain additional power to optimize the given device or to analyze its configuration with
greater precision finding unwanted incorrectness.
 One important realistic application of this process is the ERC check where one
sets the proper dimension of the drivers of the latches in the electronic circuits. The
ratio of the parameters of the transistors that are members of the given driver circuit
have to be adjusted to the driven circuit load. This is a task suitable for pattern match-
ing. One can identify all latches in the electronic circuit and than find their corre-
sponding drivers. After this step one can compare the parameters of the transistors
identified as driver building elements to the requirements that are imposed to them
and adjust them. As this adjustment is highly specific to the given instantiation place
and the designers that employ hierarchy and build different contexts out of generic
parts (predefined subcircuits) can’t be aware of all quantitative aspects easily, the
benefit of a tool that pin points incorrect configurations is vital.
 As we have mentioned one of the prerequisites (a pre-processing step) for to-
day’s state of the art structural pattern matching for IC circuits is assuring that input
schematic designs are flat. This is present throughout the community for, to our
knowledge, all available solutions.
 This approach introduces several disadvantages. First, the size of the flat de-
sign can’t be even compared to the hierarchical and it overwhelms the typical re-
sources of today’s computers. If the analysis is still possible the memory requirements
are then typically so high that more expensive 64-bit machines are required and the
corresponding runtime becomes an issue, too. One of the most challenging problems
that comes as a consequence of the fact that the transformed (flattened) design is used
is back-annotating the results to the original schematics. This can be difficult as, by
working on the flat netlist, we obtain redundant results that are over-bloated and hard
to compare (and find out that they are actually coming from different occurrences of
the identical subcirucit of the hierarchical designs). The described problem creates
additional time demanding analysis activity (man power) of the tool user and disables
the automatization of the process and its integration to modern hierarchical design
development environments.
 For that reason, there is a need to enhance the structural pattern matching
process and solve the algorithmically very demanding problem in order to allow per-
forming of that task directly on the hierarchical schematic designs. Similar problems
to those that we have pointed out in the above text are present in all of the tools that
are, at the common state of the art, performing checks on the flattened netlists.

1.2 Objectives and scope

 Our main goal is to achieve the algorithmic solution for the problem of struc-
tural pattern matching in hierarchical designs. Since the complete proven solution(s)
for pattern matching problem in flat IC designs already exist and also other tools that
were written to work on flat data share some similar obstacles which disable them
from running hierarchically, we want to try to find a common solution that could be
applied to any flat algorithm. For this reason, we have decided to search for our solu-
tion directly in the database which prepares and exposes the design data to the client

Chapter 1 - Introduction

16

application. We want to upgrade the standard database presenting abilities by allow-
ing views which make the hierarchical organization of the given design relative.
 The fact that the modern, standardized EDA databases are typically object-
oriented gives us a beautiful chance to include advanced and very useful concepts that
the object orientation brings in our solution. Hence, for reading and understanding of
this thesis one needs to be familiar with advanced object-oriented concepts and UML
notation language, which is the most suitable and in the same time the most general
way to describe different aspects of the object oriented concepts. Furthermore, our
solutions will include different design patterns that make the solution more robust.
 The expected results are at first, the functional correctness of the model that
needs to present the data to the user algorithm in a (friendly) flat way and keep it con-
sistent with the original hierarchical data. We further expect that the upgraded origi-
nally flat structural pattern matching tool run generates irredundant results after, by
our contribution possible, precise calculations directly in the place where a given
topological context has been defined (relative to the specific subcircuit). Additionally,
we expect better runtime of the pattern matching application and more economic
memory consumption. This is challenging as the problem of structural pattern match-
ing to which we want to apply the model that presents the hierarchical data in a flat
fashion is NP complete. Taming these two parameters should push the border of the
size of the designs that are manageable towards today’s full chip sizes. That fact puts
one into position to run the corresponding checks in realistic application cases in sub-
linear times (sublinear concerning the flat netlist size). We expect that the algorithm
complexity depends rather on the hierarchical than on flat design quantities.
 One additional important quality that we want to achieve is to use the existing
successful pattern matching industrial project completely transparently with the up-
graded database and that the solution we propose is possible to be used with no or
small corrections with other tools that favour flat to hierarchical netlist representation.
Note that possible corrections of the solution that would be applied to other tools
would also be a continuation of this research and would contribute to the evolution of
the hierarchy transforming (hiding) data presenter.
 We will apply the proposed solution to an industrial project, the pattern match-
ing tool - “classify”, which implements the incremental structural pattern matching
principle (studied by several groups) and experimentally check our expectations and
value the benefits that the proposed approach brings. In order to do that we will em-
ploy real-life industrial test cases that are thoroughly quantified, so that we can gain
confidence and better understand the performed tests’ outcome.

1.3 Outline

 Chapter 2 of this thesis gives an overview of the state of the art flat graph pat-
tern matching algorithms, for the application in EDA CAD. Further, it presents the
enhancement of the incremental search oriented graph pattern matching algorithm that
was developed by Qimonda AG and the Institute of Microelectronic Systems (IMS),
at the Leibniz University in Hanover. Moreover, the adaptation of the mentioned algo-
rithm that prepares it for the hierarchical usage is given. This proposed solution re-
solves the problem of supply nets (extensive time is needed to search for the pattern
whose potential target circuit image includes supply nets), common for different algo-
rithms which solve the problem of structural pattern matching.
 The concept of hierarchical abstraction is discussed in Chapter 3. We present
the wide application of the hierarchical concept in nature and science, with the accent

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

17

on its application in EDA CAD. Thus we present the formal model of the folded en-
capsulated hierarchical graph. Moreover, the history and evolution of EDA databases
which implement the folded encapsulated hierarchical graphs and the overview of an
example EDA database (the case study of a logic domain database) are given. Using
the example database we discuss different hierarchical algorithms and abstract data
structures which typically used by the tools which analyse hierarchical data. The
chapter is concluded with a vision of flexible views on the hierarchical data after it
was pointed out that the hierarchical layout of the given data model is not unique, but
polymorphic. By polymorphism here we mean that a given flat design can be repre-
sented by many hierarchical netlists which are then synonyms.
 Chapter 4 brings the general concept of the layered views on the hierarchical
design data. View’s architecture and layering technique are discussed. The visions of
possible example applications are given, as well. One of the visions of the hierarchical
views is the view that hides the hierarchy in order to represent the local data portions
that appear to be flat, bringing all the devices employed to the same level. We call it
virtually flattened view.
 In Chapter 5 we demonstrate the detailed implementation of the virtually flat-
tened view, following the view architecture defined in Chapter 4. The chapter starts
with the explanation of the high-level, object-oriented architecture of the view, fol-
lowed by detailed presentation of each of its conceptual parts. In this chapter, a set of
unique data-structures that enable the view creation and maintenance are explained.
We present the novel context saving tree and the embossing process that alters, just
locally, the layout of the hierarchical design, adding the flat view as the separate, new
subcircuit. Additionally, we present the covering technique, which is used for fast
changes of the topology of different design subcircuits, affected by the embossing
process. This technique is crucial for fast VFV algorithm runtimes.
 In Chapter 6 the application of the Virtually Flattened View is given in order
to solve the problem of hierarchical pattern matching, together with the case study
that serves as the evidence of the qualitative and quantitative achievements of the new
approach. Therefore, the process of adaptation of the generic VFV to the application
domain is explained. This is achieved by creation of a specific hybrid layer that fla-
vours the generic classes of VFV with the properties needed for pattern matching. In
the case study we analyse the quantitative and qualitative aspects of the VFV applica-
tion in incremental structural pattern matching.
 Chapter 7 summarizes the results of the overall research.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

19

2 Graph Matching Concepts in VLSI

 In this chapter we are going to give the necessary theoretical background for
the problem of structural recognition in VLSI. We present the importance of this con-
cept with its application. Throughout sections 2.3, 2.4 and 2.7 the overview of the
field development is given as well. Details about the problems, strategies and solu-
tions that favour the understanding of the thesis are apostrophed with more thorough
descriptions in section 2.4. In this section we describe the concept of incremental
pattern matching as a solution for subcircuit recognition (SR) problem. We point out
the importance and the benefits this approach brings, but as well isolate the problems
the realisation of the concept has faced during the years of real-life industrial applica-
tion. In section 2.6, we propose the algorithmic solution for the performance problem
of the incremental pattern search engine. In some realistic application cases it was
demonstrating indeterministic complexities. We conclude the chapter (section 2.8)
with the analysis of the further development directions of this field, particularly the
need of enabling SR algorithms to work on hierarchical input netlists. Thus, this chap-
ter serves also as a realistic foundation that justifies and settles the motivation to de-
velop the general pattern matching algorithm for hierarchical chip designs.

2.1 Basics of graph notation

In order to explain the algorithms for graph matching it is necessary to formally
define the notation of graph [3]. In general, graph G represents a pair of two sets, V
and E, G = (V, E), such that VVE ×⊆ . The elements of the set V are called vertices
and the elements of the set E edges (also known as lines). It is common and conven-
ient to represent graphs with the graphical notation where vertices are drawn as dots
and the edges as lines connecting them. An example of such a structure is given in
Figure 2.1-1. The graph has in total six vertices. There exist four edges. In the figure
we represent the graph formally, using sets and as well graphically. Note that in the
graphical notation for a graph any shapes are not of interest, but just logical connec-
tions between the given entities.

G = {V,E}
V = { v1, v2, v3, v4, v5 , v6 }
E = {{ v1, v3}, { v1, v2}, { v3, v4}, { v1,v5}}

We can define several quantities to measure graphs. For instance, the number of verti-
ces defines the order of the graph. The order of graph is determined asG , addition-

ally the number of edges is usually determined as G (alternatively, the correspond-

ing orders can be determined with V and E , respectively). In respect to the order

Figure 2.1-1 – Example of the graph notation. Black dots represent the vertices and the
lines the edges.

v2

v4

v1 v3

v5

v6

Chapter 2 - Graph Matching Concepts in VLSI

20

graphs can be finite, infinite, countable, etc. The graphs we use will be always finite.
The order of the example graph is: 6=G .

 The graph without vertices and edges is an empty graph (∅,∅). We simply
write shorter: ∅. The vertex v is said to be incident to an edge e if v∈e. On the other
hand, the two vertices incident to an edge are called ends. We say that two ends of an
edge are adjacent.
 We define, further, the degree of the vertex: d(v). The degree of vertex equals
the number of edges which it is connected to. For instance, the vertex v1 (Figure 2.1-1)
has the degree d(v1) = 3, while the vertex v6 has the degree d(v6) = 0. The vertex with
the degree value that equals zero is also known as the isolated vertex.
 We use graphs to model different complex entities. Their atomic parts and
connections can have properties. Therefore, we define properties also for the model
(graph) elements. Vertices and edges can contain information. If the information is
trivial and each atomic part has a label, we say that the graph is a labelled graph. The
information can be as well more complex and each of the graph elements can contain
a set of attributes. In that case we have an attributed graph.
 It is possible to classify graphs according to the values of the defined proper-
ties. For this thesis it is important to define a class of graphs where the edges are re-
stricted in a specific way.
 Let r ≥ 2 be an integer. The graph G = (V, E) is r-partite if the set V can be
divided in r partitions such that no edges exist between the vertices to the same given
partition of the set V. Therefore an edge is allowed to be placed only between the ver-
tices of different partitions. A special case of this class of the graph is 2-partite or bi-
partite graph. The vertex set V of these graphs can be divided in two partitions,

YXV ∪= , in which the vertices have no mutual connections, or formally:
{ } YyXxyxeEe ∈∧∈∴=∈∀ ,: . We show an example of such a graph in Figure

2.1-2.

 Bipartite graphs are widely used for pattern matching in the area of chip de-
sign verification. They are particularly used in the area of EDA to model the elec-
tronic circuit.
 We will further define a hyper graph. A hyper graph is the generalisation of
the graph where the edges are not exclusively connecting two vertices, but a set of
vertices. Formally, a hyper graph H is a pair H = (V,E) where V is a set of elements,
called nodes or vertices, and E is a set of non-empty subsets of V called hyper-edges
or links. Therefore, E is a subset of P(V)\ ∅, where P(V) represents the power set of
V. The power set is the set of all possible subsets of a set. While graph edges are pairs
of nodes, hyper-edges are arbitrary sets of nodes, and can therefore contain an

Figure 2.1-2 – bipartite graph

x1

x2

x3

x4

y1

y2

y3

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

21

arbitrary number of nodes. One example, together with the graphical notation of the
hyper graph is given in Figure 2.1-3. This example is similar to our general graph
example from Figure 2.1-1. It has as well six vertices still, as we can see the
connections group more than two vertices together. In the graphical representation the
edges are given as overlapping areas rather than lines.

H = {V,E}
V = { v1, v2, v3, v4, v5 , v6 }
E = {{ v1, v3}, { v1, v4, v6}, { v2, v4}, { v1,v5}}

 Hyper graphs are an alternative for modelling the electronic circuits. They are
suitable due to the fact that the electronic circuit elements often have a big number of
multiple mutual connections and the edge concept of the hyper graph allows that.

2.2 Graph matching

As it has already been pointed out, different applications of the graph theory
request comparing two graph structures. This was a motivation to develop a family of
graph matching algorithms. Graph matching can be formulated as follows: given two
graphs (pattern graph)Gp = (Vp,

 Ep) and (target graph) Gt = (Vt,
 Et), find one-to-one

mapping f: Vp→Vt, such that (u,v)∈Et ⇔ (f(u), f(v))∈Ep.
 Traditionally the first group of algorithms that were developed to solve the
graph matching problem were search oriented algorithms. Typically they require a
rigid identity between two structures that are compared. For this reason they are also
known as exact pattern matching algorithms. Traditional, search oriented (exact)
methods are based on recursive breadth first or depth first search (with backtracking)
from the selected candidate starting point inside the target graph. Therefore, for dif-
ferent starting places the algorithm attempts to test the environment of a given vertex
for the isomorphic structure. However, different useful heuristics made these methods
powerful and tuned for appropriate applications. The heuristics typically take advan-
tage of the specific information which the graph nodes, as models of the application
area entities, carry. Different preparation processes are done in order to achieve typi-
cally linear runtimes. The specific algorithms are therefore developed exactly for cer-
tain type of graphs that they are analyzing.

On the other hand, the group of algorithms developed chronologically later
can accept also more relaxed requirements concerning the resemblance between the
pattern graph and the target graph. They are error tolerant. In this case, alternative
approaches are used, such as optimization theory, neural networks, genetic algorithm,
probability theory, etc. These algorithms are performing inexact pattern matching. We
can now shortly summarise: exact pattern matching algorithms are optimal from the
angle of accuracy, while inexact pattern matching algorithms are fast, but approximate
and are not 100% reliable.

Different research groups have developed particular algorithms from both
classes. From the search oriented class we will mention the algorithm of Ullmann [4]
where a greedy heuristics is applied. The algorithm continues the recursive search

Figure 2.1-3- Hyper graph

v2
v4

v1 v3

v5

v6

Chapter 2 - Graph Matching Concepts in VLSI

22

choosing the path which satisfies the set of local statistical constraints. On the other
hand important is the approach in the algorithm of Corneil [5], where the graph gets
globally partitioned to prune the number of appropriate candidate starting points. An
additional approach in this class is the graph matching using Binary Decision Dia-
grams [6]. In the area of inexact algorithms various theoretical concepts are applied.
We will apostrophe the approach based on optimisation theory and statistical physics
– graduated assignment [7, 8]. This approach adapts the optimization function of the
general graph matching problem by developing it as a discrete Taylor series and re-
duces it to the assignment problem. In contrast to graph matching that is NP complete
[9], the assignment problem has a known polynomial complexity solution: the softas-
sign algorithm [10]. Graduated assignment led by graph labelling with good discrimi-
natory properties has shown respectable results.
 Both algorithm classes have found applications in different areas. Newly de-
veloped techniques for inexact pattern matching, replace traditional search oriented
algorithms in the domains where the speed is essential and, more important, where the
target graphs are expected to be just an approximation of the pattern graph. In general
this is used for image recognition applied in different areas such as: character recogni-
tion, computer vision, GIS (Geographical Information Systems) and medicine.
Exact pattern matching algorithms are still used in areas where the complete accuracy
between two graphs is essential.
 Exact and inexact pattern matching both define two sub-problems (Figure
2.2-1). We can compare two different graphs in order to prove if they can be matched.
Additionally, it is possible to check if a given graph is contained in another graph.
This is a problem of subgraph matching, which can be defined as follows:

Given a graph S and a larger graph T, find all the subgraphs of T that are
equivalent to S.

The subgraph isomorphism problem is computationally far harder than the
graph matching problem. Although both belong to the class of NP complete problems
the graph matching can employ different global statistics when comparing two graphs
that can simplify building effective heuristics. This kind of simplification is not possi-
ble in subgraph isomorphism problem.

Figure 2.2-1 – Classification of the pattern matching in graphs into two general groups: Exact
pattern matching and inexact pattern matching.

Graph Pattern
Matching

Exact Pattern
Matching

Inexact Pattern
Matching

Graph

Isomorphism

Subgraph

Isomorphism

Graph

Homomorphism

Subgraph

Homomorphism

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

23

2.3 Subcircuit recognition, the application of subg raph
matching

The application of pattern matching in EDA is vital for different parts of the
design verification process. The application domain is called subcircuit recognition
(SR).

It is useful to recognise some meta-structure from the groups of interconnected
devices in many application scenarios. We can, therefore, use SR to understand the
semantics of certain devices. The role of an identical transistor is not the same in an
analog circuit and in some logic gate. During the chip design verification process it is
necessary to compare the netlist which is extracted from the layout to the original
schematic netlist. This process is known as LVS (Layout vs. Schematics). In case
where the netlist extracted from the layout is flat (composed exclusively from atomic
elements) the benefit of SR is obvious. We can isolate the hierarchical structure and
compare it to the original hierarchy of the schematics. Still even if the netlist extractor
is hierarchical, the hierarchy of the extracted netlist is usually slightly different, so
rebuilding the original functional blocks (that exist in the original hierarchy) is neces-
sary to prove the identity between these two netlists. On the other hand the (from lay-
out) extracted netlist sometimes contains some extra physical characteristics of the
design which are modelled as parasitic interconnection networks, the passive RLCK
networks that realistically model the dynamical behaviour of the device interconnec-
tions. By applying SR we can isolate parasitic networks that can be later evaluated
(acquiring statistics important for timing characterisation) or reduced [11, 12]. SR can
optimise the simulation too. Certain parts of the design that are structurally expensive
to simulate and whose internal states are not of interest can be recognised and ab-
stracted as behavioural models, or just simplified models (we come back here to para-
sitic network reduction).

Last but not least, SR is enabling static timing analysis of the custom transistor
level design. We can abstract each implementation of the logic gates as a separate
subcircuit, perform the timing characterisation on the given block definitions and fur-
ther analyse their interconnections in the produced gate level netlist. Gate level net-
lists allow also the functional verification of the netlist. Thus, by SR we make the
functional verification of the transistor level design possible. There are numerous
other possible applications for the SR in the area of EDA. Simply, SR makes the veri-
fication process more intelligent and context driven. All of these reasons strongly jus-
tify the thorough research and the development of the general, flexible and powerful
SR strategies.

It is common to model the electronic circuit as a graph. For different purposes
different types of graphs are used. For the purpose of subcircuit recognition (SR) the
application of bipartite graphs (section 2.1) is common.

As we have shown the vertices of the bipartite graph are divided in two parti-
tions (sets). In the domain of SR one set of vertices models the devices (transistors,
resistors, capacitors etc.), or in other words elements of the electronic circuit, while
the other models the interconnections between the devices. These interconnections are
called nets. A net is an optimal way to represent a connection between arbitrary num-
ber of devices.

This is due to the fact that the representation of the common connection be-
tween n elements by direct mutual referencing would demand ()1−⋅ nn references

Chapter 2 - Graph Matching Concepts in VLSI

24

(
()
2

1−⋅ nn
edges), while employing the special class of the vertices that model the

connection requires n⋅2 references (n edges). This can be illustrated with a simple
example given in Figure 2.3-1. In the figure, we have a complete graph of four verti-
ces. In order to interconnect its vertices we need six edges. If we introduce an addi-
tional vertex class (shown white in the example), we need only four edges to represent
the same connections between the graph vertices.

Interconnections between the multiple devices are very common in electronic
circuits. Think of the supply connections (power and ground connections). Millions of
devices are all connected to a single supply interconnection. Representing them with
the strategy under (a) would require dramatically more space than the bipartite graph
strategy. We can say that the memory requirement complexity of the first strategy has
the complexity O(n2), while the second has O(n).

Both classes of vertices typically have a type defined with them. Devices are
typed simply by the kind of the entity they model. Nets can be typed by the semantics
of the signal they are carrying. This kind of typing is important for different algo-
rithms that are interpreting the electronic circuits which are modelled by graphs, but
not necessary for the storage of the design alone. One can broadly distinguish supply
connections and signal connections. As each circuit that is modelled by the graph has
nodes which model active devices (i.e. transistors), they would be typically connected
to some power source, having part of their terminals on a constant potential.

To summarise, the model of the electronic circuit falls (typically) into a class
of bipartite attributed graphs. We can consider the example of the bipartite graph rep-

Figure 2.3-1 – a) standard graph with one class of vertices. b) bipartite graph, where connections
are modelled separately as a vertex class, shown as a white circle.

Figure 2.3-2 – Bipartite graph representation of an inverter circuit, realised in CMOS technol-
ogy.

a) b)

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

25

resentation of an inverter. Figure 2.3-2 shows the schematic representation of the in-
verter together with its graph model. The devices are represented by squares while the
nets are given as circles. By mapping the theoretical model of a graph to the electronic
circuit, we can now exchange our vocabulary and use the terminology of the EDA
equivalently with/instead of original terms from the graph theory. Using this new vo-
cabulary we can now (re)define the problem of subcircuit recognition.

Subcircuit recognition isolates the instances of a specified pattern circuit (or
simply pattern) inside the larger target circuit. The example of this problem is given
in Figure 2.3-3. In the given example we have a pattern which defines structurally a
functional circuit NAND (a). The circuit is built up from the proper link of the parallel
connection of PMOS transistors and serial connection of two NMOS transistors. The
instances of this pattern are being searched in an example of the target circuit, given
in (b). That target circuit contains the image of the pattern and it is marked with a dot-
ted rectangle. Note that the pattern has also defined node types. Not any conglomera-
tion of transistors connected in the similar way like the NAND pattern will than lead
to a match. It is necessary that the source terminals of the PMOS transistors are con-
nected to the fixed supply voltage (Vdd) and that the source terminal of the NMOS is
grounded.

Figure 2.3-3 – NAND pattern and its image in the example target circuit.

This fact is crucial for the correct matching but as well of a big help for the al-

gorithms that were devised to serve like an engine for this problem.
 After a pleiad of technology dependent algorithms, where the patterns and
different approaches to match a given subcircuit were hard-coded into specific func-
tions, more general tools arrived, based on subgraph isomorphism. Since the subgraph
isomorphism problem is in general NP complete and the designs on which EDA tools
are to work on are complex with the trend of increasing that complexity, more general
and always more efficient solutions were searched for. Different solutions transfer and
adapt the known strategies from the theoretical field of graph matching, enriching
them with the domain specific heuristics.

The heuristics are led by the sparsity of the graphs that represent integrated
electronic circuits. The topology of the bipartite graphs that model circuit designs has
some typical properties. For instance, as we have mentioned the number of device
classes is limited. They all have terminals which connect them with other devices. The

Chapter 2 - Graph Matching Concepts in VLSI

26

number of terminals is strongly limited as well, typically not bigger than four and
each of the terminals has its semantics. Nets are not limited by the number of incident
device terminals. Still, typically, the design consists of a lot of small local nets op-
posed to several big supply nets, or some signal nets with a big fan-in or fan-out fac-
tor, depending on the circuit semantics.

Specifically for the pattern we can distinguish two kinds of nets. Internal nets,
which are strictly connected to the devices that exist in the pattern and external nets,
which can “communicate” with the rest of the target circuit. They actually connect the
pattern image to its environment (in the target circuit). For instance, the net between
two serially connected NMOS transistors in our example pattern is internal. The nets
that connect gates of the corresponding PMOS and NMOS transistors (the input nets)
are logically external.

The heuristics of the algorithms that were developed is typically led by these
basic properties of VLSI electronic circuits. The algorithms which employ the corre-
sponding heuristics to favour the typical properties of the VLSI electronic circuits are
typically linear. Still, unfortunately, the heuristics do not grant the linear complexity.
In some cases even the tuned depth first and breadth first search algorithms demon-
strate indeterministic complexities (towards the exponential worst case complexity
defined by the general theory of NP complete problems).

One of the first algorithms and the project that tends to define the general tool
for subcircuit recognition in electronic circuits is the approach of Lüllau et al. [13].
This group has devised a specific partitioning algorithm that labels each device or net
in the circuit with a specific integer number. This number depicts the immediate
neighbourhood of the given device. The most interesting fact of the labelling algo-
rithm is the application of prime numbers. Each device type, or device terminal type
(for instance in a transistor drain source or the gate) is coded by a distinct prime num-
ber. The overall label of the device than is the number that is obtained by multiplying
the codes of the adjacent device terminals to it. The algorithm uses an abbreviation of
the bipartite graph (multi-place graph). In this graph model apart from the set of ver-
tices we define the set of spiders. Spiders correspond to edges and nets together
(where the net is the body of the given spider and the edges are its legs). This repre-
sentation reminds also of hyper graph. Therefore the label is given to the spider in-
stead of a net of the bipartite graph. The label of a spider is the product of the labels
(prime integers) of all its legs. The important property of a label which is obtained by
multiplying prime numbers is that one can easily test if the certain combination of
device terminals is incident to the given device (spider) simply by dividing the device
(spider) label by the given “sublabel”. If the labels are dividable without residuum the
test is considered successful. In this way the algorithm saves a lot of time that would
be spent for the unsuccessful tests, just by one arithmetic operation. The authors claim
the expected linear complexity.

 Several other algorithms exploit the idea of labelling the pattern and
the target circuit that originates in the Corneil’s algorithm. The algorithm that further
develops the application of this idea in the area of SR and has achieved the respect-
able linear complexity in most of the application cases and in the same time became
one of the most referenced algorithmic solutions for the SR problem is the algorithm
of Ohrlich et al. - Subgemini [14, 15]. The pattern and the target circuits in this ap-
proach are modeled as the bipartite graph. This algorithm defines two phases. In the
first phase the labeling algorithm conceptually similar to Lüllau (Corneil) is being
applied. This algorithm achieves non-local labeling of different nodes with respect of
their neighboring topology in the target and pattern circuit. This enables it to achieve

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

27

extensive pruning of the search space and to isolate a typically short candidate vector
of possible instantiations of the pattern, from which the algorithm proves if the target
circuit contains the match or not by the breadth first search. Subgemini authors show
the efficiency of this heuristic method by tests and still point out its weaknesses. First
is that the algorithm is unable to match any pattern image circuit with shorted external
nets. This is simply due to a fact that in the bipartite graph any shorting of the net is
equivalent to net merging. That means that the image of the pattern circuit with some
external nets shorted has than less nets that the pattern itself. This automatically leads
to the fact that Subgemini fails to identify the given pattern instance. Another problem
of Subgemini is the fact that any target circuit matching process that includes evalua-
tion of a supply net is experiencing long runtimes. This problem comes from the fact
that all active devices (MOS transistors, Bipolar transistors) require the power supply
which means that a pair of its terminals is always on the common high voltage and the
ground. In bigger circuits this leads to very large nets whose analysis (linear search)
always implies long runtimes.

Different groups have worked on the problems that Subgemini has faced. One
interesting solution for the shorted external net problem of Subgemini is given by
Ling [16, 17]. Shortly after the publication of Subgemini he points out the problem of
shorted external nets and offers the solution by transforming (upgrading) the bipartite
graph with some of the properties of the hyper graph. He introduces specific edge
units (EU). Each EU describes the connection between two device nodes (over a net).
If we observe a shorted net in this way we can conclude that the set of EUs in the
shorted net is the superset of the EUs of the non-shorted external net. This means that
the Ling´s algorithm can find as well the instances with shorted external nets.

2.4 Incremental pattern matching

As we have described, different groups have worked on enhancing the match-
ing process in order to optimize the solution to the problem of SR. In parallel to these
inventive heuristics an additional approach has been developed. This approach is ac-
tually the upgrade of the atomic SR problem, where one locates the images of the
given pattern circuit inside the target circuit. In incremental pattern matching we con-
nect the outcomes of single atomic matches and use them as premises in order to iso-
late higher level complex contexts inside an electronic circuit.

In order to illustrate the core idea of this SR strategy we will go back to our
NAND example. If we want to match the NAND pattern circuit in the target circuit
incrementally, we can divide the process in three steps. At first, we match the simple
parallel connection between two PMOS transistors, which is the standard SR, de-
scribed in the previous section. After this we match the serial connection of two
NMOS transistors. If the tool for matching can, after locating the image of the pattern
in the target circuit, alter the topology of the target circuit inserting new solid abstrac-
tion in place of the recognized topology, we could use now these “intermediate”
matches in order to isolate the final context, in our case a NAND. In Figure 2.4-1, we
see these three patterns and all places where the matches for them occur in the target
circuit marked. Therefore we match at first the parallel connection once. Note that in
the target circuit, there are two occurrences of the serial NMOS connection, but only
one of them is, together with the matched image of the PMOS parallel connection,
forming a proper NAND gate.

The given strategy has a number of advantages. First, if one wants to match
difficult contexts that are composed of many elementary devices it is much more natu-

Chapter 2 - Graph Matching Concepts in VLSI

28

ral to first detect smaller functional parts of the given context, and than to match it on
the higher level. This approach is easier to understand and to explain and in the end it
is easier to write the corresponding patterns. Further, since we match some more
complex patterns step by step, employing patterns that have usually not more than two
elements, we obtain shallow backtracks, no matter if we are using breadth first or
depth first search. This brings faster execution times especially in highly symmetrical
circuits.

Figure 2.4-1 – Incremental pattern matching. Three patterns are defined: Parallel connection of
two PMOS transistors, serial connection between two NMOS transistor and the proper link of
these two high-level abstractions forming a NAND pattern. Additionally the example target flat
circuit is shown with marked places of the instantiations of the mentioned patterns.

Since we have now specified the fact that a group of matching processes is in-
teresting to us and we want to observe it as a whole, let’s try to define the structure of
this group and its elements.

An atomic entity of the incremental pattern matching process in SR is a rule.
A rule corresponds to the single SR process where after the structural pattern is
matched an action is performed. We can therefore say that the rule is built out of the
structural pattern and the action which is executed if the image of the pattern is found.

It is useful to represent the pattern as some kind of graph regular expression, to
make it templated. In this way a single pattern can match a family of structures. This
property elegantly solves some known problems of SR, such as the problem of
shorted external nets of the structural pattern. In general it can help matching different
generic circuits or circuits done in similar technologies with a single rule. On the other
hand allowing the pattern to be rich in templated mechanisms makes the implementa-
tion of actions more complex [18]. For this reason it is necessary to carefully choose
the set of templated properties that would make the best compromise between the im-
plementation complexity and the ease of application.
 There can be several types of actions. Possible actions can include evaluation
of the given image of the pattern or modifications of the topology of the target circuit.
The modification can, for instance include exchange of the matched star of resistors
with a triangle. The special case of modification that is crucial for the incremental
pattern matching is the action of abstraction. In this case we simply form a solid
block that stands for the given pattern image. This block is connected with the rest of
the target circuit by the pins that are analogue to the external nets of the pattern.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

29

 Once we have defined the rule as the atomic part, we define a rule sequence. In
our example we have used a sequence of three rules in order to match the NAND
logic gate.
 In order to make the process of matching more powerful we can introduce also
a flow control to control the order of rule execution and make it generic (to react to
the outcome of the single rule matches). In this way we combine the pattern matching
rule serial sequences with conditional or unconditional loops and branches. By defin-
ing flow control we introduce a specific descriptive rule language.
 This kind of language was for the first time introduced by Chanak in his PhD
thesis project [18]. The project of Olbrich/Barke [19] also defines the specific descrip-
tive language, developing the idea of Chanak. Their language that has been named
Clarula (classify rules language) will be subject of the following section.
 There is nevertheless one known alternative to the language which controls the
proper execution of the incremental pattern matching.
 Pelz et al. [20, 21] were motivated by the LVS process and have proposed a
specific pattern matching algorithm with hierarchical patterns. In this approach the
pattern has its own hierarchy and the order of matching (executing SR algorithm ab-
breviation based on depth first search) is determined automatically by the specific
algorithm that analyses the hierarchy of the pattern. Pelz introduces the pattern as the
generalization of the problem he has analyzed. His goal was to prove if the hierarchi-
cal schematic netlist is identical to the flat netlist extracted from the layout. The order
of matching is chosen in the bottom-up fashion, logically. At first the most elementary
patterns would be recognized and than their results used to recognize further higher
level pattern towards the top. Pelz determines the constraints for the hierarchical pat-
tern topology. The preparation algorithm would analyze the hierarchy of the pattern
and alter it if it finds the violative properties. These properties are for instance exis-
tence of a given topology both as a separate abstraction (lower level pattern) and as a
flat topology in the same hierarchical level of the pattern. For instance the hierarchical
pattern of the latch has one inverter given as a separate subcircuit and another as the
proper connection of CMOS transistor pair. This kind of a pattern would never match.
Pelz’s preparatory algorithm resolves this violation in the given hierarchical level of
the pattern by flattening the given abstracted topology or abstracting its flat version.
Another constraint is the existence of flat match of the pattern that is distributed be-
tween two hierarchical levels of the input circuit. This is being checked by flattening
the pattern and than trying to match it. Pelz further identifies the problem of reordered
pins of the pattern abstraction and the problem of technological difference of two
functionally identical parts of the extracted netlist. He solves the latter problem by
introducing a specific library of patterns that are of the equal type, but have the differ-
ent, alternative implementations.
 All of these problems still exist in the case when we define the flow control of
the incremental pattern matching by the descriptive language. They are left to the user
to avoid them. In this sense the programming with such a descriptive language be-
comes also creative and a sort of art. Not just because of possible flaws, but mostly
because of powerful possibilities for matching complex contexts that the language
gives to the rule writer. Note that the algorithms of Pelz can be still combined with the
language and serve as some kind of syntax check once the rules written by the expert
are being compiled. The syntax check can issue warnings and errors pinpointing in-
consistent rules, that for instance are impossible to be matched.
 We will, in further text, describe the language defined by Olbrich and Barke
and its algorithmic solutions together with the unique concepts devised for this ap-

Chapter 2 - Graph Matching Concepts in VLSI

30

proach. This approach has, in its later development stages, shown stable and accurate
industrial application. By describing that project as an example we want to introduce
the reader to the Clarula language and properly set up the context for the explanation
of the contribution of this thesis.

2.5 Classify project – Clarula descriptive language

We will present here one realisation of the concept of the incremental pattern
matching strategy. This realisation defines a specific language (Clarula) which im-
plements basic flow control constructs and certain template mechanisms for the struc-
tural pattern. This research project was realised by Olbrich/Barke for the application
in the real industrial environment. The goal of the project was to achieve the general
purpose SR tool based on incremental pattern matching. The industrial version of this
tool is named classify. The flow of the tool could be drafted as in Figure 2.5-1.

Figure 2.5-1 – Pattern matching tool cClassify – execution flow.

 The flat input netlist is compiled into an in-memory bipartite graph model of

the circuit, together with the rule set. The ruleset is an instance (a program) of the
descriptive language - Clarula. Therefore, the memory representation of the ruleset
consists of the framework to lead the program execution (flow control) with the num-
ber of specific “pattern side” graphs that represent the graph regular expressions. The
output of the tool is the partitioned netlist and a specific error report file. This ASCII
file has a syntax which enables it to be used together with third party graphical user
interfaces that represent the hierarchical designs (Cadence Composer®). Therefore, the
idea is to integrate the pattern matching tool with a specific rulset (which performs
specific electrical rule check of the design) into Composer® to be able to graphically
specify exactly the places where some violation has occurred.
 The rules language program has a clearly defined structure. It starts with the
type definitions that are followed by the net and block predefinition assignments. This

#comment
rules block
.rules
< type definitions>
<net and block predefinitions>
<rule definitions>
< protocol comment>

.endrules

Figure 2.5-2 – Clarula language structure

Flat netlist

Classify
Classify
ruleset

Flat netlist
enriched by

additional subcircuit elements

Flat (redundant)
error protocol

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

31

section is followed by the rules. Keywords and commands start with a dot (.). The
program is bounded as a structure that begins with a .rules keyword and ends with a
.endrules keyword. If the first character of a line is ‘#’, that line is treated as a com-
ment. No inline comment is allowed. The conceptual structure of the Clarula program
is given in Figure 2.5-2.

The block <type definitions> strongly declares the set of types that are going
to be used throughout the program. The types are assigned to devices (blocks), nets
and ports. The assignment keywords are .blocktypes, .nettypes and .porttypes respec-
tively. One example of the type set is:

.nettypes signal power ground tobedriven pdrive ndrive fixedV pMultCon nMultCon
bidirekt .

This statement declares ten different user defined types that give semantics to the nets
used throughout the given Clarula program.
 The patterns specified in the rules can demand a certain type for a net in order
to match. The rules can assign types after successful matches. However Clarula uses
the naming convention of the nets in the design to assign the initial typing of the tar-
get circuit. This is done in the <net and block predefinitions> section. With the state-
ment .netpredef the user can assign a type to a target net according to the string regu-
lar expression. If the target circuit net name matches the string regular expression ap-
propriate type is assigned. For instance:

.netpredef 'vblh*':power

would assign the type power to any net in the target circuit that has a name which
starts with a string “vblh”. Arbitrary number of lines of this type is allowed, meaning
that we can define arbitrary number of rules to assign types according to the string
patterns.
 The initial types of the atomic blocks of the target circuit can be read directly
from the design models. Each device in the electronic circuit design has a clearly
specified type.
 In this way we have specified the vocabulary for typing the patterns and as-
signing the initial types of the electronic circuit. Further program structure represents
the collection of rules that are combined with the flow control statements.
 Clarula defines three types of rules:

• Block rules
• Adjacency rules
• Net rules.

The most general and in the same time mostly used rule type are the block
rules. This rule type can match the arbitrary structural pattern and apply a certain op-
eration on the pattern image in the target circuit. Block rules have the following typi-
cal syntax:

.blockrule <name> <port list>
<element 1>
[<element 2>]
…
[.gets <assignments>]
[.flatten <element list>]
[.param <parameter definitions>]

Pattern:

Actions:

Chapter 2 - Graph Matching Concepts in VLSI

32

[.check <check list>]
.endblockrule

 The block rule has its name and the list of ports. The ports specified in <port
list> correspond to external pattern ports and they are as well defining the pins of the
instance of the given abstraction that can be inserted by the appropriate action. This
header line is followed by the structural pattern definition and a mixture of possible
actions that can be performed on the matched image of the pattern inside the target
circuit. We can recognise that this realisation of the rule follows the standard structure
of the rule for incremental pattern matching, discussed in the previous section.
 The pattern is specified in a syntax that resembles the SPICE netlist format.
The SPICE netlist format represents data as a list of devices whose types are deter-
mined and whose mutual connections are specified by referencing the net names in a
device terminal list. This kind of textual representation is natural and already known
to the designer, a possible user. The syntax is actually enriched with several concepts
needed for pattern matching. First, elements of the netlist can have defined types. The
type is assigned to a net or a block by writing its name followed by a colon and the
specific type name (e.g. x1:inv a b c:pwr d:gnd). The element of the pattern can also
define specific parameter values that are required to be identical to the candidate ele-
ment in the target circuit (PARDEF) in order to match it with the pattern element. We
can formally write down the syntax of the single element of the pattern:

 <name>[:<type list>] <port list> [PARDEF <parameter definition>]

 Additionally, the language defines one possible abbreviation of templated
properties. Clarula defines the concept of optional ports. By employing this concept
one can match a family of circuits by a single pattern. Optional ports allow the pattern
to have generic connections (that appear in some instantiation cases and in some not).
The language however does not allow the generic number of devices that are the
members of the single pattern. This is rather achieved by applying the rule recurrently,
employing the flow control. The example of this strategy will be given together with
the definition of the flow control structures.

The ports can be divided into three classes. Mandatory ports, are the terminals
that have to exist in the pattern image in order to have the correct match. On the other
hand, optional ports can be left unmatched and the pattern as a whole can still be suc-
cessful. Special kind of optional ports are multiple optional ports. The semantics of
optional ports differs in the port list that is attached to the element in the pattern list
and in the port list which denotes the list of external ports. We will illustrate both
strategies employing the examples in Figure 2.5-3. First, let’s analyse the meaning of
the optional port in the external port list. Three similar rules are specified in our ex-
ample under a, b and c. The first rule allows the pattern to have two external ports, the
second requires three while the third specifies the port b as optional (written [b]). That
means that the port b is allowed to have external connections but it is not required to.
As a consequence if we apply these three rules on the target circuits shown in the fig-
ure under d and e, the first pattern would match only the example in the circuit d, the
second pattern would match only the circuit under e and the third pattern would match
both circuits. To conclude, the optional external port has allowed us to “compress”
two similar patterns, with respect to the external port configuration, into a single rule.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

33

Multiple ports have similar semantics, but in addition they allow multiple tar-
get side matches for a single pattern side multiple optional port. The net can have a
number of ports that connect to it and not just exclusively 0 or 1.This concept is very
useful for recognising the circuits implemented in different, similar technologies. For
instance the same logical circuits can have two different power supply solutions can
be matched with the single rule using this strategy. We can abstract all power (or
ground) nets with a single multiple port .This concept is as well useful for matching
the generic circuits. In our example figure, under f is specified the pattern that can
detect an OR gate circuit with the generic number of inputs. Additionally the target
circuit shows one implementation of 8 input or circuit realized with four two input or
circuits and the recognition sequence that leads our target circuit into a topology
where it has one or gate with eight inputs. The multiple optional ports, as it can be
seen in example, are denoted by curly brackets ({<port name>}).
 Similar to this example we can now notice that the optional port concept can
trivially solve Subgeminie’s problem of the shorted external ports. Any external port
pair that can be shorted can be defined as a pair of mandatory and the optional exter-
nal port.
 To conclude, this actual application of the concepts for the structural pattern as
a structural regular expression witnesses the correctness of the analysis of Chanak
[18] where he predicts that due to the implementation complexity just a carefully cho-
sen mixture of the possible graph regular expression concepts should be used. Note
that an alternative for optional ports would be writing exhaustively separate rules for
each of the combinations of these generic element occurrences. In the case of the OR
circuit example this number is (theoretically) infinite!
 Once the pattern is matched Clarula can execute a number of different actions.
There are four action classes. The tool can (re)assign parameters to certain blocks in
the circuit, using a keyword .param. Further, it can by issuing a command .gets insert
a new block, exchanging it for a topology that the rule has matched. The block is pre-
cisely connected by the pins specified in the rule. Note that the algorithm determines
the proper usage of optional ports. In order to make the tool more powerful it is possi-

Figure 2.5-3 – optional port usage examples. a, b and c) three variants of block simple block rule
to match the serial connection of two resistors with and without optional ports. d, e) target circuit
for the patterns defined. f) rule to match the generic number of inputs or gate. g) Recognition
sequence.

Chapter 2 - Graph Matching Concepts in VLSI

34

ble also to collapse some blocks which were abstracted in some previous rule. For this
reason the keyword .flatten is used followed by the name of the block that is got in
context and which is supposed to be flattened. One example of this concept is when
after the recognition of latches, the rule writer wants to keep just their weaks and re-
use forwards for some other purpose (they can be a part of a driver driving the next
latch that is connected in cascade). In the end, the .check action is issuing an entry for
the error protocol file if an arbitrary test condition (which can be for instance a test on
specific parameter values of the devices that are matched) succeeds.
 The other two types of rules have the similar syntax but a slightly different
pattern and action specifying concept. We sketch them briefly just for completeness.
The work related to this thesis is in the scope of block rules.
 The adjacency rules concentrate on devices. They group interconnected de-
vices of the kinds that are specified in the rule instance with no respect to the topology
they build. The only criterion is that they are adjacent. Additionally to the kinds of the
device types that are to be gathered cutnets, the nets that define the stopping criteria
and after which no matching is further performed. This kind of rules is especially use-
ful for isolating parasitic networks. By employing this rule type RLCK networks of
the arbitrary topology can be easily found and highlighted.
 The third rule type matches exclusively nets. The net is matched and appropri-
ate conclusion is applied on it according to its type(s) and the type and the number of
ports which are attached to it. They are useful for fast signal propagation.
 As we have already mentioned the sequence of rule execution can be con-
trolled by the simple flow control. Apart from the sequence, that is defined by simple
applying the rules one after another in the program listing, for and while loops are
defined. Their semantics is however different to the loops with identical names de-
fined in procedural programming language.
 The for loop executes a group of rules as long as any of these rules match. Its
execution is as well optimised. For instance, if we have two rules in the for loop:

 .for
 {
 Rule1
 Rule2
 }

, if the first rule matches and the second doesn’t, the for loop executes again the first
rule. If it in this new attempt doesn’t match, since the target circuit was not altered, we
can be sure that neither the second rule will be matched. Therefore, the for loop exits
after the matching process of the first rule, skipping the second.
 This kind of loop is very useful for the recurrent matches. For instance the
matching process from our OR gate example would be executed by the simple pro-
gram in Clarula specifying the for loop and the single rule we have already defined.

.for
 {
 .blockrule or1 a b c d {e} {f} x
 x1:or a b {e} x
 x2:or c d {f} x
 .gets gate:or

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

35

 .endblockrule

 }

 As we have stated in the example the syntax for the for loop is composed of
the .for keyword and the curly brackets.
 Another loop type, the while loop is similar to the for loop. This kind of the
loop executes a set of rules if another additional set of the rules matches (if any rule
from this set matches).
 The language which was specified here serves as a powerful and flexible tool
to run the context driven netlist processing. In Clarula, it is possible to write tools
which perform important static rule checks or make the optimization preparatory steps
for the simulation. Although powerfully conceived, the potential of this strategy is not
being fully used due to different issues related to the real realisation of the concept for
general hierarchical designs. The concept was implemented to work with the flat input
netlists. Their size is extensive. First consequence is that the tool can be run just on a
certain blocks separately and not on the full chip.
 Further, the engine for the SR is the depth first search algorithm that is con-
strained only by the circuit element types. Since patterns have a complex structure,
once the starting device is matched, the algorithm recursively approaches other de-
vices following the current device’s connections. Connections between the elements
are ordered. This is naturally important as every connection has a different semantics.
For example the first port of a transistor element represents the drain terminal, the
second gate and the third source terminal. After following one of the ports of the cir-
cuit element, in the same order as they are defined, the algorithm approaches the net
which can have connecting ports to an arbitrary number of neighbouring elements. In
order to confirm or reject a match all possible paths from the given net, in the worst
case, need to be checked. Of course, in case that the true match is found the search is
terminated. This heuristic approach creates however sometimes inacceptable run-
times. We have tried to optimize the execution of the search algorithm by a greedy
approach where one chooses always the path for the depth first search through the
“best looking” net (the net with the smallest number of neighbours). This enhance-
ment of the depth first recursive search although trivial for the application in the non
templated graphs becomes much more difficult in collocation with the concept of op-
tional ports that is one of the most important mechanisms in Clarula.

2.6 Treating big nets in the incremental pattern ma tching al-
gorithm

 In this section we are going to discuss the efficiency problem of the engine SR
algorithm of the Clarula language and propose the algorithmic solution for this prob-
lem. The experiments which witness the benefits of the applied solution are discussed
together with other contributions of this thesis in Chapter 6.
 There are nets in the circuit that have an exceptionally high number of
neighbouring devices, up to the order of 510 . Those are usually supply (power and
ground) nets, signal nets surrounding logical abstractions which have big fan-in/fan-
out or reference voltage nets. If a large net is considered, the algorithm tests all of the
possible connections in order to make a conclusion about a match which always has,
unsurprisingly, a greater possibility to be false. Therefore, observed from a given net,
this operation includes an exhaustive linear search. Not the whole structure of the pat-
tern has to be analyzed until the algorithm concludes that it is attempting to match the

Chapter 2 - Graph Matching Concepts in VLSI

36

false candidate place for pattern instantiation. We can choose to use a different order
when following device interconnections, so that the examination of large nets is post-
poned. Then, there is a high possibility that, for these examples, these nets won’t be
processed at all. This depends on the similarity between the pattern and the false
match instantiation and therefore, how early the algorithm can make the conclusion
that determines the current match attempt. In case of a true match, while applying
different ordering of the recursion, it is also possible to skip the processing of some of
the large nets. If there is more than one path to test the graph’s topology, we can ap-
proach the same device in different ways. Thus, we can close the loop path directly on
the large net, without examining it.

. . .

Pattern 1: Pattern 2:

Netlist:

1,n+1

Vdd

3,2

2,1M0 M1 M2 M3 Mn

. . .

m1m0
m1

c1

Figure 2.6-1 – Example of the matching process

 This new method will be illustrated with the example in Figure 2.6-1. Two
example patterns are matched against the netlist. The first pattern represents two tran-
sistors which are connected in parallel. This is a very common pattern which would
merge two parallel transistors in the netlist. The second pattern is a simple conglom-
erate of one transistor and one capacitor which is connected to its gate. We will try to
match both of the patterns to the given netlist, starting from the candidate place in the
netlist which is marked by the dotted rectangle. In addition to patterns, the figure
shows an example netlist. Candidate element connections are depicted with a pair of
numbers. The first one represents the definition order of the terminal and the second
its weight. While matching both patterns, starting from the candidate element, we
would ideally proceed with the recursion by first following terminal 2, then terminal 3
and in the end terminal 1.
 In the case of pattern 1 we have a true match. The algorithm will start with
M1, assume a preliminary match with m1 and follow its gate net. It will proceed with
the assumption of a match between m0 and M0. Then it checks the net connected to
drain of m0 on the pattern side and finds that it is connected to the already matched
m1. It verifies that on the circuit side drain of M1 and M0 are also connected to the
same net. The same process is applied to the source terminals. The algorithm returns a
match without examination of the other devices connected to Vdd.

If the algorithm first tries to match terminal 1 of m1/M1 and follows the Vdd
net on the circuit side, it has to examine all devices attached to Vdd as candidates to
match m0, which in the end also works but is expensive. That is exactly what the
original algorithm does, it just picks the first terminal of an element as the net to be
followed. As a result, the performance of this algorithm is not perfect.
 For Pattern 2 the algorithm should ideally try to check the gate connection of M1 and
conclude that the match is false as the type of the device connected to its gate is inap-
propriate. In the case of the original implementation of the depth first search algo-
rithm the matching process also includes a linear search over the power net Vdd. The
algorithm always starts with terminal 1 and searches over all n possible neighbours.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

37

 Therefore, an intelligent depth first search algorithm would always attempt to
choose the next possibility for recursion which connects to the net that has the lowest
number of neighbours and then approaches large nets only if necessary.
 The realization of this idea is straightforward in the case where patterns have
only mandatory ports. Simply from one exact point in the graph, the algorithm can
pick the appropriate pair of pattern/circuit ports, which have a one to one correspon-
dence. The underlying statistical data can be collected while building the memory
representation of the circuit and maintained later on.
 The pattern syntax in our classification method includes the very important
and powerful concept of optional ports, as mentioned. This concept is making the
formulation of Best Path First (BPF), depth first search algorithm much more sophis-
ticated. The algorithm will be explained in continuation.
 This greedy approach is witnessed to give good results by Chanak [18]. Since
the look ahead is just one, this greedy solution might not bring us to the best path for
the search. Therefore, after a net with a small number of neighbours can stand a de-
vice whose all other terminals are connected to big nets. However having in mind the
sparcity of the VLSI designs this is not likely to happen even during the searches for
big patterns. In the case of incremental pattern match, when the patterns are small,
most often containing only two devices, the greedy approach is optimal.

Proposal of Best path first algorithm

 Our solution modifies the depth first search algorithm and allows the arbitrary
(cheapest) approach to the different correct pairs for the ordered pattern-circuit ports
before entering the next recursion level.

The solution, naturally, has to support the usage of optional ports in the pat-
tern. Support of optional ports implies a very complex way of distributing port pairs.
The determination of the corresponding pattern port for arbitrarily accessed circuit
port depends on the distribution of previously approached circuit ports. In the example
in Figure 2.6-2.a the circuit side device, X1, has 6 ports which connect it to the rest of
the graph. All ports are connected to nets that have a potentially different number of
neighbours. We attempt to match X1 to a pattern device P1, which has 5 mandatory
ports pA, pB, pD, pG and pH as well as 3 optional ports pC, pE and pF as shown.
Optional ports are marked with square brackets. Lets follow the strategy to proceed
with the recursion by first following the path through the net which has the least num-
ber of neighbours.

X1 c1 c2 c3 c4 c5 c6 element_type
P1 pA pB [pC] pD [pE] [pF] pG pH

a) circuit vs. pattern element

3 4 2 5 6 1

b) optimal order of approaching circuit ports

 3-C 4-D 2-B 5-G 6-H 1-A
 4-E 2-B 5-G 6-H 1-A
 3-D 4-E 2-B 5-G 6-H 1-A

c) optimal searching path

Figure 2.6-2 – Example of BPF ordering for port pairs

Chapter 2 - Graph Matching Concepts in VLSI

38

A B [C] D [E] [F] G H
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

Table 2.6-1 Port Pair Distribution

 Let the surrounding of the device be such that the order of visiting from the
Figure 2.6-2.b is optimal, satisfying the look ahead 1 optimum. The best search path
for our example is then shown in Figure Figure 2.6-2.c. The path starts with the third
circuit port and picks its first possible pairing port from the pattern side, port C. This
pair determines a context and influences possible positions and pair forming of the
ports that will be approached later. For instance when circuit port 3 is paired with pat-
tern port C, circuit port 4 can only be paired with D. On the other hand if we pair
circuit port 3 with the pattern port D, possible ports that 4 can be paired with either E
or F, once it is approached on the different recursion level of the modified depth first
algorithm.

Figure 2.6-3 – BPF vector partitioning

 For illustration, Table 2.6-1, shows all possible distributions of the vector of
circuit ports to the vector with pattern ports. In any case all mandatory ports have to
be matched. Matching of optional ports is, of course, not obligatory. Therefore we can
make the conclusion that two circuit elements can be matched only if the number of
circuit ports (cpn) is greater or equal to the number of mandatory ports (mpn), and on

the other hand smaller or equal to the total number of pattern ports, the sum of manda-
tory ports and optional ports (opn), or:

(1) mpn ≤ cpn ≤ opn + mpn .

 The solution for the context driven distribution of port pairs lies in combing
this simple inequality with recursion.
 Let C be a vector of elements 1c , 2c ,… , nc , which represent pointers to the

ports of the circuit element that is being processed, where n is the number of these
ports and P the vector of elements 1p , 2p ,…, kmp + , which represent pointers to the

appropriate pattern optional and mandatory ports, where m and k are the numbers of
members of mandatory and optional ports, respectively. Above vectors are shown in
.
 The algorithm first attempts to place elementic , where ni ≤≤1 , together with

the element qip + , where at first q equals zero. This attempted place is accepted, and

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

39

the pair is formed if the number of circuit ports before the ic (i-1) satisfies the ine-

quality (1) matched to the first i+q-1 pattern vector elements. Additionally, it is re-
quired that the number of remaining circuit ports, that follow the port ic (n-i), should

satisfy the same inequality, matched to the number of remaining pattern vector ele-
ments, i+1,…,m+k.
 If (1) is satisfied for both parts of the vector, then the pair ip - ic is taken. Oth-

erwise the algorithm attempts to check by the same test iteratively, while increment-
ing q, all possible pairings of ic , continuing with ic and 1+ip (q=1) and on.

Further iteration on this level is done if later, during deeper stages of the recursion, the
algorithm concludes that the proposed distribution of pairs is not leading to the true
match. After exhausting all of the pairing possibilities for the given circuit port, the
algorithm terminates the present stage of recursion and returns false as match to the
earlier stage. Finding the match before this simply means that, at every stage up to the
top, the algorithm would return true.
 On the next recursion level the same algorithm steps are performed on the lo-
cal portion of both vectors. This is illustrated also in Figure 2.6-3 as the pairing of
port jc .

The solution is implemented in C++ programming language using mentioned
and additional, auxiliary data structures, such as a set of indexes of circuit pointers,
which is ordered according to the number of neighbouring elements of the net that the
port is connected to and the tree which saves the recursion context. The module which
was developed is smoothly inserted into the old algorithm leaving most of the code
intact. The places where the old algorithm was determining (trivially) the next pair of
ports before diving into the next recursion step could be clearly identified and iso-
lated.
 The algorithm has shown stable and reliable industrial application for already
more than two years. The runtime improvement reaches, for some big examples, the
factor of 60! We will discuss the experimental results for this algorithm in Chapter 6,
together with the other results achieved in this thesis.

2.7 Inexact pattern matching applied to subcircuit recognition

 For completeness of this work, although these approaches are not used in our
methodology for hierarchical pattern matching, it is important to give a brief overview
of inexact pattern matching algorithms that are developed for the application of SR.
 Several inexact subcircuit recognition algorithms are known in literature. They
are based on different classical pattern matching optimization based approaches. One
of the central places and astonishing results are achieved by the application of gradu-
ated assignment algorithm, the optimization algorithm that combines iterative optimi-
zation approach with probabilistic physics. This approach has been applied and re-
fined in order to get the fast and robust matching algorithm for subcircuit extraction
by Nicolay Rubanov [22-24]. In the work of Rubanov, he, at first, defines a labelling
algorithm [25] that offers good discriminative properties as a preparation for the ap-
plication of graduated assignment [7]. Further, the algorithm is carefully tuned and
altered in order to be able to isolate all instances of the given pattern from the target
cirtcuit (represented by a matrix) in almost all application cases. In order to fight the
main problem of inexact algorithms and that is that, despite their speed, they are not
completely accurate, Rubanov uses two other known approaches in pattern matching

Chapter 2 - Graph Matching Concepts in VLSI

40

theory. He employs error back-propagation and postponed decision making tech-
niques to refine the output of the incremental optimization process. The negative side
of this algorithm is the fact that the input target circuit is expected to be flattened. In
the industrial realistic application, this can be a considerable problem.
 Other approaches apply known pattern matching techniques with bigger or
smaller success. Fuzzy attributed graph approach is studied by Zhung et al. [26]. It
was however used in the pure university environment; therefore the implementation is
not so powerful. Hence, the pattern which has been used for testing is hard-coded in
the algorithm. The pattern was the flat implementation of the NAND gate, consisting
of 10 vertices (4 devices and 6 nodes). Further examples include SUBGEN algorithm
[27], that follows the genetic algorithm approach and other exotic approaches [28-30].

2.8 Addressing designs with extensive size by emplo ying
hierarchy

 In the realistic usage of algorithms for pattern matching the common problem
that stays unsolved is the size of the input circuit. Today’s designs have often more
than a billion atomic elements in the flat representation. Therefore, they are not able
to be treated at first because their extensive size which is far bigger than the typically
available resources. Apart from that, matching the identical patterns that are instanti-
ated a number of times leads to unacceptable runtimes.
 In this chapter so far we have intended to present the importance of SR for the
chip design verification. The applications and the benefits are numerous. Unfortu-
nately, to achieve the developed level of the initial vision where one has a chance to
intelligently control the verification process is not trivial. We have pointed out various
runtime enhancements for the matching process, frequent problems and their solu-
tions. Still, one additional problem that stays common and without an appropriate
answer for all the demonstrated algorithms is general pattern matching for hierarchical
input netlists! In all of the mentioned approaches we have the input netlist of a spe-
cific class - a flat netlist. As the chip designs are typically hierarchical an additional
and expensive (runtime and memory requirement) process of flattening is a must be-
fore any analysis. As we have mentioned, this leads to inability to perform checks on
full-chip designs at all, due to inappropriate resources of today’s computers. What
makes the matching of hierarchical netlists so hard?
 The main problem that the algorithm which has to work on the hierarchical
input netlist has to solve is matching across the subcircuit boundaries. For instance, if
the netlist abstracts the definition of even an elementary transistor device, it can be
referenced in a thousand of places building complex structures. This example is trivial
but in general the modules that the designers build often have “unfinished” contexts
that get their semantics only once the block is properly placed in its instantiation envi-
ronment. One additional example is, for illustration, a driver of a latch that is ab-
stracted as a separate subcircuit. This requirement renders the trivial hierarchical pat-
tern matching solution, where no matches across the cell boundaries are allowed, not
very useful. There are nevertheless some attempts of the academic environment or
even some commercial tools which employ the simplified approaches and which can
achieve results in some special cases.
 For instance, interesting is the algorithm for hierarchical netlist comparison
(LVS comparison) – Hcompare [31]. This algorithm relies on the identity between the
subcircuits and if the identity is proven the given subcircuits are kept. On contrary this

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

41

algorithm flattens the subcircuits having differences and performs conventional pat-
tern matching on the given hierarchical level. If this current “master” level is identical
in two netlists it is kept, if not it is collapsed anytime the level is referenced. The algo-
rithm execution strategy follows the bottom-up approach. To conclude, this algorithm
is suitable for comparing two hierarchical netlist with similar topologies. If the to-
pologies are different the algorithm performs full flattening of both netlists.
 Terem at al. [32] developed the specific approach that employs selective flat-
tening down to the “interesting elements” (members of the pattern), exclusively. This
enables them to match patterns orthogonal to the subcircuit boundaries. Still they
stress that this algorithm is just for very high-level pattern matching. This limitation is
crucial for the feasibility of their approach. Think of choosing a transistor as an “in-
teresting element”.
 If we had the general pattern matching algorithm for hierarchical input netlists,
we could employ the SR with its full power. The full-chip pattern matching driven
analysis would be possible. The tool that employs such concept would be also be able
to partition the hierarchical netlist in much more efficient way, achieving the ability to
highlight or alter some critical topologies non-redundantly, directly on the hierarchical
netlist. Apart from pure qualitative enhancement that came as the full-chip ability, the
runtime and memory requirements of the SR process would, due to ability to work
directly on proper definitions be optimal and non-redundant.
 All of these reasons give us a strong motivation to develop the general solution
that enables SR to reach its mature and more appropriate version employing directly
hierarchical designs that are a realm of the industrial application.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

43

3 Hierarchy

The hierarchical organisation is a concept that appears very often in science, so-
ciety and nature[33, 34]. This is a common way to fight the complexity and enable
understanding, as well as functioning of different complex systems. The hierarchy is
also more than a way of organisation, as it has its own semantics. Any digital elec-
tronic circuit can be an example of the fact that the function which it implements is
not dependent on the technology in which it is realised, but completely orthogonal to
it. In this sense, the hierarchical organisation appears as a completely independent
abstract layer.

3.1 Hierarchical abstraction in VLSI

3.1.1 Introduction

Apart from other fields hierarchical concepts find wide application in VLSI
design to address the extensive complexity of chips which are being shaped. More-
over the concept of hierarchical abstraction is embedded into the methodology of de-
signing the IC and in the process of their verification.
 In further text of this chapter, we will draw attention to the role of the hierar-
chy in VLSI design. In order to do that, we will start with the formal definition of the
folded hierarchical data model in (3.1.2). Further, we will give an overview of state of
the art EDA databases that implement the folded hierarchical data model (3.2). In a
simple case study we will present common algorithms and data-structures that are
used to explore the hierarchically organised IC designs (3.3, 3.4). The chapter is con-
cluded with a vision of hierarchical views that serves as a starting point of the realisa-
tion of this thesis’s contribution (3.5).

3.1.2 Folded hierarchical model

Like in other complex systems, hierarchy is exploited as one of the essential
mechanisms to develop and store electronic circuit designs. The concept of hierarchy
helps IC design process in many ways and it became a part of the methodology of
custom digital or analogue design. By employing hierarchy, the designer typically
works on a certain functional block, a part of the design, which once finished repre-
sents an element (hierarchical level) that is a verified and correct building unit. This
building unit can be further applied in different contexts.

In order to illustrate this concept and explain the benefits of hierarchy, we will
consider the example of the 2-bit adder electronic circuit. We see the flat version of
the mentioned circuit in Figure 3.1-1.
 This flat design is built out of ten elements. If we analyse its structure we can
conclude that it contains a topology of a full adder which repeats two times in the cir-
cuit. One of the full adders is highlighted in the figure by the rectangle with the sharp
corners. Further, in the composition of the full adder one can isolate another topology
which repeats twice – the topology of the half adder. One of the half adders that ap-
pear in this design is highlighted by the oval rectangle. In total we have four topolo-
gies that are isomorphic to the half adder and two that form the full adder.

Chapter 3 - Hierarchy

44

 Let’s now take advantage of these reoccurring patterns and describe (store) the
circuit hierarchically. Actually, the hierarchical organisation of the example circuit
that we will create would in reality come spontaneously. The designer who would
make this occurrence of a generic n-bit full adder would have the bottom up approach
and he would first create the topology of the half adder, continuing with further design
using the half adder as the building element for more complex contexts.
 The half adder is composed of two logic gates that have mutually shorted in-
puts and in total this circuit communicates with the rest of the design by four termi-
nals (two input and two output). Using the finished and correct topology of half adder,
the designer than builds a full adder out of it and further the required n-bit adder. The
natural outcome of this process is the hierarchical design.
 In Figure 3.1-2 we see realisation of a half adder as a part of the hierarchically
described circuit. In the hierarchical representation given in the figure, we can isolate
three distinct hierarchical levels that define also clear functional contexts. The deepest
level which represents the half adder is defined by two logic gates, XOR and AND.

Figure 3.1-1 – Flat representation of the 2-bit adder. Full adder circuit that is a part of 2-bit ad-
der is highlighted by the rectangle with the sharp corners, while half adder circuit that belongs to
the full adder is highlighted by the oval rectangle.

 This topology is encapsulated in the hierarchical level (or a subcircuit) called
HALF ADDER. We have used this subcircuit as an opaque block to define a higher
hierarchical level which combines it with other elements. Our example design has,
thus, the level FULL ADDER that forms the electronic circuit of the full adder by
interconnecting properly two instances of the HALF ADDER subcircuit, using them
as circuit building elements together with another atomic element (OR gate). This is a
nice example of a powerful mechanism where one can define complex elements that
are further smoothly used with other complex elements or atomic elements in order to
build any arbitrary circuit. In order to enable the subcircuit that we create to correctly
communicate with its environment and to look and feel like a proper atomic element
we define specific terminal connections. In the top level we have two instances of
FULL ADDER subcircuit forming the circuit that is equivalent to the flat design from
Figure 3.1-1.
 What are the advantages of this representation? First, we can see that in order
to form this circuit we have clearly focused our attention to three different semantic
levels, at first we have created the half adder thinking in the world of logic gates.
Than we go one level up and use already more complex circuits and interconnect

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

45

them to get the functionality of the full adder. Note that the designer can always
“tune” his design to get the proper functionality using any elements. In this case, in
order to detect the carry we simply use an OR logic gate. In the end when we have the
full adder encapsulated we can easily choose the size of the n-bit adder we want to
create, not thinking of the inner implementations that reoccur for each bit we add.
This architecture is also good for someone that should understand the design. One can
immediately see that the top level is composed of two properly interconnected full
adders. For an experienced designer this can be enough. He doesn’t have to look at
how the full adders are realized. Here lies another advantage of the hierarchical design
representation: once we have abstracted the functional unit, we can exchange its im-
plementation. For instance, we can redefine the full adders, or the half adders to be
composed of exclusively NAND gates and still keep the rest of the design being sure
that the functionality of the circuit won’t change. Further, this design is also technol-
ogy independent. We have defined the functionality strictly using gate elements. We
can add another level of hierarchy seeing the gates that are here shown as atomic ele-
ments (with no further hierarchy and inner structure) as complex topologies of CMOS
transistors. In this way we would just have to define these atomic elements and inherit
the whole further design and still achieve wanted functionality.
 Apart from flexibility and the ease of understanding, this representation is
more efficient, as well. The hierarchical representation allows that the definitions of
given separate levels can be referenced many times in the design. This concept is
known as folding. We also say that the design is than folded. One shouldn’t confuse
this term with time folding, where one uses time multiplexing to reduce the given de-
sign’s size or share an expensive resource.

As we can see in the example, we have just once defined the full adder and
used (referenced, instantiated) it twice. Further, full adder has two occurrences of the
half adder which is again defined only once. The same principle is valid for the logic

Figure 3.1-2 – Hierarchical representation of the 2-bit full adder. The Hierarchical levels and con-
nections between the elements are given with solid rectangles/lines, while the references between
instantiations of hierarchical levels and their definitions are given by the dashed lines.

Chapter 3 - Hierarchy

46

gates, although we have them referenced and used directly only once in this example.
We can say that one of the benefits of the hierarchical representation lies in the fact
that it is non-redundant. We have managed to represent a design that has 10 elements
by directly employing just three of them or each of the atomic elements once. Some-
thing that is in the same time advantage and the disadvantage of folded hierarchical
representation comes in the domain of the tools that should analyze the designs. For
some operations this concept is welcome, for instance for counting the number of
atomic devices in the design, or for checking some of the attributes of each of the de-
vices alone. On the other hand hierarchy (folding) represents the problem for some
other group of tools that prefer seeing the design as a whole, for instance a simulator
that needs to propagate the signal through the circuit from its input terminals towards
its outputs.
 It is often required by tools to characterise some instances of the subcircuits,
too. For instance, one might want to attach specific parasitic elements to an instance
of a given subcircuit. This is known as a problem of personalisation. We will come
back to these problems and known solutions for them later in this chapter, in section
3.4 .
 In order to formalise the described concept we will use and adapt the defini-
tion of hierarchical encapsulated graphs. As flat graphs haven’t met the requirements
in many application areas of computer science, Engels et al. [35] have proposed the
model of the graph that includes the hierarchical concept. We will adapt this concept
in order to formally represent folded hierarchies that are widely used in EDA. As a
type of the graph that is typically used to represent the netlist is a bipartite graph, we
will extend this kind of graph notation to enable hierarchical relations.

In order to achieve this goal we define complex vertices, as an extension to the
standard (atomic) vertex concept. The complex vertex is a part of the graph and can
be equally used together with atomic vertices. The difference between the atomic and
complex vertex is such that the complex vertex defines the inner structure, as well.
The inner structure of the complex vertex is again a graph that can contain any kind of
vertices, including other complex vertices. We can, therefore, say that the definition
of the encapsulated hierarchical graph is recursive. The set of atomic vertices is de-
noted by N, while the set of complex nodes is denoted by Y. As each complex vertex
is a graph itself we write that the top complex vertex equals to encapsulated hierarchi-
cal graph G(N,Y).

For each complex vertex we formally write:

 CV = (V, E, KE),

where:

(1) V is the set of vertices of CV,
(2) E is the set of edges that belong to CV and
(3) KE is a set of known edges in CV, where KE ⊆ E.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

47

In order to identify the relations between these sets, we will write down further
definitions:

(1) HE = E \ KE is a set of hidden (private) edges of the complex vertex CV.
(2) HV = V is a set of hidden vertices (private vertices).

The known edges are the edges that are incident to the complex vertex. Since we

have the case of the bipartite graph, V (HV) can be further split into two sets V = X U
Y. These sets have the semantics of devices and nets, respectively, for graphs that
model hierarchical electronic circuits. Further X contains, in general, two kinds of
elements: complex vertices and atomic vertices. For this reason we split this set into
two subsets X = CX U AX. In the end, we say that the complex node defines a level of
the hierarchy.
 In order to illustrate this concept, we will represent the full adder circuit from
our example with the encapsulated hierarchical (bipartite) graph. Vertices are divided
in two groups. The first group, which is drawn with dark blue circles, represents the
circuit nets. Another group represents the devices, split again in two subgroups, in-
stances (complex vertices) and atomic devices (vertices). The edges are given as lines.
The known edges are highlighted as they are drawn with ticker lines. This hierarchical
graph has 41 vertex of a class “net”. Further, it has 10 atomic elements. This is a nice
illustration of the fact that that the unfolded hierarchy doesn’t bring us any advantage
concerning the number of elements needed in the model. On the contrary we have
some of the elements duplicated in different hierarchical levels (net vertices). The

Figure 3.1-3 – Encapsulated Hierarchical Graph Example - The complex vertices are given
by light blue ellipses, while the atomic elements as blue squares with oval edges. The node
verticies (another vertex class) are given as dark blue circles. Encapsulated Hierarchial
graph can clearly separate and define hierarchical levels, but is redundant.

Chapter 3 - Hierarchy

48

established formal representation can, thus, define hierarchy and clearly specify the
borders between the complex entities it models, but we can not represent the folding
as a property with it. In order to do this, we will extend the notation of encapsulated
hierarchical graph with several additional definitions that enable folding.
 The complex node has two sets (HE and HV) that are internal to it. If the set
HV = HX U HY, we will observe the set HY (hidden nets) as union of two subsets
(HY = EY U IY). Further we will define the one to one mapping relation A, between
the elements of the sets KE and EY.
 Let EYKEA ×⊆ is such that:

)),(:!,()),(:!,(AbaKEaEYbAbaEYbKEa ∈∈∃∈∀∧∈∈∃∈∀ .

By specifying this new mapping we can now say that d = (HV, EY, HE) is a complex
node definition. We can further write that the complex node represents a tuple:

FV = (d, KE, A).

By separating the definition from the complex node and than referencing it we
achieve that the multiple complex vertices are able to “share” the definitions. We say
that d and KE are compatible if the set of vertices EY (of d) has the same cardinality
as the ordered set of edges KE.
 We can now come back to the example and use the new concept to alter the
hierarchical graph representing the full adder circuit (Figure 3.1-4).

It is obvious that in this case the number of needed elements to model the
identical topology is irredundant and optimal.
 Each folded encapsulated hierarchical graph has a number of definitions. We
specify the ordered set (∆) of definitions (di) namely:

 ∆ = [d0, d1, …, dn].

Let all complex vertices of the folded hierarchical graph be aggregated in a set Y. The
operation I:Y->∆ represents the instance of relationship. This relation assigns exactly
one definition to each member of the set Y (each complex vertex). For example if :

 ∆ = {TOP, FULLADDER, HALFADDER},

we can write that I(HALFADDER1) = HALFADDER. This relation is represented in
our folded graph by the lines that end with arrows. We say that yd is the instance of
the definition d.
 Further, the membership of a complex vertex, (y) while i(y)=dj into the defini-
tion di is denoted as a composition relationship between di and dj.We say that dj is
referenced in di. For example FULLADDER = {HALFADDER, OR}
 With respect to the set ∆ and the operation I we define the referenced defini-
tions graph. The definition graph is the graph with ordered edges. Further, we say that
the graph G(N) is a holder for the set ∆.
 The elements of the set are ordered such that:

))((kjdyy k
d
i

d
i

jj >⇒∈∀ .

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

49

This ordering relation prevents infinitely nested definitions and is actually the natural
constraint of the well formed, finite hierarchies.
 The element d0 is known as the root definition. That is the definition that is not
referenced by any cell.
 In addition, we will define several parameters that quantify the hierarchy [36].

h : height of the complex hierarchical graph represents the maximal number of levels
(or the longest path) between the top hierarchical level and an arbitrary atomic vertex.

l : defines the number of definitions of the folded hierarchical graphs. This is actually
the cardinality of ∆.

d : density of the complex hierarchical graph. This parameter gives the average num-
ber of instances (complex and atomic nodes) in hierarchical levels of the complex
hierarchical graph.

f : represents the number of atomic elements in the similar flat graph. Having in mind
the semantics of the parameters h and d, we can write that : hdf ≈ .

n : defines the approximate number of elements (complex and atomic) in the hierar-
chical design model. We can define it as n = d*l.
 In the end we will define the gain factor from the fact that we have used the
folded hierarchical model as :

Figure 3.1-4 – Folded Encapsulated Hierarchical Graph Example – The way to represent the
hierarchy non-redundantly.

Chapter 3 - Hierarchy

50

1−==
hd

l

f

n
g

 This result is important for the domain where no flattening of the design is
possible.
 For instance, the height of the folded encapsulated hierarchical graph in Figure
3.1-4 is : h = 3. It defines three different cells (l = 3). The density of the graph is:

33.2
3

7 ==d , the projected flat graph size is than calculated to equal f = 12.64. Hav-

ing these values we can calculate the approximate number of elements in the hierar-
chical graph and the gain factor: n = 7 and g = 0.55.
 We will use the quantities defined above to value the graphs during the evalua-
tion of the hierarchical pattern matching algorithm performed on realistic industrial
example hierarchical design.
 The formal model which was described in this section enables one to store and
evaluate any hierarchical design. Through history of EDA there were a numerous im-
plementations and abbreviations of this concept in different program languages. These
representations have through time evolved into modern EDA databases that stand be-
hind it and enable persistent storage of the designs together with other important con-
cepts that enhance the employment of this handy methodology.

3.2 EDA databases

The EDA databases implement the hierarchical model and they adapt it so it can
be used in different specific purposes [37]. Throughout the history of EDA various
database implementations were offered. In such heterogonous environment the inter-
operability between different tools built on various databases has emerged as a prob-
lem. In order to achieve the interoperability the long coordinated standardisation
process has been conducted by the VLSI community that in the end coined the pro-
posals for the standards for the EDA database concept. This enables tools from differ-
ent various producers to work incrementally together coherently in the complex de-
sign verification flow.

3.2.1 History

In the history we had many teams working on the topic and they have been re-
solving and reinventing numerous similar solutions for the standard problems which
had to be addressed and implemented into the tools for EDA [38]. Depending on his-
torical period and its trends we had design databases implemented in different pro-
gram languages [39]. Once the area became more serious and diverse, more and more
companies became specialised for the development of diverse EDA solutions. These
solutions were step by step accepted and they replaced and complemented a number
of solutions of EDA teams of different semiconductor companies. Apart from benefits
this brought some problems, as well.
 In parallel to useful tools, different databases that hold and model the data
handled by those tools were developed. The databases typically employed the relevant
hierarchical and other needed concepts. Although similar, they were inevitably in-

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

51

compatible. The common weakness of these databases was that they were not allow-
ing transparent interoperability between the tools which use their services.
 The problem is to make the tools’ inputs and outputs compatible and to allow
the database to store the results that separate tools produce incrementally (to allow the
follower tools to see the changes of theirs predecessors) the proper outcome [40, 41].
The tasks of integration were far from trivial and in literature one can find the intro-
duction of a job description of “EDA tool integrator”, or personifications such that the
tasks of tool intercommunication are of a calibre of a doctoral thesis. In the environ-
ment where the increasing number of companies started offering EDA tools which
brought both attractive fast and thoroughly designed solutions and in the same time
repellent increasing complexity of the flow integration the most common way of the
integrations were loose tool coupling through external ASCII formats for representing
hierarchical designs: SPICE, SPEF, GDS, etc.
 The ever growing problem amplified with ever increasing design complexities
demanded a systematic solution. All these facts have led the top EDA and semicon-
ductor companies to think of and find a solution for the identified problems. The
council has been formed to search for the standard for EDA Databases.

3.2.2 Standardization

The standardization attempts started in late ’80 when the business analysis
confirmed that the investments into tool integration reached more than twice of the
sum of investments into the separate application development process. The council
named CAD Framework Initiative (CFI) was formed. Their goals were standardisa-
tion of the data model that describes electronic circuits and providing the standard
API (Application Program Interface) declaration that was written in C language. This
first data model has supported exclusively schematics (logical model), while there
were plans to extend it towards modelling physical properties of the design layouts.
 For different business and political reasons this data model hasn’t reached
wide usage.

Nevertheless, as the need for the standardised EDA database still existed, sec-
ond attempt with a slightly changed strategy has occurred starting from 1995., spon-
sored by SEMANTECH: Chip Hierarchical Design System: Technical Data
(CHDStd). This time one of the industrial solutions was solicited and the new stan-
dardised model was based on IDM (Integrated Design Model) from IBM. As this sec-
ond standardisation attempt had, like its predecessor just a document as a deliverable
it stayed just on paper as well.
 The third attempt that managed to get much bigger interest of the community,
because of its availability in both industry and academic domains, its modern design
and thorough planning was conduced by SI2. SI2 council proposed a standard for
EDA databases: Open Access. Open access offers solutions for applications that work
both on schematic data and physical data, it is fully written following object oriented
concepts which helps its flexibility and understanding. This solution was provided by
the reference implementation. This was one of the key reasons for its growing success
in both important user domains (industrial and academic). The strategy where the
member companies and institutes contributed both financially and by working power
was important for the transition of the Open Access project from the vision to the real-
ised database.
 The key concepts of Open Access are:

Chapter 3 - Hierarchy

52

• Standardised object oriented data model and API
• API available to anyone at low or no cost
• Available reference implementation ready for experimental use or industrial

application
• Flexible usage of different data domains by the client tools
• Standardised API that includes object-oriented concepts and enables easy in-

teroperability between the tools thus achieving the incremental flow

We will analyse the main concepts of the Open Access database in the next
section. After that we continue focussed on the API that is provided by the data-
base to support the applications working with the schematic data representations.

3.2.3 OpenAccess

Open access standardises the data model and the corresponding API for EDA
tools [42]. They are capable of storing and presenting folded hierarchical data. The
formal representation of the folded hierarchical data model is given in (3.1.2). This
model is stored in a persistent store and is accessible by the API which is written in
C++. Thus, the API is object-oriented and ready for use in modern EDA tools. For
reasons of efficiency, during the application execution a runtime model of the data
which was originally stored in the persistent store is built. This is happening transpar-
ently to the application and the object oriented API is everything the given application
sees. The conceptual architecture that we explain is given in Figure 3.2-1.
 An important property of the API is that for each database entity (one instan-
tiation in the persistent store) three different API domains and corresponding objects
can be created. Therefore, each entity of the database can be seen through a triade of
objects on the application side. In connection with this we have three characteristic
domains of the overall API. The domains are:

• Module Domain
• Block Domain and
• Occurrence Domain.

The module domain defines a set of objects and the appropriate models to
manage the underlying database data as schematics. Therefore, we see only the logical
network, also called a netlist, without any physical properties like coordinates, spac-
ing between the objects etc.

 Block domain is responsible for the physical side of the design. All objects
which model database entities in the module domain can be also seen with their twin
objects from the block domain. The difference is mirrored in characteristics of the
block domain and the interface of the classes that appear here have somehow different
semantics. These objects store the dimensions and all other specific properties of the
geometric shapes that form the proper devices, in fact the layout of the design. The
hierarchical interface is in this domain a bit different, but equivalent. In the block
domain, the connectivity between the levels is modelled in a more simple way as the
connections are determined implicitly, by the geometrical position of a given net in
the design. Note that in this domain we don’t have hierarchical nodes (3.3.2).

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

53

 In the end, in the occurrence domain, we have the design represented as a fully
unfolded hierarchical database. The type of the model is in this case also logical
model, like in the module domain. This domain objects and the appropriate interface
is used in cases when the given application needs to personalize the data in different
instances of the same subcircuit. The reference implementation of the OA database
optimizes the occurrence domain. The objects that represent the occurrences are cre-
ated on demand, hence only if one traverses the whole instance tree (3.3.2) the corre-
sponding occurrence domain objects would get created. These objects secure the ob-
ject ID consistency and their size depends on the personalized data they store. This

means that if the two instances of a given subcell are identical their occurrence do-
main description can be, from the angle of the needed memory requirement neglected.
The authors of the reference implementation of OA claim that the typical size of the
occurrence domain model is introducing up to the factor of 100 to the original folded
model size [38].

This is of course valid for the offered implementation of the database and any
optimisation that is being done behind the API would make a difference in perform-
ance of the application that is written to the standardised API.

An important property of the OA is the fact that its evolution and further adap-
tation to the needs of the state of the art EDA application is secured and carefully dis-
cussed. The special team called Open Evolution exists. It is led by the engineers from
leading EDA companies or the academic world [43]. Any research done in this direc-
tion can be discussed with them and possibly affect the standard API or the reference
database implementation.

We will, further (3.3), concentrate on the API of the module domain. We will
define a simplified case study API which exposes the elements and mechanisms of the
object oriented model that are important in order to explain the solution we propose in
this thesis.

3.3 NLDB

 Let us now define a simple, still functional, hierarchical data model which can
store electronic designs that we are going to use further in this thesis. The definition
will be given as the UML class diagram. After proper definition of the case study

Figure 3.2-1 – The conceptual diagram of the Open Access Database

Chapter 3 - Hierarchy

54

folded hierarchical model, we will make the short overview of the common hierarchi-
cal concepts that the tools typically employ to traverse the hierarchical designs.

3.3.1 Object-oriented folded hierarchical model API

In our example designs we will allow fully the concept of hierarchy and folding
and for simplicity we will introduce just three atomic elements: MOS transistor (fur-
ther classified by its model as PMOS and NMOS), the resistor and the capacitor. The
API we propose is analogue to the model domain API of Open Access. As they are
not directly necessary for the implementations of the concepts we introduce later in
the thesis, we will abstract complex parameter mechanisms and the relations of this
API to other possible domains (block and occurrence domain in Open Access). We
have to stress that for the purpose of our experiments we have used the industrial API
model with its full complexity. This gives additional quality to the results we have
achieved through tests presented in chapter 6.

Base_Netlist

Base_Cell

+model()

+pin(in i : int)

-model

Base_Device

1

*

Base_Instance Base_MOS Base_Res Base_Cap

Base_Node

Base_Net

+node()

+device()

Base_Pin

1 *

1
*

1
*

*

*

*

Figure 3.3-1 – UML model of the NLDB database.

 The model we propose here as a case study is given in the structural UML
(Unified Modelling Language) class diagram in Figure 3.3-1. The UML notation is a
common way to grasp different static and dynamic aspects of complex software sys-
tems which employ object-oriented concepts. The reader is encouraged to refer to [44,
45] for details about this common notation.

The simple model we define is rooted at the object of the class
Base_Netlist . Base_Netlist is thus a holder class that defines the root cell
(root level) of the design, the class of a type Base_Cell . This cell is referenced in
Base_Netlist as a NominalCell. The rest of the cells follow the root cell in the
order that corresponds to the order of referencing cells in the design. The order of
cells in this vector assures that no cell is presented in this list before any cell that ref-
erences it. The interface which enables this functionality will be given in 3.3.2. This is

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

55

the realization of the principle defined in Section 3.1.2, the section that formally de-
fines the folded hierarchical model. The Base_Cell cell class object aggregates also
some other cells that are defined in its scope, following the SPICE standard. Each cell
can aggregate devices (Base_Device). Base_Device is an abstract class. Devices
can be atomic or, again, complex. The atomic devices that are allowed in our model
are Base_MOS, Base_Res and Base_Cap for the transistor, resistor and capacitor de-
vices, respectively. As the model allows the hierarchical organisation, any cell can be
referenced in another higher level cell by instantiating the object of
Base_Instance class, that inherits abstract class Base_Device in the equivalent
way as other atomic devices do. This is a nice application of object oriented principle
of inheritance and polymorphism to handle the concept of vertices that can be com-
plex and atomic, from our formal model of folded encapsulated hierarchical graphs. In
order to define which cell (Base_Cell) is referenced by the given instance
(Base_Instance) a link (association) between these two classes is required. Note
that, logically, auto-referencing (when the cell references itself) is forbidden. The hi-
erarchy is thus well defined, without loops and finite. Each device has an appropriate
number of pins (terminals). They connect the device to the rest of the design. The pin
is modelled as a class (Base_Pin) that is in the composition relation with the
Base_Device . The number of pins of the device is precisely defined according to
the given device semantics. For instance, a resistor has two terminal pins. The devices
have an uniform interface to access the relevant pin by specifying its index. This is
achieved via the pin(int i) method. Base_Pin is on the other side connected to
a node. As we have already stressed, the node can aggregate arbitrary number of pins.
The node is modelled by the class Base_Node . It is defined in such a way that it
represents the container of pins, defining the appropriate iterator and specific interface
to traverse the set of pins that are attached to it. Therefore we have methods
pin_begin() and pin_end() that return the iterators of the type
pin_iterator . Pin iterator is, for simplicity not shown on the class diagram in
Figure 3.3-1.
 Another model entity that we give as a class Base_Net is the aggregation of
nodes which enables forming of parasitic interconnect networks. This interface is
widely used for different applications that include work on parasitic nets and for that
reason we include it into our model although it is not present in SPICE. SPICE format
has specific extensions SPEF and DSPF that can annotate the original SPICE netlist
design with modules that refer to it and enrich it with the data about parasitic ele-
ments.
 We can conclude that this model is the object-oriented realisation of the formal
concept of folded encapsulated hierarchical (bipartite) graphs. We recognize
Base_Device as the vertex of one sort. It can be further divided into atomic and
complex vertices. The second bipartite vertex sort is modelled by Base_Node class.
We will further analyse different hierarchical concepts that occurred in this model and
define the proper interface for them.

3.3.2 Hierarchical concepts in NLDB

The hierarchical model offers one to see each hierarchical level as the proper
bipartite graph. If one looks the relation between the levels, the situation gets slightly
different while between the levels the constraint that two subgroups of vertices are

Chapter 3 - Hierarchy

56

exclusively interconnected is not relevant anymore. The entities that connect different
hierarchical levels are the nodes.

Hierarchical node

 In a hierarchical model we can distinguish, semantically, three different
types of nodes:

• Local Nodes, that have only connections to devices, inside one
subcircuit,

• Root nodes, that have, apart from local connections, connections
down the hierarchy, over the instance pins and

• Ports, which are part of the pin list of the given cell, and enable its
connection with the contexts in which it is instantiated (up the hier-
archy).

Note that the ports can also have properties of the root nodes (connections down the
hierarchy), or local nodes. More precisely, the properties of the local node are a subset
of the properties of the root node, which are again, in general, a subset of the proper-
ties of a port. This classification can be illustrated with an example hierarchy repre-
sented in Figure 3.3-2.

 The circuit that is shown represents a logical AND gate. The design given here
is hierarchical as the inverter is abstracted in a separate cell. Its definition is, therefore,
given independently from the definition of the context in which the mentioned circuit
is instantiated. In this example we can distinguish all kinds of nodes given above.
Nodes A, B, Vdd, Vss and Y represent ports, whereas node R1 represents a root node.
L1 is a local node, which models the connection between transistors N0 and N1.
 Ports and root nodes form a structure that we call a hierarchical node. This
concept thus appears as the consequence of the hierarchical data representation.
 The hierarchical node aggregates several atomic nodes (subnodes). The nodes
are exclusively inter-level connected. It starts with a root node which is its top sub-
node and that is connected down the hierarchy with a family of other subnodes (that

AND

A

B

Y

Inv

Vdd

Vss

R1

N0

N1

P1 P0

L1

I0

Figure 3.3-2 – Logical AND gate cell, composed of the standard NAND gate and an inverter
which is represented as a hierarchical abstraction. Ports are denoted in red, root node in yellow,
while the local node is given as a grey circle.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

57

are of the type port). By employing this criterion we form a tree structure that is
equivalent to one flat node which would be formed if the hierarchical representation
was transformed to its flat version. Note that in the folded model several hierarchical
nodes are overlapped. We will use this fact to upgrade the semantics of the standard
hierarchical node later, in Chapter 5.

In further text of this section we will point out important structures and algo-
rithms that are standard for the applications that work on (folded) hierarchical models.

Definition tree and the definition walk

 Definition tree is a structure that orders the definition levels (subcircuit) of the
hierarchical design as a tree topology where each definition (cell) represents a node of
the mentioned tree. One node is identified as the root, it corresponds to the top hierar-
chical level. All subcirucits that are defined inside the given level appear as children
of its corresponding node of the tree. This process is recursively repeated depicting
the relations between all subcircuits (the way they are defined) of the given hierarchi-
cal design. This data model is useful for dumping the hierarchical model, for instance
into an ASCII file (following the specific ASCII file format, hence SPICE). Note that
this model does not verify if the defined subcircuits were also instantiated, or they just
exist as pure definitions.
 For a definition walk, we define the templated algorithm which recursively
traverses the definition tree and performs generic functions before and after recursion.
By defining this traversing algorithm generic, one promotes the walk as a standard
API algorithm that can be defined as a friend function in the world of object-oriented
languages.

Instance tree and the hierarchical Instance walk

The instance tree has a structure that is similar to the definition tree. In this case we
nevertheless present each instantiation of any definition. This unfolded structure
therefore has the given definitions repeated as many times as they were instantiated. It
is not always possible to create statically the whole instance tree. Of course, an alter-
native to its static creation is performing a recursive algorithm where, while traversing
the instance tree, it collects all the relevant personalised data (relevant just for a given
instance) that is used while analysing the given instance of some cell. This approach
is known as the instance walk. The instance walk can be extremely time demanding
and thus unacceptable.
 Instance walk is the simple trade between the hierarchical and flat algorithms.
One can upgrade flat algorithms to hierarchical in the most trivial way using this
tree/walk. The reason for that is that all extrinsic details and attributes that are defined
by the path in which a specific device or the whole instance is given are there re-
solved. The application can be wide, but the efficiency is not big as although the work
is being done hierarchically which demands solving some of the issues concerning the
communication between the levels and although the results that are generated by the
tool employing instance walk are aware of the hierarchy (original folded hierarchy)
this approach is even less efficient than flat algorithms.

Referenced cells tree and graph

Chapter 3 - Hierarchy

58

 If we collapse all instances of the given definition inside a given cell into just
one representative connection (which than loses path information) we obtain the Ref-
erenced Cells tree. In this structure we can non-redundantly access all different defini-
tions of the cells that were instantiated in a given cell. This structure is welcome to
perform the operations such as determining the hierarchy height or for algorithms that
work on all root-nets (nodes).
 If we add the information which determines in which cells a given cell is in-
stantiated, we upgrade the referenced cells tree to the new abstract structure – refer-
enced cells graph. This data structure allows also looking “up the hierarchy” from
each of the cells defined in the design. It is very useful for different algorithms that
need to take into account several hierarchical levels in the same time while calculating
their relevant results.

Top-Down Cells

 TopDownCells represents an alternative way to approach the defined cells of
the given designs. In this case we introduce the ordered vector that offers a bidirec-
tional iterator that can traverse all cells that are referenced inside the design. The order
of iteration is analogue to the ordering of cells given in section (3.1.2). For this pur-
pose we define a class TopDownCells to serve as a container of the ordered references
to the different cells defined in the given design. The object oriented architecture of
this container is given in Figure 3.3-3.
 The iterator can be set-up to give the cells top-down and bottom-up. These
walks are used in different hierarchical algorithms for which the information is being
passed over the referenced cells graphs.

3.4 Personalization

 As we have stated, some algorithms prefer the style of just traversing defini-
tions while some demand either instance tree or fully flattened netlist. Those are typi-
cally the applications that need to change some of the instances and contexts in the
hierarchical nelist just locally, valid exclusively for a single instance path, or one

1

*

Base_Cell

+operator++() : void

+operator*() : Base_Cell

iterator

-cont

*
*

Client

*

*

*

*

TopDownCells

Figure 3.3-3 –Top-Down cells container, the container and the iterator that allow one to iterate
all cells of the design top -down and bottom-up.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

59

occurrence in the netlist. In general it is further possible that some of the changes that
originally belonged to the same definition are both identical. Thus, the optimal way to
present this concept would be to regroup instances and introduce new definition for
the two which have left the prior group and leave all other instances linked to the first
group. This problem is known as a problem of personalization and since industrial
hierarchical folded designs include parameters as well, it is really essential to have a
solution for these problems.
 These problems were recognized by OA development team and the personal-
ization problem is addressed by introducing the occurrence domain [38]. The occur-
rence domain is some kind of optimized instance tree that is created on demand. The
way the instance tree is stored is also optimized and the new definitions are stored
only in a case where some differences between the master objects and their clones
exist. It is claimed that this occurrence domain introduces memory requirement over-
head that is not bigger than two orders of magnitude. However, this overhead depends
on the task a given tool using occurrence domain is performing.
 Another known research that appears in literature and addresses the problems
of the personalization is done by Jones et al. [36, 46]. In the conference paper they
consider various strategies to perform the personalization. First trivial strategy is full
development of the data into the instance tree (unfolding), second is employing a dic-
tionary that stores the personalized data and the third is done via partial unfolding
where each changed definition occurrence gets an appropriate copy in the referenced
cells graph.
 An alternative to these approaches, the concept of variants that was used to
support our contribution is given in Appendix A.

3.5 Polymorphic hierarchy

Hierarchical representation of a given design is not unique. It is in some sense
polymorphic (associative). We can group elements of a complex system in different
ways and achieve different hierarchical interconnected levels. This can be illustrated
by the famous Indian face picture given in Figure 3.5-1. Is it actually a face of an In-
dian, or is it an Eskimo entering the cave? This depends on the way we interpret this
very same picture hierarchically.

If we link the neck, the mouth, the nose, the eyes and the forehead into a face,
we see an Indian with all his other attributes. If we on contrary in our mind link the

Figure 3.5-1 – An Indian or an Eskimo?

Chapter 3 - Hierarchy

60

legs, the wrinkle on the coat, the elbow and the head forming the back of Eskimo, we
see him entering the cave. The only difference in the picture is in the way we hierar-
chically interpret it.

In order to make this example closer to our topic we show also two different hi-
erarchical interpretations of the identical circuit – a latch with the corresponding
transfer gate and the driver. In Figure 3.5-2, under (a) we show the hierarchical or-
ganisation of the circuit that is close to its functional characteristics. When CMOS
electronic designs are printed into silicon wafer, usually the layout is organised in a
specific way that all PMOS transistors are printed in a line and all NMOS transistors
are printed in a parallel analogue line. After this they get properly interconnected in
the repetitive step of applying and developing resist layers and etching. With respect
to that we, just for illustration, organise the elements of the identical circuit in this
other more “layout like” way. This is shown in Figure 3.5-2 (b). Although the circuit
is the same, we form completely different hierarchical topology. The definition trees
of both hierarchies are different, while the flat circuit they represent is identical.

We can use this ambiguity in the hierarchy and adapt it to the tool that is sup-
posed to use it. If we have the way to flexibly represent the hierarchy we can solve
some common problems that the tools typically face and make the tools much more

Figure 3.5-2 – Identical driver and latch circuit that has two different hierarchical layouts. (a) shows
the hierarchical layout that is more close to thefunctional side of the circuit, while (b) shows that
hierarchy that groups the devices in the fashion that is shows some technological, physical properties.

Figure 3.5-3 – The path of planet Mars in the geocentric system. The analogy with the differ-
ence in algorithm complexity, according to the hierarchical layout.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

61

comprehensive. In this sense, the we make the hierarchy friendly to the user applica-
tion and by preparing the data the application builder can relay on certain constraints
and solve the specific problem with much easier algorithm. We can compare the com-
plexity of algorithms that use hierarchical data to the problems astronomers were fac-
ing up to XVII century. Figure 3.5-3 shows the path of the planet Mars seen from the
heliocentric system. Although they were also right, one can imagine how much un-
necessary efforts were spent in order to track and predict so complicated path.

Similarly by changing the hierarchical layout of a given design, we want to pro-
vide the application with the right “glasses” so the data is seen in the best way. There-
fore, we want to populate hierarchical levels of the given design flexibly, group and
regroup different elements together using exclusively standard API methods and enti-
ties. We achieve this goal using advanced object-oriented concepts defining the
framework that utilizes the presented concept vision in the following chapter.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

63

4 Hierarchical Multilayer Views
4.1 Introduction

 In the previous chapter we have presented the model of hierarchical abstrac-
tion whose advantages are employed in order to efficiently store electronic designs.
We have formally presented the hierarchical model as a folded encapsulated hierar-
chical graph. In addition, we have given an overview of the development of the data-
bases that implement the formal encapsulated hierarchical graph model. These data-
bases include a variety of advanced concepts that help the interoperability between the
design tools that are shared by the design process. Modern EDA databases are object
oriented and they offer a specific API that can be directly used in design tools. These
databases are also turning to a growing standard - Open Access (OA). We have, fur-
ther, analyzed the API and shown the common algorithms and data structures that are
suitable to explore the folded hierarchical designs. In the end we have pointed out that
the hierarchical layout of a single design is not unique, but polymorphic. Hence, a
given flat design can have a number of different hierarchical representations that are
synonymous.
 This serves us as an idea to extend the standardized API and adapt it in order
to support the different views on hierarchical data. By employing the concept of views
we want to group (regroup) different hierarchical entities and see the design with the
changed hierarchical layout. This concept considers the extension to the API for the
module domain (3.2.3), the domain of the standardized OA that represents the sche-
matics (logical design). We propose this extension as a possible upgrade of the OA
standard. We will demonstrate new concepts on the object oriented API analogous to
OA standard which is defined in (3.3). The specific architecture of the object oriented
API that we will propose further in this chapter allows flexible views on the hierarchy
of the schematics (logical designs).
 The designs that we will transform are themselves hierarchical. They have the
initial hierarchical layout which is changed by specific modules (the implementation
of the views) written for the standard API. The concept of the hierarchy groups certain
entities together and defines clear borders between different such groups. This is
something that can be used as a favourable constraint by the tools written to process
the hierarchical data.
 We want to employ above sketched mechanism to adapt the actual hierarchy to

Figure 4.1-1 – Chaining the transformations of the Hierarchy. Arbitrary number of transforma-
tions are allowed as they are all compatible with the AL (Access Layer).

Chapter 4 - Hierarchical Multilayer Views

64

the algorithm that is processing it. We can therefore allow the tool to “see” the data in
the most favourable way. These conversion steps are, in the current state of the art,
usually part of the given tool’s implementation or are realized as the preparatory steps
before the tool evaluates the design data and generates the proper outcome. In some
cases this transformation is complex, meaning that it can be split in different simpler
pre-processing steps. If the data is statically transformed (new equivalent design is
created) by the pre-processing step this “chain” of corresponding designs becomes
bulky to handle. For instance back-annotating the results that the given tool produces
can become a considerable task. In some cases these transformations are even not
possible. A typical example is flattening an unbearably big hierarchical design. Flat-
tening is also a hierarchical transformation, as in this case we consider a flat design as
the special case of the hierarchical design (that has only one hierarchical level).

Since a number of different (atomic) transformations that are common for the
different algorithms can be identified in order to achieve flexible view creation we
want to allow another concept for the views, the concept of layering. This means that
the final, application friendly, hierarchical layout is prepared by employing a number
of views, linked one after another. This is illustrated in Figure 4.1-1.
 In the figure we see the actual hierarchical data given in the bottom. The data
is accessed by the standard API. On top of it we have the first view. This view takes
the actual hierarchical data reading it using the standard API, reorganizes it and offers
the same methods and entities, populated in a different way for any user algorithm
(including another view). Since the vocabulary hasn’t changed and we still have all
attributes of the (rearranged) hierarchy given as a standard API, we can immediately
apply another view on top of the initial one. The process can be repeated several times
and the user application in the end can get the handle to the standard API that popu-
lates the hierarchical entities in a specific constrained way.

We realize the requirements by employing object oriented concepts. Thus, we
separate standard API as the group of pure abstract classes that is named: Access
Layer (AL). AL defines the vocabulary to represent the hierarchical design. It consists
of entity and method definitions, together with inheritance hierarchy between the enti-
ties. Of course, no implementation (hence, no class has any attributes) is offered here.
The actual hierarchical data can be defined as a static base layer. Here, we have static
implementations of the promised interfaces of the AL. By static is meant that all the
entities and methods that implement the API are in this case populated with realistic
values.
 Further we define a section:

 standard API - Transformation n - standard API

as a layered view. Therefore, the layered view reads the given appearance of the hier-
archical data from the standard API and reorganizes it by re-implementing the same
standard API.
 We will in further text of this chapter, with greater detail, introduce the men-
tioned entities to the reader. Therefore, section 4.2 describes the Access Layer, section
4.3 static base, while section 4.4 presents the definition and standard architecture of
the layered view. We conclude this chapter with several examples of hierarchy trans-
forming layered views (section 4.5). The whole chapter sets the context for the ex-
planation of the Virtually Flattened View (VFV) that is presented in the next chapter.
VFV, one possible realization variant of the general concept of layered views on the

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

65

hierarchical data, is a part of the proposed solution for the problem of hierarchical
pattern matching.

4.2 Access layer – pure abstract interface

In order to employ the object-oriented concepts to support interchangeable and

combinable view on the hierarchical layout of the design database, we upgrade the
overall design of the standard API (NLDB). We introduce Access Layer (AL), which
serves as a pure abstract interface to NLDB data. It consists of exclusively pure ab-
stract classes and pure virtual methods. The pure abstract interface includes all neces-
sary inheritances but no implementations of the methods including the references be-
tween the entities. For example in this layer the association between the instance ob-
ject and its definition is not realised, but just promised by the appropriate pure virtual
method.

The AL consists of the interface entities (building blocks) and interface
methods (which are distributed over the entities, or defined as friend methods). The
availability of different building blocks that form an interface depends on the type of
the view which implements the AL. We will call the interface methods also Common
Standard Interface (CSI). Of course, the building blocks of the AL represent the
complete set of classes and methods capable of describing the folded hierarchical
concept.

Note that the implementations of any method come first at realizations of the
Access Layer. We have presented the class diagram of the AL in Figure 4.2-1. It is
similar to the NLDB example of the API for the folded hierarchical model. As it is
obvious, in the AL class diagram compared to NLDB class diagram, all aggregation
and association links are missing while the inheritance lines are still present. This is
due to the fact that in this layer we exclusively define the vocabulary that gets its
proper implementation later.

 AL classes define following entities:

• Netlist (Access_Netlist)
• Cell (Access_Cell)
• Device (Access_Device)
• Instance (Access_Instance – separately shown because of its

special semantics, although it belongs to Access_Device class
hierarchy)

• Pin (Access_Pin)
• Node (Access_Node)
• Net (Access_Net)

 The roles these classes play are analogue to the roles of the relevant classess in
NLDB database API. For this reason we will give them just briefly here. Please refer
the section (3.3) for further details on element semantics.
 Access_Nelist is the pure abstract class which plays a role of the holder
of the design. We can refer to the top level of the design from it and further access all
cells of the given design in the top down and bottom up order. In realistic databases
this class stores different global parameters of the design: physical configurations,
such as nominal temperature of the chip that is described, special element semantics

Chapter 4 - Hierarchical Multilayer Views

66

(some cells called standard cells come with both structural definition and model
information), naming conventions etc. In our case this will be left out from the CSI.
 Access_Cell models the subcircuit (a hierarchical level) of the given
design. This class defines the proper interface to access all devices, nodes and nets in
the design.
 The Access_Device class defines the proper interface for modeling
devices. Therefore we have the methods to access its pins and the model. Important
specializations of Access_Device are present in the AL. Still, none of the methods
get realized in these specializations neither. The inheritances are here just to define
the necessary entities which any implementer of Access Layer has to realize and of
course to add the specific part of the interface, characteristic for the
Access_Instance class, the definition() method. This method is declared
to return the pointer to the instance of Access_Device class descendent. The
methods which return pointer to the pins of the device are declared to have
Access_Pin as the return value. This class, thus, defines another entity of the AL.
It models the terminals which connect any device (instance) to nodes, modeled by the
Access_Node class. This class allows the interface to iterate over all the pins
attached to the given node. Additionally we define the entity net, to model the
parasitic networks that agregate a number of nodes that are interconnected with the
parasitic resistances, with its class Access_Net and the appropriate public method
definitions.

We can conclude that the AL defines a proper interface (entities and methods)
that can model folded hierarchical designs. The pure abstract classes of this layer
exclusively define the interface to program to, but without any implementation. This
is the vital design decision in order to allow polymorphism and exclude any overhead
in memory layout of the model objects. By isolating AL as a pure abstract layer and

Figure 4.2-1 – Access Layer class diagram. AL contains exclusively pure abstract classes.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

67

programming applications (or views) to it we assure completely transparent usage of
any mixture of layered views that prepare the data for the user application. The
interface will be equivalent no matter how many layers and which kind of mixture of
layers we have applied. Any attribute fields are introduced precisely in places where
they are needed, e.g. for purposes of implementing the static base or any specific
layered view.
 In further text, we will show first the simple architecture of the static base
which makes the new architecture functionally equivalent to the NLDB. After that we
give the standard architecture of the layer followed by several examples of the
hierarchical transformations that the different layers can give.

4.3 Static base

 The static base is a fully materialised in-memory representation of the design’s
actual hierarchy. It is analogue to the standard architecture of the hierarchical database
NLDB. All the methods are therefore implemented in place and behind the interface
methods we have real data structures storing the attributes of the entities of the data-
base together with their relations. The difference between the static base and any
standard EDA database is that it just represents the occurrence of the pure abstract
CSI (it is written as the realisation of the AL). We describe this relation in Figure
4.3-1. In it one can see the example inheritance hierarchy of the realisation of the class
Access_MOS. In the figure one can see the layers of the database separated. All
classes that belong to the AL are given in the right diagonal stripe, while the analogue
classes of the static base, their mutual relations and the relations with the AL are
given in the left diagonal stripe. Both of the layers belong to the NLDB definition.
 The hierarchical relations between the classes of the mentioned layers are
complex. Multiple inheritance is employed in the definition of the class Base_MOS.
Let’s analyse this class diagram. The classes Access_Device and Access_MOS

define all necessary interface methods and they themselves are the pure abstract defi-
nitions of the corresponding entities of the database API. The Access_Device
class is inherited by the abstract class Base_Device . This class is analogue to the
implementation of the Base_Device in (section 3.3). In order to be able to keep the

Access_Device

Base_Device

Base_MOS

Access_MOS

Access layer

NLDB

Base (static)

Figure 4.3-1 – static base vs. Access layer

Chapter 4 - Hierarchical Multilayer Views

68

inheritance relations and polymorphism between both Base_Device and
Base_MOS and Access_MOS (Access_Device) and Base_MOS and still be
sure that all CSI methods of Access_MOS get their implementation, we include the
inheritance link from Base_MOS along the other inheritance line to Access_MOS.
This inheritance style is typical for different classes of the static base.
 Static base behaves equivalently to standard realisations of the object oriented
databases and represents therefore pure extension without any negative effects. The
only overhead that is present while using such architecture is when one applies the
algorithm that is written to the AL interface on static base. The overhead is related to
the implementation of the polymorphism in the (C++) object oriented program lan-
guage. This overhead is however neglectable, especially if we have in mind the im-
portance of the complete transparent usage of static base for any application written
for AL. Note that this is also the default implementation of the access layer and that
any algorithm that is written to work with the layer entities can be run on static base.
The model implemented as static base instance is in the root of any chain of layered
views.

4.4 Layered views and their object-oriented archite cture

 The goal of the hierarchical layered view is to regroup entities that are offered
through the standard interface (Access Layer – AL) by re-implementing the CSI
methods. The view on the hierarchical data is the group of classes that are placed into
the taxonomy hierarchy, which is rooted by Access Layer classes. Each view object
plays the role of proxy/decorator for its source object (group of objects, distributed to
underlying layers). Therefore each layer is characterized by its source view, from
which it acquires the available information about the given database element(s) that it
decorates. The view implements (realizes or if necessary overrides) the CSI methods.
Typically, methods can alter the semantics of already realized CSI methods from pre-
vious view layers, just forward the calls of the methods to get the information from
deeper layers of the database, or simply use the old implementation of the method by
polymorphism.

Every implementation is a unique problem but the overall architecture of the
view that serves as some kind of framework for the engineer that is providing a cus-
tom view is uniform. We will describe this standard architecture in the further text.
 Each hierarchical layered view:

• defines a set of entities inheriting the classes of Access Layer or
its descendents,

• has appropriate links to the source objects for each view object
• is written to the AL,
• implements the CSI interface,

Figure 4.4-1 – Templated HasSource class defines the layering property. The class is typically
an ancestor of any layer class.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

69

• defines and implements the private interface,
• defines private data-structures,
• defines optionally additional public interface.

 As we have stated each view defines (and realises) all necessary entities by
inheriting them from already existing classes of access layer (or some other layer).
Each of these objects is linked to the source view. Through these references the view
fetches the data about the hierarchical design whose hierarchical layout it transforms.
The mentioned link is modelled as a templated class HasSource<T> . This class
stores a pointer to the templated type T and defines and implements the appropriate
interface method (T* getSrcView()) to get the pointer to the underlying object.
Therefore, we define a templated class that exclusively models this property leaving
the templated type to be decided upon its employment in some usage context. The
class diagram of the class HasSource<T> is given in Figure 4.4-1. The implementa-
tion of the class is simple. There is an attribute (sourceView) of a generic type T*
that privately stores the link to the lower level and the public method
getSrcView() which returns the pointer to T. This method augments the interface
of any class that inherits HasSource.
 We use above described templated class to build any of the view classes.
Typically view classes are inherited multiply. One inheritance link leads from some
class of the access layer (or some realization of it) and another privately inherits from
HasSource<T> . The inheritance is private in order to turn off the polymorphism
between HasSource<T> and the given View_<class> as passing the object that

belongs to the view to the pointer to a type HasSource<T> doesn’t have any se-
mantic meaning. Furthermore, by applying the private inheritance we save the method
getSrcView() exclusively for the layer methods as it is not part of the CSI and
still is important for the implementation of the view. Note that for the object oriented
languages which do not allow multiple inheritance the alternative approach would be
to define HasSource as an interface and than provide the links implementing them in

1

Figure 4.4-2 – View positioning relative to AL layer, static base and other views. View A inherits
directly from the relevant pure abstract class, while View B also inherits some properties of the
static base.

Chapter 4 - Hierarchical Multilayer Views

70

every actual class occurrence. This is not as elegant as the solution with private inheri-
tance.
 The method getSrcView() is a good example of the private view interface
member which appears in any layered view. The typical positioning of the view which
shows the multiple inheritance is given in Figure 4.4-2. In the figure we see the class
diagram which shows two different cases of view positioning. View A is positioned
directly above AL. It, therefore, inherits (privately) the class HasSource , to get the
layering property for the objects of the view and publicly class Access_<class>. By
this we gain the polymorphism property and are able to use the object of the view
class in any place where a pointer to Access_<class> is expected. Of course it is nec-
essary that the ViewA_<class> properly implements all methods promised in the pure
abstract Access_<class>. Note that <class> stands for any appropriate AL entity. We
use it in order to allude to the fact that the described architecture is needed for any of
the view classes. View A inherits directly form AL, which means that it doesn’t need
any of some possibly similar view (static base) implementations. On the contrary,
exactly this is the case of the example of the positioning for View B. It inherits the
class HasSource, equivalently as the View A, but also inherits from static base. In this
way when overriding the methods of the static base one can reuse some implementa-
tions of it, some attributes that exist in it and also be able to simply use specific meth-
ods from static base without overloading them. This view positioning type is used in
our implementation of the Virtually Flattened View, which is given in next chapter.
 As we have mentioned, each view can implement its private interface and at-
tributes. They are helping structures and methods for the goal of re-implementing (re-
grouping) the entities of AL that the view offers to the further user.

In this point we can discuss the fact that the view can also expose some new in-
terface and augment the standard CSI. This is for instance good if it is necessary to
include extra properties for the NLDB objects for the purposes of the given algorithm.
An example would be the interface to store and retrieve the types for nodes of the
design. Note that these methods would be visible exclusively if the view which de-
fines them is appearing as the last level, directly under the user algorithm layer. This
is the negative issue and it can be an argument for the eventual redefining the CSI
where the given methods would be included as a standard.

 The described architecture gives a lot of freedom to implement different sorts
of transformations. We will present some, as a vision, in the following section.

4.5 Examples of views

 So far throughout the current chapter we have defined a new framework which
enables hierarchical transformations of the EDA schematic designs. We have speci-
fied the pure abstract interface by whose overloading and inheriting its pure abstract
classes we can write different views that enable hierarchy layout transformation. In
this section we are going to present the motivation and conceptual ideas of imple-
menting various views following the defined framework.

Equivalence class abstractor

 The idea behind this view is to group certain elements of the NLDB database
as an alternative to subcircuit cells. This is important in various algorithms, which
helps treating a group of the devices that are not anyhow explicitly abstracted by the
database itself in order to optimize given user algorithm implementation. Equivalence

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

71

classes are applied in different ERC checks in order to optimize node type propaga-
tion. On the other hand this concept can enable building of the nets. More precisely, if
an generic equivalence class abstractor is offered, which uses specific generic CSI
methods to represent the abstraction, building a net abstractor would be combining
this level with an additional which would only serve as an adapter and wrap the ge-
neric method calls into specific interface that enables usage of nets in NLDB.

Variant generator

 By implementing specific view, variant generation (Appendix A) can be hid-
den behind the CSI interface, where each variant would be seen as a separate cell
definition. For this reason in further text, we will use the terms variant and cell
equally. The difference between them is just in the way the given entity is realised: if
it is directly defined in the model or isolated as a variant of the cell during the variant
creation process.

Virtually flattened view

 The size of the hierarchical data can be many times smaller than its unfolded
(flat) version. This is especially pronounced in the case of DRAM memories. In this
case it is obvious that, as the data is highly folded, algorithms to work on it directly
would be extremely complex, in some practical way, impossible, as developing the
algorithm for each specific application/task would demand very long periods of time.
 As the implementation of some algorithms (pattern matching, for instance) is
very difficult for hierarchical netlists, the methodology where one flattens the netlist
first and than operates the tool on fully flat netlist was often used. For big examples
this method is not efficient. It consumes a lot of memory and time; further the con-
texts the algorithm works on are highly redundant. Our idea is to provide a specific
view on the hierarchical data that can provide flat flexible view on it that is friendly to
the user application. This view is the topic of the next chapter.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

73

5 Virtually Flattened View

 This chapter brings one possible usage of the general concept of hierarchy
managing layered views established in the previous chapter, the object-oriented virtu-
ally flattened view (VFV). The vision of this view is given in Section 5.1. The further
text of the chapter gives a description of the high-level architecture of the VFV
throughout section 5.2. Therefore, the main classes of the view are conceptually dis-
cussed, together with the proper explanation of the relation between the view and the
Layered NLDB database. Further, section 5.3 gives us an overview of the architecture
and semantics of the entities that model the materialised flat data portion itself to-
gether with precise description of the typical methods and mechanisms that enable
proper flat data portion creation. The discussion of the concept of dynamic iteration
over representative devices is left for the section 5.4, followed by the description of
the general object building strategies abstracted in a specific builder class in 5.5. The
complex concept of the mechanism that assures the consistency between the flat data
portion and the hierarchical database and determines the flat netlist space projections
of the flat data portion is given throughout sections 5.6, 5.7 and 5.8. Further, the
committing process and the mechanism that allows consistent usage of changes of the
hierarchical topology together with the original database data which has stayed intact
is given in the sections 5.9 and 5.10. The application of the view we define here on
the problem of search oriented subcircuit recognition (chapter 2) is given in chapter 6.

5.1 Introduction

 The Virtually Flattened View is a type of the hierarchical netlist database lay-
ered view. The Hierarchical Layered Views are subject of the previous chapter. The
goal of the Virtually Flattened View is to present parts of the hierarchical netlist data
in the flat fashion. Therefore, the user (algorithm) accesses the netlist as if it was stati-
cally flat. It can iterate over different devices of the design and navigate the local
neighbourhood, from once acquired device to arbitrary neighbouring design device,
orthogonal to design’s hierarchy. In order to achieve this, the algorithm materializes
flat data portions that would represent the part of the design which is of interest.

 How is this possible, having in mind that the hierarchical concept describes,
sometimes, highly redundant flat data, whose materialization (flattening) requires un-
bearably large memory and whose analysis would require extensively long runtime?

In order to still be able to take advantage of the flat view, some assumptions
have to be taken into account. Many algorithms use, typically, local portions of the
design data for their calculations. Thus, the algorithm would acquire a handle to a
certain device, as the starting point and further examine its local neighbourhood. After
evaluating this portion of data, the algorithm would create the conclusion records that
represent the tool’s output. There are numerous examples for this concept: search ori-
ented pattern matching, parasitic net evaluation and reduction, etc.

 We can achieve our goal, if we take this tool preference as a constraint that is
not going to handicap the algorithm execution flow anyhow.

 Two main constraints are to be established in order to make the concept of the
Virtually Flattened View feasible. First, the iteration over the design elements is con-
ceived in a specific way. Hence, the user can iterate only over all context-
representative devices, not redundantly over all design devices. This approach is spe-

Chapter 5 - Virtually Flattened View

74

cific, however semantically correct. As we have information about the hierarchical
properties of the design data, if the user algorithm creates some result, it could be
committed in a way that it is valid for all appearances of the given pattern in the flat
design version. An additional, important consequence of this approach is a much
faster expected execution time, compared to the pure flat approach. By working only
on representatives, the algorithm skips all redundant, identical appearances of a given
algorithm result. Still we must not forget the overhead that the algorithm that controls
the view introduces. A second constraint of the concept we are proposing is that the
object identifier consistency is secured only inside an interconnected flat data portion,
formed strictly by navigating in the neighbourhood of the starting object, acquired by
iteration. If this is taken into account, we have another, implicit, more or less flexible
constraint. The size of this local neighbourhood has to be acceptable from the aspect
of the available system memory.

 Therefore, considering the constraints given above, the implementation of the
view must be able to create (materialize) small portions of the hierarchical database
data in the flat fashion and to maintain the consistency between this flat data portion
and the original hierarchical database data. Each materialized flat data portion
(MFDP) corresponds to multiple instantiation places in the flat netlist space, as illus-
trated in the Figure 5.1-1. This means that physically only one pattern exists, but it is
valid for multiple (as example illustrates, three) different contexts in the flat netlist.

Described above is the primary functionality of the Virtually Flattened View.
 The limitation that the object identifiers of the locally flattened view are not

permanent can be indirectly addressed. As any direct comparisons between the objects
of two materializations of the view are not possible, the dependency between two dif-
ferent flat data portions is rather achieved by altering the primary hierarchical data
using the corresponding MFDPs that the view has generated. This comes as a second
functionality of the view. In every moment, the current group of objects representing
the materialised flat data portion can be committed to the hierarchical netlist as an
instance that is placed in a given optimal hierarchical level (as deep in the hierarchy as
possible). This powerful concept, which enables altering the hierarchical data, by
using exclusively standard common interface “vocabulary” (Access_Cells and
Access_Instances) can have a wide application, as it will be shown later.

Figure 5.1-1 – The conceptual diagram of the Virtually Flattened View. The local pattern that is
being created stands for a number of identical appearances of itself in the flattened netlist space.

Hierarchical
netlist

Flat Projections of Virtually Flat Pattern
Flat netlist space

VFV
Materialized Flat
Data Portion
(MFDP)

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

75

5.2 Virtually flattened view - high-level architect ure

 In the previous chapter, we have defined the proper framework to alter the ac-
tual hierarchical topology of the hierarchical design by strongly separating the inter-
face entities and their method definitions from any implementation. Therefore, we
will now present the concepts of the Virtually Flattened View, with the respect to this
framework, employing advanced object-oriented mechanisms. Hence, in continuation
we show the high-level architecture of the Virtually Flattened View and it’s relation
with the Layered NLDB.

 The main functional units of the virtually flattened view are given in Figure
5.2-1. The view is inherited from the NLDB static base. Among other advantages that
will be pointed out, this gives the opportunity to reuse parts of implementations of the
standard netlist hierarchical database. The bearer of the view is the class Vir-
tual_Netlist . It inherits the class Base_Netlist . This is done, as the virtually
flattened view should provide a user the feeling that he is working with a regular flat
netlist. Therefore, passing the object of the class Virtual_Netlist , instead of
the (expected) instantiation of the class Base_Netlist allows the user algorithm
that is designed for flat NLDB data, to transparently work with the virtually flat data
representation, employing polymorphism.

 The class Virtual_Netlist has its nominal cell, as well. It is, moreover
the only cell in this virtually flat netlist. Note that, in general, the nominal cell of the
virtually flattened view does not have to be the nominal cell of the hierarchical design.
Just a part of the hierarchical design can be, by employing the virtually flattened view,
seen as flat. This flexible property can give one a chance to, for instance run a flat
algorithm on a part of the hierarchical design that is of relevant interest, or to, by em-
ploying the committing functionality, rearrange the hierarchy of a given part of the
hierarchical design.

Figure 5.2-1 – High level architecture of the Virtually Flattened View. The view mimics the flat
netlist. Thus, It has a Virtual_Netlist, Virtual_NominalCell and the DeviceFlatContainer classes.
Virtual_ContextSaver and Virtual_Builder are given also to model the overall VFV creation and
exploatation process.

Chapter 5 - Virtually Flattened View

76

 The nominal cell of the Virtually Flattened View contains further an instance
of the class DeviceFlatContainer . This class models the sophisticated concept
of the iteration over irredundant, representative devices of the virtually flattened de-
sign. Therefore, the class DeviceFlatContainer , as a container collects all dif-
ferent device representatives from each NLDB device container at any hierarchical
level of the design. More precisely, it serves in some sense like a façade between the
group of containers in the hierarchical database and one simple interface of Device-
FlatContainer . The class DeviceFlatContainer defines an appropriate
iterator, a class that can sequentially access all the elements that the given object of a
class DeviceFlatContainer aggregates. Note that the number of members of
such a container is dynamic and it corresponds to the number of variants of the given
hierarchical design. As it was pointed out in the first section of this chapter, the Virtu-
ally Flattened View, as well, can alter the hierarchical netlist by inserting new abstrac-
tions and rearranging the hierarchical order of the netlist. This includes altering the
variant graph structure. An upcoming section will define the usage of the mentioned
class pair (container – iterator).

 So far elaborated classes in this conceptual hi-level diagram are following the
interface of the standard NLDB database and mimic its behaviour.

 Additional classes that are part of the general view architecture are Vir-
tual_HierContextSaver (Virtual_Excluder) and Vir-
tual_ElementBuilder . These parts of the system maintain the hierarchical con-
text of the current Virtually Flattened View materialised flat data portion (MFDP) and
control the virtual layer object building process, respectively. The Vir-
tual_HierContextSaver defines the relative top hierarchical level for the cur-
rent state of the Virtually Flat data portion. This level is dynamically chosen by a so-
phisticated algorithm applied on the specially devised data structure. Hence, for each
MFDP that is created this class attempts to place it as deep in the hierarchy as possi-
ble. In this way we tie the flat data portion to the maximal number of different con-
texts. Hence, the MFDP is valid for each instantiation of the relative top level cell.

 Two different strategies of the external usage of the class Vir-
tual_HierContextSaver are possible. First, it can be used explicitly to get the
set of paths for the given virtually flattened pattern. Second, the information about the
materialised data portion position (relative to the hierarchical design) can be used im-
plicitly, by altering the primary standard NLDB attributes of the design. More pre-
cisely, this happens by introducing new subcircuits and adding their instances to the
original hierarchy. In order to implement the first approach, it is necessary to define
an extension to the standard interface that is to be used by the user algorithm. In this
case, the utility flat algorithm would have to be altered, at least in the phase in which
it commits its results. This change would remain, however, local and the main part of
the flat algorithm would stay the same. The second approach hides everything in the
existing hierarchical database interface. In order to achieve the benefits of this ap-
proach it is necessary to allow altering of the primary hierarchy topology and there-
fore the variant graph of the given hierarchical design, as discussed in the previous
section.

 The class Virtual_ElementBuilder encapsulates the process of the
creation of a materialized flat view. This part of the system offers a flexible and up-
datable architecture, allowing fast adaptations to the specific needs of different user
algorithms. For instance if the user algorithm needs some additional inter-
face/variables to be added to the devices of the NLDB design for its proper execution,
one would add these functionalities to the relevant database elements by creating

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

77

more specific type. By abstracting the element creation process into a clearly defined
class we can easily setup our view to create these specific objects which it is still able
to manage ignoring the specific interface, hence, leaving it to the user algorithm.

 The described architecture, therefore, defines a holder for a group of objects
that represent a locally flat data portion. The flat data portion materialization starts
from the object that is returned from the DeviceFlatContainer . In continuation
we will explain the implementation architectures, hence, specific data structures and
algorithms that allow the approach described with this high-level view on the pro-
posed design. The relation between the objects of (position of) the view schema that
Virtual_ElementBuilder creates and its holder, together with the taxation
hierarchy description of view classes and other parts of NLDB will be presented in the
next section.

5.3 Virtually flattened view class representation

 The view consists of the collection of classes that upgrade the functionality of
NLDB. There are analogue classes for each of the NLDB (base) originals. For in-
stance, the class Base_MOS has its view analogue class, Virtual_MOS . The rela-
tion between these two classes and their position in the overall NLDB class hierarchy
is shown in the class diagram in Figure 5-3.2. As it is shown in the diagram, virtual
layer classes are not directly inherited from the pure abstract interface of the Access
Layer. The reason for this is that the layer requires also some implementation of the
static database. After acquiring the starting element, virtually flattened view material-
izes a small portion of data from the hierarchical database in the flat fashion. All ob-
jects that are aggregated into this small view portion are the objects of different view
classes. The implementations of interconnections between the database objects are
therefore, directly taken over by the layer classes. Apart from being able to use the
Virtual layer classes in place where some other base, or more general, Access Layer
class is expected, we get the implementation of interconnections of the materialized
pattern for free. Just by accessing the interface of the Base Layer inside the Virtual
Layer classes, we can access the objects locally, those that are already loaded into
materialized view. When the view is augmented, specific overridden interface func-
tions combine the old implementation to e.g. acquire a pin of the device with the func-
tionality that is implemented in overridden virtual layer interface methods. This up-
grade reads data from the previous layer in cases where the object, member of the
virtual layer still does not have any information about the appropriate connection.
Note that the source layer object is defined as Access_Device , that means, com-
bining several layers in order to get the corresponding variant of the hierarchical data
representation is allowed. Figure 5.3-2 gives the inheritance hierarchy for the view,
with its relation with other NLDB classes.
 The class diagram shows intentionally the pure abstract class
Acess_Device at the bottom. This is the root class and each of the classes that are
deduced from it have to implement a strongly defined common interface. In this light,
all classes of the Virtual layer implement this standard interface in their specialized
way. In the first (diagonal) row the primary class hierarchy is shown. The Ac-
cess_Device pure abstract class is specialized by the class Access_MOS in order
to define augmented interface of the Access_MOS, still pure abstract class. Base
Layer classes statically implement a hierarchical aggregation of database objects.
They take care of implementing numerous references to capture the hierarchical net-
list topology and additionally all necessary attributes about a single class that are

Chapter 5 - Virtually Flattened View

78

available through the Standard Common Interface (SCI). In the Figure 5.3-2, the hier-
archy of Base_<classes> is shown in the middle diagonal stripe.

The virtual layer classes are all realised by multiple inheritance. The root class
of the Virtualy Flattened View hierarchy, the abstract class Virtual_Device mul-
tiply inherits properties from the Base_Device , in order to get the general func-
tionality of creating a topology and the class HasSource . Class HasSource , as it
is mentioned in the previous chapter enables layering. The sourceView of the Has-
Source class interpretes the SCI of the Access Layer. This is depicted by the asso-
ciation line from HasSource directly to Access_Device . Note that Vir-
tual_Device privately inherits HasSource . This enables Virtual_Device to
only privately have the interface of HasSource and that it, as well, disables the
polymorphism between HasSource and Virtual_Device. Any hypothetical algorithm
wouldn’t be able to acquire a handle to Virtual_Device as the descendent of Has-
Source .
 Virtual_Device is an abstract class. Its instantiation is not possible, as it
has a set of undefined functions that are implemented in the child classes that again
multiple inherit the Virtual_Device . This is necessary in order to be able to em-
ploy polymorphism and use the Virtual_MOS, Virtul_Res or some other class that is
in place of the Base_MOS, Base_Res, etc. It is important to stress that, since this de-
sign was implemented in C++, each of multiple inheritance paths are, as well, marked
virtual, in order to ensure a single instantiation of each of the parent classes in the
object memory layout. For example, Virtual_MOS has a Base_Device as a par-
ent class through two different inheritance paths. Base_Device is the second parent

class, both over Virtual_Device and over Base_MOS. This configuration is
known as a “dreaded diamond” [47]. Its implementation demands pointer address
mangling. This results in some overhead when comparing the pointers to the given
objects, or accessing the object variables. This runtime penalty is paid in our case in
order to achieve very elegant design that requires minimal changes of the static base
classes and 100% transparent usage of Virtual Layer objects with the algorithm that
was already written to use NLDB API.

Access_Device

HasSource

Virtual_Device

Base_Device

Base_MOS

Virtual_MOS

Access_MOS

Access layer

Virtual layer

NLDB

Base (static)

*
-srcView

*

Figure 5.3-2 – Virtually Flattened View layer placement inside NLDB class hierarchy

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

79

 In order to enable full functionality of the single virtual class as the part of the
virtual layer, overriding of the SCI (see section 4.2) methods is necessary. SCI meth-
ods, for this purpose, can be divided in two groups. The first group contains the meth-
ods that only forward their calls to the source (Access Layer) object. All these meth-
ods directly get information about source object’s attributes.
 In our simple database that is the function to acquire device model
(model()) , or a name (name()). In realistic EDA databases we would have also
the methods to get different device parameters.

 A second group of methods of the virtual class are the methods that are part of
navigation interface. In our example design that is the method of the class Vir-
tual_Device, pin(int i) . Overriding this part of the interface of the virtual
class family enables proper view (augmenting) navigation inside the already created
MFDP. We will now analyse the algorithm of the function pin() of the class Vir-
tual_MOS . This function of the SCI, that belongs to any descendent of Ac-
cess_Device, gets the handle to the device pin which further leads to a given node to
which the device’s terminal is connected. The function outline is given in Figure
5.3-1.

 This function (together with its analogues in different classes of the Virtually
Flattened View schema) is responsible for auto-creation of the MFDP. Once the func-
tion is called, it first attempts to find the immediate (local to the view) connection to
another virtual object, member of the virtually flattened view. If this information is
not yet available (the neighbouring object is being referred for the first time) the func-
tion will read the data from the previous layer, getting, for instance, the static base
object - instantiation of Base_Pin object. The algorithm now creates or regains the
handle to the virtual object, depending on the fact if the neighbouring object was, po-
tentially, already created using some other path in the view topology. For instance, if
we have focus on one device of the parallel connection of two transistors, it is possi-
ble to reach the neighbouring device following any of the terminals, gate, source or
drain. Therefore, a lookup map is needed in order to know if some object was already
used. This is the responsibility of the Virtual_ContextSaver . This complex
object (aggregation of objects) keeps record on any mapping between the source de-
vices and the view devices. This mechanism will be explained in detail in section 5.6.
 The flow of both mentioned scenarios is given in Figure 5.3-2, under (a) and
(b). Both of these scenarios require lookup into the hash table and possibly object
creation, which makes this usage case the slowest operation in the view navigation.
Still look up is the operation with the expected complexity O(1) as a hash map is used.
Therefore, as the experiments confirm, no major time was spent on these lookups dur-
ing the application algorithm execution. Third scenario (c) acquires the virtual object

Base_Pin* Virtual_MOS::specific_pin(int i)
{

Base_Pin* ptr;
if(NULL == (ptr = Base_MOS::pin(i)))

 {
ptr =
Virtual_Netlist::getBuilder()->
 getVirtual(this-> getSrcView()-> pin(i), this);

 setTerm(i,ptr);
 }
 return ptr;
}

Figure 5.3-1 – specific_pin function code

Chapter 5 - Virtually Flattened View

80

directly, from view’s local references. This is the fastest scenario and in the same time
independent (local to the view). There is no direct reference to the source NLDB da-
tabase in order to acquire the proper object of the view. The described concept re-
minds of the proxy design pattern [48, 49], where a group of objects serves as a surro-
gate to the originals.
 The concept by which methods, members of the navigation interface, are
overridden is given the class Virtual_Device . Analogue methods exist for Vir-
tual_Pin and Virtual_Node classes. They are used to model the bipartite graph
by which any electronic circuit can be described (without hierarchy). In our case
Virtual_Device s belong to one group of vertices, Virtual_Node s to the sec-
ond. Virtual_Pins simply model the connections between these two groups. All

NLDB Virtual Flattened Layer
a)

NLDB Virtual Flattened Layer b)

Virtual Flattened Layer NLDB c)

Figure 5.3-2 – Sequence diagram of Virtual_Pin object acquisition. a) virtual view object is cre-
ated on demand. b) A handle to virtual view object is obtained. c) virtual layer object is directly
acquired

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

81

tree classes have a similar implementation of the navigation interface.
In the end, it is important to mention that for the virtual class there is also third

part of the interface. It is not part of the SCI and is privately defined, to the class. This
interface is implementing layering (interface that each virtually flattened view object
inherits from the HasSource class).

5.4 DeviceFlatContainer - Iterator

 The DeviceFlatContainer class is defined in the scope of Vir-
tual_NominalCell . It aggregates all devices in all representative contexts. If a
given cell is instantiated in two equivalent contexts, regarding a set of parameters, its
devices would be represented only once in this container. This is enabled via the per-
sonalisation concept given in Appendix A.
 Following the container – iterator concept, a container defines an iterator class
in its scope. The iterator sequentially acquires all elements that belong to Device-
FlatContainer .
 In order to achieve this, the iterator has to traverse over all devices of all cells
in the cell graph.

+begin() : iterator

+end() : iterator

DeviceFlatContainer

+operator++() : void

+operator*() : Access_Device

iterator

TopDownCells

1

*

Access_Cell1*Access_Device Access_Variant

1 1..*

+operator++() : void

+operator*() : Access_Variant

iterator

-cont

* *

Figure 5.4-1 – Class Diagram of DeviceFlatContainer, facade for the aggregation of Acces_Device
objects

 Having in mind that the DeviceFlatContainer class stands for a set of
objects with complex, hierarchical order and interface, groups them together, offering
a simple interface (begin(), end() methods and the iterator class with the standard in-
terface), we can notice that this part of the object oriented design follows the façade
design pattern [48]. The implementation architecture of the class DeviceFlatCon-
tainer is shown in Figure 5.4-1.

The class is placed in the inheritance hierarchy of the class TopDownVari-
ants. As it was explained in Appendix A, class TopDownVariants aggregates

Chapter 5 - Virtually Flattened View

82

all hierarchical design cells in a specific order (top down or bottom up). These cells
have some of the entristic parameters resolved (as chosen upon the variant creation).
Together with this class, an iterator was defined, that can, sequentially, access all Ac-
cess_Cell objects that are stored in the given design.
 Class DeviceFlatContainer therefore subclasses TopDownCells and
its appropriate iterator is subclassed by the iterator of the class TopDownCells .

The order of iteration of the DeviceFlatContainer ’s iterator can be, up
to a certain extent, controlled. The user can choose the order in which the design cells
are accessed, bottom up or top down, depending on the setup of the TopDownCells
class. Simple pseudo code to describe the traversal follows:

 for (all cells)
 for(all variants)
 for(all devices);
 get pointer to the device;

Note that the sets that aggregate variants of the design cells and devices are not or-
dered and in this model, their order is arbitrary.
 An additional, important property of the container that we define in this sec-
tion is that its content is dynamic. If the user algorithm causes a change in the variant
graph, e.g. by changing the type of a certain net or a device, or by altering any other
parameter that is defined for the variant creation, the container would, as well, change
its content. This can be illustrated with the simple example design shown in Figure
5.4-2.

The example design shows a NAND implementation of the XOR logic gate. If
we suppose that the variants are being created by the cell pin type, and that all pins of

the different instantiations of a NAND circuit have the same signal type, our design
variant graph would have only two members: top level and one variant of the cell
NAND. This would mean that the iterator of the device flat container, if it was setup
to iterate bottom-up, would acquire focus on the only variant of the cell NAND, iter-
ate over its devices, than further change the context of the variant to the top level. As
in top level, there are no opaque (atomic) devices the iteration comes to an end. If we,
for instance, during the user algorithm execution alter this hierarchical design and
change the type of the net in1, the revision of the variant graph would start and in-
stances X1 and X2 would be moved to a different variant, as their input terminal one
now has a different pin type. After this process our variant graph, apart from the top
level variant has an additional variant of the cell NAND and in total two variants of

X1

X2

X3

X4

in1

in2

xOr

out

Figure 5.4-2 – Example of dynamic DeviceFlatContainer content. xOr hierarchical representa-
tion

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

83

this only cell that is instantiated in the given hierarchical design. The content of the
DeviceFlatContainer has now changed and we get eight atomic devices during
traversal, meaning four from the first variant of the cell NAND and four from the sec-
ond variant of the cell NAND.
 The implementation of the iterator class that enables dynamic traversing is
closely related to the way new variants are added during the lifetime of the Vir-
tual_Netlist object. For this reason a more detailed implementation of the itera-
tor class will be given later.

5.5 Virtual element builder

In order to materialize the flat data portion, duplicates for each element ac-
quired from the NLDB database are being built. These objects are to serve in different
applications. Sometimes, according to the principles of the user algorithm, additional
variables (fields) should be added to flat view objects that stand for pure NLDB ob-
jects. This can be achieved by subclassing given objects, augmenting their interfaces
as needed and adding extra implementation variables. In order to enable this, the view
has to support a flexible object building. For this reason, we abstract the building
process in a class Virtual_ElementBuilder . The definition of a Vir-
tual_Netlist holds a handle to the object of this class. In this way we separate
the view object building from the rest of the system, enabling better flexibility. The
solution that is engineered for the Virtually Flattened View follows the architecture
shown in the class diagram Figure 5.5-1.

The Virtual_ElementBuilder is given as a combination between the
Builder Pattern and the Template Pattern [48]. Thus the product (Virtual_Device
descendents, Virtual_Pin and Virtual_Node) building process whose flow is
managed by the director object (in our case Virtual_Netlist) is delegated to a spe-
cial builder object (Virtual_ElementBuilder). On the other hand, a list of ser-
vices is declared as a pure virtual interface and further used in the implementation of
different higher level algorithms, which is a property of the template design pattern.

#InstVirtual_MOS ()
#...()
#InstVirtual_Diode()
#InstVirtual_Pin()
#InstVirtual_Node()
+getVirtual() : Virtual_MOS
+getvirtual() : Virtual_Pin
+getVirtual() : Virtual_Node

Virtual_ElementBuilder

#InstVirtual_MOS()
#InstVirtual_Diode()
#InstVirtual_Pin()
#InstVirtual_Node()

Virtual_Builder

Figure 5.5-1 – Virtual_ElementBuilder architecture

Chapter 5 - Virtually Flattened View

84

Therefore, Virtual_ElementBuilder is the abstract class, as it just offers a
family of pure virtual functions that encapsulate object instantiation. These functions
form a protected pure abstract interface, as one logical part of the complete Vir-
tual_ElementBuilder’s interface. These functions are (in our case study
model):

• InstVirtual_MOS(),
• InstVirtual_Res() and
• InstVirtual_Cap().

Another part, public interface of this abstract class, is implemented. The imple-

mentation of these functions, following the template pattern, uses services that belong
to the protected pure abstract interface. All the functions of the public interface of the
class Virtual_ElementBuilder have the same name, getVirtual() . They,
however, differ by the argument type. For each type of the object a different function
is implemented. The function architecture is standardized, following the pattern
shown in the Figure 5.5-2.

Virtual_Device* getVirtual(Access_MOS* ptr)
{
 Virtual_Device* vir_mos;

if((vir_mos = currentContextSaver()->getElementPtr (ptr)) == NULL)
{

 vir_mos = InstVirtual_MOS(ptr);
 currentContextSaver()->putElementPtr(ptr, vir_mo s);
 }
 return vir_mos;
}

Figure 5.5-2 – example method of the getVirtual() family

The example shows that the implementation of the method to acquire the vir-

tual copy of the Access_MOS object at first looks up if the appropriate object is
already instantiated and if so, it acquires a pointer to it. This is done by looking up the
table of existing virtual copies of the database elements at the given hierarchical level.
Next chapter explains the data-structures (Virtual_ContextSaver) that save
these mappings. If no mapping has been found, the getVirtual() method would
instantiate a new object using an appropriate method from the protected interface. In
our example, the method which is called is InstVirtual_MOS() .
 As an exception to this group of methods, the method getVir-
tual(Access_Node*) has a somehow more complex implementation. The rea-
son for this is the fact that the virtual nodes are distributed over the hierarchy. The
explanation of the recursive algorithm of the mentioned method is left for section 5.6,
after defining proper environment which helps its understanding.
 Note that, as the class Virtual_ElementBuilder is abstract, it can not
be created. Therefore, we define a class which inherits this abstract class and imple-
ments the promised interface. The class Virtual_Builder is the default imple-
mentation of the builder and its realization of the protected interface simply instanti-
ates pure NLDB objects, members of Virtual Layer. For instance:

Virtual_MOS* InstVirtual_MOS(Base_MOS* ptr)

 {return new Virtual_MOS(ptr);}.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

85

 This function simply wraps the instantiation of the Virtual_MOS class.
 According to the selected architecture, a Virtual_Netlist object has a
reference to a single object of the element builder and it gets the handle to a concrete
object that subclasses Virtual_ElementBuilder already through its construc-
tor. Additionally, access to the builder object and further to its interface that builds the
relevant products is defined through a public getBuilder() method of the Vir-
tual_Netlist class. As it was chosen, during the lifetime of the Vir-
tual_Netlist object, it’s not possible to change its builder. In this way we can
assure the consistency of the objects which are being built. Note that with a small in-
terface change of the Virtual_Netlist , this can be however altered and if it
would be necessary for some future use, builder objects can be exchanged during dif-
ferent phases of the user algorithm. In this case, the user algorithm, during its runtime
would have to use this additional interface and mange building process consistently.

5.6 Context saving tree

The context saving tree is used to assure the consistency between the material-
ised flattened data portion and the hierarchical database. It defines all proper map-
pings between the devices that are represented as the flattened data portion. Addition-
ally, it defines the position of the view in the design hierarchy, relative to appropriate
variant that is considered as the context for the materialised flat data portion.

The context saving tree is important also in the process of committing the
relevant flat data portion to the primary hierarchical topology of the design. We want
to use the very same objects that were tracking the mapping between virtual and
source objects thus assuring the consistency of the flat view with the hierarchical da-
tabase during the process of creation and maintenance the VFV. This time we assign
them another semantic role: providing information about hierarchy changes after the
committing step where the relevant state of the VFV (current MFDP) is embossed to
the primary hierarchy of the input design.
 As we have identified two roles of this single object that stores mappings be-
tween source and virtual objects, we need the specific interfaces for both usage cases,
as well. This makes the overall interface of the given class bloated. Additionally, us-
ing the same class to depict two semantically different entities is making the percep-
tion of the architecture of the given object oriented solution less understandable. For
that reason, to model this part of our system we refer to the concept of Objects with
Roles.

5.6.1 Objects with roles

 Object oriented concepts tie objects to their types statically. No dynamic type,
i.e. morphing of the given object from one type to another, during its lifetime is al-
lowed. The only type changes that are allowed automatically are those along the in-
heritance hierarchy. This is actually a relation of the more general type to more spe-
cific type. On the other hand, it is not exceptional that in different applications, the
same object plays more than one role during its lifetime. In each of these roles, the
semantic character of the object varies, depending on the context in which it was used.
This has sparked a discussion in the object-oriented software development community
and various solutions have emerged. Some of them propose new concepts in general

Chapter 5 - Virtually Flattened View

86

object oriented methodology. They are implemented in experimental languages, or
just theoretically discussed [50]. Others search for the solution using already available
standard mechanisms, creating specific design patterns in order to solve the men-
tioned problem. Fowler describes a set of approaches in order to solve the role prob-
lem and points out their advantages and disadvantages [51]. On the other hand,
Bäumer offered a design pattern in which he handles the object roles by instantiating a
separate object for each role - Object Role Pattern [52]. By delegation, the core object
(which stores relevant information) is accessed from different role objects (that belong
to different classes with clearly defined interfaces). This solution offers flexibility and
precise definition of separate role entities and interfaces, but suffers from increased
complexity of the interface of the object (role maintenance interface) and overhead to
implement manipulation, creation/destruction of new or no more active roles. Further,
the object identifier consistency is violated. Hence, you can not trivially compare two
appearances of the very same objects in two different roles.

We will use a solution that is similar to this one, but is realised, through the
object-oriented concepts available in C++: multiple inheritance, friend relation and
other standard mechanisms, making it much simpler to use and maintain. The pro-
posed architecture is given in Figure 5.5-3. The diagram describes three abstract
classes and one concrete that is possible to be instantiated. At the bottom of the dia-
gram is the pure virtual class PureAbstractServiceProvider . It defines a set
of protected services, but leaves its implementation undone. The services are equiva-
lent to the services that are defined in order to handle the states of the Implementer
class object. Both interfaces are defined protected. Thus, the specification of this in-
terface is visible only for the classes that are in the inheritance hierarchy of Pure-
AbstractServiceProvider . Those still undefined services are used to imple-
ment the public interface of the object with roles, classes InterfaceA , …, Inter-
faceN. We can compare this part of the design to the Template Pattern[48]. Each of
the abstract classes define their generally different interfaces and expose the declara-
tion of the method getPointer() , which enables object passing between different
roles. In the end, the class Implementer multiply inherits all interface classes and
implements (as protected) all undefined interface members. In this way, if the instan-
tiation of the object Implementer is passed to the pointer of any of the role classes, its
variables are to be interpreted using a completely different interfaces. Note that this
exchange is possible during the lifetime of a single object, therefore allowing the in-
terface methods of different role types to work on the same data in two different con-
texts. Additionally, implementer class is opaque. It has no public interface defined,
which protects the data of this object from misuse. This is achieved by “hiding” the
public interfaces of the classes InterfaceA,… ,InterfaceN by making them private,
employing the C++ using keyword. Further, interface classes (InterfaceA , …,
InterfaceN) privately inherit PureAbstractServiceProvider. Thus,
polymorphism between PureAbstractServiceProvider and any role inter-
face is switched off.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

87

 By the proposed design pattern we achieve a clear separation of public inter-
faces for any object that is to be used in different contexts during its lifetime. More-
over, by having an additional type for each of the roles that an object plays in the de-
sign, we gain a better understanding and clear applications of the given object data.
Further, the implementation of the object itself is exchangeable, as long as it realises
the promised services. This gives additional flexibility to our design solution. The
described design is employed in order to address the complexity of the implementa-
tion architecture of the VFV and make our documenting process of the algorithm
more comprehensive, as well.
 Therefore, two roles of the context saving objects are going to be defined. In
the first role, the objects support the creation and consistency of the materialised flat
data portion, maintaining the mapping between source elements and their virtual cop-
ies. In the second role, the same object is used in order to change the topology of the
primary hierarchy. Therefore, the root hierarchy class, Virtual_HashServices
defines the protected interface that maintains the state of the multi-role object:

 virtual Virtual_Node* getNodePtr(Access_Node* bas) = 0;
 virtual Virtual_Pin* getPinPtr(Access_Pin* bas) = 0;
 virtual Virtual_Device* getElementPtr(Access_Devi ce* bas) = 0;
 virtual void putNodePtr(Access_Node* bas, Virtual_ Node* vir) = 0;
 virtual void putPinPtr(Access_Pin* bas, Virtual_Pi n* vir) = 0;
 virtual void putElementPtr(Access_Device* bas, Vir tual_Device* vir) =
0;

Figure 5.5-3 - Object with roles – design pattern proposal

Chapter 5 - Virtually Flattened View

88

These functions define the processes of assigning and retrieving relevant mappings
between the objects of the MFDP and their sources. Note that all the interface meth-
ods are pure virtual, any implementation issue is left for later. We are concentrated
only on the interface, not on any performance or complexity matter in this moment.
 Additional to these application domain methods, two methods to support role
switching and concrete object instantiation are defined:

Virtual_HashesContainer* getPtr() = 0 ;
Virtual_HashesContainer* getNewInstance() = 0 ;

, also as pure virtual.
 For our application we need two roles: the first is modeled by the abstract class
Virtual_ContextSaver , and the second, with the abstract class Vir-
tual_Excluder . Their interfaces and semantics are going to be explained in detail
in upcoming chapters.
 As the implementer class, we have Virtual_HashesContainer. This
class realises all promised interfaces and hides the public interfaces of the separate
role classes. Thus, it has no public interface any more, leaving the object opaque as it
was recommended by the proposed design pattern architecture. One can compare this
object to a cassette (or a disc) and the roles to the relevant devices that read it.
 The implementation of Virtual_HashesContainer consists of a set of
hash tables. These tables should provide the constant expected complexity for fre-
quent lookups, which are performed by both role public interfaces during the proper
algorithm execution.

#getElementPtr()

#getPinPtr()

#getNodePtr()

#putElementPtr()

#putNodePtr()

#putPinPtr()

#getPtr()

#getNewObject()

Virtual_HashServices

+getNewObject()

+getPtr() : Virtual_HashesContainer

+goUpHierarchy()

+goDownHierarchy()

+getTopLevel()

+isTopLevel()

+setTopLevel()

+getParentLevel()

+getInstance()

+getVariant()

+getElementPtr()

+putElementPtr()

+getPinPtr()

+putPinPtr()

+getNodePtr()

+putNodePtr()

Virtual_ContextSaver

+elementNotValid()

+getPtr() : Virtual_HashesContainer

+pinNotValid()

+getCover(in ptr : Access_Node)

Virtual_Excluder

#getElementPtr()

#getPinPtr()

#getPtr()

#getNodePtr()

#putelementPtr()

#putPinPtr()

#putNodePtr()

#getNewObject()

Virtual_HashesContainer

Figure 5.6-5.5-4 – Virtual_ContextSaver and Virtual_Excluder

classes

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

89

 The methods to retrieve and set mappings are referring than to the hash_tables
of the Virtual_HashesContainer and the method getPtr() implementation
simply returns the pointer to this , while the method getNewInstnace() accepts
the appropriate parameters and invokes the privately defined constructor of the im-
plementer object.

By inclusion of Virtual_HashesContainer and realising all proper promised in-
terfaces the architecture we have given above is ready for both contexts of usage.

5.6.2 Consistency of the virtually flat view data p ortion objects with
NLDB database (Virtual_ContextSaver)

 As we have stated before in this chapter, the VFV takes an arbitrary device,
returned by the DeviceFlatContainer iterator as the starting point for generat-
ing a flat data portion, arbitrarily according to the needs of the application that navi-
gates in the neighbourhood of the starting device. For each of the acquired original
database elements (including devices, pins and nodes), which are distributed over the
hierarchy, a virtual copy is created. The virtual copies form together a flat view on the
local part of the hierarchical data. It is necessary to maintain the consistency between
these materialised objects (members of the given MFDP) and source (original) ob-
jects. The consistency between the MFDP objects and its source objects that belong to
the hierarchical database is modelled through a class Virtual_ContextSaver ,
more precisely as a complex structure (a tree) of objects of this class. The tree struc-
ture is needed in order to be able to properly grasp all mappings between the hierar-
chically distributed source database elements and the MFDP, allowing it to develop
freely crossing hierarchical borders.
 The context saving tree is dynamically created and manipulated by the virtual
objects that build the MFDP. That enables the MFDP to be self-augmenting hiding all
the complex operations concerning consistency maintenance from the user and per-
forming them internally by the VFV.
 Every context saving tree starts from the unique Virtual_ContextSaver
object that defines the context of the key device, which is created upon invoking the
star operator of the DeviceFlatContainer iterator. The context saver object is
tied to a given variant of the cell of the hierarchical model.
 If the algorithm tends to develop the MFDP and accesses the neighbours of the
virtual copy and if that neighbours are distributed over the hierarchy the context sav-
ing tree grows accordingly inserting the relevant context saving object and for each
affected hierarchical level and populating it with the relevant mappings. We will de-
fine two important concepts of the context saving tree:

• the active hierarchical level and
• the relative top hierarchical level.

 As each context saving object stores mappings between the relevant source
objects, that belong to certain hierarchical level and the MFDP objects, it is necessary
to choose the proper context saving object to which we store mappings, or from which
we acquire mappings. Thus, we always mark an active level that defines the current
position of the hierarchy that is in focus. Keeping the active hierarchical level in con-
sistency with the relevant lookups is crucial. The relative top hierarchical level is the
hierarchical level to which the root context saving object of the context saving tree is

Chapter 5 - Virtually Flattened View

90

tied. This level is important as it determines to which context of the hierarchical data-
base the overall MDFP belongs.
 In order to illustrate this concept, we can consider the example in Figure 5.5-5.
The example design is a hierarchical representation of a latch electronic circuit. We
show the hierarchy fully unfolded. NMOS and PMOS transistors are encapsulated in
separate subcircuits. They form an inverter circuit inside the cell A. Further, on the
top level, two instances of the identical cell A are properly interconnected to form the
topology of the latch electronic circuit. In the initial stage (a), the algorithm takes in

mn

1

3

2

1

3

2

Vdd

1

42

3

mn

1

3

2

1

3

2

1

42

3

Out

X1@A X2@A

X1@MP X1@MP

X2@MN X2@MN

mp mp

V1

Vmn

@Variant: MN

@Instance:

mn : Vmn

1:V1

mn

1

3

2

1

3

2

Vdd

1

42

3

mn

1

3

2

1

3

2

1

42

3

Out

X1@A X2@A

X1@MP X1@MP

X2@MN X2@MN

mp mp

V1

Vmn

@Variant: MN

@Instance: X2

mn : Vmn

1:V1

@Variant: A

@Instance:

4:V1

X1 : TMN

mn

1

3

2

1

3

2

Vdd

1

42

3

mn

1

3

2

1

3

2

1

42

3

Out

X1@A X2@A

X1@MP X1@MP

X2@MN X2@MN

mp mp

V1

V2 Vmn

@Variant: MN

@Instance: X2

mn : Vmn

1:V1 ; 2 : V2

@Variant: A

@Instance:

4:V1 ; 1:V4 ; 2:V2

X1 : TMN ; X2 : TMP

@Variant: MP

@Instance: X1

mp : Vmp

1:V4 ; 2 : V2 ; 3 : V1

V4 Vdd

a)

b)

c)

The hierarchical model MFDP Contextsaving Tree

Figure 5.5-5 – The example of the development of the context saving tree, the structure that en-
sures the consistency between the MFDP and the hierarchical data model.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

91

focus the device mn of the cell MN, returned by the iterator. In this moment, the mate-
rialised view consists of the sole instance of the object of a class Virtual_MOS
(Vmn) and after that, for example, after calling the pin() method of the given device,
additionally, Virtual_Node object (v1) is instantiated. Note that the implementa-
tion of the algorithm uses the specific strategy to instantiate the virtual objects, the
members of MFDP, as late as possible, upon direct need for the given object by the
user algorithm.
 The objects that build the current virtually flattened data portion have their
source levels set as objects mn (Access_MOS) and 1 (Access_Node), respectively.
These both objects belong to the variant of the cell MN. To grasp these relations an
object of the context saving class Virtual_ContextSaver is instantiated. This
object ties the MFDP to the suitable variant of the cell MN and additionally stores all
proper mappings between virtual objects and source objects. The relative top level of
the context saving tree is in this moment the only instantiated object, naturally, so is
the active hierarchical level. The relative top level defines the position of the MFDP
in the hierarchical database. Thus, the MFDP is valid for all instantiations of the cell
MN. In relation to that, the relevant context saver object (of the relative top hierarchi-
cal level) has its field “@instance” empty. As an illustration, the yellow patch is
sketched in all proper places of our example hierarchical design for which the MFDP
is valid (inside every instance of the variant of the cell MN).
 Let us consider now that the user algorithm navigates away from the starting
device (virtual object, Vmn) following the drain terminal and further the node V1. As
the source node of the virtual node V1 is the port node 1, of the cell MN, the connec-
tion with the levels higher in the hierarchy of the design description exists. In the first
row, the immediate parent level is the definition of the cell A. This implies the change
of the topology of the context saving tree. The level, which ties the view to the cell
MN, becomes the leaf object of the tree, while the root level switches to the newly
instantiated context saving object, that is tied to the context of the cell A. The level
switch process includes the insertion of the proper mappings in the context switching
objects. Thus, the context saving object that is tied to the variant of the cell MN gets
the parent object (new context saving object) and the reference to the instance X2 of
the cell MN that exists in the hierarchical level A. This context saving object repre-
sents now exclusively the instance X2 of the cell MN. The newly instantiated relative
top context saving object is initialised with the mapping that links the instance X1 to
the context saving object of the level MN and the mapping between the already in-
stantiated virtual node V1 to the source node 4 (of the hierarchical level A). The
stage of the Virtually Flattened View and the context saving tree after this step is de-
picted in (b). It is interesting that the change of the relative top hierarchical level and
the augmentation of the context saving tree was done while the actual appearance of
the MFDP is still unchanged. We have, by this operation switched the (active) hierar-
chical level in which the MFDP exists and allowed it to “see” its neighbouring objects
in the context of the hierarchical level of the cell A.
 Let’s consider now that the user algorithm, seeing the flat version of the design
tries to acquire the pointer to the device pin that is connected to the virtual node V1.
In the original, hierarchical database, the device pin connection exists in the hierarchi-
cal level of the cell MP and connects the given node to the device mp. What does this
mean for the context saving tree? VFV will determine that the source node of the V1
is connected to the instance X1 of the cell MP. It will than follow this connection and
descend to the hierarchical level of MP. This means that a new context saving object
will be created and inserted in the context saving tree. This context saving object is

Chapter 5 - Virtually Flattened View

92

tied to the cell MP and the instance X1. Once the algorithm descends it will create the
linking mapping of the virtual node V1 to the local (to the cell MP) source node 1. At
this moment the virtual node V1 has three sources, each of three relevant for separate
hierarchical levels MN, MP and A. The algorithm further acquires the pin connected
to the node 3 and creates the relevant virtual copy of it attaching it to the virtual node
V1. Following this pin the MFDP obtains another device, the virtual copy of the de-
vice mp, named Vmp. If the algorithm further follows the gate connection of the vir-
tual device Vmp, in the background will the following happened: At first the VFV
algorithm will, inside the hierarchical level MP create the virtual copy of the node 2,
called V2. Than, the active level of the context saving tree will switch to A. All port
node mappings will be propagated to the level A of the hierarchy. This means that the
mapping between the node 2 and V2 will be made at the hierarchical level A. After
this, the VFV algorithm again switches back to the hierarchical level MN, without
port node propagation. It takes in focus the source node 2 and searches for its virtual
copy using the function getVirtual(). The implementation of this function is always
searching for the relevant mappings recursively from the root node of the source hier-
archical node to the current subnode. In the example case, the algorithm will search
for the mapping between the node 2 and some virtual node in the level A, find it and
than build the mapping between the node 2 and the same node V2 inside the cell MN.
The recursive algorithm that we describe here is given in figure Figure 5.5-6.
 The stated requirements shape the functionality and the interface of every in-
dividual context saving object. First, the object is tied to a specific variant of the cell
of the given design. If the context saving object is not the root of the context saving
tree, it is additionally tied to the given instance. This is modelled through the part of
the interface of the Virtual_ContextSaver , by methods:

• getVariant()
• setVariant()
• setInstance()
• getInstnace()

 As the given context saver object is a member of the complex structure (a tree)
formed by the object of that kind there is a specific interface to navigate through and
augment this tree:

• goUpHierrarchy()
• goDownHierarhcy()
• getTopLevel()
• isTopLevel()
• setTopLevel()
• getParentLevel()

The first two methods of this group are capable of augmenting the context sav-

ing tree (creating new tree nodes). According to the appropriate parameters they in-
stantiate the new context saving objects tying them to the appropriate hierarchical
levels and placing them to the appropriate positions in the context saving tree. Apart
from creating or switching levels, the function goUpHierarchy() is responsible
for propagating the mappings for all port connections up the hierarchy. This is impor-
tant preparation for the algorithm which determines the virtual copy of a source node

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

93

in the given moment (getVirtual(Access_Node*)), that is a member of the Vir-
tual_ElementBuilder class. The rest of the methods can exclusively navigate
the already created context saving tree. Both objects groups are used by the VFV in
order to properly maintain the consistency between MFDP and the data model. The
methods to switch levels are implemented directly in the class Vir-

tual_ContextSaver , as this is the specific functionality of the role of context
saving played by the object of the class Virtual_HashesContainer .

Another important group of methods is responsible for storing and retrieving
the mappings between the elements of the MFDP and their source objects. These
functions take a pointer of the Access_Device , as a key, and search for its virtual
copy in the appropriate (current active) context saver object. Note that consistency
between level switching and device mapping search is here essential. A public inter-
face to retrieve and store mappings from the hash tables is implemented using the
template design pattern, as it is already mentioned in the previous section. The ser-
vices declared in the Virtual_ServiceProvider are here used to define the
interface and implemented later while defining Virtual_HashesContainer
class. This flexible architecture offers, apart from level switching ability, also easy
experimenting with different types of mapping container implementations. To con-
clude the interface that stores and retrieves the mappings consists of the following
functions:

• getElementPtr(),
• getPinPtr(),
• getNodePtr(),
• putElementPtr(),
• putPinPtr() and
• putNodePtr(),

Figure 5.5-6 – algorithm of the function getVirtual(Access_Node* ptr)

Chapter 5 - Virtually Flattened View

94

 that are more or less trivially publicly exposing the functionality of protected services
of the Virtual_ServiceProvider .
 In the end, this object role exposes the proper interface to support the object
switching and the context saver object instantiation. Thus, two additional methods are
implemented:

• getNewCSObject()
• getPtr().

 The part of the algorithm that constructs and maintains the context saving tree
is not visible to the user algorithm and is hidden behind the virtual node class. Fur-
thermore, the virtual copy of any Access_Node object, instance of the Vir-
tual_Node class becomes the context-switching object. This will be explained in
the following section.

5.7 Context-switching / multi-context nodes

 In Chapter 3, we have defined the hierarchical node and the three semantically
different types of subnodes that are forming the hierarchical node. The hierarchical
node was presented as the consequence of the instance tree. If we have the instance
tree in focus, these hierarchical nodes have just one context.
 On the other hand, if we observe the referenced cells graph (variant graph),
hierarchical nodes become multi-context, as any of the cells that hosts the parts of the
hierarchical node has the multiple instantiation paths.
 Virtually Flattened View hides the hierarchical node (composed of an arbitrary
number of elementary Access_Nodes, depending on the hierarchy) behind a single
element – Virtual_Node . This node is responsible for context switching. In con-
nection to that, it also controls the creation and navigation through the context saving
tree.

Virtual node

As settled above, the virtual node is used to replace a group of nodes, con-

nected through the hierarchy with a single node. This node is a part of the materialised
flat data portion of the given circuit. It is modelled as a class that inherits the class
Base_Node , which describes general properties of a node, Figure 5.7-1. Vir-
tual_Node class does not inherit directly from the Access_Node abstract inter-
face, as it uses different implementation solutions for the standard interface of the
Base_Node , as it will be shown in detail later.

Virtual_Node , as well as Base_Node , can be observed as a container of
pins, that connect this class of bipartite graph vertices - nodes to the other class which
consists of devices. Therefore, pin_begin(), pin_end() operations and appropriate it-
erator class are defined, following the container/iterator concept [53], as discussed in
chapter 3. The nature of the iteration in the case of the Base_Node is static and the
iteration algorithm is simple. Hence, it is only necessary to traverse the vector that
statically aggregates the elements of the type Base_Pin . Since Virtual_Node
represents a group of Base_Node s (members of the hierarchical node), traversing
the container gets more complicated. Iteration is also not single-context. Several, par-
tially overlapping, sets of neighbours of the given Virtual_Node , occur.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

95

As we have mentioned, the virtual node is an object that belongs to the MFDP
on the hierarchical data, therefore there must be a srcView defined to it. Through the
source view the virtual node collects different parameters of the Access_Node in-
terface that are invariant to the hierarchy (for instance those are the node type data,
etc). Moreover, the virtual node has a relation 1:n to the Access_Node , as shown in
Figure 5.7-1. The layering functionality for the Virtual_Node is modelled by the
specific class HasMultSource . This class is inherited from the class HasSource ,
adding multiple source property. A single virtual node has in general more than one
source view. The current source view is defined by the current hierarchical level that
is in focus (current Virtual_ContextSaver object, part of the context saving
tree), during Virtual_Node “container” traversal. A private interface that models
this is the getSrcView() function, that takes a pointer to the object of the Vir-
tual_HashTables class as an argument. The mapping is implemented as a hash
table, therefore the average (expected) complexity of fetching the data has O(1) [54].
The operation of storing the data in this hash table has a worst-case linear depend-
ency, but with a wisely chosen hashing function, this case is unlikely to occur in
praxis.

The virtual node should feel and appear like an integral node, member of the
flattened data portion. In this light, we have to define an iterator for this multi-source
virtual object, as well.

The iterator has to traverse all possible neighbours of the given node. The or-
der of iteration can be partially determined by the hierarchy. Hence, the members of
several unordered sets can be presented in the order that is adjustable. For instance, it
is natural first to iterate over the pins (connections) of the first local node, then to
traverse down the hierarchy and then to step up the hierarchy. Traversing is similar to
the depth first search, which does not start from a root level.

The order of visiting the parts of the graph, which is formed by the hierarchy
of nodes, will be first explained using the example shown on the Figure 5.7-2.

In the figure, the ports are marked with red colour, while the root nodes are in
orange. Cell borders are shown only partially, with dark angular lines. The iteration
starts with the node 1, the pins connected locally to this node would be accessed in
arbitrary order, more precisely, by the order defined by the insertion in the vector of
pins. This further depends, e.g., on the implementation of the SPICE netlist parser, if
the hierarchical design has been loaded from the netlist external ASCII format. After
traversing all the ports, the iteration is exploiting all the choices given in the current
(top) context (cell A). That means that the iteration continues with the pins connected

Figure 5.7-1 - Relation between Virtual_Node class and Base_Node class.

Chapter 5 - Virtually Flattened View

96

locally to the node 2, inside cell B, which is down the hierarchy in comparison to the
starting node 1. At that moment, the hierarchical level that is in focus will change and
another entry will be added to the context saving tree. Hence that once the hierarchical
level that is in focus has changed, the active source view of the Virtual_Node
switches to the node 2. Note that any switch of the hierarchical level is followed by
change in the active level of the context saving tree. In our example case the new ob-
ject will be inserted into the tree, leaving the context saving object that corresponds
the level A as the relative top for the MFDP and setting the active context tree level to
the relevant instance of the cell B. Having in mind this process that happens in paral-
lel, we will further concentrate only on the states of the multi-context node.

The next step is the iteration over the neighbours of the node 3. Once this is
finished, the context from which the iteration has started is completely analysed. We
remind the reader here that all the pins, acquired through this process are actually the
source objects for the relevant MFDP copies achieving our goal that the data portion
is presented as flat to the user algorithm, which initiates this hypothetical iteration
over the neighbours of the virtual node. The iterator can be set to stop the iteration
here, after traversing a single context. This is important for certain applications and is
completely similar to the flat circuit iteration.

Let’s now consider that the set Ne=Na is the set of all possible neighbours that
are traversed so far, the set of neighbours of the context of the cell A. The set Ne de-
fines all neighbours, in a given moment, for the multi-context node. As it can be seen
in our example figure, node 1 is a port node that is connected to two nodes up the hi-
erarchy, but sitting in two disjunctive contexts. Therefore we distinguish two disjunc-
tive sets of neighbours that will be added to the original set Na. Ne = Na + N1, or Ne =
Na + N2. Therefore if we proceed to node 4, the iteration is performed on its local
nodes, and than to all subnodes, in the lower hierarchical levels. It is important to ex-
clude the path that leads to the instance of cell A, back to the same node where we
have started our iteration,

Context
2

Context
1

4

1

5

6

2 3

Figure 5.7-2 - Example of a multi-context node. Subnodes, which are ports, are given in red,

while root nodes are represented with orange circles. Design hierarchy is given by unclosed angu-
lar lines.

in order to avoid an (semantically incorrect) endless loop! The process would recur-
sively repeat up the hierarchy as long as there are ports in the topology of the given

B

A

Context 1

Context 2

n

B

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

97

hierarchical node. Note that it is possible to have new context “crossroads” further.
The set of neighbours would be further augmented. Once all the neighbours of the
newly defined context are traversed, in our case the pins of the node 4, the algorithm
returns to the previous context, erasing all the invalidated neighbours from the view,
the neighbours that belong to the N1 set. This is being done by cutting the top part of
the context saving tree which corresponds to the context 1 and all other (eventual)
subcells that were part of the iteration, leaving the subtree rooted at hierarchical level
A. After this, the algorithm proceeds further to nodes 5 and 6, where the traversing
operation for this example finishes.

We have therefore introduced the multi-context node, a switch through differ-
ent hierarchical contexts and, implicitly, a multi-context MFDP. The latter will be
analysed in the following section.

As VFV is a design to be used transparently instead of static base NLDB API,
the implementation architecture of the iterator has to satisfy the interface standard
requirements. For this reason, we relate the iterator class (vpin_iterator) to the CSI
entity pin_iterator as shown in Figure 5.7-3.

 The object of the pin_iterator class can get the pointer to either bpin_iterator
or vpin_iterator, flexibly. The vpin_iterator is responsible for the iteration type de-
scribed in the example above. The object of this class is returned by the instantiation
of the Virtual_Node class, which represents the container of pins that are to be
traversed. Note that the destruction of the delegated dynamically instantiated speciali-
sations of bpin_iterator is handeled employing the concept of smart pointers {… }.
This two level architecture allows even runtime switches between two implementa-
tions of the iterator class. Note that the first level employment of polymorphism was
not possible as the iterators are in most of normal application cases statically instanti-
ated in the program environment.
 The class vpin_iterator that is proposed as the implementation architec-
ture for the concept presented in the example above consists of one stack and several
types of hierarchy traversing class definitions, whose objects are maintained as stack
entries. These objects are introduced for each source node, which is taken in focus
during the transversal. There are three basic types of stack elements:

• Context,
• DownTheHierarchy and

Base_Node

Virtual_Node

-srcView

+operator++()

+operator*()

+operator==()

pin_iterator

+operator++()

+operator*()

-index : int

bpin_iterator

-it

+operator*()

+operator++()

+push()

+pop()

vpin_iterator

-cont

Figure 5.7-3 – Positioning of the vpin_iterator class in the CSI. Polymorphism allowing architec-
ture, where the implementation of the iterator is chosen during the runtime.

Chapter 5 - Virtually Flattened View

98

• UpTheHierarchy.

They are defining traversing for three semantic types of Access_Nodes, local node,
root node and the port, respectively.
 Apart from the defined classes, later, together with the introduction of the
MFDP committing step that alters the original netlist hierarchy, a specific wrapper
class, following the decorator pattern [48] will be introduced. The goal of this class is
to group a family of virtual node objects at a single hierarchical level and combine the
information they carry. The relation between the stack elements is given in Figure
5.7-4.
 The class vpin_iterator holds the stack of context saving entries and it offers
the full standard interface of the iterator. From this interface, calls are forwarded to
the top element in the stack. More precisely, operator++() would forward its calls to
the analogue function of the stack current top element, as long as it returns false, or
the stack contains elements. The operator++() function is given in the Figure 5.7-5.

 Each of the context saving classes defines its own operator++() and opera-
tor*() in order to be able to receive the forwarded calls.

The class Context is the root class of the hierarchy of context saving stack
entries. It is able to iterate over the simple local node, to which it is paired, using its

Figure 5.7-4 –Architecture of vpin_iterator and it’s relation to Virtual_Node. Vpin iterator de-
fines a stack that is populated by the family of classes that inherit from the clas Context.

virtual bool operator++()

{
 while (!empty())
 {
 setVirtualTable(this->stack.top()->getvTable ());
 if(this->stack.top()->operator++())
 return true;
 else
 pop();
 }
 return false;
 }

Figure 5.7-5 – operator++() method of the vpin_iterator class

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

99

operator function operator++() that has a boolean return value. In case that the itera-
tion leads to a valid (next) object, the function returns value true, after it finishes the
iteration over statically assigned node elements, the operator++() function of this ob-
ject returns false. The return value is taken over by the global operator++() function
(defined in the scope of the class vpin_iterator) which pops the object from the
stack. This strategy is general and is happening for all members of stack.
 The class DownTheHierarchy has an additional property. After traversing all
statically instantiated device pins, which are linked to the given root node, it traverses
over all instance pins, changing the hierarchical level to the definition of the given
instance by altering the state of the Virtual_ContextSaver context-saving tree.
Once the level is switched, an appropriate context saving entry object is created and
paired with the new local source view. A new entry object is then added to the stack.
The global operator++() calls are forwarded from this moment to the new top of the
stack. Note that, in order to avoid loops in the case of the traversing from a higher
level to the lower level, instead of the UpTheHierarchy entry, a simple context
class entry or a (further) DownTheHierarchy node is saved. In the case that the ob-
ject is created from the lower context, a source_pin is noted in order to skip this path
while traversing the instance pin vector, in order to avoid returning to already visited
part of the hierarchy.

 virtual bool operator++()
 {
 if(!context::operator++())
 {
 while (instPinIterator < instPinIteratorEn d)
 {
 if(local_node->instPin(this->instPinIte rator)==
source_pin)
 {
 instPinIterator++;
 if(!(instPinIterator< instPinIteratorE nd))
 break;
 }
 if (produceNewContext())
 return true;
 }
 return false;
 }
 return true;
 }

Figure 5.7-6– operator++() of the class DownTheHierarchy

 The implementation of the operator functions that belong to the DownThe-
Hierarchy class first employs part of the algorithm that checks local nodes, defined
in the Context class and than proceeds with switching contexts along the possible
paths down the hierarchy, Figure 5.7-6 .

A further upgrade of the functionality of the class DownTheHierarchy is
encapsulated in its child class UpTheHierarchy . This is the point where the con-
trol of context switching is implemented.

 The class UpTheHierarchy is able to switch the context to the up-
per hierarchical level. It is performing this operation through its version of opera-
tor++(), as shown in the block diagram in Figure 5.7-7. After executing the function-
ality of simpler methods (father classes in the class hierarchy, DownTheHierarchy
and through it Context::operator++()), operator searches the next proper context and if

Chapter 5 - Virtually Flattened View

100

it is found, changes the focus of the context saving tree, picking a new source node,
for the newly introduced hierarchical level and adds another entry to the stack. Next
time operator++() method of the vpin_iterator is called, the call is forwarded to the
new top element in the stack. An important property of the UpTheHierarchy class
is that it maintains only one proper context, deleting all other invalidated neighbours,
belonging to other abandoned contexts, like the set N1 in the example in the Figure
Figure 5.7-2.

Figure 5.7-7 – Block diagram of the operator++() method from UpTheHierarchy class

With these three kinds of context saving stack entries, it’s possible to fully im-

plement traversing the multi-context, hierarchical node.
 The explanation of the class VirtualNode is linked with the strategy of

committing the MFDP (altering the hierarchical database). Therefore, this will be ex-
plained later having in mind the sections to follow.

It is important to stress that the algorithm we have proposed in this section
enables us to traverse the hierarchical node potentially using the meta hierarchical
data in order to optimize the iteration. As it was mentioned before, hierarchical de-
signs typically have supply nodes with extreme deepness, which connect literally all
active elements of the chip (section). For the application of pattern matching, for ex-
ample, it would be unlikely that some pattern is connected over the node that has a
very big deepness, meaning that some of the neighbouring pins of the hierarchical
node belong to cells whose placement and semantics are far from the pattern that is
being explored, sitting in the original, starting context. For this reason, it is possible as
well, to add to our traversing concept principles of Constrained Graph Exploration,
such as tethered robot search [55]. This means that the distance (rope length) from the
starting context is defined. As our iteration changes the hierarchical context, the re-
maining rope length is decremented until it reaches the edge of the possible exploring
radius. The need to implement this was not approved through the test phase of our
pattern search algorithms. Note that this approach is approximate, as there is a possi-

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

101

bility that some of the semantically important neighbours are skipped and cut of by
the introduced “distance” criteria.

5.8 Multi-context (overlapped) flat data portion

In this section we are going to connect the concept of multi-context node, de-
scribed in the previous section, with the concept of the MFDP that represents the flat
view on a small part of the hierarchical database.

Let us consider the following simple example design, Figure 5.8-1. The design
consists of two instances of the identical cell/variant (Res), which contains only a sin-
gle device – the resistor device. This cell is instantiated two times in the top level.
Possible flat views that can be created for this design are: res device alone, which sits
in the context of the cell Res, the lower (leaf) cell of the definition tree of the given
design. In the figure, this view is shown under (a). Another MFDP that can be pro-
duced, as the augmentation of the previous view, is the serial connection between the
resistor device, of the cell Res and the capacitor device that lies in the top context (b).
Third possible state of the MFDP is the serial connection of the resistor and induc-
tance (c). All three topologies contain the multi-context node p1. Its state is, however
different. Its state, as described in the previous section, defines the neighbours of the
resistor device of the cell Res. Note that the topology where one serial resistor is con-
nected to two devices (d), an inductor or a capacitor is, of course, forbidden! Contexts
top/X1 and top/X2, are according to the definition of the multi-context node mutually
exclusive.

Top

X1(Res)

X2(Res)

a)

b)

c)

d)

Figure 5.8-1 – Multi-context Topology Example

In this light we can observe the virtually flattened view’s MFDP as a current state of
the multi-context topology in, as our example shows, three different discrete time
moments. Note that this hypothetical discrete time changes happen after each call to
the operator++() method of the vpin_iterator class.
 Therefore, a topology that contains multi-context nodes represents a multi-
context topology. It is defined by the starting point (a device which is selected by the
DeviceFlatContainer::iterator). The starting device in our example is the
resistor device of the cell Res. In case that we have chosen the capacitor as a starting
device, this multi-context node would have only two allowed states (and one context):
capacitor device alone and the serial connection between capacitor device and a resis-
tor device.

Top

Res

p1

p1

Chapter 5 - Virtually Flattened View

102

 The number of states of the multi-context pattern corresponds to the finite
number of different flat data portions that can be built out of the given starting point
of the hierarchical design, by navigating. Number of states of the multi-context pat-
tern is strongly dependent on the number of states of each of the multi-context nodes
it might contain.
 For any algorithm that is using the proposed hierarchical framework, informa-
tion about the current context of the multi-context pattern is important. Therefore,
this, additional, information related to the hierarchical organization has to be handled
by the user algorithm. For this purpose, described functionality can be defined as a
characteristic interface.
 One possible definition of this interface are functions:

• static int getContextIndex() ,
• static void lockContext() and
• static void unlockContext() .

 These three functions belong to the Virtual_ContexSaver class, a con-
text defining class (context carrier) of the VFV. The functions are statically available
to the user algorithm.
 Functions, lockContext() and unlockContext() force the algorithm
to iterate only over the neighbouring elements (states) inside the current context, and
allow multiple contexts, respectively. Note that the navigation can be started with the
property lockContext(). In this case multi-context node and MFDP property is
switched off.
 Function getContextIndex(), simply counts the number of hierarchical levels,
from the, starting device. This simple information can be passed to the user algorithm
in order to allow the simple test each time the virtually flattened view is to be aug-
mented. With this information the user algorithm can detect context switches and co-
ordinate its execution flow to it.
 This functionality can be useful for the algorithms that incrementally collect
information from the view and calculate the cumulative results in certain points. For
instance, it can be used for the purpose of parasitic networks analysis [56]. The algo-
rithm would start calculating the total (terminal to terminal) resistance of the parasitic
network and the total capacitance, in a bottom-up variant walk, for each root net the
results are to be stored and intermediate results, for each cell itself can be reused and
just augmented for each new value of getContextIndex() . Nevertheless, this
algorithm would require hierarchical netlist with parasitic information, extracted from
the layout, which is currently not common.
 One other usage example is the search oriented pattern matching whose exam-
ple algorithms were represented in the chapter 2. While matching a certain pattern, the
algorithm will include the context information in its backtracking. The return value
would be flavoured by the context number.
 This short pseudo code explains the given situation:

 match(current device);
 {
 pick_next_terminal (current device)
 return_value = recourse(chosen_terminal);

 }

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

103

 while (return_value is zero, or if the context index of the match is bigger than
 the current context index and there are more terminals);

 In this case the hierarchical netlist that is created, for the embossed hierarchy
(secondary into the primary) is optimal. Hence, if we are iterating bottom up, starting
from a certain cell, the same variant of the cell would be used in any context in which
the distributed match appears.
 Negative side of this approach is that the algorithm has to be specially written
for this purpose, using this simple interface to control context swithing of the hierarh-
cial data. In this case, simple upgrading of the legacy hierarchical tool and using it as
a utility for the underlying hierarchical engine wouldn’t be possible.
 An alternative to this approach is to hide the interface inside the hierarchical
engine (VFV).

Figure 5.8-2 – Motivation for the introduction of memento. Variant split-up. Child variant is
given as a Variant A. The device iterator “progress bar” is indicating that a number of starting
points has been already chosen. Child variant has n parents. After split up, the position of the
next iterator element is shown.

 This is possible for a certain types of algorithms. For the purpose of pattern
matching, the algorithm can exhaustively search for the incident devices for a given
node, and implicitly switch the contexts.

This solution includes maintaining a memento of the current state of the multi-
context flat data portion. Information inside the memento is maintained and used,
when the backtracking search process is interrupted, once a successful match is found
and committed.
 Memento class should save the starting point of the next pattern search (the
state of the iterator), and than as a list, each of the alternative iteration starting points
of each multi-context node that exists in the given MFDP. In this way we achieve the
optimal algorithm execution. The example in Figure 5.8-2 shows the situation where
the algorithm iterates over all the devices of the variant (cell) A. The progress of itera-
tion is marked with the yellow ribbon in the device vector. After acquiring a certain
device, the MFDP will continue to the parent cell (Pi). If the MFDP gets now commit-
ted, the topology of both variants changes and therefore we have to create a new vari-
ant of the cell A called A’. This variant has the cell Pi as a parent cell. The memento
saves the position of the iterator that locates the current device and also one that picks
the right parent cell. The further iteration will continue than over the remaining de-
vices of the new variant A’ and than, using the memento information continue with
the next device, skipping first n devices.
 This strategy was implemented as our solution for structural pattern matching
in hierarchical netlists. The approach with memento allowed us to use the original,
flat, pattern matching algorithm without further upgrades that control the context
switching. This approach uses the flat algorithm transparently, but the referenced cells
graph that is created as the result is not completely optimal. By using this approach

Variant A

Pi Pn P1

Variant A`

Pi

Variant A

Pi+1 Pn P1 Pi+1

+

Pi-1

Devices Devices Devices

Chapter 5 - Virtually Flattened View

104

we can get several identical variants of the design cells which introduces the redun-
dancy.

5.9 Committing of the MFDP (and it’s repetitive use)

In the so far presented text of the current chapter, we have depicted the concept
of the Virtually Flattened View (VFV), its architecture and the specific, complex data
structures and algorithms that make it feasible. Additionally, we have presented new
concepts, such as a multi-context node or the multi-context flat data portion, which
have emerged together with the overall idea of the VFV. To make the concept of the
VFV more powerful and flexible, we shall define the way to commit the results of the
local evaluation to the hierarchical database.

 This process can be seen as embossing the topology of the materialised flat
data portion (MFDP) into the primary hierarchy. By primary hierarchy, we assume
here any “starting” hierarchy on top of which the MFDP has been created. This con-
cept therefore enables the modification of the hierarchical structure of the given de-
sign. More precisely, it alters the topology of the variant graph. For instance, in the
example circuit in Figure 5.5-2 , if we isolate the inverter whose elements are distrib-
uted across the hierarchical levels and we want to commit its topology as the separate
cell/instance, we must create the additional variants of the cell MN (and MP), spe-
cially for the instantiations in the cell A. These variants will be missing devices mn
and mp, respectively. This is done as the devices that previously belonged to the given
variants of the cells MN and MP are now moved to a new subcircuit (inv). The in-
stance of the newly defined cell inv is placed at the variant of the cell A. Conse-
quently, committing of the match requires several operations. These operations alter
the affected design hierarchy and build the subcircuit and the instance of the given
new hierarchical attribute, placing it correctly in its environment. After the commit-
ting process the modified hierarchy “looks and feels” like any proper hierarchical de-
sign. Thus, it is ready for some future proper usage.

We can now conceptually define the algorithm that commits the given state of the
MFDP:

1. Refine the MFDP leaving only the instantiations of the relevant de-

vices.
2. Add the references to the elements (devices and instances) that belong

to the MFDP the new subcircuit definition.
3. Add all local nodes of the MFDP to the subcircuit.
4. Create the instance of the new subcircuit and attach it to the appropri-

ate variant
5. Handle the pins of the newly inserted instance, attaching it properly to

its environment.

 When the user algorithm works on the MFDP, it flattens (creates) also some
“noise” - the elements which are neighbouring the relevant data of the MFDP that are
important for the algorithm execution. This common scenario happens while, for in-
stance, one performs the pattern matching, or isolates a specific parasitic net that is
being evaluated, from its environment. Therefore, some of the elements of the MFDP
that are considered as the environment have to be chopped off leaving only the rele-
vant data.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

105

 We can conclude that the “carving out” algorithm behaviour depends on the
specific application domain. Thus, we will provide the template algorithm, which
makes the functionality that refines the content of the MFDP interchangeable. A do-
main specific constraint is than separately defined. Therefore, the right place for the
definition of this function is the Virtual_ElementBuilder class. Exactly the
class whose specialisation is created upon the decision on the application domain for
the framework we propose. Hence, the function that refines the MFDP performs a
walk over the context saving tree, recursively eliminating all the elements that are
considered redundant and keeping the relevant structure. This operation is expected to
have no influence on the algorithm complexity, as it just removes the “noise” whose
acquiring (materialisation) and analysis is considered as the part of the user algorithm
complexity. Therefore, the mentioned strategy is expected to add just a constant to the
overall complexity of the application domain algorithm.

 Steps 2, 3 and 4 are more or less trivial. Simply, all remaining elements of the
MFDP are referenced in the new subcircuit definition. In the case of the nodes, a sim-
ple test is performed to check if the node is local and has no additional connections
outside of the MFDP. If not (the node is local), its reference is copied to the subcircuit
as well. This step forms a proper bipartite graph, together with the device (instance)
elements that is placed into the new subcircuit.

When this is done, we add the instance object to the (relative top) variant, which is
identified by the context saving tree. This process will than alter the variant’s topol-
ogy in all of its instantiation places. Note that also other variants than the relative top,
deeper in the hierarchy, might be affected by the embossing step. In that case, we
have to create new variants that have the modified topology (missing the devices that
are moved to the new subcircuit). We identify these two processes as processes of
“covering” and “splitting” variants. The efficient algorithm to perform this step is
explained in section 5.10. The outcome of the process of embossing can be depicted
with the example in Figure 5.9-1. In this example, we have embossed the current state
of the MFDP from the example in Figure 5.5-5. The example shows the resulting hi-
erarchical design where a new instance is inserted into variant of the cell A. This vari-

Figure 5.9-1 – Embossing step

Chapter 5 - Virtually Flattened View

106

ant is “covered”, therefore the change is valid for all instances of the given variant of
the cell A (instances X1 and X2 in our example). With the collapsed rectangles for the
cells MP and MN, we intuitively show that their topology has changed (they have lost
the transistors mp and mn, respectively). The change, which was done here, is valid
just for the relevant instantiations (in the given variant of cell A) of the variants of
cells MP and MN. These variants are, thus, “split” from original variants of the cells
MP and MN, respectively.

The step 5 includes another complex algorithm that will prepare the context sav-
ing tree and the affected hierarchy for the insertion of the new instance. In this step, it
is necessary to remove all redundant information about the node mappings for all pin
nodes of the newly inserted instance. Hence, the context saving tree contains redun-
dant mapping between the source subnode and the virtual node at all relevant hierar-
chy levels. Referring to our example, the node 2 of the level MN is mapped to the
virtual node on the appropriate level and further on the level A. The reason why this
redundancy was introduced is to enable determination of the proper node mappings in
an efficient way, at any current hierarchical level. In a word, the introduced redun-
dancy helps the efficient implementation of the view navigation/augmentation.

In addition, it is necessary to “bring up” all the nodes, to which the pins of the
newly inserted instance should be connected to, to the relative top level. This process
is necessary to provide a proper connection of the new instance with its environment.
This process creates some new nodes and to the affected hierarchical levels, if neces-
sary. One situation when the node generation is necessary is depicted in the example
in Figure 5.9-2. Under (a), the serial connection between two resistors is shown. The
resistors are distributed over two hierarchical levels. That is sketched by slightly shift-
ing one resistor above another. If the user algorithm abstracts the serial connection
between two resistors as a subcircuit, the VFV will add the instance of the new ab-
straction to the relative top level and connect it with two pins. In order to connect the
node 1, that was, originally in the lower hierarchical level, it has been transformed
into a port and an additional root node in the higher cell is created. This port therefore,
alters the variant of the lower cell by adding an additional pin (port node) to it.
 In order to give a common and efficient answer to all mentioned operations we
create two types of walks over the context saving tree structure. One will prepare all
the nodes for the commitment and create necessary additional pins for the relevant
hierarchy levels (instances and its definitions), while the other, in a single context
saving tree walk performs the committing step.
 As the result of the described process the variant graph is altered by a new
variant that holds the introduced instance (on the relative top level of the context sav-
ing tree) and by additional new variants that have an alternated number of pins (addi-

Figure 5.9-2 – Example of port creation. (a)The serial connection of two resistors is distributed
over two hierarchical levels. (b) If the pattern that was searched was two resistors in a series, the
block that they are abstracted in exists in the higher subcircuit. In order to connect it properly,
we insert an additional port node to the lower cell; and the relevant root node in the higher cell.

1 1

a) b)

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

107

tional pins) and devices (they have lost some devices) than the original variant ver-
sion. The modified variant structure is valid and ready for further usage/alterations.
The technique that is developed for the variant graph alteration enables optimal run-
time as all changes are done locally, with the respect to the MFPD and prior variant
topology. The technique includes the dynamic variant creation (operations of splitting
and covering of the existing variants) and the technique of layering. These two con-
cepts will be given in detail in further text (5.10).

5.10 Distributed variants

 Distributed variants are the concept which is developed in order to support the
VFV. This concept enables quick and efficient alterations of the hierarchical design
(variant graph). The strategy is to represent each variant with a group of objects. Par-
tially, depending on the similarity between the variants different entities share the
objects that represent them. This process supports the embossing step of the MFDP
making it more efficient.

5.10.1 Technique for the topology adaptation

The main principle of the concept of the distributed variants is the technique of
topology adaptation by variant layering. In this concept, one can define new variants
by grasping only differences between the current variant and the modified one, hence
combining the starting variant with the specially defined layer to get the altered topol-
ogy.

Let’s consider the set of vertices of the bipartite graph that represents the to-
pology of a given variant: }{ YXV ∪= . The sets X and Y are the sets of elements
(devices) and nodes, respectively. We are for now interested in the set of elements X.
We can observe X as a multiset MX, defined as a pair (X, m). m is the multiplicity
function defined as

}1,0,1{: −→Xm .

 Therefore, we can write that

MX = {(x 1, m(x1)), (x2, m(x2)), … , (xn, m(xn))}.

If a given instance of such a multiset contains exclusively pairs with nonnegative mul-
tiplicity values, we call it a base. The layer is a multiset that contains pairs with nega-
tive multiplicity values.

a
b

c d

(+)

-a
-c e

b
d

e
(≡)

Figure 5.10-1 – Topology adaptation principle example.

Chapter 5 - Virtually Flattened View

108

In addition, we define the operation that performs the topological adaptation
(+). This operation can combine a layer with the base. The operation is only possible
with the compatible layers and bases in order to get the product of the operation that is
again a valid base, containing exclusively positive multiplication values.

As an example (Figure 5.10-1), if we have the valid base B = {a, b, c, d} and a
layer L = {(a,-1), (c,-1), e}, B+L = {b, d, e} is another valid base! Thus, we can ob-
serve this layering process as a recursive operation, adding an arbitrary number of
layers on the top of a single base:

Bi+1 = Li + Bi.

In this way, we have defined a technique for altering the semantics of the to-

pology of the given valid set, by chaining a number of objects. The important property
of this structure is that the proper sets can be “seen” from any layer by “looking
down” to the atomic base set in the end. Therefore, from a starting set, we can form a
family of similar sets, strictly by saving differences between them.

 If we map this principle to our object oriented vocabulary, we can iden-
tify Access_Cell as a base. Special class Virtual_Variant is introduced to
model the layer. Virtual_Variant referes to the Access_Cell (base) through
a method getSource(). The class has a list of elements that are excluded from the base
(formally represented with the negative multiplicity values) and a list of elements that
are added to the variant. The list of elements that are to be excluded is delegated and
represented by the object of a class Virtual_Excluder . This class is actually
another role of the context saving tree object, Virtual_ContextSaver (see Sec-
tion 5.6). Therefore, all elements, which belong to the Acces_Cell (cell/varint)
and are contained in Virtual_Excluder are eliminated from the resulting variant.
The depicted architecture is presented in Figure 5.10-2.

We can use the defined technique to alter the topology of the cell/variant
graph. We will e.g. observe a case where a serial connection between two resistors R1
and R2 (that exist in a single variant) is highlighted by the MFDP. The MFPD thus
consists of two virtual copies of the source resistors (VR1 and VR2). The example is
illustrated in Figure 5.10-3. The proper object of the type Vir-
tual_ContextSaver assures the consistency of the paired source and virtual ob-
jects and properly positions the MFDP relative to the primary hierarchy. In order to

Acccess_Cell

+getSrcView()

-blocks

Virtual_ Variant

Virtual_Excluder

Access_Cell

Figure 5.10-2 - Recursive representation of the abstract interface of the class Access_Cell.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

109

emboss the state of the MFDP back to the hierarchical netlist, we employ the tech-
nique of topology adaptation. Therefore, we would use the Vir-
tual_ContextSaver object (in this case the only member of the context saving
tree), seen as the Virtual_Excluder to specify the list of the elements that are
not any more contained in the variant (the both resistors of the serial connection). Ad-
ditionally, the instance of the new abstraction (Block1) is added to the Vir-
tual_Variant . We see now the group of the Virtual_Variant , Vir-
tual_Excluder and the former Access_Cell as a new Access_Cell
(new variant of a cell) .
 This kind of architectures enables quick changes / insertions of new variants.
If the difference between two variants of a cell is e.g. in one element, the change is
done just by specifying the element that determines the difference instead of copying
all n-1 elements while forming the new variant definition. Another advantage of this
concept is that all information is present. This enables easy undoing or back annotat-
ing. It is important to add that by usage of this concept it is possible to perform the
concept of semantic layering. The semantic layering concept enables partitioning the
database according to the complexity of objects that are instantiated in it. We will
explain this technique later in this section.

The price that has to be paid for the benefits that are gained lies in the fact that
the data that describe variant are distributed over a number of objects. For each refer-
ence to a given variant, a lookup operation has to be performed in order to extract the
actual data. This is done during the iteration/navigation over the elements of a such
variant.

5.10.2 Dynamic variant creation

Once we have established the principle of topology adaptation, we are going to
apply it to the variant graph. Each element in the variant graph is connected up the
hierarchy (this connection is determined by the number of references to a parent vari-
ant) and down the hierarchy, by a subvariant vector that links the current variant with
all children variants. We define two types of operations that employ topology adapta-
tion principle. The first type is called covering and the second splitting.

We can cover a variant of a cell by altering its content (excluding some ele-
ments from the variant and adding some new elements). Still this change becomes
valid for all instantiations of the variant, therefore, the update is done by an additional
object, but the paths are read from the original parent vector (of the previous object).

Figure 5.10-3 – The example of the technique of topology adaptation.

Chapter 5 - Virtually Flattened View

110

This operation doesn’t change the topology of the variant graph. It just alters the con-
tent of the variant itself.
 The second operation splits the variant from its father variant. In this case,
only one path is being separated from the original variant and in general we have two
variants available. Note that if there was only one instantiation of the father variant,
splitting it will lead to an operation that is somehow similar to covering. The outcome
is than, that the father variant is no more accessible, but only its altered semantics
through the layered variant (the layer that augments its semantics).
 These two operations are being done “on the fly”, while creating the MFDP.
Therefore, once the initial context is determined the current relative top variant is
covered. In that moment the Virtual_Variant object that represents the layer which can
change the semantics of the base variant is void. If the algorithm, from this place
wants to go up the hierarchy, or down the hierarchy, the appropriate variant will be
than split! In the case of going up the hierarchy the new relative top variant is, again,
covered.
 In order to ensure very fast operations, the variants that are split and covered
during the evaluation phase (the phase where algorithm accesses the data in a flat
fashion),are in a “non-validated” state. In this state, the objects that should augment
the semantics of the father variant have just a part of the necessary information and
they use the Virtual_ContextSaver objects to save the relations between them.
Therefore, variant graph is still not altered. This is very important as in this way, the
VFV algorithm, can instantly detach new objects, if for instance it decides to move
the DeviceFlatContainer ´s iterator to another position. If the embossing step
for the current topology of MFDP is evoked specific algorithm alters the variant
graph.

5.10.3 Virtual variant tree

 As we have defined now the steps of covering and splitting of the variant, by
combining them we produce the virtual variant tree. This tree represents the group of
variants that are produced out of a single variant from the initial variant graph, created
by the standard variant creation algorithm. In the tree we distinguish the root element,
which is the identical (trivial) excluding/upgrading of the input variant. By applying a
number of “cover” and “split” operations the tree grows and forms the group of leafs.
Those are all “visible” elements of the tree, they form “access points” for newly cre-
ated variants. The path from each leaf of this tree to the root element represents the
whole semantics of a single variant, according to the principle of exclud-
ing/upgrading. In order to implement this tree we use the sourceView reference
and the specially ordered vector of active elements. From each of these active ele-
ments, it is possible to navigate towards the root, following the sourceView refer-
ences. Once a variant is covered, or if a variant with a single parent is split, it gets
deleted from the list and stays in the body of the tree still giving its contribution for
the excluding/upgrading technique. In this way, we have achieved to dynamically and
implicitly alter the content of any variant, while building the context saving tree.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

111

Figure 5.10-4 – Distributed Variant Tree – The root variant has been split in tree, by arbitrary
application of cover and split operation.

 In order to illustrate the properties of the Virtual Variant Tree we will consider
the example given in Figure 5.10-4. In the example we see the state of the distributed
variant tree after four operations of splitting or covering. In the beginning we had just
a single variant with a number of parents that it refers to. We have sketched the paths
to the parents as lines that are given in tree colours. The first operation that was per-
formed on this example structure was the operation of splitting. This has caused the
introduction of the variant Split Variant 1, while the relevant single path was moved
to the newly introduced variant. After this process, the root variant and the Split Vari-
ant 1 have been the members of the leaf variant list. The next operation that was per-
formed is the covering step for the root variant. After this step, the root variant trans-
fers its all parent paths (remaining, not including one that was already transferred to
Split Variant 1) and it stops being visible. New virtual variant object is instantiated
and its source link is set to Root Variant. Further, after the covering step we have de-
picted Root Variant has been exchanged with Cover Variant in the leaf variant list.
Therefore, in this list we have now Split Variant 1 and Cover Variant. In another ac-
tion we split one of the paths (red line) of the Cover Variant and form Split Variant 2.
In the end, split operation has been performed on Split Variant 1. Since it had only
one parent path the variant becomes invisible and replaced by Split Variant 3 in the
leaf variant list.
 After the outcome of this process, we have three variants and their semantics
are acquired by referring to the tree:

 Variant 1: Split Variant 3 -> Split Variant 1 -> Root Variant
 Variant 2: Cover Variant 1 -> Root Variant
 Variant 1: Split Variant 2 -> Cover Variant -> Root Variant

Chapter 5 - Virtually Flattened View

112

 As we can see the variants that are the result of the growing process of the
distributed variant tree are spread over it.
 We will now in greater detail explain the semantic layering concept. Consider
a transistor level design. If we apply rules to abstract all transistor devices into gates,
we see hierarchical design at the gate level. Suppose that a part of the design was ana-
logue, hence no digital circuit were isolated. Since all the information about the logic
gates (about the abstractions that form logic gates) exist in layers above the atomic
variants of cells, after applying the topology adaptation technique, we can define from
which layers (and how deep into the distributed variant tree) the information will be
read. We can thus exclusively read the data about a given variant that is stored in spe-
cific layer. If we classify the layers introducing indices for them, we can specify the
complexity of the data they carry. For instance, if we had rules to extract all NANDS
we can cast variant layers that are adding those conclusions to belong to specific class
that carries index value 1. All root level variants, carrying information about transis-
tors are assigned by value 0. Employing this principle, during the iteration exclusively
elements that are stored in layers of the class 1 can be acquired. The algorithm of
traversing the variants would recourse deeper to the part of the distributed variant
which has more basic elements in it. In this way we can partition the database into
concentric shells and pick appropriate shell to see the underlying data on the wanted
complexity level.

In the end we will explain briefly how these structures are used to perform dy-
namic variant creation, algorithmically. If the algorithm starts creating MFDP from
some arbitrary variant, it gets covered and all devices that are mapped to their virtual
copies (members of the MFDP) are then candidates to be excluded from the current
variant. The new variant is in this moment non valid. Note that there are no connec-
tions from the valid variant to the variant candidate. That means that, if the embossing
command is never called, all new non-valid variants can be easily detached and de-
leted. The architecture used to implement this process allows sending the non-valid
objects directly to the garbage collector which is started in a separate thread. If, on
contrary the algorithm decides to commit the variant. It would start the embossing
process (5.9), prune the data of the MFDP if necessary and then commit the changes,
building new variant layers into the variant graph. After this operation, the variant
graph is altered and ready for further use and possible changes.

5.10.4 Layered nodes

 In parallel to the process of excluding invalidated elements of a given variant
of a cell and adding new elements, the completely analogue process is being done for
the device pins, using the described technique. In the case of nodes, the strategy is
slightly different.
 The virtual node that is linked to the instance pin of some instance (of the
committed MFDP) adds this information to the set of pins that is aggregated by the
Access_Node which is the source of the given Virtual_Node . That means that
the total number of aggregated pins seen from a given node is distributed over several
virtual nodes. In order to see all necessary pins that exist as the neighbours of a node
of the distributed variant, one has to acquire the pointer to the top of the nodes. All
other nodes will be accessed descending from the top node, following its source-
View connection. In the example (Figure 5.10-5) we have the base (root) variant and
in it we have the node N. This node has five pins that it aggregates. During the user

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

113

algorithm execution we have committed the corresponding MFDP-s that were con-
taining the given node three times. The first committing process has added the virtual
node VN1 which references a pin connection to the abstraction which was committed
in this first step. All the information about excluding (of the pins) and layering of the
nodes is available automatically, by seeing the relevant Virtual_ContextSaver
object as the Virtual_Excluder . Thus, the mapping between the node N and its
virtual copy VP6 will be used to acquire the handle to the virtual node. Once other
two layers are added the relevant mappings were inherited from the process of the
construction of the relevant MFDP. If this structure is now to be used to build some
new MFDP, the node can be approached following the pin P5, from the device al-
ready defined at the base level, or following pins VP7 or VP8, that were defined in
two different layers. In any of these three cases in order to get the source node for
some new virtual copy (of the MFDP that can build the layer 4) VFV assures that the
top node is picked as the source. This is done by the recursive function:

• getTopNode()

that is called every time a source node from the database is to be read. If the path to
approach the node N was through the pin P5, we would need three look-ups to
“climb” to the current top node. First the look-up if performed at the Vir-
tual_Excluder object of the Layer 1, where we find the mapping between the
node N and the node VN1, further at the layer 2, at the relevant Vir-
tual_Excluder another mapping exchanges VN1 to VN2 and in the end while
looking-up at the Virtual_Excluder object of the layer 3 we get the handle to
the top virtual node. Once we have this reference we can iterate over all valid pins of
this complex layered node.
 Note that the number of look-ups depends on the number of layers employed
and also on the fact how deep the entry point to this list of layered nodes is. In order
to incorporate this process (the layering of nodes) into the multiple context node con-
cept and to allow the proper functioning of the iteration process of the

Figure 5.10-5 – Example of the distributed node. The node is composed of three virtual nodes
and one base node.

Chapter 5 - Virtually Flattened View

114

vpin_iterator , we add an additional stack entry class type. We add the new class
VirtualNode to the inheritance hierarchy of the context class (Figure 5.7-4).
This class is conceived following the architecture of the decorator design pattern
[49].
 The strategy here is that any top node, no matter if it was a virtual node or
some other instantiation of Access_Node, originally present in the database, once it is
approached during the transversal over all pins of the virtual node (using
vpin_iterator) gets the instance of the class Context , DownTheHierachy
or UpTheHierarchy if it is a local, root or the port node, semantically. Addition-
ally, if the node is a virtual node and thus its semantics is distributed over several lay-
ers, the object of the decorator class VirtualNode is instantiated. The original
object that handles the proper iteration is referenced inside the VirtualNode class
instantiation, together with the source level of the acquired virtual node. Upon the
usage of the operator++() method of the VirtualNode class it is assured that,
by using the stack all relevant pins are iterated over recursively. The code which de-
fines this recursive operation follows:

bool Virtual_Node::vpin_iterator::virtualNode:: ope rator++()
 {
 if(!visited)
 {
 if(!decoratedContext->context::operator++())
 {
 context_it->stack.push(decoratedContext);
 visited = true;
 if(srcNode)
 context_it->push(srcNode, source_pin, true);
 return true;
 }
 return this->context_it->operator++();
 }
 return false;
 } .

 By defining the described set of very complex data structures and the algo-
rithms that are driving them we have managed to realize the idea of the virtually flat-
tened view. This view is now ready for the test application in order to achieve the al-
gorithm for incremental structural pattern matching in hierarchical netlists.

5.11 Summary

 In this chapter we have presented the vision and the thorough realisation of the
virtually flattened view. The view design allows it to present the data of the hierarchi-
cal design locally flat and to commit those local flat data portions back to the hierar-
chical design as new subcircuits. This functionality is identified to be useful for dif-
ferent applications. The intention is to use the view together with different software
projects that were written for the applications exclusively with flat input netelists,
neglecting the problems the hierarchical representation includes. For this reason we
define the view generically.
 For different application scenarios the view has to get some additional proper-
ties, mirrored as augmentations of its classes’ interfaces, specifically to the given ap-

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

115

plication domain. The design of the view that we have presented allows this to be
done with ease and elegancy as it was prepared to be flexible. To achieve this we have
applied advanced object-oriented principles. Good performance, in the first row the
runtime efficiency, of the operations that are driving the view is allowed by novel
complex data structures and novel algorithms performed on them, which are specific
to this view.
 In the following chapter, we will thoroughly present and value one possible
application scenario for the VFV. We will create specific changes to the view and
adapt and integrate it to the flat incremental pattern matching project classify (2.5).

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

117

6 Application of the VFV to Search Oriented Pattern
Matching Methods

6.1 Introduction

 Throughout the second chapter we have analysed the problem of subcircuit
recognition (SR) in VLSI designs, as a subproblem of graph matching. We have rep-
resented among other approaches the incremental SR approach, where one is enabled
to flexibly match complex patterns by specifying a set of rules that form a specific
descriptive language program. As no algorithms that would perform the hierarchical
pattern matching on hierarchical schematic designs are available, we were motivated
to search for the solution for this issue and enable the structural pattern matching di-
rectly on hierarchical designs/netlists.
 The Virtually Flattened View that is defined in the previous chapter with it’s
functionality:

1. represent any hierarchical netlist using the standard NLDB database objects
(following standard object–oriented API, the access layer (AL))

2. create small flat portions (topologies) of netlist data and offer them to the user
algorithm

3. commit possibly altered (cleaned up) flat portions of data to the hierarchical
database. (commit them to the view)

can be used in order to implement the hierarchical pattern matching algorithm.
 In this chapter we will apply the VFV on the already existing project (classify)
that implements the incremental pattern matching approach. This project was written
to work on exclusively flat input data (flat netlists). In order to accomplish this, we
will present the specific set-up of the generic VFV (section 6.2), together with the
minimal adaptations of the flat algorithm (section 6.3). Apart from plausibility and
functional correctness the hierarchical approach to the structural pattern matching
allows obtaining irredundant results. This qualitative enhancement is discussed in
section 6.4. The chapter is concluded with the qualitative and quantitative evaluation
of the obtained hierarchical algorithm through the extensive tests (Section 6.6).

6.2 Hybrid layer

 The application of the classify flat algorithm to the VFV requires a specific
set-up of the view. We will flavour generic VFV elements in order to enable the flat
algorithm to work on the data it needs in a proper way. We achieve this by specifying
a view, whose classes are related to the original VFV classes through the object ori-
ented mechanisms. Particularly, in the case where the interfaces are compatible, or
one writes a new algorithm that uses specific NLDB interface as the API (possibly
augmented by some additional properties for the NLDB entities), one can achieve this
goal by simply inheriting each of the classes with the proper specialisation which pro-
vides the objects of the altered view with the proper augmentation of the interface.
This task is almost trivial as the view has been designed to be particularly flexible.

Chapter 6 - Application of the VFV to Search Oriented Pattern Matching Methods

118

Therefore, by adapting the view to the user algorithm we provide the generic view
with a specific set-up, creating an application domain specific hybrid layer.
 In our application case, the goal of the hybrid layer is to connect the VFV to
an already existing project, the flat netlist pattern matching tool classify. It connects
these two different projects and enables them to work together, serving as some kind
of adapter. The application domain project (classify) was written even before the
NLDB and its additional LV (Layered Views) mechanism.
 Both projects have their own way of representing the electronic circuit. Clas-
sify, as it was written to perform pattern matching in flat netlists, has no mechanisms
to represent hierarchy, but has the specific interface that enables it to conduct the pat-
tern matching process. On the other hand, NLDB has the classes and the interface
(defined by the Access Layer) which are capable of representing also hierarchical
data. By “energising” the interface of the Access Layer with the property of virtual
flattening we prepare NLDB to provide the “friendly” data layout to the application
domain algorithm. To summarise, the hybrid layer has to satisfy following criteria:

1. enable classify the look and feel that it is working with its specific (flat)
data model. Particularly, the entities have to be compatible with those used
in the algorithm and they have to support the corresponding interface.

2. On the other side, NLDB has to be able to handle the objects, which are
provided to the pattern matching algorithm in the flat fashion in its style.
That means that the objects have to be compatible with the entities of the
VFV in order to be managed in the proper way.

The answer for the above requirements can be found in employing the multi-

ple inheritance. Thus, we position the view on top of both projects (making the rele-
vant projects’ classes father classes of the given hybrid layer class).

6.2.1 Positioning of the Hybrid layer

The layer itself is specified as an additional header in the classify project. The
classes of the hybrid layer have their analogues in both projects as their ancestor
classes. The typical inheritance relation between the classes of the hybrid layer with
the classify and NLDB projects is given in Figure 6.2-2. In the figure, in order to ex-
plain the standard architecture, we have used the example of the positioning of the
class that models the MOS device in the appropriate inheritance graph. On the far left
side of the figure we see the domain of the classify project and its entity that models

Figure 6.2-1 – Interface of the cirInstance class of the classify project

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

119

an element (a device/instance) – cirInstance . From this class we inherit the class
Cir_VirtualDevice . Therefore, in any place where the algorithm expects an
instance of the class cirInstance one can pass, transparently, the instance of some
of the realisations of the (abstract) class Cir_VirtualDevice .

Looking towards NLDB (right, predominant area of the figure),
Cir_VirtualDevice is the child class of Virtual_Device , as well. More-
over, another class Cir_VirtualMOS is written in order to connect the Vir-
tual_MOS class of the (generic) Virtual Layer with the classify project. What have
we achieved with this (complex) architecture? The classify project models all devices
with a single class (cirInstance) and further classifies them according to the value of a
method getType() , while in NLDB project we have an abstract class Ac-
cess_Device and a family of descendents. By employing such architecture where
we have a common hybrid object as a subclass of both cirInstance and Vir-
tual_Device , we achieve that the hybrid classes that stand for descendents of
Virtual_Device (Access_Device) can be seen from the single class cirIn-
stance in the domain of classify project.
 We further have to partially adapt the interface of the class cirInstance, in its
descendent Cir_VirtualDevice , to the implementation that employs complex
algorithms of the VFV. In order to identify exactly the places where this is necessary,
we will split the interface of the cirInstance into two parts. The first part corre-
sponds to the application domain specific interface. This is the interface which en-
ables the pattern matching algorithm proper execution. Particularly, those are the
methods of the first group in Figure 6.2-1:

� setMatch(),
� clearMatch() and
� isMatched() .

 The methods that handle the iteration process and the navigation between the
elements of the in-memory circuit model of classify project are forwarded to the

Figure 6.2-2 – Placement of the hybrid layer classes in the Access_Device inheritance diagram

Chapter 6 - Application of the VFV to Search Oriented Pattern Matching Methods

120

NLDB! These methods are identified as navigation methods of the class cirIn-
stance . In this way we achieve the property that the objects of the MFDP are pre-
sented to classify in 100% adapted way. Classify analyses the objects, navigates their
(virtually flattened) neighbourhood and decides if the given topology is equivalent to
the pattern or not, than it issues an action of encapsulating the objects which are parts
of the MFDP into a separate instance. All the calls are translated to the operations of
the VFV which further handles the objects of the MFDP performing the embossing
step (5.9). In this way both algorithms manage to see the objects from their “worlds”
and to communicate with them using the appropriate methods. Therefore, the whole
hybrid view plays a role of a bi-directional adapter.
 Analogue to the example of MOS element that we have specified, all VFV
relevant classes are connected to the corresponding classes on the classify project
side.
 In general, the wrapping process can face some interface incompatibility prob-
lems. For instance, one project can use the aggregations based on the container-
iterator concept, while another can use linked lists. In the first case a special object
(iterator) grasps the actual element that is iterated over, while in the second case the
object itself has the information about its position in the container. Problems like
these can be easily solved by minimal adaptations of the application domain algorithm
or employing Adapter Design Pattern [48].

6.2.2 Cir_VirtualBuilder, the concretisation of the Vir-
tual_ElementBuilder

Once we have specified the application domain flavoured classes we have to

assure that the objects of this kind are going to be built by the VFV instead of generic
NLDB Virtual_<class> instantiations. The view design is already prepared for
the flexible object creation and all that is necessary to be done is to create an appro-
priate specialization of the Virtual_ElementBuilder (5.5) . To do so, we
will specify a class Cir_VirtualBuilder . This specialisation class is provided
with the implementations for a set of pure virtual functions of the abstract class Vir-
tual_ElementBuilder . Therefore, all methods that wrap the object creation are
defined here. They are set-up to create new hybrid objects that are derivated from
their generic ancestor classes everywhere the VFV wants to create an instance of the
Virtual_<class> family. For instance in order to build the Cir_VirtualMOS
class we simply specify:

Virtual_MOS* InstVirtual_MOS(netlist ::Base_MOS* ptr)

 { return new Cir_VirtualMOS (ptr);}

Logically, the consistency is vital for the proper implementation of this method fam-
ily. Still, the way the creation process wrapper functions are written, with precisely
defined return types, should notify the user about possible errors, (for instance defin-
ing the InstVirtual_MOS() to return CirVirtual_Res*) already in the com-
pilation time.
 After specifying this function family we will provide the function implementa-
tion for another generic part of the VFV. In Section 5.9, we have isolated and sepa-
rately defined a templated function to handle the refinement step of the embossing
process. This part detaches all elements of the current MFDP content that are consid-
ered environment of the structure in focus. For the pattern matching application, the

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

121

implementation of the templated function will use a part of the interface of the appli-
cation domain specific side. The function would simply run through each of the hash
containers and keep only the mappings of the elements that are marked as “matched”.
This means that the algorithm has paired them with a corresponding device in the pat-
tern which is being matched. The implementation of the algorithm is simple. We have
three loops that iterate over all pin, device and node mappings. The algorithm tests the
function: isMatched() and if the element is not matched, mapping is removed
from the hash, while the virtual copy gets deleted!
 Having defined a specific builder class, we have prepared the view for the
execution of the incremental pattern matching algorithm. Therefore, upon the VFV
creation, we construct the object of the Virtual_Netlist class with the instantia-
tion of the class Cir_VirtualBuilder .

6.3 Adaptations of the flat algorithm

The main concepts of the incremental pattern matching algorithm work
smoothly with the described hybrid view. Still, in order to minimize the execution
time of the algorithm, we want to apply the greedy algorithm that has been written to
optimize the execution of classify for flat pattern matching. This algorithm has en-
abled the intelligent path choosing technique for the pattern matching algorithm that is
driven by the templated rules, the rules that incorporate the concept of optional ports.
In order to achieve that, the best path first algorithm, (section 2.6) has used specific
global quantities (the number of neighbouring elements for each net). Therefore, the
path that appears to be the best, following the net with the least number of neighbours
is chosen. In a flat netlist, it is trivial to acquire the quantities about the number of
neighbouring elements of a net. This kind of information is then built while forming
the flat netlist. Such handy quantities are unfortunately not possible to have in a hier-
archical netlist. In the case of hierarchical netlists, we have port nodes that are con-
nected up the hierarchy. Instances of a single variant are connected to different to-
pologies with different number of neighbouring devices.

As an alternative to the flat netlist statistics we have developed an algorithm
that labels the nodes in the hierarchical netlist according to their hierarchical proper-
ties. We create a factor that determines the node deepness, or, to how many hierarchi-
cal levels is the node distributed. In addition we specify also the wideness of the node,
meaning to how many instances a node gets connected in a single hierarchical level.
This technique would enable us to favour “shallow” hierarchical nodes, those that
have as local connectivity as possible. It is natural that such nodes don’t have some
dramatic number of devices connected to them which would cause the linear search
complexity to dominate in the algorithm complexity bringing extensive runtimes. To
depict the extremes: on one hand we have a node with deepness 0, this node would be
a local node that has just a couple of neighbouring devices connected to it. On the
other hand we have the supply node which leads to every subcircuit of the design! An
alternative to the best order of execution algorithm is applying the concept of stop
nets. We can assign that the nets of a certain type (supply nets, reference voltage nets)
are the places where the recursive search stops. Stopping the recursion at stop nets
does not handicap the algorithm execution, as no pattern is connected exclusively
through supply nets.

 The statistics about the nodes are collected in global walks over all variants.
First the bottom-up walk over all variants is performed. In this process we perform the

Chapter 6 - Application of the VFV to Search Oriented Pattern Matching Methods

122

iteration over all instances that are referenced in the given variant and than iterate
over all pins of the instance in focus. Once the proper pin of the instance is picked, we
acquire the handle to the nodes it pairs, hence the node in the domain of the variant
which is in focus and the port node inside the definition of the instance. As we are
performing the bottom-up walk over the TopDownVariants vector, we are sure
that the lower node already was processed. Therefore, we perform a check and pass
the integer label that is built by the following code to the higher node.

if (nodeDeepnessVector->at(upper_node) < (nodeDeepne ssVector->at(lower_node) + 1

 + upper_node->instPins()->size()))
 nodeDeepnessVector->at(upper_node) =
 nodeDeepnessVector->at(lower_node) + 1 + upper_ node->instPins()->size();

The values are stored in a separate vector for each variant of the hierarchical
netlist. Each vector’s size corresponds to the count of all nodes in that variant.

After the described step we have the appropriate label for all the different
nodes in the variant graph on the root level for each of the hierarchical nodes. Now we
pass the acquired values in another similar walk, this time iterating top-down over the
variants. Now we know that each higher node was already processed and we pass its
label to the lower node.

if (nodeDeepnessVector->at(lower_node) < nodeDeepness Vector->at(upper_node))
 nodeDeepnessVector->at(lower_node) = nodeDeepne ssVector->at(upper_node);

 For the proper assignment of the hierarchical node labels we use standard API

of NLDB developed for the variant concept.

defineNodeDeepness dnd;
ForAllVariantsBottomUp(cellIt, dnd);
passNodeDeepness pnd;
ForAllVariantsTopDown(cellIt, pnd);

Classes defineNodeDeepness and passNodeDeepness are defined as

function objects, having an operator function compatible with the global iterating
functions ForAllVariantsBottomUp() and ForAllVariantsTopDown() .

In this way we have achieved to define the alternative strategy to drive the BPF
algorithm.

6.4 Hierarchical result reports

In chapter 2, we have already stated that the output of the classify tool is a spe-
cific protocol file that lists the contexts which satisfy the specific conditions. That is
actually the file that stores the results of the matching process.

The protocol file was developed for the purposes of ERC where it was neces-
sary to point to the specific device that was isolated by the particular algorithmic
check. Each occurrence of the protocol error in that case was a single device. The pro-
tocol file would be parsed by a specially devised algorithm that than marks the errors
directly in the Composer® IDE. Therefore the standard syntax of the file was as fol-
lowing:

<global summary >
<error report 1>
<error report 2>

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

123

…

The global summary gives a review of the checks specifying the number of
matches per rule or the overall flat and hierarchical number of matches.

The syntax of the each error report consists conceptually of:

<paths>
<device(s)>

For each hierarchical occurrence of the faulty device the list of paths would be
given. The paths get then analyzed by the IDE in order to mark the proper instances
along the path, in the end pointing directly to the isolated device which was the target
of the check.

The protocol file is written in general to support the hierarchical pointing to
the specific devices in the design. Therefore this file marks “errors” that consist of
two parts. First, we have the path, followed by the devices which represent the objects
that are isolated by the corresponding tool’s algorithm.

 The flat classify reports syntax was following the above defined struc-
ture, still as no hierarchy was present in the input files, the paths in the reports were
hard coded with the statement “--Root Level--“. Thus, all results that are specified
reside in the top level of the electronic circuit. Hierarchical classify offers isolation of
errors directly in the subcircuit where they are defined. For this reason we have up-
graded the algorithms that generate the protocol files of the original classify in order
to support the path generation. As the devices of the given pattern can be further dis-
tributed through the hierarchy (deeper than the relative top level), we have introduced

Flat:
===============================
Classify - Netlist Checks
===============================
Summary of errors:
2 violations - NAND
Total number of error classes: 1
Total number of parameter errors: 2
===============================
Error 1
Title: Find All Inverters
--
Path: -- Root Level --
--
Device(s):
m/x1/x2/mN0
m/x1/x1/mP0
===============================
Error 2
Title: Find All Inverters
--
Path: -- Root Level --
--
Device(s):
m/x2/x2/mN0
m/x2/x1/mP0
===============================

Hierarchical:
===================================
HClassify - Netlist Checks
===================================
Summary of errors:
2 violations - NAND
Total number of error classes: 1
Total number of parameter errors: 2
Total number of hierarchical parameter errors: 1
===================================
Error 1
Title: Find All Inverters

 path: X1 [A] (X2)

Device(s):
X2/mN0
X1/mP0
===================================

Figure 6.4-1 – Flat and hierarchical error protocols. The example shows the output of the inverter
search process.

Chapter 6 - Application of the VFV to Search Oriented Pattern Matching Methods

124

a specific relative path. This path is written directly in front of the device’s name in
the reported devices list.

The above described protocol file can be illustrated by the example given in
Figure 6.4-1. In this example we have reported the occurrences of inverters that ap-
pear in the hierarchical design in Figure 2.3-3. The flat version of the report (that
assumes the flattened input netlist prior to algorithm execution) reports two errors. On
the other side, the hierarchical version of the report registers one hierarchical occur-
rence of the inverter, but specifies the multiple paths of its instantiation. Note that the
path which is given in the example is also “condensed”. Condensing paths means that
the common parts of two different paths are grouped together while the different in-
stantiation paths of the given hierarchical level are listed in brackets. The example in
the Figure 6.4-1 is simple; it contains two paths of one hierarchical level that are
combined. We read the path in the example as: “in instance X1 of the cell A and also
in instance X2”. In the example we have just one hierarchical level, if the hierarchy is
deeper, we can get very compact paths and consequently shorter, more readable out-
put file.

The hierarchical error protocol reports aggregate non-redundant results. This is
very important in order to suppress the time needed for their analysis. In the trivial
example that we have specified, the counts of the reported errors in the flat and the
hierarchical results differ by the factor of 2. In realistic examples, as we will show in
the next section through our experiments, this factor is two orders of magnitude in
average. This achievement clearly points out the benefits of the hierarchical algorithm
and is one of the key results of our research project.

In order to compare two versions of the protocol file, thus to prove the func-
tional equivalence between the flat and the hierarchical algorithm, we have written a
specific Perl script. The script “flattens” the hierarchical report by connecting the
paths of the reported devices of each error with their names (combined with relative
paths) as a prefix. Thus, in the example, from the single error report with two paths,
we would get two pairs of CMOS transistors. Thus, we obtain the redundant flat list
of errors that is comparable to the originally flat error report.

6.5 Example of the matching process by incremental hierar-
chical structural pattern matching

 Once we have prepared the VFV and connected it to the pattern matching tool
classify, we can perform incremental structural pattern matching directly on hierarchi-
cal designs. In order to illustrate this process we include a simple matching example
where we match all latches in a given hierarchical design in two incremental steps.
First we will match all inverters and than all latches that are instantiated in the given
design. The example that we give in Appendix C emphasises the background actions
of VFV during the matching process.

6.6 Case study

In order to provide evidence of the functional correctness, qualitative benefits
and to measure the typical runtime and memory consumption of the application of the
VFV on an search oriented incremental pattern matching algorithm, we have em-
ployed a number of tests.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

125

 The runtime performance tests were computed on a machine with AMD Op-
teron processor at 2.6 GHz and 64 GB operating memory, running Linux RHE 4.
Throughout tests, the memory consumption was measured externally, by evaluating
the relevant process size using the third party tool - massif, from the valgrind package
[57]. The authors of the tool claim the precision within 1% for the obtained results
(the peak memory usage of the process).

 We have tested two flat classify versions and four hierarchical classify ver-
sions. They are result of the algorithm evolution, depicted in Figure 6.6-1.The pro-
gram version named c42 is the initial version of the incremental pattern matching tool
classify that sequentially picks the terminals of each device while proceeding into the
DFS. The version that implements the enhancement where the flat algorithm picks the
best path, by the greedy approach is denoted as c44.

Further, we have the default hierarchical classify version is c52, which is the
c42 flat algorithm ran on VFV. The version c54 is the flat algorithm version c44 ran
on VFV. In addition a specific optimisation (fingerprint verification) of the iteration
directly inside the VFV in order to test how this fact influences the execution of the
hierarchical pattern matching is implemented. This version is denoted as c52f and
c54f, when applied on c42 flat algorithm and c44 flat algorithm, respectively. The
fingerprint verification principle is given in (Appendix B). Note that the implementa-
tion of this principle is just preliminary and approximate and that it, in some cases,
misses the matches of highly distributed contexts. This can be eliminated by further
work on the implementation of the fingerprint verification principle. Thus, we include
this version of the algorithm just to prove if the potential benefits it brings are worth
the time to implement such an enhancement in order to make the specific application
of the VFV on structural pattern matching more robust.

Throughout the experiments, the behaviour of the mentioned program versions
against five different rule sets was analysed. Four rule sets were written in order to
recognize the elementary circuit elements:

• All inverters
• All flipflops (as a single, flat rule)
• All inverters and than all flipflops
• All NANDs.

Figure 6.6-1 – Structural pattern matching tool – Classify - algorithm evolution and available
versions.

Chapter 6 - Application of the VFV to Search Oriented Pattern Matching Methods

126

The rules have in common the net type predefinitions, where all standard
names for the supply and constant voltage nets are marked. This part is followed by
the individual definitions of the block rules(s) to recognise above given simple con-
texts. The contexts that were recognised are then reported in the protocol file without
any parameter evaluation. The evaluation of these examples can clearly show how
various recognition rules behave and contribute to the global runtimes and memory
consumptions of the more complex programs written for classify. This will be dis-
cussed together with the results we have obtained.

As an additional rule set we have included the test that isolates the realistic in-
dustrial contexts needed in order to

• detect the slow nodes, that are driven with weak drivers (load-
check).

 Loadcheck is a typical industrial check that is also given as the example of
structural pattern matching application in VLSI, in the first chapter.

 These five rule sets were run against two families of hierarchical netlists. The
family of the given hierarchical netlist is obtained by gradually increasing the size of
the netlist. This is achieved by allowing that the previous example netlist is one sub-
circuits instantiated in the context of the next example netlist in the given family. In
other words, the successive netlists of a given family are always contained one into

Figure 6.6-2 – Quantities of the example hierarchical netlist families. a) Semilog graph that shows the
relation between the flat and the relevant hierarchical element count. b) Graph that depicts the meas-
ured hierarchical design height. c) Hierarchical design density for the example families of netlists.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

127

another. In this way we can get the opportunity to observe the scaling of different al-
gorithm parameters that we have measured across the developing size of the hierar-
chical netlist. As a measure of complexity of the netlist we take the equivalent flat
netlist’s number of elements, or alternatively the number of atomic elements in the
hierarchical netlist. Of course, as the connectivity of the elements is important and the
hierarchies have different quantities we can not guarantee perfect scaling. In order to
depict the quality of scaling the relation between the hierarchical and the flat element
count, the height and the density of the example hierarchical netlists of both families
are given in Figure 6.6-2. The figure shows constant increase of both parameter val-
ues. The two families are generated out of two realistic industrial hierarchical netlist
examples. The example designs represent DRAM memories and thus contain a highly
redundant and enormous in size array circuit. The array contains the memory cells.
This subricruit of the hierarchical design is contained as the last example netlist of
each of the families. As we can see in the figure, the growth of the flat element count
compared to the hierarchical element count of both example netlist is very steep. Note
that the scale of the graph is semi-logarithmic, having the logarithmic axis that quanti-
fies the number of flat elements of the given netlist.
 With respect to the flat netlist size, we have two domains of hierarchical net-
lists, the lower and the upper domain. In the lower domain the flattening of the netlist
and application of the flat algorithm is still possible, using typical available computer
resources. The border between these two domains is than flexible and depends on the
hardware that is used to execute the algorithm. In the lower domain we have com-
pared the execution behaviour of two algorithm strategies (flat and hierarchical). The
measurements were done with flat netlists that contain up to 2 500 000 elements. In
the higher (exclusively hierarchical domain) we have performed tests on examples
that have up to 1 000 000 000 (one billion) (flat) elements. These example netlists had
also a very high gain factor, eg. the one billion element example netlist consisted of
just 5000 atomic elements. This is due to the already mentioned fact that the available
big examples include a non-specific highly redundant DRAM array subcircuit. This
part of the design topology has also non standard interconnections. Hence, a single
transistor, the member of the memory cell is connected with millions of other similar
transistors that belong to different memory cells, members of the array. The setup in
order to successfully process this part of the memory chip demands further work. We
have, with the already available setups, managed to run some of the tools/runsets on
this highly redundant, non standard netlist.
 All throughout the tests we have confirmed the functional correctness. Further,
as the hierarchical approach was used, we witness the enormous enhancement in the
relation between the hierarchical and flat report counts. This relation is depicted in
Figure 6.6-4. The graph gives the distribution of the ration between the number of flat
matching reports and the number of hierarchical (condensed) matching reports. The
ration is distributed over the flat element count in both netlist families. Graphs overlap
several measurements (for nand, inverter, flip/latch and loadcheck rules), as shown in
the graph legend. We can see that the ratio between the flat and hierarchical match
count constantly increases and reaches, typically, the value of two orders of magni-
tude, for bigger, realistic in size, example designs.

Chapter 6 - Application of the VFV to Search Oriented Pattern Matching Methods

128

 In order to illustrate the gain, the linear bar chart gives the growth of the num-
ber of flat matches compared to the number of hierarchical matches (Figure 6.6-3).
The pairs of bars represent the numbers of flat and hierarchical number of matches,
respectively, for 6 different (ordered according their size) hierarchical netlists. This
graph clearly illustrates the difference in time needed by the user of the tool (the de-
signer) to evaluate the obtained error protocols. The result which is represented here is
in the same time the most revolutionary achievement that the conceptually new hier-
archical pattern matching approach allows.
 The performance tests are nevertheless also very important as the stable run-
time and low expected complexity of the progress of the memory requirement and the
time requirement of the hierarchical pattern matching algorithm, allow usage of the
hierarchical results in all realistic application cases. For this reason we have thor-
oughly tested the algorithm potentials from this aspect and proven the positive
achievement as well as pointed out the issues that the new algorithm in this early de-
velopment stage has and that should be addressed in the future.
 Let’s start with the distribution of the required time for matching of the ele-
mentary rules, over the complexity (number of flat elements) of the netlist. All meas-
urements for both netlist families are given together in the graphs in Figure 6.6-5. The

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6

Flat Nr Err

Hierarchical Nr Err

Figure 6.6-3 – Nr. Hier. and flat matches for different hierarchical netlists. The blue bars
depict the number of redundant, flat match reports, while in purple the number of corre-
sponding hierarchical matches is given.

Figure 6.6-4 – Linear distribution of the ratio between the number of flat reports and the
hierarchical reports. The graphs give together the obtained results for the nand, flip/latch
inv and loadcheck rules.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

129

tests were performed on 4 different (simple) rules and 6 different program versions,
giving 24 curves in the graphs (a) and (b). The curves depicting the measured runtime
of the flat algorithm version group in the higher domain of the graph, while the hier-
archical runtimes group low, with dramatic differences of the required time to com-
plete the algorithm execution for bigger target netlists.

Apart from these two groups, one can notice that a line which describes the
progression of the execution time of the 4.2 algorithm applied on the simple NAND
rule shows the super-linear complexity and reaches higher values than typical for
other rules of both flat classify versions. This rule is an example of the penalty that the
suboptimal 4.2 algorithm version pays for blindly approaching the nets neighbouring
the given device which it is analysing, following the nominal order of the device’s
pins. The time required for the execution of the given rule by algorithm 4.4 is together
with all other tested rules, inside the upper cluster. Note further that the differences
between flat and hierarchical clusters are more drastic for the Family 1 than for the
Family 2. This is in correlation with the difference in height of the hierarchies of the

Figure 6.6-5 – time complexity of different algorithm versions. a) performance of elementary rules on
Family 1. b) performance of elementary rules on Family 2. c) performance of the loadcheck ruleset
on Family 1. d) performance of the loadcheck ruleset on Family 2. Different classify versions are
denoted with cxx, where xx is the relevant program version. The elementary rules are: inverter,
latch, flip and nand.

Chapter 6 - Application of the VFV to Search Oriented Pattern Matching Methods

130

Family 1 and Family 2. Family 1 has higher hierarchies. This difference in values is
noticeable also for the measurements of the memory usage of the algorithm run
against two netlist families.
 Once many rules were combined in the complex loadcheck program, the rele-
vant numbers got consequently larger, but the differences between the typical algo-
rithm runtimes became even clearer. This is given on two semi-logarithmic graphs
that combine the execution times of different classify program versions for both fami-
lies (Figure 6.6-5.c,d). In this case we have the (trivial) runtimes of the hierarchal al-
gorithm grouping (for the first family) around the value of ~50 seconds for the netlists
up to 2.5 millions of elements, the enhanced flat classify algorithm at 103 and the
measured runtime of the 4.2. classify version up to 1.2*105 (around one and the half
days). The corresponding differences are present also in the case of Family 2, just
with smaller gaps. To conclude, the measured difference between the execution times
is by two orders of magnitudes compared to the enhanced flat algorithm, further, the
difference between the enhanced flat algorithm and the initial version is another two
orders of magnitude. Note that in this domain the differences between the hierarchical
algorithm versions are not drastic. We can explain that by the fact that the hierarchal
algorithm has far lower number of attempts to match the given context, it pays also
the lower price for each false match.
 Having in mind stated above, we have shown that the enhanced flat version
allows the stable application of the flat algorithm in the domain where the flattening is
possible. The progress of this algorithm version is then linear, the typical complexity
claimed by different authors of algorithms in the domain of flat structural pattern
matching. The version 4.2 unfortunately shows an indeterministic complexity. The
success of the enhancement of the flat algorithm was also proven during the up today
more than two years of professional industrial application. The values measured for
the hierarchical algorithm versions prove the sub-linear complexity, with respect to
the flat size of the given hierarchical netlist.
 The measurements of the memory consumption were done for the identical
tests that were used to measure the gain in the relation between the hierarchical and
flat number of reports and the time complexity of the algorithm. The results obtained
are similar to the results of the time measurements, with the addition of identical
memory consumption behaviour of the two flat algorithm versions. This was expected
as the solution for BPF algorithm does not include the significant memory consump-

Figure 6.6-6 – Memory Consumption. a) Family 1. b) Family 2. In both families the elementary
rule (flip, latch, inv and nand) memory usage measurements are given with solid lines, while
the loadcheck memory consumption is depicted by the dotted line. The flat algorithms are
marked with a square, while the hierarchical runs are marked with an x.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

131

tion overhead. On the other hand similar statement is valid for the hierarchical algo-
rithm if one assumes that the size of the materialised flat data portion is neglectable.
This is true as the patterns which are being searched for have just couple of elements
each.
 For given reasons, we have measured the memory consumption on the repre-
sentative algorithms of both groups, on versions c44 to get the typical memory con-
sumption of the flat pattern matching and c54 in order to get the results for the hierar-
chical algorithm (Figure 6.6-6).
 The measurements have shown that the typical flat approach memory con-
sumption grows linearly, while the hierarchical memory consumption shows once
again the sublinear complexity. In the case of the more complex rules the memory
consumption is higher for both flat and hierarchical versions, as it is necessary to rep-
resent all relevant contexts that were recognised with the corresponding objects.
 Let’s now analyse the performance of the algorithm in the higher domain,
where no flattening is possible. In this domain we have compared the runtimes of the
four different hierarchical versions, to investigate the benefits which the different hi-
erarchical approach enhancements bring. We have tested these algorithm versions
against two example netlists which include the DRAM array. These netlists were the
full-chip netlists of two example families containing roughly one half of the billion
and one billion flat elements for the first and the second family, respectively.
 The results we have obtained for measuring the time requirements for this al-
gorithm are given in Figure 6.6-7.
 The bars show the runtimes for the latch, flip and the inverter check, respec-
tively. These are the rulesets for which we have managed to obtain the results against
the hierarchical netlist that includes the non-standard array. From this graph we can
conclude that the runtimes are the most stable and optimal for the algorithm version
c54f.
 The overall tests have shown that the concept where all the problems that the
hierarchical data brings are solved inside the database (the way the data is presented
to the algorithm) is feasible. The adaptation to the needs pattern matching algorithm
was further easy due to the flexibility of the view architecture. The feasibility and thus
functional correctness of the results gained by the application of the VFV to the flat
pattern matching algorithm has been strengthened with the in average two orders of

magnitude compression factor for the error reports. Further, the tests have shown that
the potentials of the hierarchical algorithm bring the sublinear complexity in memory

Figure 6.6-7 – Runtime requirements for the examples in the domain where no flattening is possi-
ble. 1 – latch rule, 2 – flip rule, 3 – inv rule.

Chapter 6 - Application of the VFV to Search Oriented Pattern Matching Methods

132

requirements and required time (sublinear to the number of elements in the equivalent
flat neltist). Nevertheless the adaptations of the VFV are required in order to be able
to run it in any application case and to get more robust algorithm for the domains of
big hierarchical (unflattenable) netlists. In this domain we have, in some sense, the
repeating of the history. The c42 flat algorithm had a non-optimal order of progress-
ing into recursion. This was fixed by the version c44 of the flat algorithm. This ver-
sion is still heuristic and there is no theoretical proof that it will work in any case. The
long-term, stable industrial application has solicited the good quality of this approach.
We have, in further work, to enhance the optimality of the ordering the pins of ele-
ments for the hierarchical algorithm and in despite of the additional complexity in
acquiring the quantities weight the different paths properly. However the clear idea
and the strategy to fight this problem is ready and should be implemented through the
short term research to allow the smooth application of the powerful algorithm on ap-
plication cases that include atypical highly redundant DRAM array subcircuit.
 To conclude, the performed experiments show high potentials of the chosen
solution recommending it as a common solution for hierarchical structural pattern
matching. Its flexibility and easy adaptability (with possible minimal changes of the
view strategy) allows that other existing or future flat algorithms that analyse sche-
matic designs can take benefits of the hierarchical data representation.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

133

7 Conclusion

 We have completed the investigation of the problem of structural pattern
matching in the area of static verification of VLSI hierarchical designs. A solution has
been found for structural pattern matching in hierarchical designs. It can be also ap-
plied to other various similar algorithms that need transfer from the flat domain to the
hierarchical.
 Our contribution includes establishing the methodology of so-called layered
views on the hierarchical schematic data. We have identified the standard view archi-
tecture that enables polymorphic views on the hierarchical organisation of the given
data model. The standard architecture is specified using advanced object-oriented
concepts. We have further defined the novel Virtually Flattened View (VFV) using
the proposed standard architecture. VFV presents the data of the hierarchical design
locally flat. The highlighted, flat data portion can be formed orthogonal to the design
hierarchy. Additionally, in order to make the view application easier and more power-
ful we have developed a technique that enables embossing of the flat data portion that
has been created into the primary design hierarchy. This operation affects the design
hierarchy and commits the given data portion as a separate subcircuit. The committing
technique was designed to enable very quick changes. The complexity of the commit-
ting technique is thus tied to the size of the flat data portion and not the size of the cell
that is being altered. VFV development included isolation of some specific data struc-
tures that enable the proper functioning of the view. It also included the creation of a
set of very complex interrelated algorithms on those data structures. VFV architecture
is generic and allows flexible upgrades of the view entities to meet specific user algo-
rithm requirements. Hence, entities of the view that model given database elements
can include application-specific augmentations of the interface.
 In order to provide the evidence of the feasibility of this concept and to
achieve the needed hierarchical structural pattern matching method, we have applied
the developed VFV on an existing project that implements the incremental pattern
matching principle on flat netlists. With the aim of accomplishing this we have used
the flexible view design, adapting its entities to the application domain. The flat algo-
rithm could be used with just minor changes. Changes included very local adaptations
of the flat algorithm to allow it to handle the new principles, which a fact that the
matching is performed on the cell definitions of the hierarchical database brings. The
enhancement that is introduced is specified as an upgrade of the matching results re-
port protocol. We have introduced a hierarchical report protocol, where each match is
tied to a specific cell of the hierarchical design. This new concept allows non-
redundant match reports.
 The realistic tests which have been executed on industrial examples have con-
firmed the functional correctness of the method. Tests have allowed us to properly
quantify the hierarchical pattern matching report protocol, which is conceptually new.
We have concluded that this new report type allows the improvement of the effective-
ness of the algorithm by an average of two orders of magnitude. This means that, by
taking use of the hierarchy one can now extract precisely the wanted topologies that
are instead of being related to their instantiation contexts, now related to their non-
redundant definition contexts, dramatically suppressing needed effort (man power) to
analyse the reports.
 Performance tests of the algorithm have shown that, as designs increase in
complexity, the growth of time and memory required is sub-linear. The new algo-

Chapter 7 - Conclusion

134

rithm is several orders of magnitude superior to the flat algorithm already for sample
designs with > 80 000 flat transistor count.. We have further shown that the algorithm
is now capable of processing target designs that cannot be flattened (using current
typical computer resources), those having more than a billion flat elements.
 In this domain we have organized the roadmap of enhancement of the set of
sophisticated concepts in order to achieve the optimal runtimes. Future work thus is
related to exploring the identified possible improvements that the hierarchical data
model can bring, as well as fine-tuning and adapting the specific hierarchical design
personalisation concepts (the concept of cell variants) to the VFV. In this way we can
exploit the new methodology optimally.
 The overall results provide a strong recommendation that the described ap-
proach can be used as a standard for addressing the problems that hierarchical organi-
sation brings.

135

APPENDIX

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

137

Apendix A (Personalisation by variants)

Commercial EDA databases are in most of the cases implementing the data

model of the standard SPICE format. For this reason they should support the concept
of cell parameters, also present in the SPICE format. This concept is one of the crutial
reasons for the personalization. The concept of parameters leaves a part of the data of
the cell definition templated, to be resolved later, in the context of its instantiation. In
this way we can have cells with templated transistor widths, lengths or some other
device parameters. This concept can be illustrated by the example in Figure A-1. In
the example a hierarchical netlist, which apostrophes different concepts of flavouring
the instances of the given cells is shown. Note that for clarity only this aspect was
taken into account and that the example has no electrical sense. As it is shown, by
different parameter defining techniques, instances of the cell A have different parame-
ter values. For example, the transistor in the instance I1 of cell A has the width of 2
and the length of 2, on the other hand instance I2 of the same cell has the values w = 1
and l = 1 for the transistor. Further, as a part of the specific algorithm, nodes (nets) of
the hierarchical netlist can be flavoured by type that describes their semantics. This
concept is widely used in different applications through the technique of signal propa-
gation. This is another property that can flavour an instantiation of the given cell.

Additionally, cells are characterised by the topology of its pins. Hence, a cell
can have its pins shorted somewhere up in the hierarchy. The consequence of this is
that two nets, cell pins that are connecting the cell with it’s environment, have to be
merged (seen as a single net). This produces the topology which is slightly different
than one which is given by the cell, depending only on the instantiation context.

In order to suppress redundancy, and still provide user application with resolved
templated data of the cell, in place, we introduce the concept of variants to group all
instances with identical templated data that is interesting for the specified application.

We create variants by grouping instances of the same definition by mentioned
criteria. Therefore, according to the parameter value we can subdivide the given six
instances of our example, which share the definition, in two groups. First group of
instances has the definition which has parameters resolved with values w = 2 and l = 2
(for instances I1, I3 and I5), and second group which has parameter values w=1 and l
=1 (for instances I2, I4 and I6).

Without propagating node types over devices, we can again group different in-
stantiations of the cell A according to the node type. Therefore the grouping according
to this criteria connects instances I1 and I3, as they have nets net1 and net2 without
the type and grounded net3, further, instances I2 I4 and I6, which have net1 on vint -
supply net type, net2 without type and grounded net3 and in the end, instance I5 is in
a different variant, as net 3 is at vnwl here. net1 and net2 again have no node type.

A third classification criterion is grouping according to cell pin topology. In the
given example we have a group with I1 and I3: net1 and net2 are connected and an-
other group of instances I2, I4, I5, and I6 where no pins are connected directly. In
total two variants according to this criteria alone.

In addition, it has shown up useful to create variants of the given cell by group-
ing instances according to their instantiation position. More precisely, according to the
parent cell in which they are directly or indirectly instantiated. This can be useful in
order to enable the user application to “concentrate” on the given block of the design

Appendix

138

and perform specific algorithm only inside (or outside) it. Note that if we put each
instance which has different parent cells to a separate variant, we might end up with a
huge number of variants. Therefore, we build the variants based on "parent cell condi-
tions" to be defined and carefully used by the application. In the example, we can, for
instance, distinguish between devices inside or outside of the cell GENBLK* and ad-
ditionally inside or outside SPINE cell. This rule would gives three additional vari-
ants:

I1 and I2: In GENBLK* but not in SPINE, I3 and I4: In GENBLK* and in
SPINE and in the end I5 and I6: Not in GENBLK* but in SPINE.

Note that we can now group instances which share all of defined criteria in the
same time. We achieve this by mutual intersections of all sets of instances, which rep-
resent variants according to the single grouping criterion.

 To illustrate this we will refer to the example in Figure A-1 once again. If we
need parameters, node types, and pin topology but might omit parent cell conditions,
we have the variants:

• Variant V1: I1 and I3

o r=0.1, w=2, l=2
o net1 and net2 without nodetype, net3 with nodetype gnd
o pin topology net1 - net2=net1 - net3

• Variant V2: I2 and I4
o r=0.1, w=1, l=1

Figure A-1 – Variant criteria

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

139

o net1 with nodetype vint, net2 without nodetype, net3 with
nodetype gnd

o pin topology net1 - net2 - net3
• Variant V3: I5

o r=10, w=2, l=2
o net1 and net2 without nodetype, net3 with nodetype vnwl
o pin topology net1 - net2 - net3

• Variant V4: I6
o r=10, w=1, l=1
o net1 with pintype vint, net2 without nodetype, net3 with

nodetype gnd
o pin topology net1 - net2 - net3

In the end, it is possible to define any additional, algorithm specific criteria for

creating groups of instances of the given cell.
Variants are created in several global, self-altering, hierarchical walks over the

TopDownVariants structure to build the variant graph . The walk over TopDownVa-
raints vector is at the beginning identical to the walk over TopDownCells vector, fur-
ther, in the process of creating variants, duplicates of each cell according to defined
criteria are inserted, altering the starting initial structure.

Storing of Variants, interface to acquire templated cell data

Variants are stored in the database that was developed for the industrial appli-
cation of Qimonda AG with the explicit interface. They are “visible”. Therefore each
application that employs the benefits of the variant concept has to explicitly control
and achieve templated values using specific interface. This was not a must. Some
other alternative implementation, whose vision we have shortly pointed out in Chapter
4 can hide them and perform the regrouping of the instances into several subgroups
for certain primary definition. The substantial difference between the variant of the
cell and the cell appears once the variant adds some functionality. For instance our
database does not, by default allow node types, they are completely introduced, to-
gether with the appropriate interface in the variant classes. Nevertheless, as the ques-
tion of the standard interface is relative, we assume in this thesis that the variant and
the cell are actually equivalent terms. More precisely, the term variant just explains
the way a given group of instances is obtained. Thus, it is more relevant to the way a
given cell is implemented.
 Coming back to the way variants are implemented in our industrial database:
each Base_Cell has a list of variants associated with it, Figure A-2. Initially this list is
void, while it gets populated during the variant creation process.

Figure A-2 - Relation between Base_Cell and Base_Variant

 In the example of the previous section, we have shown that variants are cre-
ated according to all combinations of different building criteria. Therefore, in order to
represent the data in the most optimal way, each variant object is linked to appropriate
set of values, for each criteria type. On the other side, list of criteria value sets is
maintained irredundant. This implies the fact that when a new variant is to be entered,

Appendix

140

the insertion algorithm has to perform the linear search over the list of criteria value
sets to determine if the identical set already exists. This linear search hasn’t domi-
nated in the runtime of the applications using variants in the industry realm, so far.
The described concept is illustrated in Figure A-3. Each variant references a set of
criteria value sets. In the illustration, Variant 1 shares parameter Set 1 with the variant
2. If, for instance, variant 1, during the application execution changes some value of
the its parameter set, the relevant reference will be relinked to another set, that is ei-
ther already in the list, or is newly created after the search, while the link between the
object of variant 2 and the parameter set one remains.

Figure A-3– Variant Criteria storing data structure

 Thus, a template class Base_VariantData stores different sets of variant
specific data in vectors
(template <class T> class Base_VariantDataList : pub lic
vector<T *>).
 This kind of architecture allows flexible adding of potential new variant crite-
ria.
 Standard NLDB data sets include vectors for:

• parameters as the actual instance parameter values for the parameters which
are needed in some arithmetic expression in a cell or its subcells.

• nodeTypes are the types for each single node and also the collection of node
types of nodes for each equivalence class (in different vectors).

• pinTopology is the data structure to store the connectivity of pins up the hier-
archy. For each group of connected pins, the smallest index of connected pins
is stored for all these pins. For example an instance with 5 pins, where pin_0
and pin_4 are connected and pin_1 and pin_2 are connected, would have the
pin topology vector 0,1,1,3,0.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

141

• parentCells stores a '1' for a related CellPatternMatch containing a set of pat-
terns for parent cells, if one of the parent cell names matches one of these pat-
terns and a '0' otherwise.

Class Base_Variant provides interface methods to access all relevant data stored
in Base_VariantData object.
 Apart from this interface, Base_Variant class provides interface and im-
plementation for relations with other variants (father variants and children variants),
to form the variant graph.

TopDownVariants

In different application algorithms, together with the variant creation algo-
rithm itself, it is important to access all variants, globally, in a specific order (bottom-
up, or top-down), similar to the TopDownCell vector. For this reason we create a
new container, abstracted in the class TopDownVariants , which with it’s iterator
traverses over all variants of all cells of the design, in a way that, for bottom - up
walk, all variants that are instantiated in a variant in focus have already been accessed,
during the bottom up walk, and vice versa, for the top-down walk, no variant that is in
the current focus has an no so far unvisited parent.
Due to the similarity with TopDOwnCells vector, the implementation architecture
of the TopDownVariants vector inherits classes TopDownCells and the appro-
priate iterator from the class TopDownCells and it’s iterator, simply adding the
additional iteration, over all variants for a given object of the Base_Cell class. This
design solution is given in the class diagram in Figure A-3.

Figure A-3 – TopDownVariants container

Variant Graph

Variant graph is analogue structure to the cell graph. Variant graph offers a
structure which is, by the number of elements, somewhere between a definition tree

Appendix

142

and a instance tree. It could be, more precisely, obtained by collapsing all instance
nodes in the instance tree to one node, if these instances belong to the same variant.
Therefore we get the ordered graph structure where each element has, in general, mul-
tiple number of parent nodes and multiple number of children nodes. Element with no
parents in this data structure corresponds to the top variant and can be distinguished
as a head of the variant graph. The elements without children nodes correspond to the
bottom variants, with no referenced cells and can be distinguished as the leafs of the
variant graph. Communication in both directions, from the child node to its parent and
vice versa is possible. Therefore for a given variant the user algorithm can access all
it’s father variants and all it’s children variants, directly.

Variant graph allows the application to generate results that are valid for all in-
stances of the given variant simultaneously and still be able to, if necessary, commu-
nicate with current variant’s immediate parents or children. In order to realize this, a
set of methods is added to Base_Variant class, together with needed supporting
data structures. Therefore, Base_Variant class defines a list of:
• parents: the parent variants of the actual variant stored as a list of

Base_VariantInstantiationLeader objects. Each Base_VariantInstantiationLeader
is a parent variant and a list of instances of the current variant in this parent vari-
ant. A recursion over the parents gives all instantiations of a variant.

• subVariants: maps each sub instance of the current variant to the associated vari-
ants. These subvariants pointers are again stored in a vector. The relation to the in-
stances themselves is again done via the HasIndex class which is also a base
class for the Base_Instance class. The subVariants might be used for top-
down walks.

Applications of the Variant Concept

 The variant concept is applied in cases where the algorithm needs to personal-
ize given instantiations of the definitions resolving their parameters. The common
application is in ERC for highvoltage checks. Once we apply all relevant parameters
and pass datatypes over the hierarchy we can create the optimal set of variants and get
irredundantly the results valid for all instantiation places of each variant.
 Variants are very important for our solution of the problem of hierarchical
structural pattern matching. Pattern matching language allows the usage of node
typses ,as well as device parameters. For this reason we will build our algorithms on
top of variants that upgrade Base_Cell definition with the important interface that
handles the additional properties (the interface to access the information about the
node type of the given cell).
 For simplicity and not affecting the generality of the explanations of the con-
cepts that were used in this thesis, we will avoid the complication the current imple-
mentation of the variant concept introduces and use the terms cell and variant equally,
as we have already stressed.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

143

Appendix B (Fingerprint verification principle)
 In order to explore the possible enhancements of the execution time that the
employment of the hierarchical data model can offer, we have defined the fingerprint
verification principle. This principle is adding additional functionality to the virtually
flattened view. It is related to the way each net’s pins are iterated over. With finger-
print verification we tend to optimize the iteration process and skip all similar itera-
tions. This principle is an update of the multiple context hierarchical node iteration
process. +
 The principle can be well described and understood using the following exam-
ple:

 In the figure above we see one hierarchical node. The iteration over its pins
starts from the subnode in the variant A that is denoted with S. The default iteration
would, after going up the hierarchy visit all the neighbors of the subnode T, than des-
cends to all of the variants that are instantiated in the context of the variant T. This is
sometimes not optimal. The neighboring devices of the node 1 of the variant B would
repeat twice in the iteration. If no positive conclusion (a successful matc-h) was done
and the iteration was uninterrupted, we can skip all the redundant subnodes.
 This is exactly how the fingerprint verification is defined. At the context of the
subnode T, we can maintain information about the instantiations of the variants to
which the algorithm has descended to. The information that is maintained is simply a
pair formed by the pointer to the given variant and the pointer to the relevant variant
pin. If we employ such strategy, at the level of the subnode T the algorithm would
first verify if the relevant fingerprint for the Variant C exists, after the determining
that the variant is new to the iteration the relevant fingerprint is stored in a specific
container (of the given iteration context of the subnode T). The algorithm, further,
descends to the Variant B, using the first pin, and skips the instance X3 of the Variant
B, after finding that the relevant fingerprint already exists. The next instance where
the optimized iteration would be continued is the instance X4, of the Variant B. This
time the entry point to the variant is the pin 2, thus a different fingerprint to the one
that was already left at the X2.
 In order to assure the functional correctness of such an optimized iteration
some issues have to be taken into account. For instance, the algorithm might enter the
given variant at one pin and leave it at another concluding only outside of the given
variant that it can’t find the proper match. This might not be the case for some other
instantiation. Therefore, in the case where the algorithm leaves the context of the giv-
en variant (runs through it) no fingerprint should be left. The issues like this should be
addressed in order to have the proper functionality of this optimization.

Appendix

144

Appendix C (Hierarchical matching example)

 In the following example we are going to match two patterns with the new
hierarchical pattern matching algorithm. The algorithm works incrementally, i.e. a
pattern can be based on the output of a previous pattern match. Therefore, at first we
will isolate all inverters in the hierarchical design using the pattern in Figure C-1 (a).
The second matching process is analogue to the first one, still in it we are searching
for a specific interconnection of two inverters, Figure C-1 (b).

 The pattern matching algorithm, in search for these two patterns will be ap-
plied on the example hierarchical design shown in Figure C-2. The given hierarchical
design semantically describes a latch circuit. Transistors are abstracted in separate
subcircuits, MP, which contains an mp transistor alone, and MN, which holds an in-
stance of the mn transistor device. These two cells are further, instantiated in the cell
A, as instances X1 of MP and X2 of MN. On the top level, the cell A is, again, instan-
tiated twice: instance X1 of A and X2 of A. The instances are interconnected in a way

Figure C-1 – Matching Patterns. a) a pattern to match an inverter out of two relevant transis-
tors. b) a pattern to match a latch out of two inverters.

in

Vdd

in out

Figure C-0-1 – Hierarchical representation of a latch circuit.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

145

that the overall structure forms a topology of a latch circuit. Therefore, appropriate
pins of instances X1 and X2 are shorted, or connected to defined fixed voltages Vdd
and gnd. In this level, two semantically important nets are named in and out, for better
understanding.

STEP 1: The algorithm starts with the device mp in cell MN. The context level is the
MN cell. Following the hierarchical node through port 1, we have to change to the
next hierarchy level. The algorithm thus sets the relative top level of the virtual copy
of the transistor mn to cell A. This cell A exists in two places in the hierarchical cir-
cuit. Therefore also this virtual copy of the transistor exists twice when looked upon
the circuit flat. These copies are marked with the yellow, semitransparent field.

Appendix

146

STEP 2: As the matching of the first pattern continues, the VFV dynamically switches
the active context from the cell A to the instance X1 of the cell MP, creating the vir-
tual copy of the transistor mp. In the figure, the algorithm has created a consistent flat
view of the correct arrangement of two transistors (mp and mn). Still, thanks to the
hierarchical layout of the example this virtual view occurs twice which is apostrophed
with the yellow patch.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

147

STEP 3: Since the current context view matches the topology of the pattern which
was being searched the commitment step is performed. This means that a new in-
stance inv1 of the new subcircuit, whose topology is identical to the pattern, is added
to the hierarchical schematics. This modifies the topology of the cells MP and MN
inside of A. The devices mp and mn are removed from MP and MN and are moved to
the newly inserted subcircuit inv1 . Note that this would produce a variant of the cell
MP or MN if e.g. we had another instance of MP placed somewhere in the design
without an adjacent MN. In such a case this instance of cell MP would keep its old
topology. Proper connectivity is still maintained. Note that the position of the pins of
cells MP and MN is changed to make the figure more elegant. That has, however, no
electrical or semantic importance. Additionally, to depict the change of the hierarchi-
cal topology the shapes of the cells MP and MN intuitively show that some devices
are now removed.

Appendix

148

STEP 4: After the commitment the second pattern (interconnected inverters) is being
searched for. Now the building blocks of this pattern are the inverters which have
been recognized and committed to the hierarchy during the match process of the pre-
vious rule. This step is analogue to the matching of the previous pattern at STEP 1.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

149

STEP 5: The context of the flat view dynamically gets changed to the parent cell of
the cell A. In our case it is the top cell, but in general it can be any regular cell. Again
a virtual copy of the inv1 within the top cell is generated. The multiplicity of the lo-
cally flat view is now equal to the number of instantiations of this “relative top” cell.
Note that the pattern is not anymore valid for the instance inv1 inside instance X2 of
A!

Appendix

150

STEP 6: This is analogue to the STEP 2 of the first matching process. The flat view
properly represents the arrangement of two inverters and their interconnection. This
leads to another match as the topology of the current flat view is identical to the to-
pology of the latch pattern.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

151

STEP 7: This step is analogue to STEP 3 of the first matching process. An instance of
a cell containing the latch pattern is committed to the relative top level. This influ-
ences the topology of two instances of the cell A. As the two instances are connected
differently when looking from top level, two variants of the cell A are generated. The
new hierarchical topology is consistent and prepared for any other algorithm.

 To summarize, in this example we have successfully demonstrated one possi-
ble scenario where we have used the functionality of the VFV to be able to see spe-
cific parts of the hierarchical netlist as if they were flat. Therefore the utility algo-
rithm, could navigate through the neighbourhood of each starting device that was of-
fered by the specific device iterator of the VFV. For each matching place a material-
ized flat data portion was built and kept in consistency with the hierarchical netlist.
For each successful match, the current state of the materialized flat data portion was
committed to the hierarchical netlist, affecting the neighbouring hierarchy, by the so-
phisticated algorithm.

Bibliography

152

Bibliography

1. Moore, G.E., Cramming more components onto integrated circuits, in Read-

ings in computer architecture. 2000, Morgan Kaufmann Publishers Inc. p. 56-
59.

2. Frerichs, M., Attributed to Steinkopf, U., EDA tool Effort Waves. 2009, per-
sonal communication.

3. Diestel, R., Graph Theory. 2005: Springer-Verlag.
4. Ullmann, J.R., An Algorithm for Subgraph Isomorphism. J. ACM, 1976. 23(1):

p. 31-42.
5. Corneil, D.G. and C.C. Gotlieb, An Efficient Algorithm for Graph Isomor-

phism. J. ACM, 1970. 17(1): p. 51-64.
6. Cortadella, J.a.V., G. A relational view of subgraph isomorphism. in Proc. 5th

Int. Seminar on Relational Methods in Computer Science. 2000. Québec, Can-
ada

7. Gold, S. and A. Rangarajan, A Graduated Assignment Algorithm for Graph
Matching. IEEE Trans. Pattern Anal. Mach. Intell., 1996. 18(4): p. 377-388.

8. Gold, S. and A. Rangarajan, Graph matching by graduated assignment, in
Proceedings of the 1996 Conference on Computer Vision and Pattern Recog-
nition (CVPR '96). 1996, IEEE Computer Society.

9. Papadimitriou, C.H. and K. Steiglitz, Combinatorial optimization: algorithms
and complexity. 1998: Prentice-Hall, Inc. 496.

10. Kosowsky, J.J. and A.L. Yuille, The invisible hand algorithm: solving the as-
signment problem with statistical physics. Neural Netw., 1994. 7(3): p. 477-
490.

11. van Genderen, A.J. and N.P. van der Meijs. Reduced RC models for IC inter-
connections with coupling capacitances. in Design Automation, 1992. Pro-
ceedings., [3rd] European Conference on. 1992.

12. Vanoostende, P., P. Six, and H.J. De Man, DARSI: <e1>RC</e1> data reduc-
tion [VLSI simulation]. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 1991. 10(4): p. 493-500.

13. Luellau, F., T. Hoepken, and E. Barke, A technology independent block ex-
traction algorithm, in Proceedings of the 21st conference on Design automa-
tion. 1984, IEEE Press: Albuquerque, New Mexico, United States.

14. Ohlrich, M., et al., <italic>SubGemini</italic>: identifying subcircuits using
a fast subgraph isomorphism algorithm, in Proceedings of the 30th interna-
tional conference on Design automation. 1993, ACM: Dallas, Texas, United
States.

15. Ebeling, C., GeminiII: A Second Generation Layout Validation Tool, in Con-
ference on Computer Aided Design (ICCAD). 1988. p. 322-325.

16. Ling, Z., An algorithm for subgraph isomorphism based on resource man-
agement with applications. 1998, University of Hawai'i. p. 190.

17. Ling, Z., Subcircuit Extraction with Subgraph Isomorphism, IBM Almaden
Research Center - EDA Shape Processing.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

153

18. Chanak, T.S., Netlist Processing for Custom VLSI via Pattern Matching. 1995,
Stanford University.

19. Olbrich, M., A. Rein, and E. Barke, An improved hierarchical classification
algorithm for structural analysis of integrated circuits, in Proceedings of the
conference on Design, automation and test in Europe. 2001, IEEE Press: Mu-
nich, Germany.

20. Pelz, G. and U. Roettcher, Pattern matching and refinement hybrid approach
to circuit comparison. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, 1994. 13(2): p. 264-276.

21. Pelz, G. and U. Roettcher. Circuit comparison by hierarchical pattern match-
ing. in Proceedings of the Conference on Computer Aided Design (ICCAD).
1991.

22. Rubanov, N., SubIslands: the probabilistic match assignment algorithm for
subcircuit recognition. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 2003. 22(1): p. 26-38.

23. Rubanov, N., A High-Performance Subcircuit Recognition Method Based on
the Nonlinear Graph Optimization. Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on, 2006. 25(11): p. 2353-2363.

24. Rubanov, N., An efficient subcircuit recognition using the nonlinear graph
matching, in Proceedings of the 18th annual symposium on Integrated circuits
and system design. 2005, ACM: Florianolpolis, Brazil.

25. Rubanov, N. Bipartite graph labeling for the subcircuit recognition problem.
in Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE Inter-
national Conference on. 2001.

26. Zhang, N. and D.C. Wunsch, II. A fuzzy attributed graph approach to subcir-
cuit extraction problem. in Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE In-
ternational Conference on. 2003.

27. Vijaykrishnan, N. and N. Ranganathan. SUBGEN: a genetic approach for
subcircuit extraction. in VLSI Design, 1996. Proceedings., Ninth International
Conference on. 1996.

28. Nian, Z., D.C. Wunsch, II, and F. Harary, The subcircuit extraction problem.
Potentials, IEEE, 2003. 22(3): p. 22-25.

29. Chang, W., A Novel Extraction Algorithm by Recursive Identification Scheme,
in IEEE International Symposium on Circuits and Systems, 2001, Editor.
2001: Australia.

30. Zhang, N. and D. Wunsch, A Novel Subcircuit Extraction Algorithm using
Heuristic Dynamic Programming (HDP), in International Conference on
VLSI. 2002: Las Vegas, Nevada, USA.

31. Batra, P. and D. Cooke, Hcompare: a hierarchical netlist comparison pro-
gram, in Proceedings of the 29th ACM/IEEE conference on Design automa-
tion. 1992, IEEE Computer Society Press: Anaheim, California, United States.

32. Terem, Z.K., G.; Vardi, M.Y.; Irron, A., Pattern search in hierarchical high-
level designs, in Electronics, Circuits and Systems, ICECS 2004, IEEE Inter-
national Conference on. 2004. p. 519-522.

33. Pattee, H., Hierarchy theory: The challenge of complex systems. 1973: George
Braziller New York.

34. Ahl, V. and T. Allen, Hierarchy theory: a vision, vocabulary, and epistemol-
ogy. 1996: Columbia University Press.

Bibliography

154

35. Engels, G. and A. Schürr, Encapsulated hierarchical graphs, graph types, and
meta types. Electronic Notes in Theoretical Computer Science, 1995. 2: p.
101-109.

36. Jones, M.C. and E.A. Rundensteiner, View materialization techniques for
complex hierarchical objects, in Proceedings of the sixth international confer-
ence on Information and knowledge management. 1997, ACM: Las Vegas,
Nevada, United States.

37. Lavagno, L., G. Martin, and L. Scheffer, Electronic Design Automation for
Integrated Circuits Handbook - 2 Volume Set. 2006: CRC Press, Inc.

38. Mallis, D., Si2 OpenAccess API Tutorial. 2008: Silicon Integration Initiative,
Inc.

39. Object-oriented databases with applications to CASE, networks, and VLSI
CAD, ed. G. Rajiv and H. Ellis. 1991: Prentice-Hall, Inc. 447.

40. Bales, M., Facilitating EDA Flow Interoperability with the OpenAcess Design
Database, in Electronic Design Processes Conference. 2003.

41. Brevard, L., Introduction to Milkyway, in Electronic Design Processes Con-
ference. 2003.

42. Guiney, M. and E. Leavitt, An introduction to OpenAccess: an open source
data model and API for IC design, in Proceedings of the 2006 conference on
Asia South Pacific design automation. 2006, IEEE Press: Yokohama, Japan.

43. Blanchard, T., Assessment of the OpenAccess Standard: Insights on the new
EDA Industry Standard from Hewlett-Packard, a Beta Partner and Contribut-
ing Developer, in Proceedings of the 4th International Symposium on Quality
Electronic Design. 2003, IEEE Computer Society.

44. Fowler, M., UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 2003: Addison-Wesley Longman Publishing Co., Inc. 256.

45. Rumbaugh, J., I. Jacobson, and G. Booch, Unified Modeling Language Refer-
ence Manual, The (2nd Edition). 2004: Pearson Higher Education.

46. Rundensteiner, M.J.a.E.A., An Object Model and Algebra for the Implicit Un-
folding of Hierarchical Structures. 1997, Electrical Engineering and Computer
Science Dept., University of Michigan.

47. Truyen, E., et al. A generalization and solution to the common ancestor di-
lemma problem in delegation-based object systems. in Proceedings of the
2004 Dynamic Aspects Workshop 2004.

48. Gamma, E., et al., Design patterns: Elements of reusable object-oriented de-
sign. 1995, Addison-Wesley Reading, MA.

49. Freeman, E., B. Bates, and K. Sierra, Head first design patterns. 2004:
O'Reilly & Associates, Inc.

50. Kappel, G., W. Retschitzegger, and W. Schwinger. A Comparison of Role
Mechanisms in Object-Oriented Modeling

in Proceedings of the conference: Modellierung '98, GI-Workshops. 1998. Münster,
Germany.

51. Fowler, M., Dealing with roles, in Conference on Pattern Languages of Pro-
grams. 1997: Monticello, Illinois, USA. p. 97-34.

52. Bäumer, D., et al., The role object pattern, in Conference on Pattern Lan-
guages of Programs. 1997: Monticello, Illinois, USA.

53. Josuttis, N., The C++ Standard Library: A Tutorial and Reference. 1999, Ad-
dison Wesley Professional.

54. Cormen, T.H., et al., Introduction to Algorithms. 2001: McGraw-Hill Higher
Education.

Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis

155

55. Duncan, C.A., S.G. Kobourov, and V.S.A. Kumar, Optimal constrained graph
exploration. ACM Trans. Algorithms, 2006. 2(3): p. 380-402.

56. Frerichs, M., Netstats, Qimonda inhouse tool. 2005, personal communication.
57. Valgrind Home. [cited 2008. 12.12.]; Available from:

http://www.valgrind.org.

