Institut fUr Informatik
der Technischen Universitat Minchen

Lehrstuhl fur Informatik mit Schwerpunkt
Wissenschaftliches Rechnen

Hierarchical Pattern Matching in VLSI

Marko MiloSevi

Vollstandiger Abdruck der von der Fakultat fur Infaatik der Technischen Universi-
tat Minchen zur Erlangung des akademischen Grades e

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: UnivProf. Tobias Nipkow Ph.D.
Prufer der Dissertation: 1. UnifProf. Dr. Hans-Joachim Bungartz
2. Univ:Prof. Dr. Erich Barke, Leibniz Universitat Hannover

3. Univ=Prof. Dr. Thomas Huckle

Die Dissertation wurde am 25.03.2009 bei der Tesdh@n Universitat Minchen ein-
gereicht und durch die Fakultat fir Informatik a@.2009 angenomen.

Abstract

Structural pattern matching is an important pdrttlee microchip design
verification process. It is necessary to isolatmatic structural contexts in a given
design netlist in order to be able to perform fdgiand intelligent checks like, for
example LVS (Layout Versus Schematics), ERC (BEletiRule Checks), gate level
netlist timing analysis and others. Because of, theny different algorithms were
devised to support this particular segment of alapfication. The theoretical basis
for these algorithms is pattern matching in graples,subgraph isomorphism. Algo-
rithms developed so far are working with flat inmatlists. This is not efficient and
limits the application of the mentioned algorithohse to the flat netlist’s extensive
size. Making the pattern matching hierarchical iraprove the processes of chip de-
sign verification and simulation.

We provide the solution for the problem of theustural pattern matching in
hierarchical netlists by defining the new methodglovhich employs the concept of
Layered Views to present the hierarchical layoua given netlist in a "friendly” way
to an arbitrary application domain (user) algorithhimis general framework solves
typical problems that algorithms working with hiexlaical netlists are facing. Particu-
larly, we propose the Virtually Flattened View (V);\a sophisticated concept that
prepares the hierarchical data for the user algostand allows them to see that data
as if they were flat. We achieve this by materialjz(creating a proxy copy) a small
data portion which is kept consistent with the seunierarchical netlist by specific
algorithms and data structures. The view offerspibgsibility to emboss the materia-
lized data portion into the primary design's hiehgr as a separate instance, altering
the primary hierarchy. The outcome of this prodgssgyain a valid hierarchical netlist.
We, further, apply the defined concepts to IncretaleRattern Matching, originally
developed for flat input netlists only. In this wase obtain the methodology to solve
the problem of pattern matching in hierarchicalisist

For several reference scenarios, quantitativecaraditative improvements of
our approach are demonstrated. The quantitativeowement is discussed through
runtime and memory requirement tests. The qualéatnprovement comes from the
fact that the new methodology allows full-chip ays&8 and concise, hierarchical re-
sult reports.

Zusammenfassung

Der Verifikationsprozess integrierter Schaltundgpemnhaltet eine ganze Reihe
wichtiger Prufungen wie LVS (Layout vs. Schemati&dRC (Electrical Rule Check),
Statische Timinganalyse und andere, die flexibiet effizienter durchgefiihrt werden
kénnen, wenn der funktionale Aufbau der SchaltuaegRriufung zuganglich ist (und
nicht nur eine rein transistorbasierte Netzlisteeteitere Struktur vorliegt).

Aus diesem Grund ist eine strukturbasierte Muskerarung, die es erlaubt, die fir
den Verifikationsprozess wichtigen Kontexte aus Seinaltung zu isolieren, ein we-
sentlicher Differentiator fur die Qualitat der easgtzten Verifikationsprogramme
hinsichtlich Performanz und Fehlerabdeckung. Daisit der Vergangenheit zu etli-
chen Aktivitaten in diesem Gebiet gefuhrt, so dese Vielzahl unterschiedlicher
Algorithmen und Implementierungen zur Mustererkamuworliegt. Gemeinsam ist
ihnen die Identifizierung von Mustern in Graphersoadie Erkennung von

Teilgraphisomorphismen.

Die bisher entwickelten Algorithmen setzen fladNetzlisten ohne innere
Struktur (Hierarchie) voraus. Das ist bei grosseateDmengen nicht effizient und
limitiert das Anwendungsgebiet. Gelingt es alse, S8irukturerkennung auf hierarchi-
schen Daten zu ermdglichen, so kann eine sehrenidsebesserung der Verifikati-
onsperformanz erzielt werden.

In dieser Arbeit stellen wir eine Losung fur dierarchische Erkennung von
Mustern in hierarchischen Netzlisten vor, die aef Binfihrung der neuen Technik
sogenannter "Layered Views" beruht. Mit ihrer HiWerden die hierarchischen Daten
den Applikationen auf eine sehr benutzerfreundlichd einfach zu nutzende Weise
prasentiert. Insbesondere schlagen wir an diesdleSWVirtually Flattened Views"
(VFV) vor. Diese prasentieren die hierarchischeneDan einer Weise, die der Ap-
plikation erlaubt, sie zu interpretieren, als kéansém von einer flachen Datenbasis.
Typische Probleme, die beim Arbeiten mit hierarchen Daten gelost werden mus-
sen, lassen sich auf diesem Weg einmal I6sen, d@ikationen kénnen in weiten
Teilen unverandert von einer flachen Implementigranf eine hierarchische Imple-
mentierung portiert werden, nur durch die Umstgjlanf die Nutzung des VFV als
Beispiel eines "Layered Views". Der VFV wird dureine sehr lokale Ausflachung
der hierarchischen Datenbasis implementiert, digadysch den Anforderungen der
flachen Applikation entsprechend aktualisiert wird.

Auf diesem Weg kénnen wir aber nicht nur die higheschen Daten lokal

flach zur Verfugung stellen, wir kdnnen auch digdhnisse der Mustererkennung,
die nun ja flach entstehen, ohne weiteres in déeanchische Datenbasis unter Modi-
fikation der existierenden Hierarchie zuriickscheaibDas Ergebnis der Musterer-
kennung ist also wieder eine hierarchische Ne&lig{eiter gehend wenden wir die
neuen Techniken auf die inkrementelle Mustererkagran, die urspringlich nur fur
flache Daten implementiert wurde. Insgesamt geséladen wir damit das Problem
der Mustererkennung in hierarchischen Netzlistdistzmdig gelost.
FUr einige Referenzszenarios, die aus realen Indapplikationen stammen, de-
monstrieren wir die quantitativen und qualitativéarbesserungen, die mit unserem
Ansatz erzielt werden kénnen. Die quantitativenekép werden anhand von Laufzeit
und Speicherverbrauchsvergleichen diskutiert. Diglitptiven Verbesserungen erzie-
len wir zum einen durch sehr kompakte (hierarcl@y&rgebnisse, zum anderen kon-
nen nun erstmals Netzlisten flr das komplette Desigarbeitet werden, wahrend
vorher nur Teilausschnitte geprtft werden konnten.

Vi

Acknowledgemens

| thank my professor, Prof. Dr. Hans-Joachim Bungafor leading me
through this project methodologically and giving sef-confidence in crucial mo-
ments. | want to thank Dr. Martin Frerichs, Dr. mi&n Neunhoffer, Hannes Arm-
ruster and the rest of the ATS department of Qiradk@ for the substantial support
of my work. | am especially grateful to Dr. Alexan&eidl for having the organisa-
tional side of my project in a perfect grip. In thed, | want to thank my family and
friends for understanding and believing in me.

Marko MiloSevi

vii

viii

Contents

1 INTRODUGCTION . ..ttt et et e et e e e e e et e e et e e eat e s esa e e sat e esan e saaneenenss 13
1.1 LY L A7 1] 13
1.2 OBJIECTIVES AND SCOPE. .. .ceuuittiittitteitiiiteet et ettt et e eaaseat et sttt st et rane et steraneererans 15
1.3 [0 1 1N 16

2 GRAPH MATCHING CONCEPTS IN VLSI .. et 19
2.1 BASICS OF GRAPH NOTATION. .t utttitttttettetteetttseseesaessnesnessntersssteesaestesstiersessniesessnersnies 19
2.2 (7Y T Y 7 1 = 11N 21
2.3 SUBCIRCUIT RECOGNITION THE APPLICATION OF SUBGRAPH MATCHING.........ueevvnervnnnnn. 23
2.4 INCREMENTAL PATTERN MATCHING. .. .cetueittneiiteeeeteeesaeesstaeeseaeeeaaeesaneesaneesnneesrneeennnnns 27
25 CLASSIFY PROJECT CLARULA DESCRIPTIVE LANGUAGEccvvtiiiiieeeie e e e e e 30
2.6 TREATING BIG NETS IN THE INCREMENTAL PATTERN MATCHING ALGORITHMcvvvvivneennnnns 35
2.7 INEXACT PATTERN MATCHING APPLIED TO SUBCIRCUIT RECORITIONccvveeivneeevneeenneenn, 39
2.8 ADDRESSING DESIGNS WITH EXTENSIVE SIZE BY EMPLOYINBIERARCHYcovvivniiiniiiniinnes 40

3 [LR Y AN O U 43
3.1 HIERARCHICAL ABSTRACTION INVLSI ..oeiiiiiii et e e e e s e e s e 43

G I 0 [0 (o Yo [V o1 £ T o 1R
3.1.2 Folded hierarchical model
3.2 E DA DATABASES ... ceetteetiee et e et e et e e et e et e e e e e e eat e s et e e st eeean e e aa e e et e e ran e eraeenrans
Tt I 1 o] Y PEERRRPRRRR
I v 1 Lo F=T 0 [12= 1 (o] o [
I T @ o 1= o Yo o SRR
3.3 NLDB
3.3.1 Object-oriented folded hierarchical model ARL...........ccccoiiiiiiiiiieee e, 54
3.3.2 Hierarchical concepts in NLDB ...ttt 55
3.4 PERSONALIZATION ..ottt e ttee ittt e et et e et e et e s b e et e s b e et e et e s b s eaa e st e san e st esbnseansannaes 58
3.5 POLYMORPHIC HIERARCHY ..euiitiii ettt ettt e e et e s e et s e se et s et e s s ea e st e sae s st e enesanessnenns 59

4 HIERARCHICAL MULTILAYER VIEWS ... et et aean) 63
4.1 TN T0] 10 o8 [N 63
4.2 ACCESS LAYER— PURE ABSTRACT INTERFACEctuiittiittiiiiitneeiiiieeteiiesaessnsesnessnesnnns 65
4.3 S N I (O =X = 67
4.4 LAYERED VIEWS AND THEIR OBJECTORIENTED ARCHITECTURE.......uieivtiiieieeiieeeeieeeenneeens 68
45 EXAMPLES OF VIEWS.....ctuiiiiteteite ettt e e e e et e e et eeeea e e st eeeaa e e ean e e s saeeeanseesansestneeernnnnens 70

5 VIRTUALLY FLATTENED VIEW ettt et et e e e 73
51 INTRODUCTION. .. ettt ettt eeet e eet e e et e e et e e eeae e e e e e eea e e eaa e s st e e s an e e sansessansesanseeasasenrneennnnns 73
5.2 VIRTUALLY FLATTENED VIEW - HIGH-LEVEL ARCHITECTURE......itttnieivieeiteeeeieeeeeeseaeeeenns 75
5.3 VIRTUALLY FLATTENED VIEW CLASS REPRESENTATION. .. .cuuiiuiitiiiieetieiieeeneeeiieeneesneenans 77
54 DEVICEFLAT CONTAINER = ITERATOR ...uuiitiitiiie et et e et s et st seass s s sane st s sansesnessnees 81
55 VIRTUAL ELEMENT BUILDER ...ttuiitittittieetietttsitiestessaessnessassasssnsstnssansstesssssssseesanssnsesnns 83

5.6.1 ODJECES WIth FOIES. ...ttt e e e e e e e e 85
5.6.2 Consistency of the virtually flat view datatpn objects with NLDB database
(VIrtUal_CONTEXISAVEL) ..eiiieiieeeee e e i e et e e e e e e et e et e e s sttt eeeeaaaaeeesesaanannnnnnnernnnnnnnees 89
5.7 CONTEXT-SWITCHING/ MULTI-CONTEXT NODES.....uuuiiiiertiteereetieeseersneessersnnsseesessneeees 94
5.8 MULTI-CONTEXT (OVERLAPPED) FLAT DATA PORTION......uuuuuutirriirrerrererrereeeaeaeessessannnnns 101
59 COMMITTING OF THEMFDP (AND IT’S REPETITIVE USE ...vveeevveriiireeeeeeeeeeeeeeeeeeeaneennas 104
5.10 DISTRIBUTED VARIANTS. ettt teititeeeteeeeteeeeteeeaaessaaeesesssessaessanseeaseeeanseeanareraneeesneeees 107
5.10.1 Technique for the topology adaptation....cee...ecevveeeeeeeiiii e, 107
5.10.2 DYNamIC VAriant CrEALIONmmereerrerieeieeieeettaaaaaaeeeae e s s aaaasenseeeeeeeeeeaaaaaaaaeens 109

5.10.3 VirtUAl VAINANT T ...evve ittt ettt e e e e e e e e s e e s e et e e e e eaba e eeseaaans 110

5.10.4 Layered NOUESccooeiiieitti et e e e e e e e eaeae e e e s e s sassnnsae e saenerrareaeaaaaaaens 112
L S B Y 1Y 7. TP PRRP 114
6 APPLICATION OF THE VFV TO SEARCH ORIENTED PATTERN M ATCHING
Y I (] 2 RSP SPR 117
6.1 INTRODUCTION. 1.ttt et e e e e et e eeeetttta e s e e e e e e e e e eeeeeeeeaes bbb s s e e e e e e e e eaeeeeessbbban s aaaaeaeaeaaaaas 117
6.2 HYBRID LAYER ...ttt e ettt e e e et e e ettt e ettt et s e e e e e e e e e e e e eeee e babaa s aaaeeaeeaaaaeas 117
6.2.1 Positioning of the Hybrid [AYer.............oo it 118
6.2.2 Cir_VirtualBuilder, the concretisation of tvértual ElementBuilder 120
6.3 ADAPTATIONS OF THE FLAT ALGORITHMcttietiiutiiieeeesiitieeeeessastneeeesesasseeeeesssnsnneeesessns 121
6.4 HIERARCHICAL RESULT REPORTS.ttttttiesiiutttteeeesaanttteeaessansbenasssnnstseeeesssnnsssessesssnnnnens 122
6.5 EXAMPLE OF THE MATCHING PROCESS BY INCREMENTAL HIERRCHICAL STRUCTURAL
PATTERN MATCHINGttt etiutttttteeesauttteeeeesaauttteeeeesasseeeeeesansteeeeaeesassssseeaesaansbseeeeesannneeeessannsnneeens 124
6.6 (@7 T 0) PP 124
7 (010] N[0 151 [] TR 133
Appendix
APENDIX A (PERSONALISATION BY VARIANTS) ...uiiiiies ciiiieee it eeiiie e eitee e 137
APPENDIX B (FINGERPRINT VERIFICATION PRINCIPLE)... iiiiiiiiiiieeiiciiee e 143
APPENDIX C (HIERARCHICAL MATCHING EXAMPLE)......... cooiciiiie e 144

Table of figures

FIGURE1.1-1—TYPICAL TOOL EVOLUTION CURVEcitunieitiieeeieeeteeeeteeeeaess et sesaaeeseanessaneeseneeeanees 14
FIGURE 2.1-1— EXAMPLE OF THE GRAPH NOTATION ...uuietttiietnieitieeeteeesieeeteeesansessanssetnesssnessnneeeenns 19
FIGURE 2.1-2—BIPARTITE GRAPHuiittieett ettt ee et e et e et e e et e e e sat e s et e seteeeaa e s aaa e sateeraneeerneernes 20
FIGURE 2.1-3- HYPER GRAPH. ...coutiiitiieiie e e et e e e e ae s e et e e et e e e et e s et e e s st e e ean e s eaneesaanseenanss 21
FIGURE 2.2-1— CLASSIFICATION OF THE PATTERN MATCHING IN GRAPHSuiitiiiiii et eeeee e eeans 22
FIGURE 2.3-1—A) STANDARD GRAPH WITH ONE CLASS OF VERTICE®) BIPARTITE GRAPHccune. 24
FIGURE 2.3-2—BIPARTITE GRAPH REPRESENTATION OF AN INVERTER CIRCUL......cucivniiiniiiiiieiieeineenn, 24
FIGURE 2.3-3—NAND PATTERN AND ITS IMAGE IN THE EXAMPLE TARGET CIRCUT.......cccuvivniiinienninnnens 25
FIGURE 2.4-1— INCREMENTAL PATTERN MATCHING ...euuiitiiitiiitiiitietieesiieeneetnesaneesassstnssssetessssnsesnees 28
FIGURE 2.5-1— PATTERN MATCHING TOOL QCLASSIFY — EXECUTION FLOW. ...uuivniitniiieitieeieeenieeneesneennens 30
FIGURE 2.5-2— CLARULA LANGUAGE STRUCTURE ctuittiittiiieiteiie et et e ets st s ssaessasssnessnssaneeanessnees 30
FIGURE 2.5-3— OPTIONAL PORT USAGE EXAMPLES ... cuuituiiitiittiiiiiieetetie et estiessnessnsesnessnssaneesnessnees 33
FIGURE 2.6-1— EXAMPLE OF THE MATCHING PROGCESS......uciittiiiiieiiieeeeiee et eeeieeesaessesneseenssennesees 36
FIGURE 2.6-3— BPFVECTOR PARTITIONINGuuituueitteeienieetaeestieeeeaneesaaeseetaesessnesssnessnneessnesenneesenns 38
FIGURE 3.1-1— FLAT REPRESENTATION OF THE2-BIT ADDER. ..uucivtueiiteeeiieeeiteeeeniesenneeseneeesanseesnneees 44
FIGURE 3.1-2— HIERARCHICAL REPRESENTATION OF THE2-BIT FULL ADDER.uiivvniiiveeeeeieeeeneeeeaneeeenns 45
FIGURE 3.1-3— ENCAPSULATEDHIERARCHICAL GRAPH EXAMPLE.......civviiiiieceeiee e e e eeean 47
FIGURE 3.1-4— FOLDED ENCAPSULATEDHIERARCHICAL GRAPH EXAMPLEcuviiviiiiiiieieeiieeeeeeee e 49
FIGURE 3.2-1— THE CONCEPTUAL DIAGRAM OF THEOPENACCESSDATABASEcvviiiiiiiiieiieiieeieean 53
FIGURE 3.3-1—UML MODEL OF THENLDB DATABASE.cuuiittiiitiitiiiieieeiereete e e esaesanse s ssnaasnaes 54
FIGURE 3.3-2—LOGICAL AND GATE CELL tuuituiittiitniittiiaeiteeie it e it et s et seane st esan e st sssn et ssbaeransateranas 56
FIGURE 3.3-3—TOP-DOWN CELLS CONTAINERccuuittiitiettiiitietneetniseneesnessnsesnssstsenessntesnessnsssneesnsssneees 58
FIGURE 3.5-1— AN INDIAN OR AN ESKIMO? . .euiiniiiiii ittt et s e et e s e ea e s b s eansaberanas 59
FIGURE 3.5-2— IDENTICAL DRIVER AND LATCH CIRCUIT THAT HAS TWO DIFFERENT HIERARCHICAL

[N U 1 S T 60
FIGURE 3.5-3— THE PATH OF PLANETMARS IN THE GEOCENTRIC SYSTEM THE ANALOGY.vcvvvnennn.. 60
FIGURE4.1-1— CHAINING THE TRANSFORMATIONS OF THEHIERARCHY ...cuviiivneeiiiiceeieeeei e 63.
FIGURE4.2-1— ACCESSLAYER CLASS DIAGRAMcuuiitteitteeett e eeei e et e e et e e s e eeataaeestsseanaeseteeeeneees 66
FIGURE4.3-1—STATIC BASE VS ACCESS LAYERuuiiituiietieite et e e et e e ete e s eteeesaa s eseaneesaaeeeanseeeaneeees 67
FIGURE4.4-1- TEMPLATED HASSOURCE CLASS DEFINES THE LAYERING PROPERTY.....uccuuiivniiueinneinnns 68
FIGURE4.4-2—VIEW POSITIONING RELATIVE TOAL LAYER, STATIC BASE AND OTHER VIEWS.............. 69
FIGURE5.1-1-THE CONCEPTUAL DIAGRAM OF THEVIRTUALLY FLATTENED VIEW. ...civviiviiieiieiieennns 74
FIGURE5.2-1-HIGH LEVEL ARCHITECTURE OF THEVIRTUALLY FLATTENED VIEW. ..iiviiiviiiieiieiieennns 75
FIGURE5.3-2—VIRTUALLY FLATTENED VIEW LAYER PLACEMENT INSIDENLDB CLASS HIERARCHY... 78
FIGURE 5.3-1—SPECIFIC PIN FUNCTION CODE.......cctuuuittttttuaeeresinneesessneessssnsnaesssssnaeesesieesesnnn 79
FIGURE5.3-2— SEQUENCE DIAGRAM OFV IRTUAL_PIN OBJECT AQUISITION. ..uuuuusieeeeeeeereeeeernrnnnnnanneeeeens 80
FIGURE5.4-1— CLASS DIAGRAM OF DEVICEFLAT CONTAINERvuuiiitnieeeieeeteeeeteeeeneeseaeeeennssennneesens 81
FIGURE 5.4-2— EXAMPLE OF DYNAMIC DEVICEFLAT CONTAINER CONTENTiivunieitieeeeieeeeeeeeieeeeneeens 82
FIGURES.5-1-VIRTUAL_ELEMENTBUILDER ARCHITECTUREccetttiieeitietnniaaeeeeeeeseereeeeesnnnnnnnnnnnnnns 83
FIGURE 5.5-2— EXAMPLE METHOD OF THE GEWIRTUAL() FAMILY .eeiiiieiiieiiiiiiniieseeeeereeeeeaeeeeeessnnanns 84
FIGURE5.5-3- OBJECT WITH ROLES— DESIGN PATTERN PROPOSAL......cuuiitniiiniiieiiiieneeinesieeseesnnas 87
FIGURE5.6-5.5-4-VIRTUAL__CONTEXTSAVER AND VIRTUAL EXCLUDER CLASSES.......ccccvvvviieeeeeinnnnn 88
FIGURE 5.5-5— THE EXAMPLE OF THE DEVELOPMENT OF THE CONTEXT SAVINGREE.......ccccvvvvvniivneinnnns 90
FIGURE 5.5-6— ALGORITHM OF THE FUNCTION GEWV IRTUAL (ACCESS NODE* PTR)uvvtiiiieieiieeeaaaaaaanns 93
FIGURE5.7-1- RELATION BETWEENVIRTUAL _NODE CLASS ANDBASE _NODE CLASScccvvvvieeieriinnnnn. 95
FIGURES.7-2- EXAMPLE OF A MULTI-CONTEXT NODE .. cvuiivuiiiniitiiiineiieiieiteitestssssssneesnsssneesnessneees 96
FIGURES.7-3— POSITIONING OF THE VPIN ITERATOR CLASS IN THECSIcovviiiieiiiiiciie e 97
FIGURES.7-4—ARCHITECTURE OF VPIN ITERATOR AND IT'S RELATION TOVIRTUAL_NODE. 98
FIGURE5.7-5— OPERATORH+() METHOD OF THEVPIN_ITERATORCLASS.....ccceteiiesiieeennnnnnnnnenneeneeeeeees 8.9
FIGURE 5.7-6—OPERATORF+() OF THE CLASSDOWNTHEHIERARCHYvvvvviiiiieierieeeereeeeeeeesessnssnnnnnns 99
FIGURE5.7-7—BLOCK DIAGRAM OF THE OPERATOR-+() METHOD FROMUPTHEHIERARCHY CLASS.... 100
FIGURES5.8-1—MULTI-CONTEXT TOPOLOGYEXAMPLEccevniiiiiieee e e et eae e e e e s v e eeans 101
FIGURE5.8-2—MOTIVATION FORT HE INTRODUCTION OF MEMENTO ... cuuiitniiiniiiiiieiieitieiinesnannnns 103
FIGURE 5.9-1—EMBOSSING STEP......ituiittiittiittiittietnetteeteetnetsessnestesasstesaesstesniesasstresessserans 105
FIGURE5.9-2— EXAMPLE OF PORT CREATION ...uttiitittittettiettetteesnssnesnssssesssnsstnessnssssesiaessnssnnesnns 106
FIGURE5.10-1-TOPOLOGY ADAPTATION PRINCIPLE EXAMPLEuiivtiiniittiiiieineiiesineeinessnsesnsasnnns 107

Xi

FIGURE 5.10-2- RECOURSIVE REPRESENTATION OF THE ABSTRACT INTERFAGEF THE CLASS

ACCESS VARIANT . L1ttt iee e e e ee ettt eeeiatet e s s s e e e e e eeeeeeeeeeaeesetan i aeaaeeaeeteeeessssssnnnnansaanaaaeaeaaeeennnns 108
FIGURE5.10-3— THE EXAMPLE OF THE TECHNIQUE OF TOPOLOGY ADAPTATION.......cuveivvneeenereeneeennn. 109
FIGURES.10-4—DISTRIBUTED VARIANT TREE. ...ittiitiitiitiiieeitieieete s eete et ssasstsesassnsesnssnssnsenns 111
FIGURE5.10-5— EXAMPLE OF THE DISTRIBUTED NODEucuuittiiiniiiniiinieineitneiineetersnessniesneesnessnenns 113
FIGURE6.2-1—INTERFACE OF THE CIRNSTANCE CLASS OF THE CLASSIFY PROJECT.......ccivuiivneiinennns 118
FIGURE 6.2-2— PLACEMENT OF THE HYBRID LAYER CLASSES IN THEACCESS DEVICE INHERITANCE

[0 FX] =Y 119
FIGURE 6.6-1— STRUCTURAL PATTERN MATCHING TOOL— CLASSIFY - ALGORITHM EVOLUTION AND

AVAILABLE VERSIONS. ... etuiittiieittetetee st eeeaeesaaee st sseaaaee st eeesan e eaaeeetaeseannsssaneerarassennnserens 125
FIGURE 6.6-2— QUANTITIES OF THE EXAMPLE HIERARCHICAL NETLIST FAMILES.uuveeveviiieeeeeviieeeeens 126
FIGURE 6.6-3— NR. HIER. AND FLAT MATCHES FOR DIFFERENT HIERARCHICAL NETLIS.cccvuvveennnnes 128
FIGURE 6.6-4—LINEAR DISTRIBUTION OF THE RATIO BETWEEN THE NUMBERF FLAT REPORTS AND THE

HIERARCHICAL REPORTS ... ettutitieeeeteeeeteeeste e sttt eeeaa e s saseeeaa s es e e e et eeean e et eeetaeerennsesraeerenns 128
FIGURE 6.6-5— TIME COMPLEXITY OF DIFFERENT ALGORITHM VERSIONS.......ccvuuiiiiieeiinieeeieeeeieeeennes 129
FIGURE 6.6-6— MEMORY CONSUMPTION OF THE DIFFERENTCLASSIFY VERSIONS......ccviiiviiieiieeneenn, 130
FIGURE 6.6-7— RUNTIME REQUIREMENTS FOR THE EXAMPLES IN THE DOMAINVHERE NO FLATTENING IS

@ 11T | =] =S 131
FIGUREA-L —VARIANT CRITERIA ... euiiteiteette it e iee e e te et s st esassa e saa e et e saaeeaa s st e san s et e st seasetaeens 138
FIGURE A-2 - RELATION BETWEENBASE _CELL AND BASE _VARIANTouiiiiiiiiiieeeeeiiiieeeeeviie e e 139
FIGURE A-3—VARIANT CRITERIA STORING DATA STRUCTURE ccuiitiiiiiiiiiiieeieeieeaeeiesaessnannaas 140
FIGURE A-3 — TOPDOWNVY ARIANTS CONTAINER. ... eeeuneietieereteeeaieeseteeeaneeeansesssseernseesneeeraeeenneees 141

Xii

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

1 Introduction

1.1 Motivation

The number of transistors that can be placed eesipely in an integrated
circuit has been increasing exponentially for miv@n four decades, confirming the
observations and predictions of Moore's Law [1].fdot, it has been doubling ap-
proximately every two years. For dynamic memory ADR chips the growth in
complexity has been even faster, as their capdoityples about every one and a half
years. Integrated circuit design must keep step wie increasing complexity. The
fabrication setup process of VLSI designs is veqgemsive, as well. Each mask set
that is necessary to be printed prior to massieelysction of micro-chips costs several
millions of dollars. Further, the time needed foe tdevelopment of a modern semi-
conductor product is critical. “Time to market tigically given in very narrow win-
dows. If one misses the optimal time to ship a pevduct, one also leaves the most
of the revenue to the competitors. In memory prédacbusiness, avoiding men-
tioned cost penalties is even more crucial as taggim in that business is very low.
For given reasons no trial and error approachlosvald in order to prove the correct-
ness of a design that is to be produced. Thusfyiragiand proving that the design
architecture is correct and feasible to manufactarthe given realistic technology
prior to actual fabrication (achieving “first tinverite” principle) is utterly important.

The above stated requirements have coined numaretisdologies to model
and check the IC designs. One of the central msthméight the design complexity is
employment of the concept of hierarchical abstosctiThe overall development of
electronic designs is colored by hierarchical appho both from designing and build-
ing the schematics to the verification processfdbgint tools were introduced over
time to support the verification process, thus heak the designs from various as-
pects. Depending on actual technologies the sietots employed to perform the veri-
fication adapts and evolves. As the technology ldg@geand inevitably shrinks to
smaller scales different new problems related éoptysical effects that could be ne-
glected in the past emerge. In order to treat theseissues we have often new tools
that get integrated into the design and verificatieethodology.

The fact that the designs are hierarchical sh&i24 tools. The tools can
greatly benefit from the hierarchy as it offers gbdetely irredundant view on a de-
sign, but to achieve that “oasis” an often big @muirrored in the required solution
algorithm complexity has to be paid. In some cdbescomplexity is moderate and
there are even tools that naturally benefit fromn ltrerarchical representation, on the
other hand there are tools for which the yearseoktbpment are necessary in order to
reach the stage where they can successfully entpéohierarchical concept. Making
tools hierarchical can be seen also as one stépeitool evolution process. The typi-
cal development of the tool is driven by the impade of the check it performs and
the complexity of the data that is verified. As theta which is the point of analysis
constantly gets more complex and thus cumbersoave,amd new solutions have to
be integrated into the tool methodology to keepdtfiert spent to manage the data in
acceptable range. The graph given in Figure 1.%-Bhowing the typical effort
“waves” [2] that the tool/check experiences duritggevolution. In the example we
see that the check was at first performed manuidlit,was possible e.g. in the times

13

Chapter 1 - Introduction

Check
Effort

. C Ay A, Time
S %, ())
(Z 0 3 &)
74 (//e/’/s 70, /’y //@ //e
9//0/)

Figure 1.1-1 — Typical tool evolution curve

and cases when the designs were not having monelib@ transistors. As the data
complexity has grown (exponentially), to preveng #xponential growth of check
effort (given as a dotted line) a computer tookgetroduced. The tool in the moment
when it is introduced brings amazing enhancemedtvea can notice the drop of ef-
fort to the values that are even smaller than tfeeteemployed at the beginning of
the evolution. Cycles like this repeat after eagvdlutionary) improvement forming

the wavy shape.

Depending on the evolutive stage, at the givenecdirstate of the art we have
two kinds of tools: first that have reached thealepment stage to work directly on
the hierarchical designs and the second which stenef the tools whose algorithmic
implementations work exclusively on the designg there previously flattened, thus
simplified. The flattening process collapses akrhichical levels and makes the
model of the IC design whose layout is identicalthat of a chip which is being
printed into silicon. An additional class of todfdtering tools) that enable flattening
and other helpful transformations of the hierarahdesigns have emerged, as well.

Today, to the first group typically belong impartaphysical (design) rule
checks (DRC) and layout vs. schematics (LVS) methéacordingly, in Electrical
Rule Check (ERC) domain, where one checks theraaktorrectness of the design,
we have a lot of methods that are implemented abthiey can benefit from the hier-
archy, e.g. ESD checks, floating nodes check antedigh voltage checks (where
one checks if the given device in the design geposed to voltages it can’'t with-
stand). As another example device reliability clseckn be considered, where one
adapts the device robustness to its duty cyclef(dmpiency of exposing the device to
the stressed, non-conducting, mode). In all of@l@secks one does not need to have
the broad information about the environment in Whaagiven device is defined.

In cases where this is needed, the environmeitahyp crosses hierarchical
boundaries and is orthogonal to them. In thesescedeoducing the algorithm that
works directly on the hierarchical data is far framwial. In some cases the solutions
for these problems were found, like in mentionedMéhecks, but still, as we have
pointed out, in most of the cases we perform tgerdhm on flattened netlists. One
of the examples is the parasitic extraction probl&he dependencies between para-
sitic nets are typically cross-hierarchical andanse dependent.

Another, for the motivation of this thesis the mwmsportant, example of the
tools that work on flattened schematic data aresdghbat employ structural pattern

14

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

matching in electronic designs. These tools arguiatly used in ERC, but also can
enhance different other areas of EDA. In some setsetural pattern matching
makes the schematic design processing more irgetli®dy employing the matching
one can become aware of the context in which angilesign device is used and thus
gain additional power to optimize the given dewceo analyze its configuration with
greater precision finding unwanted incorrectness.

One important realistic application of this pracesthe ERC check where one
sets the proper dimension of the drivers of thehke$ in the electronic circuits. The
ratio of the parameters of the transistors thatnaeenbers of the given driver circuit
have to be adjusted to the driven circuit loadsThia task suitable for pattern match-
ing. One can identify all latches in the electronicuit and than find their corre-
sponding drivers. After this step one can comphesparameters of the transistors
identified as driver building elements to the regments that are imposed to them
and adjust them. As this adjustment is highly dpetd the given instantiation place
and the designers that employ hierarchy and bufférdnt contexts out of generic
parts (predefined subcircuits) can’'t be aware ofgabkntitative aspects easily, the
benefit of a tool that pin points incorrect configtions is vital.

As we have mentioned one of the prerequisitesdgppcessing step) for to-
day’s state of the art structural pattern matcHorglC circuits is assuring that input
schematic designs are flat. This is present throughhe community for, to our
knowledge, all available solutions.

This approach introduces several disadvantagest, Eie size of the flat de-
sign can't be even compared to the hierarchical iarmverwhelms the typical re-
sources of today’s computers. If the analysisillspgissible the memory requirements
are then typically so high that more expensive B4¥tachines are required and the
corresponding runtime becomes an issue, too. Omleeafnost challenging problems
that comes as a consequence of the fact thatahsformed (flattened) design is used
is back-annotating the results to the original stdiics. This can be difficult as, by
working on the flat netlist, we obtain redundargulés that are over-bloated and hard
to compare (and find out that they are actually iognfrom different occurrences of
the identical subcirucit of the hierarchical designThe described problem creates
additional time demanding analysis activity (marvpo of the tool user and disables
the automatization of the process and its integmato modern hierarchical design
development environments.

For that reason, there is a need to enhance thetwstal pattern matching
process and solve the algorithmically very demaggiroblem in order to allow per-
forming of that task directly on the hierarchicahematic designs. Similar problems
to those that we have pointed out in the abovedexipresent in all of the tools that
are, at the common state of the art, performingk#ien the flattened netlists.

1.2 Objectives and scope

Our main goal is to achieve the algorithmic saltfor the problem of struc-
tural pattern matching in hierarchical designs.c8ithe complete proven solution(s)
for pattern matching problem in flat IC designsealty exist and also other tools that
were written to work on flat data share some similastacles which disable them
from running hierarchically, we want to try to fimdcommon solution that could be
applied to any flat algorithm. For this reason, veere decided to search for our solu-
tion directly in the database which prepares ammbseas the design data to the client

15

Chapter 1 - Introduction

application. We want to upgrade the standard datpaesenting abilities by allow-
ing views which make the hierarchical organizatibthe given design relative.

The fact that the modern, standardized EDA datshase typically object-
oriented gives us a beautiful chance to includeaaded and very useful concepts that
the object orientation brings in our solution. Henfor reading and understanding of
this thesis one needs to be familiar with advaragédct-oriented concepts and UML
notation language, which is the most suitable anthe same time the most general
way to describe different aspects of the objectrdad concepts. Furthermore, our
solutions will include different design patternsatimake the solution more robust.

The expected results are at first, the functiammatectness of the model that
needs to present the data to the user algoritren(fnendly) flat way and keep it con-
sistent with the original hierarchical data. Wetlfier expect that the upgraded origi-
nally flat structural pattern matching tool run geates irredundant results after, by
our contribution possible, precise calculationsedly in the place where a given
topological context has been defined (relativehtodpecific subcircuit). Additionally,
we expect better runtime of the pattern matchingliegtion and more economic
memory consumption. This is challenging as the lpralof structural pattern match-
ing to which we want to apply the model that présehe hierarchical data in a flat
fashion is NP complete. Taming these two parameteosild push the border of the
size of the designs that are manageable towardy'stlll chip sizes. That fact puts
one into position to run the corresponding cheoksealistic application cases in sub-
linear times (sublinear concerning the flat netlige). We expect that the algorithm
complexity depends rather on the hierarchical thhaflat design quantities.

One additional important quality that we want thiave is to use the existing
successful pattern matching industrial project cletety transparently with the up-
graded database and that the solution we propogestble to be used with no or
small corrections with other tools that favour tiathierarchical netlist representation.
Note that possible corrections of the solution twauld be applied to other tools
would also be a continuation of this research andlevcontribute to the evolution of
the hierarchy transforming (hiding) data presenter.

We will apply the proposed solution to an indwstgroject, the pattern match-
ing tool - “classify”, which implements the incrental structural pattern matching
principle (studied by several groups) and experialgncheck our expectations and
value the benefits that the proposed approach drimgorder to do that we will em-
ploy real-life industrial test cases that are tlhigldy quantified, so that we can gain
confidence and better understand the performes tasicome.

1.3 Outline

Chapter 2 of this thesis gives an overview ofdtae of the art flat graph pat-
tern matching algorithms, for the application in AQAD. Further, it presents the
enhancement of the incremental search orientechgragiern matching algorithm that
was developed by Qimonda AG and the Institute afrivilectronic Systems (IMS),
at the Leibniz University in Hanover. Moreover, #aptation of the mentioned algo-
rithm that prepares it for the hierarchical usaggiven. This proposed solution re-
solves the problem of supply nets (extensive tismededed to search for the pattern
whose potential target circuit image includes syp@ts), common for different algo-
rithms which solve the problem of structural patteratching.

The concept of hierarchical abstraction is disedsa Chapter 3. We present
the wide application of the hierarchical concephature and science, with the accent

16

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

on its application in EDA CAD. Thus we present themal model of the folded en-

capsulated hierarchical graph. Moreover, the hyséord evolution of EDA databases
which implement the folded encapsulated hierart¢lgcaphs and the overview of an
example EDA database (the case study of a logicadonatabase) are given. Using
the example database we discuss different hie@chigorithms and abstract data
structures which typically used by the tools whahalyse hierarchical data. The
chapter is concluded with a vision of flexible veewn the hierarchical data after it
was pointed out that the hierarchical layout ofgheen data model is not unique, but
polymorphic. By polymorphism here we mean that\gegiflat design can be repre-
sented by many hierarchical netlists which are ghgmonyms.

Chapter 4 brings the general concept of the lalygrews on the hierarchical
design data. View’s architecture and layering témpie are discussed. The visions of
possible example applications are given, as wele 6f the visions of the hierarchical
views is the view that hides the hierarchy in orderepresent the local data portions
that appear to be flat, bringing all the deviceplaryed to the same level. We call it
virtually flattened view.

In Chapter 5 we demonstrate the detailed impleatiemt of the virtually flat-
tened view, following the view architecture definedChapter 4. The chapter starts
with the explanation of the high-level, object-oied architecture of the view, fol-
lowed by detailed presentation of each of its cphea parts. In this chapter, a set of
unique data-structures that enable the view cneatimd maintenance are explained.
We present the novel context saving tree and theosging process that alters, just
locally, the layout of the hierarchical design, imddthe flat view as the separate, new
subcircuit. Additionally, we present the coverireghnique, which is used for fast
changes of the topology of different design sulis; affected by the embossing
process. This technique is crucial for fast VFVoaithm runtimes.

In Chapter 6 the application of the Virtually Féated View is given in order
to solve the problem of hierarchical pattern matghitogether with the case study
that serves as the evidence of the qualitativeqaraahtitative achievements of the new
approach. Therefore, the process of adaptatioheofjeneric VFV to the application
domain is explained. This is achieved by creatiba gpecific hybrid layer that fla-
vours the generic classes of VFV with the propsrtieeded for pattern matching. In
the case study we analyse the quantitative andtafize aspects of the VFV applica-
tion in incremental structural pattern matching.

Chapter 7 summarizes the results of the oversdlaiech.

17

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

2 Graph Matching Concepts in VLSI

In this chapter we are going to give the necesagretical background for
the problem of structural recognition in VLSI. Weepent the importance of this con-
cept with its application. Throughout sections 231 and 2.7 the overview of the
field development is given as well. Details abche problems, strategies and solu-
tions that favour the understanding of the thesesamostrophed with more thorough
descriptions in section 2.4. In this section wesadide the concept of incremental
pattern matching as a solution for subcircuit rextgn (SR) problem. We point out
the importance and the benefits this approach bribgt as well isolate the problems
the realisation of the concept has faced duringydaes of real-life industrial applica-
tion. In section 2.6, we propose the algorithmiluson for the performance problem
of the incremental pattern search engine. In somadistic application cases it was
demonstrating indeterministic complexities. We dode the chapter (section 2.8)
with the analysis of the further development digedd of this field, particularly the
need of enabling SR algorithms to work on hierarghinput netlists. Thus, this chap-
ter serves also as a realistic foundation thatfigstand settles the motivation to de-
velop the general pattern matching algorithm ferdwichical chip designs.

2.1 Basics of graph notation

In order to explain the algorithms for graph matchit is necessary to formally
define the notation of graph [3]. In genemaph G represents a pair of two sets, V
and E, G = (V, E), such th&at0V xV . The elements of the set V are calexitices
and the elements of the seelges(also known adines) It is common and conven-
ient to represent graphs with the graphical natatibiere vertices are drawn as dots
and the edges as lines connecting them. An exaofech a structure is given in
Figure 2.1-1. The graph has in total six vertiddsere exist four edges. In the figure
we represent the graph formally, using sets andeadisgraphically. Note that in the
graphical notation for a graph any shapes are hotterest, but just logical connec-
tions between the given entities.

Vi V3
°
G = {V,E} Ve
V= { V1, Vo, V3, V4, Vs, V6} W v
E={{vy va}, {vi, va}, {Va, va}, { V1v5}} v >
A

Figure 2.1-1 — Example of the graph notation. Blacldots represent the vertices and the
lines the edges.

We can define several quantities to measure gr&ursnstance, the number of verti-
ces defines therder of the graph. The order of graph is determind@|a$iddition-

ally the number of edges is usually determinedjcaﬂs(alternatively, the correspond-
ing orders can be determined wit and |E|, respectively). In respect to the order

19

Chapter 2 - Graph Matching Concepts in VLSI

graphs can be finite, infinite, countable, etc. Tnaphs we use will be always finite.
The order of the example graph [} = 6.

The graph without vertices and edges is an em@phg(J,[1). We simply
write shorter:[]. The vertexv is said to bencidentto an edge if vlle. On the other
hand, the two vertices incident to an edge aredalhds.We say that two ends of an
edge aradjacent.

We define, further, thdegreeof the vertex: df). The degree of vertex equals
the number of edges which it is connected to. fstance, the vertex (Figure 2.1-1)
has the degree] = 3, while the vertexs has the degree @) = 0. The vertex with
the degree value that equals zero is also knowineasolated vertex

We use graphs to model different complex entitigseir atomic parts and
connections can have properties. Therefore, wanelgfroperties also for the model
(graph) elements. Vertices and edges can conténmation. If the information is
trivial and each atomic part has a label, we say tite graph is Ebelled graph The
information can be as well more complex and eadh@igraph elements can contain
a set ofattributes In that case we have attributed graph

It is possible to classify graphs according to\thkies of the defined proper-
ties. For this thesis it is important to definelass of graphs where the edges are re-
stricted in a specific way.

Let r= 2 be an integer. The graph G = (V, E) is r-paifithe set V can be
divided in r partitions such that no edges existvieen the vertices to the same given
partition of the set V. Therefore an edge is alldwebe placed only between the ver-
tices of different partitions. A special case dabtblass of the graph is 2-partite lwr
partite graph The vertex set V of these graphs can be dividetwvio partitions,

V =X0OY, in which the vertices have no mutual connections, formally:
DeDE:e:{x, y}D xOX OyOY. We show an example of such a graph in Figure
2.1-2.

/-‘
=

[=

Figure 2.1-2 — bipartite graph

Bipartite graphs are widely used for pattern miaighn the area of chip de-
sign verification. They are particularly used ire threa of EDA to model the elec-
tronic circuit.

We will further define éhyper graph A hyper graph is the generalisation of
the graph where the edges are not exclusively atimgetwo vertices, but a set of
vertices. Formally, a hyper graphis a pairH = (V,E) whereV is a set of elements,
callednodesor vertices andE is a set of non-empty subsets\btalledhyper-edges
or links. ThereforeE is a subset of P(VI\I, where P(V) represents the power set of
V. The power set is the set of all possible subsktsset. While graph edges are pairs
of nodes, hyper-edges are arbitrary sets of noded, can therefore contain an

20

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

arbitrary number of nodes. One example, togethér thie graphical notation of the
hyper graph is given in Figure 2.1-3. This examplaimilar to our general graph
example from Figure 2.1-1. It has as well six w&si still, as we can see the
connections group more than two vertices togethehe graphical representation the
edges are given as overlapping areas rather thes li

R
V={ Vi, W, V3 V4 V5, Vs }
e v (v} ‘

® ;5

Figure 2.1-3- Hyper graph

Hyper graphs are an alternative for modellingédteztronic circuits. They are
suitable due to the fact that the electronic cirelements often have a big number of
multiple mutual connections and the edge concefitehyper graph allows that.

2.2 Graph matching

As it has already been pointed out, different aggpions of the graph theory
request comparing two graph structures. This wa®@vation to develop a family of
graph matching algorithms. Graph matching can badtated as follows: given two
graphs (pattern graph)& (V,, Ep) and (target graph) &G (Vi Ey), find one-to-one
mapping f: \b—V, such that§,v)UE; - (f(u), f(v))UE,.

Traditionally the first group of algorithms thatere developed to solve the
graph matching problem were search oriented algost Typically they require a
rigid identity between two structures that are cameg. For this reason they are also
known asexact pattern matchinglgorithms. Traditional, search oriented (exact)
methods are based on recursive breadth first ahdept search (with backtracking)
from the selected candidate starting point insidetarget graph. Therefore, for dif-
ferent starting places the algorithm attempts $b ttee environment of a given vertex
for the isomorphic structure. However, differenéfus heuristics made these methods
powerful and tuned for appropriate applicationse Heuristics typically take advan-
tage of the specific information which the grapldes, as models of the application
area entities, carry. Different preparation proessare done in order to achieve typi-
cally linear runtimes. The specific algorithms #rerefore developed exactly for cer-
tain type of graphs that they are analyzing.

On the other hand, the group of algorithms develogleronologically later
can accept also more relaxed requirements congethanresemblance between the
pattern graph and the target graph. They are éoferant. In this case, alternative
approaches are used, such as optimization theeawyahnetworks, genetic algorithm,
probability theory, etc. These algorithms are peniaginexact pattern matchingVe
can now shortly summarise: exact pattern matchiggrishms are optimal from the
angle of accuracy, while inexact pattern matchilggrithms are fast, but approximate
and are not 100% reliable.

Different research groups have developed particalgorithms from both
classes. From the search oriented class we wiltiorethe algorithm of Ullmann [4]
where a greedy heuristics is applied. The algorittontinues the recursive search

21

Chapter 2 - Graph Matching Concepts in VLSI

choosing the path which satisfies the set of Istalistical constraints. On the other
hand important is the approach in the algorithn€Cofneil [5], where the graph gets
globally partitioned to prune the number of appiater candidate starting points. An
additional approach in this class is the graph hatcusing Binary Decision Dia-
grams [6]. In the area of inexact algorithms vasitlieoretical concepts are applied.
We will apostrophe the approach based on optinsisatieory and statistical physics
— graduated assignment [7, 8]. This approach adbhptsptimization function of the
general graph matching problem by developing ia aliscrete Taylor series and re-
duces it to the assignment problem. In contragraph matching that is NP complete
[9], the assignment problem has a known polynocoahplexity solution: theoftas-
sign algorithm[10]. Graduated assignment led by graph labellwty good discrimi-
natory properties has shown respectable results.

Both algorithm classes have found applicationdifferent areas. Newly de-
veloped techniques for inexact pattern matchinglace traditional search oriented
algorithms in the domains where the speed is assantd, more important, where the
target graphs are expected to be just an approximaf the pattern graph. In general
this is used for image recognition applied in dif@ areas such as: character recogni-
tion, computer vision, GIS (Geographical Informat®ystems) and medicine.

Exact pattern matching algorithms are still usedras where the complete accuracy
between two graphs is essential.

Exact and inexact pattern matching both define sub-problems (Figure
2.2-1). We can compare two different graphs in otderove if they can be matched.
Additionally, it is possible to check if a givenagph is contained in another graph.
This is a problem of subgraph matching, which canlé&fined as follows:

Given a graph S and a larger graph T, find all hébgraphs of T that are
equivalent to S.

The subgraph isomorphism problem is computationfdlyharder than the
graph matching problem. Although both belong todless of NP complete problems
the graph matching can employ different globalistias when comparing two graphs
that can simplify building effective heuristics. i$tkind of simplification is not possi-
ble in subgraph isomorphism problem.

Graph Patter

Matching
| |
Exact Pattern Inexact Pattern
Matching Matching
Graph Subgraph Graph Subgraph
Isomorphism Isomorphism Homomorphism Homomorphism

Figure 2.2-1 — Classification of the pattern matchig in graphs into two general groups: Exact
pattern matching and inexact pattern matching.

22

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

2.3 Subcircuit recognition, the application of subg raph
matching

The application of pattern matching in EDA is vifat different parts of the
design verification process. The application domaircalled subcircuit recognition
(SR).

It is useful to recognise some meta-structure ftieengroups of interconnected
devices in many application scenarios. We cangefbez, use SR to understand the
semantics of certain devices. The role of an idahtransistor is not the same in an
analog circuit and in some logic gate. During thgaadesign verification process it is
necessary to compare the netlist which is extratiath the layout to the original
schematic netlist. This process is known as LVSyQua vs. Schematics). In case
where the netlist extracted from the layout is (@mposed exclusively from atomic
elements) the benefit of SR is obvious. We caratsolhe hierarchical structure and
compare it to the original hierarchy of the scheasaiStill even if the netlist extractor
is hierarchical, the hierarchy of the extractedisteis usually slightly different, so
rebuilding the original functional blocks (that siin the original hierarchy) is neces-
sary to prove the identity between these two ristlidn the other hand the (from lay-
out) extracted netlist sometimes contains someaepttysical characteristics of the
design which are modelled as parasitic interconmeatetworks, the passive RLCK
networks that realistically model the dynamical &&bur of the device interconnec-
tions. By applying SR we can isolate parasitic meks that can be later evaluated
(acquiring statistics important for timing charaation) or reduced [11, 12]. SR can
optimise the simulation too. Certain parts of tlesign that are structurally expensive
to simulate and whose internal states are not tefest can be recognised and ab-
stracted as behavioural models, or just simplifremtiels (we come back here to para-
sitic network reduction).

Last but not least, SR is enabling static timinglgsis of the custom transistor
level design. We can abstract each implementatfotine logic gates as a separate
subcircuit, perform the timing characterisationtbe given block definitions and fur-
ther analyse their interconnections in the produgat@ level netlist. Gate level net-
lists allow also the functional verification of theetlist. Thus, by SR we make the
functional verification of the transistor level @@ possible. There are numerous
other possible applications for the SR in the afe&DA. Simply, SR makes the veri-
fication process more intelligent and context dmivall of these reasons strongly jus-
tify the thorough research and the developmenhefgeneral, flexible and powerful
SR strategies.

It is common to model the electronic circuit asrapdy. For different purposes
different types of graphs are used. For the purpbseibcircuit recognition (SR) the
application of bipartite graphs (section 2.1) isncaon.

As we have shown the vertices of the bipartite lgrafe divided in two parti-
tions (sets). In the domain of SR one set of vestimodels the devices (transistors,
resistors, capacitors etc.), or in other woettsmentsof the electronic circuit, while
the other models the interconnections between ¢lees. These interconnections are
callednets A net is an optimal way to represent a connedbeiveen arbitrary num-
ber of devices.

This is due to the fact that the representatiothefcommon connection be-
tween n elements by direct mutual referencing waldchandni{n—1) references

23

Chapter 2 - Graph Matching Concepts in VLSI

(@ edges), while employing the special class of theicgs that model the

connection require2[n references (n edges). This can be illustratetl wisimple
example given in Figure 2.3-1. In the figure, werdha complete graph of four verti-
ces. In order to interconnect its vertices we nggdedges. If we introduce an addi-
tional vertex class (shown white in the exampled,nged only four edges to represent
the same connections between the graph vertices.

a) b) ®

Figure 2.3-1 — a) standard graph with one class ekrtices. b) bipartite graph, where connections
are modelled separately as a vertex class, shownawhite circle.

Interconnections between the multiple devices &ry ¢ommon in electronic
circuits. Think of the supply connections (powed gmound connections). Millions of
devices are all connected to a single supply iotarection. Representing them with
the strategy under (a) would require dramaticalbyrenspace than the bipartite graph
strategy. We can say that the memory requiremanptaxity of the first strategy has
the complexity O(f), while the second has O(n).

Both classes of vertices typically have a type regdiwith them. Devices are
typed simply by the kind of the entity they modeéts can be typed by the semantics
of the signal they are carrying. This kind of tygiis important for different algo-
rithms that are interpreting the electronic cirsuithich are modelled by graphs, but
not necessary for the storage of the design alone.can broadly distinguish supply
connections and signal connections. As each citbaitis modelled by the graph has
nodes which model active devices (i.e. transistéh®)y would be typically connected
to some power source, having part of their ternsimal a constant potential.

To summarise, the model of the electronic circallsf(typically) into a class
of bipartite attributed graphs. We can considerekample of the bipartite graph rep-

Vdd

PMOS

D

Figure 2.3-2 — Bipartite graph representation of aninverter circuit, realised in CMOS technol-
ogy.

24

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

resentation of an inverter. Figure 2.3-2 showssttieematic representation of the in-
verter together with its graph model. The deviaesrapresented by squares while the
nets are given as circles. By mapping the theaetnodel of a graph to the electronic
circuit, we can now exchange our vocabulary andthseterminology of the EDA
equivalently with/instead of original terms fromethgraph theory. Using this new vo-
cabulary we can now (re)define the problem of swhdi recognition.

Subcircuit recognition isolates the instances spacifiedpattern circuit oOr
simply pattern)inside the largetarget circuit The example of this problem is given
in Figure 2.3-3. In the given example we have agepatwhich defines structurally a
functional circuit NAND (a). The circuit is builtoufrom the proper link of the parallel
connection of PMOS transistors and serial conneatiotwo NMOS transistors. The
instances of this pattern are being searched iexample of the target circuit, given
in (b). That target circuit contains the imageld pattern and it is marked with a dot-
ted rectangle. Note that the pattern has also el@firode types. Not any conglomera-
tion of transistors connected in the similar wée lthe NAND pattern will than lead
to a match. It is necessary that the source teteofathe PMOS transistors are con-
nected to the fixed supply voltage (Vdd) and that source terminal of the NMOS is
grounded.

! AN
NAND Pattern: Target circuit:
,ﬁ
4 > -“ \; 4 > J > -«
lﬁr ; lﬁr
—
> [i
— —_— [—
— — —
Q i ‘}—4 ‘H
— [[

Figure 2.3-3 — NAND pattern and its image in the eample Earget circuit.

This fact is crucial for the correct matching bstveell of a big help for the al-
gorithms that were devised to serve like an enfpnéhis problem.

After a pleiad of technology dependent algorithmbere the patterns and
different approaches to match a given subcircuteweard-coded into specific func-
tions, more general tools arrived, based on sulbgsagmorphism. Since the subgraph
isomorphism problem is in general NP complete &eddiesigns on which EDA tools
are to work on are complex with the trend of inereg that complexity, more general
and always more efficient solutions were searcbeddifferent solutions transfer and
adapt the known strategies from the theoreticdtl f&d graph matching, enriching
them with the domain specific heuristics.

The heuristics are led by the sparsity of the gsathiat represent integrated
electronic circuits. The topology of the bipartigeaphs that model circuit designs has
some typical properties. For instance, as we hagetioned the number of device
classes is limited. They all have terminals whiohreect them with other devices. The

25

Chapter 2 - Graph Matching Concepts in VLSI

number of terminals is strongly limited as wellpigally not bigger than four and
each of the terminals has its semantics. Nets@rémited by the number of incident
device terminals. Still, typically, the design cts of a lot of small local nets op-
posed to several big supply nets, or some sigrtalwigh a big fan-in or fan-out fac-
tor, depending on the circuit semantics.

Specifically for the pattern we can distinguish tkinds of netsinternal nets
which are strictly connected to the devices thadtar the pattern andxternal nets
which can “communicate” with the rest of the targetuit. They actually connect the
pattern image to its environment (in the targetwit). For instance, the net between
two serially connected NMOS transistors in our eplampattern is internal. The nets
that connect gates of the corresponding PMOS an®8Nansistors (the input nets)
are logically external.

The heuristics of the algorithms that were deveadoisetypically led by these
basic properties of VLSI electronic circuits. THgaaithms which employ the corre-
sponding heuristics to favour the typical propertoé the VLSI electronic circuits are
typically linear. Still, unfortunately, the heuitt do not grant the linear complexity.
In some cases even the tuned depth first and lrdiasit search algorithms demon-
strate indeterministic complexities (towards theamential worst case complexity
defined by the general theory of NP complete prokle

One of the first algorithms and the project thaidteto define the general tool
for subcircuit recognition in electronic circuits the approach of Lullau et al. [13].
This group has devised a specific partitioning atgm that labels each device or net
in the circuit with a specific integer number. Tmamber depicts the immediate
neighbourhood of the given device. The most intergsact of the labelling algo-
rithm is the application of prime numbers. Eachidewtype, or device terminal type
(for instance in a transistor drain source or thee)is coded by a distinct prime num-
ber. The overall label of the device than is thenber that is obtained by multiplying
the codes of the adjacent device terminals tohe algorithm uses an abbreviation of
the bipartite graph (multi-place graph). In thiggh model apart from the set of ver-
tices we define the set @piders Spiders correspond to edges and nets together
(where the net is thieody of the given spider and the edges ardesy. This repre-
sentation reminds also of hyper graph. Therefoeeldabel is given to the spider in-
stead of a net of the bipartite graph. The lalb& spider is the product of the labels
(prime integers) of all its legs. The importantmedty of a label which is obtained by
multiplying prime numbers is that one can easilst i€ the certain combination of
device terminals is incident to the given devigader) simply by dividing the device
(spider) label by the given “sublabel”. If the l&bare dividable without residuum the
test is considered successful. In this way therdlgn saves a lot of time that would
be spent for the unsuccessful tests, just by atteratic operation. The authors claim
the expected linear complexity.

Several other algorithms exploit the idea of labglthe pattern and
the target circuit that originates in the Cornedlgorithm. The algorithm that further
develops the application of this idea in the are&R and has achieved the respect-
able linear complexity in most of the applicaticases and in the same time became
one of the most referenced algorithmic solutionstfi@ SR problem is the algorithm
of Ohrlich et al. - Subgemini [14, 15]. The pattemmd the target circuits in this ap-
proach are modeled as the bipartite graph. Thisristhgn defines two phases. In the
first phase the labeling algorithm conceptually imto Lillau (Corneil) is being
applied. This algorithm achieves non-local labelifiglifferent nodes with respect of
their neighboring topology in the target and patteircuit. This enables it to achieve

26

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

extensive pruning of the search space and to esalaypically short candidate vector

of possible instantiations of the pattern, from ebhihe algorithm proves if the target

circuit contains the match or not by the breadtst §earch. Subgemini authors show
the efficiency of this heuristic method by testsl atill point out its weaknesses. First
Is that the algorithm is unable to match any patierage circuit with shorted external

nets. This is simply due to a fact that in the Hipagraph any shorting of the net is

equivalent to net merging. That means that the axadghe pattern circuit with some

external nets shorted has than less nets thatatiterp itself. This automatically leads

to the fact that Subgemini fails to identify theem pattern instance. Another problem
of Subgemini is the fact that any target circuittchéng process that includes evalua-
tion of a supply net is experiencing long runtimélis problem comes from the fact

that all active devices (MOS transistors, Bipotansistors) require the power supply
which means that a pair of its terminals is alwalygshe common high voltage and the
ground. In bigger circuits this leads to very larggs whose analysis (linear search)
always implies long runtimes.

Different groups have worked on the problems thdigémini has faced. One
interesting solution for the shorted external nedbfem of Subgemini is given by
Ling [16, 17]. Shortly after the publication of Sydmini he points out the problem of
shorted external nets and offers the solution éysiorming (upgrading) the bipartite
graph with some of the properties of the hyper lgrape introduces specifiedge
units (EU). Each EU describes the connection betweendewice nodes (over a net).
If we observe a shorted net in this way we can lealecthat the set of EUs in the
shorted net is the superset of the EUs of the hontesd external net. This means that
the Ling’s algorithm can find as well the instanaéth shorted external nets.

2.4 Incremental pattern matching

As we have described, different groups have wokkeenhancing the match-
ing process in order to optimize the solution ® pinoblem of SR. In parallel to these
inventive heuristics an additional approach haslwes/eloped. This approach is ac-
tually the upgrade of the atomic SR problem, whame locates the images of the
given pattern circuit inside the target circuitirisremental pattern matchinge con-
nect the outcomes of single atomic matches andhese as premises in order to iso-
late higher level complex contexts inside an etewtr circuit.

In order to illustrate the core idea of this SRastgy we will go back to our
NAND example. If we want to match the NAND patt@ircuit in the target circuit
incrementally, we can divide the process in thtepss At first, we match the simple
parallel connection between two PMOS transistorsiciv is the standard SR, de-
scribed in the previous section. After this we rhathe serial connection of two
NMOS transistors. If the tool for matching cangafbcating the image of the pattern
in the target circuit, alter the topology of theggt circuit inserting new solid abstrac-
tion in place of the recognized topology, we coukk now these “intermediate”
matches in order to isolate the final context, um case a NAND. In Figure 2.4-1, we
see these three patterns and all places wheredtahes for them occur in the target
circuit marked. Therefore we match at first theaflal connection once. Note that in
the target circuit, there are two occurrences efgérial NMOS connection, but only
one of them is, together with the matched imagéhef PMOS parallel connection,
forming a proper NAND gate.

The given strategy has a number of advantaged, Fiene wants to match
difficult contexts that are composed of many eletagndevices it is much more natu-

27

Chapter 2 - Graph Matching Concepts in VLSI

ral to first detect smaller functional parts of tiigen context, and than to match it on
the higher level. This approach is easier to urtdedsand to explain and in the end it
Is easier to write the corresponding patterns. Hfeuytsince we match some more
complex patterns step by step, employing pattérasshave usually not more than two
elements, we obtain shallow backtracks, no maftevei are using breadth first or
depth first search. This brings faster executiores especially in highly symmetrical
circuits.

PMOS PAR pattern: NMOS SER pattern: Target circuit:

=N

-+ =k > . L

VAN

!
NAND pattem: T - E

PMOS

PAR
! !
; |~ |~
NMOS M M

SER

Figure 2.4-1 — Incremental pattern matching. Threepatterns are defined: Parallel connection of
two PMOS transistors, serial connection between twdiMOS transistor and the proper link of
these two high-level abstractions forming a NAND piéern. Additionally the example target flat
circuit is shown with marked places of the instanttions of the mentioned patterns.

Since we have now specified the fact that a grdupaiching processes is in-
teresting to us and we want to observe it as aayhet’s try to define the structure of
this group and its elements.

An atomic entity of the incremental pattern matghprocess in SR is rale.

A rule corresponds to the single SR process whéeg the structuralpattern is
matched aractionis performed. We can therefore say that the suleuilt out of the
structural pattern and the action which is exectftdte image of the pattern is found.

It is useful to represent the pattern as some &frgtaph regular expression, to
make it templated. In this way a single pattern weatch a family of structures. This
property elegantly solves some known problems of Sith as the problem of
shorted external nets of the structural pattermeneral it can help matching different
generic circuits or circuits done in similar teclogies with a single rule. On the other
hand allowing the pattern to be rich in templatezthanisms makes the implementa-
tion of actions more complex [18]. For this readiois necessary to carefully choose
the set of templated properties that would maketet compromise between the im-
plementation complexity and the ease of application

There can be several types of actions. Possiblenaccan include evaluation
of the given image of the pattern or modificatiafishe topology of the target circuit.
The modification can, for instance include exchaoféhe matched star of resistors
with a triangle. The special case of modificatiblattis crucial for the incremental
pattern matching is the action abstraction In this case we simply form a solid
block that stands for the given pattern image. Dhigk is connected with the rest of
the target circuit by the pins that are analoguddcexternal nets of the pattern.

28

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Once we have defined the rule as the atomic pargefine a rulsequenceln
our example we have used a sequence of threeirulesier to match the NAND
logic gate.

In order to make the process of matching more plovere can introduce also
a flow control to control the order of rule exeoutiand make it generic (to react to
the outcome of the single rule matches). In thig wa combine the pattern matching
rule serial sequences with conditional or uncoonddi loops and branches. By defin-
ing flow control we introduce a specific descrigtiule language

This kind of language was for the first time imtbced by Chanak in his PhD
thesis project [18]. The project of Olbrich/Barke] also defines the specific descrip-
tive language, developing the idea of Chanak. Tlaiguage that has been named
Clarula (classify rules language) will be subjeicth@ following section.

There is nevertheless one known alternative tdathguage which controls the
proper execution of the incremental pattern matghin

Pelz et al. [20, 21] were motivated by the LVSqass and have proposed a
specific pattern matching algorithm witherarchical patternsin this approach the
pattern has its own hierarchy and the order of agc(executing SR algorithm ab-
breviation based on depth first search) is detezthiautomatically by the specific
algorithm that analyses the hierarchy of the paitBelz introduces the pattern as the
generalization of the problem he has analyzed.gda was to prove if the hierarchi-
cal schematic netlist is identical to the flat ittéxtracted from the layout. The order
of matching is chosen in the bottom-up fashionidaldy. At first the most elementary
patterns would be recognized and than their resisiésl to recognize further higher
level pattern towards the top. Pelz determinesctmestraints for the hierarchical pat-
tern topology. The preparation algorithm would lgp@ the hierarchy of the pattern
and alter it if it finds the violative propertieEhese properties are for instance exis-
tence of a given topology both as a separate ahistnglower level pattern) and as a
flat topology in the same hierarchical level of gadtern. For instance the hierarchical
pattern of the latch has one inverter given aspars¢e subcircuit and another as the
proper connection of CMOS transistor pair. Thisdkai a pattern would never match.
Pelz’s preparatory algorithm resolves this violatio the given hierarchical level of
the pattern by flattening the given abstracted lmgpp or abstracting its flat version.
Another constraint is the existence of flat matthhe pattern that is distributed be-
tween two hierarchical levels of the input circUihis is being checked by flattening
the pattern and than trying to match it. Pelz fartldentifies the problem of reordered
pins of the pattern abstraction and the problenteohnological difference of two
functionally identical parts of the extracted rsttliHe solves the latter problem by
introducing a specific library of patterns that aféhe equal type, but have the differ-
ent, alternative implementations.

All of these problems still exist in the case whendefine the flow control of
the incremental pattern matching by the descrigawguage. They are left to the user
to avoid them. In this sense the programming witbhsa descriptive language be-
comes also creative and a sort of art. Not jusabse of possible flaws, but mostly
because of powerful possibilities for matching ctempcontexts that the language
gives to the rule writer. Note that the algorithofi$®elz can be still combined with the
language and serve as some kind of syntax cheak thiecrules written by the expert
are being compiled. The syntax check can issueimgsrand errors pinpointing in-
consistent rules, that for instance are impossdlee matched.

We will, in further text, describe the languagdimed by Olbrich and Barke
and its algorithmic solutions together with thequ@ concepts devised for this ap-

29

Chapter 2 - Graph Matching Concepts in VLSI

proach. This approach has, in its later developra&ges, shown stable and accurate
industrial application. By describing that projest an example we want to introduce
the reader to the Clarula language and properlypehe context for the explanation
of the contribution of this thesis.

2.5 Classify project — Clarula descriptive language

We will present here one realisation of the conaghe incremental pattern
matching strategy. This realisation defines a djgetanguage (Clarula) which im-
plements basic flow control constructs and certemplate mechanisms for the struc-
tural pattern. This research project was realise®lorich/Barke for the application
in the real industrial environment. The goal of fhieject was to achieve the general
purpose SR tool based on incremental pattern nmagcfihe industrial version of this
tool is namedlassify The flow of the tool could be drafted as in Fig@r5-1.

Flat netlist

Classify @
ruleset
/ \

Flat (redundant)
error protocol

Flat netlist
enriched by
additional subcircuit elements

Figure 2.5-1 — Pattern matching tool cClassify — ecution flow.

The flat input netlist is compiled into an in-memdipartite graph model of
the circuit, together with the rule set. The rutésean instance (a program) of the
descriptive language - Clarula. Therefore, the nrgmepresentation of the ruleset
consists of the framework to lead the program etx@cyflow control) with the num-
ber of specific “pattern side” graphs that reprégka graph regular expressions. The
output of the tool is the partitioned netlist andpeecific error report file. This ASCII
file has a syntax which enables it to be used twgewvith third party graphical user
interfaces that represent the hierarchical degi@aslence Compos®r Therefore, the
idea is to integrate the pattern matching tool vatspecific rulset (which performs
specific electrical rule check of the design) iftomposet to be able to graphically
specify exactly the places where some violationdw&sirred.

The rules language program has a clearly defitrettare. It starts with the
type definitions that are followed by the net ahochk predefinition assignments. This

#comment

rules block

rules

< type definitions>

<net and block predefinitions>

<rule definitions>

< protocol comment>
.endrules

Figure 2.5-2 — Clarula language structure

30

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

section is followed by the rules. Keywords and cands start with a dot (.). The
program is bounded as a structure that begins avitbles keyword and ends with a
.endrules keyword. If the first character of a line is ‘#hdt line is treated as a com-
ment. No inline comment is allowed. The concepstialcture of the Clarula program
Is given in Figure 2.5-2.

The block <type definitions> strongly declares #ia¢ of types that are going
to be used throughout the program. The types aigraes] to devices (blocks), nets
and ports. The assignment keywords .atecktypes, .nettypes and.porttypes respec-
tively. One example of the type set is:

.nettypes signal power ground tobedriven pdrive ndrive fixedMultCon nMultCon
bidirekt .

This statement declares ten different user defigpés that give semantics to the nets
used throughout the given Clarula program.

The patterns specified in the rules can demanrettain type for a net in order
to match. The rules can assign types after suadessitches. However Clarula uses
the naming convention of the nets in the desigassign the initial typing of the tar-
get circuit. This is done in thenet and block predefinitionssection. With the state-
ment.netpredef the user can assign a type to a target net acgptdithe string regu-
lar expression. If the target circuit net name inascthe string regular expression ap-
propriate type is assigned. For instance:

.netpredef 'vblh*:power

would assign the typpowerto any net in the target circuit that has a namehvh

starts with a string “vblh”. Arbitrary number ohks of this type is allowed, meaning
that we can define arbitrary number of rules tagassypes according to the string
patterns.

The initial types of the atomic blocks of the &irgircuit can be read directly
from the design models. Each device in the elewroimcuit design has a clearly
specified type.

In this way we have specified the vocabulary fgirig the patterns and as-
signing the initial types of the electronic circUfurther program structure represents
the collection of rules that are combined with tilog control statements.

Clarula defines three types of rules:

e Block rules
* Adjacency rules
* Netrules.

The most general and in the same time mostly uskdtype are the block
rules. This rule type can match the arbitrary $tmat pattern and apply a certain op-
eration on the pattern image in the target cir@iibck rules have the following typi-
cal syntax:

.blockrule <name> <port list>
<element 1>
Pattern: [<element 2>]

[.gets <assignments>]

o [.flatten <element list>]
Actions: [.param <parameter definitions>]

31

Chapter 2 - Graph Matching Concepts in VLSI

[.check <check list>]
.endblockrule

The block rule has its name and the list of pdrte ports specified inport
list> correspond to external pattern ports and theyaameell defining the pins of the
instance of the given abstraction that can be ieddry the appropriate action. This
header line is followed by the structural pattedfidtion and a mixture of possible
actions that can be performed on the matched imégee pattern inside the target
circuit. We can recognise that this realisatiomhef rule follows the standard structure
of the rule for incremental pattern matching, desmd in the previous section.

The pattern is specified in a syntax that resembile SPICE netlist format.
The SPICE netlist format represents data as afisievices whose types are deter-
mined and whose mutual connections are specifiecgttgyencing the net names in a
device terminal list. This kind of textual repretaion is natural and already known
to the designer, a possible user. The syntax isalgtenriched with several concepts
needed for pattern matching. First, elements oh#ftkst can have defined types. The
type is assigned to a net or a block by writingnigsne followed by a colon and the
specific type name (e.g«l:inv a b c:pwr d:gnfl The element of the pattern can also
define specific parameter values that are requwodak identical to the candidate ele-
ment in the target circuit (PARDEF) in order to ofait with the pattern element. We
can formally write down the syntax of the singlereént of the pattern:

<name>[:<type list>] <port list> [PARDEF <paramete definition>]

Additionally, the language defines one possilbbbraviation of templated
properties. Clarula defines the concepbopftional ports By employing this concept
one can match a family of circuits by a single grait Optional ports allow the pattern
to have generic connections (that appear in sostantiation cases and in some not).
The language however does not allow the genericbeurof devices that are the
members of the single pattern. This is rather aghidy applying the rule recurrently,
employing the flow control. The example of thisastgy will be given together with
the definition of the flow control structures.

The ports can be divided into three clasdésndatoryports, are the terminals
that have to exist in the pattern image in orddrawee the correct match. On the other
hand,optional ports can be left unmatched and the pattern asodevean still be suc-
cessful. Special kind of optional ports amelltiple optional ports. The semantics of
optional ports differs in the port list that isaathed to the element in the pattern list
and in the port list which denotes the list of exéd ports. We will illustrate both
strategies employing the examples in Figure 2.BH3t, let's analyse the meaning of
the optional port in the external port list. Th@milar rules are specified in our ex-
ample under a, b and c. The first rule allows tattgon to have two external ports, the
second requires three while the third specifieptire b as optional (written [b]). That
means that the port b is allowed to have exteroahections but it is not required to.
As a consequence if we apply these three rules®target circuits shown in the fig-
ure under d and e, the first pattern would matdly tihre example in the circuit d, the
second pattern would match only the circuit undaneé the third pattern would match
both circuits. To conclude, the optional externaitghas allowed us to “compress”
two similar patterns, with respect to the extepwt configuration, into a single rule.

32

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

.blockrule serresl a c

1ab
iz E c .blockrule orl aB cd {e} {f} x
NN AN ,
.gets serres:res R, Ry xl:orab {e} x

. s
.endblockrule x2:or o d {f} x
.gets gate:or

.endblockrule

f)

a) 9

[
[
[
|
|
[
[
|
.blockrule serres2 a b ¢ :
rl ab |
22 bce :
.gets serres:res ¢ | ﬂ H
.endblockrule |
, EW e
.blockrule serres3 a [b] ¢ RN R, : ﬂ
=kl
|
|
[
|
|
|

9)

rl ab

2 be

.gets serres:res

.endblockrule
<)

€)

Figure 2.5-3 — optional port usage examples. a, Ind c) three variants of block simple block rule
to match the serial connection of two resistors wht and without optional ports. d, e) target circuit
for the patterns defined. f) rule to match the genec number of inputs or gate. g) Recognition
sequence.

Multiple ports have similar semantics, but in additthey allow multiple tar-
get side matches for a single pattern side mulyptgonal port. The net can have a
number of ports that connect to it and not justisigely O or 1.This concept is very
useful for recognising the circuits implementedlifierent, similar technologies. For
instance the same logical circuits can have twteidiht power supply solutions can
be matched with the single rule using this stratéy can abstract all power (or
ground) nets with a single multiple port .This cept is as well useful for matching
the generic circuits. In our example figure, unties specified the pattern that can
detect an OR gate circuit with the generic numbi@nputs. Additionally the target
circuit shows one implementation of 8 input or gitaealized with four two input or
circuits and the recognition sequence that leadstanget circuit into a topology
where it has one or gate with eight inputs. Thetiplel optional ports, as it can be
seen in example, are denoted by curly bracketsoff<pame>}).

Similar to this example we can now notice that dp&onal port concept can
trivially solve Subgeminie’s problem of the shorternal ports. Any external port
pair that can be shorted can be defined as a pamandatory and the optional exter-
nal port

To conclude, this actual application of the consdpr the structural pattern as
a structural regular expression witnesses the cmees of the analysis of Chanak
[18] where he predicts that due to the implemeotatiomplexity just a carefully cho-
sen mixture of the possible graph regular expressamcepts should be used. Note
that an alternative for optional ports would beting exhaustively separate rules for
each of the combinations of these generic elemenureences. In the case of the OR
circuit example this number is (theoretically) mife!

Once the pattern is matched Clarula can execnterder of different actions.
There are four action classes. The tool can (rigyagsrameters to certain blocks in
the circuit, using a keyworgbaram. Further, it can by issuing a commagets insert
a new block, exchanging it for a topology that thie has matched. The block is pre-
cisely connected by the pins specified in the rhlete that the algorithm determines
the proper usage of optional ports. In order to enthle tool more powerful it is possi-

33

Chapter 2 - Graph Matching Concepts in VLSI

ble also to collapse some blocks which were altgiiao some previous rule. For this
reason the keywordlatten is used followed by the name of the block thatas ig
context and which is supposed to be flattened. €@enple of this concept is when
after the recognition of latches, the rule writeants to keep just their weaks and re-
use forwards for some other purpose (they can partaof a driver driving the next
latch that is connected in cascade). In the erdgckieck action is issuing an entry for
the error protocol file if an arbitrary test conaiit (which can be for instance a test on
specific parameter values of the devices that ateimed) succeeds.

The other two types of rules have the similar ayrbut a slightly different
pattern and action specifying concept. We sketeimthriefly just for completeness.
The work related to this thesis is in the scopblotk rules.

The adjacency rules concentrate on devices. Theypginterconnected de-
vices of the kinds that are specified in the raance with no respect to the topology
they build. The only criterion is that they areadjnt. Additionally to the kinds of the
device types that are to be gathecethets the nets that define the stopping criteria
and after which no matching is further performelisTkind of rules is especially use-
ful for isolating parasitic networks. By employitigis rule type RLCK networks of
the arbitrary topology can be easily found and hagjted.

The third rule type matches exclusively nets. maeis matched and appropri-
ate conclusion is applied on it according to ifetyg) and the type and the number of
ports which are attached to it. They are usefufdet signal propagation.

As we have already mentioned the sequence ofaxieution can be con-
trolled by the simple flow control. Apart from tisequence, that is defined by simple
applying the rules one after another in the progtating, for and while loops are
defined. Their semantics is however different te tbops with identical names de-
fined in procedural programming language.

The for loop executes a group of rules as longrgsof these rules match. Its
execution is as well optimised. For instance, ifvage two rules in the for loop:

for
{
Rulel
Rule2

}

, if the first rule matches and the second doesimé,for loop executes again the first
rule. If it in this new attempt doesn’t match, @rtbe target circuit was not altered, we
can be sure that neither the second rule will btcineal. Therefore, the for loop exits
after the matching process of the first rule, skigghe second.

This kind of loop is very useful for the recurranatches. For instance the
matching process from our OR gate example wouléxseuted by the simple pro-
gram in Clarula specifying the for loop and thegrule we have already defined.

for

.blockrule orl a b cd{e}{f} x
xl:ora b {e} x

x2:or ¢ d {f} x

.getsgate:or

34

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

.endblockrule

}

As we have stated in the example the syntax ferfoh loop is composed of
the.for keyword and the curly brackets.

Another loop type, thavhile loopis similar to the for loop. This kind of the
loop executes a set of rules if another additicedlof the rules matches (if any rule
from this set matches).

The language which was specified here servespasvarful and flexible tool
to run the context driven netlist processing. lmrGla, it is possible to write tools
which perform important static rule checks or mtie optimization preparatory steps
for the simulation. Although powerfully conceivetle potential of this strategy is not
being fully used due to different issues relatethtoreal realisation of the concept for
general hierarchical designs. The concept was mghted to work with the flat input
netlists. Their size is extensive. First consegaeadhat the tool can be run just on a
certain blocks separately and not on the full chip.

Further, the engine for the SR is the depth 8esirch algorithm that is con-
strained only by the circuit element types. Sine#tgyns have a complex structure,
once the starting device is matched, the algorithoursively approaches other de-
vices following the current device’s connectiongn@ections between the elements
are ordered. This is naturally important as evemnynection has a different semantics.
For example the first port of a transistor elemesgresents the drain terminal, the
second gate and the third source terminal. Afthoiong one of the ports of the cir-
cuit element, in the same order as they are defitedalgorithm approaches the net
which can have connecting ports to an arbitrary lmemof neighbouring elements. In
order to confirm or reject a match all possiblengatom the given net, in the worst
case, need to be checked. Of course, in casehinatue match is found the search is
terminated. This heuristic approach creates howseenetimes inacceptable run-
times. We have tried to optimize the executionha search algorithm by a greedy
approach where one chooses always the path foddjpth first search through the
“best looking” net (the net with the smallest numbé neighbours). This enhance-
ment of the depth first recursive search althouyinat for the application in the non
templated graphs becomes much more difficult itocation with the concept of op-
tional ports that is one of the most important naecéms in Clarula.

2.6 Treating big nets in the incremental pattern ma tching al-
gorithm

In this section we are going to discuss the eficy problem of the engine SR
algorithm of the Clarula language and propose tgerihmic solution for this prob-
lem. The experiments which witness the benefitthefapplied solution are discussed
together with other contributions of this thesiinapter 6.

There are nets in the circuit that have an exoepliy high number of
neighbouring devices, up to the orderi1of. Those are usually supply (power and
ground) nets, signal nets surrounding logical alettvns which have big fan-in/fan-
out or reference voltage nets. If a large net rssered, the algorithm tests all of the
possible connections in order to make a conclualmyut a match which always has,
unsurprisingly, a greater possibility to be falSberefore, observed from a given net,
this operation includes an exhaustive linear seadoh the whole structure of the pat-
tern has to be analyzed until the algorithm coneduthat it is attempting to match the

35

Chapter 2 - Graph Matching Concepts in VLSI

false candidate place for pattern instantiation. d&e choose to use a different order
when following device interconnections, so that éikamination of large nets is post-
poned. Then, there is a high possibility that, tftigse examples, these nets won't be
processed at all. This depends on the similariyvben the pattern and the false
match instantiation and therefore, how early tlgo@tthm can make the conclusion
that determines the current match attempt. In odse true match, while applying
different ordering of the recursion, it is also gibte to skip the processing of some of
the large nets. If there is more than one patlesbthe graph’s topology, we can ap-
proach the same device in different ways. Thuscaveclose the loop path directly on
the large net, without examining it.

L] L
Pattern 1: E«\mo—‘» ™ pattern 2: 4“—‘%‘“1

Vdd

I I

Netlist: !MO 21 ‘» Ml “»MZ J» VER .J» Mn
S e T T
| N :

Figure 2.6-1 — Example of the matching process

This new method will be illustrated with the examph Figure 2.6-1. Two
example patterns are matched against the nethstfillst pattern represents two tran-
sistors which are connected in parallel. This ieesy common pattern which would
merge two parallel transistors in the netlist. Beeond pattern is a simple conglom-
erate of one transistor and one capacitor whidomnected to its gate. We will try to
match both of the patterns to the given netlistitstg from the candidate place in the
netlist which is marked by the dotted rectangle atidition to patterns, the figure
shows an example netlist. Candidate element coiomscare depicted with a pair of
numbers. The first one represents the definitiateoof the terminal and the second
its weight. While matching both patterns, startingm the candidate element, we
would ideally proceed with the recursion by firsidwing terminal 2, then terminal 3
and in the end terminal 1.

In the case of pattern 1 we have a true match. algerithm will start with
M1, assume a preliminary match with m1 and follésvgate net. It will proceed with
the assumption of a match between m0 and MO. Thelmeccks the net connected to
drain of mO on the pattern side and finds thas itoannected to the already matched
ml. It verifies that on the circuit side drain oftMnd MO are also connected to the
same net. The same process is applied to the starromals. The algorithm returns a
match without examination of the other devices eated to Vdd.

If the algorithm first tries to match terminal 1 wfl/M1 and follows the Vdd
net on the circuit side, it has to examine all desiattached to Vdd as candidates to
match mO, which in the end also works but is expensrhat is exactly what the
original algorithm does, it just picks the firstrtrgnal of an element as the net to be
followed. As a result, the performance of this ailidpon is not perfect.

For Pattern 2 the algorithm should ideally trycheeck the gate connection of M1 and
conclude that the match is false as the type oflédwce connected to its gate is inap-
propriate. In the case of the original implemewtatof the depth first search algo-
rithm the matching process also includes a linearch over the power net Vdd. The
algorithm always starts with terminal 1 and seasateer all n possible neighbours.

36

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Therefore, an intelligent depth first search atgpon would always attempt to
choose the next possibility for recursion which mects to the net that has the lowest
number of neighbours and then approaches largeonbtsf necessary.

The realization of this idea is straightforwardtive case where patterns have
only mandatory ports. Simply from one exact pomthe graph, the algorithm can
pick the appropriate pair of pattern/circuit porgyich have a one to one correspon-
dence. The underlying statistical data can be ci@te while building the memory
representation of the circuit and maintained later

The pattern syntax in our classification methodudes the very important
and powerful concept of optional ports, as mentionEhis concept is making the
formulation of Best Path First (BPF), depth firearch algorithm much more sophis-
ticated. The algorithm will be explained in conttion.

This greedy approach is withessed to give gosedlt® by Chanak [18]. Since
the look ahead is just one, this greedy solutioghtnhot bring us to the best path for
the search. Therefore, after a net with a smallbemof neighbours can stand a de-
vice whose all other terminals are connected tanktg. However having in mind the
sparcity of the VLSI designs this is not likelyhappen even during the searches for
big patterns. In the case of incremental pattertcimavhen the patterns are small,
most often containing only two devices, the greapiyroach is optimal.

Proposal of Best path first algorithm

Our solution modifies the depth first search alpon and allows the arbitrary
(cheapest) approach to the different correct dairshe ordered pattern-circuit ports
before entering the next recursion level.

The solution, naturally, has to support the usdgeptional ports in the pat-
tern. Support of optional ports implies a very pder way of distributing port pairs.
The determination of the corresponding pattern partarbitrarily accessed circuit
port depends on the distribution of previously agghed circuit ports. In the example
in Figure 2.6-2.a the circuit side device, X1, Bgsorts which connect it to the rest of
the graph. All ports are connected to nets thatelapotentially different number of
neighbours. We attempt to match X1 to a pattekncdeP1, which has 5 mandatory
ports pA, pB, pD, pG and pH as well as 3 optiomatt pC, pE and pF as shown.
Optional ports are marked with square bracketss kgtow the strategy to proceed
with the recursion by first following the path tiugh the net which has the least num-
ber of neighbours.

X1 ¢l c2 c3 c4 c5 c6 element_type
P1 pA pB [pC] pD [pE] [pF] pG pH

a) circuit vs. pattern element
342561
b) optimal order of approaching circuit ports
3-C 4-D 2-B 5-G 6-H 1-A
4-E 2-B 5-G 6-H 1-A
3-D 4-E 2-B 5-G 6-H 1-A

¢) optimal searching path

Figure 2.6-2 — Example of BPF ordering for port pais

37

Chapter 2 - Graph Matching Concepts in VLSI

[C]
3

[E] | [F]

4

Rl >
NN (N @
wlw(~| O

4

olo|o| @
olo|lo| T

Table 2.6-1 Port Pair Distribution

Let the surrounding of the device be such thatatuker of visiting from the
Figure 2.6-2.b is optimal, satisfying the look athdaoptimum. The best search path
for our example is then shown in Figure Figure 2&-The path starts with the third
circuit port and picks its first possible pairingrpfrom the pattern side, port C. This
pair determines a context and influences possib&tipns and pair forming of the
ports that will be approached later. For instanbemvcircuit port 3 is paired with pat-
tern port C, circuit port 4 can only be paired with. On the other hand if we pair
circuit port 3 with the pattern port D, possiblertsahat 4 can be paired with either E

or F, once it is approached on the different raourtevel of the modified depth first
algorithm.

p:’+q
pl pz’+g—1 c;
1 Cr—l pﬁ—n

/
pj+}’1+1 o Pk

p1+q+1"' pdy CJ
C,q...C. \c

i+1 i1 ¢

JHl o Yn

Figure 2.6-3 — BPF vector partitioning

For illustration, Table 2.6-1, shows all possibistributions of the vector of
circuit ports to the vector with pattern ports.any case all mandatory ports have to
be matched. Matching of optional ports is, of ceursot obligatory. Therefore we can
make the conclusion that two circuit elements ¢@nmatched only if the number of

circuit ports (0,) is greater or equal to the number of mandatorysp@,,,), and on

the other hand smaller or equal to the total nurobeattern ports, the sum of manda-
tory ports and optional ports\f,), or:

1) Nop S Ny € N+ N

mp cp =

The solution for the context driven distribution mdrt pairs lies in combing
this simple inequality with recursion.

Let C be a vector of elements, c,,... , ¢,, which represent pointers to the

ports of the circuit element that is being procdsseheren is the number of these
ports and P the vector of elements, p,,..., P,..,» Which represent pointers to the

appropriate pattern optional and mandatory pon#erem andk are the numbers of
members of mandatory and optional ports, respdygtiddove vectors are shown in

The algorithm first attempts to place elementherel < i < n, together with
the elemenp,,,, where at first g equals zero. This attemptedeplacaccepted, and

38

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

the pair is formed if the number of circuit portsfdre thec (i-1) satisfies the ine-

guality (1) matched to the firstg-1 pattern vector elements. Additionally, it is re-
quired that the number of remaining circuit pottst follow the portc (n-i), should

satisfy the same inequality, matched to the nunabeemaining pattern vector ele-
ments,i+1,...,m+k

If (1) is satisfied for both parts of the vecttiren the pairp -c is taken. Oth-
erwise the algorithm attempts to check by the steseiteratively, while increment-
ing g, all possible pairings af, continuing withc, andp,,, (q=1) and on.

Further iteration on this level is done if latenfrihg deeper stages of the recursion, the
algorithm concludes that the proposed distributbmairs is not leading to the true
match. After exhausting all of the pairing possii@s for the given circuit port, the
algorithm terminates the present stage of recurar@hreturns false as match to the
earlier stage. Finding the match before this sinmpgans that, at every stage up to the
top, the algorithm would return true.

On the next recursion level the same algorithrpsstge performed on the lo-
cal portion of both vectors. This is illustrated@lin Figure 2.6-3 as the pairing of
portc;.

The solution is implemented in C++ programming laexge using mentioned
and additional, auxiliary data structures, sucla > of indexes of circuit pointers,
which is ordered according to the number of neigiing elements of the net that the
port is connected to and the tree which savesatigsion context. The module which
was developed is smoothly inserted into the olarigm leaving most of the code
intact. The places where the old algorithm wasrdateng (trivially) the next pair of
ports before diving into the next recursion stepldde clearly identified and iso-
lated.

The algorithm has shown stable and reliable indlsapplication for already
more than two years. The runtime improvement regcfoe some big examples, the
factor of 60! We will discuss the experimental fesior this algorithm in Chapter 6,
together with the other results achieved in thesih

2.7 Inexact pattern matching applied to subcircuit recognition

For completeness of this work, although these ggitres are not used in our
methodology for hierarchical pattern matchingsitmportant to give a brief overview
of inexact pattern matching algorithms that areettgyed for the application of SR.

Several inexact subcircuit recognition algorithems known in literature. They
are based on different classical pattern matchptgmzation based approaches. One
of the central places and astonishing results elneeaed by the application of gradu-
ated assignment algorithm, the optimization alhomithat combines iterative optimi-
zation approach with probabilistic physics. Thipmach has been applied and re-
fined in order to get the fast and robust matchalgprithm for subcircuit extraction
by Nicolay Rubanov [22-24]. In the work of Rubanbe, at first, defines a labelling
algorithm [25] that offers good discriminative pespes as a preparation for the ap-
plication of graduated assignment [7]. Further, atgorithm is carefully tuned and
altered in order to be able to isolate all instanakthe given pattern from the target
cirtcuit (represented by a matrix) in almost alpbgation cases. In order to fight the
main problem of inexact algorithms and that is t@spite their speed, they are not
completely accurate, Rubanov uses two other kngypmoaches in pattern matching

39

Chapter 2 - Graph Matching Concepts in VLSI

theory. He employs error back-propagation and postg decision making tech-

niques to refine the output of the incremental mtation process. The negative side
of this algorithm is the fact that the input targetuit is expected to be flattened. In
the industrial realistic application, this can beoasiderable problem.

Other approaches apply known pattern matchingntgales with bigger or
smaller success. Fuzzy attributed graph approastudied by Zhung et al. [26]. It
was however used in the pure university environméetefore the implementation is
not so powerful. Hence, the pattern which has hesnl for testing is hard-coded in
the algorithm. The pattern was the flat implemeatabf the NAND gate, consisting
of 10 vertices (4 devices and 6 nodes). Furthemgkes include SUBGEN algorithm
[27], that follows the genetic algorithm approacid ather exotic approaches [28-30].

2.8 Addressing designs with extensive size by emplo ying
hierarchy

In the realistic usage of algorithms for patteratching the common problem
that stays unsolved is the size of the input circlioday’s designs have often more
than a billion atomic elements in the flat repréaton. Therefore, they are not able
to be treated at first because their extensivewsizeh is far bigger than the typically
available resources. Apart from that, matchingitieatical patterns that are instanti-
ated a number of times leads to unacceptable restim

In this chapter so far we have intended to pregenimportance of SR for the
chip design verification. The applications and tenefits are numerous. Unfortu-
nately, to achieve the developed level of theahiision where one has a chance to
intelligently control the verification process istririvial. We have pointed out various
runtime enhancements for the matching processudémqgproblems and their solu-
tions. Still, one additional problem that stays ocoom and without an appropriate
answer for all the demonstrated algorithms is g@rgattern matching for hierarchical
input netlists! In all of the mentioned approacheshave the input netlist of a spe-
cific class - a flat netlist. As the chip desigme &pically hierarchical an additional
and expensive (runtime and memory requirement)ga®of flattening is a must be-
fore any analysis. As we have mentioned, this l¢adsability to perform checks on
full-chip designs at all, due to inappropriate @ses of today’'s computers. What
makes the matching of hierarchical netlists sohard

The main problem that the algorithm which has trlkwon the hierarchical
input netlist has to solve is matching across th®scuit boundaries. For instance, if
the netlist abstracts the definition of even anmeletary transistor device, it can be
referenced in a thousand of places building comgptexctures. This example is trivial
but in general the modules that the designers lfteh have “unfinished” contexts
that get their semantics only once the block iperly placed in its instantiation envi-
ronment. One additional example is, for illustrati@ driver of a latch that is ab-
stracted as a separate subcircuit. This requireneeiers the trivial hierarchical pat-
tern matching solution, where no matches acrossehédoundaries are allowed, not
very useful. There are nevertheless some attenipiisecacademic environment or
even some commercial tools which employ the singalibpproaches and which can
achieve results in some special cases.

For instance, interesting is the algorithm forr&iehical netlist comparison
(LVS comparison) — Hcompare [31]. This algorithriag on the identity between the
subcircuits and if the identity is proven the gisebcircuits are kept. On contrary this

40

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

algorithm flattens the subcircuits having differeaand performs conventional pat-
tern matching on the given hierarchical levelhitcurrent “master” level is identical
in two netlists it is kept, if not it is collapsedytime the level is referenced. The algo-
rithm execution strategy follows the bottom-up a@wh. To conclude, this algorithm
Is suitable for comparing two hierarchical nethgth similar topologies. If the to-
pologies are different the algorithm performs fldttening of both netlists.

Terem at al. [32] developed the specific appraaeh employs selective flat-
tening down to the “interesting elements” (memhdrghe pattern), exclusively. This
enables them to match patterns orthogonal to theigwit boundaries. Still they
stress that this algorithm is just for very higkidepattern matching. This limitation is
crucial for the feasibility of their approach. Tkiof choosing a transistor as an “in-
teresting element”.

If we had the general pattern matching algoritbmhierarchical input netlists,
we could employ the SR with its full power. Thelfchip pattern matching driven
analysis would be possible. The tool that emplayhsconcept would be also be able
to partition the hierarchical netlist in much mefécient way, achieving the ability to
highlight or alter some critical topologies non-nedantly, directly on the hierarchical
netlist. Apart from pure qualitative enhancemeiat tteme as the full-chip ability, the
runtime and memory requirements of the SR procemddy due to ability to work
directly on proper definitions be optimal and nedwndant.

All of these reasons give us a strong motivatedevelop the general solution
that enables SR to reach its mature and more apar®persion employing directly
hierarchical designs that are a realm of the intlstpplication.

41

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

3 Hierarchy

The hierarchical organisation is a concept thakeappvery often in science, so-
ciety and nature[33, 34]. This is a common wayigtfthe complexity and enable
understanding, as well as functioning of differeaimplex systems. The hierarchy is
also more than a way of organisation, as it hasws semantics. Any digital elec-
tronic circuit can be an example of the fact theg tunction which it implements is
not dependent on the technology in which it isiseal, but completely orthogonal to
it. In this sense, the hierarchical organisatiopegps as a completely independent
abstract layer.

3.1 Hierarchical abstraction in VLSI

3.1.1 Introduction

Apart from other fields hierarchical concepts fimibe application in VLSI
design to address the extensive complexity of chipgkh are being shaped. More-
over the concept of hierarchical abstraction is emaded into the methodology of de-
signing the IC and in the process of their vertima

In further text of this chapter, we will draw atten to the role of the hierar-
chy in VLSI design. In order to do that, we wilagtwith the formal definition of the
folded hierarchical data model in (3.1.2). Furtives, will give an overview of state of
the art EDA databases that implement the foldedatohical data model (3.2). In a
simple case study we will present common algorittand data-structures that are
used to explore the hierarchically organised 10gies(3.3, 3.4). The chapter is con-
cluded with a vision of hierarchical views that\aes as a starting point of the realisa-
tion of this thesis’s contribution (3.5).

3.1.2 Folded hierarchical model

Like in other complex systems, hierarchy is exgdiais one of the essential
mechanisms to develop and store electronic cidesigns. The concept of hierarchy
helps IC design process in many ways and it becarpart of the methodology of
custom digital or analogue design. By employingrdmehy, the designer typically
works on a certain functional block, a part of tesign, which once finished repre-
sents an element (hierarchical level) that is @fiedrand correct building unit. This
building unit can be further applied in differemintexts.

In order to illustrate this concept and explain ble@efits of hierarchy, we will
consider the example of the 2-bit adder electromizuit. We see the flat version of
the mentioned circuit in Figure 3.1-1.

This flat design is built out of ten elementswi analyse its structure we can
conclude that it contains a topology of a full adddich repeats two times in the cir-
cuit. One of the full adders is highlighted in figure by the rectangle with the sharp
corners. Further, in the composition of the fulleadone can isolate another topology
which repeats twice — the topology of the half ad@ne of the half adders that ap-
pear in this design is highlighted by the oval aagle. In total we have four topolo-
gies that are isomorphic to the half adder andttvab form the full adder.

43

Chapter 3 - Hierarchy

Let’'s now take advantage of these reoccurringepagtand describe (store) the
circuit hierarchically. Actually, the hierarchical organisation of theample circuit
that we will create would in reality come spontam&y. The designer who would
make this occurrence of a generic n-bit full addeuld have the bottom up approach
and he would first create the topology of the kaldler, continuing with further design
using the half adder as the building element forentmmplex contexts.

The half adder is composed of two logic gates hiaate mutually shorted in-
puts and in total this circuit communicates witle tiest of the design by four termi-
nals (two input and two output). Using the finisteadl correct topology of half adder,
the designer than builds a full adder out of it &mther the required n-bit adder. The
natural outcome of this process is the hierarcldeaign.

In Figure 3.1-2 we see realisation of a half adtea part of the hierarchically
described circuit. In the hierarchical represeatagiven in the figure, we can isolate
three distinct hierarchical levels that define alkgar functional contexts. The deepest
level which represents the half adder is definetilaylogic gates, XOR and AND.

XOR4

Figure 3.1-1 — Flat representation of the 2-bit ader. Full adder circuit that is a part of 2-bit ad-
der is highlighted by the rectangle with the shargorners, while half adder circuit that belongs to
the full adder is highlighted by the oval rectangle

This topology is encapsulated in the hierarchieaél (or a subcircuit) called
HALF ADDER. We have used this subcircuit as an ogahlock to define a higher
hierarchical level which combines it with other raknts. Our example design has,
thus, the level FULL ADDER that forms the electomircuit of the full adder by
interconnecting properly two instances of the HAABDER subcircuit, using them
as circuit building elements together with anotiemic element (OR gate). This is a
nice example of a powerful mechanism where onededime complex elements that
are further smoothly used with other complex eletmien atomic elements in order to
build any arbitrary circuit. In order to enable sh#bcircuit that we create to correctly
communicate with its environment and to look arel fike a proper atomic element
we define specific terminal connections. In the tepel we have two instances of
FULL ADDER subcircuit forming the circuit that igeivalent to the flat design from
Figure 3.1-1.

What are the advantages of this representatiais®, ie can see that in order
to form this circuit we have clearly focused oueation to three different semantic
levels, at first we have created the half addeankihg in the world of logic gates.
Than we go one level up and use already more compieuits and interconnect

44

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

TOP level

Cout

FULL ADDER

FULL ADDER 1

Sy
o
HALF ADDER 2

Lﬂ

FULL ADDER 2

Cin T So

Figure 3.1-2 — Hierarchical representation of the it full adder. The Hierarchical levels and con-
nections between the elements are given with solidctangles/lines, while the references between
instantiations of hierarchical levels and their deihitions are given by the dashed lines.

them to get the functionality of the full adder. tdhat the designer can always
“tune” his design to get the proper functionalitying any elements. In this case, in
order to detect the carry we simply use an OR Iggie. In the end when we have the
full adder encapsulated we can easily choose ttee i the n-bit adder we want to
create, not thinking of the inner implementatiohattreoccur for each bit we add.
This architecture is also good for someone thatilshonderstand the design. One can
immediately see that the top level is composedwaf properly interconnected full
adders. For an experienced designer this can begbnéle doesn’'t have to look at
how the full adders are realized. Here lies anatidwantage of the hierarchical design
representation: once we have abstracted the furattimit, we can exchange its im-
plementation. For instance, we can redefine thieafdlers, or the half adders to be
composed of exclusively NAND gates and still keleg test of the design being sure
that the functionality of the circuit won’t chandeurther, this design is also technol-
ogy independent. We have defined the functionalitictly using gate elements. We
can add another level of hierarchy seeing the ghtdsare here shown as atomic ele-
ments (with no further hierarchy and inner struefas complex topologies of CMOS
transistors. In this way we would just have to defihese atomic elements and inherit
the whole further design and still achieve wantattfionality.

Apart from flexibility and the ease of understargli this representation is
more efficient, as well. The hierarchical repreaénh allows that the definitions of
given separate levels can be referenced many timése design. This concept is
known asfolding. We also say that the design is than folded. Oweildn’t confuse
this term with time folding, where one uses timdtiplexing to reduce the given de-
sign’s size or share an expensive resource.

As we can see in the example, we have just ondeedkethe full adder and
used (referenced, instantiated) it twice. Furthdr,adder has two occurrences of the
half adder which is again defined only once. Thaegrinciple is valid for the logic

45

Chapter 3 - Hierarchy

gates, although we have them referenced and usactlgionly once in this example.
We can say that one of the benefits of the hiereatimepresentation lies in the fact
that it is non-redundant. We have managed to reptesdesign that has 10 elements
by directly employing just three of them or eacltlod atomic elements once. Some-
thing that is in the same time advantage and thaddiantage of folded hierarchical
representation comes in the domain of the tools dhauld analyze the designs. For
some operations this concept is welcome, for igdor counting the number of
atomic devices in the design, or for checking safnine attributes of each of the de-
vices alone. On the other hand hierarchy (foldiregresents the problem for some
other group of tools that prefer seeing the deaga whole, for instance a simulator
that needs to propagate the signal through theitiirom its input terminals towards
its outputs.

It is often required by tools to characterise songtances of the subcircuits,
too. For instance, one might want to attach speg@dirasitic elements to an instance
of a given subcircuit. This is known as a problehpersonalisation. We will come
back to these problems and known solutions for theer in this chapter, in section
3.4.

In order to formalise the described concept wé wse and adapt the defini-
tion of hierarchical encapsulated graphs. As flapgs haven't met the requirements
in many application areas of computer science, Engjeal. [35] have proposed the
model of the graph that includes the hierarchicalcept. We will adapt this concept
in order to formally represent folded hierarchibattare widely used in EDA. As a
type of the graph that is typically used to repneske netlist is a bipartite graph, we
will extend this kind of graph notation to enablerhrchical relations.

In order to achieve this goal we defic@mplex verticesas an extension to the
standard (atomic) vertex concept. The complex xage part of the graph and can
be equally used together with atomic vertices. difference between the atomic and
complex vertex is such that the complex vertexrefithe inner structure, as well.
The inner structure of the complex vertex is agagraph that can contain any kind of
vertices, including other complex vertices. We déweyefore, say that the definition
of the encapsulated hierarchical graph is recursSile set of atomic vertices is de-
noted by N, while the set of complex nodes is denotedrbyAs each complex vertex
is a graph itself we write that the top complexterrequals to encapsulated hierarchi-
cal graph G(N,Y).

For each complex vertex we formally write:
CV = (V, E, KE),
where:
(1) V is the set of vertices of CV,

(2) E is the set of edges that belong to CV and
(3) KE is a set of known edges in CV, where KE.

46

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

ALF ADDER 1

‘. HALF ADDER 1
i :

Figure 3.1-3 — Encapsulated Hierarchical Graph Exarmple - The complex vertices are given
by light blue ellipses, while the atomic elementas blue squares with oval edges. The node
verticies (another vertex class) are given as darkblue circles. Encapsulated Hierarchial
graph can clearly separate and define hierarchicdkevels, but is redundant.

In order to identify the relations between theds,sge will write down further
definitions:

(1) HE = E \ KE is a set of hidden (private) edgeshef¢complex vertex CV.
(2) HV =V is a set of hidden vertices (private versice

The known edges are the edges that are incidghetoomplex vertex. Since we
have the case of the bipartite graph, V (HV) carfupiher split into two sets V = X U
Y. These sets have the semantics of devices ars] mspectively, for graphs that
model hierarchical electronic circuits. Further #ntains, in general, two kinds of
elements: complex vertices and atomic vertices.thigrreason we split this set into
two subsets X = CX U AX. In the end, we say that¢bmplex node definedevel of
the hierarchy

In order to illustrate this concept, we will repeat the full adder circuit from
our example with the encapsulated hierarchicalafiiie) graph. Vertices are divided
in two groups. The first group, which is drawn withrk blue circles, represents the
circuit nets. Another group represents the devispbt again in two subgroups, in-
stances (complex vertices) and atomic devicesi¢esit The edges are given as lines.
The known edges are highlighted as they are draitintigker lines. This hierarchical
graph has 41 vertex of a class “net”. Furtherag b0 atomic elements. This is a nice
illustration of the fact that that the unfoldedraiehy doesn’t bring us any advantage
concerning the number of elements needed in theem@nh the contrary we have
some of the elements duplicated in different hidremal levels (net vertices). The

47

Chapter 3 - Hierarchy

established formal representation can, thus, défiamrchy and clearly specify the
borders between the complex entities it models waitan not represent the folding
as a property with it. In order to do this, we vaktend the notation of encapsulated
hierarchical graph with several additional defnits that enable folding.

The complex node has two sets (HE and HV) thairdegnal to it. If the set
HV = HX U HY, we will observe the set HY (hiddentagas union of two subsets
(HY = EY U IY). Further we will define the one t;me mapping relation A, between
the elements of the sets KE and EY.

Let ALJ KExEYis such that:

(Da OKE,Ob OEY:(ab)0A) O(MbOEY,0alKE: (a,b)0A).

By specifying this new mapping we can now say that d = [BY,, HE) is a complex
nodedefinition We can further write that the complex node represents a tuple:

FV = (d, KE, A).

By separating the definition from the complex node and than referemeueg
achieve that the multiple complex vertices are able to “share” the defmitide say
that d and KE are compatible if the set of vertices EY (of d) hasaime cardinality
as the ordered set of edges KE.

We can now come back to the example and use the new concept tbealter t
hierarchical graph representing the full adder circuit (Figure 3.1-4).

It is obvious that in this case the number of needed elementsdel the
identical topology is irredundant and optimal.

Each folded encapsulated hierarchical graph has a number of defiritiens.
specify the ordered seh) of definitions (¢g) namely:

A= [do, d]_, caey d1]

Let all complex vertices of the folded hierarchical graph be aggregatedat Y. The
operationl:Y->A represents thastance ofelationship. This relation assigns exactly
one definition to each member of the set Y (each complex vertex)x&mpée if :

A = {TOP, FULLADDER, HALFADDERY},

we can write that(HALFADDER1) = HALFADDER. This relation is represented in
our folded graph by the lines that end with arrows. We sayyﬂ”iatthe instance of
the definition d.

Further, the membership of a complex vertex, (y) while i(yd+d the defini-
tion d is denoted as a composition relationship betwgeand gWe say that dis
referencedn d;. For example FULLADDER = {HALFADDER, OR}

With respect to the sét and the operatiohwe define the referenced defini-
tions graph. The definition graph is the graph with ordered eéfgether, we say that
the graph GY) is a holder for the sét.

The elements of the set are ordered such that:

Oy ((y" Od,) = j >K).

48

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

FULL ADDER 1

HALF ADDER 1
1 O

4
Q—"
HALF ADDER 2
1
4

T

Figure 3.1-4 — Folded Encapsulated Hierarchical Gnah Example — The way to represent the
hierarchy non-redundantly.

This ordering relation prevents infinitely nestesfiditions and is actually the natural
constraint of the well formed, finite hierarchies.

The element gis known aghe rootdefinition. That is the definition that is not
referenced by any cell.

In addition, we will define several parameterd tinzantify the hierarchy [36].

h : heightof the complex hierarchical graph represents themme number of levels
(or the longest path) between the top hierarchésadl and an arbitrary atomic vertex.

| - defines the number of definitions of the foldadrarchical graphs. This is actually
the cardinality ofA.

d : densityof the complex hierarchical graph. This paramgtees the average num-
ber of instances (complex and atomic nodes) inahtéical levels of the complex
hierarchical graph.

f : represents theumber of atomic elemenits the similar flat graph. Having in mind
the semantics of the parameters h and d, we cae thet : f =d".

n : defines the approximate number of elements fdexnand atomic) in the hierar-
chical design model. We can define it as n = d*I.

In the end we will define the gain factor from ttaet that we have used the
folded hierarchical model as :

49

Chapter 3 - Hierarchy

—n—
I T

This result is important for the domain where raiténing of the design is
possible.

For instance, the height of the folded encapsdlhterarchical graph in Figure
3.1-4 is: h = 3. It defines three different cdllss 3). The density of the graph is:

d =% = 233, the projected flat graph size is than calculatedqual f = 12.64. Hav-

ing these values we can calculate the approximateber of elements in the hierar-
chical graph and the gain factor: n =7 and g $0.5

We will use the quantities defined above to vdaheegraphs during the evalua-
tion of the hierarchical pattern matching algoritiperformed on realistic industrial
example hierarchical design.

The formal model which was described in this sgcénables one to store and
evaluate any hierarchical design. Through histdriZDA there were a numerous im-
plementations and abbreviations of this concepliffierent program languages. These
representations have through time evolved into mo@®A databases that stand be-
hind it and enable persistent storage of the desiggether with other important con-
cepts that enhance the employment of this handiiadetogy.

3.2 EDA databases

The EDA databases implement the hierarchical madelthey adapt it so it can
be used in different specific purposes [37]. Thioug the history of EDA various
database implementations were offered. In suchrdg@ous environment the inter-
operability between different tools built on varsodatabases has emerged as a prob-
lem. In order to achieve the interoperability tlmmg coordinated standardisation
process has been conducted by the VLSI commundtyiththe end coined the pro-
posals for the standards for the EDA database ponc€his enables tools from differ-
ent various producers to work incrementally togett@herently in the complex de-
sign verification flow.

3.2.1 History

In the history we had many teams working on théctapd they have been re-
solving and reinventing numerous similar solutiémisthe standard problems which
had to be addressed and implemented into the tooEDA [38]. Depending on his-
torical period and its trends we had design daebasplemented in different pro-
gram languages [39]. Once the area became momusernd diverse, more and more
companies became specialised for the developmeditvefse EDA solutions. These
solutions were step by step accepted and theyaeghland complemented a number
of solutions of EDA teams of different semiconduatompanies. Apart from benefits
this brought some problems, as well.

In parallel to useful tools, different databaskatthold and model the data
handled by those tools were developed. The datalggieally employed the relevant
hierarchical and other needed concepts. Althougtilesi, they were inevitably in-

50

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

compatible. The common weakness of these databasethat they were not allow-
ing transparent interoperability between the tedisch use their services.

The problem is to make the tools’ inputs and otgmompatible and to allow
the database to store the results that separdsepiamaiuce incrementally (to allow the
follower tools to see the changes of theirs prestms) the proper outcome [40, 41].
The tasks of integration were far from trivial aindliterature one can find the intro-
duction of a job description of “EDA tool integratpor personifications such that the
tasks of tool intercommunication are of a calibfe@a@octoral thesis. In the environ-
ment where the increasing number of companiesestartfering EDA tools which
brought both attractive fast and thoroughly desigselutions and in the same time
repellent increasing complexity of the flow intefgwa the most common way of the
integrations were loose tool coupling through exaéASCII formats for representing
hierarchical designs: SPICE, SPEF, GDS, etc.

The ever growing problem amplified with ever iragseg design complexities
demanded a systematic solution. All these fact® Ied the top EDA and semicon-
ductor companies to think of and find a solutiom floe identified problems. The
council has been formed to search for the stanfdafflDA Databases.

3.2.2 Standardization

The standardization attempts started in late '‘8@rwthe business analysis
confirmed that the investments into tool integnatreached more than twice of the
sum of investments into the separate applicatioreldpment process. The council
named CAD Framework Initiative (CFl) was formed.eirhgoals were standardisa-
tion of the data model that describes electronicudis and providing the standard
API (Application Program Interface) declarationtthaas written in C language. This
first data model has supported exclusively schamaliogical model), while there
were plans to extend it towards modelling physmalperties of the design layouts.

For different business and political reasons thasa model hasn’'t reached
wide usage.

Nevertheless, as the need for the standardised ddd#base still existed, sec-
ond attempt with a slightly changed strategy hasuoed starting from 1995., spon-
sored by SEMANTECH: Chip Hierarchical Design Systefechnical Data
(CHDStd). This time one of the industrial solutiomas solicited and the new stan-
dardised model was based on IDM (Integrated De¥gigdel) from IBM. As this sec-
ond standardisation attempt had, like its predecgsst a document as a deliverable
it stayed just on paper as well.

The third attempt that managed to get much biggerest of the community,
because of its availability in both industry ané@emic domains, its modern design
and thorough planning was conduced by SI2. SI2 cbymmoposed a standard for
EDA databasesDpen AccesOpen access offers solutions for applications woak
both on schematic data and physical data, it iy futitten following object oriented
concepts which helps its flexibility and understagd This solution was provided by
the reference implementation. This was one of therkasons for its growing success
in both important user domains (industrial and acaid). The strategy where the
member companies and institutes contributed bogmntially and by working power
was important for the transition of the Open Acgarsgect from the vision to the real-
ised database.

The key concepts of Open Access are:

51

Chapter 3 - Hierarchy

e Standardised object oriented data model and API

* APl available to anyone at low or no cost

* Available reference implementation ready for expemtal use or industrial
application

* Flexible usage of different data domains by therntliools

« Standardised API that includes object-oriented epteand enables easy in-
teroperability between the tools thus achievingitlteemental flow

We will analyse the main concepts of the Open Asaksabase in the next
section. After that we continue focussed on the tiat is provided by the data-
base to support the applications working with ttigesnatic data representations.

3.2.3 OpenAccess

Open access standardises the data model and tlesmpmnding API for EDA
tools [42]. They are capable of storing and preegnfolded hierarchical data. The
formal representation of the folded hierarchicaladaodel is given in (3.1.2). This
model is stored in a persistent store and is adedsy the API which is written in
C++. Thus, the API is object-oriented and readyuse in modern EDA tools. For
reasons of efficiency, during the application exeeua runtime model of the data
which was originally stored in the persistent stgrbuilt. This is happening transpar-
ently to the application and the object oriented BReverything the given application
sees. The conceptual architecture that we ex@agiven in Figure 3.2-1.

An important property of the API is that for eatdtabase entity (one instan-
tiation in the persistent store) three differentl ABmains and corresponding objects
can be created. Therefore, each entity of the datgaban be seen through a triade of
objects on the application side. In connection witis we have three characteristic
domains of the overall APIl. The domains are:

. Module Domain
. Block Domain and
. Occurrence Domain.

The module domaimefines a set of objects and the appropriate maadels
manage the underlying database data as schenTdim®fore, we see only the logical
network, also called aetlist without any physical properties like coordinatgsac-
ing between the objects etc.

Block domain is responsible for the physical sidehe design. All objects
which model database entities in the module doroambe also seen with their twin
objects from the block domain. The difference israred in characteristics of the
block domain and the interface of the classesdppear here have somehow different
semantics. These objects store the dimensions|anthar specific properties of the
geometric shapes that form the proper devicesacdh the layout of the design. The
hierarchical interface is in this domain a bit difnt, but equivalent. In the block
domain, the connectivity between the levels is ledaen a more simple way as the
connections are determined implicitly, by the getrioal position of a given net in
the design. Note that in this domain we don’t hiaiegarchical nodes (3.3.2).

52

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

In the end, in the occurrence domain, we havelésgn represented as a fully
unfolded hierarchical database. The type of the ehasl in this case also logical
model, like in the module domain. This domain otgesnd the appropriate interface
is used in cases when the given application neeg@ersonalize the data in different
instances of the same subcircuit. The referencdeimgntation of the OA database
optimizes the occurrence domain. The objectsré@iesent the occurrences are cre-
ated on demand, hence only if one traverses thdéewhstance tree (3.3.2) the corre-
sponding occurrence domain objects would get cdedtkese objects secure the ob-
ject ID consistency and their size depends on #regmalized data they store. This

Runtime Model

OpenAccess API

e —
Persistent Store

Figure 3.2-1 — The conceptual diagram of the Openadkess Database

means that if the two instances of a given sulsrelidentical their occurrence do-
main description can be, from the angle of the ededemory requirement neglected.
The authors of the reference implementation of ¢lgdm that the typical size of the

occurrence domain model is introducing up to thlediaof 100 to the original folded

model size [38].

This is of course valid for the offered implemermatof the database and any
optimisation that is being done behind the API wlonrlake a difference in perform-
ance of the application that is written to the dtadised API.

An important property of the OA is the fact that @volution and further adap-
tation to the needs of the state of the art EDAliegiion is secured and carefully dis-
cussed. The special team called Open Evolutionseiss led by the engineers from
leading EDA companies or the academic world [43]y Aesearch done in this direc-
tion can be discussed with them and possibly atfeetstandard API or the reference
database implementation.

We will, further (3.3), concentrate on the API bétmodule domain. We will
define a simplified case study APl which exposesdiements and mechanisms of the
object oriented model that are important in ordeexplain the solution we propose in
this thesis.

3.3 NLDB

Let us now define a simple, still functional, lerhical data model which can
store electronic designs that we are going to udédr in this thesis. The definition
will be given as the UML class diagram. After promkefinition of the case study

53

Chapter 3 - Hierarchy

folded hierarchical model, we will make the shorexiew of the common hierarchi-
cal concepts that the tools typically employ tovérge the hierarchical designs.

3.3.1 Object-oriented folded hierarchical model API

In our example designs we will allow fully the cept of hierarchy and folding
and for simplicity we will introduce just three ate elements: MOS transistor (fur-
ther classified by its model as PMOS and NMOS),rdséstor and the capacitor. The
APl we propose is analogue to the model domain &RDpen Access. As they are
not directly necessary for the implementationshef toncepts we introduce later in
the thesis, we will abstract complex parameter rmeims and the relations of this
API to other possible domains (block and occurreshaenain in Open Access). We
have to stress that for the purpose of our experisnee have used the industrial API
model with its full complexity. This gives additiahquality to the results we have
achieved through tests presented in chapter 6.

Base_Netlist

1 Base_Net

*

Base_Cell k> *
Y

<> Base_Node
Base_Device Base_Pin *
-model ¢ !

+model() +node()
+pin(in i : int) +device()

Base_Instance Base_MOS Base_Res Base_Cap

Figure 3.3-1 — UML model of the NLDB database.

The model we propose here as a case study is givére structural UML
(Unified Modelling Language) class diagram in Fgg®.3-1. The UML notation is a
common way to grasp different static and dynampeass of complex software sys-
tems which employ object-oriented concepts. Thdees encouraged to refer to [44,
45] for details about this common notation.

The simple model we define is rooted at the objeft the class
Base Netlist . Base_ Netlist is thus a holder class that defines the root cell
(root level) of the design, the class of a tgsse_Cell . This cell is referenced in
Base_ Netlist as a NominalCell. The rest of the cells follow tioet cell in the
order that corresponds to the order of referenciels in the design. The order of
cells in this vector assures that no cell is presgbm this list before any cell that ref-
erences it. The interface which enables this fonetity will be given in 3.3.2. This is

54

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

the realization of the principle defined in Secti®Ad.2, the section that formally de-
fines the folded hierarchical model. TBase_Cell cell class object aggregates also
some other cells that are defined in its scop&vahg the SPICE standard. Each cell
can aggregate deviceBgse Device). Base Device is an abstract class. Devices
can be atomic or, again, complex. The atomic devibat are allowed in our model
are Base_MOS, Base_Res and Base_ Cap for the toansesistor and capacitor de-
vices, respectively. As the model allows the hignaral organisation, any cell can be
referenced in another higher Ilevel cell by inst@mpg the object of
Base_Instance class, that inherits abstract cl&sse_Device in the equivalent
way as other atomic devices do. This is a niceiegobn of object oriented principle
of inheritance and polymorphism to handle the cphoé vertices that can be com-
plex and atomic, from our formal model of foldectapsulated hierarchical graphs. In
order to define which cellBase_Cell) is referenced by the given instance
(Base_lInstance) a link (association) between these two classesgsired. Note
that, logically, auto-referencing (when the ceferences itself) is forbidden. The hi-
erarchy is thus well defined, without loops andténEach device has an appropriate
number of pins (terminals). They connect the detacthe rest of the design. The pin
is modelled as a clas84se Pin) that is in the composition relation with the
Base_Device . The number of pins of the device is preciselyirdaf according to
the given device semantics. For instance, a rediste two terminal pins. The devices
have an uniform interface to access the relevamtogi specifying its index. This is
achieved via thein(int i) method.Base_Pin is on the other side connected to
a node. As we have already stressed, the nodegggeagate arbitrary number of pins.
The node is modelled by the claBase Node. It is defined in such a way that it
represents the container of pins, defining the @gaite iterator and specific interface
to traverse the set of pins that are attached .tdrherefore we have methods

pin_begin() and pin_end() that return the iterators of the type
pin_iterator . Pin iterator is, for simplicity not shown on tlkkass diagram in
Figure 3.3-1.

Another model entity that we give as a clBsse_Net is the aggregation of
nodes which enables forming of parasitic intercahneetworks. This interface is
widely used for different applications that inclugdlerk on parasitic nets and for that
reason we include it into our model although nas present in SPICE. SPICE format
has specific extensions SPEF and DSPF that cartaartbe original SPICE netlist
design with modules that refer to it and enrichwvith the data about parasitic ele-
ments.

We can conclude that this model is the objectrei@ realisation of the formal
concept of folded encapsulated hierarchical (bigartgraphs. We recognize
Base Device as the vertex of one sort. It can be further dididnto atomic and
complex vertices. The second bipartite vertex somodelled byBase_Node class.
We will further analyse different hierarchical cepts that occurred in this model and
define the proper interface for them.

3.3.2 Hierarchical concepts in NLDB

The hierarchical model offers one to see each iwkei@al level as the proper
bipartite graph. If one looks the relation betwdes levels, the situation gets slightly
different while between the levels the constralrdtttwo subgroups of vertices are

55

Chapter 3 - Hierarchy

exclusively interconnected is not relevant anymates entities that connect different
hierarchical levels are the nodes.

Hierarchical node

In a hierarchical model we can distinguish, sematty, three different
types of nodes:

e Local Nodes that have only connections to devices, inside one
subcircuit,

* Root nodes that have, apart from local connections, conoasti
down the hierarchy, over the instance pins and

« Ports, which are part of the pin list of the given calhd enable its
connection with the contexts in which it is instated (up the hier-
archy).

Note that the ports can also have properties ofdbenodes (connections down the
hierarchy), or local nodes. More precisely, theperties of the local node are a subset
of the properties of the root node, which are agaimgeneral, a subset of the proper-
ties of a port. This classification can be illustichwith an example hierarchy repre-
sented in Figure 3.3-2.

vdd
(]

AND

I

> @

@

Figure 3.3-2 — Logical AND gate cell, composed ohé¢ standard NAND gate and an inverter
which is represented as a hierarchical abstractionPorts are denoted in red, root node in yellow,
while the local node is given as a grey circle.

The circuit that is shown represents a logical Ajdde. The design given here
is hierarchical as the inverter is abstractedsearate cell. Its definition is, therefore,
given independently from the definition of the aaxitin which the mentioned circuit
is instantiated. In this example we can distinguadihkinds of nodes given above.
NodesA, B, Vdd, VssandY represent ports, whereas ndgierepresents a root node.
L1is a local node, which models the connection betvirsnsistors NO and N1.

Ports and root nodes form a structure that we ahlkerarchical node This
concept thus appears as the consequence of tlaedhieal data representation.

The hierarchical node aggregates several atondeshéubnodes The nodes
are exclusively inter-level connected. It start$hwa root node which is its top sub-
node and that is connected down the hierarchy aviféumily of other subnodes (that

56

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

are of the type port). By employing this criteriare form a tree structure that is
equivalent to one flat node which would be formkthe hierarchical representation
was transformed to its flat version. Note thathie folded model several hierarchical
nodes are overlapped. We will use this fact to aggrthe semantics of the standard
hierarchical node later, in Chapter 5.

In further text of this section we will point ouhportant structures and algo-
rithms that are standard for the applications @k on (folded) hierarchical models.

Definition tree and the definition walk

Definition tree is a structure that orders thardgbn levels (subcircuit) of the
hierarchical design as a tree topology where eaéihition (cell) represents a node of
the mentioned tree. One node is identified asdbg it corresponds to the top hierar-
chical level. All subcirucits that are defined uhsithe given level appear as children
of its corresponding node of the tree. This progesgcursively repeated depicting
the relations between all subcircuits (the way taeydefined) of the given hierarchi-
cal design. This data model is useful for dumpimg hierarchical model, for instance
into an ASCII file (following the specific ASCII g format, hence SPICE). Note that
this model does not verify if the defined subcitswiere also instantiated, or they just
exist as pure definitions.

For a definition walk, we define the templatedaoaitpm which recursively
traverses the definition tree and performs gerfanctions before and after recursion.
By defining this traversing algorithm generic, gm®motes the walk as a standard
API algorithm that can be defined as a friend fiorcin the world of object-oriented
languages.

Instance tree and the hierarchical Instance walk

The instance tree has a structure that is sinoldhé definition tree. In this case we
nevertheless present each instantiation of anynitiei. This unfolded structure
therefore has the given definitions repeated asymares as they were instantiated. It
is not always possible to create statically the lvhiastance tree. Of course, an alter-
native to its static creation is performing a reoue algorithm where, while traversing
the instance tree, it collects all the relevanspealised data (relevant just for a given
instance) that is used while analysing the givestaince of some cell. This approach
is known as the instance walk. The instance waiklma extremely time demanding
and thus unacceptable.

Instance walk is the simple trade between thealsbrcal and flat algorithms.
One can upgrade flat algorithms to hierarchicathe most trivial way using this
tree/walk. The reason for that is that all extendetails and attributes that are defined
by the path in which a specific device or the whinlstance is given are there re-
solved. The application can be wide, but the edficly is not big as although the work
is being done hierarchically which demands solwame of the issues concerning the
communication between the levels and although ékelts that are generated by the
tool employing instance walk are aware of the @ (original folded hierarchy)
this approach is even less efficient than flat atbms.

Referenced cells tree and graph

57

Chapter 3 - Hierarchy

Client

TopDownCells | _r——————————— - > iterator

<. +operator++() : void
* +operator*() : Base_Cell

Base_Cell

Figure 3.3-3 —Top-Down cells container, the conta@r and the iterator that allow one to iterate
all cells of the design top -down and bottom-up.

If we collapse all instances of the given defomtinside a given cell into just
one representative connection (which than losds ipddrmation) we obtain the Ref-
erenced Cells tree. In this structure we can ndowdantly access all different defini-
tions of the cells that were instantiated in a gieell. This structure is welcome to
perform the operations such as determining therghy height or for algorithms that
work on all root-nets (nodes).

If we add the information which determines in whizells a given cell is in-
stantiated, we upgrade the referenced cells trébetmew abstract structure — refer-
enced cells graph. This data structure allows &s&ing “up the hierarchy” from
each of the cells defined in the design. It is vesgful for different algorithms that
need to take into account several hierarchicall$evmethe same time while calculating
their relevant results.

Top-Down Cells

TopDownCells represents an alternative way to @gogr the defined cells of
the given designs. In this case we introduce tlered vector that offers a bidirec-
tional iterator that can traverse all cells th&t eaferenced inside the design. The order
of iteration is analogue to the ordering of celdgeg in section (3.1.2). For this pur-
pose we define a class TopDownCells to serve ast@ioer of the ordered references
to the different cells defined in the given desighe object oriented architecture of
this container is given in Figure 3.3-3.

The iterator can be set-up to give the cells togtd and bottom-up. These
walks are used in different hierarchical algorithimswhich the information is being
passed over the referenced cells graphs.

3.4 Personalization

As we have stated, some algorithms prefer the siy/just traversing defini-
tions while some demand either instance tree ¢ty fidttened netlist. Those are typi-
cally the applications that need to change somihefinstances and contexts in the
hierarchical nelist just locally, valid exclusiyelor a single instance path, or one

58

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

occurrence in the netlist. In general it is furthessible that some of the changes that
originally belonged to the same definition are bidéntical. Thus, the optimal way to
present this concept would be to regroup instaaoesintroduce new definition for
the two which have left the prior group and leall@ther instances linked to the first
group. This problem is known as a problem of peaination and since industrial
hierarchical folded designs include parameters el W is really essential to have a
solution for these problems.

These problems were recognized by OA developneamh tand the personal-
ization problem is addressed by introducing theuoence domain [38]. The occur-
rence domain is some kind of optimized instance that is created on demand. The
way the instance tree is stored is also optimizedl the new definitions are stored
only in a case where some differences between #amobjects and their clones
exist. It is claimed that this occurrence domaimnaduces memory requirement over-
head that is not bigger than two orders of mageititbwever, this overhead depends
on the task a given tool using occurrence domageiforming.

Another known research that appears in literatuneé addresses the problems
of the personalization is done by Jones et al. &8, In the conference paper they
consider various strategies to perform the perszatédn. First trivial strategy is full
development of the data into the instance treeo{dimg), second is employing a dic-
tionary that stores the personalized data andhind is done via partial unfolding
where each changed definition occurrence gets proppate copy in the referenced
cells graph.

An alternative to these approaches, the conceptapénts that was used to
support our contribution is given in Appendix A.

3.5 Polymorphic hierarchy

Hierarchical representation of a given design isuroque. It is in some sense
polymorphic (associative). We can group elementa obmplex system in different
ways and achieve different hierarchical intercotegdevels. This can be illustrated
by the famous Indian face picture given in Figurg B Is it actually a face of an In-
dian, or is it an Eskimo entering the cave? Tleigeds on the way we interpret this
very same picture hierarchically.

Figure 3.5-1 — An Indian or an Eskimo?

If we link the neck, the mouth, the nose, the eyred the forehead into a face,
we see an Indian with all his other attributeswéf on contrary in our mind link the

59

Chapter 3 - Hierarchy

Vdd Vdd vad
PFET2

A€ [0 PRETHD
i s ¢

i lenfEld
nFET2

pFET4 nFET4

Ny xfer Latch l
pFET?2 nFET2

al by

Figure 3.5-2 — Identical driver and latch circuit that has two different hierarchical layouts. (a) shas
the hierarchical layout that is more close to thefactional side of the circuit, while (b) shows that
hierarchy that groups the devices in the fashion tht is shows some technological, physical properties

legs, the wrinkle on the coat, the elbow and theedHerming the back of Eskimo, we
see him entering the cave. The only differencénengicture is in the way we hierar-
chically interpret it.

In order to make this example closer to our topgcslhiow also two different hi-
erarchical interpretations of the identical circdita latch with the corresponding
transfer gate and the driver. In Figure 3.5-2, ur(d¢ we show the hierarchical or-
ganisation of the circuit that is close to its ftiooal characteristics. When CMOS
electronic designs are printed into silicon watesyally the layout is organised in a
specific way that all PMOS transistors are printea line and all NMOS transistors
are printed in a parallel analogue line. After ttiisy get properly interconnected in
the repetitive step of applying and developingstelsiyers and etching. With respect
to that we, just for illustration, organise therstmts of the identical circuit in this
other more “layout like” way. This is shown in Figu3.5-2 (b). Although the circuit
is the same, we form completely different hierarahtopology. The definition trees
of both hierarchies are different, while the flatuait they represent is identical.

We can use this ambiguity in the hierarchy and adap the tool that is sup-
posed to use it. If we have the way to flexiblyresent the hierarchy we can solve
some common problems that the tools typically facd make the tools much more

DE MOTIB. STELLZE MARTIS

= %
Figure 3.5-3 — The path of planet Mars in the geoogric system. The analogy with the differ-
ence in algorithm complexity, according to the hiearchical layout.

60

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

comprehensive. In this sense, the we make therbigrdriendly to the user applica-
tion and by preparing the data the applicationdausilcan relay on certain constraints
and solve the specific problem with much easieordlgn. We can compare the com-
plexity of algorithms that use hierarchical datdhe problems astronomers were fac-
ing up to XVII century. Figure 3.5-3 shows the pattthe planet Mars seen from the
heliocentric system. Although they were also righte can imagine how much un-
necessary efforts were spent in order to trackpaadict so complicated path.
Similarly by changing the hierarchical layout ofji@en design, we want to pro-
vide the application with the right “glasses” se thata is seen in the best way. There-
fore, we want to populate hierarchical levels & tiven design flexibly, group and
regroup different elements together using exclugiseandard APl methods and enti-
ties. We achieve this goal using advanced objeetited concepts defining the
framework that utilizes the presented concept mignothe following chapter.

61

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

4 Hierarchical Multilayer Views
4.1 Introduction

In the previous chapter we have presented the Inodd@erarchical abstrac-
tion whose advantages are employed in order toiefily store electronic designs.
We have formally presented the hierarchical modeh dolded encapsulated hierar-
chical graph. In addition, we have given an ovewed the development of the data-
bases that implement the formal encapsulated kigca graph model. These data-
bases include a variety of advanced concepts tptthe interoperability between the
design tools that are shared by the design probéssern EDA databases are object
oriented and they offer a specific API that cardivectly used in design tools. These
databases are also turning to a growing stand@men Access (OA). We have, fur-
ther, analyzed the API and shown the common algostand data structures that are
suitable to explore the folded hierarchical desigmshe end we have pointed out that
the hierarchical layout of a single design is noigue, but polymorphic. Hence, a
given flat design can have a number of differeetdnichical representations that are
synonymous.

This serves us as an idea to extend the standdréiP| and adapt it in order
to support the different views on hierarchical d&sgp employing the concept of views
we want to group (regroup) different hierarchicalitees and see the design with the
changed hierarchical layout. This concept consitleesextension to the API for the
module domain (3.2.3), the domain of the standali@A that represents the sche-
matics (logical design). We propose this extensisra possible upgrade of the OA
standard. We will demonstrate new concepts on lecboriented APl analogous to
OA standard which is defined in (3.3). The speddichitecture of the object oriented
API that we will propose further in this chaptelioals flexible views on the hierarchy
of the schematics (logical designs).

The designs that we will transform are themsehiegarchical. They have the
initial hierarchical layout which is changed by siie modules (the implementation
of the views) written for the standard API. The cept of the hierarchy groups certain
entities together and defines clear borders betwhkarent such groups. This is
something that can be used as a favourable camsknaithe tools written to process
the hierarchical data.

We want to employ above sketched mechanism totdldamctual hierarchy to

User Application

Transformation n

Transformation 2
Hierarchical I Transformation 1

layer Access Layer

Static Base
Figure 4.1-1 — Chaining the transformations of thédierarchy. Arbitrary number of transforma-
tions are allowed as they are all compatible withite AL (Access Layer).

63

Chapter 4 - Hierarchical Multilayer Views

the algorithm that is processing it. We can theesfdlow the tool to “see” the data in
the most favourable way. These conversion stepsiratbe current state of the art,
usually part of the given tool’s implementationaoe realized as the preparatory steps
before the tool evaluates the design data and g&sethe proper outcome. In some
cases this transformation is complex, meaningithan be split in different simpler
pre-processing steps. If the data is staticallpsi@med (new equivalent design is
created) by the pre-processing step this “chaintafesponding designs becomes
bulky to handle. For instance back-annotating #seilts that the given tool produces
can become a considerable task. In some cases tilagséormations are even not
possible. A typical example is flattening an unlaédy big hierarchical design. Flat-
tening is also a hierarchical transformation, athia case we consider a flat design as
the special case of the hierarchical design (thatdmly one hierarchical level).

Since a number of different (atomic) transformagidimat are common for the
different algorithms can be identified in orderachieve flexible view creation we
want to allow another concept for the views, theoept oflayering This means that
the final, application friendly, hierarchical laytos prepared by employing a number
of views, linked one after another. This is illaséd in Figure 4.1-1.

In the figure we see the actual hierarchical d@tan in the bottom. The data
is accessed by the standard API. On top of it wee ltlae first view. This view takes
the actual hierarchical data reading it using taedard API, reorganizes it and offers
the same methods and entities, populated in areiffevay for any user algorithm
(including another view). Since the vocabulary ashanged and we still have all
attributes of the (rearranged) hierarchy given ataadard API, we can immediately
apply another view on top of the initial orkehe process can be repeated several times
and the user application in the end can get thélbao the standard API that popu-
lates the hierarchical entities in a specific canaed way.

We realize the requirements by employing objeatrdad concepts. Thus, we
separate standard API as the group of pure abgtlasses that is namefccess
Layer(AL). AL defines the vocabulary to represent therarchical design. It consists
of entity and method definitions, together withenitance hierarchy between the enti-
ties. Of course, no implementation (hence, no diassany attributes) is offered here.
The actual hierarchical data can be defined static basdayer. Here, we have static
implementations of the promised interfaces of the By static is meant that all the
entities and methods that implement the API arthis case populated with realistic
values.

Further we define a section:

standard API - Transformation n - standard API

as alayered view Therefore, the layered view reads the given appea of the hier-
archical data from the standard API and reorganizbg re-implementing the same
standard API.

We will in further text of this chapter, with gtea detail, introduce the men-
tioned entities to the reader. Therefore, secti@méscribes the Access Layer, section
4.3 static base, while section 4.4 presents thmiteh and standard architecture of
the layered view. We conclude this chapter withesalvexamples of hierarchy trans-
forming layered views (section 4.5). The whole ptka sets the context for the ex-
planation of the Virtually Flattened View (VFV) ths presented in the next chapter.
VFV, one possible realization variant of the gehewncept of layered views on the

64

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

hierarchical data, is a part of the proposed smhufor the problem of hierarchical
pattern matching.

4.2 Access layer — pure abstract interface

In order to employ the object-oriented conceptsupport interchangeable and
combinable view on the hierarchical layout of thesign database, we upgrade the
overall design of the standard APl (NLDB). We inluce Access Layer (AL), which
serves as a pure abstract interface to NLDB datzorisists of exclusively pure ab-
stract classes and pure virtual methods. The steaxt interface includes all neces-
sary inheritances but no implementations of thehoug including the references be-
tween the entities. For example in this layer thgoaiation between the instance ob-
ject and its definition is not realised, but jusbmised by the appropriate pure virtual
method.

The AL consists of the interfacentities (building blocks) and interface
methods(which are distributed over the entities, or defimas friend methods). The
availability of different building blocks that formn interface depends on the type of
the view which implements the AL. We will call th@erface methods also Common
Standard Interface (CSI). Of course, the buildingcks of the AL represent the
complete set of classes and methods capable ofildegcthe folded hierarchical
concept.

Note that the implementations of any method comst &t realizations of the
Access Layer. We have presented the class diagfdahe AL in Figure 4.2-1. It is
similar to the NLDB example of the API for the feldl hierarchical model. As it is
obvious, in the AL class diagram compared to NLD#&ss diagram, all aggregation
and association links are missing while the inhegde lines are still present. This is
due to the fact that in this layer we exclusivebfide the vocabulary that gets its
proper implementation later.

AL classes define following entities:

* Netlist (Access_Netlist)
* Cell (Access_Cell)
* Device Access_Device)

* Instance Access_Instance — separately shown because of its
special semantics, although it belongs Aocess Device class
hierarchy)

* Pin (Access_Pin)
* Node Access _Node)
* Net (Access_Net)

The roles these classes play are analogue toli® of the relevant classess in
NLDB database API. For this reason we will giventhgist briefly here. Please refer
the section (3.3) for further details on elememi@etics.

Access_Nelist is the pure abstract class which plays a roleheftolder
of the design. We can refer to the top level ofdhsign from it and further access all
cells of the given design in the top down and buotigp order. In realistic databases
this class stores different global parameters ef design: physical configurations,
such as nominal temperature of the chip that isrde=d, special element semantics

65

Chapter 4 -

Hierarchical Multilayer Views

Access _Mbiist

+oetMomind Call)

Access_evice

Hnodel

%
1

Access_Colf

+olevicas_begin)
+ilevices_endl)
+nodes_beging)
+niodes_end()
+niets_bedin)
+net_endi

1

Access Pin

Access bt

Fnode_bedging)
Hniode_end()

%

1

Access _Node

. +pin_beging)

+pin_endi

1

Htmiodel) ’ +niodel)
Hpindn i int) +clenicel)
* Access_fustance | [Access A0S Access_Fes Access _Cap
b clefi nition()

Figure 4.2-1 — Access Layer class diagram. AL corites exclusively pure abstract classes.

(some cells called standard cells come with botbcsiral definition and model
information), naming conventions etc. In our cdss will be left out from the CSI.

Access_Cell models the subcircuit (a hierarchical level) o€ tgiven
design. This class defines the proper interfacact®ss all devices, nodes and nets in
the design.

The Access_Device class defines the proper interface for modeling
devices. Therefore we have the methods to accegsnis and the model. Important
specializations oAccess_Device are present in the AL. Still, none of the methods
get realized in these specializations neither. iflheritances are here just to define
the necessary entities which any implementer ofedsd._ayer has to realize and of
course to add the specific part of the interfacdaracteristic for the
Access_Instance class, thalefinition() method. This method is declared
to return the pointer to the instance Afcess_Device class descendent. The
methods which return pointer to the pins of the ickevare declared to have
Access_Pin as the return value. This class, thus, defineshan@ntity of the AL.

It models the terminals which connect any deviostéince) to nodes, modeled by the
Access_Node class. This class allows the interface to iterater all the pins
attached to the given node. Additionally we defihe entity net, to model the
parasitic networks that agregate a number of ntlugisare interconnected with the
parasitic resistances, with its clascess Net and the appropriate public method
definitions.

We can conclude that the AL defines a proper iatarf(entities and methods)
that can model folded hierarchical designs. Thee mlstract classes of this layer
exclusively define the interface to program to, imthout any implementation. This
is the vital design decision in order to allow pulyrphism and exclude any overhead
in memory layout of the model objects. By isolatihg as a pure abstract layer and

66

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

programming applications (or views) to it we asstwepletely transparent usage of
any mixture of layered views that prepare the datathe user application. The
interface will be equivalent no matter how manyelayand which kind of mixture of
layers we have applied. Any attribute fields areoiduced precisely in places where
they are needed, e.g. for purposes of implemerthiegstatic base or any specific
layered view.

In further text, we will show first the simple &rtecture of the static base
which makes the new architecture functionally egléut to the NLDB. After that we
give the standard architecture of the layer folldwey several examples of the
hierarchical transformations that the differenteiaycan give.

4.3 Static base

The static base is a fully materialised in-mem@yresentation of the design’s
actual hierarchy. It is analogue to the standacieecture of the hierarchical database
NLDB. All the methods are therefore implementeglace and behind the interface
methods we have real data structures storing thewdes of the entities of the data-
base together with their relations. The differebetween the static base and any
standard EDA database is that it just represemtotturrence of the pure abstract
CSI (it is written as the realisation of the AL).eWdescribe this relation in Figure
4.3-1. In it one can see the example inheritanemhehy of the realisation of the class
Access_MOS. In the figure one can see the layers of the damtseparated. All
classes that belong to the AL are given in thetritihgonal stripe, while the analogue
classes of the static base, their mutual relateoms the relations with the AL are
given in the left diagonal stripe. Both of the les/belong to the NLDB definition.

The hierarchical relations between the classethefmentioned layers are
complex. Multiple inheritance is employed in thdinigion of the clasBase_MOS
Let's analyse this class diagram. The clagsesess_Device andAccess_MOS

—_——— e e e T L e —,

Base (static) -~

Base_MOS s
7

e
7
7

7
R 7 Access layer

v "

Base_Device s Access_MOS

s Access_Device

Figure 4.3-1 — static base vs. Access layer

define all necessary interface methods and thaypdbk/es are the pure abstract defi-
nitions of the corresponding entities of the dasabAPIl. TheAccess_Device

class is inherited by the abstract cl&sse Device . This class is analogue to the

implementation of th&ase Device in (section 3.3). In order to be able to keep the

67

Chapter 4 - Hierarchical Multilayer Views

inheritance relations and polymorphism between bd&base Device and
Base MOS and Access_MOS (Access_Device) and Base_MOS and still be
sure that all CSI methods of Access_ MOS get theplémentation, we include the
inheritance link from Base_MOS along the other mhace line to Access_MOS.
This inheritance style is typical for different s&®s of the static base.

Static base behaves equivalently to standardsegalns of the object oriented
databases and represents therefore pure extengiooutvany negative effects. The
only overhead that is present while using suchitacture is when one applies the
algorithm that is written to the AL interface omtit base. The overhead is related to
the implementation of the polymorphism in the (C-ebject oriented program lan-
guage. This overhead is however neglectable, edpediwe have in mind the im-
portance of the complete transparent usage ot $tase for any application written
for AL. Note that this is also the default implertedion of the access layer and that
any algorithm that is written to work with the layentities can be run on static base.
The model implemented as static base instancetiseimoot of any chain of layered
views.

4.4 Layered views and their object-oriented archite cture

The goal of the hierarchical layered view is tgroeip entities that are offered
through the standard interface (Access Layer — By)re-implementing the CSI
methods. The view on the hierarchical data is tioeg of classes that are placed into
the taxonomy hierarchy, which is rooted by Acceagdr classes. Each view object
plays the role of proxy/decorator for its sourcgeob(group of objects, distributed to
underlying layers). Therefore each layer is charad by itssource view from
which it acquires the available information abd given database element(s) that it
decorates. The view implements (realizes or if asaey overrides) the CSI methods.
Typically, methods can alter the semantics of dlya@alized CSI methods from pre-
vious view layers, just forward the calls of thethwels to get the information from
deeper layers of the database, or simply use tha@rgllementation of the method by
polymorphism.

HasSource

-*srcView : T
+getSrcView() : *T

Figure 4.4-1 — Templated HasSource class definesethayering property. The class is typically
an ancestor of any layer class.

Every implementation is a unique problem but therall architecture of the
view that serves as some kind of framework forehgineer that is providing a cus-
tom view is uniform. We will describe this standardhitecture in the further text.

Each hierarchical layered view:

» defines a set of entities inheriting the classesaufess Layer or
its descendents,

* has appropriate links to the source objects foh e@mw object

* is written to the AL,

* implements the CSl interface,

68

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

» defines and implements the private interface,
« defines private data-structures,
« defines optionally additional public interface.

As we have stated each view defines (and realsés)ecessary entities by
inheriting them from already existing classes atess layer (or some other layer).
Each of these objects is linked to the source viHwough these references the view
fetches the data about the hierarchical design &vhearchical layout it transforms.
The mentioned link is modelled as a templated ckd&sSource<T> . This class
stores a pointer to the templated type T and defare implements the appropriate
interface methodT* getSrcView()) to get the pointer to the underlying object.
Therefore, we define a templated class that exaiysimodels this property leaving
the templated type to be decided upon its employnmresome usage context. The
class diagram of the class HasSource<T> is givefigare 4.4-1. The implementa-
tion of the class is simple. There is an attrigteurceView) of a generic type T*
that privately stores the link to the lower levehda the public method
getSrcView() which returns the pointer to T. This method augiméine interface
of any class that inherits HasSource.

We use above described templated class to bujdoarthe view classes.
Typically view classes are inherited multiply. Onéeritance link leads from some
class of the access layer (or some realizatiot) @ind another privately inherits from
HasSource<T> . The inheritance is private in order to turn dfé tpolymorphism
betweerHasSource<T> and the giveWiew_<class> as passing the object that

ViewA_<class> ViewB_<class>

SRR r—
| Access_<class> | %7

_____ —_—— =

HasSource Base_<class>

-*srcView : Access_<class>
+getSrcView() : *Access_<class>

WAVAv/

Access _<class>

Figure 4.4-2 — View positioning relative to AL laye, static base and other views. View A inherits
directly from the relevant pure abstract class, wHe View B also inherits some properties of the
static base.

belongs to the view to the pointer to a tygasSource<T> doesn’'t have any se-
mantic meaning. Furthermore, by applying the pavaheritance we save the method
getSrcView() exclusively for the layer methods as it is nottpdrthe CSI and
still is important for the implementation of theew. Note that for the object oriented
languages which do not allow multiple inheritanke <ernative approach would be
to define HasSource as an interface and than prdbiel links implementing them in

69

Chapter 4 - Hierarchical Multilayer Views

every actual class occurrence. This is not as eteggathe solution with private inheri-
tance.

The methodyetSrcView() Is a good example of the private view interface
member which appears in any layered view. The &fgositioning of the view which
shows the multiple inheritance is given in Figuré-4. In the figure we see the class
diagram which shows two different cases of viewipmsng. View A is positioned
directly above AL. It, therefore, inherits (privitethe classHasSource , to get the
layering property for the objects of the view antbilicly class Access_<class>. By
this we gain the polymorphism property and are ablese the object of the view
class in any place where a pointer to Access_<elmsexpected. Of course it is nec-
essary that the ViewA_<class> properly implemefitsmathods promised in the pure
abstract Access_<class>. Note that <class> stamdsnly appropriate AL entity. We
use it in order to allude to the fact that the dégd architecture is needed for any of
the view classes. View A inherits directly form Alvhich means that it doesn’t need
any of some possibly similar view (static base) lenpentations. On the contrary,
exactly this is the case of the example of thetmosng for View B. It inherits the
class HasSource, equivalently as the View A, bad alherits from static base. In this
way when overriding the methods of the static base can reuse some implementa-
tions of it, some attributes that exist in it asbabe able to simply use specific meth-
ods from static base without overloading them. Mwesv positioning type is used in
our implementation of the Virtually Flattened Viewhich is given in next chapter.

As we have mentioned, each view can implemeryritséate interface and at-
tributes. They are helping structures and methodghke goal of re-implementing (re-
grouping) the entities of AL that the view offecsthe further user.

In this point we can discuss the fact that the viewv also expose some new in-
terface and augment the standard CSI. This isnfstance good if it is necessary to
include extra properties for the NLDB objects fioe purposes of the given algorithm.
An example would be the interface to store andenadrthe types for nodes of the
design. Note that these methods would be visibtdusively if the view which de-
fines them is appearing as the last level, direatigler the user algorithm layer. This
is the negative issue and it can be an argumenthéoreventual redefining the CSI
where the given methods would be included as alatdn

The described architecture gives a lot of freedonmplement different sorts
of transformations. We will present some, as aowisin the following section.

4.5 Examples of views

So far throughout the current chapter we havenddfa new framework which
enables hierarchical transformations of the EDAesthtic designs. We have speci-
fied the pure abstract interface by whose overlugadind inheriting its pure abstract
classes we can write different views that enabéanchy layout transformation. In
this section we are going to present the motivadad conceptual ideas of imple-
menting various views following the defined frameikvo

Equivalence class abstractor
The idea behind this view is to group certain edeta of the NLDB database
as an alternative to subcircuit cells. This is imi@ot in various algorithms, which

helps treating a group of the devices that areanghow explicitly abstracted by the
database itself in order to optimize given useouwdlgm implementation. Equivalence

70

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

classes are applied in different ERC checks inromleptimize node type propaga-
tion. On the other hand this concept can enablelibgiof the nets. More precisely, if
an generic equivalence class abstractor is offasach uses specific generic CSI
methods to represent the abstraction, building taahstractor would be combining
this level with an additional which would only seras an adapter and wrap the ge-
neric method calls into specific interface thatldaa usage of nets in NLDB.

Variant generator

By implementing specific view, variant generati@gppendix A) can be hid-
den behind the CSI interface, where each varianildvbe seen as a separate cell
definition. For this reason in further text, we wiise the terms variant and cell
equally. The difference between them is just inwlag the given entity is realised: if
it is directly defined in the model or isolatedaasariant of the cell during the variant
creation process.

Virtually flattened view

The size of the hierarchical data can be manydismaller than its unfolded
(flat) version. This is especially pronounced ie tase of DRAM memories. In this
case it is obvious that, as the data is highlydd|dalgorithms to work on it directly
would be extremely complex, in some practical wiaypossible, as developing the
algorithm for each specific application/task wodkimand very long periods of time.

As the implementation of some algorithms (pattestching, for instance) is
very difficult for hierarchical netlists, the methadogy where one flattens the netlist
first and than operates the tool on fully flat r#tlvas often used. For big examples
this method is not efficient. It consumes a lotnegmory and time; further the con-
texts the algorithm works on are highly redund&nir idea is to provide a specific
view on the hierarchical data that can provideffiatible view on it that is friendly to
the user application. This view is the topic of ttext chapter.

71

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

5 Virtually Flattened View

This chapter brings one possible usage of thergemencept of hierarchy
managing layered views established in the prevaobagpter, the object-oriented virtu-
ally flattened view (VFV). The vision of this vieis given in Section 5.1. The further
text of the chapter gives a description of the Hetel architecture of the VFV
throughout section 5.2. Therefore, the main clas$déke view are conceptually dis-
cussed, together with the proper explanation ofr¢etion between the view and the
Layered NLDB database. Further, section 5.3 giwearuoverview of the architecture
and semantics of the entities that model the naitsed flat data portion itself to-
gether with precise description of the typical noelt and mechanisms that enable
proper flat data portion creation. The discussibthe concept of dynamic iteration
over representative devices is left for the sectiah followed by the description of
the general object building strategies abstraateal specific builder class in 5.5. The
complex concept of the mechanism that assuresagstency between the flat data
portion and the hierarchical database and detesrihmeflat netlist space projections
of the flat data portion is given throughout sewes 5.6, 5.7 and 5.8. Further, the
committing process and the mechanism that allomsistent usage of changes of the
hierarchical topology together with the originatatzase data which has stayed intact
is given in the sections 5.9 and 5.10. The appinabf the view we define here on
the problem of search oriented subcircuit recognifchapter 2) is given in chapter 6.

5.1 Introduction

The Virtually Flattened View is a type of the lasshical netlist database lay-
ered view. The Hierarchical Layered Views are stibgé the previous chapter. The
goal of the Virtually Flattened View is to presguatrts of the hierarchical netlist data
in the flat fashion. Therefore, the user (algoriffaocesses the netlist as if it was stati-
cally flat. It can iterate over different devicekthe design and navigate the local
neighbourhood, from once acquired device to amyitreeighbouring design device,
orthogonal to design’s hierarchy. In order to aehi¢his, the algorithm materializes
flat data portions that would represent the pathefdesign which is of interest.

How is this possible, having in mind that the &rehical concept describes,
sometimes, highly redundant flat data, whose nalieaition (flattening) requires un-
bearably large memory and whose analysis wouldiregutensively long runtime?

In order to still be able to take advantage of ftaeview, some assumptions
have to be taken into account. Many algorithms tigacally, local portions of the
design data for their calculations. Thus, the algor would acquire a handle to a
certain device, as the starting point and furtlxangne its local neighbourhood. After
evaluating this portion of data, the algorithm wbateate the conclusion records that
represent the tool's output. There are numeroumples for this concept: search ori-
ented pattern matching, parasitic net evaluati@hraduction, etc.

We can achieve our goal, if we take this tool @refice as a constraint that is
not going to handicap the algorithm execution femyhow.

Two main constraints are to be established inramenake the concept of the
Virtually Flattened View feasible. First, the itdoa over the design elements is con-
ceived in a specific way. Hence, the user can tgemanly over all context-
representative devices, not redundantly over aigihedevices. This approach is spe-

73

Chapter 5 - Virtually Flattened View

Flat Projections of Virtually Flat Pattern

Flat netlist space"\

’
~— Materialized Flat
Hierarchical (MFDP)
netlist

Figure 5.1-1 — The conceptual diagram of the Virtubly Flattened View. The local pattern that is
being created stands for a number of identical appgances of itself in the flattened netlist space.

cific, however semantically correct. As we haveorniation about the hierarchical
properties of the design data, if the user algoritreates some result, it could be
committed in a way that it is valid for all appeacas of the given pattern in the flat
design version. An additional, important conseqeeat this approach is a much
faster expected execution time, compared to the fiar approach. By working only
on representatives, the algorithm skips all redohddentical appearances of a given
algorithm result. Still we must not forget the dvead that the algorithm that controls
the view introduces. A second constraint of theceph we are proposing is that the
object identifier consistency is secured only ieséh interconnected flat data portion,
formed strictly by navigating in the neighbourhaafdhe starting object, acquired by
iteration. If this is taken into account, we havether, implicit, more or less flexible
constraint. The size of this local neighbourhood ttabe acceptable from the aspect
of the available system memory.

Therefore, considering the constraints given apthee implementation of the
view must be able to create (materialize) smaltipos of the hierarchical database
data in the flat fashion and to maintain the cdessy between this flat data portion
and the original hierarchical database data. Eaclenmmalized flat data portion
(MFDP) corresponds to multiple instantiation placeshe flat netlist space, as illus-
trated in the Figure 5.1-1. This means that philgicaly one pattern exists, but it is
valid for multiple (as example illustrates, threéJerent contexts in the flat netlist.

Described above is the primary functionality of Yigually Flattened View.

The limitation that the object identifiers of thecally flattened view are not
permanent can be indirectly addressed. As anytdimuparisons between the objects
of two materializations of the view are not possjlthe dependency between two dif-
ferent flat data portions is rather achieved beralfy the primary hierarchical data
using the corresponding MFDPs that the view hagigged. This comes as a second
functionality of the view. In every moment, the @mt group of objects representing
the materialised flat data portion can be committedhe hierarchical netlist as an
instance that is placed in a given optimal hiermaHevel (as deep in the hierarchy as
possible). This powerful concept, which enabldsraig the hierarchical data, by
using exclusively standard common interface “votatyi (Access Cells and
Access_Instances) can have a wide application, as it will be shdater.

74

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

5.2 Virtually flattened view - high-level architect ure

In the previous chapter, we have defined the propenework to alter the ac-
tual hierarchical topology of the hierarchical dgsby strongly separating the inter-
face entities and their method definitions from amplementation. Therefore, we
will now present the concepts of the Virtually fdated View, with the respect to this
framework, employing advanced object-oriented meigmas. Hence, in continuation
we show the high-level architecture of the Virtydflattened View and it's relation
with the Layered NLDB.

The main functional units of the virtually flatexh view are given in Figure
5.2-1. The view is inherited from the NLDB statiase. Among other advantages that
will be pointed out, this gives the opportunityreuse parts of implementations of the
standard netlist hierarchical database. The beairdhe view is the clas¥ir-
tual_Netlist . Itinherits the clasBase_Netlist . This is done, as the virtually
flattened view should provide a user the feelirgf the is working with a regular flat
netlist. Therefore, passing the object of the scMistual_Netlist , instead of
the (expected) instantiation of the cl&&sse Netlist allows the user algorithm
that is designed for flat NLDB data, to transpasentork with the virtually flat data
representation, employing polymorphism.

Ve N
Base_Netlist Virtual_Netlist VS I/ Virtual_HierContextSaver \|
<] I I, |
1 |
| |
R inal cel 1 | |
1 [-hominal_ce : Virtual_Builder :
Base_Cell Virtual_NominalCell I\ 1 ,I
<] N _/
1
DeviceFlatContainer iterator

Figure 5.2-1 — High level architecture of the Virtwally Flattened View. The view mimics the flat
netlist. Thus, It has a Virtual_Netlist, Virtual_NominalCell and the DeviceFlatContainer classes.
Virtual_ContextSaver and Virtual_Builder are given also to model the overall VFV creation and
exploatation process.

The classvirtual_Netlist has its nominal cell, as well. It is, moreover
the only cell in this virtually flat netlist. Notinat, in general, the nominal cell of the
virtually flattened view does not have to be thenial cell of the hierarchical design.
Just a part of the hierarchical design can be niyyl@ying the virtually flattened view,
seen as flat. This flexible property can give onehance to, for instance run a flat
algorithm on a part of the hierarchical design ikaif relevant interest, or to, by em-
ploying the committing functionality, rearrange thierarchy of a given part of the
hierarchical design.

75

Chapter 5 - Virtually Flattened View

The nominal cell of the Virtually Flattened Viewrgains further an instance
of the clasdDeviceFlatContainer . This class models the sophisticated concept
of the iteration over irredundant, representatiegices of the virtually flattened de-
sign. Therefore, the clag¥eviceFlatContainer , as a container collects all dif-
ferent device representatives from each NLDB devimetainer at any hierarchical
level of the design. More precisely, it servesams sense like a facade between the
group of containers in the hierarchical databaskcm® simple interface @evice-
FlatContainer . The classDeviceFlatContainer defines an appropriate
iterator, a class that can sequentially accesbalélements that the given object of a
classDeviceFlatContainer aggregates. Note that the number of members of
such a container is dynamic and it correspondegmtimber of variants of the given
hierarchical design. As it was pointed out in tinst fsection of this chapter, the Virtu-
ally Flattened View, as well, can alter the hiehggal netlist by inserting new abstrac-
tions and rearranging the hierarchical order ofrib#tist. This includes altering the
variant graph structure. An upcoming section weéfide the usage of the mentioned
class pair (container — iterator).

So far elaborated classes in this conceptualvalldiagram are following the
interface of the standard NLDB database and mitaibeéhaviour.

Additional classes that are part of the generalvwvarchitecture ar&/ir-
tual_HierContextSaver (Virtual_Excluder) and Vir-
tual_ElementBuilder . These parts of the system maintain the hieraatleimn-
text of the current Virtually Flattened View matdised flat data portion (MFDP) and
control the virtual layer object building processespectively. The Vir-
tual_HierContextSaver defines the relative top hierarchical level foe ttur-
rent state of the Virtually Flat data portion. Thesel is dynamically chosen by a so-
phisticated algorithm applied on the specially dedidata structure. Hence, for each
MFDP that is created this class attempts to plaes deep in the hierarchy as possi-
ble. In this way we tie the flat data portion t@ tmaximal number of different con-
texts. Hence, the MFDP is valid for each instardrabf the relative top level cell.

Two different strategies of the external usage tbe class Vir-
tual_HierContextSaver are possible. First, it can be used explicithgat the
set of paths for the given virtually flattened patt Second, the information about the
materialised data portion position (relative to kirerarchical design) can be used im-
plicitly, by altering the primary standard NLDB rbutes of the design. More pre-
cisely, this happens by introducing new subcircaits adding their instances to the
original hierarchy. In order to implement the fiegiproach, it is necessary to define
an extension to the standard interface that isetaded by the user algorithm. In this
case, the utility flat algorithm would have to bteeed, at least in the phase in which
it commits its results. This change would remamjyéver, local and the main part of
the flat algorithm would stay the same. The secapproach hides everything in the
existing hierarchical database interface. In otdeachieve the benefits of this ap-
proach it is necessary to allow altering of themaniy hierarchy topology and there-
fore the variant graph of the given hierarchicadige, as discussed in the previous
section.

The classVirtual _ElementBuilder encapsulates the process of the
creation of a materialized flat view. This parttbé system offers a flexible and up-
datable architecture, allowing fast adaptationghto specific needs of different user
algorithms. For instance if the user algorithm rseedsome additional inter-
face/variables to be added to the devices of thBBItesign for its proper execution,
one would add these functionalities to the relevdetiabase elements by creating

76

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

more specific type. By abstracting the elementt@agrocess into a clearly defined
class we can easily setup our view to create thpseific objects which it is still able
to manage ignoring the specific interface, henegyihg it to the user algorithm.

The described architecture, therefore, defineslden for a group of objects
that represent a locally flat data portion. The flata portion materialization starts
from the object that is returned from tBeviceFlatContainer . In continuation
we will explain the implementation architecturesnbe, specific data structures and
algorithms that allow the approach described wiiis high-level view on the pro-
posed design. The relation between the objectpatitfon of) the view schema that
Virtual_ElementBuilder creates and its holder, together with the taxation
hierarchy description of view classes and othetspairNLDB will be presented in the
next section.

5.3 Virtually flattened view class representation

The view consists of the collection of classes thpgrade the functionality of
NLDB. There are analogue classes for each of th®Bll(base) originals. For in-
stance, the cladBase_MOShas its view analogue clasértual MOS . The rela-
tion between these two classes and their positidha overall NLDB class hierarchy
is shown in the class diagram in Figure 5-3.2. tAis shown in the diagram, virtual
layer classes are not directly inherited from theepabstract interface of the Access
Layer. The reason for this is that the layer respi@lso some implementation of the
static database. After acquiring the starting elgmartually flattened view material-
izes a small portion of data from the hierarchit@iabase in the flat fashion. All ob-
jects that are aggregated into this small viewiporare the objects of different view
classes. The implementations of interconnections/den the database objects are
therefore, directly taken over by the layer clasggsart from being able to use the
Virtual layer classes in place where some otheebasmore general, Access Layer
class is expected, we get the implementation @&raannections of the materialized
pattern for free. Just by accessing the interfdcéne Base Layer inside the Virtual
Layer classes, we can access the objects lochlbgetthat are already loaded into
materialized view. When the view is augmented, ijgeoverridden interface func-
tions combine the old implementation to e.g. acgaipin of the device with the func-
tionality that is implemented in overridden virtuayer interface methods. This up-
grade reads data from the previous layer in casesaenthe object, member of the
virtual layer still does not have any informatioboat the appropriate connection.
Note that the source layer object is definedhasess_Device , that means, com-
bining several layers in order to get the corresgjpmnvariant of the hierarchical data
representation is allowed. FiguBe3-2 gives the inheritance hierarchy for the view,
with its relation with other NLDB classes.

The class diagram shows intentionally the pure trabls class
Acess_Device at the bottom. This is the root class and eadh@etlasses that are
deduced from it have to implement a strongly definemmon interface. In this light,
all classes of the Virtual layer implement thisnstard interface in their specialized
way. In the first (diagonal) row the primary clasgrarchy is shown. Théc-
cess_Device pure abstract class is specialized by the dasgess_MOS in order
to define augmented interface of tAecess_MOS, still pure abstract class. Base
Layer classes statically implement a hierarchigggregation of database objects.
They take care of implementing numerous referetceapture the hierarchical net-
list topology and additionally all necessary atitds about a single class that are

77

Chapter 5 - Virtually Flattened View

available through the Standard Common Interfacd)($Cthe Figures.3-2, the hier-
archy of Base_<classes> is shown in the middleathabstripe.

The virtual layer classes are all realised by mldtinheritance. The root class
of the Virtualy Flattened View hierarchy, the abstrclassVirtual_Device mul-
tiply inherits properties from thBase_Device , in order to get the general func-
tionality of creating a topology and the clasasSource . ClassHasSource , as it
Is mentioned in the previous chapter enables lagefihe sourceView of thidas-
Source class interpretes the SCI of the Access Layers Thidepicted by the asso-
ciation line from HasSource directly to Access_Device Note thatVir-
tual_Device privately inheritdHasSource . This enable¥irtual_Device to
only privately have the interface éfasSource and that it, as well, disables the
polymorphism between HasSource and Virtual _Deviagy hypothetical algorithm
wouldn’t be able to acquire a handle to Virtual_[@evas the descendent idas-
Source .

Virtual_Device IS an abstract class. Its instantiation is noss, as it
has a set of undefined functions that are impleateirt the child classes that again
multiple inherit theVirtual_Device . This is necessary in order to be able to em-
ploy polymorphism and use the Virtual_MOS, VirtuedRRor some other class that is
in place of the Base_MOS, Base_Res, etc. It is rtapbto stress that, since this de-
sign was implemented in C++, each of multiple inlaece paths are, as well, marked
virtual, in order to ensure a single instantiatafneach of the parent classes in the
object memory layout. For exampMirtual MOS has aBase Device as a par-
ent class through two different inheritance paBese Device is the second parent

NLDB
_________________________ e
Virtual layer 7 7
7 7
7 7
Virtual_MOS e P
Ve Ve
Ve Ve
il Base (static) il
7 7
d
AV - \V4 p
Virtual_Device - 7 Base_MOS - 7
7 7
pd .~ Access layer
7
Z—— Ty
HasSource P Base_Device il Access_MOS
7 7 7 7
Ve Ve
7 7
4 4
7 l 7
7
e A \/
P -srcView Access_Device
7 7
7 7
7 7
Ve Ve
7 7
7 7

Figure 5.3-2 — Virtually Flattened View layer placement iside NLDB class hierarchy

class, both ovewirtual_Device and overBase_MOS This configuration is
known as a “dreaded diamond” [47]. Its implemewntatdemands pointer address
mangling. This results in some overhead when comgahe pointers to the given
objects, or accessing the object variables. Tmsime penalty is paid in our case in
order to achieve very elegant design that requirgsmal changes of the static base
classes and 100% transparent usage of Virtual Lalyjercts with the algorithm that
was already written to use NLDB API.

78

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

In order to enable full functionality of the siegVirtual class as the part of the
virtual layer, overriding of the SCI (see sectioB)4nethods is necessary. SCI meth-
ods, for this purpose, can be divided in two grodje first group contains the meth-
ods that only forward their calls to the sourcedéss Layer) object. All these meth-
ods directly get information about source objeatisibutes.

In our simple database that is the function to uaeq device model
(model()), or a namename()). In realistic EDA databases we would have also
the methods to get different device parameters.

A second group of methods of the virtual classtiagemethods that are part of
navigation interface. In our example design thathis method of the clasgir-
tual_Device, pin(int i) . Overriding this part of the interface of the wvat
class family enables proper view (augmenting) ratug inside the already created
MFDP. We will now analyse the algorithm of the ftino pin() of the clasd/ir-
tual_ MOS . This function of the SCI, that belongs to any cdeslent of Ac-
cess_Device, gets the handle to the device pinhwitither leads to a given node to
which the device’s terminal is connected. The fiomctoutline is given in Figure
5.3-1

This function (together with its analogues in éiéint classes of the Virtually
Flattened View schema) is responsible for autotmeaf the MFDP. Once the func-
tion is called, it first attempts to find the immai# (local to the view) connection to
another virtual object, member of the virtuallyttféaed view. If this information is
not yet available (the neighbouring object is beakefgrred for the first time) the func-
tion will read the data from the previous layeritigg, for instance, the static base
object - instantiation dBase_Pin object. The algorithm now creates or regains the
handle to the virtual object, depending on the flattie neighbouring object was, po-
tentially, already created using some other patiénview topology. For instance, if
we have focus on one device of the parallel commeaif two transistors, it is possi-
ble to reach the neighbouring device following ariythe terminals, gate, source or
drain. Therefore, a lookup map is needed in oralémnbw if some object was already
used. This is the responsibility of thértual ContextSaver . This complex
object (aggregation of objects) keeps record onraagping between the source de-
vices and the view devices. This mechanism wikklkgelained in detail in section 5.6.

The flow of both mentioned scenarios is given iguFe 5.3-2, under (a) and
(b). Both of these scenarios require lookup inte ttash table and possibly object
creation, which makes this usage case the slowssttion in the view navigation.
Still look up is the operation with the expectedngdexity O(1) as a hash map is used.
Therefore, as the experiments confirm, no majoetmas spent on these lookups dur-
ing the application algorithm execution. Third saeo (c) acquires the virtual object

Base_Pin* Virtual_MOS::specific_pin(inti)

{
Base_Pin* ptr;
if(NULL == (ptr = Base_ MOS: : pi n(i)))
{
ptr =

Virtual_Netlist::getBuilder()->
get Vi rtual (this-> get SrcVi ew() ->pin(i), this);
setTerm(i,ptr);

return ptr;

}

Figure 5.3-1 — specific_pin function code

79

Chapter 5 - Virtually Flattened View

directly, from view’s local references. This is tlastest scenario and in the same time
independent (local to the view). There is no dimetérence to the source NLDB da-
tabase in order to acquire the proper object ofviber. The described concept re-
minds of the proxy design pattern [48, 49], whegg@up of objects serves as a surro-
gate to the originals.

The concept by which methods, members of thegafien interface, are
overridden is given the claS8rtual_Device . Analogue methods exist fofir-
tual_Pin andVirtual_ Node classes. They are used to model the bipartitehgrap
by which any electronic circuit can be describedti@ut hierarchy). In our case
Virtual_Device s belong to one group of verticadrtual Node s to the sec-
ond. Virtual_Pins simply model the connections between these twapgoAll

Virtual Flattened Layer NLDB
a) (-
;E = £ Base Pin : Base Device
/' |V|l1ual Device |V|r‘lual HashTables | |
- User&pplication . D D: D
pingint) : :
: | pro .
: getVirtual) : [
. getPinPtr{Base_Pin™))
0
VIHUSF_PIH{B&SE_PII‘E', Viual_Device”)

b) Virtual Flattened Layer NLDB
g [Vinual Device |Virtual HashTables s |
. Userspplication [] D D. - -
M pingint) E E : i E
: om0 | *
: getVirtual() ; i l;l
. ge!PmJ:Ptr(Elase_Pln‘)
7 i
E i Vittual_Pin{Base_Pin" :Vlnual_ﬂevi:e',\
H {
c) Virtual Flattened Layer NLDB

_P:)

N\,

h

i | ey “¥itual Pin : Base Pin : Base Device
5] Virtual Device Wirtual HashTables
[
: UserApplication D -
nint ' : ! H '
HLJ, [' retum() : : :

Figure 5.3-2 — Sequence diagram of Virtual_Pin obj acquisition. a) virtual view object is cre-
ated on demand. b) A handle to virtual view objects obtained. c) virtual layer object is directly

acquired

80

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

tree classes have a similar implementation ofithegation interface.

In the end, it is important to mention that for theual class there is also third
part of the interface. It is not part of the SCtlas privately defined, to the class. This
interface is implementing layering (interface tleach virtually flattened view object
inherits from the HasSource class).

5.4 DeviceFlatContainer - Iterator

The DeviceFlatContainer class is defined in the scope Wfr-
tual_NominalCell . It aggregates all devices in all representativetexts. If a
given cell is instantiated in two equivalent consexegarding a set of parameters, its
devices would be represented only once in thisaioet. This is enabled via the per-
sonalisation concept given in Appendix A.

Following the container — iterator concept, a eordr defines an iterator class
in its scope. The iterator sequentially acquiréel@ments that belong Device-
FlatContainer

In order to achieve this, the iterator has todrag over all devices of all cells
in the cell graph.

DeviceFlatContainer(9 iterator
+begin() : iterator +operator++() : void
+end() : iterator +operator*() : Access_Device

TopDownCells iterator

+operator++() : void
+operator*() : Access_Variant

Access_Device| * 1 Access_Cell Access_Variant

Figure 5.4-1 — Class Diagram of DeviceFlatContainefacade for the aggregation of Acces_Device
objects

Having in mind that th®eviceFlatContainer class stands for a set of
objects with complex, hierarchical order and irded, groups them together, offering
a simple interface (begin(), end() methods andttrator class with the standard in-
terface), we can notice that this part of the abggented design follows the facade
design pattern [48]. The implementation architexiirthe clas®eviceFlatCon-
tainer is shown in Figure 5.4-1.

The class is placed in the inheritance hierarchthefclassTopDownVari-
ants. As it was explained in Appendix A, cla3®pDownVariants aggregates

81

Chapter 5 - Virtually Flattened View

all hierarchical design cells in a specific ordep(down or bottom up). These cells
have some of the entristic parameters resolved¢i{asen upon the variant creation).
Together with this class, an iterator was defirtledt can, sequentially, accessAstt
cess_Cell objects that are stored in the given design.

ClassDeviceFlatContainer therefore subclass@opDownCells and
its appropriate iterator is subclassed by thetiveraf the clas§opDownCells .
The order of iteration of thBeviceFlatContainer 's iterator can be, up

to a certain extent, controlled. The user can chdles order in which the design cells
are accessed, bottom up or top down, dependingeosetup of th&opDownCells
class. Simple pseudo code to describe the traviedgals:

for (all cells)
for(all variants)
for(all devices);
get pointer to the device;

Note that the sets that aggregate variants of ésggd cells and devices are not or-
dered and in this model, their order is arbitrary.

An additional, important property of the containleat we define in this sec-
tion is that its content is dynamic. If the usegaaithm causes a change in the variant
graph, e.g. by changing the type of a certain net device, or by altering any other
parameter that is defined for the variant creatibe,container would, as well, change
its content. This can be illustrated with the sienpkample design shown in Figure
5.4-2.

The example design shows a NAND implementatiorhefXOR logic gate. If
we suppose that the variants are being createdebgdll pin type, and that all pins of

xOr

in1

X2

X1 X4

in2
X3

Figure 5.4-2 — Example of dynamic DeviceFlatContagr content. xOr hierarchical representa-
tion

the different instantiations of a NAND circuit hatlee same signal type, our design
variant graph would have only two members: top llared one variant of the cell
NAND. This would mean that the iterator of the aevflat container, if it was setup
to iterate bottom-up, would acquire focus on the emariant of the cell NAND, iter-
ate over its devices, than further change the gbiwifethe variant to the top level. As
in top level, there are no opaque (atomic) devibegteration comes to an end. If we,
for instance, during the user algorithm executitierahis hierarchical design and
change the type of the net,irthe revision of the variant graph would start amd
stances X and X would be moved to a different variant, as thepuinterminal one
now has a different pin type. After this process wariant graph, apart from the top
level variant has an additional variant of the ¢NND and in total two variants of

82

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

this only cell that is instantiated in the giverrairchical design. The content of the
DeviceFlatContainer has now changed and we get eight atomic devicesglu
traversal, meaning four from the first variant loé¢ ttell NAND and four from the sec-
ond variant of the cell NAND.

The implementation of the iterator class that é&saldynamic traversing is
closely related to the way new variants are addathg the lifetime of theVir-
tual_Netlist object. For this reason a more detailed implememtaf the itera-
tor class will be given later.

5.5 Virtual element builder

In order to materialize the flat data portion, dcgtes for each element ac-
quired from the NLDB database are being built. Ehalsjects are to serve in different
applications. Sometimes, according to the prinsigiethe user algorithm, additional
variables (fields) should be added to flat vieweals that stand for pure NLDB ob-
jects. This can be achieved by subclassing givéectsy augmenting their interfaces
as needed and adding extra implementation varialolesder to enable this, the view
has to support a flexible object building. For thémson, we abstract the building
process in a clas¥irtual_ElementBuilder . The definition of aVir-
tual_Netlist holds a handle to the object of this class. Is thay we separate
the view object building from the rest of the systeenabling better flexibility. The
solution that is engineered for the Virtually Faied View follows the architecture
shown in the class diagram Figure 5.5-1.

The Virtual_ElementBuilder is given as a combination between the
Builder Pattern and the Template Pattern [48]. TthesproductVirtual_Device
descendentsyirtual_Pin andVirtual_Node) building process whose flow is
managed by the director object (in our case VirtNetlist) is delegated to a spe-
cial builder objectVirtual_ElementBuilder). On the other hand, a list of ser-
vices is declared as a pure virtual interface amthér used in the implementation of
different higher level algorithms, which is a prdageof the template design pattern.

Virtual_ElementBuilder

#InstVirtual_MOS ()

#..()

#InstVirtual_Diode()
#InstVirtual_Pin()
#InstVirtual_Node()
+getVirtual() : Virtual_MOS
+getvirtual() : Virtual_Pin
+getVirtual() : Virtual_Node

Virtual_Builder

#InstVirtual_MOS()
#InstVirtual_Diode()
#InstVirtual_Pin()
#InstVirtual_Node()

Figure 5.5-1 — Virtual_ElementBuilder architecture

83

Chapter 5 - Virtually Flattened View

Therefore,Virtual_ElementBuilder is the abstract class, as it just offers a
family of pure virtual functions that encapsulatgezt instantiation. These functions
form a protected pure abstract interface, as ogedb part of the complet¥ir-
tual_ElementBuilder’s interface. These functions are (in our case study
model):

e InstVirtual_MOS(),
e InstVirtual_Res() and
e InstVirtual_Cap().

Another part, public interface of this abstractsslais implemented. The imple-
mentation of these functions, following the temglpattern, uses services that belong
to the protected pure abstract interface. All tnecfions of the public interface of the
classVirtual_ElementBuilder have the same namggtVirtual() . They,
however, differ by the argument type. For each typthe object a different function
is implemented. The function architecture is stadidad, following the pattern
shown in the Figure 5.5-2.

Virtual_Device* getVirtual(Access_MOS* ptr)

Virtual_Device* vir_mos;
if((vir_mos = currentContextSaver()->getElementPtr (ptr)) == NULL)

{
vir_mos = InstVirtual _MOS(ptr);

currentContextSaver()->putElementPtr(ptr, vir_mo s);

}

return vir_mos;

}
Figure 5.5-2 — example method of the getVirtual()amily

The example shows that the implementation of théhatkto acquire the vir-
tual copy of theAccess_ MOS object at first looks up if the appropriate object
already instantiated and if so, it acquires a @oitd it. This is done by looking up the
table of existing virtual copies of the databassreints at the given hierarchical level.
Next chapter explains the data-structurggt@al ContextSaver) that save
these mappings. If no mapping has been foundgétirtual() method would
instantiate a new object using an appropriate neeftmm the protected interface. In
our example, the method which is callednistVirtual_MOS() .

As an exception to this group of methods, the woubtlgetVir-
tual(Access_Node?*) has a somehow more complex implementation. The re
son for this is the fact that the virtual nodes distributed over the hierarchy. The
explanation of the recursive algorithm of the meméid method is left for section 5.6,
after defining proper environment which helps islerstanding.

Note that, as the clasartual_ElementBuilder is abstract, it can not
be created. Therefore, we define a class whichritshihis abstract class and imple-
ments the promised interface. The cl&sgual Builder Is the default imple-

mentation of the builder and its realization of fitetected interface simply instanti-
ates pure NLDB objects, members of Virtual Laye. iastance:

Virtual_MOS* InstVirtual_MOS(Base_MOS* ptr)
{return new Vi rtual _MOS(ptr);}.

84

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

This function simply wraps the instantiation o #irtual_MOS class.

According to the selected architectureYiatual Netlist object has a
reference to a single object of the element buitdet it gets the handle to a concrete
object that subclassaértual_ElementBuilder already through its construc-
tor. Additionally, access to the builder object dndher to its interface that builds the
relevant products is defined through a public gétRu() method of theVir-
tual_Netlist class. As it was chosen, during the lifetime ok tir-
tual_Netlist object, it's not possible to change its builder.this way we can
assure the consistency of the objects which amghauiilt. Note that with a small in-
terface change of th¥irtual_Netlist , this can be however altered and if it
would be necessary for some future use, buildezatbjcan be exchanged during dif-
ferent phases of the user algorithm. In this ctimeyuser algorithm, during its runtime
would have to use this additional interface and geavuilding process consistently.

5.6 Context saving tree

The context saving tree is used to assure the stensy between the material-
ised flattened data portion and the hierarchicaéhlukzse. It defines all proper map-
pings between the devices that are representdeedkattened data portion. Addition-
ally, it defines the position of the view in thesdg hierarchy, relative to appropriate
variant that is considered as the context for thénmlised flat data portion.

The context saving tree is important also in thecpss of committing the
relevant flat data portion to the primary hieracahitopology of the design. We want
to use the very same objects that were trackingnthpping between virtual and
source objects thus assuring the consistency dilah&iew with the hierarchical da-
tabase during the process of creation and maintentdne VFV. This time we assign
them another semantic role: providing informatidrowat hierarchy changes after the
committing step where the relevant state of the \(EMrent MFDP) is embossed to
the primary hierarchy of the input design.

As we have identified two roles of this single extijthat stores mappings be-
tween source and virtual objects, we need the Bpétierfaces for both usage cases,
as well. This makes the overall interface of theegiclass bloated. Additionally, us-
ing the same class to depict two semantically dfie entities is making the percep-
tion of the architecture of the given object orezhsolution less understandable. For
that reason, to model this part of our system vier #® the concept of Objects with
Roles.

5.6.1 Objects with roles

Object oriented concepts tie objects to their sygimtically. No dynamic type,
I.e. morphing of the given object from one typeatwther, during its lifetime is al-
lowed. The only type changes that are allowed aatwally are those along the in-
heritance hierarchy. This is actually a relatiortled more general type to more spe-
cific type. On the other hand, it is not exceptiotiat in different applications, the
same object plays more than one role during ititife. In each of these roles, the
semantic character of the object varies, depenalintpe context in which it was used.
This has sparked a discussion in the object-orestdtware development community
and various solutions have emerged. Some of themope new concepts in general

85

Chapter 5 - Virtually Flattened View

object oriented methodology. They are implemente@xperimental languages, or
just theoretically discussed [50]. Others searchife solution using already available
standard mechanisms, creating specific designrpatte order to solve the men-
tioned problem. Fowler describes a set of appresam order to solve the role prob-
lem and points out their advantages and disadvast@gl]. On the other hand,
Baumer offered a design pattern in which he hartile®bject roles by instantiating a
separate object for each role - Object Role Paf&2h By delegation, the core object
(which stores relevant information) is accessethfdifferent role objects (that belong
to different classes with clearly defined interfglce his solution offers flexibility and
precise definition of separate role entities anerfiaces, but suffers from increased
complexity of the interface of the object (role mtanance interface) and overhead to
implement manipulation, creation/destruction of rmwo more active roles. Further,
the object identifier consistency is violated. Hengou can not trivially compare two
appearances of the very same objects in two diffemdes.

We will use a solution that is similar to this oteit is realised, through the
object-oriented concepts available in C++: multiplberitance, friend relation and
other standard mechanisms, making it much simplarse and maintain. The pro-
posed architecture is given in Figure 5.5-3. Thagdim describes three abstract
classes and one concrete that is possible to kentreted. At the bottom of the dia-
gram is the pure virtual claggireAbstractServiceProvider . It defines a set
of protected services, but leaves its implementatiodone. The services are equiva-
lent to the services that are defined in orderatodte the states of theplementer
class object. Both interfaces are defined protecidds, the specification of this in-
terface is visible only for the classes that aréhm inheritance hierarchy of ure-
AbstractServiceProvider . Those still undefined services are used to imple-
ment the public interface of the object with roleassednterfaceA , ..., Inter-
faceN. We can compare this part of the design to the TatePattern[48]. Each of
the abstract classes define their generally diffengterfaces and expose the declara-
tion of the methodjetPointer() , which enables object passing between different
roles. In the end, the clabmplementer multiply inherits all interface classes and
implements (as protected) all undefined interfaemtoers. In this way, if the instan-
tiation of the object Implementer is passed topbimter of any of the role classes, its
variables are to be interpreted using a completéfgrent interfaces. Note that this
exchange is possible during the lifetime of a sngject, therefore allowing the in-
terface methods of different role types to worktlb@ same data in two different con-
texts. Additionally, implementer class is opaquehds no public interface defined,
which protects the data of this object from misud@s is achieved by “hiding” the
public interfaces of the classes InterfaceA,... rhateeN by making them private,
employing the C+4using keyword. Further, interface classéstérfaceA , ...,
InterfaceN) privately inherit PureAbstractServiceProvider. Thus,
polymorphism betweePureAbstractServiceProvider and any role inter-
face is switched off.

86

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Implementer

#Service1()
#Service2()
#getPtr()

InterfaceA

getA and getB are examples of InterfaceN
77777777777777777 public interface of classes]
+getA() InterfaceA and InterfaceN, that

+getPtr() : Implementer use services defined in
PureVirtualServiceProvider

+getB()
+getPtr() : Implementer

l

PureAbstractServiceProvider

#Service1()
#Service2()

Figure 5.5-3 - Object with roles — design patterproposal

By the proposed design pattern we achieve a skgaaration of public inter-
faces for any object that is to be used in diffel@ntexts during its lifetime. More-
over, by having an additional type for each of ibles that an object plays in the de-
sign, we gain a better understanding and clealicapipns of the given object data.
Further, the implementation of the object itseleixhangeable, as long as it realises
the promised services. This gives additional flékybto our design solution. The
described design is employed in order to addressdmplexity of the implementa-
tion architecture of the VFV and make our docunmengprocess of the algorithm
more comprehensive, as well.

Therefore, two roles of the context saving objerts going to be defined. In
the first role, the objects support the creatiod eonsistency of the materialised flat
data portion, maintaining the mapping between soatements and their virtual cop-
ies. In the second role, the same object is usedder to change the topology of the
primary hierarchy. Therefore, the root hierarchgssl|Virtual_HashServices
defines the protected interface that maintainstaee of the multi-role object:

virtual Virtual_Node* getNodePtr(Access_Node* bas) =0;

virtual Virtual_Pin* getPinPtr(Access_Pin* bas) = 0;

virtual Virtual_Device* getElementPtr(Access_Devi ce* bas) = 0;
virtual void putNodePtr(Access_Node* bas, Virtual_ Node* vir) = 0;
virtual void putPinPtr(Access_Pin* bas, Virtual_Pi n* vir) = 0;

virtual void putElementPtr(Access_Device* bas, Vir tual_Device* vir) =
0;

87

Chapter 5 - Virtually Flattened View

Virtual_HashesContainer

#getElementPtr()
#getPinPtr()
#getPtr()
#getNodePtr()
#putelementPtr()
#putPinPtr()
#putNodePtr()
#getNewObject()

—

Virtual_ContextSaver

+getNewObject()
+getPtr() : Virtual_HashesContainer Virtual_Excluder
+goUpHierarchy()
+goDownHierarchy() _
+getTopLevel() +elementNo?VaI|d())
+isTopLevel() +getPtr() : Virtual_HashesContainer
+setTopLevel() +pinNotVaIi_d()

+getParentLevel() +getCover(in ptr : Access_Node)

+getinstance()
+getVariant()
+getElementPtr()
+putElementPtr()
+getPinPtr()
+putPinPtr()
+getNodePtr()
+putNodePtr()

b

Virtual_HashServices

#getElementPtr()
#getPinPtr()
#getNodePtr()
#putElementPtr()
#putNodePtr()
#putPinPtr()
#getPtr()
#getNewObject()

Figure 5.6-5.5-4 — Virtual_ContextSaver and Virtual Excluder
classes

These functions define the processes of assigmdgretrieving relevant mappings
between the objects of the MFDP and their soutdese that all the interface meth-
ods are pure virtual, any implementation issueefsfor later. We are concentrated
only on the interface, not on any performance onglexity matter in this moment.

Additional to these application domain methods twethods to support role
switching and concrete object instantiation arenger.

Virtual_HashesContainer* getPtr() = 0 ;
Virtual_HashesContainer* getNewlinstance() = 0 ;

, also as pure virtual.

For our application we need two roles: the fisstnodeled by the abstract class
Virtual_ContextSaver , and the second, with the abstract clasgir-
tual_Excluder . Their interfaces and semantics are going to iptaged in detail
in upcoming chapters.

As the implementer class, we havetual _HashesContainer. This
class realises all promised interfaces and hidesptiblic interfaces of the separate
role classes. Thus, it has no public interfaceranye, leaving the object opaque as it
was recommended by the proposed design patteriteanttinie. One can compare this
object to a cassette (or a disc) and the rolesgodlevant devices that read it.

The implementation o¥irtual_HashesContainer consists of a set of
hash tables. These tables should provide the auneigected complexity for fre-
quent lookups, which are performed by both rolelipubterfaces during the proper
algorithm execution.

88

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

The methods to retrieve and set mappings arerirggeihan to the hash_tables
of the Virtual_HashesContainer and the methodetPtr() implementation
simply returns the pointer this , while the methogetNewlnstnace() accepts
the appropriate parameters and invokes the privatelined constructor of the im-
plementer object.

By inclusion of Virtual_HashesContainer and realjsall proper promised in-
terfaces the architecture we have given aboveayréor both contexts of usage.

5.6.2 Consistency of the virtually flat view datap ortion objects with
NLDB database (Virtual _ContextSaver)

As we have stated before in this chapter, the \Y&Rkés an arbitrary device,
returned by théeviceFlatContainer iterator as the starting point for generat-
ing a flat data portion, arbitrarily according teetneeds of the application that navi-
gates in the neighbourhood of the starting devk@e. each of the acquired original
database elements (including devices, pins andspoddich are distributed over the
hierarchy, a virtual copy is created. The virtugpies form together a flat view on the
local part of the hierarchical data. It is necegsarmaintain the consistency between
these materialised objects (members of the givelR)Fand source (original) ob-
jects. The consistency between the MFDP objectstarsurce objects that belong to
the hierarchical database is modelled through ss&latual _ContextSaver ,
more precisely as a complex structure (a tree)ogdats of this class. The tree struc-
ture is needed in order to be able to properlymedsmappings between the hierar-
chically distributed source database elements hedviFDP, allowing it to develop
freely crossing hierarchical borders.

The context saving tree is dynamically created madipulated by the virtual
objects that build the MFDP. That enables the ME®Be self-augmenting hiding all
the complex operations concerning consistency maartce from the user and per-
forming them internally by the VFV.

Every context saving tree starts from the unigueual ContextSaver
object that defines the context of the key dewaeich is created upon invoking the
star operator of th®eviceFlatContainer iterator. The context saver object is
tied to a given variant of the cell of the hieracethmodel.

If the algorithm tends to develop the MFDP andeases the neighbours of the
virtual copy and if that neighbours are distributaer the hierarchy the context sav-
ing tree grows accordingly inserting the relevammtext saving object and for each
affected hierarchical level and populating it wikie relevant mappings. We will de-
fine two important concepts of the context saviegt

theactive hierarchical leveand
therelative top hierarchical level

As each context saving object stores mappings detvihe relevant source
objects, that belong to certain hierarchical lewed the MFDP objects, it is necessary
to choose the proper context saving object to whielstore mappings, or from which
we acquire mappings. Thus, we always mark an atgwe that defines the current
position of the hierarchy that is in focus. Keepthg active hierarchical level in con-
sistency with the relevant lookups is crucial. Takative top hierarchical level is the
hierarchical level to which the root context saveolgect of the context saving tree is

89

Chapter 5 - Virtually Flattened View

tied. This level is important as it determines toiah context of the hierarchical data-
base the overall MDFP belongs.

In order to illustrate this concept, we can coesithe example in Figure 5.5-5.
The example design is a hierarchical representatica latch electronic circuit. We
show the hierarchy fully unfolded. NMOS and PMO&nsistors are encapsulated in
separate subcircuits. They form an inverter cirauside the cell A. Further, on the
top level, two instances of the identical cell & @roperly interconnected to form the
topology of the latch electronic circuit. In thetial stage (a), the algorithm takes in

The hierarchical model MFDP Contextsaving Tree
vdd
a)
X1@A X2@A
X1@MP’ 1@MP
—Imp —Imp ! @Variant: MN
> > | @Instance:
®
Out
[}
P
mn mn >—‘ Vmn
= =
| =
— o
X2@MN oYV U [I N S —
vdd AN=
@Variant: A
@Instance:
b)
X1@A
¢ e
X1@MP’ 1@VP
—mp mp [T
> > !
= L 2 = !
; @Variant: MN
Out ' S @Instance: X2
| ol ! >
mn mn Vvimn
— —
= &
X2@MN 2@MN N
@Variant: A
@Instance:
vdd T
c)
X1@A xer | 0 X1: TMN ; X2 : TMP
x1@mp 1@uP
eme [ew | Vdd
= mp miil]
> H
b ; > @Variant: MN
@Instance: X2
>
—! i
] -
X2@MN 2@MN
@Variant: MP
@Instance: X1
l 1V4;2:V2;3: VA

Figure 5.5-5 — The example of the development of@hcontext saving tree, the structure that en-
sures the consistency between the MFDP and the hégchical data model.

90

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

focus the device mn of the cell MN, returned byiteeator. In this moment, the mate-
rialised view consists of the sole instance of dhgect of a clas¥/irtual_ MOS
(Vmn) and after that, for example, after calling {hin() method of the given device,
additionally, Virtual_Node object (v1) is instantiated. Note that the impletae
tion of the algorithm uses the specific strategynistantiate the virtual objects, the
members of MFDP, as late as possible, upon direet rior the given object by the
user algorithm.

The objects that build the current virtually feated data portion have their
source levels set as objects mn (Access MOS) a(icdess Node), respectively.
These both objects belong to the variant of theM®&l. To grasp these relations an
object of the context saving cla¥#tual _ContextSaver Is instantiated. This
object ties the MFDP to the suitable variant of ¢tk# MN and additionally stores all
proper mappings between virtual objects and sooigects. The relative top level of
the context saving tree is in this moment the on$gantiated object, naturally, so is
the active hierarchical level. The relative topelegefines the position of the MFDP
in the hierarchical database. Thus, the MFDP igl\Vfal all instantiations of the cell
MN. In relation to that, the relevant context sawbject (of the relative top hierarchi-
cal level) has its field “@instance” empty. As dlugtration, the yellow patch is
sketched in all proper places of our example hotviaal design for which the MFDP
is valid (inside every instance of the varianthad tell MN).

Let us consider now that the user algorithm naegaway from the starting
device (virtual object, Vmn) following the drainrteinal and further the node V1. As
the source node of the virtual node V1 is the pode 1, of the cell MN, the connec-
tion with the levels higher in the hierarchy of thesign description exists. In the first
row, the immediate parent level is the definitidribee cell A. This implies the change
of the topology of the context saving tree. Theslewhich ties the view to the cell
MN, becomes the leaf object of the tree, while et level switches to the newly
instantiated context saving object, that is tiedh® context of the cell A. The level
switch process includes the insertion of the prapappings in the context switching
objects. Thus, the context saving object thated to the variant of the cell MN gets
the parent object (new context saving object) &edréference to the instance X2 of
the cell MN that exists in the hierarchical level Phis context saving object repre-
sents now exclusively the instance X2 of the cell.Mhe newly instantiated relative
top context saving object is initialised with thapping that links the instance X1 to
the context saving object of the level MN and thapping between the already in-
stantiated virtual node V1 to the source node 4titef hierarchical level A). The
stage of the Virtually Flattened View and the cahaving tree after this step is de-
picted in (b). It is interesting that the changdhad relative top hierarchical level and
the augmentation of the context saving tree wa® damle the actual appearance of
the MFDP is still unchanged. We have, by this op@naswitched the (active) hierar-
chical level in which the MFDP exists and allowetbi“see” its neighbouring objects
in the context of the hierarchical level of thel el

Let's consider now that the user algorithm, seégflat version of the design
tries to acquire the pointer to the device pin fkatonnected to the virtual node V1.
In the original, hierarchical database, the depiceconnection exists in the hierarchi-
cal level of the cell MP and connects the givenentwdthe device mp. What does this
mean for the context saving tree? VFV will deterenihat the source node of the V1
is connected to the instance X1 of the cell MRvilk than follow this connection and
descend to the hierarchical level of MP. This mdhas a new context saving object
will be created and inserted in the context satieg. This context saving object is

91

Chapter 5 - Virtually Flattened View

tied to the cell MP and the instance X1. Once therahm descends it will create the
linking mapping of the virtual node V1 to the lo¢ad the cell MP) source node 1. At
this moment the virtual node V1 has three soureash of three relevant for separate
hierarchical levels MN, MP and A. The algorithmther acquires the pin connected
to the node 3 and creates the relevant virtual adptyattaching it to the virtual node
V1. Following this pin the MFDP obtains another idey the virtual copy of the de-
vice mp, named Vmp. If the algorithm further follewthe gate connection of the vir-
tual device Vmp, in the background will the followgi happened: At first the VFV
algorithm will, inside the hierarchical level MPeate the virtual copy of the node 2,
called V2. Than, the active level of the contextiisg tree will switch to A. All port
node mappings will be propagated to the level Ahefhierarchy. This means that the
mapping between the node 2 and V2 will be madéeaithterarchical level A. After
this, the VFV algorithm again switches back to therarchical level MN, without
port node propagation. It takes in focus the sonamme 2 and searches for its virtual
copy using the function getVirtual(). The implemegian of this function is always
searching for the relevant mappings recursivelynftbe root node of the source hier-
archical node to the current subnode. In the exarogte, the algorithm will search
for the mapping between the node 2 and some vinodé in the level A, find it and
than build the mapping between the node 2 andaime s10de V2 inside the cell MN.
The recursive algorithm that we describe herevsryin figure Figure 5.5-6.

The stated requirements shape the functionalitytha interface of every in-
dividual context saving object. First, the objectied to a specific variant of the cell
of the given design. If the context saving objechot the root of the context saving
tree, it is additionally tied to the given instan@éis is modelled through the part of
the interface of th¥irtual_ContextSaver , by methods:

* getVariant()
* setVariant()
» setinstance()
» getinstnace()

As the given context saver object is a membeh@fcomplex structure (a tree)
formed by the object of that kind there is a spedifterface to navigate through and
augment this tree:

* goUpHierrarchy()

» goDownHierarhcy()
» getTopLevel()

» isTopLevel()

» setTopLevel()

» getParentLevel()

The first two methods of this group are capablawgmenting the context sav-
ing tree (creating new tree nodes). According ® dbpropriate parameters they in-
stantiate the new context saving objects tying thenthe appropriate hierarchical
levels and placing them to the appropriate posstionthe context saving tree. Apart
from creating or switching levels, the functignUpHierarchy() is responsible
for propagating the mappings for all port connewiop the hierarchy. This is impor-
tant preparation for the algorithm which determittes virtual copy of a source node

92

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

in the given moment (getVirtual(Access_Node*)), ttia a member of thé&/ir-
tual_ElementBuilder class. The rest of the methods can exclusivelygade
the already created context saving tree. Both ¢bjgoups are used by the VFV in
order to properly maintain the consistency betw#DP and the data model. The
methods to switch levels are implemented directly the class Vir-

@etVirtual(Access_Node* ptr, Virtual ContextSaver* has@

v

H (vir_nod = hash->getNodePtr(ptr, &is_port) != NULL>

:

E Is_port && 'hash->isToplLevel() >;|

ptr_p = hash->getinstance()->pin(
ptr->index());
parent = hash->getParentLevel();
vir_nod = getVirtual(ptr_p, parent);
hash->putNodePtr(ptr, vir_nod);

vir_nod = InstVirtual_Node(ptr, hash);
hash->putNodePtr(ptr, vir_nod);

ey

/ vir_nod \

Figure 5.5-6 — algorithm of the function getVirtualAccess_Node* ptr)
tual_ContextSaver , as this is the specific functionality of the raé context
saving played by the object of the cl&gual HashesContainer

Another important group of methods is responsiblestoring and retrieving
the mappings between the elements of the MFDP kel source objects. These
functions take a pointer of thccess _Device , as a key, and search for its virtual
copy in the appropriate (current active) contextesaobject. Note that consistency
between level switching and device mapping seasdiere essential. A public inter-
face to retrieve and store mappings from the hables is implemented using the
template design pattern, as it is already mentidneitie previous section. The ser-
vices declared in th¥irtual_ServiceProvider are here used to define the
interface and implemented later while definiMytual HashesContainer
class. This flexible architecture offers, apartniréevel switching ability, also easy
experimenting with different types of mapping caméa implementations. To con-
clude the interface that stores and retrieves thppings consists of the following
functions:

* getElementPtr(),
« getPinPtr(),

* getNodePtr(),

* putElementPtr(),
e putPinPtr() and
* putNodePtr(),

93

Chapter 5 - Virtually Flattened View

that are more or less trivially publicly exposiihg functionality of protected services
of theVirtual _ServiceProvider

In the end, this object role exposes the properfiece to support the object
switching and the context saver object instantitichus, two additional methods are
implemented:

* getNewCSObiject()
o getPtr().

The part of the algorithm that constructs and ma@ms the context saving tree
Is not visible to the user algorithm and is hiddehind the virtual node class. Fur-
thermore, the virtual copy of anfccess Node object, instance of th&ir-
tual_Node class becomes the context-switching object. Thishe explained in
the following section.

5.7 Context-switching / multi-context nodes

In Chapter 3, we have defined the hierarchical rartethe three semantically
different types of subnodes that are forming therdrchical node. The hierarchical
node was presented as the consequence of thededtae. If we have the instance
tree in focus, these hierarchical nodes have jstcontext.

On the other hand, if we observe the referencdld geaph (variant graph),
hierarchical nodes become multi-context, as armhefcells that hosts the parts of the
hierarchical node has the multiple instantiatiothpa

Virtually Flattened View hides the hierarchicaldeo(composed of an arbitrary
number of elementary Access_Nodes, depending origrarchy) behind a single
element Virtual_Node . This node is responsible for context switchingcon-
nection to that, it also controls the creation aasligation through the context saving
tree.

Virtual node

As settled above, the virtual node is used to mepka group of nodes, con-
nected through the hierarchy with a single nodes Thde is a part of the materialised
flat data portion of the given circuit. It is mobkel as a class that inherits the class
Base Node, which describes general properties of a nodeurBic.7-1.Vir-
tual_Node class does not inherit directly from tAecess Node abstract inter-
face, as it uses different implementation solutiémsthe standard interface of the
Base Node, as it will be shown in detail later.

Virtual Node , as well aBBase Node, can be observed as a container of
pins, that connect this class of bipartite graptiiees -nodesto the other class which
consists of devices. Therefore, pin_begin(), pinl(eoperations and appropriate it-
erator class are defined, following the contaiterdtor concept [53], as discussed in
chapter 3. The nature of the iteration in the cdsthe Base Node is static and the
iteration algorithm is simple. Hence, it is onlycessary to traverse the vector that
statically aggregates the elements of the tgpse Pin . SinceVirtual_Node
represents a group &ase Nodes (members of the hierarchical node), traversing
the container gets more complicated. Iteratiorlge aot single-context. Several, par-
tially overlapping, sets of neighbours of the gi%értual Node , occur.

94

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Virtual_Node
+pin_begin()
+pin_end()
v v
Base_Node HasMultSource
+pin_begin() i
Nidlgiaer +getSrcView()()

Figure 5.7-1 - Relation between Virtual_Node classnd Base Node class.

As we have mentioned, the virtual node is an oljeat belongs to the MFDP
on the hierarchical data, therefore there must beediewdefined to it. Through the
source view the virtual node collects differentgraeters of thé\ccess_Node in-
terface that are invariant to the hierarchy (fastamce those are the node type data,
etc). Moreover, the virtual node has a relationtd:theAccess_Node , as shown in
Figure 5.7-1. The layering functionality for thMértual_Node is modelled by the
specific clasgHasMultSource . This class is inherited from the clddasSource
adding multiple source property. A single virtualde has in general more than one
source view. The current source view is definedhgycurrent hierarchical level that
is in focus (curren¥irtual _ContextSaver object, part of the context saving
tree), duringVirtual_Node “container” traversal. A private interface that dets
this is thegetSrcView() function, that takes a pointer to the object & \ir-
tual_HashTables class as an argument. The mapping is implemerdeal leash
table, therefore the average (expected) compl@ftifetching the data has O(1) [54].
The operation of storing the data in this hashetdids a worst-case linear depend-
ency, but with a wisely chosen hashing functions tase is unlikely to occur in
praxis.

The virtual node should feel and appear like aagrdl node, member of the
flattened data portion. In this light, we have &fide an iterator for this multi-source
virtual object, as well.

The iterator has to traverse all possible neighbadithe given node. The or-
der of iteration can be partially determined by kierarchy.Hence, the members of
several unordered sets can be presented in the thatds adjustablgor instance, it
is natural first to iterate over the pins (connaas) of the first local node, then to
traverse down the hierarchy and then to step upigrarchy. Traversing is similar to
the depth first search, which does not start framcd level.

The order of visiting the parts of the graph, whigtiormed by the hierarchy
of nodes, will be first explained using the examgitewn on the Figure 5.7-2.

In the figure, the ports are marked with red colaouile the root nodes are in
orange. Cell borders are shown only partially, wddrk angular lines. The iteration
starts with the node 1, the pins connected lodallthis node would be accessed in
arbitrary order, more precisely, by the order daediby the insertion in the vector of
pins. This further depends, e.g., on the implentemaf the SPICE netlist parser, if
the hierarchical design has been loaded from thiesinexternal ASCII format. After
traversing all the ports, the iteration is explagtiall the choices given in the current
(top) context (cell A). That means that the itematcontinues with the pins connected

95

Chapter 5 - Virtually Flattened View

locally to the node 2, inside cell B, which is dottxe hierarchy in comparison to the
starting node 1. At that moment, the hierarchieal that is in focus will change and
another entry will be added to the context savieg.tHence that once the hierarchical
level that is in focus has changed, the active owiew of theVirtual Node
switches to the node 2. Note that any switch ofhieearchical level is followed by
change in the active level of the context savieg.tin our example case the new ob-
ject will be inserted into the tree, leaving thentaxt saving object that corresponds
the level A as the relative top for the MFDP antliisg the active context tree level to
the relevant instance of the cell B. Having in mihs process that happens in paral-
lel, we will further concentrate only on the stabéshe multi-context node.

The next step is the iteration over the neighbadirhe node 3. Once this is
finished, the context from which the iteration Isa@rted is completely analysed. We
remind the reader here that all the pins, acquinesligh this process are actually the
source objects for the relevant MFDP copies achgewur goal that the data portion
is presented as flat to the user algorithm, whiahates this hypothetical iteration
over the neighbours of the virtual node. The imraian be set to stop the iteration
here, after traversing a single context. This iparant for certain applications and is
completely similar to the flat circuit iteration.

Let’'s now consider that the set#N, is the set of all possible neighbours that
are traversed so far, the set of neighbours ottimext of the cell A. The set.Ne-
fines all neighbours, in a given moment, for thdtraontext node. As it can be seen
in our example figure, node 1 is a port node thatonnected to two nodes up the hi-
erarchy, but sitting in two disjunctive contextfiefefore we distinguish two disjunc-
tive sets of neighbours that will be added to thigimal set N. Ne = N + Ng, or Ne =
Na + No. Therefore if we proceed to node 4, the iteratoperformed on its local
nodes, and than to all subnodes, in the lower tuki@al levels. It is important to ex-
clude the path that leads to the instance of cebakk to the same node where we
have started our iteration,

Context 2 Context 1

"B I_‘B

Figure 5.7-2 - Example of a multi-context node. Sutbdes, which are ports, are given in red,
while root nodes are represented with orange circte Design hierarchy is given by unclosed angu-
lar lines.

in order to avoid an (semantically incorrect) esdléoop! The process would recur-
sively repeat up the hierarchy as long as thergarts in the topology of the given

96

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

vpin_iterator

Virtual_Node| -cont

+operator()
+operator++()
+push()

+pop()
-srcView

Base_Node

|
N/

pin_iterator

bpin_iterator
-index : int
+operator++()
+operator*()

+operator++()
+operator*() -it
+operator==()
Figure 5.7-3 — Positioning of the vpin_iterator clas in the CSI. Polymorphism allowing architec-
ture, where the implementation of the iterator is bosen during the runtime.

hierarchical node. Note that it is possible to haeg context “crossroads” further.

The set of neighbours would be further augmentetteCall the neighbours of the

newly defined context are traversed, in our casepths of the node 4, the algorithm
returns to the previous context, erasing all thalidated neighbours from the view,

the neighbours that belong to the N1 set. Thiiagdone by cutting the top part of
the context saving tree which corresponds to thdest 1 and all other (eventual)

subcells that were part of the iteration, leaving subtree rooted at hierarchical level
A. After this, the algorithm proceeds further todee 5 and 6, where the traversing
operation for this example finishes.

We have therefore introduced the multi-context na@dswitch through differ-
ent hierarchical contexts and, implicitly, a mutntext MFDP. The latter will be
analysed in the following section.

As VFV is a design to be used transparently instdegdatic base NLDB API,
the implementation architecture of the iterator tmsatisfy the interface standard
requirements. For this reason, we relate the derelass (vpin_iterator) to the CSI
entity pin_iterator as shown in Figure 5.7-3.

The object of the pin_iterator class can getpbiater to either bpin_iterator
or vpin_iterator, flexibly. The vpin_iterator issmonsible for the iteration type de-
scribed in the example above. The object of thas<lis returned by the instantiation
of the Virtual_Node class, which represents the container of pins dnatto be
traversed. Note that the destruction of the detsbdiynamically instantiated speciali-
sations of bpin_iterator is handeled employing ¢bacept of smart pointers .{ }.
This two level architecture allows even runtimetshwes between two implementa-
tions of the iterator class. Note that the firsteleemployment of polymorphism was
not possible as the iterators are in most of no@apalication cases statically instanti-
ated in the program environment.

The class/pin_iterator that is proposed as the implementation architec-
ture for the concept presented in the example abowusists of one stack and several
types of hierarchy traversing class definitionspsd objects are maintained as stack
entries. These objects are introduced for eachceonode, which is taken in focus
during the transversal. There are three basic tgpstack elements:

» Context,
* DownTheHierarchy and

97

Chapter 5 -

Virtually Flattened View

UpTheHierarchy
vpin_iterator
Virtual_Node -cont +operator*()
+operator++()
+operator*()
+pin_begin() +operator++()
+pin_end() +push()

*Pop() DownTheHierarchy virtualNode
+operator*() +operator++()
+operator++() +operator*()

________ 1 J7%7
I Context* |
_t_k__ r———- Context
stac -index : int
> -local_end : int

+push() +operator++()

+pop() +op9rator*()

+top() +adjustTable()

Figure 5.7-4 —Architecture of vpin_iterator and it's relation to Virtual_Node. Vpin iterator de-
fines a stack that is populated by the family of elsses that inherit from the clas Context.

* UpTheHierarchy.

They are defining traversing for three semanticesypf Access_Nodes, local node,
root node and the port, respectively.

Apart from the defined classes, later, togetheh wihe introduction of the
MFDP committing step that alters the original retthierarchy, a specific wrapper
class, following the decorator pattern [48] will iéroduced. The goal of this class is
to group a family of virtual node objects at a $inigierarchical level and combine the
information they carry. The relation between thacktelements is given in Figure
5.7-4.

The class vpin_iterator holds the stack of consaxting entries and it offers
the full standard interface of the iterator. Framstinterface, calls are forwarded to
the top elemenin the stack. More precisely, operator++() wouwdnfard its calls to
the analogue function of the stack current temeint, as long as it returns false, or
the stack contains elements. The operator++() fmmds given in the Figure 5.7-5.

virtual bool operator++()
while (lempty())

setVirtualTable(this->stack.top()->getvTable 0);
if(this->stack.top()->operator++())

return true;
else

pop();

return false;

}

Figure 5.7-5 — operator++() method of the/pi n_i t er at or class

Each of the context saving classes defines its oparator++() and opera-
tor*() in order to be able to receive the forwardadis.

The clasContext is the root class of the hierarchy of context sg\stack
entries. It is able to iterate over the simple losade, to which it is paired, using its

98

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

operator function operator++() that has a booleduarn value. In case that the itera-
tion leads to a valid (next) object, the functi@urns value true, after it finishes the
iteration over statically assigned node elemehis,aperator++() function of this ob-

ject returns false. The return value is taken dwethe global operator++() function

(defined in the scope of the clagsin_iterator) which pops the object from the

stack. This strategy is general and is happeninglfenembers of stack.

The class DownTheHierarchy has an additional ptgpdéfter traversing all
statically instantiated device pins, which are édKko the given root node, it traverses
over all instance pins, changing the hierarchieakl to the definition of the given
instance by altering the state of Mietual ContextSaver context-saving tree.
Once the level is switched, an appropriate condaxtng entry object is created and
paired with the new local source view. A new ertbject is then added to the stack.
The global operator++() calls are forwarded frons tinoment to the new top of the
stack. Note that, in order to avoid loops in theecaf the traversing from a higher
level to the lower level, instead of tltpTheHierarchy entry, a simple context
class entry or a (furthe)ownTheHierarchy node is saved. In the case that the ob-
ject is created from the lower context, a sourae ipinoted in order to skip this path
while traversing the instance pin vector, in ortteavoid returning to already visited
part of the hierarchy.

virtual bool operator++()

if('context::operator++())

while (instPinlterator < instPinlteratorEn d)
if(local_node->instPin(this->instPinlte rator)==
source_pin)

{
instPinlterator++;
if(!(instPinlterator< instPinlteratorE nd))

break;
}

if (produceNewContext())
return true;

}

return false;

}

return true;

}

Figure 5.7-6— operator++() of the class DownTheHiarchy

The implementation of the operator functions theliong to theDownThe-
Hierarchy class first employs part of the algorithm thatattselocal nodes, defined
in the Context class and than proceeds with switching contexiegathe possible
paths down the hierarchy, Figure 5.7-6 .

A further upgrade of the functionality of the cld3swnTheHierarchy is
encapsulated in its child claspTheHierarchy . This is the point where the con-
trol of context switching is implemented.

The clasUpTheHierarchy s able to switch the context to the up-
per hierarchical level. It is performing this op@ya through its version of opera-
tor++(), as shown in the block diagram in Figuré-B. After executing the function-
ality of simpler methods (father classes in the<slaierarchyDownTheHierarchy
and through it Context::operator++()), operatorsiees the next proper context and if

99

Chapter 5 - Virtually Flattened View

it is found, changes the focus of the context gawae, picking a new source node,
for the newly introduced hierarchical level and sidthother entry to the stack. Next
time operator++() method of the vpin_iterator iflexh the call is forwarded to the

new top element in the stack. An important propefttheUpTheHierarchy class

Is that it maintains only one proper context, detetll other invalidated neighbours,
belonging to other abandoned contexts, like theNseh the example in the Figure

Figure 5.7-2.

C UpTheHierarchy::operator++())

v

4< IDownTheHierarchy::operator++() >

< Get next proper hierarchical level (Variant, instance)

A4
Change current m
hierarchcial level.

Add appropriate
context saving entry
related to the new

local node to the
stack.

Figure 5.7-7 — Block diagram of the operator++() mhod from UpTheHierarchy class

With these three kinds of context saving stackiesitit's possible to fully im-
plement traversing the multi-context, hierarchivadle.

The explanation of the class VirtualNode is linkeith the strategy of
committing the MFDP (altering the hierarchical detse). Therefore, this will be ex-
plained later having in mind the sections to follow

It is important to stress that the algorithm weé@roposed in this section
enables us to traverse the hierarchical node palignusing the meta hierarchical
data in order to optimize the iteration. As it waentioned before, hierarchical de-
signs typically have supply nodes with extreme desp, which connect literally all
active elements of the chip (section). For the iappbn of pattern matching, for ex-
ample, it would be unlikely that some pattern isireected over the node that has a
very big deepness, meaning that some of the neighigp pins of the hierarchical
node belong to cells whose placement and semaanticéar from the pattern that is
being explored, sitting in the original, startimgngext. For this reason, it is possible as
well, to add to our traversing concept principlésSConstrained Graph Exploration,
such agethered robot searcfb5]. This means that the distance (rope lengtimfthe
starting context is defined. As our iteration chesmghe hierarchical context, the re-
maining rope length is decremented until it reachesedge of the possible exploring
radius. The need to implement this was not apprdlieasligh the test phase of our
pattern search algorithms. Note that this appros@pproximate, as there is a possi-

100

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

bility that some of the semantically important reagurs are skipped and cut of by
the introduced “distance” criteria.

5.8 Multi-context (overlapped) flat data portion

In this section we are going to connect the conoépnulti-context node, de-
scribed in the previous section, with the concépghe MFDP that represents the flat
view on a small part of the hierarchical database.

Let us consider the following simple example desigigure 5.8-1. The design
consists of two instances of the identical celisair (Res), which contains only a sin-
gle device — the resistor device. This cell isansated two times in the top level.
Possible flat views that can be created for th&gieare: res device alone, which sits
in the context of the ceRes, the lower (leaf) cell of the definition tree dfet given
design. In the figure, this view is shown under (¬her MFDP that can be pro-
duced, as the augmentation of the previous viethesserial connection between the
resistor device, of the cell Res and the capadewice that lies in the top context (b).
Third possible state of the MFDP is the serial @mtion of the resistor and induc-
tance (c). All three topologies contain the mutintext node p Its state is, however
different. Its state, as described in the previeerstion, defines the neighbours of the
resistor device of the cell Res. Note that the kmgppwhere one serial resistor is con-
nected to two devices (d), an inductor or a capagt of course, forbidden! Contexts
top/X1 and top/X2, are according to the definitafrthe multi-context node mutually
exclusive.

Top |

| |X1(Res) . a)

OW@—{ }—O b)O%O Top
i i c)

i X2(Res) i O—"NN-O— AT O g Res
| OJ\N\/—p&—O—uuuu—O d) ’

I 1 |

Figure 5.8-1 — Multi-context Topology Example

In this light we can observe the virtually flatténgew’s MFDP as a current state of
the multi-context topology in, as our example shotirsee different discrete time
moments. Note that this hypothetical discrete tohanges happen after each call to
the operator++() method of thin_iterator class.

Therefore, a topology that contains multi-conterties represents a multi-
context topology. It is defined by the startingrgdja device which is selected by the
DeviceFlatContainer::iterator). The starting device in our example is the
resistor device of the cell Res. In case that weelthosen the capacitor as a starting
device, this multi-context node would have only @allowed states (and one context):
capacitor device alone and the serial connectitnwdsn capacitor device and a resis-
tor device.

101

Chapter 5 - Virtually Flattened View

The number of states of the multi-context pattesrresponds to the finite
number of different flat data portions that canblodt out of the given starting point
of the hierarchical design, by navigating. Numbkstates of the multi-context pat-
tern is strongly dependent on the number of statesch of the multi-context nodes
it might contain.

For any algorithm that is using the proposed hatriaal framework, informa-
tion about the current context of the multi-contgattern is important. Therefore,
this, additional, information related to the hiefacal organization has to be handled
by the user algorithm. For this purpose, descrituedtionality can be defined as a
characteristic interface.

One possible definition of this interface are fimas:

» static int getContextindex() ,
» static void lockContext() and
» static void unlockContext()

These three functions belong to tietual ContexSaver class, a con-
text defining class (context carrier) of the VF\heTfunctions are statically available
to the user algorithm.

Functions,JockContext() andunlockContext() force the algorithm
to iterate only over the neighbouring elementstésjainside the current context, and
allow multiple contexts, respectively. Note that thavigation can be started with the
property lockContext(). In this case multi-contexbde and MFDP property is
switched off.

Function getContextindex(), simply counts the bemof hierarchical levels,
from the, starting device. This simple informatican be passed to the user algorithm
in order to allow the simple test each time theually flattened view is to be aug-
mented. With this information the user algorithnm cketect context switches and co-
ordinate its execution flow to it.

This functionality can be useful for the algorithrthat incrementally collect
information from the view and calculate the cumiukatresults in certain points. For
instance, it can be used for the purpose of parastworks analysis [56]. The algo-
rithm would start calculating the total (terminalterminal) resistance of the parasitic
network and the total capacitance, in a bottom-anewnt walk, for each root net the
results are to be stored and intermediate redaltgach cell itself can be reused and
just augmented for each new value gatContextindex() . Nevertheless, this
algorithm would require hierarchical netlist withrpsitic information, extracted from
the layout, which is currently not common.

One other usage example is the search orientéerpahatching whose exam-
ple algorithms were represented in the chapterl@lé¥hatching a certain pattern, the
algorithm will include the context information itsibacktracking. The return value
would be flavoured by the context number.

This short pseudo code explains the given sitnatio

match(current device);

{

pick_next_terminal (current device)
return_value = recourse(chosen_terminal);

}

102

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

while (return_value is zero, or if the contextemdf the match is bigger than
the current context index and therenaoee terminals);

In this case the hierarchical netlist that is tedafor the embossed hierarchy
(secondary into the primary) is optimal. Henceyé are iterating bottom up, starting
from a certain cell, the same variant of the caluid be used in any context in which
the distributed match appears.

Negative side of this approach is that the alpgarihas to be specially written
for this purpose, using this simple interface tatoal context swithing of the hierarh-
cial data. In this case, simple upgrading of tlgady hierarchical tool and using it as
a utility for the underlying hierarchical engine widn’t be possible.

An alternative to this approach is to hide therifaice inside the hierarchical
engine (VFV).

v
Pl e Pi Pi+1 poo Pn Pi Pl 000 Pi—l Pi+1 000 Pn
Variant A Variant A Variant A
[Bevces] > |] N
*

Figure 5.8-2 — Motivation for the introduction of memento. Variant split-up. Child variant is
given as a Variant A. The device iterator “progresdar” is indicating that a number of starting
points has been already chosen. Child variant hasparents. After split up, the position of the
next iterator element is shown.

This is possible for a certain types of algorithrRer the purpose of pattern
matching, the algorithm can exhaustively searchtherincident devices for a given
node, and implicitly switch the contexts.

This solution includes maintaining a memento ofdheent state of the multi-
context flat data portion. Information inside theemrento is maintained and used,
when the backtracking search process is interrypiece a successful match is found
and committed.

Memento class should save the starting point efribxt pattern search (the
state of the iterator), and than as a list, eadh@falternative iteration starting points
of each multi-context node that exists in the gixDP. In this way we achieve the
optimal algorithm execution. The example in Figtr8-2 shows the situation where
the algorithm iterates over all the devices ofwagant (cell) A. The progress of itera-
tion is marked with the yellow ribbon in the devioector. After acquiring a certain
device, the MFDP will continue to the parent cB)).(If the MFDP gets now commit-
ted, the topology of both variants changes ancetbez we have to create a new vari-
ant of the cell A called A’. This variant has thald® as a parent cell. The memento
saves the position of the iterator that locatesctireent device and also one that picks
the right parent cell. The further iteration wibbrdinue than over the remaining de-
vices of the new variant A’ and than, using the raeta information continue with
the next device, skipping first n devices.

This strategy was implemented as our solutiorstarctural pattern matching
in hierarchical netlists. The approach with memeaitowed us to use the original,
flat, pattern matching algorithm without furthergnpdes that control the context
switching. This approach uses the flat algorithamsparently, but the referenced cells
graph that is created as the result is not completgtimal. By using this approach

103

Chapter 5 - Virtually Flattened View

we can get several identical variants of the desgJls which introduces the redun-
dancy.

5.9 Committing of the MFDP (and it’s repetitive use)

In the so far presented text of the current chapterhave depicted the concept
of the Virtually Flattened View (VFV), its architece and the specific, complex data
structures and algorithms that make it feasibledi#ahally, we have presented new
concepts, such as a multi-context node or the roatitext flat data portion, which
have emerged together with the overall idea ofMR¥. To make the concept of the
VFV more powerful and flexible, we shall define tlvay to commit the results of the
local evaluation to the hierarchical database.

This process can be seen as embossing the topofope materialised flat
data portion (MFDP) into the primary hierarchy. Bgmary hierarchy, we assume
here any “starting” hierarchy on top of which thé-BP has been created. This con-
cept therefore enables the modification of thedrrical structure of the given de-
sign. More precisely, it alters the topology of traiant graph. For instance, in the
example circuit in Figure 5.5-2 , if we isolate ithgerter whose elements are distrib-
uted across the hierarchical levels and we wanbtomit its topology as the separate
cell/instance, we must create the additional vasiari the cell MN (and MP), spe-
cially for the instantiations in the cell A. Thegariants will be missing devices mn
and mp, respectively. This is done as the devitatspreviously belonged to the given
variants of the cells MN and MP are now moved teoeav subcircuit (inv). The in-
stance of the newly defined cell inv is placedta variant of the cell A. Conse-
guently, committing of the match requires sevegarations. These operations alter
the affected design hierarchy and build the subtirand the instance of the given
new hierarchical attribute, placing it correctlyita environment. After the commit-
ting process the modified hierarchy “looks and $eéke any proper hierarchical de-
sign. Thus, it is ready for some future proper esag

We can now conceptually define the algorithm tlmahmits the given state of the
MFDP:

1. Refine the MFDP leaving only the instantiationstioé relevant de-
vices.

2. Add the references to the elements (devices andnoss) that belong

to the MFDP the new subcircuit definition.

Add all local nodes of the MFDP to the subcircuit.

Create the instance of the new subcircuit and fattaio the appropri-

ate variant

5. Handle the pins of the newly inserted instanceching it properly to
its environment.

how

When the user algorithm works on the MFDP, ittéas (creates) also some
“noise” - the elements which are neighbouring #levant data of the MFDP that are
important for the algorithm execution. This comnsmenario happens while, for in-
stance, one performs the pattern matching, orte®la specific parasitic net that is
being evaluated, from its environment. Therefoome of the elements of the MFDP
that are considered as the environment have tdbpped off leaving only the rele-
vant data.

104

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Vdd LT

X1@A X2@A

in in

—@ inv1 @ Out @ inv1 @

= =
1

Figure 5.9-1 — Embossing step

We can conclude that the “carving out” algorithehaviour depends on the
specific application domain. Thus, we will provitlee template algorithm, which
makes the functionality that refines the contenthef MFDP interchangeable. A do-
main specific constraint is than separately defiridterefore, the right place for the
definition of this function is thé&/irtual_ElementBuilder class. Exactly the
class whose specialisation is created upon thesidacon the application domain for
the framework we propose. Hence, the function thfihes the MFDP performs a
walk over the context saving tree, recursively elating all the elements that are
considered redundant and keeping the relevanttgtaicThis operation is expected to
have no influence on the algorithm complexity, tagist removes the “noise” whose
acquiring (materialisation) and analysis is con®deas the part of the user algorithm
complexity. Therefore, the mentioned strategy igeexed to add just a constant to the
overall complexity of the application domain algm.

Steps 2, 3 and 4 are more or less trivial. Simallyremaining elements of the
MFDP are referenced in the new subcircuit definitilm the case of the nodes, a sim-
ple test is performed to check if the node is larad has no additional connections
outside of the MFDP. If not (the node is localy, iéference is copied to the subcircuit
as well. This step forms a proper bipartite grapigether with the device (instance)
elements that is placed into the new subcircuit.

When this is done, we add the instance objectddqrélative top) variant, which is
identified by the context saving tree. This procedsthan alter the variant’s topol-
ogy in all of its instantiation places. Note thigoaother variants than the relative top,
deeper in the hierarchy, might be affected by tmbassing step. In that case, we
have to create new variants that have the modifpdlogy (missing the devices that
are moved to the new subcircuit). We identify these processes as processes of
“covering” and “splitting” variants. The efficierdlgorithm to perform this step is
explained in section 5.10. The outcome of the m®ad# embossing can be depicted
with the example in Figure 5.9-1. In this example, have embossed the current state
of the MFDP from the example in Figure 5.5-5. Thample shows the resulting hi-
erarchical design where a new instance is insémntedvariant of the cell A. This vari-

105

Chapter 5 - Virtually Flattened View

ant is “covered”, therefore the change is validdbrinstances of the given variant of
the cell A (instances X1 and X2 in our example)thithe collapsed rectangles for the
cells MP and MN, we intuitively show that their tdpgy has changed (they have lost
the transistors mp and mn, respectively). The chandpich was done here, is valid
just for the relevant instantiations (in the givweariant of cell A) of the variants of
cells MP and MN. These variants are, thus, “sgfidin original variants of the cells
MP and MN, respectively.

The step 5 includes another complex algorithm wilitprepare the context sav-
ing tree and the affected hierarchy for the inearbf the new instance. In this step, it
is necessary to remove all redundant informaticoutikhe node mappings for all pin
nodes of the newly inserted instance. Hence, tiegb saving tree contains redun-
dant mapping between the source subnode and ttoalvirode at all relevant hierar-
chy levels. Referring to our example, the node 2hef level MN is mapped to the
virtual node on the appropriate level and furthertloe level A. The reason why this
redundancy was introduced is to enable determimatigdhe proper node mappings in
an efficient way, at any current hierarchical leveal a word, the introduced redun-
dancy helps the efficient implementation of thewigavigation/augmentation.

10@@0 10
a) b)

Figure 5.9-2 — Example of port creation. (a)The s@l connection of two resistors is distributed
over two hierarchical levels. (b) If the pattern that was searched was two resistors in a series, the
block that they are abstracted in exists in the higer subcircuit. In order to connect it properly,
we insert an additional port node to the lower cejland the relevant root node in the higher cell.

In addition, it is necessary to “bring up” all thedes, to which the pins of the
newly inserted instance should be connected tthaaelative top level. This process
IS necessary to provide a proper connection ohtvwe instance with its environment.
This process creates some new nodes and to thweaffeierarchical levels, if neces-
sary. One situation when the node generation isssegy is depicted in the example
in Figure 5.9-2. Under (a), the serial connectietween two resistors is shown. The
resistors are distributed over two hierarchicaklsvThat is sketched by slightly shift-
ing one resistor above another. If the user algoriabstracts the serial connection
between two resistors as a subcircuit, the VFV wadtl the instance of the new ab-
straction to the relative top level and connegtith two pins. In order to connect the
node 1, that was, originally in the lower hieracetilevel, it has been transformed
into a port and an additional root node in the bigtell is created. This port therefore,
alters the variant of the lower cell by adding ddiional pin (port node) to it.

In order to give a common and efficient answealtanentioned operations we
create two types of walks over the context saving structure. One will prepare all
the nodes for the commitment and create necesshlijianal pins for the relevant
hierarchy levels (instances and its definitionshilevthe other, in a single context
saving tree walk performs the committing step.

As the result of the described process the vagaaph is altered by a new
variant that holds the introduced instance (onréhative top level of the context sav-
ing tree) and by additional new variants that havelternated number of pins (addi-

106

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

tional pins) and devices (they have lost some @syithan the original variant ver-
sion. The modified variant structure is valid ameady for further usage/alterations.
The technique that is developed for the varianplgralteration enables optimal run-
time as all changes are done locally, with the eesfpo the MFPD and prior variant
topology. The technique includes the dynamic vareaeation (operations of splitting
and covering of the existing variants) and the nagpine of layering. These two con-
cepts will be given in detail in further text (5)10

5.10 Distributed variants

Distributed variants are the concept which is ttgyed in order to support the
VFV. This concept enables quick and efficient @tiemns of the hierarchical design
(variant graph). The strategy is to represent eaciant with a group of objects. Par-
tially, depending on the similarity between theiaatrs different entities share the
objects that represent them. This process suppwetembossing step of the MFDP
making it more efficient.

5.10.1 Technique for the topology adaptation

The main principle of the concept of the distrililt@riants is the technique of
topology adaptation by variant layering. In thisicept, one can define new variants
by grasping only differences between the currenbmaand the modified one, hence
combining the starting variant with the specialbfided layer to get the altered topol-
ogy.

e_ac
CEENNY ‘
ab e
d c

Figure 5.10-1 — Topology adaptation principle examig.

Let's consider the set of vertices of the bipargitaph that represents the to-
pology of a given varianty ={X 0Y}. The sets X and Y are the sets of elements

(devices) and nodes, respectively. We are for maereésted in the set of elements X.
We can observe X as a multiset MX, defined as a @aim). m is the multiplicity
function defined as

m: X - {-101}.
Therefore, we can write that

MX = {(x 1, M), (x2, M), ... , (%, M(Xy))}-

If a given instance of such a multiset containdwesteely pairs with nonnegative mul-
tiplicity values, we call it dase Thelayeris a multiset that contains pairs with nega-
tive multiplicity values.

107

Chapter 5 - Virtually Flattened View

In addition, we define the operation that perforttms topological adaptation
(+). This operation can combine a layer with theeba he operation is only possible
with the compatible layers and bases in order tdhgeproduct of the operation that is
again a valid base, containing exclusively positiudtiplication values.

As an example (Figure 5.10-1), if we have the vbide B ={a, b, c, d} and a
layer L = {(a,-1), (c,-1), e}, B+L = {b, d, e} isreother valid base! Thus, we can ob-
serve this layering process as a recursive operaéidding an arbitrary number of
layers on the top of a single base:

Bit1 =L + Bi.

In this way, we have defined a technique for algiihe semantics of the to-
pology of the given valid set, by chaining a numileobjects. The important property
of this structure is that the proper sets can leerfs from any layer by “looking
down” to the atomic base set in the end. Therefooe) a starting set, we can form a
family of similar sets, strictly by saving differegs between them.

If we map this principle to our object orienteccabulary, we can iden-
tify Access_Cell as a base. Special clagstual_Variant is introduced to
model the layerVirtual_Variant referes to thé\ccess_Cell (base) through
a method getSource(). The class has a list of eltsrikat are excluded from the base
(formally represented with the negative multiplcitalues) and a list of elements that
are added to the variant. The list of elements dhatto be excluded is delegated and
represented by the object of a clagstual_Excluder . This class is actually
another role of the context saving tree obj¥atiual ContextSaver (see Sec-
tion 5.6). Therefore, all elements, which belongthe Acces_Cell (cell/varint)
and are contained Mirtual_Excluder are eliminated from the resulting variant.
The depicted architecture is presented in Figut8-3.

We can use the defined technique to alter the tgyyobf the cell/variant
graph. We will e.g. observe a case where a sevratection between two resistorg R
and R (that exist in a single variant) is highlighted tne MFDP. The MFPD thus
consists of two virtual copies of the source ress{VR, and VR). The example is
illustrated in Figure 5.10-3. The proper object ahe type Vir-
tual_ContextSaver assures the consistency of the paired source igchlvob-
jects and properly positions the MFDP relativehle primary hierarchy. In order to

Access_Cell

Virtual_ Variant

-blocks
\l; +getSrcView()

Virtual_Excluder

Acccess_Cell

Figure 5.10-2 - Recursive representation of the atract interface of the class Access_Cell.

108

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

emboss the state of the MFDP back to the hieraatimetlist, we employ the tech-
niqgue of topology adaptation. Therefore, we wouldse u the Vir-
tual_ContextSaver object (in this case the only member of the cansawing
tree), seen as théirtual_Excluder to specify the list of the elements that are
not any more contained in the variant (the botstess of the serial connection). Ad-
ditionally, the instance of the new abstractionofl) is added to theVir-
tual_Variant . We see now the group of théirtual_Variant , Vir-
tual_Excluder and the formerAccess_Cell as a newAccess_Cell

(new variant of a cell) .

This kind of architectures enables quick changesertions of new variants.
If the difference between two variants of a celeig. in one element, the change is
done just by specifying the element that determthegdifference instead of copying
all n-1 elements while forming the new variant defon. Another advantage of this
concept is that all information is present. Thialdas easy undoing or back annotat-
ing. It is important to add that by usage of thimaept it is possible to perform the
concept ofsemantic layeringThe semantic layering concept enables partitgptine
database according to the complexity of object$ #na instantiated in it. We will
explain this technique later in this section.

The price that has to be paid for the benefits dnatgained lies in the fact that
the data that describe variant are distributed avenmber of objects. For each refer-
ence to a given variant, a lookup operation hdsetperformed in order to extract the
actual data. This is done during the iteration/gation over the elements of a such
variant.

______ e el
Virtual Variant-~"" i e i
Block : 1 R :

_____________-__:_____l'l-___.._____l
(+1 \ Virtual Excluder-

Virtual Cd.ntextSav'gr

Access _Qell ... Ry: VR,
.. R2VR2
NW—AMY
Ry R>

Figure 5.10-3 — The example of the technique of tofngy adaptation.

5.10.2 Dynamic variant creation

Once we have established the principle of topokdgptation, we are going to
apply it to the variant graph. Each element invhdant graph is connected up the
hierarchy (this connection is determined by the benof references to a parent vari-
ant) and down the hierarchy, by a subvariant vetttair links the current variant with
all children variants. We define two types of opieras that employ topology adapta-
tion principle. The first type is callezbveringand the seconsplitting.

We can cover a variant of a cell by altering itaitent (excluding some ele-
ments from the variant and adding some new eleme8tdl this change becomes
valid for all instantiations of the variant, theyed, the update is done by an additional
object, but the paths are read from the origina¢piavector (of the previous object).

109

Chapter 5 - Virtually Flattened View

This operation doesn’t change the topology of theant graph. It just alters the con-
tent of the variant itself.

The second operation splits the variant from @thdr variant. In this case,
only one path is being separated from the orignaalant and in general we have two
variants available. Note that if there was only amstantiation of the father variant,
splitting it will lead to an operation that is samogv similar to covering. The outcome
is than, that the father variant is no more acbéssbut only its altered semantics
through the layered variant (the layer that augs@atsemantics).

These two operations are being done “on the fhyiile creating the MFDP.
Therefore, once the initial context is determinkd turrent relative top variant is
covered. In that moment the Virtual_Variant objgett represents the layer which can
change the semantics of the base variant is vbithel algorithm, from this place
wants to go up the hierarchy, or down the hierarthg appropriate variant will be
than split! In the case of going up the hierardiny mew relative top variant is, again,
covered.

In order to ensure very fast operations, the wésighat are split and covered
during the evaluation phase (the phase where #igoraccesses the data in a flat
fashion),are in a “non-validated” state. In thiatst the objects that should augment
the semantics of the father variant have just & glathe necessary information and
they use th&/irtual_ContextSaver objects to save the relations between them.
Therefore, variant graph is still not altered. Tisizery important as in this way, the
VFV algorithm, can instantly detach new objectsfoif instance it decides to move
the DeviceFlatContainer “s iterator to another position. If the embossiteps
for the current topology of MFDP is evoked specifiigorithm alters the variant
graph.

5.10.3 Virtual variant tree

As we have defined now the steps of covering antitting of the variant, by
combining them we produce the virtual variant tiBleis tree represents the group of
variants that are produced out of a single vafiam the initial variant graph, created
by the standard variant creation algorithm. Inttee we distinguish the root element,
which is the identical (trivial) excluding/upgradif the input variant. By applying a
number of “cover” and “split” operations the tre@ws and forms the group of leafs.
Those are all “visible” elements of the tree, tlieyn “access points” for newly cre-
ated variants. The path from each leaf of this teethe root element represents the
whole semantics of a single variant, according ke ftprinciple of exclud-
ing/upgrading. In order to implement this tree wse uhesourceView reference
and the specially ordered vector of active elemeftsm each of these active ele-
ments, it is possible to navigate towards the rfmdipwing thesourceView refer-
ences. Once a variant is covered, or if a variatt @ single parent is split, it gets
deleted from the list and stays in the body ofttee still giving its contribution for
the excluding/upgrading technique. In this way,hage achieved to dynamically and
implicitly alter the content of any variant, whibilding the context saving tree.

110

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Variant 1 Variant 2 Variant 3

" "
I

|
Split Variant 3 : I I

I
I
I
I
I
I
i
S = I—\I Cover Varia:nt
\Z
|
I
I
I
I
I

Root:| |
Cover:[|
spiit:| |

Non visible: [

I
I
I
I
I
I
I
| Distributed @—
I
I
é

variant : -

. 0
| ROOtVarIaI’I]t Split Edge : |

¢ o

Covered Edges:| |

Figure 5.10-4 — Distributed Variant Tree — The rootvariant has been split in tree, by arbitrary
application of cover and split operation.

In order to illustrate the properties of the Vatwariant Tree we will consider
the example given in Figure 5.10-4. In the examy#esee the state of the distributed
variant tree after four operations of splittingoowering. In the beginning we had just
a single variant with a number of parents thagfiérs to. We have sketched the paths
to the parents as lines that are given in treeucslolhe first operation that was per-
formed on this example structure was the operatiosplitting. This has caused the
introduction of the variant Split Variant 1, whilke relevant single path was moved
to the newly introduced variant. After this procab® root variant and the Split Vari-
ant 1 have been the members of the leaf varianilliee next operation that was per-
formed is the covering step for the root varianteAthis step, the root variant trans-
fers its all parent paths (remaining, not includinge that was already transferred to
Split Variant 1) and it stops being visible. Newtwal variant object is instantiated
and its source link is set to Root Variant. Furtledter the covering step we have de-
picted Root Variant has been exchanged with Cowarayit in the leaf variant list.
Therefore, in this list we have now Split Varianaidd Cover Variant. In another ac-
tion we split one of the paths (red line) of thev@oVariant and form Split Variant 2.
In the end, split operation has been performed @it Bariant 1. Since it had only
one parent path the variant becomes invisible apthced by Split Variant 3 in the
leaf variant list.

After the outcome of this process, we have thi@gauts and their semantics
are acquired by referring to the tree:

Variant 1: Split Variant 3 -> Split Variant 1 ->0Bt Variant

Variant 2: Cover Variant 1 -> Root Variant
Variant 1: Split Variant 2 -> Cover Variant -> &dvariant

111

Chapter 5 - Virtually Flattened View

As we can see the variants that are the resufthefgrowing process of the
distributed variant tree are spread over it.

We will now in greater detail explain the semarigering concept. Consider
a transistor level design. If we apply rules totedzs all transistor devices into gates,
we see hierarchical design at the gate level. Ssgpuat a part of the design was ana-
logue, hence no digital circuit were isolated. 8iadl the information about the logic
gates (about the abstractions that form logic yaggsst in layers above the atomic
variants of cells, after applying the topology ad#épn technique, we can define from
which layers (and how deep into the distributedardrtree) the information will be
read. We can thus exclusively read the data abgivem variant that is stored in spe-
cific layer. If we classify the layers introducimgdices for them, we can specify the
complexity of the data they carry. For instanceydf had rules to extract all NANDS
we can cast variant layers that are adding thoselasions to belong to specific class
that carries index value 1. All root level varigntarrying information about transis-
tors are assigned by value 0. Employing this ppieciduring the iteration exclusively
elements that are stored in layers of the clasanlbe acquired. The algorithm of
traversing the variants would recourse deeper ¢opidt of the distributed variant
which has more basic elements in it. In this wayocaa partition the database into
concentric shells and pick appropriate shell totheeunderlying data on the wanted
complexity level.

In the end we will explain briefly how these stiuets are used to perform dy-
namic variant creation, algorithmically. If the alghm starts creating MFDP from
some arbitrary variant, it gets covered and allicks/that are mapped to their virtual
copies (members of the MFDP) are then candidaté® texcluded from the current
variant. The new variant is in this moment non diahlote that there are no connec-
tions from the valid variant to the variant cande&dd hat means that, if the embossing
command is never called, all new non-valid variazés be easily detached and de-
leted. The architecture used to implement this ggsallows sending the non-valid
objects directly to the garbage collector whictstarted in a separate thread. If, on
contrary the algorithm decides to commit the varidinwould start the embossing
process (5.9), prune the data of the MFDP if nergsand then commit the changes,
building new variant layers into the variant grapliter this operation, the variant
graph is altered and ready for further use andiplesshanges.

5.10.4 Layered nodes

In parallel to the process of excluding invalidatdements of a given variant
of a cell and adding new elements, the completefcyue process is being done for
the device pins, using the described techniquehéncase of nodes, the strategy is
slightly different.

The virtual node that is linked to the instance pf some instance (of the
committed MFDP) adds this information to the sepufs that is aggregated by the
Access_Node which is the source of the givéfirtual_Node . That means that
the total number of aggregated pins seen from engnode is distributed over several
virtual nodes. In order to see all necessary pgias éxist as the neighbours of a node
of the distributed variant, one has to acquirepgbmter to the top of the nodes. All
other nodes will be accessed descending from thendaole, following itssource-

View connection. In the example (Figure 5.10-5) we héeebase (root) variant and
in it we have the node N. This node has five pivad it aggregates. During the user

112

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

algorithm execution we have committed the corredpan MFDP-s that were con-
taining the given node three times. The first cotting process has added the virtual
node VN1 which references a pin connection to ttetraction which was committed
in this first step. All the information about exding (of the pins) and layering of the
nodes is available automatically, by seeing theviagitVirtual_ContextSaver

object as thé&/irtual_Excluder . Thus, the mapping between the node N and its
virtual copy VP6 will be used to acquire the hantighe virtual node. Once other
two layers are added the relevant mappings wereriteld from the process of the
construction of the relevant MFDP. If this struetus now to be used to build some
new MFDP, the node can be approached followingpiheP5, from the device al-
ready defined at the base level, or following pingP7 or VP8, that were defined in
two different layers. In any of these three casesrder to get the source node for
some new virtual copy (of the MFDP that can buiid tayer 4) VFV assures that the
top node is picked as the source. This is donédéydcursive function:

e getTopNode()

that is called every time a source node from thalidese is to be read. If the path to
approach the node N was through the pin P5, we dvoeked three look-ups to
“climb” to the current top node. First the look-up performed at theVir-
tual_Excluder object of the Layer 1, where we find the mappimgween the
node N and the node VN1, further at the layer 2,tls# relevantVir-
tual_Excluder another mapping exchanges VN1 to VN2 andénehd while
looking-up at theVirtual_Excluder object of the layer 3 we get the handle to
the top virtual node. Once we have this refereneecan iterate over all valid pins of
this complex layered node.

Note that the number of look-ups depends on thebew of layers employed
and also on the fact how deep the entry point i®list of layered nodes is. In order
to incorporate this process (the layering of nod@®) the multiple context node con-
cept and to allow the proper functioning of therat®on process of the

Top Node
Layer 3 P8 -P1,-P2,VP8 => VP8 VP7, P5

P7

Layer 2 -VP6,VP7=>VP7, P1, P2, P5

«— !H!Y

Laver 1 -P3, -P4, VP6 =>VP6, P1,P2, P5
ayer VP6

(=) «— &3

Figure 5.10-5 — Example of the distributed node. Td node is composed of three virtual nodes
and one base node.

Base Variant:

\ IE
P5

113

Chapter 5 - Virtually Flattened View

vpin_iterator , we add an additional stack entry class type. Wkthe new class
VirtualNode to the inheritance hierarchy of tleentext class (Figure 5.7-4).
This class is conceived following the architectofethe decorator design pattern
[49].

The strategy here is that any top node, no madittiérwas a virtual node or
some other instantiation of Access_Node, originpfigsent in the database, once it is
approached during the transversal over all pinstleé virtual node (using
vpin_iterator) gets the instance of the claSsntext , DownTheHierachy
or UpTheHierarchy if it is a local, root or the port node, semanticaAddition-
ally, if the node is a virtual node and thus itshaatics is distributed over several lay-
ers, the object of the decorator clasgirtualNode is instantiated. The original
object that handles the proper iteration is refeednnside theVirtualNode class
instantiation, together with the source level aof @icquired virtual node. Upon the
usage of th@perator++() method of the/irtualNode class it is assured that,
by using the stack all relevant pins are iterateer secursively. The code which de-
fines this recursive operation follows:

bool Virtual_Node::vpin_iterator::virtualNode:: ope rator++()
if(lvisited)

if(ldecoratedContext->context::operator++()

{
context_it->stack.push(decoratedContext);
visited = true;
if(srcNode)
context_it->push(srcNode, source_pin, true);
return true;

}

return this->context_it->operator++();

return false;

}.

By defining the described set of very complex dettactures and the algo-
rithms that are driving them we have managed thzeethe idea of the virtually flat-
tened view. This view is now ready for the testleagpion in order to achieve the al-
gorithm for incremental structural pattern matchimdpierarchical netlists.

5.11 Summary

In this chapter we have presented the vision bedhorough realisation of the
virtually flattened view. The view design allowgat present the data of the hierarchi-
cal design locally flat and to commit those lodat flata portions back to the hierar-
chical design as new subcircuits. This functiogast identified to be useful for dif-
ferent applications. The intention is to use thewiogether with different software
projects that were written for the applications lagively with flat input netelists,
neglecting the problems the hierarchical represiemtancludes. For this reason we
define the view generically.

For different application scenarios the view hagét some additional proper-
ties, mirrored as augmentations of its classestfiates, specifically to the given ap-

114

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

plication domain. The design of the view that weenpresented allows this to be
done with ease and elegancy as it was prepareel flexhble. To achieve this we have
applied advanced object-oriented principles. Goedgomance, in the first row the
runtime efficiency, of the operations that are uhgvthe view is allowed by novel
complex data structures and novel algorithms peréor on them, which are specific
to this view.

In the following chapter, we will thoroughly pregeand value one possible
application scenario for the VFV. We will createesfiic changes to the view and
adapt and integrate it to the flat incrementalgrattnatching project classify (2.5).

115

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

6 Application of the VFV to Search Oriented Pattern
Matching Methods

6.1 Introduction

Throughout the second chapter we have analyseg@rtitdem of subcircuit
recognition (SR) in VLSI designs, as a subprobldrgraph matching. We have rep-
resented among other approaches the incrementapff®ach, where one is enabled
to flexibly match complex patterns by specifyinget of rules that form a specific
descriptive language program. As no algorithms Watld perform the hierarchical
pattern matching on hierarchical schematic desagasavailable, we were motivated
to search for the solution for this issue and endbé structural pattern matching di-
rectly on hierarchical designs/netlists.

The Virtually Flattened View that is defined iretprevious chapter with it's
functionality:

1. represent any hierarchical netlist using the stahdd_DB database objects
(following standard object—oriented API, the acdagsr (AL))

2. create small flat portions (topologies) of nettista and offer them to the user
algorithm

3. commit possibly altered (cleaned up) flat portiamisdata to the hierarchical
database. (commit them to the view)

can be used in order to implement the hierarclpatiern matching algorithm.

In this chapter we will apply the VFV on the aldgaexisting project (classify)
that implements the incremental pattern matching@gch. This project was written
to work on exclusively flat input data (flat netiis In order to accomplish this, we
will present the specific set-up of the generic VEéction 6.2), together with the
minimal adaptations of the flat algorithm (secti®s3). Apart from plausibility and
functional correctness the hierarchical approachht structural pattern matching
allows obtaining irredundant results. This quakl&@tenhancement is discussed in
section 6.4. The chapter is concluded with theitpiale and quantitative evaluation
of the obtained hierarchical algorithm through éixéensive tests (Section 6.6).

6.2 Hybrid layer

The application of the classify flat algorithm tlee VFV requires a specific
set-up of the view. We will flavour generic VFV gients in order to enable the flat
algorithm to work on the data it needs in a propay. We achieve this by specifying
a view, whose classes are related to the origifdl ¥lasses through the object ori-
ented mechanisms. Patrticularly, in the case whezeirtterfaces are compatible, or
one writes a new algorithm that uses specific NLiD&rface as the API (possibly
augmented by some additional properties for the Blldntities), one can achieve this
goal by simply inheriting each of the classes \lith proper specialisation which pro-
vides the objects of the altered view with the gropugmentation of the interface.
This task is almost trivial as the view has beesigiteed to be particularly flexible.

117

Chapter 6 - Application of the VFV to Search Oriented Patteratbhing Methods

Therefore, by adapting the view to the user alfaoritwve provide the generic view
with a specific set-up, creating an application donspecifichybrid layer

In our application case, the goal of the hybrigelais to connect the VFV to
an already existing project, the flat netlist pattenatching tool classify. It connects
these two different projects and enables them tkwagether, serving as some kind
of adapter. The application domain project (clagswWas written even before the
NLDB and its additional LV (Layered Views) mechanis

Both projects have their own way of representimg ¢lectronic circuit. Clas-
sify, as it was written to perform pattern matchindlat netlists, has no mechanisms
to represent hierarchy, but has the specific iatartthat enables it to conduct the pat-
tern matching process. On the other hand, NLDBthasclasses and the interface
(defined by the Access Layer) which are capableepfesenting also hierarchical
data. By “energising” the interface of the Accesg/ér with the property of virtual
flattening we prepare NLDB to provide the “frientigata layout to the application
domain algorithm. To summarise, the hybrid layes teasatisfy following criteria:

1. enable classify the look and feel that it is wogkinith its specific (flat)
data model. Particularly, the entities have to dmagatible with those used
in the algorithm and they have to support the gpoading interface.

2. On the other side, NLDB has to be able to handéeadibjects, which are
provided to the pattern matching algorithm in tteg fashion in its style.
That means that the objects have to be compatittketire entities of the
VFV in order to be managed in the proper way.

The answer for the above requirements can be fauedploying the multi-
ple inheritance. Thus, we position the view on ¢dgooth projects (making the rele-
vant projects’ classes father classes of the diymid layer class).

6.2.1 Positioning of the Hybrid layer

The layer itself is specified as an additional lezad the classify project. The
classes of the hybrid layer have their analoguebaith projects as their ancestor
classes. The typical inheritance relation betwdenclasses of the hybrid layer with
the classify and NLDB projects is given in Figur@-@. In the figure, in order to ex-
plain the standard architecture, we have used xhenple of the positioning of the
class that models the MOS device in the appropnteritance graph. On the far left
side of the figure we see the domain of the clag®ibject and its entity that models

cirlnstance

+setMatch()
Matching interface:{ +clearMatch()

+isMatched()
+getFirstPin()

Navigation interface:{ +getNextPin()
+isPinValid()

+getType()
Figure 6.2-1 — Interface of the cirinstance classfdhe classify project

118

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

’ / Access_Device

. |
Classify | NLDB
|
““““““ *"“““"““““““‘“““/‘““““““““/“““““““/
. / 7 /
I Hybrid layer 7 7 ,
! ,/ ,/ ,/
| Cir_VirtualMOS 7 / /
| / / /
| ’ 7 ’
| // // //
[/ Virtual layer ’ /
| / /7 /
| / ’ ’
’ ’
| / / /
/7 - / . /7
} Cir_VirtualDevice ’ Virtual_MOS / Base (static) ’
’ ’ /

I / ’ 7
| 4 7/ /
| 7 ’ Vs
| // // // A |
| , , , ccess layer
| / / 7

Z [’ AV / Z ’

Cirlnstance } i Virtual_Device 7/ Base_MOS i
| ’ ’ ’
’ ’ ’
| ’ / ’
| ’ ’ ’
! , ’ ‘ ,
| ’ 7 ‘—/—<7
! , Z , Z ;
| , / HasSource , 4 Base_Device , 4 Access_MOS
| / / /
| 4 / 7
| 7 / /
’ ’ ’
y ’ /
/1 4 /
70 7 ’
7 L,/ ~
/

| \V4
|
|
|
|

Figure 6.2-2 — Placement of the hybrid layer classén the Access_Device inheritance diagram

an element (a device/instancegifnstance . From this class we inherit the class
Cir_VirtualDevice . Therefore, in any place where the algorithm etgpen
instance of the classrinstance one can pass, transparently, the instance of some
of the realisations of the (abstract) cl&@s VirtualDevice

Looking towards NLDB (right, predominant area of ethfigure),
Cir_VirtualDevice is the child class oVirtual Device , as well. More-
over, another clas€ir_VirtualMOS IS written in order to connect théir-
tual_MOS class of the (generic) Virtual Layer with the dlif§g project. What have
we achieved with this (complex) architecture? Tlassify project models all devices
with a single class (cirinstance) and further d¢feessthem according to the value of a
method getType() , while in NLDB project we have an abstract cla&s-
cess_Device and a family of descendents. By employing suchitgcture where
we have a common hybrid object as a subclass &f ddnhstance and Vir-
tual_Device , we achieve that the hybrid classes that standdésicendents of
Virtual_Device (Access_Device) can be seen from the single class cirln-
stance in the domain of classify project.

We further have to partially adapt the interfatehe class cirinstance, in its
descendenCir_VirtualDevice , to the implementation that employs complex
algorithms of the VFV. In order to identify exactlye places where this is necessary,
we will split the interface of theirinstance into two parts. The first part corre-
sponds to the application domain specific interfald@s is the interface which en-
ables the pattern matching algorithm proper exenutParticularly, those are the
methods of the first group in Figure 6.2-1:

= setMatch(),
= clearMatch() and
» isMatched()

The methods that handle the iteration processtlamhavigation between the
elements of the in-memory circuit model of clasgifiwject are forwarded to the

119

Chapter 6 - Application of the VFV to Search Oriented Patteratbhing Methods

NLDB! These methods are identified as navigatiorthoés of the classirin-
stance . In this way we achieve the property that the cisjof the MFDP are pre-
sented to classify in 100% adapted way. Classiglyaes the objects, navigates their
(virtually flattened) neighbourhood and decidethé given topology is equivalent to
the pattern or not, than it issues an action opsaglating the objects which are parts
of the MFDP into a separate instance. All the caibs translated to the operations of
the VFV which further handles the objects of the DiFperforming the embossing
step (5.9). In this way both algorithms manageet® the objects from their “worlds”
and to communicate with them using the appropmag¢hods. Therefore, the whole
hybrid view plays a role of a bi-directional adapte

Analogue to the example of MOS element that weehspecified, all VFV
relevant classes are connected to the corresporudisges on the classify project
side.

In general, the wrapping process can face soredfate incompatibility prob-
lems. For instance, one project can use the aggpagabased on the container-
iterator concept, while another can use linked.lit the first case a special object
(iterator) grasps the actual element that is ietatver, while in the second case the
object itself has the information about its positim the container. Problems like
these can be easily solved by minimal adaptatibtiseoapplication domain algorithm
or employing Adapter Design Pattern [48].

6.2.2 Cir_VirtualBuilder, the concretisation of the Vir-
tual_ElementBuilder

Once we have specified the application domain ila®0d classes we have to
assure that the objects of this kind are goingetilt by the VFV instead of generic
NLDB Virtual _<class> instantiations. The view design is already pregppdoz
the flexible object creation and all that is neeeggo be done is to create an appro-
priate specialization of th¥irtual_ElementBuilder (5.5) . To do so, we
will specify a clasCir_VirtualBuilder . This specialisation class is provided
with the implementations for a set of pure virtfualctions of the abstract clag#-
tual_ElementBuilder . Therefore, all methods that wrap the object twaatre
defined here. They are set-up to create new hydjdcts that are derivated from
their generic ancestor classes everywhere the VEWMsto create an instance of the
Virtual_<class> family. For instance in order to build ti&r_VirtualMOS
class we simply specify:

Virtual_MOS* I nstVirtual _MOS(netlist :Base_ MOS* ptr)
{ return new Cir_VirtualMOS (ptr);}

Logically, the consistency is vital for the propemplementation of this method fam-
ily. Still, the way the creation process wrappendiions are written, with precisely
defined return types, should notify the user almmssible errors, (for instance defin-
ing thelnstVirtual_MOS() to returnCirVirtual_Res*) already in the com-
pilation time.

After specifying this function family we will prode the function implementa-
tion for another generic part of the VFV. In Sent®.9, we have isolated and sepa-
rately defined a templated function to handle tetnement step of the embossing
process. This part detaches all elements of themuMFDP content that are consid-
ered environment of the structure in focus. Forghtern matching application, the

120

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

implementation of the templated function will uspat of the interface of the appli-
cation domain specific side. The function would giynrun through each of the hash
containers and keep only the mappings of the elesrtbat are marked as “matched”.
This means that the algorithm has paired them aitbrresponding device in the pat-
tern which is being matched. The implementatiothefalgorithm is simple. We have
three loops that iterate over all pin, device andenmappings. The algorithm tests the
function: isMatched() and if the element is not matched, mapping is r&ado
from the hash, while the virtual copy gets deleted!

Having defined a specific builder class, we haveppred the view for the
execution of the incremental pattern matching atlgor. Therefore, upon the VFV
creation, we construct the object of Wietual Netlist class with the instantia-
tion of the clas€ir_VirtualBuilder

6.3 Adaptations of the flat algorithm

The main concepts of the incremental pattern magchalgorithm work
smoothly with the described hybrid view. Still, ander to minimize the execution
time of the algorithm, we want to apply the greathorithm that has been written to
optimize the execution of classify for flat pattematching. This algorithm has en-
abled the intelligent path choosing technique lfier pattern matching algorithm that is
driven by the templated rules, the rules that ipocate the concept of optional ports.
In order to achieve that, the best path first atgor, (section 2.phas used specific
global quantities (the number of neighbouring eletsdor each net). Therefore, the
path that appears to be the best, following thewitdt the least number of neighbours
is chosen. In a flat netlist, it is trivial to acgpithe quantities about the number of
neighbouring elements of a net. This kind of infation is then built while forming
the flat netlist. Such handy quantities are uniaaitely not possible to have in a hier-
archical netlist. In the case of hierarchical s¢dli we have port nodes that are con-
nected up the hierarchy. Instances of a singleamtiare connected to different to-
pologies with different number of neighbouring dms.

As an alternative to the flat netlist statistics have developed an algorithm
that labels the nodes in the hierarchical netltsbeding to their hierarchical proper-
ties. We create a factor that determines the neéertkess, or, to how many hierarchi-
cal levels is the node distributed. In additionspecify also the wideness of the node,
meaning to how many instances a node gets connegcidsingle hierarchical level.
This technique would enable us to favour “shalldwérarchical nodes, those that
have as local connectivity as possible. It is radttmat such nodes don’t have some
dramatic number of devices connected to them whichld cause the linear search
complexity to dominate in the algorithm complexXiynging extensive runtimes. To
depict the extremes: on one hand we have a notieded@pness 0, this node would be
a local node that has just a couple of neighboudegces connected to it. On the
other hand we have the supply node which leadsdoyesubcircuit of the design! An
alternative to the best order of execution algaritis applying the concept of stop
nets. We can assign that the nets of a certain(sugply nets, reference voltage nets)
are the places where the recursive search stopppiSy the recursion at stop nets
does not handicap the algorithm execution, as ritenpais connected exclusively
through supply nets.

The statistics about the nodes are collected obaylwalks over all variants.
First the bottom-up walk over all variants is penfied. In this process we perform the

121

Chapter 6 - Application of the VFV to Search Oriented Patteratbhing Methods

iteration over all instances that are referencethen given variant and than iterate
over all pins of the instance in focus. Once thappr pin of the instance is picked, we
acquire the handle to the nodes it pairs, hencendlde in the domain of the variant
which is in focus and the port node inside therdidin of the instance. As we are
performing the bottom-up walk over ti@pDownVariants vector, we are sure
that the lower node already was processed. Therefoe perform a check and pass
the integer label that is built by the followingdeoto the higher node.

i f (nodeDeepnessVector->at(upper_node) < (nodeDeepne ssVector->at(lower_node) + 1
+ upper_node->instPins()->size()))
nodeDeepnessVector->at(upper_node) =
nodeDeepnessVector->at(lower_node) + 1 + upper_ node->instPins()->size();

The values are stored in a separate vector for eacant of the hierarchical
netlist. Each vector’s size corresponds to the tofiall nodes in that variant.

After the described step we have the appropridtel [for all the different
nodes in the variant graph on the root level faheaf the hierarchical nodes. Now we
pass the acquired values in another similar walk, time iterating top-down over the
variants. Now we know that each higher node wasadly processed and we pass its
label to the lower node.

i f (nodeDeepnessVector->at(lower_node) < nodeDeepness Vector->at(upper_node))
nodeDeepnessVector->at(lower_node) = nodeDeepne ssVector->at(upper_node);

For the proper assignment of the hierarchical nadels we use standard API
of NLDB developed for the variant concept.

defineNodeDeepness dnd;
ForAllVariantsBottomUp(celllt, dnd);
passNodeDeepness pnd;
ForAllVariantsTopDown(celllt, pnd);

ClassedefineNodeDeepness and passNodeDeepness are defined as
function objects, having an operator function cotifgp@ with the global iterating
functionsForAllVariantsBottomUp() andForAllVariantsTopDown()

In this way we have achieved to define the altéveattrategy to drive the BPF
algorithm.

6.4 Hierarchical result reports

In chapter 2, we have already stated that the ouatipthe classify tool is a spe-
cific protocol file that lists the contexts whichtisfy the specific conditions. That is
actually the file that stores the results of theamiag process.

The protocol file was developed for the purpose&RC where it was neces-
sary to point to the specific device that was iwulaby the particular algorithmic
check. Each occurrence of the protocol error ih ¢hae was a single device. The pro-
tocol file would be parsed by a specially deviskbathm that than marks the errors
directly in the Compos&rDE. Therefore the standard syntax of the file \aasfol-
lowing:

<global summary >

<error report 1>
<error report 2>

122

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

The global summary gives a review of the checksifpeg the number of
matches per rule or the overall flat and hieramhmumber of matches.
The syntax of the each error report consists cdnedp of:

<paths>
<device(s)>

For each hierarchical occurrence of the faulty devhe list of paths would be
given. The paths get then analyzed by the IDE deoto mark the proper instances
along the path, in the end pointing directly to ibalated device which was the target
of the check.

The protocol file is written in general to supptre hierarchical pointing to
the specific devices in the design. Therefore titesmarks “errors” that consist of
two parts. First, we have the path, followed bydegices which represent the objects
that are isolated by the corresponding tool’s atgor.

The flat classify reports syntax was following @igove defined struc-
ture, still as no hierarchy was present in the irfpes, the paths in the reports were
hard coded with the statement “--Root Level--“. uShall results that are specified
reside in the top level of the electronic circtlterarchical classify offers isolation of
errors directly in the subcircuit where they ardirsl. For this reason we have up-
graded the algorithms that generate the prototes 6f the original classify in order
to support the path generation. As the devicesi®iiven pattern can be further dis-
tributed through the hierarchy (deeper than thatired top level), we have introduced

Flat: Hierarchical:
Classify - Netlist Checks HClassify - Netlist Checks
Summary of errors: Summary of errors:
2 violations - NAND 2 violations - NAND
Total number of error classes: 1 Total number of error classes: 1
Total number of parameter errors: 2 Total number of parameter errors: 2
Total number of hierarchical parameter errors: 1
Error 1 oo ——————=—
Title: Find All Inverters Error 1

Title: Find All Inverters

Path: -- Root Level --

path: X1 [A] (X2)

Device(s):
m/x1/x2/mNO Device(s):
m/x1/x1/mPO X2/mNO
X1/mPO
Error 2 ———————————————————=—=

Title: Find All Inverters

Path: -- Root Level --

Device(s):
m/x2/x2/mNO
m/x2/x1/mPO

Figure 6.4-1 — Flat and hierarchical error protocok. The example shows the output of the inverter
search process.

123

Chapter 6 - Application of the VFV to Search Oriented Patteratbhing Methods

a specificrelative path This path is written directly in front of the deg’s name in
the reported devices list.

The above described protocol file can be illusttdtg the example given in
Figure 6.4-1. In this example we have reporteddt®urrences of inverters that ap-
pear in the hierarchical design in Figure 2.3-3e Tlat version of the report (that
assumes the flattened input netlist prior to athomiexecution) reports two errors. On
the other side, the hierarchical version of theorepegisters one hierarchical occur-
rence of the inverter, but specifies the multipd¢hg of its instantiation. Note that the
path which is given in the example is also “con@éefisCondensing paths means that
the common parts of two different paths are groupegether while the different in-
stantiation paths of the given hierarchical level lssted in brackets. The example in
the Figure 6.4-1 is simple; it contains two patlisone hierarchical level that are
combined. We read the path in the example asn8tance X1 of the cell A and also
in instance X2”. In the example we have just orexdrchical level, if the hierarchy is
deeper, we can get very compact paths and consgshorter, more readable out-
put file.

The hierarchical error protocol reports aggregaie-redundant results. This is
very important in order to suppress the time neddedheir analysis. In the trivial
example that we have specified, the counts of ¢ipented errors in the flat and the
hierarchical results differ by the factor of 2.rkalistic examples, as we will show in
the next section through our experiments, thisofat two orders of magnitude in
average. This achievement clearly points out thnefis of the hierarchical algorithm
and is one of the key results of our research ptoje

In order to compare two versions of the protocld, fihus to prove the func-
tional equivalence between the flat and the hidiaat algorithm, we have written a
specific Perl script. The script “flattens” the taechical report by connecting the
paths of the reported devices of each error widir thames (combined with relative
paths) as a prefix. Thus, in the example, fromsingle error report with two paths,
we would get two pairs of CMOS transistors. Thus, abtain the redundant flat list
of errors that is comparable to the originally #ator report.

6.5 Example of the matching process by incremental hierar-
chical structural pattern matching

Once we have prepared the VFV and connectedtltetgpattern matching tool
classify, we can perform incremental structuratgratmatching directly on hierarchi-
cal designs. In order to illustrate this processimadude a simple matching example
where we match all latches in a given hierarcha=gign in two incremental steps.
First we will match all inverters and than all la¢és that are instantiated in the given
design. The example that we giveAppendix C emphasises the background actions
of VFV during the matching process.

6.6 Case study

In order to provide evidence of the functional eotness, qualitative benefits
and to measure the typical runtime and memory agapson of the application of the
VFV on an search oriented incremental pattern niagcllgorithm, we have em-
ployed a number of tests.

124

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

The runtime performance tests were computed ormehime with AMD Op-
teron processor at 2.6 GHz and 64 GB operating mgnmanning Linux RHE 4.
Throughout tests, the memory consumption was medsexternally, by evaluating
the relevant process size using the third party-towassif from thevalgrind package
[57]. The authors of the tool claim the precision withi¥h for the obtained results
(the peak memory usage of the process).

We have tested two flat classify versions and foerarchical classify ver-
sions. They are result of the algorithm evolutidepicted in Figure 6.6-1.The pro-
gram version namecé2is the initial version of the incremental pattematching tool
classify that sequentially picks the terminals afle device while proceeding into the
DFS. The version that implements the enhancemeetenthe flat algorithm picks the
best path, by the greedy approach is denoted4s

Further, we have the default hierarchical classéysion isc52 which is the
c42 flat algorithm ran on VFV. The versiab4 is the flat algorithm version44 ran
on VFV. In addition a specific optimisation (fingeint verification) of the iteration
directly inside the VFV in order to test how thacf influences the execution of the
hierarchical pattern matching is implemented. TWession is denoted asb2f and
c54f when applied ort42 flat algorithm andc44 flat algorithm, respectively. The
fingerprint verification principle is given in (Agndix B). Note that the implementa-
tion of this principle is just preliminary and apgmate and that it, in some cases,
misses the matches of highly distributed contekitss can be eliminated by further
work on the implementation of the fingerprint vaxdtion principle. Thus, we include
this version of the algorithm just to prove if thetential benefits it brings are worth
the time to implement such an enhancement in doderake the specific application
of the VFV on structural pattern matching more stbu

Throughout the experiments, the behaviour of thatimeed program versions
against five different rule sets was analysed. Fole sets were written in order to
recognize the elementary circuit elements:

* Allinverters
» Allflipflops (as a single, flat rule)
» Allinverters and than all flipflops

* Al NANDs.
c42 BPF c44
=z =z
S S
3 3
X X
c52 C54
kS kS
s s
Q Q
2 2
[[
C52f C54f

Figure 6.6-1 — Structural pattern matching tool — Qassify - algorithm evolution and available
versions.

125

Chapter 6 - Application of the VFV to Search Oriented Patteratbhing Methods

The rules have in common the net type predefimstiomhere all standard
names for the supply and constant voltage netsnar&ed. This part is followed by
the individual definitions of the block rules(s) tecognise above given simple con-
texts. The contexts that were recognised are tigorted in the protocol file without
any parameter evaluation. The evaluation of thesenples can clearly show how
various recognition rules behave and contributéhéoglobal runtimes and memory
consumptions of the more complex programs writ@ncfassify. This will be dis-
cussed together with the results we have obtained.

As an additional rule set we have included thettes isolates the realistic in-
dustrial contexts needed in order to

» detect the slow nodes, that are driven with weakeds (load-
check).

Loadcheck is a typical industrial check that isoagiven as the example of
structural pattern matching application in VLSI e first chapter.

al b
1A
10 16 -
—&— Farnily 1 —%— Family 1
. —&— Family 2

10 16+

" 14}
Z e
E 1o 12t
w N =
510 T840
o T
=
Ll al

1ot Gl

107 4t

1 Dz 1 1 1 1 1 2 1 1 1 1 1

o 1000 2000 3000 4000 S000 BO00 O 1000 2000 3000 4000 So00 000
Higrarchical My, of Elements e} Higrarchical Mr. of Elerments
& T T T T T
—&— Fanmily 1
an U —#— Family 2 a

| | | | |
i} 1000 2000 3000 4000 S000 6000
Hierarchical Mr. Of Elermnents

Figure 6.6-2 — Quantities of the example hierarchal netlist families. a) Semilog graph that shows #h
relation between the flat and the relevant hierarcital element count. b) Graph that depicts the meas-
ured hierarchical design height. c) Hierarchical dsign density for the example families of netlists.

These five rule sets were run against two famibekierarchical netlists. The
family of the given hierarchical netlist is obtaithby gradually increasing the size of
the netlist. This is achieved by allowing that irevious example netlist is one sub-
circuits instantiated in the context of the nexaraple netlist in the given family. In
other words, the successive netlists of a givenlyaare always contained one into

126

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

another. In this way we can get the opportunitpliserve the scaling of different al-
gorithm parameters that we have measured acrosdetredoping size of the hierar-

chical netlist. As a measure of complexity of thetlist we take the equivalent flat

netlist's number of elements, or alternatively thenber of atomic elements in the
hierarchical netlist. Of course, as the connedgtigitthe elements is important and the
hierarchies have different quantities we can natrgntee perfect scaling. In order to
depict the quality of scaling the relation betwdesa hierarchical and the flat element
count, the height and the density of the exampdeanchical netlists of both families

are given in Figure 6.6-2. The figure shows cortsitacrease of both parameter val-
ues. The two families are generated out of twoisealindustrial hierarchical netlist

examples. The example designs represent DRAM memand thus contain a highly
redundant and enormous in size array circuit. Tingyacontains the memory cells.

This subricruit of the hierarchical design is comea as the last example netlist of
each of the families. As we can see in the figtire,growth of the flat element count
compared to the hierarchical element count of leatimple netlist is very steep. Note
that the scale of the graph is semi-logarithmiejtgithe logarithmic axis that quanti-

fies the number of flat elements of the given setli

With respect to the flat netlist size, we have thamains of hierarchical net-
lists, the lower and the upper domain. In the lod@main the flattening of the netlist
and application of the flat algorithm is still pdss, using typical available computer
resources. The border between these two domatharsflexible and depends on the
hardware that is used to execute the algorithnthénlower domain we have com-
pared the execution behaviour of two algorithmtsetyees (flat and hierarchical). The
measurements were done with flat netlists thatatonip to 2 500 000 elements. In
the higher (exclusively hierarchical domain) we égerformed tests on examples
that have up to 1 000 000 000 (one billion) (fel®ments. These example netlists had
also a very high gain factor, eg. the one billiteneent example netlist consisted of
just 5000 atomic elements. This is due to the direaentioned fact that the available
big examples include a non-specific highly redundaRAM array subcircuit. This
part of the design topology has also non standaetdonnections. Hence, a single
transistor, the member of the memory cell is cotetewvith millions of other similar
transistors that belong to different memory cett@mbers of the array. The setup in
order to successfully process this part of the mgmbip demands further work. We
have, with the already available setups, managedrisome of the tools/runsets on
this highly redundant, non standard netlist.

All throughout the tests we have confirmed thectiomal correctness. Further,
as the hierarchical approach was used, we witlesgrormous enhancement in the
relation between the hierarchical and flat repadnts. This relation is depicted in
Figure 6.6-4. The graph gives the distributionha tation between the number of flat
matching reports and the number of hierarchicahdemsed) matching reports. The
ration is distributed over the flat element coumboth netlist families. Graphs overlap
several measurements (for nand, inverter, flipdlaod loadcheck rules), as shown in
the graph legend. We can see that the ratio bettveenflat and hierarchical match
count constantly increases and reaches, typictiéyvalue of two orders of magni-
tude, for bigger, realistic in size, example design

127

Chapter 6 - Application of the VFV to Search Oriented Patteratbhing Methods

60000 @ Flat Nr Err
m Hierarchical Nr Err

50000

40000+

30000

20000

10000

0

1 2 3 4 5 6

Figure 6.6-3 — Nr. Hier. and flat matches for diferent hierarchical netlists. The blue bars
depict the number of redundant, flat match reports, while in purple the number of corre-
sponding hierarchical matches is given.

In order to illustrate the gain, the linear baartigives the growth of the num-
ber of flat matches compared to the number of rohreal matches (Figure 6.6-3).
The pairs of bars represent the numbers of flatraedarchical number of matches,
respectively, for 6 different (ordered accordingithsize) hierarchical netlists. This
graph clearly illustrates the difference in timeeded by the user of the tool (the de-
signer) to evaluate the obtained error protocdte fesult which is represented here is
in the same time the most revolutionary achieventiggit the conceptually new hier-
archical pattern matching approach allows.

The performance tests are nevertheless also wgygriant as the stable run-
time and low expected complexity of the progresthefmemory requirement and the
time requirement of the hierarchical pattern matghalgorithm, allow usage of the
hierarchical results in all realistic applicatioases. For this reason we have thor-
oughly tested the algorithm potentials from thipexs and proven the positive
achievement as well as pointed out the issueshieatew algorithm in this early de-
velopment stage has and that should be addressieel fature.

Let's start with the distribution of the requiréiche for matching of the ele-
mentary rules, over the complexity (humber of @ements) of the netlist. All meas-
urements for both netlist families are given togeth the graphs in Figure 6.6-5. The

a) Family 1 b Fanmily 2

350 180

nanad
flipdlatch
inv
loadcheck

1801

1401

120F

ns
o
=}

100

80

&
)

60F

Flat Nr. of Matches / Hiet. Ny, of Matches
Flat Mr. of Matches ¢ Hier. Nr. of Matches

=}
=

40

5
=}

20

0

0 5 e @ 25 E 0 i 2 3 I 5 § 7 8
%10 Flat Nr. Elements « 105

Figure 6.6-4 — Linear distribution of the ratio between the number of flat reports and the

hierarchical reports. The graphs give together theobtained results for the nand, flip/latch

inv and loadcheck rules.

128

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

) Family 1 b) Family 2
10000 T I T
—8— c42@inv —8— c42@iny
—&— c44@inv —E— c44@inv
QOO0 | —+— ch2@inv b | —— c52@iny 7
. 1000
—— cS4@inyv —— cS4@inv
— c541@!nv —— cSH@inv
sono cH2i@inv 7 c52i@iny
—&— c42@latch —8— c42@latch
—&— c4d@latch —E8— cd4d@latch
7000 | —— c52@lach 1 BT coo@latch |
—— cSd@latch —— chd@latch
—— cS4i@latch ——— c54i@latch
6000 F | — co2i@latch 7 —— c52i@latch
c42@flip c42@flip
= —a— c4@flip & 800 | —e— cda@fip 7
2 5000 | —— ch2@flip 12 —— c52@ilip
= —— chd@flip F —— c54@flip
—— a54i@flip —— c54i@flip
40001 | ch2i@flip 7 —— oS2i@flip
—B— c42@nand 4001 | —&— c42@nand 7
c4d@nand cdd4@nand
3000F | —— c52@nand i} —— c52@nand
— c54@nand —— c54@nand
—— c54@nand —— g54@nand
2000 | —— cS2i@nand 7 ong | [c52i@nand B
1000} «/ﬁﬁg]
0 = 1 L I L ok =2 = = T T 1 1 L 1 =
1 1 2 25 3 1 2 3 4 5 6§
Flat Nr. of Elements B Flat M. of Elements 5
x 10 x 10
6 a) Family 1
10 T

4) Family 2
T T

—E— cdP@loadcheck
—5— cM@loadcheck
10 F | cB2@loadcheck
— obd@loadcheck
—— chdi@loadcheck
ch2i@loadcheck

Time (s)
=]
Time (s)

—a8— c42@loadcheck
| § —&— c4d@loadcheck
—— ch2@loadcheck
—— chd@loadcheck
—— chdi@loadcheck
1 10 ch52i@loadcheck | o

10 L L L L L -1 L
0 05 1 15 2 25 3 103 1

4
Flat Nr. f Elements v 105 Flat Nr. of Elements

5
x 10

Figure 6.6-5 — time complexity of different algorihm versions. a) performance of elementary rules on
Family 1. b) performance of elementary rules on Faity 2. c) performance of the loadcheck ruleset
on Family 1. d) performance of the loadcheck ruleseon Family 2. Different classify versions are
denoted with cxx, where xx is the relevant programversion. The elementary rules are: inverter,
latch, flip and nand.

tests were performed on 4 different (simple) rided 6 different program versions,
giving 24 curves in the graphs (a) and (b). Thevesidepicting the measured runtime
of the flat algorithm version group in the high@nahin of the graph, while the hier-
archical runtimes group low, with dramatic diffeces of the required time to com-
plete the algorithm execution for bigger targetisist

Apart from these two groups, one can notice thimewhich describes the
progression of the execution time of the 4.2 atyami applied on the simple NAND
rule shows the super-linear complexity and readtigher values than typical for
other rules of both flat classify versions. Thikeris an example of the penalty that the
suboptimal 4.2 algorithm version pays for blindypeoaching the nets neighbouring
the given device which it is analysing, followinigetnominal order of the device’'s
pins. The time required for the execution of theegirule by algorithm 4.4 is together
with all other tested rules, inside the upper @ushote further that the differences
between flat and hierarchical clusters are morstitrdor the Family 1 than for the
Family 2. This is in correlation with the differen height of the hierarchies of the

129

Chapter 6 - Application of the VFV to Search Oriented Patteratbhing Methods

rule (flip, latch, inv and nand) memory usage meagements are given with solid lines, while
the loadcheck memory consumption is depicted by thaotted line. The flat algorithms are
marked with a square, while the hierarchical runs ae marked with an x.

Family 1 and Family 2. Family 1 has higher hierggshThis difference in values is
noticeable also for the measurements of the memeage of the algorithm run
against two netlist families.

Once many rules were combined in the complex lloack program, the rele-
vant numbers got consequently larger, but the iffees between the typical algo-
rithm runtimes became even clearer. This is givenveo semi-logarithmic graphs
that combine the execution times of different dfggsrogram versions for both fami-
lies (Figure 6.6-5.c,d). In this case we have theidl) runtimes of the hierarchal al-
gorithm grouping (for the first family) around tkielue of ~50 seconds for the netlists
up to 2.5 millions of elements, the enhanced dlassify algorithm at T0and the
measured runtime of the 4.2. classify version uf.8510° (around one and the half
days). The corresponding differences are preseawot ial the case of Family 2, just
with smaller gaps. To conclude, the measured @iffee between the execution times
is by two orders of magnitudes compared to the medrh flat algorithm, further, the
difference between the enhanced flat algorithm thedinitial version is another two
orders of magnitude. Note that in this domain tifiegtnces between the hierarchical
algorithm versions are not drastic. We can expihat by the fact that the hierarchal
algorithm has far lower number of attempts to madteh given context, it pays also
the lower price for each false match.

Having in mind stated above, we have shown thatetthanced flat version
allows the stable application of the flat algoritimthe domain where the flattening is
possible. The progress of this algorithm versiothen linear, the typical complexity
claimed by different authors of algorithms in thenthin of flat structural pattern
matching. The version 4.2 unfortunately shows atet@rministic complexity. The
success of the enhancement of the flat algorithm also proven during the up today
more than two years of professional industrial ejapion. The values measured for
the hierarchical algorithm versions prove the sobdr complexity, with respect to
the flat size of the given hierarchical netlist.

The measurements of the memory consumption wene dar the identical
tests that were used to measure the gain in théaelbetween the hierarchical and
flat number of reports and the time complexity fed tlgorithm. The results obtained
are similar to the results of the time measuremanith the addition of identical
memory consumption behaviour of the two flat althon versions. This was expected
as the solution for BPF algorithm does not incltiie significant memory consump-

130

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

tion overhead. On the other hand similar statenseralid for the hierarchical algo-
rithm if one assumes that the size of the mategdliflat data portion is neglectable.
This is true as the patterns which are being sedrébr have just couple of elements
each.

For given reasons, we have measured the memasuogtion on the repre-
sentative algorithms of both groups, on version twiget the typical memory con-
sumption of the flat pattern matching and c54 ideorto get the results for the hierar-
chical algorithm (Figure 6.6-6).

The measurements have shown that the typicalaffgroach memory con-
sumption grows linearly, while the hierarchical nwgn consumption shows once
again the sublinear complexity. In the case of rtte@e complex rules the memory
consumption is higher for both flat and hierarchiegasions, as it is necessary to rep-
resent all relevant contexts that were recogniséutive corresponding objects.

Let's now analyse the performance of the algoritimnthe higher domain,
where no flattening is possible. In this domaintveee compared the runtimes of the
four different hierarchical versions, to investiggdihe benefits which the different hi-
erarchical approach enhancements bring. We havedtésese algorithm versions
against two example netlists which include the DRAMay. These netlists were the
full-chip netlists of two example families contaigi roughly one half of the billion
and one billion flat elements for the first and Hezond family, respectively.

The results we have obtained for measuring the tguirements for this al-
gorithm are given in Figure 6.6-7.

The bars show the runtimes for the latch, flip #mel inverter check, respec-
tively. These are the rulesets for which we haveagad to obtain the results against
the hierarchical netlist that includes the non-géad array. From this graph we can
conclude that the runtimes are the most stableoatichal for the algorithm version
c54f.

The overall tests have shown that the concepteavakithe problems that the
hierarchical data brings are solved inside thelieta (the way the data is presented
to the algorithm) is feasible. The adaptation te tieeds pattern matching algorithm
was further easy due to the flexibility of the viewchitecture. The feasibility and thus
functional correctness of the results gained byapglication of the VFV to the flat
pattern matching algorithm has been strengthendd tve in average two orders of

Hierarchical Classify Runtimes Hierarchical Classify Funtimes
120

T T
I = [A
— [
1401 | —- — 2
— [B oo | =)
E 4
B0 - o 4
100 4
L _ sob _
&0 4
a0t 4
anf 4
a0l i
anf 4
1 ! ! I a | ! I
1 F] 3 2 3

1

160

Time {5)
g
Timne ()

=]

Figure 6.6-7 — Runtime requirements for the exampkin the domain where no flattening is possi-
ble. 1 — latch rule, 2 — flip rule, 3 —inv rule.

magnitude compression factor for the error repdéitsther, the tests have shown that
the potentials of the hierarchical algorithm brthg sublinear complexity in memory

131

Chapter 6 - Application of the VFV to Search Oriented Patteratbhing Methods

requirements and required time (sublinear to thaber of elements in the equivalent
flat neltist). Nevertheless the adaptations of\flk&/ are required in order to be able
to run it in any application case and to get mateust algorithm for the domains of
big hierarchical (unflattenable) netlists. In tlismain we have, in some sense, the
repeating of the history. The c42 flat algorithnd lenon-optimal order of progress-
ing into recursion. This was fixed by the versiall ©f the flat algorithm. This ver-
sion is still heuristic and there is no theoretimadof that it will work in any case. The
long-term, stable industrial application has stdidithe good quality of this approach.
We have, in further work, to enhance the optimabtythe ordering the pins of ele-
ments for the hierarchical algorithm and in despitehe additional complexity in
acquiring the quantities weight the different paginsperly. However the clear idea
and the strategy to fight this problem is ready simoluld be implemented through the
short term research to allow the smooth applicatibthe powerful algorithm on ap-
plication cases that include atypical highly redamdDRAM array subcircuit.

To conclude, the performed experiments show higiergials of the chosen
solution recommending it as a common solution fardrchical structural pattern
matching. Its flexibility and easy adaptability {lvipossible minimal changes of the
view strategy) allows that other existing or futdla algorithms that analyse sche-
matic designs can take benefits of the hierarcliatd representation.

132

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

7 Conclusion

We have completed the investigation of the probleimstructural pattern
matching in the area of static verification of VU8érarchical designs. A solution has
been found for structural pattern matching in highecal designs. It can be also ap-
plied to other various similar algorithms that néshsfer from the flat domain to the
hierarchical.

Our contribution includes establishing the metilogy of so-called layered
views on the hierarchical schematic data. We hdegatified the standard view archi-
tecture that enables polymorphic views on the hohiaal organisation of the given
data model. The standard architecture is speciiigdg advanced object-oriented
concepts. We have further defined the novel VityBlattened View (VFV) using
the proposed standard architecture. VFV presertsiéita of the hierarchical design
locally flat. The highlighted, flat data portionrcae formed orthogonal to the design
hierarchy. Additionally, in order to make the vieplication easier and more power-
ful we have developed a technique that enables ssimgpof the flat data portion that
has been created into the primary design hierarEhis operation affects the design
hierarchy and commits the given data portion aspaste subcircuit. The committing
technique was designed to enable very quick chafdmscomplexity of the commit-
ting technique is thus tied to the size of the diatia portion and not the size of the cell
that is being altered. VFV development includedason of some specific data struc-
tures that enable the proper functioning of thewik also included the creation of a
set of very complex interrelated algorithms on #éhdata structures. VFV architecture
is generic and allows flexible upgrades of the veatities to meet specific user algo-
rithm requirements. Hence, entities of the view tm@del given database elements
can include application-specific augmentationshefinterface.

In order to provide the evidence of the feasipilif this concept and to
achieve the needed hierarchical structural pattetching method, we have applied
the developed VFV on an existing project that impats the incremental pattern
matching principle on flat netlists. With the airhazcomplishing this we have used
the flexible view design, adapting its entitieghie application domain. The flat algo-
rithm could be used with just minor changes. Changeluded very local adaptations
of the flat algorithm to allow it to handle the newinciples, which a fact that the
matching is performed on the cell definitions o tierarchical database brings. The
enhancement that is introduced is specified aspgnade of the matching results re-
port protocol. We have introduced a hierarchicpbréprotocol, where each match is
tied to a specific cell of the hierarchical desigrhis new concept allows non-
redundant match reports.

The realistic tests which have been executed dusinial examples have con-
firmed the functional correctness of the methodst3dnave allowed us to properly
quantify the hierarchical pattern matching repadtg@col, which is conceptually new.
We have concluded that this new report type alltdvesimprovement of the effective-
ness of the algorithm by an average of two ordérsagnitude. This means that, by
taking use of the hierarchy one can now extractipedy the wanted topologies that
are instead of being related to their instantiatontexts, now related to their non-
redundant definition contexts, dramatically suppireg needed effort (man power) to
analyse the reports.

Performance tests of the algorithm have shown @matdesigns increase in
complexity, the growth of time and memory requiredsub-linear. The new algo-

133

Chapter 7 - Conclusion

rithm is several orders of magnitude superior ®ftht algorithm already for sample
designs with > 80 000 flat transistor count.. Végenfurther shown that the algorithm
is now capable of processing target designs thamatabe flattened (using current
typical computer resources), those having more #hitlion flat elements.

In this domain we have organized the roadmap baecement of the set of
sophisticated concepts in order to achieve thev@gtruntimes. Future work thus is
related to exploring the identified possible imprments that the hierarchical data
model can bring, as well as fine-tuning and adaptire specific hierarchical design
personalisation concepts (the concept of cell wésjato the VFV. In this way we can
exploit the new methodology optimally.

The overall results provide a strong recommendati@t the described ap-
proach can be used as a standard for addressimyablems that hierarchical organi-
sation brings.

134

APPENDIX

135

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Apendix A (Personalisation by variants)

Commercial EDA databases are in most of the caspkementing the data
model of the standard SPICE format. For this redkey should support the concept
of cell parameters, also present in the SPICE fuarifitas concept is one of the crutial
reasons for the personalization. The concept cdrpaters leaves a part of the data of
the cell definition templated, to be resolvediaiie the context of its instantiation. In
this way we can have cells with templated transistiwlths, lengths or some other
device parameters. This concept can be illustratethe example in Figure A-1. In
the example a hierarchical netlist, which apostesptiifferent concepts of flavouring
the instances of the given cells is shown. Noté¢ thiaclarity only this aspect was
taken into account and that the example has ndriel@csense. As it is shown, by
different parameter defining techniques, instarafabe cell A have different parame-
ter values. For example, the transistor in theamst |1 of cell A has the width of 2
and the length of 2, on the other hand instanad tBe same cell has the values w =1
and | = 1 for the transistor. Further, as a pathe specific algorithm, nodes (nets) of
the hierarchical netlist can be flavoured by typat tdescribes their semantics. This
concept is widely used in different applicationsotigh the technique of signal propa-
gation. This is another property that can flavauirestantiation of the given cell.

Additionally, cells are characterised by the togglmf its pins. Hence, a cell
can have its pins shorted somewhere up in theroleyaThe consequence of this is
that two nets, cell pins that are connecting tHeveh it's environment, have to be
merged (seen as a single net). This produces pgwotgy which is slightly different
than one which is given by the cell, depending @mythe instantiation context.

In order to suppress redundancy, and still prousster application with resolved
templated data of the cell, in place, we introdthee concept of variants to group all
instances with identical templated data that isrggting for the specified application.

We create variants by grouping instances of theesdefinition by mentioned
criteria. Therefore, according to the parameteue@ale can subdivide the given six
instances of our example, which share the defmjtio two groups. First group of
instances has the definition which has paramegsi@ved with values w =2 and | =2
(for instances 11, 13 and 15), and second groupctviias parameter values w=1 and |
=1 (for instances 12, 14 and 16).

Without propagating node types over devices, weagain group different in-
stantiations of the cell A according to the nodeetyTherefore the grouping according
to this criteria connects instances 11 and 13,h&y thhave nets netl and net2 without
the type and grounded net3, further, instanced &nd 16, which have netl on vint -
supply net type, net2 without type and grounddad aed in the end, instance 15 is in
a different variant, as net 3 is at vnwl here. raatd net2 again have no node type.

A third classification criterion is grouping accaord to cell pin topology. In the
given example we have a group with 11 and I3: reetd net2 are connected and an-
other group of instances 12, 14, 15, and 16 wheoepins are connected directly. In
total two variants according to this criteria alone

In addition, it has shown up useful to create vdasaf the given cell by group-
ing instances according to their instantiation pasi More precisely, according to the
parent cell in which they are directly or indirgcthstantiated. This can be useful in
order to enable the user application to “conceatrah the given block of the design

137

Appendix

Cell GENBLK]
r=0.1, y=200 |E\42

Ceall A neti
Inst 11 R1
w2, (=2 (R:r)m het?
M1 ‘
(=, L=1)
net3

Cell A et
stz R
w=1 =1 = ele
M |
(=, L=1]
net3
Soand

Cell SPINE
(._\ WHER

Cell GENBLKZ
r=01, y=100 ‘[MS

Cell & neti
[nst 13 =
ol e

riet?

M1 ‘
(=, L=1)

R3 (R=0.1)

=
=
=

Cell OCD

r=10, y=100 HEﬂ

=

Cell & netl
[nst 15 k1
. 5 ’
w2, =2 i
Tl
(=, L=1)
net3

5./ gnd

=10

2 (R

Figure A-1 — Variant criteria

and perform specific algorithm only inside (or odé&y it. Note that if we put each

instance which has different parent cells to a g#pavariant, we might end up with a
huge number of variants. Therefore, we build theans based on "parent cell condi-
tions" to be defined and carefully used by the gptibn. In the example, we can, for

instance, distinguish between devices inside csidetof the cell GENBLK* and ad-
ditionally inside or outside SPINE cell. This ruleuld gives three additional vari-

ants:

1 and 12: In GENBLK* but not in SPINE, I3 and l4n GENBLK* and in

SPINE and in the end 15 and 16: Not in GENBLK* bhaitSPINE.
Note that we can now group instances which sharef @efined criteria in the

same time. We achieve this by mutual intersectadral sets of instances, which rep-
resent variants according to the single groupirtgron.

To illustrate this we will refer to the example Figure A-1 once again. If we
need parameters, node types, and pin topology mgitramit parent cell conditions,

we have the variants:

e Variant V1: 11 and I3
o r=0.1,w=2,1=2
0 netl and net2 without nodetype, net3 with nodetyquek

0 pin topology netl - net2=netl - net3

« VariantV2: 12 and 14
o r=0.1,w=1,I=1

138

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

0 netl with nodetype vint, net2 without nodetype, 3netith
nodetype gnd
0 pin topology netl - net2 - net3
* Variant V3: 15
o r=10,w=2, =2
0 netl and net2 without nodetype, net3 with nodetypel
0 pin topology netl - net2 - net3
* Variant V4: 16
o r=10,w=1,I=1
0 netl with pintype vint, net2 without nodetype, netdth
nodetype gnd
0 pin topology netl - net2 - net3

In the end, it is possible to define any additipréddjorithm specific criteria for
creating groups of instances of the given cell.

Variants are created in several global, self-aitgrhierarchical walks over the
TopDownVariants structure to build thariant graph. The walk over TopDownVa-
raints vector is at the beginning identical to wWadk over TopDownCells vector, fur-
ther, in the process of creating variants, dupdisaif each cell according to defined
criteria are inserted, altering the starting inisi@ucture.

Storing of Variants, interface to acquire templated cell data

Variants are stored in the database that was deselfor the industrial appli-
cation of Qimonda AG with the explicit interfacendy are “visible”. Therefore each
application that employs the benefits of the variemcept has to explicitly control
and achieve templated values using specific interfahis was not a must. Some
other alternative implementation, whose vision \@eehshortly pointed out in Chapter
4 can hide them and perform the regrouping of tistances into several subgroups
for certain primary definition. The substantialfdience between the variant of the
cell and the cell appears once the variant adds danctionality. For instance our
database does not, by default allow node typey, éihe completely introduced, to-
gether with the appropriate interface in the varidasses. Nevertheless, as the ques-
tion of the standard interface is relative, we assun this thesis that the variant and
the cell are actually equivalent terms. More pragisthe term variant just explains
the way a given group of instances is obtainedsTlius more relevant to the way a
given cell is implemented.

Coming back to the way variants are implementedunindustrial database:
each Base_Cell has a list of variants associatd#dityiFigure A-2. Initially this list is
void, while it gets populated during the variargation process.

Base_Cell Base_Variant

<>

1 1.7

Figure A-2 - Relation between Base_Cell and Baseakiant
In the example of the previous section, we havavshthat variants are cre-
ated according to all combinations of differentlthug criteria. Therefore, in order to
represent the data in the most optimal way, eadantaobject is linked to appropriate
set of values, for each criteria type. On the otfide, list of criteria value sets is
maintained irredundant. This implies the fact thhen a new variant is to be entered,

139

Appendix

the insertion algorithm has to perform the lineaarsh over the list of criteria value
sets to determine if the identical set alreadytexishis linear search hasn’t domi-
nated in the runtime of the applications using afats in the industry realm, so far.
The described concept is illustrated in Figure ABach variant references a set of
criteria value sets. In the illustration, Varianslares parameter Set 1 with the variant
2. If, for instance, variant 1, during the applicatexecution changes some value of
the its parameter set, the relevant referencebeilielinked to another set, that is ei-
ther already in the list, or is newly created aftex search, while the link between the
object of variant 2 and the parameter set one msnai

Var. 1 /' Parameter Set 1 (Size: #needed pars in subcells)

Parameter Set n_1

| Nodetype Set 1 (Size: #nodes)

Var. 2

Nodetype Set n_2

i //

Var.N

Figure A-3— Variant Criteria storing data structure

Thus, a template claBmase_VariantData stores different sets of variant
specific data in vectors
(template <class T> class Base VariantDatalList : pub lic
vector<T *>).

This kind of architecture allows flexible addinfypmtential new variant crite-
ria.

Standard NLDB data sets include vectors for:

* parameters as the actual instance parameter vialuéise parameters which
are needed in some arithmetic expression in aocék subcells.

* nodeTypes are the types for each single node aadtla¢ collection of node
types of nodes for each equivalence class (inreifievectors).

* pinTopology is the data structure to store the ectinity of pins up the hier-
archy. For each group of connected pins, the sstaltidex of connected pins
is stored for all these pins. For example an irstamith 5 pins, where pin_0
and pin_4 are connected and pin_1 and pin_2 aneected, would have the
pin topology vector 0,1,1,3,0.

140

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

» parentCells stores a '1' for a related CellPatteticM containing a set of pat-
terns for parent cells, if one of the parent calihnes matches one of these pat-
terns and a '0’ otherwise.

ClassBase Variant provides interface methods to access all reledatda stored
in Base_VariantData object.

Apart from this interfaceBase Variant class provides interface and im-
plementation for relations with other variants li&t variants and children variants),
to form the variant graph.

TopDownVariants

In different application algorithms, together withe variant creation algo-
rithm itself, it is important to access all varignglobally, in a specific order (bottom-
up, or top-down), similar to th€opDownCell vector. For this reason we create a
new container, abstracted in the claspDownVariants , which with it’s iterator
traverses over all variants of all cells of theigesin a way that, for bottom - up
walk, all variants that are instantiated in a vatria focus have already been accessed,
during the bottom up walk, and vice versa, fortgdown walk, no variant that is in
the current focus has an no so far unvisited parent
Due to the similarity withTopDOwnCells vector, the implementation architecture
of the TopDownVariants vector inherits classésopDownCells and the appro-
priate iterator from the clasBopDownCells and it’s iterator, simply adding the
additional iteration, over all variants for a givebject of theBase_Cell class. This
design solution is given in the class diagram guFe A-3.

Client

TopDownVariants iterator

+begin() : iterator +operator++() : void
+end() : iterator +operator*() : Access_Variant

iterator

TopDownCells

]

Access_Device| * 1 | Access_Cell Access_Variant
EEEE—— Ko
1 1.0

+operator++() : void
+operator*() : Access_Cell

Figure A-3 — TopDownVariants container

Variant Graph

Variant graph is analogue structure to the celplgravariant graph offers a
structure which is, by the number of elements, soneee between a definition tree

141

Appendix

and a instance tree. It could be, more precisddyained by collapsing all instance

nodes in the instance tree to one node, if thest@anoes belong to the same variant.

Therefore we get the ordered graph structure wach element has, in general, mul-

tiple number of parent nodes and multiple numbeshiitiren nodes. Element with no

parents in this data structure corresponds tddpevariant and can be distinguished
as ahead of the variant graph. The elements without chitdnedes correspond to the
bottom variants, with no referenced cells and canlistinguished athe leafs of the
variant graph. Communication in both directionepirthe child node to its parent and
vice versa is possible. Therefore for a given vdrthe user algorithm can access all
it's father variants and all it's children variantkrectly.

Variant graph allows the application to generaseilts that are valid for all in-
stances of the given variant simultaneously artbsiable to, if necessary, commu-
nicate with current variant’'s immediate parentloidren. In order to realize this, a
set of methods is added Base_Variant class, together with needed supporting
data structures. Therefore, Base_Variant classe®ef list of:

e parents. the parent variants of the actual variant storasl a list of
Base VariantinstantiationLeader objects. Each BaseantinstantiationLeader
Is a parent variant and a list of instances ofcineent variant in this parent vari-
ant. A recursion over the parents gives all ingions of a variant.

e subVariants: maps each sub instance of the current variatitee@ssociated vari-
ants. These subvariants pointers are again storadéctor. The relation to the in-
stances themselves is again done viaHbeIndex class which is also a base
class for theBase_Instance class. The subVariants might be used for top-
down walks.

Applications of the Variant Concept

The variant concept is applied in cases wheraldarithm needs to personal-
ize given instantiations of the definitions resolyitheir parameters. The common
application is in ERC for highvoltage checks. Omaeapply all relevant parameters
and pass datatypes over the hierarchy we can dheatgptimal set of variants and get
irredundantly the results valid for all instanttatiplaces of each variant.

Variants are very important for our solution ot throblem of hierarchical
structural pattern matching. Pattern matching lagguallows the usage of node
typses ,as well as device parameters. For thsoreae will build our algorithms on
top of variants that upgrade Base_ Cell definitiohvthe important interface that
handles the additional properties (the interfacetoess the information about the
node type of the given cell).

For simplicity and not affecting the generalitytbe explanations of the con-
cepts that were used in this thesis, we will aubiel complication the current imple-
mentation of the variant concept introduces andtlisdéerms cell and variant equally,
as we have already stressed.

142

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Appendix B (Fingerprint verification principle)

In order to explore the possible enhancementh@fekecution time that the
employment of the hierarchical data model can offer have defined the fingerprint
verification principle. This principle is adding ditlonal functionality to the virtually
flattened view. It is related to the way each neiiss are iterated over. With finger-
print verification we tend to optimize the iteratiprocess and skip all similar itera-
tions. This principle is an update of the multiglentext hierarchical node iteration
process. +

The principle can be well described and understesialg the following exam-

ple:
“Aarant T
e
1 ‘T’ 3 5
® S DG
“Warant C wArant A Jariant B “warant B “Jariant B
0 %1 W2 3 ¥4

In the figure above we see one hierarchical nddhe. iteration over its pins
starts from the subnode in the variant A that isafled with S. The default iteration
would, after going up the hierarchy visit all theighbors of the subnode T, than des-
cends to all of the variants that are instantiatetthe context of the variant T. This is
sometimes not optimal. The neighboring devicesefrtode 1 of the variant B would
repeat twice in the iteration. If no positive cargibn (a successful matc-h) was done
and the iteration was uninterrupted, we can skifhalredundant subnodes.

This is exactly how the fingerprint verificatios defined. At the context of the
subnode T, we can maintain information about thetamtiations of the variants to
which the algorithm has descended to. The informnatinat is maintained is simply a
pair formed by the pointer to the given variant émel pointer to the relevant variant
pin. If we employ such strategy, at the level of gubnode T the algorithm would
first verify if the relevant fingerprint for the Wiant C exists, after the determining
that the variant is new to the iteration the retéviingerprint is stored in a specific
container (of the given iteration context of thémsode T). The algorithm, further,
descends to the Variant B, using the first pin, skigs the instance X3 of the Variant
B, after finding that the relevant fingerprint a@dy exists. The next instance where
the optimized iteration would be continued is thstance X4, of the Variant B. This
time the entry point to the variant is the piniyg a different fingerprint to the one
that was already left at the X2.

In order to assure the functional correctnessughsan optimized iteration
some issues have to be taken into account. F@aniost the algorithm might enter the
given variant at one pin and leave it at anotherckaling only outside of the given
variant that it can't find the proper match. Thigyht not be the case for some other
instantiation. Therefore, in the case where therdélyn leaves the context of the giv-
en variant (runs through it) no fingerprint shobklleft. The issues like this should be
addressed in order to have the proper functionafithis optimization.

143

Appendix

Appendix C (Hierarchical matching example)

In the following example we are going to matcto tpatterns with the new
hierarchical pattern matching algorithm. The aldon works incrementally, i.e. a
pattern can be based on the output of a previotierpanatch. Therefore, at first we
will isolate all inverters in the hierarchical dgisiusing the pattern in Figure C-1 (a).
The second matching process is analogue to theofies, still in it we are searching
for a specific interconnection of two invertersgiiie C-1 (b).

vdd Vdd

in S oul in -
| —] out

Vdd

Figure C-1 — Matching Patterns. a) a pattern to math an inverter out of two relevant transis-
tors. b) a pattern to match a latch out of two inveters.

The pattern matching algorithm, in search for ¢higo patterns will be ap-
plied on the example hierarchical design showniguie C-2. The given hierarchical
design semantically describes a latch circuit. Sigiors are abstracted in separate
subcircuits, MP, which contains an mp transistonal and MN, which holds an in-
stance of the mn transistor device. These two eeiurther, instantiated in the cell
A, as instances X1 of MP and X2 of MN. On the teyel, the cell A is, again, instan-
tiated twice: instance X1 of A and X2 of A. Thetersces are interconnected in a way

Vdd j&

X1@A

X1@MP

X2@MN

Figure C-0-1 — Hierarchical representation of a lath circuit.

144

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

that the overall structure forms a topology of t&Hacircuit. Therefore, appropriate
pins of instances X1 and X2 are shorted, or comuett defined fixed voltages Vdd
and gnd. In this level, two semantically importaats are named in and out, for better
understanding.

Vdd AT

X1@A I X2@A I
X1@MP X1@MP
—mp —mp
D S I G
—)
In @ @
Out
—@— @ @— @
ki —@
> >
@ — @ —
X2@MN X2@MN

STEP 1: The algorithm starts with the device mpath MN. The context level is the
MN cell. Following the hierarchical node throughript, we have to change to the
next hierarchy level. The algorithm thus sets #lative top level of the virtual copy
of the transistor mn to cell A. This cell A exigtistwo places in the hierarchical cir-
cuit. Therefore also this virtual copy of the trats exists twice when looked upon
the circuit flat. These copies are marked withytekkow, semitransparent field.

145

Appendix

X @A

STEP 2: As the matching of the first pattern cams the VFV dynamically switches
the active context from the cell A to the instaXdeof the cell MP, creating the vir-
tual copy of the transistor mp. In the figure, gigorithm has created a consistent flat
view of the correct arrangement of two transis{onp and mn). Still, thanks to the
hierarchical layout of the example this virtualwieccurs twice which is apostrophed

with the yellow patch.

146

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Vdd LT

X1@A X2@A

in in

inv1 ©® Out @ inv1 @

s 5

STEP 3: Since the current context view matchestdpelogy of the pattern which

was being searched the commitment step is perfarfled means that a new in-
stance invl of the new subcircuit, whose topolagidentical to the pattern, is added
to the hierarchical schematics. This modifies t@otogy of the cells MP and MN

inside of A. The devices mp and mn are removed fktifnand MN and are moved to
the newly inserted subcircuit invl . Note that twisuld produce a variant of the cell
MP or MN if e.g. we had another instance of MP pthsomewhere in the design
without an adjacent MN. In such a case this ingavfccell MP would keep its old

topology. Proper connectivity is still maintainédbte that the position of the pins of
cells MP and MN is changed to make the figure nedegant. That has, however, no
electrical or semantic importance. Additionally,depict the change of the hierarchi-

cal topology the shapes of the cells MP and MNiiiviely show that some devices
are now removed.

147

Appendix

\f’ddér

@A H2EDA

[1@[\4!3 * ‘)H@MF' }

—@ inw @ Out @ inwl &

Is =

& —
o

STEP 4: After the commitment the second patterte(@nnected inverters) is being
searched for. Now the building blocks of this paitare the inverters which have
been recognized and committed to the hierarchynduhe match process of the pre-
vious rule. This step is analogue to the matchinf® previous pattern at STEP 1.

148

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

Wdd T

@A HIA@A

iin

—@ i1 @ Out @

T

STEP 5: The context of the flat view dynamicalBtgchanged to the parent cell of
the cell A. Inourcase it is the top cell, but in general it can b @egular cell. Again

a virtual copy of the invl within the top cell iemerated. The multiplicity of the lo-
cally flat view is now equal to the number of ingtations of this “relative top” cell.
Note that the pattern is not anymore valid for ittetance invl1 inside instance X2 of
Al

149

Appendix

1 F
)

STEP 6: This is analogue to the STEP 2 of the firatching process. The flat view
properly represents the arrangement of two inveréed their interconnection. This
leads to another match as the topology of the ouftat view is identical to the to-
pology of the latch pattern.

150

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

vdd A\

X1@A X2@A

)= =

In out

LATCH T

STEP 7: This step is analogue to STEP 3 of therfiching process. An instance of
a cell containing the latch pattern is committedhe relative top level. This influ-
ences the topology of two instances of the celAé.the two instances are connected
differently when looking from top level, two varisnof the cell A are generated. The
new hierarchical topology is consistent and preppéoe any other algorithm.

To summarize, in this example we have successfidivonstrated one possi-
ble scenario where we have used the functionafith® VFV to be able to see spe-
cific parts of the hierarchical netlist as if thexere flat. Therefore the utility algo-
rithm, could navigate through the neighbourhoo@adh starting device that was of-
fered by the specific device iterator of the VF\reach matching place a material-
ized flat data portion was built and kept in cotesisy with the hierarchical netlist.
For each successful match, the current state ofmidterialized flat data portion was
committed to the hierarchical netlist, affecting theighbouring hierarchy, by the so-
phisticated algorithm.

151

Bibliography

Bibliography

1. Moore, G.E.Cramming more components onto integrated circurtsRead-
ings in computer architectur000, Morgan Kaufmann Publishers Inc. p. 56-
59.

2. Frerichs, M., Attributed to Steinkopf, LEDA tool Effort Waves2009, per-
sonal communication.

3. Diestel, R.Graph Theory2005: Springer-Verlag.

4. Ulimann, J.R.An Algorithm for Subgraph Isomorphisth.ACM, 197623(1):

p. 31-42.

5. Corneil, D.G. and C.C. GotlieAn Efficient Algorithm for Graph Isomor-
phism.J. ACM, 197017(1): p. 51-64.

6. Cortadella, J.a.V., & relational view of subgraph isomorphism Proc. 5th
Int. Seminar on Relational Methods in Computer i5m®e2000. Québec, Can-
ada

7. Gold, S. and A. Rangarajaf, Graduated Assignment Algorithm for Graph
Matching.l[EEE Trans. Pattern Anal. Mach. Intell., 1996(4): p. 377-388.

8. Gold, S. and A. RangarajaGraph matching by graduated assignment
Proceedings of the 1996 Conference on Computeo¥Visnd Pattern Recog-
nition (CVPR '96)1996, IEEE Computer Society.

9. Papadimitriou, C.H. and K. SteiglitZombinatorial optimization: algorithms
and complexity1998: Prentice-Hall, Inc. 496.

10. Kosowsky, J.J. and A.L. Yuill§he invisible hand algorithm: solving the as-
signment problem with statistical physidéeural Netw., 19947(3): p. 477-
490.

11. van Genderen, A.J. and N.P. van der M&gduced RC models for IC inter-
connections with coupling capacitances Design Automation, 1992. Pro-
ceedings., [3rd] European Conference 4892.

12. Vanoostende, P., P. Six, and H.J. De NI¥ARSI: <e1>RC</el1> data reduc-
tion [VLSI simulation]. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 1990(4): p. 493-500.

13. Luellau, F., T. Hoepken, and E. Barketechnology independent block ex-
traction algorithm in Proceedings of the 21st conference on Design automa
tion. 1984, IEEE Press: Albuquerque, New Mexico, Un¢ates.

14. Ohlrich, M., et al.<italic>SubGemini</italic>: identifying subcircuitaising
a fast subgraph isomorphism algorithin Proceedings of the 30th interna-
tional conference on Design automatidi®93, ACM: Dallas, Texas, United
States.

15. Ebeling, C.Geminill: A Second Generation Layout Validation Ifan Con-
ference on Computer Aided Design (ICCAD988. p. 322-325.

16. Ling, Z.,An algorithm for subgraph isomorphism based on wes® man-
agement with applicationd998, University of Hawai'i. p. 190.

17. Ling, Z., Subcircuit Extraction with Subgraph IsomorphjsiBM Almaden
Research Center - EDA Shape Processing.

152

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Chanak, T.SNetlist Processing for Custom VLSI via Pattern Matg. 1995,
Stanford University.

Olbrich, M., A. Rein, and E. Barké&n improved hierarchical classification
algorithm for structural analysis of integrated ciits, in Proceedings of the
conference on Design, automation and test in Eur@p8é1, IEEE Press: Mu-
nich, Germany.

Pelz, G. and U. Roettché&attern matching and refinement hybrid approach
to circuit comparisonComputer-Aided Design of Integrated Circuits anyg-S
tems, IEEE Transactions on, 19948(2): p. 264-276.

Pelz, G. and U. Roettch&ircuit comparison by hierarchical pattern match-
ing. in Proceedings of the Conference on Computer AidedgBg$CCAD)
1991.

Rubanov, N.Sublslands: the probabilistic match assignment atgm for
subcircuit recognition.Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 20D&1): p. 26-38.

Rubanov, N.A High-Performance Subcircuit Recognition Methods&h on
the Nonlinear Graph Optimizatio€omputer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on, 208@.1): p. 2353-2363.
Rubanov, N.An efficient subcircuit recognition using the noelar graph
matching in Proceedings of the 18th annual symposium on Intedreircuits
and system desig005, ACM: Florianolpolis, Brazil.

Rubanov, NBipartite graph labeling for the subcircuit recogion problem

in Electronics, Circuits and Systems, 2001. ICECS 200#& 8th IEEE Inter-
national Conference or2001.

Zhang, N. and D.C. Wunsch, A.fuzzy attributed graph approach to subcir-
cuit extraction problemin Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE In-
ternational Conference 0r2003.

Vijaykrishnan, N. and N. Ranganath&UBGEN: a genetic approach for
subcircuit extractionin VLSI Design, 1996. Proceedings., Ninth Internatlona
Conference on1996.

Nian, Z., D.C. Wunsch, II, and F. Harafhe subcircuit extraction problem.
Potentials, IEEE, 20022(3): p. 22-25.

Chang, W.A Novel Extraction Algorithm by Recursive Idenéifion Scheme
in IEEE International Symposium on Circuits and Syste2001, Editor.
2001: Australia.

Zhang, N. and D. Wunsci Novel Subcircuit Extraction Algorithm using
Heuristic Dynamic Programming (HDP)in International Conference on
VLSI 2002: Las Vegas, Nevada, USA.

Batra, P. and D. Cookelcompare: a hierarchical netlist comparison pro-
gram, in Proceedings of the 29th ACM/IEEE conference on @deautoma-
tion. 1992, IEEE Computer Society Press: Anaheim, Qaili&, United States.
Terem, Z.K., G.; Vardi, M.Y.; Irron, ARattern search in hierarchical high-
level designsin Electronics, Circuits and Systems, ICECS 2004, |HEEr-
national Conference or2004. p. 519-522.

Pattee, HHierarchy theory: The challenge of complex systeiiZ3: George
Braziller New York.

Ahl, V. and T. AllenHierarchy theory: a vision, vocabulary, and epistém
ogy. 1996: Columbia University Press.

153

Bibliography

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Engels, G. and A. SchuEncapsulated hierarchical graphs, graph types, and
meta typesElectronic Notes in Theoretical Computer Scient@95. 2. p.
101-1009.

Jones, M.C. and E.A. Rundensteinéiew materialization techniques for
complex hierarchical objectsn Proceedings of the sixth international confer-
ence on Information and knowledge managem28®7, ACM: Las Vegas,
Nevada, United States.

Lavagno, L., G. Martin, and L. Scheffélectronic Design Automation for
Integrated Circuits Handbook - 2 Volume .&406: CRC Press, Inc.

Mallis, D.,Si2 OpenAccess API Tutorid?008: Silicon Integration Initiative,
Inc.

Object-oriented databases with applications to CA8&tworks, and VLSI
CAD, ed. G. Rajiv and H. Ellis. 1991: Prentice-Hali¢.1447.

Bales, M.Facilitating EDA Flow Interoperability with the OpéAcess Design
Databasein Electronic Design Processes Confereri2@03.

Brevard, L.Introduction to Milkyway in Electronic Design Processes Con-
ference 2003.

Guiney, M. and E. LeavitAn introduction to OpenAccess: an open source
data model and API for IC desigim Proceedings of the 2006 conference on
Asia South Pacific design automati@®06, IEEE Press: Yokohama, Japan.
Blanchard, T.Assessment of the OpenAccess Standard: Insightiseonew
EDA Industry Standard from Hewlett-Packard, a Betatner and Contribut-
ing Developerin Proceedings of the 4th International Symposium oali§y
Electronic Design2003, IEEE Computer Society.

Fowler, M.,UML Distilled: A Brief Guide to the Standard Objadbdeling
Language 2003: Addison-Wesley Longman Publishing Co., RE6.
Rumbaugh, J., I. Jacobson, and G. Bobketified Modeling Language Refer-
ence Manual, The (2nd Editiar§004: Pearson Higher Education.
Rundensteiner, M.J.a.E.An Object Model and Algebra for the Implicit Un-
folding of Hierarchical Structuresl997, Electrical Engineering and Computer
Science Dept., University of Michigan.

Truyen, E., et alA generalization and solution to the common ancegto
lemma problem in delegation-based object systeam$roceedings of the
2004 Dynamic Aspects Worksh2po4.

Gamma, E., et alDesign patterns: Elements of reusable object-oedrde-
sign 1995, Addison-Wesley Reading, MA.

Freeman, E., B. Bates, and K. Siefrigad first design patterns2004:
O'Reillly & Associates, Inc.

Kappel, G., W. Retschitzegger, and W. SchwingeComparison of Role
Mechanisms in Object-Oriented Modeling

in Proceedings of the conference: Modellierung '98;V&irkshops 1998. Minster,

51.

52.

53.

54.

154

Germany.

Fowler, M.,Dealing with roles in Conference on Pattern Languages of Pro-
grams 1997: Monticello, Illinois, USA. p. 97-34.

Baumer, D., et alThe role object patternin Conference on Pattern Lan-
guages of Program4.997: Monticello, lllinois, USA.

Josuttis, N.-The C++ Standard Library: A Tutorial and Referend®99, Ad-
dison Wesley Professional.

Cormen, T.H., et allntroduction to Algorithms2001: McGraw-Hill Higher
Education.

Hierarchical Pattern Matching in VLSI — Marko Mie&¢ — PhD Thesis

55. Duncan, C.A., S.G. Kobourov, and V.S.A. Kun@ptimal constrained graph
exploration.ACM Trans. Algorithms, 200&(3): p. 380-402.

56. Frerichs, M.Netstats, Qimonda inhouse to2D05, personal communication.

57. Valgrind Home [cited 2008. 12.12.]; Available from:
http://www.valgrind.org

155

