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Abstract 
 
  
 
 
 
 
  
 
 
 Structural pattern matching is an important part of the microchip design 
verification process. It is necessary to isolate semantic structural contexts in a given 
design netlist in order to be able to perform flexible and intelligent checks like, for 
example LVS (Layout Versus Schematics), ERC (Electrical Rule Checks), gate level 
netlist timing analysis and others. Because of that, many different algorithms were 
devised to support this particular segment of chip verification. The theoretical basis 
for these algorithms is pattern matching in graphs, i.e. subgraph isomorphism. Algo-
rithms developed so far are working with flat input netlists. This is not efficient and 
limits the application of the mentioned algorithms due to the flat netlist´s extensive 
size. Making the pattern matching hierarchical can improve the processes of chip de-
sign verification and simulation. 
 We provide the solution for the problem of the structural pattern matching in 
hierarchical netlists by defining the new methodology which employs the concept of 
Layered Views to present the hierarchical layout of a given netlist in a "friendly" way 
to an arbitrary application domain (user) algorithm. This general framework solves 
typical problems that algorithms working with hierarchical netlists are facing. Particu-
larly, we propose the Virtually Flattened View (VFV), a sophisticated concept that 
prepares the hierarchical data for the user algorithms and allows them to see that data 
as if they were flat. We achieve this by materializing (creating a proxy copy) a small 
data portion which is kept consistent with the source hierarchical netlist by specific 
algorithms and data structures. The view offers the possibility to emboss the materia-
lized data portion into the primary design's hierarchy, as a separate instance, altering 
the primary hierarchy. The outcome of this process is again a valid hierarchical netlist. 
We, further, apply the defined concepts to Incremental Pattern Matching, originally 
developed for flat input netlists only. In this way we obtain the methodology to solve 
the problem of pattern matching in hierarchical netlists. 
 For several reference scenarios, quantitative and qualitative improvements of 
our approach are demonstrated. The quantitative improvement is discussed through 
runtime and memory requirement tests. The qualitative improvement comes from the 
fact that the new methodology allows full-chip analysis and concise, hierarchical re-
sult reports. 
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Zusammenfassung  
 
 Der Verifikationsprozess integrierter Schaltungen beinhaltet eine ganze Reihe 
wichtiger Prüfungen wie LVS (Layout vs. Schematics), ERC (Electrical Rule Check), 
Statische Timinganalyse und andere, die flexibler und effizienter durchgeführt werden 
können, wenn der funktionale Aufbau der Schaltung der Prüfung zugänglich ist (und 
nicht nur eine rein transistorbasierte Netzliste ohne weitere Struktur vorliegt). 
Aus diesem Grund ist eine strukturbasierte Mustererkennung, die es erlaubt, die für 
den Verifikationsprozess wichtigen Kontexte aus der Schaltung zu isolieren, ein we-
sentlicher Differentiator für die Qualität der eingesetzten Verifikationsprogramme 
hinsichtlich Performanz und Fehlerabdeckung. Dies hat in der Vergangenheit zu etli-
chen Aktivitäten in diesem Gebiet geführt, so dass eine Vielzahl unterschiedlicher 
Algorithmen und Implementierungen zur Mustererkennung vorliegt. Gemeinsam ist 
ihnen die Identifizierung von Mustern in Graphen, also die Erkennung von 
Teilgraphisomorphismen. 
 Die bisher entwickelten Algorithmen setzen flache Netzlisten ohne innere 
Struktur (Hierarchie) voraus. Das ist bei grossen Datenmengen nicht effizient und 
limitiert das Anwendungsgebiet. Gelingt es also, die Strukturerkennung auf hierarchi-
schen Daten zu ermöglichen, so kann eine sehr grosse Verbesserung der Verifikati-
onsperformanz erzielt werden. 
 In dieser Arbeit stellen wir eine Lösung für die hierarchische Erkennung von 
Mustern in hierarchischen Netzlisten vor, die auf der Einführung der neuen Technik 
sogenannter "Layered Views" beruht. Mit ihrer Hilfe werden die hierarchischen Daten 
den Applikationen auf eine sehr benutzerfreundliche und einfach zu nutzende Weise 
präsentiert. Insbesondere schlagen wir an dieser Stelle "Virtually Flattened Views" 
(VFV) vor. Diese präsentieren die hierarchischen Daten in einer Weise, die der Ap-
plikation erlaubt, sie zu interpretieren, als kämen sie von einer flachen Datenbasis. 
Typische Probleme, die beim Arbeiten mit hierarchischen Daten gelöst werden müs-
sen, lassen sich auf diesem Weg einmal lösen, die Applikationen können in weiten 
Teilen unverändert von einer flachen Implementierung auf eine hierarchische Imple-
mentierung portiert werden, nur durch die Umstellung auf die Nutzung des VFV als 
Beispiel eines "Layered Views". Der VFV wird durch eine sehr lokale Ausflachung 
der hierarchischen Datenbasis implementiert, die dynamisch den Anforderungen der 
flachen Applikation entsprechend aktualisiert wird.  
 Auf diesem Weg können wir aber nicht nur die hierarchischen Daten lokal 
flach zur Verfügung stellen, wir können auch die Ergebnisse der Mustererkennung, 
die nun ja flach entstehen, ohne weiteres in die hierarchische Datenbasis unter Modi-
fikation der existierenden Hierarchie zurückschreiben. Das Ergebnis der Musterer-
kennung ist also wieder eine hierarchische Netzliste. Weiter gehend wenden wir die 
neuen Techniken auf die inkrementelle Mustererkennung an, die ursprünglich nur für 
flache Daten implementiert wurde. Insgesamt gesehen haben wir damit das Problem 
der Mustererkennung in hierarchischen Netzlisten vollständig gelöst. 
Für einige Referenzszenarios, die aus realen Industrieapplikationen stammen, de-
monstrieren wir die quantitativen und qualitativen Verbesserungen, die mit unserem 
Ansatz erzielt werden können. Die quantitativen Aspekte werden anhand von Laufzeit 
und Speicherverbrauchsvergleichen diskutiert. Die qualitativen Verbesserungen erzie-
len wir zum einen durch sehr kompakte (hierarchische) Ergebnisse, zum anderen kön-
nen nun erstmals Netzlisten für das komplette Design bearbeitet werden, während 
vorher nur Teilausschnitte geprüft werden konnten. 
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1 Introduction 
    

1.1 Motivation 

 The number of transistors that can be placed inexpensively in an integrated 
circuit has been increasing exponentially for more than four decades, confirming the 
observations and predictions of Moore's Law [1]. In fact, it has been doubling ap-
proximately every two years. For dynamic memory (DRAM) chips the growth in 
complexity has been even faster, as their capacity doubles about every one and a half 
years. Integrated circuit design must keep step with the increasing complexity. The 
fabrication setup process of VLSI designs is very expensive, as well. Each mask set 
that is necessary to be printed prior to massive production of micro-chips costs several 
millions of dollars. Further, the time needed for the development of a modern semi-
conductor product is critical. “Time to market” is typically given in very narrow win-
dows. If one misses the optimal time to ship a new product, one also leaves the most 
of the revenue to the competitors. In memory production business, avoiding men-
tioned cost penalties is even more crucial as the margin in that business is very low. 
For given reasons no trial and error approach is allowed in order to prove the correct-
ness of a design that is to be produced. Thus, verifying and proving that the design 
architecture is correct and feasible to manufacture in the given realistic technology 
prior to actual fabrication (achieving “first time write” principle) is utterly important.  
 The above stated requirements have coined numerous methodologies to model 
and check the IC designs. One of the central methods to fight the design complexity is 
employment of the concept of hierarchical abstraction. The overall development of 
electronic designs is colored by hierarchical approach, both from designing and build-
ing the schematics to the verification process. Different tools were introduced over 
time to support the verification process, thus to check the designs from various as-
pects. Depending on actual technologies the set of tools employed to perform the veri-
fication adapts and evolves. As the technology develops and inevitably shrinks to 
smaller scales different new problems related to the physical effects that could be ne-
glected in the past emerge. In order to treat these new issues we have often new tools 
that get integrated into the design and verification methodology.  
 The fact that the designs are hierarchical shapes EDA tools. The tools can 
greatly benefit from the hierarchy as it offers completely irredundant view on a de-
sign, but to achieve that “oasis” an often big price mirrored in the required solution 
algorithm complexity has to be paid. In some cases this complexity is moderate and 
there are even tools that naturally benefit from the hierarchical representation, on the 
other hand there are tools for which the years of development are necessary in order to 
reach the stage where they can successfully employ the hierarchical concept. Making 
tools hierarchical can be seen also as one step in the tool evolution process. The typi-
cal development of the tool is driven by the importance of the check it performs and 
the complexity of the data that is verified. As the data which is the point of analysis 
constantly gets more complex and thus cumbersome, new and new solutions have to 
be integrated into the tool methodology to keep the effort spent to manage the data in 
acceptable range. The graph given in Figure 1.1-1 is showing the typical effort 
“waves” [2] that the tool/check experiences during its evolution. In the example we 
see that the check was at first performed manually, that was possible e.g.  in the times 
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and cases when the designs were not having more than 100 transistors. As the data 
complexity has grown (exponentially), to prevent the exponential growth of check 
effort (given as a dotted line) a computer tool gets introduced. The tool in the moment 
when it is introduced brings amazing enhancement and we can notice the drop of ef-
fort to the values that are even smaller than the effort employed at the beginning of 
the evolution. Cycles like this repeat after each (revolutionary) improvement forming 
the wavy shape.  
 Depending on the evolutive stage, at the given current state of the art we have 
two kinds of tools: first that have reached the development stage to work directly on 
the hierarchical designs and the second which consists of the tools whose algorithmic 
implementations work exclusively on the designs that were previously flattened, thus 
simplified. The flattening process collapses all hierarchical levels and makes the 
model of the IC design whose layout is identical to that of a chip which is being 
printed into silicon. An additional class of tools (filtering tools) that enable flattening 
and other helpful transformations of the hierarchical designs have emerged, as well.  
 Today, to the first group typically belong important physical (design) rule 
checks (DRC) and layout vs. schematics (LVS) methods. Accordingly, in Electrical 
Rule Check (ERC) domain, where one checks the electrical correctness of the design, 
we have a lot of methods that are implemented so that they can benefit from the hier-
archy, e.g. ESD checks, floating nodes check and device high voltage checks (where 
one checks if the given device in the design gets exposed to voltages it can’t with-
stand). As another example device reliability checks can be considered, where one 
adapts the device robustness to its duty cycle (the frequency of exposing the device to 
the stressed, non-conducting, mode). In all of these checks one does not need to have 
the broad information about the environment in which a given device is defined.  
 In cases where this is needed, the environment typically crosses hierarchical 
boundaries and is orthogonal to them. In these cases introducing the algorithm that 
works directly on the hierarchical data is far from trivial. In some cases the solutions 
for these problems were found, like in mentioned DRC checks, but still, as we have 
pointed out, in most of the cases we perform the algorithm on flattened netlists. One 
of the examples is the parasitic extraction problem. The dependencies between para-
sitic nets are typically cross-hierarchical and instance dependent.  
 Another, for the motivation of this thesis the most important, example of the 
tools that work on flattened schematic data are those that employ structural pattern 

Manual

Hierarchy

Parallelization

Computerised

 
Figure 1.1-1 – Typical tool evolution curve 
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matching in electronic designs. These tools are frequently used in ERC, but also can 
enhance different other areas of EDA. In some sense structural pattern matching 
makes the schematic design processing more intelligent. By employing the matching 
one can become aware of the context in which a given design device is used and thus 
gain additional power to optimize the given device or to analyze its configuration with 
greater precision finding unwanted incorrectness.  
 One important realistic application of this process is the ERC check where one 
sets the proper dimension of the drivers of the latches in the electronic circuits. The 
ratio of the parameters of the transistors that are members of the given driver circuit 
have to be adjusted to the driven circuit load. This is a task suitable for pattern match-
ing. One can identify all latches in the electronic circuit and than find their corre-
sponding drivers. After this step one can compare the parameters of the transistors 
identified as driver building elements to the requirements that are imposed to them 
and adjust them. As this adjustment is highly specific to the given instantiation place 
and the designers that employ hierarchy and build different contexts out of generic 
parts (predefined subcircuits) can’t be aware of all quantitative aspects easily, the 
benefit of a tool that pin points incorrect configurations is vital.   
 As we have mentioned one of the prerequisites (a pre-processing step) for to-
day’s state of the art structural pattern matching for IC circuits is assuring that input 
schematic designs are flat. This is present throughout the community for, to our 
knowledge, all available solutions.  
 This approach introduces several disadvantages. First, the size of the flat de-
sign can’t be even compared to the hierarchical and it overwhelms the typical re-
sources of today’s computers. If the analysis is still possible the memory requirements 
are then typically so high that more expensive 64-bit machines are required and the 
corresponding runtime becomes an issue, too. One of the most challenging problems 
that comes as a consequence of the fact that the transformed (flattened) design is used 
is back-annotating the results to the original schematics. This can be difficult as, by 
working on the flat netlist, we obtain redundant results that are over-bloated and hard 
to compare (and find out that they are actually coming from different occurrences of 
the identical subcirucit of the hierarchical designs). The described problem creates 
additional time demanding analysis activity (man power) of the tool user and disables 
the automatization of the process and its integration to modern hierarchical design 
development environments.  
 For that reason, there is a need to enhance the structural pattern matching 
process and solve the algorithmically very demanding problem in order to allow per-
forming of that task directly on the hierarchical schematic designs. Similar problems 
to those that we have pointed out in the above text are present in all of the tools that 
are, at the common state of the art, performing checks on the flattened netlists.  

1.2 Objectives and scope 

 Our main goal is to achieve the algorithmic solution for the problem of struc-
tural pattern matching in hierarchical designs. Since the complete proven solution(s) 
for pattern matching problem in flat IC designs already exist and also other tools that 
were written to work on flat data share some similar obstacles which disable them 
from running hierarchically, we want to try to find a common solution that could be 
applied to any flat algorithm. For this reason, we have decided to search for our solu-
tion directly in the database which prepares and exposes the design data to the client 
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application. We want to upgrade the standard database presenting abilities by allow-
ing views which make the hierarchical organization of the given design relative.  
 The fact that the modern, standardized EDA databases are typically object-
oriented gives us a beautiful chance to include advanced and very useful concepts that 
the object orientation brings in our solution. Hence, for reading and understanding of 
this thesis one needs to be familiar with advanced object-oriented concepts and UML 
notation language, which is the most suitable and in the same time the most general 
way to describe different aspects of the object oriented concepts. Furthermore, our 
solutions will include different design patterns that make the solution more robust. 
 The expected results are at first, the functional correctness of the model that 
needs to present the data to the user algorithm in a (friendly) flat way and keep it con-
sistent with the original hierarchical data. We further expect that the upgraded origi-
nally flat structural pattern matching tool run generates irredundant results after, by 
our contribution possible, precise calculations directly in the place where a given 
topological context has been defined (relative to the specific subcircuit). Additionally, 
we expect better runtime of the pattern matching application and more economic 
memory consumption. This is challenging as the problem of structural pattern match-
ing to which we want to apply the model that presents the hierarchical data in a flat 
fashion is NP complete. Taming these two parameters should push the border of the 
size of the designs that are manageable towards today’s full chip sizes. That fact puts 
one into position to run the corresponding checks in realistic application cases in sub-
linear times (sublinear concerning the flat netlist size). We expect that the algorithm 
complexity depends rather on the hierarchical than on flat design quantities.  
 One additional important quality that we want to achieve is to use the existing 
successful pattern matching industrial project completely transparently with the up-
graded database and that the solution we propose is possible to be used with no or 
small corrections with other tools that favour flat to hierarchical netlist representation. 
Note that possible corrections of the solution that would be applied to other tools 
would also be a continuation of this research and would contribute to the evolution of 
the hierarchy transforming (hiding) data presenter.  
 We will apply the proposed solution to an industrial project, the pattern match-
ing tool - “classify”, which implements the incremental structural pattern matching 
principle (studied by several groups) and experimentally check our expectations and 
value the benefits that the proposed approach brings. In order to do that we will em-
ploy real-life industrial test cases that are thoroughly quantified, so that we can gain 
confidence and better understand the performed tests’ outcome. 

1.3 Outline 

 Chapter 2 of this thesis gives an overview of the state of the art flat graph pat-
tern matching algorithms, for the application in EDA CAD. Further, it presents the 
enhancement of the incremental search oriented graph pattern matching algorithm that 
was developed by Qimonda AG and the Institute of Microelectronic Systems (IMS), 
at the Leibniz University in Hanover. Moreover, the adaptation of the mentioned algo-
rithm that prepares it for the hierarchical usage is given. This proposed solution re-
solves the problem of supply nets (extensive time is needed to search for the pattern 
whose potential target circuit image includes supply nets), common for different algo-
rithms which solve the problem of structural pattern matching. 
 The concept of hierarchical abstraction is discussed in Chapter 3. We present 
the wide application of the hierarchical concept in nature and science, with the accent 
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on its application in EDA CAD. Thus we present the formal model of the folded en-
capsulated hierarchical graph. Moreover, the history and evolution of EDA databases 
which implement the folded encapsulated hierarchical graphs and the overview of an 
example EDA database (the case study of a logic domain database) are given. Using 
the example database we discuss different hierarchical algorithms and abstract data 
structures which typically used by the tools which analyse hierarchical data. The 
chapter is concluded with a vision of flexible views on the hierarchical data after it 
was pointed out that the hierarchical layout of the given data model is not unique, but 
polymorphic. By polymorphism here we mean that a given flat design can be repre-
sented by many hierarchical netlists which are then synonyms.  
 Chapter 4 brings the general concept of the layered views on the hierarchical 
design data. View’s architecture and layering technique are discussed. The visions of 
possible example applications are given, as well. One of the visions of the hierarchical 
views is the view that hides the hierarchy in order to represent the local data portions 
that appear to be flat, bringing all the devices employed to the same level. We call it 
virtually flattened view. 
 In Chapter 5 we demonstrate the detailed implementation of the virtually flat-
tened view, following the view architecture defined in Chapter 4. The chapter starts 
with the explanation of the high-level, object-oriented architecture of the view, fol-
lowed by detailed presentation of each of its conceptual parts. In this chapter, a set of 
unique data-structures that enable the view creation and maintenance are explained. 
We present the novel context saving tree and the embossing process that alters, just 
locally, the layout of the hierarchical design, adding the flat view as the separate, new 
subcircuit. Additionally, we present the covering technique, which is used for fast 
changes of the topology of different design subcircuits, affected by the embossing 
process. This technique is crucial for fast VFV algorithm runtimes. 
 In Chapter 6 the application of the Virtually Flattened View is given in order 
to solve the problem of hierarchical pattern matching, together with the case study 
that serves as the evidence of the qualitative and quantitative achievements of the new 
approach. Therefore, the process of adaptation of the generic VFV to the application 
domain is explained. This is achieved by creation of a specific hybrid layer that fla-
vours the generic classes of VFV with the properties needed for pattern matching. In 
the case study we analyse the quantitative and qualitative aspects of the VFV applica-
tion in incremental structural pattern matching. 
 Chapter 7 summarizes the results of the overall research. 
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2 Graph Matching Concepts in VLSI 
 
 
 In this chapter we are going to give the necessary theoretical background for 
the problem of structural recognition in VLSI. We present the importance of this con-
cept with its application. Throughout sections 2.3, 2.4 and 2.7 the overview of the 
field development is given as well. Details about the problems, strategies and solu-
tions that favour the understanding of the thesis are apostrophed with more thorough 
descriptions in section 2.4.  In this section we describe the concept of incremental 
pattern matching as a solution for subcircuit recognition (SR) problem. We point out 
the importance and the benefits this approach brings, but as well isolate the problems 
the realisation of the concept has faced during the years of real-life industrial applica-
tion. In section 2.6, we propose the algorithmic solution for the performance problem 
of the incremental pattern search engine. In some realistic application cases it was 
demonstrating indeterministic complexities. We conclude the chapter (section 2.8) 
with the analysis of the further development directions of this field, particularly the 
need of enabling SR algorithms to work on hierarchical input netlists. Thus, this chap-
ter serves also as a realistic foundation that justifies and settles the motivation to de-
velop the general pattern matching algorithm for hierarchical chip designs.  

2.1 Basics of graph notation 

In order to explain the algorithms for graph matching it is necessary to formally 
define the notation of graph [3]. In general, graph G represents a pair of two sets, V 
and E, G = (V, E), such that VVE ×⊆ . The elements of the set V are called vertices 
and the elements of the set E edges (also known as lines). It is common and conven-
ient to represent graphs with the graphical notation where vertices are drawn as dots 
and the edges as lines connecting them. An example of such a structure is given in 
Figure 2.1-1. The graph has in total six vertices. There exist four edges. In the figure 
we represent the graph formally, using sets and as well graphically.  Note that in the 
graphical notation for a graph any shapes are not of interest, but just logical connec-
tions between the given entities.   

 
 
 
G =  {V,E} 
V = { v1, v2, v3, v4, v5 , v6 } 
E = {{ v1,  v3},  { v1, v2},  { v3, v4}, { v1,v5}}  

 

We can define several quantities to measure graphs. For instance, the number of verti-
ces defines the order of the graph. The order of graph is determined asG , addition-

ally the number of edges is usually determined as G  (alternatively, the correspond-

ing orders can be determined with V  and E , respectively). In respect to the order 

Figure 2.1-1 – Example of the graph notation. Black dots represent the vertices and the 
lines the edges. 
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graphs can be finite, infinite, countable, etc. The graphs we use will be always finite. 
The order of the example graph is: 6=G . 

 The graph without vertices and edges is an empty graph (∅,∅). We simply 
write shorter: ∅. The vertex v is said to be incident to an edge e if v∈e. On the other 
hand, the two vertices incident to an edge are called ends. We say that two ends of an 
edge are adjacent.  
 We define, further, the degree of the vertex: d(v). The degree of vertex equals 
the number of edges which it is connected to. For instance, the vertex v1 (Figure 2.1-1) 
has the degree d(v1) = 3, while the vertex v6 has the degree d(v6) = 0. The vertex with 
the degree value that equals zero is also known as the isolated vertex.  
 We use graphs to model different complex entities. Their atomic parts and 
connections can have properties. Therefore, we define properties also for the model 
(graph) elements. Vertices and edges can contain information. If the information is 
trivial and each atomic part has a label, we say that the graph is a labelled graph. The 
information can be as well more complex and each of the graph elements can contain 
a set of attributes. In that case we have an attributed graph. 
 It is possible to classify graphs according to the values of the defined proper-
ties. For this thesis it is important to define a class of graphs where the edges are re-
stricted in a specific way.  
 Let r ≥ 2 be an integer. The graph G = (V, E) is r-partite if the set V can be 
divided in r partitions such that no edges exist between the vertices to the same given 
partition of the set V. Therefore an edge is allowed to be placed only between the ver-
tices of different partitions. A special case of this class of the graph is 2-partite or bi-
partite graph. The vertex set V of these graphs can be divided in two partitions, 

YXV ∪= , in which the vertices have no mutual connections, or formally: 
{ } YyXxyxeEe ∈∧∈∴=∈∀ ,: . We show an example of such a graph in Figure 

2.1-2.  
 
 
 

 

 

 

 
 
 Bipartite graphs are widely used for pattern matching in the area of chip de-
sign verification. They are particularly used in the area of EDA to model the elec-
tronic circuit. 
 We will further define a hyper graph. A hyper graph is the generalisation of 
the graph where the edges are not exclusively connecting two vertices, but a set of 
vertices. Formally, a hyper graph H is a pair H = (V,E) where V is a set of elements, 
called nodes or vertices, and E is a set of non-empty subsets of V called hyper-edges 
or links. Therefore, E is a subset of P(V)\ ∅, where P(V) represents the power set of 
V. The power set is the set of all possible subsets of a set. While graph edges are pairs 
of nodes, hyper-edges are arbitrary sets of nodes, and can therefore contain an 

Figure 2.1-2 – bipartite graph 
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arbitrary number of nodes. One example, together with the graphical notation of the 
hyper graph is given in Figure 2.1-3. This example is similar to our general graph 
example from Figure 2.1-1. It has as well six vertices still, as we can see the 
connections group more than two vertices together. In the graphical representation the 
edges are given as overlapping areas rather than lines. 

 
 

H =  {V,E} 
V = { v1, v2, v3, v4, v5 , v6 } 
E = {{ v1,  v3},  { v1, v4, v6}, { v2, v4}, { v1,v5}}  

 
 
 

  
 

 Hyper graphs are an alternative for modelling the electronic circuits. They are 
suitable due to the fact that the electronic circuit elements often have a big number of 
multiple mutual connections and the edge concept of the hyper graph allows that.  

2.2  Graph matching  

As it has already been pointed out, different applications of the graph theory 
request comparing two graph structures. This was a motivation to develop a family of 
graph matching algorithms. Graph matching can be formulated as follows: given two 
graphs (pattern graph)Gp = (Vp,

 Ep) and (target graph) Gt = (Vt,
 Et), find one-to-one 

mapping f: Vp→Vt,  such that (u,v)∈Et ⇔ (f(u), f(v))∈Ep. 
 Traditionally the first group of algorithms that were developed to solve the 
graph matching problem were search oriented algorithms. Typically they require a 
rigid identity between two structures that are compared. For this reason they are also 
known as exact pattern matching algorithms. Traditional, search oriented (exact) 
methods are based on recursive breadth first or depth first search (with backtracking) 
from the selected candidate starting point inside the target graph. Therefore, for dif-
ferent starting places the algorithm attempts to test the environment of a given vertex 
for the isomorphic structure. However, different useful heuristics made these methods 
powerful and tuned for appropriate applications. The heuristics typically take advan-
tage of the specific information which the graph nodes, as models of the application 
area entities, carry. Different preparation processes are done in order to achieve typi-
cally linear runtimes. The specific algorithms are therefore developed exactly for cer-
tain type of graphs that they are analyzing.  

On the other hand, the group of algorithms developed chronologically later 
can accept also more relaxed requirements concerning the resemblance between the 
pattern graph and the target graph. They are error tolerant. In this case, alternative 
approaches are used, such as optimization theory, neural networks, genetic algorithm, 
probability theory, etc. These algorithms are performing inexact pattern matching. We 
can now shortly summarise: exact pattern matching algorithms are optimal from the 
angle of accuracy, while inexact pattern matching algorithms are fast, but approximate 
and are not 100% reliable. 

Different research groups have developed particular algorithms from both 
classes. From the search oriented class we will mention the algorithm of Ullmann [4] 
where a greedy heuristics is applied. The algorithm continues the recursive search 

Figure 2.1-3-  Hyper graph 
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choosing the path which satisfies the set of local statistical constraints. On the other 
hand important is the approach in the algorithm of Corneil [5], where the graph gets 
globally partitioned to prune the number of appropriate candidate starting points. An 
additional approach in this class is the graph matching using Binary Decision Dia-
grams [6]. In the area of inexact algorithms various theoretical concepts are applied. 
We will apostrophe the approach based on optimisation theory and statistical physics 
– graduated assignment [7, 8]. This approach adapts the optimization function of the 
general graph matching problem by developing it as a discrete Taylor series and re-
duces it to the assignment problem. In contrast to graph matching that is NP complete 
[9], the assignment problem has a known polynomial complexity solution: the softas-
sign algorithm [10]. Graduated assignment led by graph labelling with good discrimi-
natory properties has shown respectable results.  
 Both algorithm classes have found applications in different areas. Newly de-
veloped techniques for inexact pattern matching, replace traditional search oriented 
algorithms in the domains where the speed is essential and, more important, where the 
target graphs are expected to be just an approximation of the pattern graph. In general 
this is used for image recognition applied in different areas such as: character recogni-
tion, computer vision, GIS (Geographical Information Systems) and medicine. 
Exact pattern matching algorithms are still used in areas where the complete accuracy 
between two graphs is essential.  
 Exact and inexact pattern matching both define two sub-problems (Figure 
2.2-1). We can compare two different graphs in order to prove if they can be matched. 
Additionally, it is possible to check if a given graph is contained in another graph. 
This is a problem of subgraph matching, which can be defined as follows:  

Given a graph S and a larger graph T, find all the subgraphs of T that are 
equivalent to S.  

The subgraph isomorphism problem is computationally far harder than the 
graph matching problem. Although both belong to the class of NP complete problems 
the graph matching can employ different global statistics when comparing two graphs 
that can simplify building effective heuristics. This kind of simplification is not possi-
ble in subgraph isomorphism problem.  

 
Figure 2.2-1 – Classification of the pattern matching in graphs into two general groups: Exact 
pattern matching and inexact pattern matching.   
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2.3 Subcircuit recognition, the application of subg raph 
matching 

The application of pattern matching in EDA is vital for different parts of the 
design verification process. The application domain is called subcircuit recognition 
(SR).  

It is useful to recognise some meta-structure from the groups of interconnected 
devices in many application scenarios. We can, therefore, use SR to understand the 
semantics of certain devices. The role of an identical transistor is not the same in an 
analog circuit and in some logic gate. During the chip design verification process it is 
necessary to compare the netlist which is extracted from the layout to the original 
schematic netlist. This process is known as LVS (Layout vs. Schematics). In case 
where the netlist extracted from the layout is flat (composed exclusively from atomic 
elements) the benefit of SR is obvious. We can isolate the hierarchical structure and 
compare it to the original hierarchy of the schematics. Still even if the netlist extractor 
is hierarchical, the hierarchy of the extracted netlist is usually slightly different, so 
rebuilding the original functional blocks (that exist in the original hierarchy) is neces-
sary to prove the identity between these two netlists. On the other hand the (from lay-
out) extracted  netlist sometimes contains some extra physical characteristics of the 
design which are modelled as parasitic interconnection networks, the passive RLCK 
networks that realistically model the dynamical behaviour of the device interconnec-
tions. By applying SR we can isolate parasitic networks that can be later evaluated 
(acquiring statistics important for timing characterisation) or reduced [11, 12]. SR can 
optimise the simulation too. Certain parts of the design that are structurally expensive 
to simulate and whose internal states are not of interest can be recognised and ab-
stracted as behavioural models, or just simplified models (we come back here to para-
sitic network reduction).  

Last but not least, SR is enabling static timing analysis of the custom transistor 
level design. We can abstract each implementation of the logic gates as a separate 
subcircuit, perform the timing characterisation on the given block definitions and fur-
ther analyse their interconnections in the produced gate level netlist. Gate level net-
lists allow also the functional verification of the netlist. Thus, by SR we make the 
functional verification of the transistor level design possible. There are numerous 
other possible applications for the SR in the area of EDA. Simply, SR makes the veri-
fication process more intelligent and context driven. All of these reasons strongly jus-
tify the thorough research and the development of the general, flexible and powerful 
SR strategies. 

It is common to model the electronic circuit as a graph. For different purposes 
different types of graphs are used. For the purpose of subcircuit recognition (SR) the 
application of bipartite graphs (section 2.1) is common. 

As we have shown the vertices of the bipartite graph are divided in two parti-
tions (sets). In the domain of SR one set of vertices models the devices (transistors, 
resistors, capacitors etc.), or in other words elements of the electronic circuit, while 
the other models the interconnections between the devices. These interconnections are 
called nets. A net is an optimal way to represent a connection between arbitrary num-
ber of devices.  

This is due to the fact that the representation of the common connection be-
tween n elements by direct mutual referencing would demand ( )1−⋅ nn  references 
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(
( )
2

1−⋅ nn
edges), while employing the special class of the vertices that model the 

connection requires n⋅2  references (n edges). This can be illustrated with a simple 
example given in Figure 2.3-1. In the figure, we have a complete graph of four verti-
ces. In order to interconnect its vertices we need six edges. If we introduce an addi-
tional vertex class (shown white in the example), we need only four edges to represent 
the same connections between the graph vertices.  

 
 
 
 
 
 
 
 
 
 

Interconnections between the multiple devices are very common in electronic 
circuits. Think of the supply connections (power and ground connections). Millions of 
devices are all connected to a single supply interconnection. Representing them with 
the strategy under (a) would require dramatically more space than the bipartite graph 
strategy. We can say that the memory requirement complexity of the first strategy has 
the complexity O(n2), while the second has O(n). 

Both classes of vertices typically have a type defined with them. Devices are 
typed simply by the kind of the entity they model. Nets can be typed by the semantics 
of the signal they are carrying. This kind of typing is important for different algo-
rithms that are interpreting the electronic circuits which are modelled by graphs, but 
not necessary for the storage of the design alone. One can broadly distinguish supply 
connections and signal connections. As each circuit that is modelled by the graph has 
nodes which model active devices (i.e. transistors), they would be typically connected 
to some power source, having part of their terminals on a constant potential. 

To summarise, the model of the electronic circuit falls (typically) into a class 
of bipartite attributed graphs. We can consider the example of the bipartite graph rep-

Figure 2.3-1 – a) standard graph with one class of vertices. b) bipartite graph, where connections 
are modelled separately as a vertex class, shown as a white circle.   

 
Figure 2.3-2 – Bipartite graph representation of an inverter circuit, realised in CMOS technol-
ogy.  

a) b) 
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resentation of an inverter. Figure 2.3-2 shows the schematic representation of the in-
verter together with its graph model. The devices are represented by squares while the 
nets are given as circles. By mapping the theoretical model of a graph to the electronic 
circuit, we can now exchange our vocabulary and use the terminology of the EDA 
equivalently with/instead of original terms from the graph theory. Using this new vo-
cabulary we can now (re)define the problem of subcircuit recognition. 

Subcircuit recognition isolates the instances of a specified pattern circuit (or 
simply pattern) inside the larger target circuit. The example of this problem is given 
in Figure 2.3-3. In the given example we have a pattern which defines structurally a 
functional circuit NAND (a). The circuit is built up from the proper link of the parallel 
connection of PMOS transistors and serial connection of two NMOS transistors. The 
instances of this pattern are being searched in an example of the target circuit, given 
in (b). That target circuit contains the image of the pattern and it is marked with a dot-
ted rectangle. Note that the pattern has also defined node types. Not any conglomera-
tion of transistors connected in the similar way like the NAND pattern will than lead 
to a match. It is necessary that the source terminals of the PMOS transistors are con-
nected to the fixed supply voltage (Vdd) and that the source terminal of the NMOS is 
grounded.     

 
 

 
Figure 2.3-3 – NAND pattern and its image in the example target circuit. 

 
This fact is crucial for the correct matching but as well of a big help for the al-

gorithms that were devised to serve like an engine for this problem. 
 After a pleiad of technology dependent algorithms, where the patterns and 
different approaches to match a given subcircuit were hard-coded into specific func-
tions, more general tools arrived, based on subgraph isomorphism. Since the subgraph 
isomorphism problem is in general NP complete and the designs on which EDA tools 
are to work on are complex with the trend of increasing that complexity, more general 
and always more efficient solutions were searched for. Different solutions transfer and 
adapt the known strategies from the theoretical field of graph matching, enriching 
them with the domain specific heuristics.  

The heuristics are led by the sparsity of the graphs that represent integrated 
electronic circuits. The topology of the bipartite graphs that model circuit designs has 
some typical properties. For instance, as we have mentioned the number of device 
classes is limited. They all have terminals which connect them with other devices. The 
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number of terminals is strongly limited as well, typically not bigger than four and 
each of the terminals has its semantics. Nets are not limited by the number of incident 
device terminals. Still, typically, the design consists of a lot of small local nets op-
posed to several big supply nets, or some signal nets with a big fan-in or fan-out fac-
tor, depending on the circuit semantics.  

Specifically for the pattern we can distinguish two kinds of nets. Internal nets, 
which are strictly connected to the devices that exist in the pattern and external nets, 
which can “communicate” with the rest of the target circuit. They actually connect the 
pattern image to its environment (in the target circuit). For instance, the net between 
two serially connected NMOS transistors in our example pattern is internal. The nets 
that connect gates of the corresponding PMOS and NMOS transistors (the input nets) 
are logically external.  

The heuristics of the algorithms that were developed is typically led by these 
basic properties of VLSI electronic circuits. The algorithms which employ the corre-
sponding heuristics to favour the typical properties of the VLSI electronic circuits are 
typically linear. Still, unfortunately, the heuristics do not grant the linear complexity. 
In some cases even the tuned depth first and breadth first search algorithms demon-
strate indeterministic complexities (towards the exponential worst case complexity 
defined by the general theory of NP complete problems).    

One of the first algorithms and the project that tends to define the general tool 
for subcircuit recognition in electronic circuits is the approach of Lüllau et al. [13]. 
This group has devised a specific partitioning algorithm that labels each device or net 
in the circuit with a specific integer number. This number depicts the immediate 
neighbourhood of the given device. The most interesting fact of the labelling algo-
rithm is the application of prime numbers. Each device type, or device terminal type 
(for instance in a transistor drain source or the gate) is coded by a distinct prime num-
ber. The overall label of the device than is the number that is obtained by multiplying 
the codes of the adjacent device terminals to it. The algorithm uses an abbreviation of 
the bipartite graph (multi-place graph).  In this graph model apart from the set of ver-
tices we define the set of spiders. Spiders correspond to edges and nets together 
(where the net is the body of the given spider and the edges are its legs). This repre-
sentation reminds also of hyper graph. Therefore the label is given to the spider in-
stead of a net of the bipartite graph.  The label of a spider is the product of the labels 
(prime integers) of all its legs. The important property of a label which is obtained by 
multiplying prime numbers is that one can easily test if the certain combination of 
device terminals is incident to the given device (spider) simply by dividing the device 
(spider) label by the given “sublabel”. If the labels are dividable without residuum the 
test is considered successful. In this way the algorithm saves a lot of time that would 
be spent for the unsuccessful tests, just by one arithmetic operation. The authors claim 
the expected linear complexity.  

 Several other algorithms exploit the idea of labelling the pattern and 
the target circuit that originates in the Corneil’s algorithm. The algorithm that further 
develops the application of this idea in the area of SR and has achieved the respect-
able linear complexity in most of the application cases and in the same time became 
one of the most referenced algorithmic solutions for the SR problem is the algorithm 
of Ohrlich et al. - Subgemini [14, 15]. The pattern and the target circuits in this ap-
proach are modeled as the bipartite graph. This algorithm defines two phases. In the 
first phase the labeling algorithm conceptually similar to Lüllau (Corneil) is being 
applied. This algorithm achieves non-local labeling of different nodes with respect of 
their neighboring topology in the target and pattern circuit. This enables it to achieve 
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extensive pruning of the search space and to isolate a typically short candidate vector 
of possible instantiations of the pattern, from which the algorithm proves if the target 
circuit contains the match or not by the breadth first search. Subgemini authors show 
the efficiency of this heuristic method by tests and still point out its weaknesses. First 
is that the algorithm is unable to match any pattern image circuit with shorted external 
nets. This is simply due to a fact that in the bipartite graph any shorting of the net is 
equivalent to net merging. That means that the image of the pattern circuit with some 
external nets shorted has than less nets that the pattern itself. This automatically leads 
to the fact that Subgemini fails to identify the given pattern instance. Another problem 
of Subgemini is the fact that any target circuit matching process that includes evalua-
tion of a supply net is experiencing long runtimes. This problem comes from the fact 
that all active devices (MOS transistors, Bipolar transistors) require the power supply 
which means that a pair of its terminals is always on the common high voltage and the 
ground. In bigger circuits this leads to very large nets whose analysis (linear search) 
always implies long runtimes.  

Different groups have worked on the problems that Subgemini has faced. One 
interesting solution for the shorted external net problem of Subgemini is given by  
Ling [16, 17]. Shortly after the publication of Subgemini he points out the problem of 
shorted external nets and offers the solution by transforming (upgrading) the bipartite 
graph with some of the properties of the hyper graph. He introduces specific edge 
units (EU). Each EU describes the connection between two device nodes (over a net). 
If we observe a shorted net in this way we can conclude that the set of EUs in the 
shorted net is the superset of the EUs of the non-shorted external net. This means that 
the Ling´s algorithm can find as well the instances with shorted external nets. 

2.4 Incremental pattern matching 

As we have described, different groups have worked on enhancing the match-
ing process in order to optimize the solution to the problem of SR. In parallel to  these 
inventive heuristics an additional approach has been developed. This approach is ac-
tually the upgrade of the atomic SR problem, where one locates the images of the 
given pattern circuit inside the target circuit. In incremental pattern matching we con-
nect the outcomes of single atomic matches and use them as premises in order to iso-
late higher level complex contexts inside an electronic circuit.  

In order to illustrate the core idea of this SR strategy we will go back to our 
NAND example.  If we want to match the NAND pattern circuit in the target circuit 
incrementally, we can divide the process in three steps. At first, we match the simple 
parallel connection between two PMOS transistors, which is the standard SR, de-
scribed in the previous section. After this we match the serial connection of two 
NMOS transistors. If the tool for matching can, after locating the image of the pattern 
in the target circuit, alter the topology of the target circuit inserting new solid abstrac-
tion in place of the recognized topology, we could use now these “intermediate” 
matches in order to isolate the final context, in our case a NAND. In Figure 2.4-1, we 
see these three patterns and all places where the matches for them occur in the target 
circuit marked. Therefore we match at first the parallel connection once. Note that in 
the target circuit, there are two occurrences of the serial NMOS connection, but only 
one of them is, together with the matched image of the PMOS parallel connection, 
forming a proper NAND gate.  

The given strategy has a number of advantages. First, if one wants to match 
difficult contexts that are composed of many elementary devices it is much more natu-
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ral to first detect smaller functional parts of the given context, and than to match it on 
the higher level. This approach is easier to understand and to explain and in the end it 
is easier to write the corresponding patterns. Further, since we match some more 
complex patterns step by step, employing patterns that have usually not more than two 
elements, we obtain shallow backtracks, no matter if we are using breadth first or 
depth first search. This brings faster execution times especially in highly symmetrical 
circuits.  

 
Figure 2.4-1 – Incremental pattern matching. Three patterns are defined: Parallel connection of 
two PMOS transistors, serial connection between two NMOS transistor and the proper link of 
these two high-level abstractions forming a NAND pattern. Additionally the example target flat 
circuit is shown with marked places of the instantiations of the mentioned patterns. 
 

Since we have now specified the fact that a group of matching processes is in-
teresting to us and we want to observe it as a whole, let’s try to define the structure of 
this group and its elements.  

An atomic entity of the incremental pattern matching process in SR is a rule. 
A rule corresponds to the single SR process where after the structural pattern is 
matched an action is performed. We can therefore say that the rule is built out of the 
structural pattern and the action which is executed if the image of the pattern is found. 

It is useful to represent the pattern as some kind of graph regular expression, to 
make it templated. In this way a single pattern can match a family of structures. This 
property elegantly solves some known problems of SR, such as the problem of 
shorted external nets of the structural pattern. In general it can help matching different 
generic circuits or circuits done in similar technologies with a single rule. On the other 
hand allowing the pattern to be rich in templated mechanisms makes the implementa-
tion of actions more complex [18]. For this reason it is necessary to carefully choose 
the set of templated properties that would make the best compromise between the im-
plementation complexity and the ease of application.  
 There can be several types of actions. Possible actions can include evaluation 
of the given image of the pattern or modifications of the topology of the target circuit. 
The modification can, for instance include exchange of the matched star of resistors 
with a triangle. The special case of modification that is crucial for the incremental 
pattern matching is the action of abstraction. In this case we simply form a solid 
block that stands for the given pattern image. This block is connected with the rest of 
the target circuit by the pins that are analogue to the external nets of the pattern.   
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 Once we have defined the rule as the atomic part, we define a rule sequence. In 
our example we have used a sequence of three rules in order to match the NAND 
logic gate. 
 In order to make the process of matching more powerful we can introduce also 
a flow control to control the order of rule execution and make it generic (to react to 
the outcome of the single rule matches). In this way we combine the pattern matching 
rule serial sequences with conditional or unconditional loops and branches. By defin-
ing flow control we introduce a specific descriptive rule language.  
 This kind of language was for the first time introduced by Chanak in his PhD 
thesis project [18]. The project of Olbrich/Barke [19] also defines the specific descrip-
tive language, developing the idea of Chanak. Their language that has been named 
Clarula (classify rules language) will be subject of the following section.  
 There is nevertheless one known alternative to the language which controls the 
proper execution of the incremental pattern matching.  
 Pelz et al. [20, 21] were motivated by the LVS process and have proposed a 
specific pattern matching algorithm with hierarchical patterns. In this approach the 
pattern has its own hierarchy and the order of matching (executing SR algorithm ab-
breviation based on depth first search) is determined automatically by the specific 
algorithm that analyses the hierarchy of the pattern. Pelz introduces the pattern as the 
generalization of the problem he has analyzed. His goal was to prove if the hierarchi-
cal schematic netlist is identical to the flat netlist extracted from the layout. The order 
of matching is chosen in the bottom-up fashion, logically. At first the most elementary 
patterns would be recognized and than their results used to recognize further higher 
level pattern towards the top. Pelz determines the constraints for the hierarchical pat-
tern topology.  The preparation algorithm would analyze the hierarchy of the pattern 
and alter it if it finds the violative properties. These properties are for instance exis-
tence of a given topology both as a separate abstraction (lower level pattern) and as a 
flat topology in the same hierarchical level of the pattern. For instance the hierarchical 
pattern of the latch has one inverter given as a separate subcircuit and another as the 
proper connection of CMOS transistor pair. This kind of a pattern would never match. 
Pelz’s preparatory algorithm resolves this violation in the given hierarchical level of 
the pattern by flattening the given abstracted topology or abstracting its flat version. 
Another constraint is the existence of flat match of the pattern that is distributed be-
tween two hierarchical levels of the input circuit. This is being checked by flattening 
the pattern and than trying to match it. Pelz further identifies the problem of reordered 
pins of the pattern abstraction and the problem of technological difference of two 
functionally identical parts of the extracted netlist. He solves the latter problem by 
introducing a specific library of patterns that are of the equal type, but have the differ-
ent, alternative implementations.  
 All of these problems still exist in the case when we define the flow control of 
the incremental pattern matching by the descriptive language. They are left to the user 
to avoid them. In this sense the programming with such a descriptive language be-
comes also creative and a sort of art. Not just because of possible flaws, but mostly 
because of powerful possibilities for matching complex contexts that the language 
gives to the rule writer. Note that the algorithms of Pelz can be still combined with the 
language and serve as some kind of syntax check once the rules written by the expert 
are being compiled. The syntax check can issue warnings and errors pinpointing in-
consistent rules, that for instance are impossible to be matched. 
 We will, in further text, describe the language defined by Olbrich and Barke 
and its algorithmic solutions together with the unique concepts devised for this ap-
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proach. This approach has, in its later development stages, shown stable and accurate 
industrial application. By describing that project as an example we want to introduce 
the reader to the Clarula language and properly set up the context for the explanation 
of the contribution of this thesis.     

2.5 Classify project – Clarula descriptive language  

We will present here one realisation of the concept of the incremental pattern 
matching strategy. This realisation defines a specific language (Clarula) which im-
plements basic flow control constructs and certain template mechanisms for the struc-
tural pattern. This research project was realised by Olbrich/Barke for the application 
in the real industrial environment. The goal of the project was to achieve the general 
purpose SR tool based on incremental pattern matching. The industrial version of this 
tool is named classify. The flow of the tool could be drafted as in Figure 2.5-1. 

 
Figure 2.5-1 – Pattern matching tool cClassify – execution flow. 

 
 The flat input netlist is compiled into an in-memory bipartite graph model of 

the circuit, together with the rule set. The ruleset is an instance (a program) of the 
descriptive language - Clarula. Therefore, the memory representation of the ruleset 
consists of the framework to lead the program execution (flow control) with the num-
ber of specific “pattern side” graphs that represent the graph regular expressions. The 
output of the tool is the partitioned netlist and a specific error report file. This ASCII 
file has a syntax which enables it to be used together with third party graphical user 
interfaces that represent the hierarchical designs (Cadence Composer®). Therefore, the 
idea is to integrate the pattern matching tool with a specific rulset (which performs 
specific electrical rule check of the design) into Composer® to be able to graphically 
specify exactly the places where some violation has occurred.  
 The rules language program has a clearly defined structure. It starts with the 
type definitions that are followed by the net and block predefinition assignments. This 

#comment 
# rules block 
.rules 
< type definitions> 
<net and block predefinitions> 
<rule definitions> 
< protocol comment> 

.endrules 
 

Figure 2.5-2 – Clarula language structure 

 
Flat netlist 

Classify 
Classify  
ruleset 

 

Flat netlist 
enriched by 

additional subcircuit elements 

Flat (redundant) 
error protocol 
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section is followed by the rules. Keywords and commands start with a dot (.). The 
program is bounded as a structure that begins with a .rules keyword and ends with a 
.endrules keyword. If the first character of a line is ‘#’, that line is treated as a com-
ment. No inline comment is allowed. The conceptual structure of the Clarula program 
is given in Figure 2.5-2.  

The block <type definitions> strongly declares the set of types that are going 
to be used throughout the program. The types are assigned to devices (blocks), nets 
and ports. The assignment keywords are .blocktypes, .nettypes and .porttypes respec-
tively. One example of the type set is: 

 
.nettypes signal power ground tobedriven pdrive ndrive fixedV pMultCon nMultCon 
bidirekt .  
 
This statement declares ten different user defined types that give semantics to the nets 
used throughout the given Clarula program.  
 The patterns specified in the rules can demand a certain type for a net in order 
to match. The rules can assign types after successful matches. However Clarula uses 
the naming convention of the nets in the design to assign the initial typing of the tar-
get circuit. This is done in the <net and block predefinitions> section. With the state-
ment .netpredef the user can assign a type to a target net according to the string regu-
lar expression. If the target circuit net name matches the string regular expression ap-
propriate type is assigned.  For instance:  
 
.netpredef 'vblh*':power  
 
would assign the type power to any net in the target circuit that has a name which 
starts with a string “vblh”. Arbitrary number of lines of this type is allowed, meaning 
that we can define arbitrary number of rules to assign types according to the string 
patterns.  
 The initial types of the atomic blocks of the target circuit can be read directly 
from the design models. Each device in the electronic circuit design has a clearly 
specified type. 
 In this way we have specified the vocabulary for typing the patterns and as-
signing the initial types of the electronic circuit. Further program structure represents 
the collection of rules that are combined with the flow control statements.  
 Clarula defines three types of rules: 

• Block  rules 
• Adjacency rules 
• Net rules. 

The most general and in the same time mostly used rule type are the block 
rules. This rule type can match the arbitrary structural pattern and apply a certain op-
eration on the pattern image in the target circuit. Block rules have the following typi-
cal syntax: 

.blockrule <name> <port list> 
<element 1> 
[<element 2>] 
… 
[ .gets <assignments>] 
[ .flatten <element list>] 
[ .param <parameter definitions>] 

 

 

Pattern: 

Actions: 
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[ .check  <check list>] 
.endblockrule 
 

 The block rule has its name and the list of ports. The ports specified in <port 
list>  correspond to external pattern ports and they are as well defining the pins of the 
instance of the given abstraction that can be inserted by the appropriate action. This 
header line is followed by the structural pattern definition and a mixture of possible 
actions that can be performed on the matched image of the pattern inside the target 
circuit. We can recognise that this realisation of the rule follows the standard structure 
of the rule for incremental pattern matching, discussed in the previous section.  
 The pattern is specified in a syntax that resembles the SPICE netlist format. 
The SPICE netlist format represents data as a list of devices whose types are deter-
mined and whose mutual connections are specified by referencing the net names in a 
device terminal list. This kind of textual representation is natural and already known 
to the designer, a possible user. The syntax is actually enriched with several concepts 
needed for pattern matching. First, elements of the netlist can have defined types. The 
type is assigned to a net or a block by writing its name followed by a colon and the 
specific type name (e.g.  x1:inv  a b c:pwr d:gnd). The element of the pattern can also 
define specific parameter values that are required to be identical to the candidate ele-
ment in the target circuit (PARDEF) in order to match it with the pattern element.  We 
can formally write down the syntax of the single element of the pattern:  
 
 <name>[:<type list>] <port list> [PARDEF <parameter definition>] 
  
  Additionally, the language defines one possible abbreviation of templated 
properties. Clarula defines the concept of optional ports. By employing this concept 
one can match a family of circuits by a single pattern. Optional ports allow the pattern 
to have generic connections (that appear in some instantiation cases and in some not). 
The language however does not allow the generic number of devices that are the 
members of the single pattern. This is rather achieved by applying the rule recurrently, 
employing the flow control. The example of this strategy will be given together with 
the definition of the flow control structures.  

The ports can be divided into three classes. Mandatory ports, are the terminals 
that have to exist in the pattern image in order to have the correct match. On the other 
hand, optional ports can be left unmatched and the pattern as a whole can still be suc-
cessful. Special kind of optional ports are multiple optional ports. The semantics of 
optional ports differs in the port list that is attached to the element in the pattern list 
and in the port list which denotes the list of external ports. We will illustrate both 
strategies employing the examples in Figure 2.5-3. First, let’s analyse the meaning of 
the optional port in the external port list. Three similar rules are specified in our ex-
ample under a, b and c. The first rule allows the pattern to have two external ports, the 
second requires three while the third specifies the port b as optional (written [b]). That 
means that the port b is allowed to have external connections but it is not required to. 
As a consequence if we apply these three rules on the target circuits shown in the fig-
ure under d and e, the first pattern would match only the example in the circuit d, the 
second pattern would match only the circuit under e and the third pattern would match 
both circuits. To conclude, the optional external port has allowed us to “compress” 
two similar patterns, with respect to the external port configuration, into a single rule. 
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Multiple ports have similar semantics, but in addition they allow multiple tar-
get side matches for a single pattern side multiple optional port. The net can have a 
number of ports that connect to it and not just exclusively 0 or 1.This concept is very 
useful for recognising the circuits implemented in different, similar technologies. For 
instance the same logical circuits can have two different power supply solutions can 
be matched with the single rule using this strategy. We can abstract all power (or 
ground ) nets with a single multiple port .This concept is as well useful for matching 
the generic circuits. In our example figure, under f is specified the pattern that can 
detect an OR gate circuit with the generic number of inputs.  Additionally the target 
circuit shows one implementation of 8 input or circuit realized with four two input or 
circuits and the recognition sequence that leads our target circuit into a topology 
where it has one or gate with eight inputs. The multiple optional ports, as it can be 
seen in example, are denoted by curly brackets ({<port name>}). 
 Similar to this example we can now notice that the optional port concept can 
trivially solve Subgeminie’s problem of the shorted external ports. Any external port 
pair that can be shorted can be defined as a pair of mandatory and the optional exter-
nal port.  
 To conclude, this actual application of the concepts for the structural pattern as 
a structural regular expression witnesses the correctness of the analysis of Chanak 
[18] where he predicts that due to the implementation complexity just a carefully cho-
sen mixture of the possible graph regular expression concepts should be used.  Note 
that an alternative for optional ports would be writing exhaustively separate rules for 
each of the combinations of these generic element occurrences. In the case of the OR 
circuit example this number is (theoretically) infinite! 
 Once the pattern is matched Clarula can execute a number of different actions.  
There are four action classes. The tool can (re)assign parameters to certain blocks in 
the circuit, using a keyword .param. Further, it can by issuing a command .gets insert 
a new block, exchanging it for a topology that the rule has matched. The block is pre-
cisely connected by the pins specified in the rule. Note that the algorithm determines 
the proper usage of optional ports. In order to make the tool more powerful it is possi-

 
Figure 2.5-3 – optional port usage examples. a, b and c) three variants of block simple block rule 
to match the serial connection of two resistors with and without optional ports. d, e) target circuit 
for the patterns defined. f) rule to match the generic number of inputs or gate. g) Recognition 
sequence. 
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ble also to collapse some blocks which were abstracted in some previous rule. For this 
reason the keyword .flatten is used followed by the name of the block that is got in 
context and which is supposed to be flattened. One example of this concept is when 
after the recognition of latches, the rule writer wants to keep just their weaks and re-
use forwards for some other purpose (they can be a part of a driver driving the next 
latch that is connected in cascade). In the end, the .check action is issuing an entry for 
the error protocol file if an arbitrary test condition (which can be for instance a test on 
specific parameter values of the devices that are matched) succeeds.  
 The other two types of rules have the similar syntax but a slightly different 
pattern and action specifying concept. We sketch them briefly just for completeness. 
The work related to this thesis is in the scope of block rules. 
 The adjacency rules concentrate on devices. They group interconnected de-
vices of the kinds that are specified in the rule instance with no respect to the topology 
they build. The only criterion is that they are adjacent. Additionally to the kinds of the 
device types that are to be gathered cutnets, the nets that define the stopping criteria 
and after which no matching is further performed. This kind of rules is especially use-
ful for isolating parasitic networks. By employing this rule type RLCK networks of 
the arbitrary topology can be easily found and highlighted. 
 The third rule type matches exclusively nets. The net is matched and appropri-
ate conclusion is applied on it according to its type(s) and the type and the number of 
ports which are attached to it. They are useful for fast signal propagation. 
 As we have already mentioned the sequence of rule execution can be con-
trolled by the simple flow control. Apart from the sequence, that is defined by simple 
applying the rules one after another in the program listing, for and while loops are 
defined. Their semantics is however different to the loops with identical names de-
fined in procedural programming language.  
 The for loop executes a group of rules as long as any of these rules match. Its 
execution is as well optimised. For instance, if we have two rules in the for loop: 
 

 .for 
     { 
     Rule1 
     Rule2 
     } 

 
, if the first rule matches and the second doesn’t, the for loop executes again the first 
rule. If it in this new attempt doesn’t match, since the target circuit was not altered, we 
can be sure that neither the second rule will be matched. Therefore, the for loop exits 
after the matching process of the first rule, skipping the second.  
 This kind of loop is very useful for the recurrent matches. For instance the 
matching process from our OR gate example would be executed by the simple pro-
gram in Clarula specifying the for loop and the single rule we have already defined.  
 
  

.for 
 { 
  .blockrule or1 a b c d {e} {f} x 
 x1:or a b {e} x 
 x2:or c d {f} x  
 .gets gate:or 
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 .endblockrule 

 } 
 
 As we have stated in the example the syntax for the for loop is composed of 
the .for keyword and the curly brackets. 
 Another loop type, the while loop is similar to the for loop. This kind of the 
loop executes a set of rules if another additional set of the rules matches (if any rule 
from this set matches).   
 The language which was specified here serves as a powerful and flexible tool 
to run the context driven netlist processing. In Clarula, it is possible to write tools 
which perform important static rule checks or make the optimization preparatory steps  
for the simulation. Although powerfully conceived, the potential of this strategy is not 
being fully used due to different issues related to the real realisation of the concept for 
general hierarchical designs. The concept was implemented to work with the flat input 
netlists. Their size is extensive. First consequence is that the tool can be run just on a 
certain blocks separately and not on the full chip. 
  Further, the engine for the SR is the depth first search algorithm that is con-
strained only by the circuit element types. Since patterns have a complex structure, 
once the starting device is matched, the algorithm recursively approaches other de-
vices following the current device’s connections. Connections between the elements 
are ordered. This is naturally important as every connection has a different semantics. 
For example the first port of a transistor element represents the drain terminal, the 
second gate and the third source terminal. After following one of the ports of the cir-
cuit element, in the same order as they are defined, the algorithm approaches the net 
which can have connecting ports to an arbitrary number of neighbouring elements. In 
order to confirm or reject a match all possible paths from the given net, in the worst 
case, need to be checked. Of course, in case that the true match is found the search is 
terminated. This heuristic approach creates however sometimes inacceptable run-
times. We have tried to optimize the execution of the search algorithm by a greedy 
approach where one chooses always the path for the depth first search through the 
“best looking” net (the net with the smallest number of neighbours). This enhance-
ment of the depth first recursive search although trivial for the application in the non 
templated graphs becomes much more difficult in collocation with the concept of op-
tional ports that is one of the most important mechanisms in Clarula.   

2.6 Treating big nets in the incremental pattern ma tching al-
gorithm  

 In this section we are going to discuss the efficiency problem of the engine SR 
algorithm of the Clarula language and propose the algorithmic solution for this prob-
lem. The experiments which witness the benefits of the applied solution are discussed 
together with other contributions of this thesis in Chapter 6. 
 There are nets in the circuit that have an exceptionally high number of 
neighbouring devices, up to the order of 510 . Those are usually supply (power and 
ground) nets, signal nets surrounding logical abstractions which have big fan-in/fan-
out or reference voltage nets. If a large net is considered, the algorithm tests all of the 
possible connections in order to make a conclusion about a match which always has, 
unsurprisingly, a greater possibility to be false. Therefore, observed from a given net, 
this operation includes an exhaustive linear search. Not the whole structure of the pat-
tern has to be analyzed until the algorithm concludes that it is attempting to match the 
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false candidate place for pattern instantiation. We can choose to use a different order 
when following device interconnections, so that the examination of large nets is post-
poned. Then, there is a high possibility that, for these examples, these nets won’t be 
processed at all. This depends on the similarity between the pattern and the false 
match instantiation and therefore, how early the algorithm can make the conclusion 
that determines the current match attempt. In case of a true match, while applying 
different ordering of the recursion, it is also possible to skip the processing of some of 
the large nets. If there is more than one path to test the graph’s topology, we can ap-
proach the same device in different ways. Thus, we can close the loop path directly on 
the large net, without examining it. 

. . .

Pattern 1: Pattern 2:

Netlist:

1,n+1

Vdd

3,2

2,1M0 M1 M2 M3 Mn

. . .

m1m0
m1

c1

 
Figure 2.6-1 – Example of the matching process 

 This new method will be illustrated with the example in Figure 2.6-1. Two 
example patterns are matched against the netlist. The first pattern represents two tran-
sistors which are connected in parallel. This is a very common pattern which would 
merge two parallel transistors in the netlist. The second pattern is a simple conglom-
erate of one transistor and one capacitor which is connected to its gate. We will try to 
match both of the patterns to the given netlist, starting from the candidate place in the 
netlist which is marked by the dotted rectangle. In addition to patterns, the figure 
shows an example netlist. Candidate element connections are depicted with a pair of 
numbers. The first one represents the definition order of the terminal and the second 
its weight. While matching both patterns, starting from the candidate element, we 
would ideally proceed with the recursion by first following terminal 2, then terminal 3 
and in the end terminal 1.  
 In the case of pattern 1 we have a true match. The algorithm will start with 
M1, assume a preliminary match with m1 and follow its gate net. It will proceed with 
the assumption of a match between m0 and M0. Then it checks the net connected to 
drain of m0 on the pattern side and finds that it is connected to the already matched 
m1. It verifies that on the circuit side drain of M1 and M0 are also connected to the 
same net. The same process is applied to the source terminals. The algorithm returns a 
match without examination of the other devices connected to Vdd. 

If the algorithm first tries to match terminal 1 of m1/M1 and follows the Vdd 
net on the circuit side, it has to examine all devices attached to Vdd as candidates to 
match m0, which in the end also works but is expensive. That is exactly what the 
original algorithm does, it just picks the first terminal of an element as the net to be 
followed. As a result, the performance of this algorithm is not perfect. 
 For Pattern 2 the algorithm should ideally try to check the gate connection of M1 and 
conclude that the match is false as the type of the device connected to its gate is inap-
propriate. In the case of the original implementation of the depth first search algo-
rithm the matching process also includes a linear search over the power net Vdd. The 
algorithm always starts with terminal 1 and searches over all n possible neighbours. 
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 Therefore, an intelligent depth first search algorithm would always attempt to 
choose the next possibility for recursion which connects to the net that has the lowest 
number of neighbours and then approaches large nets only if necessary.  
 The realization of this idea is straightforward in the case where patterns have 
only mandatory ports. Simply from one exact point in the graph, the algorithm can 
pick the appropriate pair of pattern/circuit ports, which have a one to one correspon-
dence. The underlying statistical data can be collected while building the memory 
representation of the circuit and maintained later on. 
 The pattern syntax in our classification method includes the very important 
and powerful concept of optional ports, as mentioned. This concept is making the 
formulation of Best Path First (BPF), depth first search algorithm much more sophis-
ticated. The algorithm will be explained in continuation.  
  This greedy approach is witnessed to give good results by Chanak [18]. Since 
the look ahead is just one, this greedy solution might not bring us to the best path for 
the search. Therefore, after a net with a small number of neighbours can stand a de-
vice whose all other terminals are connected to big nets. However having in mind the 
sparcity of the VLSI designs this is not likely to happen even during the searches for 
big patterns. In the case of incremental pattern match, when the patterns are small, 
most often containing only two devices, the greedy approach is optimal. 
 
Proposal of Best path first algorithm 
 
 Our solution modifies the depth first search algorithm and allows the arbitrary 
(cheapest) approach to the different correct pairs for the ordered pattern-circuit ports 
before entering the next recursion level.  

The solution, naturally, has to support the usage of optional ports in the pat-
tern.  Support of optional ports implies a very complex way of distributing port pairs. 
The determination of the corresponding pattern port for arbitrarily accessed circuit 
port depends on the distribution of previously approached circuit ports. In the example 
in Figure 2.6-2.a the circuit side device, X1, has 6 ports which connect it to the rest of 
the graph. All ports are connected to nets that have a potentially different number of 
neighbours. We attempt to match  X1 to a pattern device P1, which has 5 mandatory 
ports pA, pB, pD, pG and pH as well as 3 optional ports pC, pE and pF as shown. 
Optional ports are marked with square brackets. Lets follow the strategy to proceed 
with the recursion by first following the path through the net which has the least num-
ber of neighbours. 

 

X1  c1 c2 c3 c4 c5 c6 element_type 
P1 pA pB [pC] pD [pE] [pF] pG pH 
 
a) circuit vs. pattern element 
 
3  4  2  5  6  1 
 
b) optimal order of approaching circuit ports 
 
  3-C  4-D  2-B  5-G   6-H  1-A 
          4-E  2-B  5-G   6-H  1-A 
  3-D  4-E  2-B  5-G   6-H  1-A 
 
c) optimal searching path 
 
Figure 2.6-2 – Example of BPF ordering for port pairs 
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A B [C]  D [E] [F] G H 
1 2 3 4   5 6 
1 2  3 4  5 6 
1 2  3  4 5 6 

 
Table 2.6-1 Port Pair Distribution 

 
 
 Let the surrounding of the device be such that the order of visiting from the 
Figure 2.6-2.b is optimal, satisfying the look ahead 1 optimum. The best search path 
for our example is then shown in Figure Figure 2.6-2.c. The path starts with the third 
circuit port and picks its first possible pairing port from the pattern side, port C. This 
pair determines a context and influences possible positions and pair forming of the 
ports that will be approached later. For instance when circuit port 3 is paired with pat-
tern port C, circuit port 4 can only be paired with  D. On the other hand if we pair 
circuit port 3 with the pattern port D, possible ports that 4 can be paired with either E 
or F, once it is approached on the different recursion level of the modified depth first 
algorithm. 
 

 
Figure 2.6-3 – BPF vector partitioning 

 
 For illustration, Table 2.6-1, shows all possible distributions of the vector of 
circuit ports to the vector with pattern ports. In any case all mandatory ports have to 
be matched. Matching of optional ports is, of course, not obligatory. Therefore we can 
make the conclusion that two circuit elements can  be matched only if the  number of 
circuit ports ( cpn ) is greater or equal to the number of mandatory ports ( mpn ), and on 

the other hand smaller or equal to the total number of pattern ports, the sum of manda-
tory ports and optional ports (opn ), or: 
 

(1)     mpn  ≤  cpn ≤  opn + mpn .  

 
 The solution for the context driven distribution of port pairs lies in combing 
this simple inequality with recursion. 
 Let C be a vector of elements 1c , 2c ,… , nc , which represent pointers to the 

ports of the circuit element that is being processed, where n is the number of these 
ports and P the vector of elements 1p , 2p ,…, kmp + , which represent pointers to the 

appropriate pattern optional and mandatory ports,   where m and k are the numbers of 
members of mandatory and optional ports, respectively. Above vectors are shown in 
. 
 The algorithm first attempts to place elementic , where ni ≤≤1 , together with 

the element qip + , where at first q equals zero. This attempted place is accepted, and 
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the pair is formed if the number of circuit ports before the ic  (i-1) satisfies the ine-

quality (1) matched to the first i+q-1 pattern vector elements. Additionally, it is re-
quired that the number  of remaining circuit ports, that follow the port ic  (n-i), should 

satisfy the same inequality, matched to the number of remaining pattern vector ele-
ments, i+1,…,m+k.  
 If (1) is satisfied for both parts of the vector, then the pair ip - ic  is taken. Oth-

erwise the algorithm attempts to check by the same test iteratively, while increment-
ing q, all possible pairings of ic , continuing with ic  and 1+ip (q=1) and on. 

Further iteration on this level is done if later, during deeper stages of the recursion, the 
algorithm concludes that the proposed distribution of pairs is not leading to the true 
match. After exhausting all of the pairing possibilities for the given circuit port, the 
algorithm terminates the present stage of recursion and returns false as match to the 
earlier stage. Finding the match before this simply means that, at every stage up to the 
top, the algorithm would return true.  
 On the next recursion level the same algorithm steps are performed on the lo-
cal portion of both vectors. This is illustrated also in Figure 2.6-3 as the pairing of 
port jc .   

The solution is implemented in C++ programming language using mentioned 
and additional, auxiliary data structures, such as a set of indexes of circuit pointers, 
which is ordered according to the number of neighbouring elements of the net that the 
port is connected to and the tree which saves the recursion context. The module which 
was developed is smoothly inserted into the old algorithm leaving most of the code 
intact. The places where the old algorithm was determining (trivially) the next pair of 
ports before diving into the next recursion step could be clearly identified and iso-
lated.  
 The algorithm has shown stable and reliable industrial application for already 
more than two years. The runtime improvement reaches, for some big examples, the 
factor of 60! We will discuss the experimental results for this algorithm in Chapter 6, 
together with the other results achieved in this thesis.  

2.7 Inexact pattern matching applied to subcircuit recognition 

 For completeness of this work, although these approaches are not used in our 
methodology for hierarchical pattern matching, it is important to give a brief overview 
of inexact pattern matching algorithms that are developed for the application of SR. 
 Several inexact subcircuit recognition algorithms are known in literature. They 
are based on different classical pattern matching optimization based approaches. One 
of the central places and astonishing results are achieved by the application of gradu-
ated assignment algorithm, the optimization algorithm that combines iterative optimi-
zation approach with probabilistic physics. This approach has been applied and re-
fined in order to get the fast and robust matching algorithm for subcircuit extraction 
by Nicolay Rubanov [22-24]. In the work of Rubanov, he, at first, defines a labelling 
algorithm [25] that offers good discriminative properties as a preparation for the ap-
plication of graduated assignment [7]. Further, the algorithm is carefully tuned and 
altered in order to be able to isolate all instances of the given pattern from the target 
cirtcuit (represented by a matrix) in almost all application cases. In order to fight the 
main problem of inexact algorithms and that is that, despite their speed, they are not 
completely accurate, Rubanov uses two other known approaches in pattern matching 
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theory. He employs error back-propagation and postponed decision making tech-
niques to refine the output of the incremental optimization process. The negative side 
of this algorithm is the fact that the input target circuit is expected to be flattened. In 
the industrial realistic application, this can be a considerable problem.  
 Other approaches apply known pattern matching techniques with bigger or 
smaller success. Fuzzy attributed graph approach is studied by Zhung et al. [26]. It 
was however used in the pure university environment; therefore the implementation is 
not so powerful. Hence, the pattern which has been used for testing is hard-coded in 
the algorithm. The pattern was the flat implementation of the NAND gate, consisting 
of 10 vertices (4 devices and 6 nodes). Further examples include SUBGEN algorithm 
[27], that follows the genetic algorithm approach and other exotic approaches [28-30]. 
 

2.8 Addressing designs with extensive size by emplo ying 
hierarchy 

 In the realistic usage of algorithms for pattern matching the common problem 
that stays unsolved is the size of the input circuit. Today’s designs have often more 
than a billion atomic elements in the flat representation. Therefore, they are not able 
to be treated at first because their extensive size which is far bigger than the typically 
available resources. Apart from that, matching the identical patterns that are instanti-
ated a number of times leads to unacceptable runtimes.  
 In this chapter so far we have intended to present the importance of SR for the 
chip design verification. The applications and the benefits are numerous. Unfortu-
nately, to achieve the developed level of the initial vision where one has a chance to 
intelligently control the verification process is not trivial. We have pointed out various 
runtime enhancements for the matching process, frequent problems and their solu-
tions. Still, one additional problem that stays common and without an appropriate 
answer for all the demonstrated algorithms is general pattern matching for hierarchical 
input netlists! In all of the mentioned approaches we have the input netlist of a spe-
cific class - a flat netlist. As the chip designs are typically hierarchical an additional 
and expensive (runtime and memory requirement) process of flattening is a must be-
fore any analysis. As we have mentioned, this leads to inability to perform checks on 
full-chip designs at all, due to inappropriate resources of today’s computers.  What 
makes the matching of hierarchical netlists so hard?  
 The main problem that the algorithm which has to work on the hierarchical 
input netlist has to solve is matching across the subcircuit boundaries. For instance, if 
the netlist abstracts the definition of even an elementary transistor device, it can be 
referenced in a thousand of places building complex structures. This example is trivial 
but in general the modules that the designers build often have “unfinished” contexts 
that get their semantics only once the block is properly placed in its instantiation envi-
ronment. One additional example is, for illustration, a driver of a latch that is ab-
stracted as a separate subcircuit. This requirement renders the trivial hierarchical pat-
tern matching solution, where no matches across the cell boundaries are allowed, not 
very useful. There are nevertheless some attempts of the academic environment or 
even some commercial tools which employ the simplified approaches and which can 
achieve results in some special cases.  
 For instance, interesting is the algorithm for hierarchical netlist comparison 
(LVS comparison) – Hcompare [31]. This algorithm relies on the identity between the 
subcircuits and if the identity is proven the given subcircuits are kept. On contrary this 
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algorithm flattens the subcircuits having differences and performs conventional pat-
tern matching on the given hierarchical level. If this current “master” level is identical 
in two netlists it is kept, if not it is collapsed anytime the level is referenced. The algo-
rithm execution strategy follows the bottom-up approach. To conclude, this algorithm 
is suitable for comparing two hierarchical netlist with similar topologies. If the to-
pologies are different the algorithm performs full flattening of both netlists. 
 Terem at al. [32] developed the specific approach that employs selective flat-
tening down to the “interesting elements” (members of the pattern), exclusively. This 
enables them to match patterns orthogonal to the subcircuit boundaries. Still they 
stress that this algorithm is just for very high-level pattern matching. This limitation is 
crucial for the feasibility of their approach. Think of choosing a transistor as an “in-
teresting element”. 
 If we had the general pattern matching algorithm for hierarchical input netlists, 
we could employ the SR with its full power. The full-chip pattern matching driven 
analysis would be possible. The tool that employs such concept would be also be able 
to partition the hierarchical netlist in much more efficient way, achieving the ability to 
highlight or alter some critical topologies non-redundantly, directly on the hierarchical 
netlist. Apart from pure qualitative enhancement that came as the full-chip ability, the 
runtime and memory requirements of the SR process would, due to ability to work 
directly on proper definitions be optimal and non-redundant.  
 All of these reasons give us a strong motivation to develop the general solution 
that enables SR to reach its mature and more appropriate version employing directly 
hierarchical designs that are a realm of the industrial application. 
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3 Hierarchy 
 

The hierarchical organisation is a concept that appears very often in science, so-
ciety and nature[33, 34]. This is a common way to fight the complexity and enable 
understanding, as well as functioning of different complex systems. The hierarchy is 
also more than a way of organisation, as it has its own semantics. Any digital elec-
tronic circuit can be an example of the fact that the function which it implements is 
not dependent on the technology in which it is realised, but completely orthogonal to 
it. In this sense, the hierarchical organisation appears as a completely independent 
abstract layer.  

3.1 Hierarchical abstraction in VLSI 

3.1.1 Introduction  
   

Apart from other fields hierarchical concepts find wide application in VLSI 
design to address the extensive complexity of chips which are being shaped. More-
over the concept of hierarchical abstraction is embedded into the methodology of de-
signing the IC and in the process of their verification. 
 In further text of this chapter, we will draw attention to the role of the hierar-
chy in VLSI design. In order to do that, we will start with the formal definition of the 
folded hierarchical data model in (3.1.2). Further, we will give an overview of state of 
the art EDA databases that implement the folded hierarchical data model (3.2). In a 
simple case study we will present common algorithms and data-structures that are 
used to explore the hierarchically organised IC designs (3.3, 3.4). The chapter is con-
cluded with a vision of hierarchical views that serves as a starting point of the realisa-
tion of this thesis’s contribution (3.5).  

3.1.2 Folded hierarchical model  
 

Like in other complex systems, hierarchy is exploited as one of the essential 
mechanisms to develop and store electronic circuit designs. The concept of hierarchy 
helps IC design process in many ways and it became a part of the methodology of 
custom digital or analogue design. By employing hierarchy, the designer typically 
works on a certain functional block, a part of the design, which once finished repre-
sents an element (hierarchical level) that is a verified and correct building unit. This 
building unit can be further applied in different contexts. 

In order to illustrate this concept and explain the benefits of hierarchy, we will 
consider the example of the 2-bit adder electronic circuit. We see the flat version of 
the mentioned circuit in Figure 3.1-1. 
 This flat design is built out of ten elements. If we analyse its structure we can 
conclude that it contains a topology of a full adder which repeats two times in the cir-
cuit. One of the full adders is highlighted in the figure by the rectangle with the sharp 
corners. Further, in the composition of the full adder one can isolate another topology 
which repeats twice – the topology of the half adder. One of the half adders that ap-
pear in this design is highlighted by the oval rectangle. In total we have four topolo-
gies that are isomorphic to the half adder and two that form the full adder.  
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 Let’s now take advantage of these reoccurring patterns and describe (store) the 
circuit hierarchically. Actually, the hierarchical organisation of the example circuit 
that we will create would in reality come spontaneously. The designer who would 
make this occurrence of a generic n-bit full adder would have the bottom up approach 
and he would first create the topology of the half adder, continuing with further design 
using the half adder as the building element for more complex contexts.  
 The half adder is composed of two logic gates that have mutually shorted in-
puts and in total this circuit communicates with the rest of the design by four termi-
nals (two input and two output). Using the finished and correct topology of half adder, 
the designer than builds a full adder out of it and further the required n-bit adder. The 
natural outcome of this process is the hierarchical design. 
 In Figure 3.1-2 we see realisation of a half adder as a part of the hierarchically 
described circuit. In the hierarchical representation given in the figure, we can isolate 
three distinct hierarchical levels that define also clear functional contexts. The deepest 
level which represents the half adder is defined by two logic gates, XOR and AND. 
 

 
Figure 3.1-1 – Flat representation of the 2-bit adder. Full adder circuit that is a part of 2-bit ad-
der is highlighted by the rectangle with the sharp corners, while half adder circuit that belongs to 
the full adder is highlighted by the oval rectangle. 

 
 This topology is encapsulated in the hierarchical level (or a subcircuit) called 
HALF ADDER. We have used this subcircuit as an opaque block to define a higher 
hierarchical level which combines it with other elements. Our example design has, 
thus, the level FULL ADDER that forms the electronic circuit of the full adder by 
interconnecting properly two instances of the HALF ADDER subcircuit, using them 
as circuit building elements together with another atomic element (OR gate). This is a 
nice example of a powerful mechanism where one can define complex elements that 
are further smoothly used with other complex elements or atomic elements in order to 
build any arbitrary circuit. In order to enable the subcircuit that we create to correctly 
communicate with its environment and to look and feel like a proper atomic element 
we define specific terminal connections. In the top level we have two instances of 
FULL ADDER subcircuit forming the circuit that is equivalent to the flat design from 
Figure 3.1-1.  
 What are the advantages of this representation? First, we can see that in order 
to form this circuit we have clearly focused our attention to three different semantic 
levels, at first we have created the half adder thinking in the world of logic gates. 
Than we go one level up and use already more complex circuits and interconnect 
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them to get the functionality of the full adder. Note that the designer can always 
“tune” his design to get the proper functionality using any elements. In this case, in 
order to detect the carry we simply use an OR logic gate. In the end when we have the 
full adder encapsulated we can easily choose the size of the n-bit adder we want to 
create, not thinking of the inner implementations that reoccur for each bit we add. 
This architecture is also good for someone that should understand the design. One can 
immediately see that the top level is composed of two properly interconnected full 
adders. For an experienced designer this can be enough. He doesn’t have to look at 
how the full adders are realized. Here lies another advantage of the hierarchical design 
representation: once we have abstracted the functional unit, we can exchange its im-
plementation. For instance, we can redefine the full adders, or the half adders to be 
composed of exclusively NAND gates and still keep the rest of the design being sure 
that the functionality of the circuit won’t change. Further, this design is also technol-
ogy independent. We have defined the functionality strictly using gate elements. We 
can add another level of hierarchy seeing the gates that are here shown as atomic ele-
ments (with no further hierarchy and inner structure) as complex topologies of CMOS 
transistors. In this way we would just have to define these atomic elements and inherit 
the whole further design and still achieve wanted functionality.  
 Apart from flexibility and the ease of understanding, this representation is 
more efficient, as well. The hierarchical representation allows that the definitions of 
given separate levels can be referenced many times in the design. This concept is 
known as folding. We also say that the design is than folded. One shouldn’t confuse 
this term with time folding, where one uses time multiplexing to reduce the given de-
sign’s size or share an expensive resource.  

As we can see in the example, we have just once defined the full adder and 
used (referenced, instantiated) it twice. Further, full adder has two occurrences of the 
half adder which is again defined only once. The same principle is valid for the logic 

 
Figure 3.1-2 – Hierarchical representation of the 2-bit full adder. The Hierarchical levels and con-
nections between the elements are  given with solid rectangles/lines, while the references between 
instantiations of hierarchical levels and their definitions are given by the dashed lines. 
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gates, although we have them referenced and used directly only once in this example. 
We can say that one of the benefits of the hierarchical representation lies in the fact 
that it is non-redundant. We have managed to represent a design that has 10 elements 
by directly employing just three of them or each of the atomic elements once. Some-
thing that is in the same time advantage and the disadvantage of folded hierarchical 
representation comes in the domain of the tools that should analyze the designs. For 
some operations this concept is welcome, for instance for counting the number of 
atomic devices in the design, or for checking some of the attributes of each of the de-
vices alone. On the other hand hierarchy (folding) represents the problem for some 
other group of tools that prefer seeing the design as a whole, for instance a simulator 
that needs to propagate the signal through the circuit from its input terminals towards 
its outputs. 
 It is often required by tools to characterise some instances of the subcircuits, 
too. For instance, one might want to attach specific parasitic elements to an instance 
of a given subcircuit. This is known as a problem of personalisation. We will come 
back to these problems and known solutions for them later in this chapter, in section 
3.4 . 
 In order to formalise the described concept we will use and adapt the defini-
tion of hierarchical encapsulated graphs. As flat graphs haven’t met the requirements 
in many application areas of computer science, Engels et al. [35] have proposed the 
model of the graph that includes the hierarchical concept. We will adapt this concept 
in order to formally represent folded hierarchies that are widely used in EDA. As a 
type of the graph that is typically used to represent the netlist is a bipartite graph, we 
will extend this kind of graph notation to enable hierarchical relations.  

In order to achieve this goal we define complex vertices, as an extension to the 
standard (atomic) vertex concept. The complex vertex is a part of the graph and can 
be equally used together with atomic vertices. The difference between the atomic and 
complex vertex is such that the complex vertex defines the inner structure, as well. 
The inner structure of the complex vertex is again a graph that can contain any kind of 
vertices, including other complex vertices. We can, therefore, say that the definition 
of the encapsulated hierarchical graph is recursive. The set of atomic vertices is de-
noted by  N, while the set of complex nodes is denoted by Y. As each complex vertex 
is a graph itself we write that the top complex vertex equals to encapsulated hierarchi-
cal graph G(N,Y). 

 
For each complex vertex we formally write: 

 
  CV = (V, E, KE), 
 

where:  
 

(1) V is the set of vertices of CV, 
(2) E is the set of edges that belong to CV and  
(3) KE is a set of known edges in CV, where KE ⊆ E. 
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In order to identify the relations between these sets, we will write down further 
definitions: 
 
(1) HE = E \ KE is a set of hidden (private) edges of the complex vertex CV.  
(2) HV = V is a set of hidden vertices (private vertices).  
 
The known edges are the edges that are incident to the complex vertex. Since we 

have the case of the bipartite graph, V (HV) can be further split into two sets V = X U 
Y. These sets have the semantics of devices and nets, respectively, for graphs that 
model hierarchical electronic circuits. Further X contains, in general, two kinds of 
elements: complex vertices and atomic vertices. For this reason we split this set into 
two subsets X = CX U AX. In the end, we say that the complex node defines a level of 
the hierarchy.  
 In order to illustrate this concept, we will represent the full adder circuit from 
our example with the encapsulated hierarchical (bipartite) graph. Vertices are divided 
in two groups. The first group, which is drawn with dark blue circles, represents the 
circuit nets. Another group represents the devices, split again in two subgroups, in-
stances (complex vertices) and atomic devices (vertices). The edges are given as lines. 
The known edges are highlighted as they are drawn with ticker lines. This hierarchical 
graph has 41 vertex of a class “net”. Further, it has 10 atomic elements. This is a nice 
illustration of the fact that that the unfolded hierarchy doesn’t bring us any advantage 
concerning the number of elements needed in the model. On the contrary we have 
some of the elements duplicated in different hierarchical levels (net vertices). The 

 
Figure 3.1-3 – Encapsulated Hierarchical Graph Example - The complex vertices are given 
by light blue ellipses, while the  atomic elements as blue squares with oval edges. The node 
verticies (another vertex class) are given as dark  blue circles. Encapsulated Hierarchial 
graph can clearly separate and define hierarchical levels, but is redundant. 
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established formal representation can, thus, define hierarchy and clearly specify the 
borders between the complex entities it models, but we can not represent the folding 
as a property with it. In order to do this, we will extend the notation of encapsulated 
hierarchical graph with several additional definitions that enable folding.  
 The complex node has two sets (HE and HV) that are internal to it. If the set 
HV = HX U HY, we will observe the set HY (hidden nets) as union of two subsets 
(HY = EY U IY). Further we will define the one to one mapping relation A, between 
the elements of the sets KE and EY.  
 Let EYKEA ×⊆ is such that: 
  
  )),(:!,()),(:!,( AbaKEaEYbAbaEYbKEa ∈∈∃∈∀∧∈∈∃∈∀ . 

 
By specifying this new mapping we can now say that d = (HV, EY, HE) is a complex 
node definition. We can further write that the complex node represents a tuple:  

 
FV = (d, KE, A).  
 

By separating the definition from the complex node and than referencing it we 
achieve that the multiple complex vertices are able to “share” the definitions. We say 
that d and KE are compatible if the set of vertices EY (of d) has the same cardinality 
as the ordered set of edges KE.   
 We can now come back to the example and use the new concept to alter the 
hierarchical graph representing the full adder circuit (Figure 3.1-4).  

It is obvious that in this case the number of needed elements to model the 
identical topology is irredundant and optimal.  
 Each folded encapsulated hierarchical graph has a number of definitions. We 
specify the ordered set (∆) of definitions (di ) namely: 
  
    ∆ = [d0, d1, …, dn]. 
 
Let all complex vertices of the folded hierarchical graph be aggregated in a set Y. The 
operation I:Y->∆ represents the instance of relationship. This relation assigns exactly 
one definition to each member of the set Y (each complex vertex). For example if :  
 
  ∆ = {TOP, FULLADDER, HALFADDER},  
 
we can write that I(HALFADDER1) = HALFADDER. This relation is represented in 
our folded graph by the lines that end with arrows. We say that yd is the instance of 
the definition d.  
 Further, the membership of a complex vertex, (y) while i(y)=dj into the defini-
tion di is denoted as a composition relationship between di and dj.We say that dj is 
referenced in di. For example FULLADDER =  {HALFADDER, OR} 
 With respect to the set ∆ and the operation I we define the referenced defini-
tions graph. The definition graph is the graph with ordered edges. Further, we say that 
the graph G(N) is a holder for the set ∆.  
 The elements of the set are ordered such that:  
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This ordering relation prevents infinitely nested definitions and is actually the natural 
constraint of the well formed, finite hierarchies. 
 The element d0 is known as the root definition. That is the definition that is not 
referenced by any cell. 
 In addition, we will define several parameters that quantify the hierarchy [36].  
 
h : height of the complex hierarchical graph represents the maximal number of levels 
(or the longest path) between the top hierarchical level and an arbitrary atomic vertex. 
 
l : defines the number of definitions of the folded hierarchical graphs. This is actually 
the cardinality of ∆. 
 
d : density of the complex hierarchical graph. This parameter gives the average num-
ber of instances (complex and atomic nodes) in hierarchical levels of the complex 
hierarchical graph. 
 
f : represents the number of atomic elements in the similar flat graph. Having in mind 
the semantics of the parameters h and d, we can write that : hdf ≈ . 
 
n : defines the approximate number of elements (complex and atomic) in the  hierar-
chical design model. We can define it as  n = d*l.  
 In the end we will define the gain factor from the fact that we have used the 
folded hierarchical model as :  

 
Figure 3.1-4 – Folded Encapsulated Hierarchical Graph Example – The way to represent the 
hierarchy non-redundantly. 
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 This result is important for the domain where no flattening of the design is 
possible. 
 For instance, the height of the folded encapsulated hierarchical graph in Figure 
3.1-4  is : h = 3. It defines three different cells (l =  3). The density of the graph is: 

33.2
3

7 ==d , the projected flat graph size is than calculated to equal f = 12.64. Hav-

ing these values we can calculate the approximate number of elements in the hierar-
chical graph and the gain factor: n = 7 and g = 0.55. 
 We will use the quantities defined above to value the graphs during the evalua-
tion of the hierarchical pattern matching algorithm performed on realistic industrial 
example hierarchical design.  
 The formal model which was described in this section enables one to store and 
evaluate any hierarchical design. Through history of EDA there were a numerous im-
plementations and abbreviations of this concept in different program languages. These 
representations have through time evolved into modern EDA databases that stand be-
hind it and enable persistent storage of the designs together with other important con-
cepts that enhance the employment of this handy methodology. 

3.2 EDA databases 

The EDA databases implement the hierarchical model and they adapt it so it can 
be used in different specific purposes [37]. Throughout the history of EDA various 
database implementations were offered. In such heterogonous environment the inter-
operability between different tools built on various databases has emerged as a prob-
lem. In order to achieve the interoperability the long coordinated standardisation 
process has been conducted by the VLSI community that in the end coined the pro-
posals for the standards for the EDA database concept. This enables tools from differ-
ent various producers to work incrementally together coherently in the complex de-
sign verification flow. 

3.2.1 History 
 

In the history we had many teams working on the topic and they have been re-
solving and reinventing numerous similar solutions for the standard problems which 
had to be addressed and implemented into the tools for EDA [38]. Depending on his-
torical period and its trends we had design databases implemented in different pro-
gram languages [39]. Once the area became more serious and diverse, more and more 
companies became specialised for the development of diverse EDA solutions. These 
solutions were step by step accepted and they replaced and complemented a number 
of solutions of EDA teams of different semiconductor companies. Apart from benefits 
this brought some problems, as well.  
 In parallel to useful tools, different databases that hold and model the data 
handled by those tools were developed. The databases typically employed the relevant 
hierarchical and other needed concepts. Although similar, they were inevitably in-
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compatible. The common weakness of these databases was that they were not allow-
ing transparent interoperability between the tools which use their services.  
 The problem is to make the tools’ inputs and outputs compatible and to allow 
the database to store the results that separate tools produce incrementally (to allow the 
follower tools to see the changes of theirs predecessors) the proper outcome [40, 41]. 
The tasks of integration were far from trivial and in literature one can find the intro-
duction of a job description of “EDA tool integrator”, or personifications such that the 
tasks of tool intercommunication are of a calibre of a doctoral thesis. In the environ-
ment where the increasing number of companies started offering EDA tools which 
brought both attractive fast and thoroughly designed solutions and in the same time 
repellent increasing complexity of the flow integration the most common way of the 
integrations were loose tool coupling through external ASCII formats for representing 
hierarchical designs: SPICE, SPEF, GDS, etc. 
 The ever growing problem amplified with ever increasing design complexities 
demanded a systematic solution.  All these facts have led the top EDA and semicon-
ductor companies to think of and find a solution for the identified problems. The 
council has been formed to search for the standard for EDA Databases. 

3.2.2 Standardization 
 

The standardization attempts started in late ’80 when the business analysis 
confirmed that the investments into tool integration reached more than twice of the 
sum of investments into the separate application development process. The council 
named CAD Framework Initiative (CFI) was formed. Their goals were standardisa-
tion of the data model that describes electronic circuits and providing the standard 
API (Application Program Interface) declaration that was written in C language. This 
first data model has supported exclusively schematics (logical model), while there 
were plans to extend it towards modelling physical properties of the design layouts. 
 For different business and political reasons this data model hasn’t reached 
wide usage.  

Nevertheless, as the need for the standardised EDA database still existed, sec-
ond attempt with a slightly changed strategy has occurred starting from 1995., spon-
sored by SEMANTECH: Chip Hierarchical Design System: Technical Data 
(CHDStd). This time one of the industrial solutions was solicited and the new stan-
dardised model was based on IDM (Integrated Design Model) from IBM. As this sec-
ond standardisation attempt had, like its predecessor just a document as a deliverable 
it stayed just on paper as well.  
 The third attempt that managed to get much bigger interest of the community, 
because of its availability in both industry and academic domains, its modern design 
and thorough planning was conduced by SI2. SI2 council proposed a standard for 
EDA databases: Open Access. Open access offers solutions for applications that work 
both on schematic data and physical data, it is fully written following object oriented 
concepts which helps its flexibility and understanding. This solution was provided by 
the reference implementation. This was one of the key reasons for its growing success 
in both important user domains (industrial and academic). The strategy where the 
member companies and institutes contributed both financially and by working power 
was important for the transition of the Open Access project from the vision to the real-
ised database. 
 The key concepts of Open Access are: 
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• Standardised object oriented data model and API  
• API available to anyone at low or no cost 
• Available reference implementation ready for experimental use or industrial 

application 
• Flexible usage of different data domains by the client tools 
• Standardised API that includes object-oriented concepts and enables easy in-

teroperability between the tools thus achieving the incremental flow 
 

We will analyse the main concepts of the Open Access database in the next 
section. After that we continue focussed on the API that is provided by the data-
base to support the applications working with the schematic data representations.  

3.2.3 OpenAccess 
 

Open access standardises the data model and the corresponding API for EDA 
tools [42]. They are capable of storing and presenting folded hierarchical data. The 
formal representation of the folded hierarchical data model is given in (3.1.2). This 
model is stored in a persistent store and is accessible by the API which is written in 
C++. Thus, the API is object-oriented and ready for use in modern EDA tools. For 
reasons of efficiency, during the application execution a runtime model of the data 
which was originally stored in the persistent store is built. This is happening transpar-
ently to the application and the object oriented API is everything the given application 
sees. The conceptual architecture that we explain is given in Figure 3.2-1. 
 An important property of the API is that for each database entity (one instan-
tiation in the persistent store) three different API domains and corresponding objects 
can be created. Therefore, each entity of the database can be seen through a triade of 
objects on the application side. In connection with this we have three characteristic 
domains of the overall API. The domains are: 
 

• Module Domain 
• Block Domain and 
• Occurrence Domain.   
 

The module domain defines a set of objects and the appropriate models to 
manage the underlying database data as schematics. Therefore, we see only the logical 
network, also called a netlist, without any physical properties like coordinates, spac-
ing between the objects etc.  

 Block domain is responsible for the physical side of the design. All objects 
which model database entities in the module domain can be also seen with their twin 
objects from the block domain. The difference is mirrored in characteristics of the 
block domain and the interface of the classes that appear here have somehow different 
semantics. These objects store the dimensions and all other specific properties of the 
geometric shapes that form the proper devices, in fact the layout of the design. The 
hierarchical interface is in this domain a bit different, but equivalent.  In the block 
domain, the connectivity between the levels is modelled in a more simple way as the 
connections are determined implicitly, by the geometrical position of a given net in 
the design. Note that in this domain we don’t have hierarchical nodes (3.3.2). 
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 In the end, in the occurrence domain, we have the design represented as a fully 
unfolded hierarchical database. The type of the model is in this case also logical 
model, like in the module domain. This domain objects and the appropriate interface 
is used in cases when the given application needs to personalize the data in different 
instances of the same subcircuit. The reference implementation of the OA database 
optimizes the occurrence domain.  The objects that represent the occurrences are cre-
ated on demand, hence only if one traverses the whole instance tree (3.3.2) the corre-
sponding occurrence domain objects would get created. These objects secure the ob-
ject ID consistency and their size depends on the personalized data they store. This 

means that if the two instances of a given subcell are identical their occurrence do-
main description can be, from the angle of the needed memory requirement neglected. 
The authors of the reference implementation of  OA claim that the typical size of the 
occurrence domain model is introducing up to the factor of 100 to the original folded 
model size [38]. 

This is of course valid for the offered implementation of the database and any 
optimisation that is being done behind the API would make a difference in perform-
ance of the application that is written to the standardised API.  

An important property of the OA is the fact that its evolution and further adap-
tation to the needs of the state of the art EDA application is secured and carefully dis-
cussed. The special team called Open Evolution exists. It is led by the engineers from 
leading EDA companies or the academic world [43]. Any research done in this direc-
tion can be discussed with them and possibly affect the standard API or the reference 
database implementation.  

We will, further (3.3), concentrate on the API of the module domain. We will 
define a simplified case study API which exposes the elements and mechanisms of the 
object oriented model that are important in order to explain the solution we propose in 
this thesis. 

3.3 NLDB 

 Let us now define a simple, still functional, hierarchical data model which can 
store electronic designs that we are going to use further in this thesis. The definition 
will be given as the UML class diagram. After proper definition of the case study 

 
Figure 3.2-1 – The conceptual diagram of the Open Access Database 
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folded hierarchical model, we will make the short overview of the common hierarchi-
cal concepts that the tools typically employ to traverse the hierarchical designs. 

3.3.1 Object-oriented folded hierarchical model API  
 

In our example designs we will allow fully the concept of hierarchy and folding 
and for simplicity we will introduce just three atomic elements: MOS transistor (fur-
ther classified by its model as PMOS and NMOS), the resistor and the capacitor. The 
API we propose is analogue to the model domain API of Open Access. As they are 
not directly necessary for the implementations of the concepts we introduce later in 
the thesis, we will abstract complex parameter mechanisms and the relations of this 
API to other possible domains (block and occurrence domain in Open Access). We 
have to stress that for the purpose of our experiments we have used the industrial API 
model with its full complexity. This gives additional quality to the results we have 
achieved through tests presented in chapter 6. 
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Figure 3.3-1 – UML model of the NLDB database. 
 
 The model we propose here as a case study is given in the structural UML 
(Unified Modelling Language) class diagram in Figure 3.3-1. The UML notation is a 
common way to grasp different static and dynamic aspects of complex software sys-
tems which employ object-oriented concepts. The reader is encouraged to refer to [44, 
45] for details about this common notation.   

The simple model we define is rooted at the object of the class 
Base_Netlist . Base_Netlist  is thus a holder class that defines the root cell 
(root level) of the design, the class of a type Base_Cell . This cell is referenced in 
Base_Netlist  as a NominalCell. The rest of the cells follow the root cell in the 
order that corresponds to the order of referencing cells in the design. The order of 
cells in this vector assures that no cell is presented in this list before any cell that ref-
erences it. The interface which enables this functionality will be given in 3.3.2. This is 
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the realization of the principle defined in Section 3.1.2, the section that formally de-
fines the folded hierarchical model. The Base_Cell  cell class object aggregates also 
some other cells that are defined in its scope, following the SPICE standard. Each cell 
can aggregate devices (Base_Device ). Base_Device is an abstract class. Devices 
can be atomic or, again, complex. The atomic devices that are allowed in our model 
are Base_MOS, Base_Res and Base_Cap for the transistor, resistor and capacitor de-
vices, respectively. As the model allows the hierarchical organisation, any cell can be 
referenced in another higher level cell by instantiating the object of  
Base_Instance  class, that inherits abstract class Base_Device  in the equivalent 
way as other atomic devices do. This is a nice application of object oriented principle 
of inheritance and polymorphism to handle the concept of vertices that can be com-
plex and atomic, from our formal model of folded encapsulated hierarchical graphs. In 
order to define which cell (Base_Cell ) is referenced by the given instance 
(Base_Instance ) a link (association) between these two classes is required. Note 
that, logically, auto-referencing (when the cell references itself) is forbidden. The hi-
erarchy is thus well defined, without loops and finite. Each device has an appropriate 
number of pins (terminals). They connect the device to the rest of the design. The pin 
is modelled as a class (Base_Pin ) that is in the composition relation with the 
Base_Device . The number of pins of the device is precisely defined according to 
the given device semantics. For instance, a resistor has two terminal pins. The devices 
have an uniform interface to access the relevant pin by specifying its index. This is 
achieved via the pin(int i)  method. Base_Pin  is on the other side connected to 
a node. As we have already stressed, the node can aggregate arbitrary number of pins. 
The node is modelled by the class Base_Node . It is defined in such a way that it 
represents the container of pins, defining the appropriate iterator and specific interface 
to traverse the set of pins that are attached to it. Therefore we have methods 
pin_begin()  and pin_end()  that return the iterators of the type 
pin_iterator . Pin iterator is, for simplicity not shown on the class diagram in 
Figure 3.3-1. 
 Another model entity that we give as a class Base_Net  is the aggregation of 
nodes which enables forming of parasitic interconnect networks. This interface is 
widely used for different applications that include work on parasitic nets and for that 
reason we include it into our model although it is not present in SPICE. SPICE format 
has specific extensions SPEF and DSPF that can annotate the original SPICE netlist 
design with modules that refer to it and enrich it with the data about parasitic ele-
ments.  
 We can conclude that this model is the object-oriented realisation of the formal 
concept of folded encapsulated hierarchical (bipartite) graphs. We recognize 
Base_Device  as the vertex of one sort. It can be further divided into atomic and 
complex vertices. The second bipartite vertex sort is modelled by Base_Node  class. 
We will further analyse different hierarchical concepts that occurred in this model and 
define the proper interface for them. 

3.3.2 Hierarchical concepts in NLDB 
 

The hierarchical model offers one to see each hierarchical level as the proper 
bipartite graph. If one looks the relation between the levels, the situation gets slightly 
different while between the levels the constraint that two subgroups of vertices are 
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exclusively interconnected is not relevant anymore. The entities that connect different 
hierarchical levels are the nodes. 

 
Hierarchical node 
 

 In a hierarchical model we can distinguish, semantically, three different 
types of nodes: 
 

• Local Nodes, that have only connections to devices, inside one 
subcircuit, 

• Root nodes, that have, apart from local connections, connections 
down the hierarchy, over the instance pins and  

• Ports, which are part of the pin list of the given cell, and enable its 
connection with the contexts in which it is instantiated (up the hier-
archy). 

 
Note that the ports can also have properties of the root nodes (connections down the 
hierarchy), or local nodes. More precisely, the properties of the local node are a subset 
of the properties of the root node, which are again, in general, a subset of the proper-
ties of a port. This classification can be illustrated with an example hierarchy repre-
sented in Figure 3.3-2.  

 The circuit that is shown represents a logical AND gate. The design given here 
is hierarchical as the inverter is abstracted in a separate cell. Its definition is, therefore, 
given independently from the definition of the context in which the mentioned circuit 
is instantiated. In this example we can distinguish all kinds of nodes given above. 
Nodes A, B, Vdd, Vss and Y represent ports, whereas node R1 represents a root node. 
L1 is a local node, which models the connection between transistors N0 and N1. 
 Ports and root nodes form a structure that we call a hierarchical node. This 
concept thus appears as the consequence of the hierarchical data representation.   
 The hierarchical node aggregates several atomic nodes (subnodes). The nodes 
are exclusively inter-level connected. It starts with a root node which is its top sub-
node and that is connected down the hierarchy with a family of other subnodes (that 
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Figure 3.3-2 – Logical AND gate cell, composed of the standard NAND gate and an inverter 
which is represented as a hierarchical abstraction. Ports are denoted in red, root node in yellow, 
while the local node is given as a grey circle. 
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are of the type port). By employing this criterion we form a tree structure that is 
equivalent to one flat node which would be formed if the hierarchical representation 
was transformed to its flat version.  Note that in the folded model several hierarchical 
nodes are overlapped. We will use this fact to upgrade the semantics of the standard 
hierarchical node later, in Chapter 5.  

In further text of this section we will point out important structures and algo-
rithms that are standard for the applications that work on (folded) hierarchical models.  
 
Definition tree and the definition walk 
 
 Definition tree is a structure that orders the definition levels (subcircuit) of the 
hierarchical design as a tree topology where each definition (cell) represents a node of 
the mentioned tree. One node is identified as the root, it corresponds to the top hierar-
chical level. All subcirucits that are defined inside the given level appear as children 
of its corresponding node of the tree. This process is recursively repeated depicting 
the relations between all subcircuits (the way they are defined) of the given hierarchi-
cal design. This data model is useful for dumping the hierarchical model, for instance 
into an ASCII file (following the specific ASCII file format, hence SPICE). Note that 
this model does not verify if the defined subcircuits were also instantiated, or they just 
exist as pure definitions. 
 For a definition walk, we define the templated algorithm which recursively 
traverses the definition tree and performs generic functions before and after recursion. 
By defining this traversing algorithm generic, one promotes the walk as a standard 
API algorithm that can be defined as a friend function in the world of object-oriented 
languages.  
 
Instance tree and the hierarchical Instance walk 
 
The instance tree has a structure that is similar to the definition tree. In this case we 
nevertheless present each instantiation of any definition. This unfolded structure 
therefore has the given definitions repeated as many times as they were instantiated. It 
is not always possible to create statically the whole instance tree. Of course, an alter-
native to its static creation is performing a recursive algorithm where, while traversing 
the instance tree, it collects all the relevant personalised data (relevant just for a given 
instance) that is used while analysing the given instance of some cell.  This approach 
is known as the instance walk. The instance walk can be extremely time demanding 
and thus unacceptable. 
 Instance walk is the simple trade between the hierarchical and flat algorithms. 
One can upgrade flat algorithms to hierarchical in the most trivial way using this 
tree/walk. The reason for that is that all extrinsic details and attributes that are defined 
by the path in which a specific device or the whole instance is given are there re-
solved. The application can be wide, but the efficiency is not big as although the work 
is being done hierarchically which demands solving some of the issues concerning the 
communication between the levels and although the results that are generated by the 
tool employing instance walk are aware of the hierarchy (original folded hierarchy) 
this approach is even less efficient than flat algorithms.  
 
Referenced cells tree and graph 
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 If we collapse all instances of the given definition inside a given cell into just 
one representative connection (which than loses path information) we obtain the Ref-
erenced Cells tree. In this structure we can non-redundantly access all different defini-
tions of the cells that were instantiated in a given cell. This structure is welcome to 
perform the operations such as determining the hierarchy height or for algorithms that 
work on all root-nets (nodes).   
 If we add the information which determines in which cells a given cell is in-
stantiated, we upgrade the referenced cells tree to the new abstract structure – refer-
enced cells graph. This data structure allows also looking “up the hierarchy” from 
each of the cells defined in the design. It is very useful for different algorithms that 
need to take into account several hierarchical levels in the same time while calculating 
their relevant results.  
 
Top-Down Cells 
 
 TopDownCells represents an alternative way to approach the defined cells of 
the given designs. In this case we introduce the ordered vector that offers a bidirec-
tional iterator that can traverse all cells that are referenced inside the design. The order 
of iteration is analogue to the ordering of cells given in section (3.1.2). For this pur-
pose we define a class TopDownCells to serve as a container of the ordered references 
to the different cells defined in the given design. The object oriented architecture of 
this container is given in Figure 3.3-3. 
 The iterator can be set-up to give the cells top-down and bottom-up. These 
walks are used in different hierarchical algorithms for which the information is being 
passed over the referenced cells graphs.  

3.4 Personalization 

 As we have stated, some algorithms prefer the style of just traversing defini-
tions while some demand either instance tree or fully flattened netlist. Those are typi-
cally the applications that need to change some of the instances and contexts in the 
hierarchical nelist  just locally, valid exclusively for a single instance path, or one 
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Figure 3.3-3 –Top-Down cells container, the container and the iterator that allow one to iterate 
all cells of the design top -down and bottom-up. 
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occurrence in the netlist. In general it is further possible that some of the changes that 
originally belonged to the same definition are both identical. Thus, the optimal way to 
present this concept would be to regroup instances and introduce new definition for 
the two which have left the prior group and leave all other instances linked to the first 
group. This problem is known as a problem of personalization and since industrial 
hierarchical folded designs include parameters as well, it is really essential to have a 
solution for these problems.  
 These problems were recognized by OA development team and the personal-
ization problem is addressed by introducing the occurrence domain [38]. The occur-
rence domain is some kind of optimized instance tree that is created on demand. The 
way the instance tree is stored is also optimized and the new definitions are stored 
only in a case where some differences between the master objects and their clones 
exist. It is claimed that this occurrence domain introduces memory requirement over-
head that is not bigger than two orders of magnitude. However, this overhead depends 
on the task a given tool using occurrence domain is performing.  
 Another known research that appears in literature and addresses the problems 
of the personalization is done by Jones et al. [36, 46]. In the conference paper they 
consider various strategies to perform the personalization. First trivial strategy is full 
development of the data into the instance tree (unfolding), second is employing a dic-
tionary that stores the personalized data and the third is done via partial unfolding 
where each changed definition occurrence gets an appropriate copy in the referenced 
cells graph.  
 An alternative to these approaches, the concept of variants that was used to 
support our contribution is given in Appendix A.  

3.5 Polymorphic hierarchy  

Hierarchical representation of a given design is not unique. It is in some sense 
polymorphic (associative). We can group elements of a complex system in different 
ways and achieve different hierarchical interconnected levels. This can be illustrated 
by the famous Indian face picture given in Figure 3.5-1. Is it actually a face of an In-
dian, or is it an Eskimo entering the cave?  This depends on the way we interpret this 
very same picture hierarchically. 

If we link the neck, the mouth, the nose, the eyes and the forehead into a face, 
we see an Indian with all his other attributes. If we on contrary in our mind link the 

 
Figure 3.5-1 – An Indian or an Eskimo? 
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legs, the wrinkle on the coat, the elbow and the head forming the back of Eskimo, we 
see him entering the cave. The only difference in the picture is in the way we hierar-
chically interpret it.  

In order to make this example closer to our topic we show also two different hi-
erarchical interpretations of the identical circuit – a latch with the corresponding 
transfer gate and the driver. In Figure 3.5-2, under (a) we show the hierarchical or-
ganisation of the circuit that is close to its functional characteristics. When CMOS 
electronic designs are printed into silicon wafer, usually the layout is organised in a 
specific way that all PMOS transistors are printed in a line and all NMOS transistors 
are printed in a parallel analogue line. After this they get properly interconnected in 
the repetitive step of applying and developing resist layers and etching. With respect 
to that we, just for illustration, organise the elements of the identical circuit in this 
other more “layout like” way. This is shown in Figure 3.5-2  (b). Although the circuit 
is the same, we form completely different hierarchical topology. The definition trees 
of both hierarchies are different, while the flat circuit they represent is identical.  

We can use this ambiguity in the hierarchy and adapt it to the tool that is sup-
posed to use it. If we have the way to flexibly represent the hierarchy we can solve 
some common problems that the tools typically face and make the tools much more 

 
Figure 3.5-2 – Identical driver and latch circuit that has two different hierarchical layouts. (a) shows 
the hierarchical layout that is more close to thefunctional side of the circuit, while (b) shows that 
hierarchy that groups the devices in the fashion that is shows some technological, physical properties.  
 

 
Figure 3.5-3 – The path of planet Mars in the geocentric system. The analogy with the differ-
ence in algorithm complexity, according to the hierarchical layout. 
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comprehensive. In this sense, the we make the hierarchy friendly to the user applica-
tion and by preparing the data the application builder can relay on certain constraints 
and solve the specific problem with much easier algorithm. We can compare the com-
plexity of algorithms that use hierarchical data to the problems astronomers were fac-
ing up to XVII century. Figure 3.5-3 shows the path of the planet Mars seen from the 
heliocentric system. Although they were also right, one can imagine how much un-
necessary efforts were spent in order to track and predict so complicated path. 

Similarly by changing the hierarchical layout of a given design, we want to pro-
vide the application with the right “glasses” so the data is seen in the best way. There-
fore, we want to populate hierarchical levels of the given design flexibly, group and 
regroup different elements together using exclusively standard API methods and enti-
ties. We achieve this goal using advanced object-oriented concepts defining the 
framework that utilizes the presented concept vision in the following chapter.  
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4 Hierarchical Multilayer Views 
4.1 Introduction 

 In the previous chapter we have presented the model of hierarchical abstrac-
tion whose advantages are employed in order to efficiently store electronic designs. 
We have formally presented the hierarchical model as a folded encapsulated hierar-
chical graph. In addition, we have given an overview of the development of the data-
bases that implement the formal encapsulated hierarchical graph model. These data-
bases include a variety of advanced concepts that help the interoperability between the 
design tools that are shared by the design process. Modern EDA databases are object 
oriented and they offer a specific API that can be directly used in design tools. These 
databases are also turning to a growing standard - Open Access (OA). We have, fur-
ther, analyzed the API and shown the common algorithms and data structures that are 
suitable to explore the folded hierarchical designs. In the end we have pointed out that 
the hierarchical layout of a single design is not unique, but polymorphic. Hence, a 
given flat design can have a number of different hierarchical representations that are 
synonymous.  
 This serves us as an idea to extend the standardized API and adapt it in order 
to support the different views on hierarchical data. By employing the concept of views 
we want to group (regroup) different hierarchical entities and see the design with the 
changed hierarchical layout. This concept considers the extension to the API for the 
module domain (3.2.3), the domain of the standardized OA that represents the sche-
matics (logical design). We propose this extension as a possible upgrade of the OA 
standard. We will demonstrate new concepts on the object oriented API analogous to 
OA standard which is defined in (3.3). The specific architecture of the object oriented 
API that we will propose further in this chapter allows flexible views on the hierarchy 
of the schematics (logical designs).  
 The designs that we will transform are themselves hierarchical. They have the 
initial hierarchical layout which is changed by specific modules (the implementation 
of the views) written for the standard API. The concept of the hierarchy groups certain 
entities together and defines clear borders between different such groups. This is 
something that can be used as a favourable constraint by the tools written to process 
the hierarchical data.  
 We want to employ above sketched mechanism to adapt the actual hierarchy to 

 

 
Figure 4.1-1 – Chaining the transformations of the Hierarchy.  Arbitrary number of transforma-
tions are allowed as they are all compatible with the AL (Access Layer).  
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the algorithm that is processing it. We can therefore allow the tool to “see” the data in 
the most favourable way. These conversion steps are, in the current state of the art, 
usually part of the given tool’s implementation or are realized as the preparatory steps 
before the tool evaluates the design data and generates the proper outcome. In some 
cases this transformation is complex, meaning that it can be split in different simpler 
pre-processing steps. If the data is statically transformed (new equivalent design is 
created) by the pre-processing step this “chain” of corresponding designs becomes 
bulky to handle. For instance back-annotating the results that the given tool produces 
can become a considerable task. In some cases these transformations are even not 
possible. A typical example is flattening an unbearably big hierarchical design. Flat-
tening is also a hierarchical transformation, as in this case we consider a flat design as 
the special case of the hierarchical design (that has only one hierarchical level).  

Since a number of different (atomic) transformations that are common for the 
different algorithms can be identified in order to achieve flexible view creation we 
want to allow another concept for the views, the concept of layering. This means that 
the final, application friendly, hierarchical layout is prepared by employing a number 
of views, linked one after another. This is illustrated in Figure 4.1-1.  
  In the figure we see the actual hierarchical data given in the bottom. The data 
is accessed by the standard API. On top of it we have the first view. This view takes 
the actual hierarchical data reading it using the standard API, reorganizes it and offers 
the same methods and entities, populated in a different way for any user algorithm 
(including another view). Since the vocabulary hasn’t changed and we still have all 
attributes of the (rearranged) hierarchy given as a standard API, we can immediately 
apply another view on top of the initial one. The process can be repeated several times 
and the user application in the end can get the handle to the standard API that popu-
lates the hierarchical entities in a specific constrained way.  

We realize the requirements by employing object oriented concepts. Thus, we 
separate standard API as the group of pure abstract classes that is named: Access 
Layer (AL). AL defines the vocabulary to represent the hierarchical design. It consists 
of entity and method definitions, together with inheritance hierarchy between the enti-
ties. Of course, no implementation (hence, no class has any attributes) is offered here. 
The actual hierarchical data can be defined as a static base layer. Here, we have static 
implementations of the promised interfaces of the AL. By static is meant that all the 
entities and methods that implement the API are in this case populated with realistic 
values. 
 Further we define a section: 
 

  standard API  - Transformation n  - standard API  
 
as a layered view. Therefore, the layered view reads the given appearance of the hier-
archical data from the standard API and reorganizes it by re-implementing the same 
standard API.  
 We will in further text of this chapter, with greater detail, introduce the men-
tioned entities to the reader. Therefore, section 4.2 describes the Access Layer, section 
4.3 static base, while section 4.4 presents the definition and standard architecture of 
the layered view. We conclude this chapter with several examples of hierarchy trans-
forming layered views (section 4.5 ). The whole chapter sets the context for the ex-
planation of the Virtually Flattened View (VFV) that is presented in the next chapter. 
VFV, one possible realization variant of the general concept of layered views on the 
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hierarchical data, is a part of the proposed solution for the problem of hierarchical 
pattern matching.  

4.2 Access layer – pure abstract interface 

 
In order to employ the object-oriented concepts to support interchangeable and 

combinable view on the hierarchical layout of the design database, we upgrade the 
overall design of the standard API (NLDB). We introduce Access Layer (AL), which 
serves as a pure abstract interface to NLDB data. It consists of exclusively pure ab-
stract classes and pure virtual methods. The pure abstract interface includes all neces-
sary inheritances but no implementations of the methods including the references be-
tween the entities. For example in this layer the association between the instance ob-
ject and its definition is not realised, but just promised by the appropriate pure virtual 
method.  

The AL consists of the interface entities (building blocks) and interface 
methods (which are distributed over the entities, or defined as friend methods). The 
availability of different building blocks that form an interface depends on the type of 
the view which implements the AL. We will call the interface methods also Common 
Standard Interface (CSI). Of course, the building blocks of the AL represent the 
complete set of classes and methods capable of describing the folded hierarchical 
concept. 

Note that the implementations of any method come first at realizations of the 
Access Layer. We have presented the class diagram of the AL in Figure 4.2-1. It is 
similar to the NLDB example of the API for the folded hierarchical model. As it is 
obvious, in the AL class diagram compared to NLDB class diagram, all aggregation 
and association links are missing while the inheritance lines are still present. This is 
due to the fact that in this layer we exclusively define the vocabulary that gets its 
proper implementation later.   

 AL classes define following entities:  
 
• Netlist (Access_Netlist ) 
• Cell (Access_Cell ) 
• Device (Access_Device ) 
• Instance (Access_Instance  – separately shown because of its 

special semantics, although it belongs to Access_Device  class 
hierarchy) 

• Pin  (Access_Pin ) 
• Node  (Access_Node ) 
• Net (Access_Net ) 

  
 The roles these classes play are analogue to the roles of the relevant classess in 
NLDB database API. For this reason we will give them just briefly here. Please refer 
the section (3.3) for further details on element semantics.  
 Access_Nelist  is the pure abstract class which plays a role of the holder 
of the design. We can refer to the top level of the design from it and further access all 
cells of the given design in the top down and bottom up order. In realistic databases 
this class stores different global parameters of the design: physical configurations, 
such as nominal temperature of the chip that is described, special element semantics 
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(some cells called standard cells come with both structural definition and model 
information), naming conventions etc. In our case this will be left out from the CSI. 
 Access_Cell  models the subcircuit (a hierarchical level) of the given 
design. This class defines the proper interface to access all devices, nodes and nets in 
the design.  
 The Access_Device  class defines the proper interface for modeling 
devices. Therefore we have the methods to access its pins and the model. Important 
specializations of Access_Device  are present in the AL. Still, none of the methods 
get realized in these specializations neither. The inheritances are here just to define 
the necessary entities which any implementer of Access Layer has to realize and of 
course to add the specific part of the interface, characteristic for the 
Access_Instance  class, the definition()  method. This method is declared 
to return the pointer to the instance of Access_Device  class descendent. The 
methods which return pointer to the pins of the device are declared to have 
Access_Pin  as the return value. This class, thus, defines another entity of the AL. 
It models the terminals which connect any device (instance) to nodes, modeled by the 
Access_Node  class. This class allows the interface to iterate over all the pins 
attached to the given node. Additionally we define the entity net, to model the 
parasitic networks that agregate a number of nodes that are interconnected with the 
parasitic resistances, with its class Access_Net  and the appropriate public method 
definitions.   

We can conclude that the AL defines a proper interface (entities and methods) 
that can model folded hierarchical designs. The pure abstract classes of this layer 
exclusively define the interface to program to, but without any implementation. This 
is the vital design decision in order to allow polymorphism and exclude any overhead 
in memory layout of the model objects. By isolating AL as a pure abstract layer and 

 
 

Figure 4.2-1 – Access Layer class diagram. AL contains exclusively pure abstract classes. 
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programming applications (or views) to it we assure completely transparent usage of 
any mixture of layered views that prepare the data for the user application. The 
interface will be equivalent no matter how many layers and which kind of mixture of 
layers we have applied. Any attribute fields are introduced precisely in places where 
they are needed, e.g. for purposes of implementing the static base or any specific 
layered view.  
 In further text, we will show first the simple architecture of the static base 
which makes the new architecture functionally equivalent to the NLDB. After that we 
give the standard architecture of the layer followed by several examples of the 
hierarchical transformations that the different layers can give.   

4.3 Static base  

 The static base is a fully materialised in-memory representation of the design’s 
actual hierarchy. It is analogue to the standard architecture of the hierarchical database 
NLDB. All the methods are therefore implemented in place and behind the interface 
methods we have real data structures storing the attributes of the entities of the data-
base together with their relations. The difference between the static base and any 
standard EDA database is that it just represents the occurrence of the pure abstract 
CSI (it is written as the realisation of the AL). We describe this relation in Figure 
4.3-1. In it one can see the example inheritance hierarchy of the realisation of the class 
Access_MOS. In the figure one can see the layers of the database separated. All 
classes that belong to the AL are given in the right diagonal stripe, while the analogue 
classes of the static base, their mutual relations and the relations with the AL are 
given in the left diagonal stripe. Both of the layers belong to the NLDB definition.  
 The hierarchical relations between the classes of the mentioned layers are 
complex. Multiple inheritance is employed in the definition of the class Base_MOS. 
Let’s analyse this class diagram. The classes Access_Device  and Access_MOS 

define all necessary interface methods and they themselves are the pure abstract defi-
nitions of the corresponding entities of the database API. The Access_Device  
class is inherited by the abstract class Base_Device . This class is analogue to the 
implementation of the Base_Device  in (section 3.3). In order to be able to keep the 

Access_Device

Base_Device

Base_MOS

Access_MOS

Access layer

NLDB

Base (static)

 
 

Figure 4.3-1 – static base vs. Access layer 
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inheritance relations and polymorphism between both Base_Device  and 
Base_MOS and Access_MOS (Access_Device ) and Base_MOS and still be 
sure that all CSI methods of Access_MOS get their implementation, we include the 
inheritance link from Base_MOS along the other inheritance line to Access_MOS. 
This inheritance style is typical for different classes of the static base.  
 Static base behaves equivalently to standard realisations of the object oriented 
databases and represents therefore pure extension without any negative effects. The 
only overhead that is present while using such architecture is when one applies the 
algorithm that is written to the AL interface on static base. The overhead is related to 
the implementation of the polymorphism in the (C++) object oriented program lan-
guage. This overhead is however neglectable, especially if we have in mind the im-
portance of  the complete transparent usage of static base for any application written 
for AL. Note that this is also the default implementation of the access layer and that 
any algorithm that is written to work with the layer entities can be run on static base. 
The model implemented as static base instance is in the root of any chain of layered 
views.  

4.4 Layered views and their object-oriented archite cture 

 The goal of the hierarchical layered view is to regroup entities that are offered 
through the standard interface (Access Layer – AL) by re-implementing the CSI 
methods. The view on the hierarchical data is the group of classes that are placed into 
the taxonomy hierarchy, which is rooted by Access Layer classes. Each view object 
plays the role of proxy/decorator for its source object (group of objects, distributed to 
underlying layers). Therefore each layer is characterized by its source view, from 
which it acquires the available information about the given database element(s) that it 
decorates. The view implements (realizes or if necessary overrides) the CSI methods. 
Typically, methods can alter the semantics of already realized CSI methods from pre-
vious view layers, just forward the calls of the methods to get the information from 
deeper layers of the database, or simply use the old implementation of the method by 
polymorphism.  

Every implementation is a unique problem but the overall architecture of the 
view that serves as some kind of framework for the engineer that is providing a cus-
tom view is uniform. We will describe this standard architecture in the further text.  
 Each hierarchical layered view:  
 

• defines a set of entities inheriting the classes of Access Layer or 
its descendents, 

• has appropriate links to the source objects for each view object 
• is written to the AL,   
• implements the CSI interface, 

 
Figure 4.4-1 – Templated HasSource class defines the layering property. The class is typically 
an ancestor of any layer class. 
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• defines and implements the private interface, 
• defines private data-structures, 
• defines optionally additional public interface. 
 

 As we have stated each view defines (and realises) all necessary entities by 
inheriting them from already existing classes of access layer (or some other layer). 
Each of these objects is linked to the source view. Through these references the view 
fetches the data about the hierarchical design whose hierarchical layout it transforms. 
The mentioned link is modelled as a templated class HasSource<T> . This class 
stores a pointer to the templated type T and defines and implements the appropriate 
interface method (T* getSrcView() ) to get the pointer to the underlying object. 
Therefore, we define a templated class that exclusively models this property leaving 
the templated type to be decided upon its employment in some usage context. The 
class diagram of the class HasSource<T> is given in Figure 4.4-1. The implementa-
tion of the class is simple. There is an attribute (sourceView ) of a generic type T* 
that privately stores the link to the lower level and the public method 
getSrcView()  which returns the pointer to T. This method augments the interface 
of any class that inherits HasSource.  
 We use above described templated class to build any of the view classes. 
Typically view classes are inherited multiply. One inheritance link leads from some 
class of the access layer (or some realization of it) and another privately inherits from 
HasSource<T> . The inheritance is private in order to turn off the polymorphism 
between HasSource<T>   and the given View_<class>  as passing the object that 

belongs to the view to the pointer to a type HasSource<T>  doesn’t have any se-
mantic meaning. Furthermore, by applying the private inheritance we save the method 
getSrcView()  exclusively for the layer methods as it is not part of the CSI and 
still is important for the implementation of the view. Note that for the object oriented 
languages which do not allow multiple inheritance the alternative approach would be 
to define HasSource as an interface and than provide the links implementing them in 

1

 
Figure 4.4-2 – View positioning relative to AL layer, static base and other views. View A inherits 
directly from the relevant pure abstract class, while View B also  inherits some properties of the 
static base. 



Chapter 4 -  Hierarchical Multilayer Views 

70 

every actual class occurrence. This is not as elegant as the solution with private inheri-
tance. 
 The method getSrcView()  is a good example of the private view interface 
member which appears in any layered view. The typical positioning of the view which 
shows the multiple inheritance is given in Figure 4.4-2. In the figure we see the class 
diagram which shows two different cases of view positioning. View A is positioned 
directly above AL. It, therefore, inherits (privately) the class HasSource , to get the 
layering property for the objects of the view and publicly class Access_<class>. By 
this we gain the polymorphism property and are able to use the object of the view 
class in any place where a pointer to Access_<class> is expected. Of course it is nec-
essary that the ViewA_<class> properly implements all methods promised in the pure 
abstract Access_<class>. Note that <class> stands for any appropriate AL entity. We 
use it in order to allude to the fact that the described architecture is needed for any of 
the view classes. View A inherits directly form AL, which means that it doesn’t need 
any of some possibly similar view (static base) implementations. On the contrary, 
exactly this is the case of the example of the positioning for View B.  It inherits the 
class HasSource, equivalently as the View A, but also inherits from static base. In this 
way when overriding the methods of the static base one can reuse some implementa-
tions of it, some attributes that exist in it and also be able to simply use specific meth-
ods from static base without overloading them. This view positioning type is used in 
our implementation of the Virtually Flattened View, which is given in next chapter.  
 As we have mentioned, each view can implement its private interface and at-
tributes. They are helping structures and methods for the goal of re-implementing (re-
grouping) the entities of AL that the view offers to the further user.  

In this point we can discuss the fact that the view can also expose some new in-
terface and augment the standard CSI. This is for instance good if it is necessary to 
include extra properties for the NLDB objects for the purposes of the given algorithm. 
An example would be the interface to store and retrieve the types for nodes of the 
design. Note that these methods would be visible exclusively if the view which de-
fines them is appearing as the last level, directly under the user algorithm layer. This 
is the negative issue and it can be an argument for the eventual redefining the CSI 
where the given methods would be included as a standard. 

 The described architecture gives a lot of freedom to implement different sorts 
of transformations. We will present some, as a vision, in the following section.  

4.5 Examples of views 

 So far throughout the current chapter we have defined a new framework which 
enables hierarchical transformations of the EDA schematic designs. We have speci-
fied the pure abstract interface by whose overloading and inheriting its pure abstract 
classes we can write different views that enable hierarchy layout transformation. In 
this section we are going to present the motivation and conceptual ideas of imple-
menting various views following the defined framework. 
 
Equivalence class abstractor 
 
 The idea behind this view is to group certain elements of the NLDB database 
as an alternative to subcircuit cells. This is important in various algorithms, which 
helps treating a group of the devices that are not anyhow explicitly abstracted by the 
database itself in order to optimize given user algorithm implementation. Equivalence 
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classes are applied in different ERC checks in order to optimize node type propaga-
tion. On the other hand this concept can enable building of the nets. More precisely, if 
an generic equivalence class abstractor is offered, which uses specific generic CSI 
methods to represent the abstraction, building a net abstractor would be combining 
this level with an additional which would only serve as an adapter and wrap the ge-
neric method calls into specific interface that enables usage of nets in NLDB. 
 
Variant generator 
 
 By implementing specific view, variant generation (Appendix A) can be hid-
den behind the CSI interface, where each variant would be seen as a separate cell 
definition. For this reason in further text, we will use the terms variant and cell 
equally. The difference between them is just in the way the given entity is realised: if 
it is directly defined in the model or isolated as a variant of the cell during the variant 
creation process. 
 
Virtually flattened view 
 
 The size of the hierarchical data can be many times smaller than its unfolded 
(flat) version. This is especially pronounced in the case of DRAM memories. In this 
case it is obvious that, as the data is highly folded, algorithms to work on it directly 
would be extremely complex, in some practical way, impossible, as developing the 
algorithm for each specific application/task would demand very long periods of time. 
 As the implementation of some algorithms (pattern matching, for instance) is 
very difficult for hierarchical netlists, the methodology where one flattens the netlist 
first and than operates the tool on fully flat netlist was often used. For big examples 
this method is not efficient. It consumes a lot of memory and time; further the con-
texts the algorithm works on are highly redundant. Our idea is to provide a specific 
view on the hierarchical data that can provide flat flexible view on it that is friendly to 
the user application. This view is the topic of the next chapter.  
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5 Virtually Flattened View  
 
 This chapter brings one possible usage of the general concept of hierarchy 
managing layered views established in the previous chapter, the object-oriented virtu-
ally flattened view (VFV). The vision of this view is given in Section 5.1. The further 
text of the chapter gives a description of the high-level architecture of the VFV 
throughout section 5.2. Therefore, the main classes of the view are conceptually dis-
cussed, together with the proper explanation of the relation between the view and the 
Layered NLDB database. Further, section 5.3 gives us an overview of the architecture 
and semantics of the entities that model the materialised flat data portion itself to-
gether with precise description of the typical methods and mechanisms that enable 
proper flat data portion creation. The discussion of the concept of dynamic iteration 
over representative devices is left for the section 5.4, followed by the description of 
the general object building strategies abstracted in a specific builder class in 5.5. The 
complex concept of the mechanism that assures the consistency between the flat data 
portion and the hierarchical database and determines the flat netlist space projections 
of the flat data portion is given  throughout sections 5.6, 5.7 and 5.8. Further, the 
committing process and the mechanism that allows consistent usage of changes of the 
hierarchical topology together with the original database data which has stayed intact 
is given in the sections 5.9 and 5.10. The application of the view we define here on 
the problem of search oriented subcircuit recognition (chapter 2) is given in chapter 6. 

5.1 Introduction 

 The Virtually Flattened View is a type of the hierarchical netlist database lay-
ered view. The Hierarchical Layered Views are subject of the previous chapter. The 
goal of the Virtually Flattened View is to present parts of the hierarchical netlist data 
in the flat fashion. Therefore, the user (algorithm) accesses the netlist as if it was stati-
cally flat. It can iterate over different devices of the design and navigate the local 
neighbourhood, from once acquired device to arbitrary neighbouring design device, 
orthogonal to design’s hierarchy. In order to achieve this, the algorithm materializes 
flat data portions that would represent the part of the design which is of interest.  

 How is this possible, having in mind that the hierarchical concept describes, 
sometimes, highly redundant flat data, whose materialization (flattening) requires un-
bearably large memory and whose analysis would require extensively long runtime?  

In order to still be able to take advantage of the flat view, some assumptions 
have to be taken into account. Many algorithms use, typically, local portions of the 
design data for their calculations. Thus, the algorithm would acquire a handle to a 
certain device, as the starting point and further examine its local neighbourhood. After 
evaluating this portion of data, the algorithm would create the conclusion records that 
represent the tool’s output. There are numerous examples for this concept: search ori-
ented pattern matching, parasitic net evaluation and reduction, etc.  

 We can achieve our goal, if we take this tool preference as a constraint that is 
not going to handicap the algorithm execution flow anyhow. 

 Two main constraints are to be established in order to make the concept of the 
Virtually Flattened View feasible. First, the iteration over the design elements is con-
ceived in a specific way. Hence, the user can iterate only over all context-
representative devices, not redundantly over all design devices. This approach is spe-
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cific, however semantically correct. As we have information about the hierarchical 
properties of the design data, if the user algorithm creates some result, it could be 
committed in a way that it is valid for all appearances of the given pattern in the flat 
design version. An additional, important consequence of this approach is a much 
faster expected execution time, compared to the pure flat approach. By working only 
on representatives, the algorithm skips all redundant, identical appearances of a given 
algorithm result. Still we must not forget the overhead that the algorithm that controls 
the view introduces. A second constraint of the concept we are proposing is that the 
object identifier consistency is secured only inside an interconnected flat data portion, 
formed strictly by navigating in the neighbourhood of the starting object, acquired by 
iteration. If this is taken into account, we have another, implicit, more or less flexible 
constraint. The size of this local neighbourhood has to be acceptable from the aspect 
of the available system memory. 

 Therefore, considering the constraints given above, the implementation of the 
view must be able to create (materialize) small portions of the hierarchical database 
data in the flat fashion and to maintain the consistency between this flat data portion 
and the original hierarchical database data. Each materialized flat data portion 
(MFDP) corresponds to multiple instantiation places in the flat netlist space, as illus-
trated in the Figure 5.1-1. This means that physically only one pattern exists, but it is 
valid for multiple (as example illustrates, three) different contexts in the flat netlist.  

Described above is the primary functionality of the Virtually Flattened View.  
 The limitation that the object identifiers of the locally flattened view are not 

permanent can be indirectly addressed. As any direct comparisons between the objects 
of two materializations of the view are not possible, the dependency between two dif-
ferent flat data portions is rather achieved by altering the primary hierarchical data 
using the corresponding MFDPs that the view has generated. This comes as a second 
functionality of the view. In every moment, the current group of objects representing 
the materialised flat data portion can be committed to the hierarchical netlist as an 
instance that is placed in a given optimal hierarchical level (as deep in the hierarchy as 
possible).  This powerful concept, which enables altering the hierarchical data, by 
using exclusively standard common interface “vocabulary” (Access_Cells  and 
Access_Instances ) can have a wide application, as it will be shown later. 

Figure 5.1-1 – The conceptual diagram of the Virtually Flattened View. The local pattern that is 
being created stands for a number of identical appearances of itself in the flattened netlist space. 
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5.2 Virtually flattened view - high-level architect ure 

 In the previous chapter, we have defined the proper framework to alter the ac-
tual hierarchical topology of the hierarchical design by strongly separating the inter-
face entities and their method definitions from any implementation. Therefore, we 
will now present the concepts of the Virtually Flattened View, with the respect to this 
framework, employing advanced object-oriented mechanisms. Hence, in continuation 
we show the high-level architecture of the Virtually Flattened View and it’s relation 
with the Layered NLDB. 

 The main functional units of the virtually flattened view are given in Figure 
5.2-1. The view is inherited from the NLDB static base. Among other advantages that 
will be pointed out, this gives the opportunity to reuse parts of implementations of the 
standard netlist hierarchical database. The bearer of the view is the class Vir-
tual_Netlist . It inherits the class Base_Netlist . This is done, as the virtually 
flattened view should provide a user the feeling that he is working with a regular flat 
netlist. Therefore, passing the object of  the class Virtual_Netlist , instead of 
the (expected) instantiation of the class Base_Netlist  allows the user algorithm 
that is designed for flat NLDB data, to transparently work with the virtually flat data 
representation, employing polymorphism.  

 The class Virtual_Netlist  has its nominal cell, as well. It is, moreover 
the only cell in this virtually flat netlist. Note that, in general, the nominal cell of the 
virtually flattened view does not have to be the nominal cell of the hierarchical design. 
Just a part of the hierarchical design can be, by employing the virtually flattened view, 
seen as flat. This flexible property can give one a chance to, for instance run a flat 
algorithm on a part of the hierarchical design that is of relevant interest, or to, by em-
ploying the committing functionality, rearrange the hierarchy of a given part of the 
hierarchical design.  

 
 

Figure 5.2-1 – High level architecture of the Virtually Flattened View. The view mimics the flat 
netlist. Thus, It has a Virtual_Netlist, Virtual_NominalCell and the DeviceFlatContainer classes. 
Virtual_ContextSaver and Virtual_Builder are given also to model the overall VFV creation and 
exploatation process. 
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 The nominal cell of the Virtually Flattened View contains further an instance 
of the class DeviceFlatContainer . This class models the sophisticated concept 
of the iteration over irredundant, representative devices of the virtually flattened de-
sign. Therefore, the class DeviceFlatContainer , as a container collects all dif-
ferent device representatives from each NLDB device container at any hierarchical 
level of the design. More precisely, it serves in some sense like a façade between the 
group of containers in the hierarchical database and one simple interface of Device-
FlatContainer . The class DeviceFlatContainer  defines an appropriate 
iterator, a class that can sequentially access all the elements that the given object of a 
class DeviceFlatContainer  aggregates. Note that the number of members of 
such a container is dynamic and it corresponds to the number of variants of the given 
hierarchical design. As it was pointed out in the first section of this chapter, the Virtu-
ally Flattened View, as well, can alter the hierarchical netlist by inserting new abstrac-
tions and rearranging the hierarchical order of the netlist. This includes altering the 
variant graph structure. An upcoming section will define the usage of the mentioned 
class pair (container – iterator).  

 So far elaborated classes in this conceptual hi-level diagram are following the 
interface of the standard NLDB database and mimic its behaviour.  

 Additional classes that are part of the general view architecture are Vir-
tual_HierContextSaver (Virtual_Excluder) and Vir-
tual_ElementBuilder . These parts of the system maintain the hierarchical con-
text of the current Virtually Flattened View materialised flat data portion (MFDP) and 
control the virtual layer object building process, respectively. The Vir-
tual_HierContextSaver  defines the relative top hierarchical level for the cur-
rent state of the Virtually Flat data portion. This level is dynamically chosen by a so-
phisticated algorithm applied on the specially devised data structure. Hence, for each 
MFDP that is created this class attempts to place it as deep in the hierarchy as possi-
ble. In this way we tie the flat data portion to the maximal number of different con-
texts. Hence, the MFDP is valid for each instantiation of the relative top level cell.  

 Two different strategies of the external usage of the class Vir-
tual_HierContextSaver  are possible. First, it can be used explicitly to get the 
set of paths for the given virtually flattened pattern. Second, the information about the 
materialised data portion position (relative to the hierarchical design) can be used im-
plicitly, by altering the primary standard NLDB attributes of the design. More pre-
cisely, this happens by introducing new subcircuits and adding their instances to the 
original hierarchy. In order to implement the first approach, it is necessary to define 
an extension to the standard interface that is to be used by the user algorithm. In this 
case, the utility flat algorithm would have to be altered, at least in the phase in which 
it commits its results. This change would remain, however, local and the main part of 
the flat algorithm would stay the same. The second approach hides everything in the 
existing hierarchical database interface. In order to achieve the benefits of this ap-
proach it is necessary to allow altering of the primary hierarchy topology and there-
fore the variant graph of the given hierarchical design, as discussed in the previous 
section. 

 The class Virtual_ElementBuilder  encapsulates the process of the 
creation of a materialized flat view. This part of the system offers a flexible and up-
datable architecture, allowing fast adaptations to the specific needs of different user 
algorithms. For instance if the user algorithm needs  some additional inter-
face/variables to be added to the devices of the NLDB design for its proper execution, 
one would add these functionalities to the relevant database elements by creating 
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more specific type. By abstracting the element creation process into a clearly defined 
class we can easily setup our view to create these specific objects which it is still able 
to manage ignoring the specific interface, hence, leaving it to the user algorithm.  

 The described architecture, therefore, defines a holder for a group of objects 
that represent a locally flat data portion. The flat data portion materialization starts 
from the object that is returned from the DeviceFlatContainer . In continuation 
we will explain the implementation architectures, hence, specific data structures and 
algorithms that allow the approach described with this high-level view on the pro-
posed design. The relation between the objects of (position of) the view schema that 
Virtual_ElementBuilder  creates and its holder, together with the taxation 
hierarchy description of view classes and other parts of NLDB will be presented in the 
next section. 

5.3 Virtually flattened view class representation  

 The view consists of the collection of classes that upgrade the functionality of 
NLDB. There are analogue classes for each of the NLDB (base) originals. For in-
stance, the class Base_MOS has its view analogue class, Virtual_MOS . The rela-
tion between these two classes and their position in the overall NLDB class hierarchy 
is shown in the class diagram in Figure 5-3.2. As it is shown in the diagram, virtual 
layer classes are not directly inherited from the pure abstract interface of the Access 
Layer. The reason for this is that the layer requires also some implementation of the 
static database. After acquiring the starting element, virtually flattened view material-
izes a small portion of data from the hierarchical database in the flat fashion. All ob-
jects that are aggregated into this small view portion are the objects of different view 
classes. The implementations of interconnections between the database objects are 
therefore, directly taken over by the layer classes. Apart from being able to use the 
Virtual layer classes in place where some other base, or more general, Access Layer 
class is expected, we get the implementation of interconnections of the materialized 
pattern for free. Just by accessing the interface of the Base Layer inside the Virtual 
Layer classes, we can access the objects locally, those that are already loaded into 
materialized view. When the view is augmented, specific overridden interface func-
tions combine the old implementation to e.g. acquire a pin of the device with the func-
tionality that is implemented in overridden virtual layer interface methods. This up-
grade reads data from the previous layer in cases where the object, member of the 
virtual layer still does not have any information about the appropriate connection. 
Note that the source layer object is defined as Access_Device , that means, com-
bining several layers in order to get the corresponding variant of the hierarchical data 
representation is allowed. Figure  5.3-2 gives the inheritance hierarchy for the view, 
with its relation with other NLDB classes. 
 The class diagram shows intentionally the pure abstract class 
Acess_Device  at the bottom. This is the root class and each of the classes that are 
deduced from it have to implement a strongly defined common interface. In this light, 
all classes of the Virtual layer implement this standard interface in their specialized 
way. In the first (diagonal) row the primary class hierarchy is shown. The Ac-
cess_Device  pure abstract class is specialized by the class Access_MOS in order 
to define augmented interface of the Access_MOS, still pure abstract class. Base 
Layer classes statically implement a hierarchical aggregation of database objects. 
They take care of implementing numerous references to capture the hierarchical net-
list topology and additionally all necessary attributes about a single class that are 
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available through the Standard Common Interface (SCI). In the Figure  5.3-2, the hier-
archy of Base_<classes> is shown in the middle diagonal stripe. 

The virtual layer classes are all realised by multiple inheritance. The root class 
of the Virtualy Flattened View hierarchy, the abstract class  Virtual_Device  mul-
tiply inherits properties from the Base_Device , in order to get the general func-
tionality of creating a topology and the class HasSource . Class HasSource , as it 
is mentioned in the previous chapter enables layering. The sourceView of the Has-
Source  class interpretes the SCI of the Access Layer. This is depicted by the asso-
ciation line from HasSource  directly to Access_Device .  Note that Vir-
tual_Device  privately inherits HasSource . This enables Virtual_Device  to 
only privately have the interface of HasSource  and that it, as well, disables the 
polymorphism between HasSource and Virtual_Device. Any hypothetical algorithm 
wouldn’t be able to acquire a handle to Virtual_Device as the descendent of Has-
Source . 
 Virtual_Device  is an abstract class. Its instantiation is not possible, as it 
has a set of undefined functions that are implemented in the child classes that again 
multiple inherit the Virtual_Device . This is necessary in order to be able to em-
ploy polymorphism and use the Virtual_MOS, Virtul_Res or some other class that is   
in place of the Base_MOS, Base_Res, etc. It is important to stress that, since this de-
sign was implemented in C++, each of multiple inheritance paths are, as well, marked 
virtual, in order to ensure a single instantiation of each of the parent classes in the 
object memory layout. For example, Virtual_MOS  has a Base_Device  as a par-
ent class through two different inheritance paths. Base_Device  is the second parent 

class, both over Virtual_Device  and over Base_MOS. This configuration is 
known as a “dreaded diamond” [47]. Its implementation demands pointer address 
mangling. This results in some overhead when comparing the pointers to the given 
objects, or accessing the object variables. This runtime penalty is paid in our case in 
order to achieve very elegant design that requires minimal changes of the static base 
classes and 100% transparent usage of Virtual Layer objects with the algorithm that 
was already written to use NLDB API.  

Access_Device

HasSource

Virtual_Device

Base_Device

Base_MOS

Virtual_MOS

Access_MOS

Access layer

Virtual layer

NLDB

Base (static)

*
-srcView

*

 
Figure  5.3-2 – Virtually Flattened View layer placement inside NLDB class hierarchy 
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 In order to enable full functionality of the single virtual class as the part of the 
virtual layer, overriding of the SCI (see section 4.2) methods is necessary. SCI meth-
ods, for this purpose, can be divided in two groups. The first group contains the meth-
ods that only forward their calls to the source (Access Layer) object. All these meth-
ods directly get information about source object’s attributes. 
 In our simple database that is the function to acquire device model 
(model() ) , or a name (name() ). In realistic EDA databases we would have also 
the methods to get different device parameters. 

 A second group of methods of the virtual class are the methods that are part of 
navigation interface. In our example design that is the method of the class Vir-
tual_Device,  pin(int i) . Overriding this part of the interface of the virtual 
class family enables proper view (augmenting) navigation inside the already created 
MFDP. We will now analyse the algorithm of the function pin()  of the class Vir-
tual_MOS . This function of the SCI, that belongs to any descendent of Ac-
cess_Device, gets the handle to the device pin which further leads to a given node to 
which the device’s terminal is connected. The function outline is given in Figure 
5.3-1. 

 This function (together with its analogues in different classes of the Virtually 
Flattened View schema) is responsible for auto-creation of the MFDP. Once the func-
tion is called, it first attempts to find the immediate (local to the view) connection to 
another virtual object, member of the virtually flattened view. If this information is 
not yet available (the neighbouring object is being referred for the first time) the func-
tion will read the data from the previous layer, getting, for instance, the static base 
object - instantiation of Base_Pin object. The algorithm now creates or regains the 
handle to the virtual object, depending on the fact if the neighbouring object was, po-
tentially, already created using some other path in the view topology. For instance, if 
we have focus on one device of the parallel connection of two transistors, it is possi-
ble to reach the neighbouring device following any of the terminals, gate, source or 
drain. Therefore, a lookup map is needed in order to know if some object was already 
used. This is the responsibility of the Virtual_ContextSaver . This complex 
object (aggregation of objects) keeps record on any mapping between the source de-
vices and the view devices. This mechanism will be explained in detail in section 5.6. 
 The flow of both mentioned scenarios is given in Figure 5.3-2, under (a) and 
(b). Both of these scenarios require lookup into the hash table and possibly object 
creation, which makes this usage case the slowest operation in the view navigation. 
Still look up is the operation with the expected complexity O(1) as a hash map is used. 
Therefore, as the experiments confirm, no major time was spent on these lookups dur-
ing the application algorithm execution. Third scenario (c) acquires the virtual object 

Base_Pin* Virtual_MOS::specific_pin( int i ) 
{  

Base_Pin* ptr; 
if( NULL == (ptr = Base_MOS::pin(i )))  

  { 
ptr =  
Virtual_Netlist::getBuilder()-> 
       getVirtual(this-> getSrcView()-> pin(i), this); 

    setTerm(i,ptr); 
  }  
  return ptr; 
} 

Figure 5.3-1 – specific_pin function code 
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directly, from view’s local references. This is the fastest scenario and in the same time 
independent (local to the view). There is no direct reference to the source NLDB da-
tabase in order to acquire the proper object of the view.  The described concept re-
minds of the proxy design pattern [48, 49], where a group of objects serves as a surro-
gate to the originals.  
 The  concept by which methods, members of the navigation interface, are 
overridden is given the class Virtual_Device . Analogue methods exist for Vir-
tual_Pin  and Virtual_Node  classes. They are used to model the bipartite graph 
by which any electronic circuit can be described (without hierarchy). In our case 
Virtual_Device s belong to one group of vertices, Virtual_Node s to the sec-
ond. Virtual_Pins  simply model the connections between these two groups. All 

NLDB Virtual Flattened Layer 
a) 

      
NLDB Virtual Flattened Layer b) 

 

 

Virtual Flattened Layer NLDB c) 

 
Figure 5.3-2 – Sequence diagram of Virtual_Pin object acquisition.  a) virtual view object is cre-
ated on demand. b) A handle to virtual view object is obtained. c) virtual layer object is directly 
acquired 
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tree  classes have  a similar implementation of the navigation interface.  
In the end, it is important to mention that for the virtual class there is also  third 

part of the interface. It is not part of the SCI and is privately defined, to the class. This 
interface is implementing layering (interface that each virtually flattened view object 
inherits from the HasSource class).  

5.4 DeviceFlatContainer - Iterator 

 The DeviceFlatContainer  class is defined in the scope of Vir-
tual_NominalCell . It aggregates all devices in all representative contexts. If a 
given cell is instantiated in two equivalent contexts, regarding a set of parameters, its 
devices would be represented only once in this container. This is enabled via the per-
sonalisation concept given in Appendix A. 
 Following the container – iterator concept, a container defines an iterator class 
in its scope. The iterator sequentially acquires all elements that belong to Device-
FlatContainer . 
 In order to achieve this, the iterator has to traverse over all devices of all cells 
in the cell graph. 
 

+begin() : iterator

+end() : iterator

DeviceFlatContainer

+operator++() : void

+operator*() : Access_Device

iterator

TopDownCells

1

*

Access_Cell1*Access_Device Access_Variant

1 1..*

+operator++() : void

+operator*() : Access_Variant

iterator

-cont

* *

 
Figure 5.4-1 – Class Diagram of DeviceFlatContainer, facade for the aggregation of Acces_Device 
objects 
 
 Having in mind that the DeviceFlatContainer  class stands for a set of 
objects with complex, hierarchical order and interface, groups them together, offering 
a simple interface (begin(), end() methods and the iterator class with the standard in-
terface), we can notice that this part of the object oriented design follows the façade 
design pattern [48]. The implementation architecture of the class DeviceFlatCon-
tainer  is shown in  Figure 5.4-1. 

The class is placed in the inheritance hierarchy of the class TopDownVari-
ants.  As it was explained in Appendix A, class TopDownVariants  aggregates 
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all hierarchical design cells in a specific order (top down or bottom up). These cells 
have some of the entristic parameters resolved (as chosen upon the variant creation). 
Together with this class, an iterator was defined, that can, sequentially, access all Ac-
cess_Cell  objects that are stored in the given design. 
 Class DeviceFlatContainer  therefore subclasses TopDownCells  and 
its appropriate iterator is subclassed by the iterator of the class TopDownCells .  

The order of iteration of the DeviceFlatContainer ’s iterator can be, up 
to a certain extent, controlled. The user can choose the order in which the design cells 
are accessed, bottom up or top down, depending on the setup of the TopDownCells  
class. Simple pseudo code to describe the traversal follows: 

  
 for (all cells) 
   for(all variants) 
     for(all devices); 
  get pointer to the device; 
 
Note that the sets that aggregate variants of the design cells and devices are not or-
dered and in this model, their order is arbitrary. 
 An additional, important property of the container that we define in this sec-
tion is that its content is dynamic. If the user algorithm causes a change in the variant 
graph, e.g. by changing the type of a certain net or a device, or by altering any other 
parameter that is defined for the variant creation, the container would, as well, change 
its content. This can be illustrated with the simple example design shown in Figure 
5.4-2.  

The example design shows a NAND implementation of the XOR logic gate. If 
we suppose that the variants are being created by the cell pin type, and that all pins of 

the different instantiations of a NAND circuit have the same signal type, our design 
variant graph would have only two members: top level and one variant of the cell 
NAND. This would mean that the iterator of the device flat container, if it was setup 
to iterate bottom-up, would acquire focus on the only variant of the cell NAND, iter-
ate over its devices, than further change the context of the variant to the top level. As 
in top level, there are no opaque (atomic) devices the iteration comes to an end. If we, 
for instance, during the user algorithm execution alter this hierarchical design and 
change the type of the net in1, the revision of the variant graph would start and in-
stances X1 and X2 would be moved to a different variant, as their input terminal one 
now has a different pin type. After this process our variant graph, apart from the top 
level variant has an additional variant of the cell NAND and in total two variants of 

X1

X2

X3

X4

in1

in2

xOr

out

 
Figure 5.4-2 – Example of dynamic DeviceFlatContainer content. xOr hierarchical representa-
tion 
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this only cell that is instantiated in the given hierarchical design. The content of the 
DeviceFlatContainer  has now changed and we get eight atomic devices during 
traversal, meaning four from the first variant of the cell NAND and four from the sec-
ond variant of the cell NAND. 
 The implementation of the iterator class that enables dynamic traversing is 
closely related to the way new variants are added during the lifetime of the Vir-
tual_Netlist  object. For this reason a more detailed implementation of the itera-
tor class will be given later.  

5.5 Virtual element builder 

In order to materialize the flat data portion, duplicates for each element ac-
quired from the NLDB database are being built. These objects are to serve in different 
applications. Sometimes, according to the principles of the user algorithm, additional 
variables (fields) should be added to flat view objects that stand for pure NLDB ob-
jects. This can be achieved by subclassing given objects, augmenting their interfaces 
as needed and adding extra implementation variables. In order to enable this, the view 
has to support a flexible object building. For this reason, we abstract the building 
process in a class Virtual_ElementBuilder . The definition of a Vir-
tual_Netlist  holds a handle to the object of this class. In this way we separate 
the view object building from the rest of the system, enabling better flexibility. The 
solution that is engineered for the Virtually Flattened View follows the architecture 
shown in the class diagram Figure 5.5-1. 

The Virtual_ElementBuilder  is given as a combination between the 
Builder Pattern and the Template Pattern [48]. Thus the product (Virtual_Device  
descendents, Virtual_Pin  and Virtual_Node ) building process whose flow is 
managed by the director object (in our case Virtual_Netlist ) is delegated to a spe-
cial builder object (Virtual_ElementBuilder ). On the other hand, a list of ser-
vices is declared as a pure virtual interface and further used in the implementation of 
different higher level algorithms, which is a property of the template design pattern. 

#InstVirtual_MOS ()
#...()
#InstVirtual_Diode()
#InstVirtual_Pin()
#InstVirtual_Node()
+getVirtual() : Virtual_MOS
+getvirtual() : Virtual_Pin
+getVirtual() : Virtual_Node

Virtual_ElementBuilder

#InstVirtual_MOS()
#InstVirtual_Diode()
#InstVirtual_Pin()
#InstVirtual_Node()

Virtual_Builder

 
 

Figure 5.5-1 – Virtual_ElementBuilder architecture 
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Therefore, Virtual_ElementBuilder  is the abstract class, as it just offers a 
family of pure virtual functions that encapsulate object instantiation. These functions 
form a protected pure abstract interface, as one logical part of the complete Vir-
tual_ElementBuilder’s  interface. These functions are (in our case study 
model): 
 

• InstVirtual_MOS(), 
• InstVirtual_Res() and 
• InstVirtual_Cap().  
 
Another part, public interface of this abstract class, is implemented.  The imple-

mentation of these functions, following the template pattern, uses services that belong 
to the protected pure abstract interface. All the functions of the public interface of the 
class Virtual_ElementBuilder  have the same name, getVirtual() . They, 
however, differ by the argument type. For each type of the object a different function 
is implemented. The function architecture is standardized, following the pattern 
shown in the Figure 5.5-2.  
 
Virtual_Device* getVirtual(Access_MOS* ptr)  
{ 
  Virtual_Device* vir_mos; 

if( (vir_mos = currentContextSaver()->getElementPtr (ptr)) == NULL)  
{ 

   vir_mos = InstVirtual_MOS(ptr); 
   currentContextSaver()->putElementPtr(ptr, vir_mo s); 
  } 
 return vir_mos; 
} 

Figure 5.5-2 – example method of the getVirtual() family 
 

  
The example shows that the implementation of the method to acquire the vir-

tual copy of the Access_MOS  object at first looks up if the appropriate object is 
already instantiated and if so, it acquires a pointer to it. This is done by looking up the 
table of existing virtual copies of the database elements at the given hierarchical level. 
Next chapter explains the data-structures (Virtual_ContextSaver ) that save 
these mappings. If no mapping has been found, the getVirtual()  method would 
instantiate a new object using an appropriate method from the protected interface. In 
our example, the method which is called is InstVirtual_MOS() .  
 As an exception to this group of methods, the method getVir-
tual(Access_Node*)   has a somehow more complex implementation. The rea-
son for this is the fact that the virtual nodes are distributed over the hierarchy. The 
explanation of the recursive algorithm of the mentioned method is left for section 5.6, 
after defining proper environment which helps its understanding. 
 Note that, as the class Virtual_ElementBuilder  is abstract, it can not 
be created. Therefore, we define a class which inherits this abstract class and imple-
ments the promised interface. The class Virtual_Builder  is the default imple-
mentation of the builder and its realization of the protected interface simply instanti-
ates pure NLDB objects, members of Virtual Layer. For instance:  
 
Virtual_MOS* InstVirtual_MOS(Base_MOS* ptr)  

 {return new Virtual_MOS(ptr);}. 
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 This function simply wraps the instantiation of the Virtual_MOS class.  
 According to the selected architecture, a Virtual_Netlist  object has a 
reference to a single object of the element builder and it gets the handle to a concrete 
object that subclasses Virtual_ElementBuilder  already through its construc-
tor. Additionally, access to the builder object and further to its interface that builds the 
relevant products is defined through a public getBuilder() method of the Vir-
tual_Netlist  class. As it was chosen, during the lifetime of the Vir-
tual_Netlist  object, it’s not possible to change its builder. In this way we can 
assure the consistency of the objects which are being built. Note that with a small in-
terface change of the Virtual_Netlist , this can be however altered and if it 
would be necessary for some future use, builder objects can be exchanged during dif-
ferent phases of the user algorithm. In this case, the user algorithm, during its runtime 
would have to use this additional interface and mange building process consistently.  

5.6 Context saving tree 

The context saving tree is used to assure the consistency between the material-
ised flattened data portion and the hierarchical database. It defines all proper map-
pings between the devices that are represented as the flattened data portion. Addition-
ally, it defines the position of the view in the design hierarchy, relative to appropriate 
variant that is considered as the context for the materialised flat data portion.  

The context saving tree is important also in the process of committing the 
relevant flat data portion to the primary hierarchical topology of the design. We want 
to use the very same objects that were tracking the mapping between virtual and 
source objects thus assuring the consistency of the flat view with the hierarchical da-
tabase during the process of creation and maintenance the VFV. This time we assign 
them another semantic role: providing information about hierarchy changes after the 
committing step where the relevant state of the VFV (current MFDP) is embossed to 
the primary hierarchy of the input design. 
 As we have identified two roles of this single object that stores mappings be-
tween source and virtual objects, we need the specific interfaces for both usage cases, 
as well. This makes the overall interface of the given class bloated. Additionally, us-
ing the same class to depict two semantically different entities is making the percep-
tion of the architecture of the given object oriented solution less understandable. For 
that reason, to model this part of our system we refer to the concept of Objects with 
Roles. 
 

5.6.1 Objects with roles 
 
 Object oriented concepts tie objects to their types statically. No dynamic type, 
i.e. morphing of the given object from one type to another, during its lifetime is al-
lowed. The only type changes that are allowed automatically are those along the in-
heritance hierarchy. This is actually a relation of the more general type to more spe-
cific type. On the other hand, it is not exceptional that in different applications, the 
same object plays more than one role during its lifetime. In each of these roles, the 
semantic character of the object varies, depending on the context in which it was used. 
This has sparked a discussion in the object-oriented software development community 
and various solutions have emerged. Some of them propose new concepts in general 
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object oriented methodology. They are implemented in experimental languages, or 
just theoretically discussed [50]. Others search for the solution using already available 
standard mechanisms, creating specific design patterns in order to solve the men-
tioned problem.  Fowler describes a set of approaches in order to solve the role prob-
lem and points out their advantages and disadvantages [51]. On the other hand, 
Bäumer offered a design pattern in which he handles the object roles by instantiating a 
separate object for each role - Object Role Pattern [52]. By delegation, the core object 
(which stores relevant information) is accessed from different role objects (that belong 
to different classes with clearly defined interfaces). This solution offers flexibility and 
precise definition of separate role entities and interfaces, but suffers from increased 
complexity of the interface of the object (role maintenance interface) and overhead to 
implement manipulation, creation/destruction of new or no more active roles. Further, 
the object identifier consistency is violated. Hence, you can not trivially compare two 
appearances of the very same objects in two different roles.  

We will use a solution that is similar to this one, but is realised, through the 
object-oriented concepts available in C++: multiple inheritance, friend relation and 
other standard mechanisms, making it much simpler to use and maintain. The pro-
posed architecture is given in Figure 5.5-3. The diagram describes three abstract 
classes and one concrete that is possible to be instantiated. At the bottom of the dia-
gram is the pure virtual class PureAbstractServiceProvider . It defines a set 
of protected services, but leaves its implementation undone. The services are equiva-
lent to the services that are defined in order to handle the states of the Implementer  
class object. Both interfaces are defined protected. Thus, the specification of this in-
terface is visible only for the classes that are in the inheritance hierarchy of  Pure-
AbstractServiceProvider . Those still undefined services are used to imple-
ment the public interface of the object with roles, classes InterfaceA , …, Inter-
faceN.  We can compare this part of the design to the Template Pattern[48]. Each of 
the abstract classes define their generally different interfaces and expose the declara-
tion of the method getPointer() , which enables object passing between different 
roles. In the end, the class Implementer  multiply inherits all interface classes and 
implements (as protected) all undefined interface members. In this way, if the instan-
tiation of the object Implementer is passed to the pointer of any of the role classes, its 
variables are to be interpreted using a completely different interfaces. Note that this 
exchange is possible during the lifetime of a single object, therefore allowing the in-
terface methods of different role types to work on the same data in two different con-
texts. Additionally, implementer class is opaque. It has no public interface defined, 
which protects the data of this object from misuse. This is achieved  by “hiding” the 
public interfaces of the classes InterfaceA,… ,InterfaceN by making them private, 
employing the C++ using  keyword. Further, interface classes (InterfaceA , …,  
InterfaceN ) privately inherit PureAbstractServiceProvider.  Thus, 
polymorphism between PureAbstractServiceProvider  and any role inter-
face is switched off.   
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 By the proposed design pattern we achieve a clear separation of public inter-
faces for any object that is to be used in different contexts during its lifetime. More-
over, by having an additional type for each of the roles that an object plays in the de-
sign, we gain a  better understanding and clear applications of the given object data. 
Further, the implementation of the object itself is exchangeable, as long as it realises 
the promised services. This gives additional flexibility to our design solution. The 
described design is employed in order to address the complexity of the implementa-
tion architecture of the VFV and make our documenting process of the algorithm 
more comprehensive, as well. 
 Therefore, two roles of the context saving objects are going to be defined. In 
the first role, the objects support the creation and consistency of the materialised flat 
data portion, maintaining the mapping between source elements and their virtual cop-
ies. In the second role, the same object is used in order to change the topology of the 
primary hierarchy. Therefore, the root hierarchy class, Virtual_HashServices  
defines the protected interface that maintains the state of the multi-role object:  
 
  virtual Virtual_Node* getNodePtr(Access_Node* bas) = 0; 
 virtual Virtual_Pin* getPinPtr(Access_Pin* bas) = 0; 
 virtual Virtual_Device* getElementPtr( Access_Devi ce* bas) = 0; 
 virtual void putNodePtr(Access_Node* bas, Virtual_ Node* vir) = 0; 
 virtual void putPinPtr(Access_Pin* bas, Virtual_Pi n* vir) = 0; 
 virtual void putElementPtr(Access_Device* bas, Vir tual_Device* vir) = 
0; 

 

 
Figure 5.5-3 -  Object with roles – design pattern proposal 
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These functions define the processes of assigning and retrieving relevant mappings 
between the objects of the MFDP and their sources. Note that all the interface meth-
ods are pure virtual, any implementation issue is left for later. We are concentrated 
only on the interface, not on any performance or complexity matter in this moment.  
 Additional to these application domain methods, two methods to support role 
switching and concrete object instantiation are defined:  
 

Virtual_HashesContainer* getPtr() = 0 ; 
Virtual_HashesContainer* getNewInstance() = 0 ; 
 

, also as pure virtual.  
 For our application we need two roles: the first is modeled by the abstract class 
Virtual_ContextSaver , and the second, with the abstract class  Vir-
tual_Excluder . Their interfaces and semantics are going to be explained in detail 
in upcoming chapters. 
 As the implementer class, we have Virtual_HashesContainer.  This 
class realises all promised interfaces and hides the public interfaces of the separate 
role classes. Thus, it has no public interface any more, leaving the object opaque as it 
was recommended by the proposed design pattern architecture. One can compare this 
object to a cassette (or a disc) and the roles to the relevant devices that read it.  
 The implementation of Virtual_HashesContainer  consists of a set of 
hash tables. These tables should provide the constant expected complexity for fre-
quent lookups, which are performed by both role public interfaces during the proper 
algorithm execution.  

#getElementPtr()

#getPinPtr()

#getNodePtr()

#putElementPtr()

#putNodePtr()

#putPinPtr()

#getPtr()

#getNewObject()

Virtual_HashServices

+getNewObject()

+getPtr() : Virtual_HashesContainer

+goUpHierarchy()

+goDownHierarchy()

+getTopLevel()

+isTopLevel()

+setTopLevel()

+getParentLevel()

+getInstance()

+getVariant()

+getElementPtr()

+putElementPtr()

+getPinPtr()

+putPinPtr()

+getNodePtr()

+putNodePtr()

Virtual_ContextSaver

+elementNotValid()

+getPtr() : Virtual_HashesContainer

+pinNotValid()

+getCover(in ptr : Access_Node)

Virtual_Excluder

#getElementPtr()

#getPinPtr()

#getPtr()

#getNodePtr()

#putelementPtr()

#putPinPtr()
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Figure 5.6-5.5-4 – Virtual_ContextSaver and Virtual_Excluder 

classes 
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 The methods to retrieve and set mappings are referring than to the hash_tables 
of the Virtual_HashesContainer  and the method getPtr()  implementation 
simply returns the pointer to this , while the method getNewInstnace()  accepts 
the appropriate parameters and invokes the privately defined constructor of the im-
plementer object.   

By inclusion of Virtual_HashesContainer and realising all proper promised in-
terfaces the architecture we have given above is ready for both contexts of usage. 

5.6.2 Consistency of the virtually flat view data p ortion objects with 
NLDB database (Virtual_ContextSaver) 

 
 As we have stated before in this chapter, the VFV takes an arbitrary device, 
returned by the DeviceFlatContainer  iterator as the starting point for generat-
ing a flat data portion, arbitrarily according to the needs of the application that navi-
gates in the neighbourhood of the starting device. For each of the acquired original 
database elements (including devices, pins and nodes), which are distributed over the 
hierarchy, a virtual copy is created. The virtual copies form together a flat view on the 
local part of the hierarchical data. It is necessary to maintain the consistency between 
these materialised objects (members of the given MFDP) and source (original) ob-
jects. The consistency between the MFDP objects and its source objects that belong to 
the hierarchical database is modelled through a class Virtual_ContextSaver , 
more precisely as a complex structure (a tree) of objects of this class. The tree struc-
ture is needed in order to be able to properly grasp all mappings between the hierar-
chically distributed source database elements and the MFDP, allowing it to develop 
freely crossing hierarchical borders.  
 The context saving tree is dynamically created and manipulated by the virtual 
objects that build the MFDP. That enables the MFDP to be self-augmenting hiding all 
the complex operations concerning consistency maintenance from the user and per-
forming them internally by the VFV.  
 Every context saving tree starts from the unique Virtual_ContextSaver  
object that defines the context of the key device, which is created upon invoking the 
star operator of the DeviceFlatContainer  iterator. The context saver object is 
tied to a given variant of the cell of the hierarchical model. 
 If the algorithm tends to develop the MFDP and accesses the neighbours of the 
virtual copy and if that neighbours are distributed over the hierarchy the context sav-
ing tree grows accordingly inserting the relevant context saving object and for each 
affected hierarchical level and populating it with the relevant mappings. We will de-
fine two important concepts of the context saving tree:   
 

• the active hierarchical level and  
• the relative top hierarchical level.  

  
 As each context saving object stores mappings between the relevant source 
objects, that belong to certain hierarchical level and the MFDP objects, it is necessary 
to choose the proper context saving object to which we store mappings, or from which 
we acquire mappings. Thus, we always mark an active level that defines the current 
position of the hierarchy that is in focus. Keeping the active hierarchical level in con-
sistency with the relevant lookups is crucial. The relative top hierarchical level is the 
hierarchical level to which the root context saving object of the context saving tree is 
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tied. This level is important as it determines to which context of the hierarchical data-
base the overall MDFP belongs. 
 In order to illustrate this concept, we can consider the example in Figure 5.5-5. 
The example design is a hierarchical representation of a latch electronic circuit. We 
show the hierarchy fully unfolded. NMOS and PMOS transistors are encapsulated in 
separate subcircuits. They form an inverter circuit inside the cell A. Further, on the 
top level, two instances of the identical cell A are properly interconnected to form the 
topology of the latch electronic circuit. In the initial stage (a), the algorithm takes in 
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Figure 5.5-5 – The example of the development of the context saving tree, the structure that en-
sures the consistency between the MFDP and the hierarchical data model. 
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focus the device mn of the cell MN, returned by the iterator. In this moment, the mate-
rialised view consists of the sole instance of the object of a class Virtual_MOS  
(Vmn) and after that, for example, after calling the pin() method of the given device, 
additionally, Virtual_Node  object (v1) is instantiated. Note that the implementa-
tion of the algorithm uses the specific strategy to instantiate the virtual objects, the 
members of MFDP, as late as possible, upon direct need for the given object by the 
user algorithm.   
 The objects that build the current virtually flattened data portion have their 
source levels set as objects mn (Access_MOS) and 1 (Access_Node), respectively. 
These both objects belong to the variant of the cell MN. To grasp these relations an 
object of the context saving class Virtual_ContextSaver  is instantiated. This 
object ties the MFDP to the suitable variant of the cell MN and additionally stores all 
proper mappings between virtual objects and source objects. The relative top level of 
the context saving tree is in this moment the only instantiated object, naturally, so is 
the active hierarchical level. The relative top level defines the position of the MFDP 
in the hierarchical database. Thus, the MFDP is valid for all instantiations of the cell 
MN. In relation to that, the relevant context saver object (of the relative top hierarchi-
cal level) has its field “@instance” empty. As an illustration, the yellow patch is 
sketched in all proper places of our example hierarchical design for which the MFDP 
is valid (inside every instance of the variant of the cell MN).  
 Let us consider now that the user algorithm navigates away from the starting 
device (virtual object, Vmn) following the drain terminal and further the node V1. As 
the source node of the virtual node V1 is the port node 1, of the cell MN, the connec-
tion with the levels higher in the hierarchy of the design description exists. In the first 
row, the immediate parent level is the definition of the cell A. This implies the change 
of the topology of the context saving tree. The level, which ties the view to the cell 
MN, becomes the leaf object of the tree, while the root level switches to the newly 
instantiated context saving object, that is tied to the context of the cell A. The level 
switch process includes the insertion of the proper mappings in the context switching 
objects. Thus, the context saving object that is tied to the variant of the cell MN gets 
the parent object (new context saving object) and the reference to the instance X2 of 
the cell MN that exists in the hierarchical level A. This context saving object repre-
sents now exclusively the instance X2 of the cell MN. The newly instantiated relative 
top context saving object is initialised with the mapping that links the instance X1 to 
the context saving object of the level MN and the mapping between the already in-
stantiated virtual node V1 to the source node 4 (of the hierarchical level A).  The  
stage of the Virtually Flattened View and the context saving tree after this step is de-
picted in (b). It is interesting that the change of the relative top hierarchical level and 
the augmentation of the context saving tree was done while the actual appearance of 
the MFDP is still unchanged. We have, by this operation switched the (active) hierar-
chical level in which the MFDP exists and allowed it to “see” its neighbouring objects 
in the context of the hierarchical level of the cell A.  
 Let’s consider now that the user algorithm, seeing the flat version of the design 
tries to acquire the pointer to the device pin that is connected to the virtual node V1. 
In the original, hierarchical database, the device pin connection exists in the hierarchi-
cal level of the cell MP and connects the given node to the device mp. What does this 
mean for the context saving tree? VFV will determine that the source node of the V1 
is connected to the instance X1 of the cell MP. It will than follow this connection and 
descend to the hierarchical level of MP. This means that a new context saving object 
will be created and inserted in the context saving tree. This context saving object is 
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tied to the cell MP and the instance X1. Once the algorithm descends it will create the 
linking mapping of the virtual node V1 to the local (to the cell MP) source node  1. At 
this moment the virtual node V1 has three sources, each of three relevant for separate 
hierarchical levels MN, MP and A. The algorithm further acquires the pin connected 
to the node 3 and creates the relevant virtual copy of it attaching it to the virtual node 
V1. Following this pin the MFDP obtains another device, the virtual copy of the de-
vice mp, named Vmp. If the algorithm further follows the gate connection of the vir-
tual device Vmp, in the background will the following happened: At first the VFV 
algorithm will, inside the hierarchical level MP create the virtual copy of the node 2, 
called V2. Than, the active level of the context saving tree will switch to A. All port 
node mappings will be propagated to the level A of the hierarchy. This means that the 
mapping between the node 2 and V2 will be made at the hierarchical level A. After 
this, the VFV algorithm again switches back to the hierarchical level MN, without 
port node propagation. It takes in focus the source node 2 and searches for its virtual 
copy using the function getVirtual(). The implementation of this function is always 
searching for the relevant mappings recursively from the root node of the source hier-
archical node to the current subnode. In the example case, the algorithm will search 
for the mapping between the node 2 and some virtual node in the level A, find it and 
than build the mapping between the node 2 and the same node V2 inside the cell MN. 
The recursive algorithm that we describe here is given in figure Figure 5.5-6.   
 The stated requirements shape the functionality and the interface of every in-
dividual context saving object. First, the object is tied to a specific variant of the cell 
of the given design. If the context saving object is not the root of the context saving 
tree, it is additionally tied to the given instance. This is modelled through the part of 
the interface of the Virtual_ContextSaver , by methods:  
 

• getVariant() 
• setVariant() 
• setInstance() 
• getInstnace() 

    
 As the given context saver object is a member of the complex structure (a tree) 
formed by the object of that kind there is a specific interface to navigate through and 
augment this tree:  
 

• goUpHierrarchy() 
• goDownHierarhcy() 
• getTopLevel() 
• isTopLevel() 
• setTopLevel() 
• getParentLevel() 

 
The first two methods of this group are capable of augmenting the context sav-

ing tree (creating new tree nodes). According to the appropriate parameters they in-
stantiate the new context saving objects tying them to the appropriate hierarchical 
levels and placing them to the appropriate positions in the context saving tree. Apart 
from creating or switching levels, the function goUpHierarchy()  is responsible 
for propagating the mappings for all port connections up the hierarchy. This is impor-
tant preparation for the algorithm which determines the virtual copy of a source node 
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in the given moment (getVirtual(Access_Node*)), that is a member of the Vir-
tual_ElementBuilder  class. The rest of the methods can exclusively navigate 
the already created context saving tree. Both objects groups are used by the VFV in 
order to properly maintain the consistency between MFDP and the data model. The 
methods to switch levels are implemented directly in the class Vir-

tual_ContextSaver , as this is the specific functionality of the role of context 
saving played by the object of the class Virtual_HashesContainer . 

Another important group of methods is responsible for storing and retrieving 
the mappings between the elements of the MFDP and their source objects. These 
functions take a pointer of the Access_Device , as a key, and search for its virtual 
copy in the appropriate (current active) context saver object. Note that consistency 
between level switching and device mapping search is here essential. A public inter-
face to retrieve and store mappings from the hash tables is implemented using the 
template design pattern, as it is already mentioned in the previous section. The ser-
vices declared in the Virtual_ServiceProvider  are here used to define the 
interface and implemented later while defining Virtual_HashesContainer 
class. This flexible architecture offers, apart from level switching ability, also easy 
experimenting with different types of mapping container implementations. To con-
clude the interface that stores and retrieves the mappings consists of the following 
functions: 

 
• getElementPtr(), 
• getPinPtr(), 
• getNodePtr(), 
• putElementPtr(), 
• putPinPtr() and  
• putNodePtr(), 
 

 
Figure 5.5-6 – algorithm of the function getVirtual(Access_Node* ptr) 
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 that are more or less trivially publicly exposing the functionality of protected services 
of the Virtual_ServiceProvider . 
 In the end, this object role exposes the proper interface to support the object 
switching and the context saver object instantiation. Thus, two additional methods are 
implemented:  
 

• getNewCSObject() 
• getPtr(). 

 
 The part of the algorithm that constructs and maintains the context saving tree 
is not visible to the user algorithm and is hidden behind the virtual node class. Fur-
thermore, the virtual copy of any Access_Node  object, instance of the Vir-
tual_Node  class becomes the context-switching object. This will be explained in 
the following section. 
 

5.7 Context-switching / multi-context nodes 

 In Chapter 3, we have defined the hierarchical node and the three semantically 
different types of subnodes that are forming the hierarchical node. The hierarchical 
node was presented as the consequence of the instance tree. If we have the instance 
tree in focus, these hierarchical nodes have just one context.  
 On the other hand, if we observe the referenced cells graph (variant graph), 
hierarchical nodes become multi-context, as any of the cells that hosts the parts of the 
hierarchical node has the multiple instantiation paths. 
 Virtually Flattened View hides the hierarchical node (composed of an arbitrary 
number of elementary Access_Nodes, depending on the hierarchy) behind a single 
element – Virtual_Node . This node is responsible for context switching. In con-
nection to that, it also controls the creation and navigation through the context saving 
tree. 
 
Virtual node 

 
As settled above, the virtual node is used to replace a group of nodes, con-

nected through the hierarchy with a single node. This node is a part of the materialised 
flat data portion of the given circuit. It is modelled as a class that inherits the class 
Base_Node , which describes general properties of a node, Figure 5.7-1. Vir-
tual_Node  class does not inherit directly from the Access_Node  abstract inter-
face, as it uses different implementation solutions for the standard interface of the 
Base_Node , as it will be shown in detail later.  

Virtual_Node , as well as Base_Node , can be observed as a container of 
pins, that connect this class of bipartite graph vertices - nodes to the other class which 
consists of devices. Therefore, pin_begin(), pin_end() operations and appropriate it-
erator class are defined, following the container/iterator concept [53], as discussed in 
chapter 3. The nature of the iteration in the case of the Base_Node  is static and the 
iteration algorithm is simple. Hence, it is only necessary to traverse the vector that 
statically aggregates the elements of the type Base_Pin . Since Virtual_Node  
represents a group of Base_Node s (members of the hierarchical node), traversing 
the container gets more complicated. Iteration is also not single-context. Several, par-
tially overlapping, sets of neighbours of the given Virtual_Node , occur. 
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As we have mentioned, the virtual node is an object that belongs to the MFDP 
on the hierarchical data, therefore there must be a srcView defined to it. Through the 
source view the virtual node collects different parameters of the Access_Node  in-
terface that are invariant to the hierarchy (for instance those are the node type data, 
etc). Moreover, the virtual node has a relation 1:n to the Access_Node , as shown in 
Figure 5.7-1. The layering functionality for the Virtual_Node  is modelled by the 
specific class HasMultSource . This class is inherited from the class HasSource , 
adding multiple source property. A single virtual node has in general more than one 
source view. The current source view is defined by the current hierarchical level that 
is in focus (current Virtual_ContextSaver  object, part of the context saving 
tree), during Virtual_Node  “container” traversal. A private interface that models 
this is the getSrcView()  function, that takes a pointer to the object of the Vir-
tual_HashTables  class as an argument. The mapping is implemented as a hash 
table, therefore the average (expected) complexity of fetching the data has O(1) [54]. 
The operation of storing the data in this hash table has a worst-case linear depend-
ency, but with a wisely chosen hashing function, this case is unlikely to occur in 
praxis. 

The virtual node should feel and appear like an integral node, member of the 
flattened data portion. In this light, we have to define an iterator for this multi-source 
virtual object, as well.  

The iterator has to traverse all possible neighbours of the given node. The or-
der of iteration can be partially determined by the hierarchy. Hence, the members of 
several unordered sets can be presented in the order that is adjustable. For instance, it 
is natural first to iterate over the pins (connections) of the first local node, then to 
traverse down the hierarchy and then to step up the hierarchy. Traversing is similar to 
the depth first search, which does not start from a root level.  

The order of visiting the parts of the graph, which is formed by the hierarchy 
of nodes, will be first explained using the example shown on the Figure 5.7-2.  

In the figure, the ports are marked with red colour, while the root nodes are in 
orange. Cell borders are shown only partially, with dark angular lines. The iteration 
starts with the node 1, the pins connected locally to this node would be accessed in 
arbitrary order, more precisely, by the order defined by the insertion in the vector of 
pins. This further depends, e.g., on the implementation of the SPICE netlist parser, if 
the hierarchical design has been loaded from the netlist external ASCII format. After 
traversing all the ports, the iteration is exploiting all the choices given in the current 
(top) context (cell A). That means that the iteration continues with the pins connected 

 
Figure 5.7-1 - Relation between Virtual_Node class and Base_Node class. 
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locally to the node 2, inside cell B, which is down the hierarchy in comparison to the 
starting node  1. At that moment, the hierarchical level that is in focus will change and 
another entry will be added to the context saving tree. Hence that once the hierarchical 
level that is in focus has changed, the active source view of the Virtual_Node  
switches to the node 2. Note that any switch of the hierarchical level is followed by 
change in the active level of the context saving tree. In our example case the new ob-
ject will be inserted into the tree, leaving the context saving object that corresponds 
the level A as the relative top for the MFDP and setting the active context tree level to 
the relevant instance of the cell B. Having in mind this process that happens in paral-
lel, we will further concentrate only on the states of the multi-context node.   

The next step is the iteration over the neighbours of the node 3. Once this is 
finished, the context from which the iteration has started is completely analysed. We 
remind the reader here that all the pins, acquired through this process are actually the 
source objects for the relevant MFDP copies achieving our goal that the data portion 
is presented as flat to the user algorithm, which initiates this hypothetical iteration 
over the neighbours of the virtual node. The iterator can be set to stop the iteration 
here, after traversing a single context. This is important for certain applications and is 
completely similar to the flat circuit iteration.  

Let’s now consider that the set Ne=Na is the set of all possible neighbours that 
are traversed so far, the set of neighbours of the context of the cell A. The set Ne de-
fines all neighbours, in a given moment, for the multi-context node. As it can be seen 
in our example figure, node 1 is a port node that is connected to two nodes up the hi-
erarchy, but sitting in two disjunctive contexts. Therefore we distinguish two disjunc-
tive sets of neighbours that will be added to the original set Na. Ne = Na + N1, or Ne = 
Na + N2. Therefore if we proceed to node 4, the iteration is performed on its local 
nodes, and than to all subnodes, in the lower hierarchical levels. It is important to ex-
clude the path that leads to the instance of cell A, back to the same node where we 
have started our iteration, 
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Figure 5.7-2 - Example of a multi-context node. Subnodes, which are ports,  are given in red, 

while root nodes are represented with orange circles. Design hierarchy is given by unclosed angu-
lar lines. 
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hierarchical node. Note that it is possible to have new context “crossroads” further. 
The set of neighbours would be further augmented. Once all the neighbours of the 
newly defined context are traversed, in our case the pins of the node 4, the algorithm 
returns to the previous context, erasing all the invalidated neighbours from the view, 
the neighbours that belong to the N1 set. This is being done by cutting the top part of 
the context saving tree which corresponds to the context 1 and  all other (eventual) 
subcells that were part of the iteration, leaving the subtree rooted at hierarchical level 
A. After this, the algorithm proceeds further to nodes 5 and 6, where the traversing 
operation for this example finishes.  

We have therefore introduced the multi-context node, a switch through differ-
ent hierarchical contexts and, implicitly, a multi-context MFDP. The latter will be 
analysed in the following section. 

As VFV is a design to be used transparently instead of static base NLDB API, 
the implementation architecture of the iterator has to satisfy the interface standard 
requirements. For this reason, we relate the iterator class (vpin_iterator) to the CSI 
entity pin_iterator as shown in Figure 5.7-3. 

  The object of the pin_iterator class can get the pointer to either bpin_iterator 
or vpin_iterator, flexibly. The vpin_iterator is responsible for the iteration type de-
scribed in the example above. The object of this class is returned by the instantiation 
of the Virtual_Node  class, which represents the container of pins that are to be 
traversed. Note that the destruction of the delegated dynamically instantiated speciali-
sations of bpin_iterator is handeled employing the concept of smart pointers {… }. 
This two level architecture allows even runtime switches between two  implementa-
tions of the iterator class. Note that the first level employment of polymorphism was 
not possible as the iterators are in most of normal application cases statically instanti-
ated in the program environment.   
 The class vpin_iterator  that is proposed as the implementation architec-
ture for the concept presented in the example above consists of one stack and several 
types of hierarchy traversing class definitions, whose objects are maintained as stack 
entries. These objects are introduced for each source node, which is taken in focus 
during the transversal. There are three basic types of stack elements: 

 
• Context,  
• DownTheHierarchy and  

Base_Node
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-srcView

+operator++()

+operator*()
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pin_iterator

+operator++()

+operator*()

-index : int
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Figure 5.7-3 – Positioning of the vpin_iterator class in the CSI.  Polymorphism allowing architec-
ture, where the implementation of the iterator is chosen during the runtime. 
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• UpTheHierarchy. 
 

They are defining traversing for three semantic types of Access_Nodes, local node, 
root node and the port, respectively.  
 Apart from the defined classes, later, together with the introduction of the 
MFDP committing step that alters the original netlist hierarchy, a specific wrapper 
class, following the decorator pattern [48] will be introduced. The goal of this class is 
to group a family of virtual node objects at a single hierarchical level and combine the 
information they carry. The relation between the stack elements is given in Figure 
5.7-4. 
 The class vpin_iterator holds the stack of context saving entries and it offers 
the full standard interface of the iterator. From this interface, calls are forwarded to 
the top element in the stack. More precisely, operator++() would forward its calls to 
the  analogue function of the stack current  top element, as long as it returns false, or 
the stack contains elements. The operator++() function is given in the Figure 5.7-5. 

 Each of the context saving classes defines its own operator++() and opera-
tor*() in order to be able to receive the forwarded calls.  

The class Context  is the root class of the hierarchy of context saving stack 
entries. It is able to iterate over the simple local node, to which it is paired, using its 

 
Figure 5.7-4 –Architecture of vpin_iterator and it’s relation to Virtual_Node. Vpin iterator de-
fines a stack that is populated by the family of classes that inherit from the clas Context. 

 
virtual bool operator++()  

{ 
       while (!empty())  
       { 
       setVirtualTable(this->stack.top()->getvTable ()); 
       if(this->stack.top()->operator++()) 
         return true; 
       else  
         pop();                   
       } 
      return false; 
      }  

Figure 5.7-5 – operator++() method of the vpin_iterator class 
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operator function operator++() that has a boolean return value. In case that the itera-
tion leads to a valid (next) object, the function returns value true, after it finishes the 
iteration over statically assigned node elements, the operator++() function of this ob-
ject returns false. The return value is taken over by the global operator++() function 
(defined in the scope of the class vpin_iterator ) which pops the object from the 
stack. This strategy is general and is happening for all members of stack.  
 The class DownTheHierarchy has an additional property. After traversing all 
statically instantiated device pins, which are linked to the given root node, it traverses 
over all instance pins, changing the hierarchical level to the definition of the given 
instance by altering the state of the Virtual_ContextSaver  context-saving tree. 
Once the level is switched, an appropriate context saving entry object is created and 
paired with the new local source view. A new entry object is then added to the stack. 
The global operator++() calls are forwarded from this moment to the new top of the 
stack. Note that, in order to avoid loops in the case of the traversing from a higher 
level to the lower level, instead of the UpTheHierarchy  entry, a simple context 
class entry or a (further) DownTheHierarchy node is saved.  In the case that the ob-
ject is created from the lower context, a source_pin is noted in order to skip this path 
while traversing the instance pin vector, in order to avoid returning to already visited 
part of the hierarchy. 
 
     virtual bool operator++()  
     { 
      if(!context::operator++())  
      { 
         while (instPinIterator < instPinIteratorEn d) 
         { 
           if( local_node->instPin(this->instPinIte rator)== 
source_pin )                                                     
           { 
             instPinIterator++; 
             if(!(instPinIterator< instPinIteratorE nd)) 
                break; 
           } 
           if (produceNewContext()) 
              return true; 
         } 
         return false; 
      } 
      return true; 
      } 

Figure 5.7-6– operator++() of the class DownTheHierarchy 
 
 The implementation of the operator functions that belong to the DownThe-
Hierarchy  class first employs part of the algorithm that checks local nodes, defined 
in the Context  class and than proceeds with switching contexts along the possible 
paths down the hierarchy, Figure 5.7-6 .  

A further upgrade of the functionality of the class DownTheHierarchy  is 
encapsulated in its child class UpTheHierarchy . This is the point where the con-
trol of context switching is implemented.  

 The class UpTheHierarchy  is able to switch the context to the up-
per hierarchical level. It is performing this operation through its version of  opera-
tor++(), as shown in the block diagram in Figure 5.7-7. After executing the function-
ality of simpler methods (father classes in the class hierarchy, DownTheHierarchy  
and through it Context::operator++()), operator searches the next proper context and if 
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it is found, changes the focus of the context saving tree, picking a new source node, 
for the newly introduced hierarchical level and adds another entry to the stack. Next 
time operator++() method of the vpin_iterator is called, the call is forwarded to the 
new top element in the stack. An important property of the UpTheHierarchy  class 
is that it maintains only one proper context, deleting all other invalidated neighbours, 
belonging to other abandoned contexts, like the set N1 in the example in the Figure 
Figure 5.7-2.  

 
Figure 5.7-7 – Block diagram of the operator++() method from UpTheHierarchy class 

 
With these three kinds of context saving stack entries, it’s possible to fully im-

plement traversing the multi-context, hierarchical node. 
 The explanation of the class VirtualNode is linked with the strategy of 

committing the MFDP (altering the hierarchical database). Therefore, this will be ex-
plained later having in mind the sections to follow.   

It is important to stress that the algorithm  we have proposed in this section 
enables us to traverse the hierarchical node potentially using the meta hierarchical 
data in order to optimize the iteration. As it was mentioned before, hierarchical de-
signs typically have supply nodes with extreme deepness, which connect literally all 
active elements of the chip (section). For the application of pattern matching, for ex-
ample, it would be unlikely that some pattern is connected over the node that has a 
very big deepness, meaning that some of the neighbouring pins of the hierarchical 
node belong to cells whose placement and semantics are far from the pattern that is 
being explored, sitting in the original, starting context. For this reason, it is possible as 
well, to add to our traversing concept principles of Constrained Graph Exploration, 
such as tethered robot search [55]. This means that the distance (rope length) from the 
starting context is defined. As our iteration changes the hierarchical context, the re-
maining rope length is decremented until it reaches the edge of the possible exploring 
radius. The need to implement this was not approved through the test phase of our 
pattern search algorithms. Note that this approach is approximate, as there is a possi-
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bility that some of the semantically important neighbours are skipped and cut of by 
the introduced “distance” criteria.  

5.8 Multi-context (overlapped) flat data portion  

In this section we are going to connect the concept of multi-context node, de-
scribed in the previous section, with the concept of the MFDP that represents the flat 
view on a small part of the hierarchical database.  

Let us consider the following simple example design, Figure 5.8-1. The design 
consists of two instances of the identical cell/variant (Res), which contains only a sin-
gle device – the resistor device. This cell is instantiated two times in the top level. 
Possible flat views that can be created for this design are: res device alone, which sits 
in the context of the cell Res, the lower (leaf) cell of the definition tree of the given 
design. In the figure, this view is shown under (a).  Another MFDP that can be pro-
duced, as the augmentation of the previous view, is the serial connection between the 
resistor device, of the cell Res and the capacitor device that lies in the top context (b). 
Third possible state of the MFDP is the serial connection of the resistor and induc-
tance (c). All three topologies contain the multi-context node p1. Its state is, however 
different. Its state, as described in the previous section, defines the neighbours of the 
resistor device of the cell Res. Note that the topology where one serial resistor is con-
nected to two devices (d), an inductor or a capacitor is, of course, forbidden! Contexts 
top/X1 and top/X2, are according to the definition of the multi-context node mutually 
exclusive. 

Top

X1(Res)

X2(Res)

a)

b)

c)

d)

 
Figure 5.8-1 – Multi-context Topology Example 

 
In this light we can observe the virtually flattened view’s MFDP as a current state of 
the multi-context topology in, as our example shows, three different discrete time 
moments. Note that this hypothetical discrete time changes happen after each call to 
the operator++() method of the vpin_iterator  class.  
 Therefore, a topology that contains multi-context nodes represents a multi-
context topology. It is defined by the starting point (a device which is selected by the 
DeviceFlatContainer::iterator ). The starting device in our example is the 
resistor device of the cell Res. In case that we have chosen the capacitor as a starting 
device, this multi-context node would have only two allowed states (and one context): 
capacitor device alone and the serial connection between capacitor device and a resis-
tor device.  

Top 

Res 

p1 

p1 
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 The number of states of the multi-context pattern corresponds to the finite 
number of different flat data portions that can be built out of the given starting point 
of the hierarchical design, by navigating. Number of states of the multi-context pat-
tern is strongly dependent on the number of states of each of the multi-context nodes 
it might  contain.   
 For any algorithm that is using the proposed hierarchical framework, informa-
tion about the current context of the multi-context pattern is important. Therefore, 
this, additional, information related to the hierarchical organization has to be handled 
by the user algorithm. For this purpose, described functionality can be defined as a 
characteristic interface.  
 One possible definition of this interface are functions: 
 

• static int getContextIndex() , 
• static void lockContext()  and  
• static void unlockContext() . 
 

 These three functions belong to the Virtual_ContexSaver  class, a con-
text defining class (context carrier) of the VFV. The functions are statically available 
to the user algorithm. 
 Functions, lockContext()  and unlockContext()  force the algorithm 
to iterate only over the neighbouring elements (states) inside the current context, and 
allow multiple contexts, respectively. Note that the navigation can be started with the 
property lockContext(). In this case multi-context node and MFDP property is 
switched off. 
 Function getContextIndex(), simply counts the  number of hierarchical levels, 
from the, starting device. This simple information can be passed to the user algorithm 
in order to allow the simple test each time the virtually flattened view is to be aug-
mented. With this information the user algorithm can detect context switches and co-
ordinate its execution flow to it.  
 This functionality can be useful for the algorithms that incrementally collect 
information from the view and calculate the cumulative results in certain points. For 
instance, it can be used for the purpose of parasitic networks analysis [56]. The algo-
rithm would start calculating the total (terminal to terminal) resistance of the parasitic 
network and the total capacitance, in a bottom-up variant walk, for each root net  the 
results are to be stored and intermediate results, for each cell itself can be reused and 
just augmented for each new value of getContextIndex() . Nevertheless, this 
algorithm would require hierarchical netlist with parasitic information, extracted from 
the layout, which is currently not common.  
 One other usage example is the search oriented pattern matching whose exam-
ple algorithms were represented in the chapter 2. While matching a certain pattern, the 
algorithm will include the context information in its backtracking. The return value 
would be flavoured by the context number.  
 This short pseudo code explains the given situation:  
 
 match(current device); 
           { 
 pick_next_terminal (current device) 
 return_value = recourse(chosen_terminal); 

 } 
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 while (return_value is zero, or if the context index of the match is bigger than 
            the current context index and there are more terminals);  
 
 In this case the hierarchical netlist that is created, for the embossed hierarchy 
(secondary into the primary) is optimal. Hence, if we are iterating bottom up, starting 
from a certain cell, the same variant of the cell would be used in any context in which 
the distributed match appears.  
 Negative side of this approach is that the algorithm has to be specially written 
for this purpose, using this simple interface to control context swithing of the hierarh-
cial data. In this case, simple upgrading of the legacy hierarchical tool and using it as 
a utility for the underlying hierarchical engine wouldn’t be possible. 
 An alternative to this approach is to hide the interface inside the hierarchical 
engine (VFV). 
 

 
 
 
Figure 5.8-2 – Motivation for the introduction of memento. Variant split-up. Child variant is 
given as a Variant A. The device iterator “progress bar” is indicating that a number of starting 
points has been already chosen. Child variant has n parents. After split up, the position of the 
next iterator element is shown.  
 
 This is possible for a certain types of algorithms. For the purpose of pattern 
matching, the algorithm can exhaustively search for the incident devices for a given 
node, and implicitly switch the contexts.   

This solution includes maintaining a memento of the current state of the multi-
context flat data portion. Information inside the memento is maintained and used, 
when the backtracking search process is interrupted, once a successful match is found 
and committed. 
 Memento class should save the starting point of the next pattern search (the 
state of the iterator), and than as a list, each of the alternative iteration starting points 
of each multi-context node that exists in the given MFDP. In this way we achieve the 
optimal algorithm execution. The example in Figure 5.8-2 shows the situation where 
the algorithm iterates over all the devices of the variant (cell) A. The progress of itera-
tion is marked with the yellow ribbon in the device vector. After acquiring a certain 
device, the MFDP will continue to the parent cell (Pi). If the MFDP gets now commit-
ted, the topology of both variants changes and therefore we have to create a new vari-
ant of the cell A called A’. This variant has the cell Pi as a parent cell. The memento 
saves the position of the iterator that locates the current device and also one that picks 
the right parent cell. The further iteration will continue than over the remaining de-
vices of the new variant A’ and than, using the memento information continue with 
the next device, skipping first n devices. 
 This strategy was implemented as our solution for structural pattern matching 
in hierarchical netlists. The approach with memento allowed us to use the original, 
flat, pattern matching algorithm without further upgrades that control the context 
switching. This approach uses the flat algorithm transparently, but the referenced cells 
graph that is created as the result is not completely optimal. By using this approach 
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we can get several identical variants of the design cells which introduces the redun-
dancy. 

5.9 Committing of the MFDP (and it’s repetitive use ) 

In the so far presented text of the current chapter, we have depicted the concept 
of the Virtually Flattened View (VFV), its architecture and the specific, complex data 
structures and algorithms that make it feasible. Additionally, we have presented new 
concepts, such as a multi-context node or the multi-context flat data portion, which 
have emerged together with the overall idea of the VFV. To make the concept of the 
VFV more powerful and flexible, we shall define the way to commit the results of the 
local evaluation to the hierarchical database.  

 This process can be seen as embossing the topology of the materialised flat 
data portion (MFDP) into the primary hierarchy. By primary hierarchy, we assume 
here any “starting” hierarchy on top of which the MFDP has been created. This con-
cept therefore enables the modification of the hierarchical structure of the given de-
sign. More precisely, it alters the topology of the variant graph. For instance, in the 
example circuit in Figure 5.5-2 , if we isolate the inverter whose elements are distrib-
uted across the hierarchical levels and we want to commit its topology as the separate 
cell/instance, we must create the additional variants of the cell MN (and MP), spe-
cially for the instantiations in the cell A. These variants will be missing devices mn 
and mp, respectively. This is done as the devices that previously belonged to the given 
variants of the cells MN and MP are now moved to a new subcircuit (inv). The in-
stance of the newly defined cell inv is placed at the variant of the cell A. Conse-
quently, committing of the match requires several operations. These operations alter 
the affected design hierarchy and build the subcircuit and the instance of the given 
new hierarchical attribute, placing it correctly in its environment. After the commit-
ting process the modified hierarchy “looks and feels” like any proper hierarchical de-
sign. Thus, it is ready for some future proper usage.  

We can now conceptually define the algorithm that commits the given state of the 
MFDP: 

 
1. Refine the MFDP leaving only the instantiations of the relevant de-

vices. 
2. Add the references to the elements (devices and instances) that belong 

to the MFDP the new subcircuit definition.  
3. Add all local nodes of the MFDP to the subcircuit. 
4. Create the instance of the new subcircuit and attach it to the appropri-

ate variant 
5. Handle the pins of the newly inserted instance, attaching it properly to 

its environment. 
 
 When the user algorithm works on the MFDP, it flattens (creates) also some 
“noise” - the elements which are neighbouring the relevant data of the MFDP that are 
important for the algorithm execution. This common scenario happens while, for in-
stance, one performs the pattern matching, or isolates a specific parasitic net that is 
being evaluated, from its environment. Therefore, some of the elements of the MFDP 
that are considered as the environment have to be chopped off leaving only the rele-
vant data.  
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 We can conclude that the “carving out” algorithm behaviour depends on the 
specific application domain. Thus, we will provide the template algorithm, which 
makes the functionality that refines the content of the MFDP interchangeable. A do-
main specific constraint is than separately defined. Therefore, the right place for the 
definition of this function is the Virtual_ElementBuilder  class. Exactly the 
class whose specialisation is created upon the decision on the application domain for 
the framework we propose. Hence, the function that refines the MFDP performs a 
walk over the context saving tree, recursively eliminating all the elements that are 
considered redundant and keeping the relevant structure. This operation is expected to 
have no influence on the algorithm complexity, as it just removes the “noise” whose 
acquiring (materialisation) and analysis is considered as the part of the user algorithm 
complexity. Therefore, the mentioned strategy is expected to add just a constant to the 
overall complexity of the application domain algorithm. 

 Steps 2, 3 and 4 are more or less trivial. Simply, all remaining elements of the 
MFDP are referenced in the new subcircuit definition. In the case of the nodes, a sim-
ple test is performed to check if the node is local and has no additional connections 
outside of the MFDP. If not (the node is local), its reference is copied to the subcircuit 
as well. This step forms a proper bipartite graph, together with the device (instance) 
elements that is placed into the new subcircuit. 

When this is done, we add the instance object to the (relative top) variant, which is 
identified by the context saving tree. This process will than alter the variant’s topol-
ogy in all of its instantiation places. Note that also other variants than the relative top, 
deeper in the hierarchy, might be affected by the embossing step. In that case, we 
have to create new variants that have the modified topology (missing the devices that 
are moved to the new subcircuit). We identify these two processes as processes of 
“covering” and “splitting” variants. The efficient algorithm to perform this step is 
explained in section 5.10. The outcome of the process of embossing can be depicted 
with the example in Figure 5.9-1. In this example, we have embossed the current state 
of the MFDP from the example in Figure 5.5-5. The example shows the resulting hi-
erarchical design where a new instance is inserted into variant of the cell A. This vari-

 
Figure 5.9-1 – Embossing step 
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ant is “covered”, therefore the change is valid for all instances of the given variant of 
the cell A (instances X1 and X2 in our example). With the collapsed rectangles for the 
cells MP and MN, we intuitively show that their topology has changed (they have lost 
the transistors mp and mn, respectively). The change, which was done here, is valid 
just for the relevant instantiations (in the given variant of cell A) of the variants of 
cells MP and MN. These variants are, thus, “split” from original variants of the cells 
MP and MN, respectively.   

The step 5 includes another complex algorithm that will prepare the context sav-
ing tree and the affected hierarchy for the insertion of the new instance. In this step, it 
is necessary to remove all redundant information about the node mappings for all pin 
nodes of the newly inserted instance. Hence, the context saving tree contains redun-
dant mapping between the source subnode and the virtual node at all relevant hierar-
chy levels. Referring to our example, the node 2 of the level MN is mapped to the 
virtual node on the appropriate level and further on the level A. The reason why this 
redundancy was introduced is to enable determination of the proper node mappings in 
an efficient way, at any current hierarchical level. In a word, the introduced redun-
dancy helps the efficient implementation of the view navigation/augmentation. 

 

In addition, it is necessary to “bring up” all the nodes, to which the pins of the 
newly inserted instance should be connected to, to the relative top level. This process 
is necessary to provide a proper connection of the new instance with its environment. 
This process creates some new nodes and to the affected hierarchical levels, if neces-
sary. One situation when the node generation is necessary is depicted in the example 
in Figure 5.9-2. Under (a), the serial connection between two resistors is shown. The 
resistors are distributed over two hierarchical levels. That is sketched by slightly shift-
ing one resistor above another. If the user algorithm abstracts the serial connection 
between two resistors as a subcircuit, the VFV will add the instance of the new ab-
straction to the relative top level and connect it with two pins. In order to connect the 
node 1, that was, originally in the lower hierarchical level, it has been transformed 
into a port and an additional root node in the higher cell is created. This port therefore, 
alters the variant of the lower cell by adding an additional pin (port node) to it. 
 In order to give a common and efficient answer to all mentioned operations we 
create two types of walks over the context saving tree structure. One will prepare all 
the nodes for the commitment and create necessary additional pins for the relevant 
hierarchy levels (instances and its definitions), while the other, in a single context 
saving tree walk performs the committing step.  
 As the result of the described process the variant graph is altered by a new 
variant that holds the introduced instance (on the relative top level of the context sav-
ing tree) and by additional new variants that have an alternated number of pins (addi-

 

 
 

 
Figure 5.9-2 – Example of port creation. (a)The serial connection of two resistors is distributed 
over two hierarchical levels. (b) If the pattern that was searched was two resistors in a series, the 
block that they are abstracted in exists in the higher subcircuit. In order to connect it properly, 
we insert an additional port node to the lower cell; and  the relevant root node in the higher cell.  

1 1 

a) b) 
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tional pins) and devices (they have lost some devices) than the original variant ver-
sion. The modified variant structure is valid and ready for further usage/alterations. 
The technique that is developed for the variant graph alteration enables optimal run-
time as all changes are done locally, with the respect to the MFPD and prior variant 
topology. The technique includes the dynamic variant creation (operations of splitting 
and covering of the existing variants) and the technique of layering. These two con-
cepts will be given in detail in further text (5.10).  

5.10  Distributed variants 

 Distributed variants are the concept which is developed in order to support the 
VFV. This concept enables quick and efficient alterations of the hierarchical design 
(variant graph). The strategy is to represent each variant with a group of objects. Par-
tially, depending on the similarity between the variants different entities share the 
objects that represent them. This process supports the embossing step of the MFDP 
making it more efficient.   

5.10.1 Technique for the topology adaptation 
 

The main principle of the concept of the distributed variants is the technique of 
topology adaptation by variant layering. In this concept, one can define new variants 
by grasping only differences between the current variant and the modified one, hence 
combining the starting variant with the specially defined layer to get the altered topol-
ogy.  

Let’s consider the set of vertices of the bipartite graph that represents the to-
pology of a given variant: }{ YXV ∪= . The sets X and Y are the sets of elements 
(devices) and nodes, respectively. We are for now interested in the set of elements X. 
We can observe X as a multiset MX, defined as a pair (X, m). m is the multiplicity 
function defined as  

 
}1,0,1{: −→Xm . 

 
 Therefore, we can write that  
 

MX = {(x 1, m(x1)), (x2, m(x2)), … , (xn, m(xn))}.  
 
If a given instance of such a multiset contains exclusively pairs with nonnegative mul-
tiplicity values, we call it a base. The layer is a multiset that contains pairs with nega-
tive multiplicity values. 
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Figure 5.10-1 – Topology adaptation principle example. 
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In addition, we define the operation that performs the topological adaptation 
(+). This operation can combine a layer with the base. The operation is only possible 
with the compatible layers and bases in order to get the product of the operation that is 
again a valid base, containing exclusively positive multiplication values.  

As an example (Figure 5.10-1), if we have the valid base B = {a, b, c, d} and a 
layer L = {(a,-1), (c,-1), e}, B+L = {b, d, e} is another valid base! Thus, we can ob-
serve this layering process as a recursive operation, adding an arbitrary number of 
layers on the top of a single base:  

 
Bi+1 = Li + Bi. 

 
In this way, we have defined a technique for altering the semantics of the to-

pology of the given valid set, by chaining a number of objects. The important property 
of this structure is that the proper sets can be “seen” from any layer by “looking 
down” to the atomic base set in the end. Therefore, from a starting set, we can form a 
family of similar sets, strictly by saving differences between them. 

 If we map this principle to our object oriented vocabulary, we can iden-
tify Access_Cell  as a base. Special class Virtual_Variant  is introduced to 
model the layer. Virtual_Variant  referes to the Access_Cell  (base) through 
a method getSource(). The class has a list of elements that are excluded from the base 
(formally represented with the negative multiplicity values) and a list of elements that 
are added to the variant. The list of elements that are to be excluded is delegated and 
represented by the object of a class Virtual_Excluder . This class is actually 
another role of the context saving tree object, Virtual_ContextSaver  (see Sec-
tion 5.6). Therefore, all elements, which belong to the Acces_Cell (cell/varint) 
and are contained in Virtual_Excluder  are eliminated from the resulting variant. 
The depicted architecture is presented in Figure 5.10-2. 

We can use the defined technique to alter the topology of the cell/variant 
graph. We will e.g. observe a case where a serial connection between two resistors R1 
and R2 (that exist in a single variant) is highlighted by the MFDP. The MFPD thus 
consists of two virtual copies of the source resistors (VR1 and VR2). The example is 
illustrated in Figure 5.10-3. The proper object of the type Vir-
tual_ContextSaver  assures the consistency of the paired source and virtual ob-
jects and properly positions the MFDP relative to the primary hierarchy. In order to 

Acccess_Cell

+getSrcView()

-blocks

Virtual_ Variant

Virtual_Excluder

Access_Cell

 
Figure 5.10-2 - Recursive representation of the abstract  interface of the class Access_Cell. 
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emboss the state of the MFDP back to the hierarchical netlist, we employ the tech-
nique of topology adaptation. Therefore, we would use the Vir-
tual_ContextSaver  object (in this case the only member of the context saving 
tree), seen as the Virtual_Excluder  to specify the list of the elements that are 
not any more contained in the variant (the both resistors of the serial connection). Ad-
ditionally, the instance of the new abstraction (Block1) is added to the Vir-
tual_Variant . We see now the group of the Virtual_Variant , Vir-
tual_Excluder  and the former Access_Cell as a new Access_Cell 
(new variant of a cell) .  
  This kind of architectures enables quick changes / insertions of new variants. 
If the difference between two variants of a cell is e.g. in one element, the change is 
done just by specifying the element that determines the difference instead of copying 
all n-1 elements while forming the new variant definition. Another advantage of this 
concept is that all information is present. This enables easy undoing or back annotat-
ing. It is important to add that by usage of this concept it is possible to perform the 
concept of semantic layering. The semantic layering concept enables partitioning the 
database according to the complexity of objects that are instantiated in it. We will 
explain this technique later in this section.  

The price that has to be paid for the benefits that are gained lies in the fact that 
the data that describe variant are distributed over a number of objects. For each refer-
ence to a given variant, a lookup operation has to be performed in order to extract the 
actual data. This is done during the iteration/navigation over the elements of a such 
variant.    

5.10.2 Dynamic variant creation 
 

Once we have established the principle of topology adaptation, we are going to 
apply it to the variant graph. Each element in the variant graph is connected up the 
hierarchy (this connection is determined by the number of references to a parent vari-
ant) and down the hierarchy, by a subvariant vector that links the current variant with 
all children variants. We define two types of operations that employ topology adapta-
tion principle. The first type is called covering and the second splitting.  

We can cover a variant of a cell by altering its content (excluding some ele-
ments from the variant and adding some new elements). Still this change becomes 
valid for all instantiations of the variant, therefore, the update is done by an additional 
object, but the paths are read from the original parent vector (of the previous object). 

 
Figure 5.10-3 – The example of the technique of topology adaptation.  
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This operation doesn’t change the topology of the variant graph. It just alters the con-
tent of the variant itself. 
 The second operation splits the variant from its father variant. In this case, 
only one path is being separated from the original variant and in general we have two 
variants available. Note that if there was only one instantiation of the father variant, 
splitting it will lead to an operation that is somehow similar to covering. The outcome 
is than, that the father variant is no more accessible, but only its altered semantics 
through the layered variant (the layer that augments its semantics).  
 These two operations are being done “on the fly”, while creating the MFDP. 
Therefore, once the initial context is determined the current relative top variant is 
covered. In that moment the Virtual_Variant object that represents the layer which can 
change the semantics of the base variant is void. If the algorithm, from this place 
wants to go up the hierarchy, or down the hierarchy, the appropriate variant will be 
than split! In the case of going up the hierarchy the new relative top variant is, again, 
covered.  
 In order to ensure very fast operations, the variants that are split and covered 
during the evaluation phase (the phase where algorithm accesses the data in a flat 
fashion),are in a “non-validated” state. In this state, the objects that should augment 
the semantics of the father variant have just a part of the necessary information and 
they use the Virtual_ContextSaver  objects to save the relations between them. 
Therefore, variant graph is still not altered. This is very important as in this way, the 
VFV algorithm, can instantly detach new objects, if for instance it decides to move 
the DeviceFlatContainer ´s iterator to another position. If the embossing step 
for the current topology of MFDP is evoked specific algorithm alters the variant 
graph.  

5.10.3 Virtual variant tree 
 
 As we have defined now the steps of covering and splitting of the variant, by 
combining them we produce the virtual variant tree. This tree represents the group of 
variants that are produced out of a single variant from the initial variant graph, created 
by the standard variant creation algorithm. In the tree we distinguish the root element, 
which is the identical (trivial) excluding/upgrading of the input variant. By applying a 
number of “cover” and “split” operations the tree grows and forms the group of leafs. 
Those are all “visible” elements of the tree, they form “access points” for newly cre-
ated variants. The path from each leaf of this tree to the root element represents the 
whole semantics of a single variant, according to the principle of exclud-
ing/upgrading. In order to implement this tree we use the sourceView  reference 
and the specially ordered vector of active elements. From each of these active ele-
ments, it is possible to navigate towards the root, following the sourceView  refer-
ences. Once a variant is covered, or if a variant with a single parent is split, it gets 
deleted from the list and stays in the body of the tree still giving its contribution for 
the excluding/upgrading technique. In this way, we have achieved to dynamically and 
implicitly alter the content of any variant, while building the context saving tree. 
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Figure 5.10-4 – Distributed Variant Tree – The root variant has been split in tree, by arbitrary 
application of cover and split operation. 
 
 In order to illustrate the properties of the Virtual Variant Tree we will consider 
the example given in Figure 5.10-4. In the example we see the state of the distributed 
variant tree after four operations of splitting or covering. In the beginning we had just 
a single variant with a number of parents that it refers to. We have sketched the paths 
to the parents as lines that are given in tree colours. The first operation that was per-
formed on this example structure was the operation of splitting. This has caused the 
introduction of the variant Split Variant 1, while the relevant single path was moved 
to the newly introduced variant. After this process, the root variant and the Split Vari-
ant 1 have been the members of the leaf variant list. The next operation that was per-
formed is the covering step for the root variant. After this step, the root variant trans-
fers its all parent paths (remaining, not including  one that was already transferred to 
Split Variant 1) and it stops being visible. New virtual variant object is instantiated 
and its source link is set to Root Variant. Further, after the covering step we have de-
picted Root Variant has been exchanged with Cover Variant in the leaf variant list. 
Therefore, in this list we have now Split Variant 1 and Cover Variant. In another ac-
tion we split one of the paths (red line) of the Cover Variant and form Split Variant 2. 
In the end, split operation has been performed on Split Variant 1. Since it had only 
one parent path the variant becomes invisible and replaced by Split Variant 3 in the 
leaf variant list.   
 After the outcome of this process, we have three variants and their semantics 
are acquired by referring to the tree: 
 
 Variant 1: Split Variant 3 -> Split Variant 1 -> Root Variant  
 Variant 2: Cover Variant 1  -> Root Variant  
 Variant 1: Split Variant 2 -> Cover Variant  -> Root Variant  
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 As we can see the variants that are the result of the growing process of the 
distributed variant tree are spread over it.  
 We will now in greater detail explain the semantic layering concept. Consider 
a transistor level design. If we apply rules to abstract all transistor devices into gates, 
we see hierarchical design at the gate level. Suppose that a part of the design was ana-
logue, hence no digital circuit were isolated. Since all the information about the logic 
gates (about the abstractions that form logic gates) exist in layers above the atomic 
variants of cells, after applying the topology adaptation technique, we can define from 
which layers (and how deep into the distributed variant tree) the information will be 
read. We can thus exclusively read the data about a given variant that is stored in spe-
cific layer. If we classify the layers introducing indices for them, we can specify the 
complexity of the data they carry. For instance, if we had rules to extract all NANDS 
we can cast variant layers that are adding those conclusions to belong to specific class 
that carries index value 1. All root level variants, carrying information about transis-
tors are assigned by value 0. Employing this principle, during the iteration exclusively 
elements that are stored in layers of the class 1 can be acquired. The algorithm of 
traversing the variants would recourse deeper to the part of the distributed variant 
which has more basic elements in it. In this way we can partition the database into 
concentric shells and pick appropriate shell to see the underlying data on the wanted 
complexity level. 

In the end we will explain briefly how these structures are used to perform dy-
namic variant creation, algorithmically. If the algorithm starts creating MFDP from 
some arbitrary variant, it gets covered and all devices that are mapped to their virtual 
copies (members of the MFDP) are then candidates to be excluded from the current 
variant. The new variant is in this moment non valid. Note that there are no connec-
tions from the valid variant to the variant candidate. That means that, if the embossing 
command is never called, all new non-valid variants can be easily detached and de-
leted. The architecture used to implement this process allows sending the non-valid 
objects directly to the garbage collector which is started in a separate thread. If, on 
contrary the algorithm decides to commit the variant. It would start the embossing 
process (5.9), prune the data of the MFDP if necessary and then commit the changes, 
building new variant layers into the variant graph. After this operation, the variant 
graph is altered and ready for further use and possible changes.  

5.10.4 Layered nodes 
 
 In parallel to the process of excluding invalidated elements of a given variant 
of a cell and adding new elements, the completely analogue process is being done for 
the device pins, using the described technique. In the case of nodes, the strategy is 
slightly different. 
 The virtual node that is linked to the instance pin of some instance (of the 
committed MFDP) adds this information to the set of pins that is aggregated by the 
Access_Node  which is the source of the given Virtual_Node . That means that 
the total number of aggregated pins seen from a given node is distributed over several 
virtual nodes. In order to see all necessary pins that exist as the neighbours of a node 
of the distributed variant, one has to acquire the pointer to the top of the nodes. All 
other nodes will be accessed descending from the top node, following its source-
View  connection. In the example (Figure 5.10-5) we have the base (root) variant and 
in it we have the node N. This node has five pins that it aggregates. During the user 
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algorithm execution we have committed the corresponding MFDP-s that were con-
taining the given node three times. The first committing process has added the virtual 
node VN1 which references a pin connection to the abstraction which was committed 
in this first step. All the information about excluding (of the pins) and layering of the 
nodes is available automatically, by seeing the relevant Virtual_ContextSaver  
object as the Virtual_Excluder . Thus, the mapping between the node N and its 
virtual copy VP6 will be used to acquire the handle to the virtual node. Once  other 
two layers are added the relevant mappings were inherited from the process of the 
construction of the relevant MFDP. If this structure is now to be used to build some 
new MFDP, the node can be approached following the pin P5, from the device al-
ready defined at the base level, or following pins   VP7 or VP8, that were defined in 
two different layers. In any of these three cases in order to get the source node for 
some new virtual copy (of the MFDP that can build the layer 4) VFV assures that the 
top node is picked as the source. This is done by the recursive function:  

 
• getTopNode() 

 
that is called every time a source node from the database is to be read. If the path to 
approach the node N was through the pin P5, we would need three look-ups to 
“climb” to the current top node. First the look-up if performed at the Vir-
tual_Excluder  object of the Layer 1, where we find the mapping between the 
node N and the node VN1, further at the layer 2, at the relevant Vir-
tual_Excluder  another mapping exchanges   VN1 to   VN2 and in the end while 
looking-up at the Virtual_Excluder  object of the layer 3 we get the handle to 
the top virtual node. Once we have this reference we can iterate over all valid pins of 
this complex layered node.  
 Note that the number of look-ups depends on the number of layers employed 
and also on the fact how deep the entry point to this list of layered nodes is. In order 
to incorporate this process (the layering of nodes) into the multiple context node con-
cept and to allow the proper functioning of the iteration process of the 

 
Figure 5.10-5 – Example of the distributed node. The node is composed of three virtual nodes 
and one base node. 
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vpin_iterator , we add an additional stack entry class type. We add the new class 
VirtualNode  to the inheritance hierarchy of the context class (Figure 5.7-4). 
This class is conceived following the architecture of the decorator design pattern  
[49].   
 The strategy here is that any top node, no matter if it was a virtual node or 
some other instantiation of Access_Node, originally present in the database, once it is 
approached during the transversal over all pins of the virtual node (using 
vpin_iterator ) gets the instance of the class Context , DownTheHierachy  
or UpTheHierarchy  if it is a local, root or the port node, semantically. Addition-
ally, if the node is a virtual node and thus its semantics is distributed over several lay-
ers, the object of the decorator class   VirtualNode  is instantiated. The original 
object that handles the proper iteration is referenced inside the  VirtualNode  class 
instantiation, together with the source level of the acquired virtual node. Upon the 
usage of the operator++()  method of the VirtualNode  class it is assured that, 
by using the stack all relevant pins are iterated over recursively. The code which de-
fines this recursive operation follows: 
  
bool Virtual_Node::vpin_iterator::virtualNode:: ope rator++() 
     { 
      if(!visited) 
        { 
         if(!decoratedContext->context::operator++( )) 
           { 
            context_it->stack.push(decoratedContext ); 
  visited = true; 
            if(srcNode) 
              context_it->push(srcNode, source_pin,  true); 
              return true; 
           } 
         return this->context_it->operator++(); 
        } 
      return false; 
      } . 
 

 By defining the described set of very complex data structures and the algo-
rithms that are driving them we have managed to realize the idea of the virtually flat-
tened view. This view is now ready for the test application in order to achieve the al-
gorithm for incremental structural pattern matching in hierarchical netlists. 
 

5.11  Summary 

 In this chapter we have presented the vision and the thorough realisation of the 
virtually flattened view. The view design allows it to present the data of the hierarchi-
cal design locally flat and to commit those local flat data portions back to the hierar-
chical design as new subcircuits. This functionality is identified to be useful for dif-
ferent applications. The intention is to use the view together with different software 
projects that were written for the applications exclusively with flat input netelists, 
neglecting the problems the hierarchical representation includes. For this reason we 
define the view generically.  
 For different application scenarios the view has to get some additional proper-
ties, mirrored as augmentations of its classes’ interfaces, specifically to the given ap-
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plication domain. The design of the view that we have presented allows this to be 
done with ease and elegancy as it was prepared to be flexible. To achieve this we have 
applied advanced object-oriented principles. Good performance, in the first row the 
runtime efficiency, of the operations that are driving the view is allowed by novel 
complex data structures and novel algorithms performed on them, which are specific 
to this view. 
 In the following chapter, we will thoroughly present and value one possible 
application scenario for the VFV. We will create specific changes to the view and 
adapt and integrate it to the flat incremental pattern matching project classify (2.5).     
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6 Application of the VFV to Search Oriented Pattern  
Matching Methods 

 

6.1 Introduction 

 Throughout the second chapter we have analysed the problem of subcircuit 
recognition (SR) in VLSI designs, as a subproblem of graph matching. We have rep-
resented among other approaches the incremental SR approach, where one is enabled 
to flexibly match complex patterns by specifying a set of rules that form a specific 
descriptive language program. As no algorithms that would perform the hierarchical 
pattern matching on hierarchical schematic designs are available, we were motivated 
to search for the solution for this issue and enable the structural pattern matching di-
rectly on hierarchical designs/netlists. 
 The Virtually Flattened View that is defined in the previous chapter with it’s 
functionality:  
 

1. represent any hierarchical netlist using the standard NLDB database objects 
(following standard object–oriented API, the access layer (AL)) 

2. create small flat portions (topologies) of netlist data and offer them to the user 
algorithm 

3. commit possibly altered (cleaned up) flat portions of data to the hierarchical 
database. (commit them to the view) 

 
can be used in order to implement the hierarchical pattern matching algorithm.  
 In this chapter we will apply the VFV on the already existing project (classify) 
that implements the incremental pattern matching approach. This project was written 
to work on exclusively flat input data (flat netlists). In order to accomplish this, we 
will present the specific set-up of the generic VFV (section 6.2), together with the 
minimal adaptations of the flat algorithm (section 6.3). Apart from plausibility and 
functional correctness the hierarchical approach to the structural pattern matching 
allows obtaining irredundant results. This qualitative enhancement is discussed in 
section 6.4. The chapter is concluded with the qualitative and quantitative evaluation 
of the obtained hierarchical algorithm through the extensive tests (Section 6.6).  

6.2 Hybrid layer 

 The application of the classify flat algorithm to the VFV requires a specific 
set-up of the view. We will flavour generic VFV elements in order to enable the flat 
algorithm to work on the data it needs in a proper way. We achieve this by specifying 
a view, whose classes are related to the original VFV classes through the object ori-
ented mechanisms. Particularly, in the case where the interfaces are compatible, or 
one writes a new algorithm that uses specific NLDB interface as the API (possibly 
augmented by some additional properties for the NLDB entities), one can achieve this 
goal by simply inheriting each of the classes with the proper specialisation which pro-
vides the objects of the altered view with the proper augmentation of the interface. 
This task is almost trivial as the view has been designed to be particularly flexible.  



Chapter 6 -  Application of the VFV to Search Oriented Pattern Matching Methods 

118 

Therefore, by adapting the view to the user algorithm we provide the generic view 
with a specific set-up, creating an application domain specific hybrid layer. 
 In our application case, the goal of the hybrid layer is to connect the VFV to 
an already existing project, the flat netlist pattern matching tool classify. It connects 
these two different projects and enables them to work together, serving as some kind 
of adapter. The application domain project (classify) was written even before the 
NLDB and its additional LV (Layered Views) mechanism.  
 Both projects have their own way of representing the electronic circuit. Clas-
sify, as it was written to perform pattern matching in flat netlists, has no mechanisms 
to represent hierarchy, but has the specific interface that enables it to conduct the pat-
tern matching process. On the other hand, NLDB has the classes and the interface 
(defined by the Access Layer) which are capable of representing also hierarchical 
data. By “energising” the interface of the Access Layer with the property of virtual 
flattening we prepare NLDB to provide the “friendly” data layout to the application 
domain algorithm. To summarise, the hybrid layer has to satisfy following criteria: 
 

1. enable classify the look and feel that it is working with its specific (flat) 
data model. Particularly, the entities have to be compatible with those used 
in the algorithm and they have to support the corresponding interface.  

2. On the other side, NLDB has to be able to handle the objects, which are 
provided to the pattern matching algorithm in the flat fashion in its style. 
That means that the objects have to be compatible with the entities of the 
VFV in order to be managed in the proper way. 

 
The answer for the above requirements can be found in employing the multi-

ple inheritance. Thus, we position the view on top of both projects (making the rele-
vant projects’ classes father classes of the given hybrid layer class). 

6.2.1 Positioning of the Hybrid layer 
  

The layer itself is specified as an additional header in the classify project. The 
classes of the hybrid layer have their analogues in both projects as their ancestor 
classes. The typical inheritance relation between the classes of the hybrid layer with 
the classify and NLDB projects is given in Figure 6.2-2. In the figure, in order to ex-
plain the standard architecture, we have used the example of the positioning of the 
class that models the MOS device in the appropriate inheritance graph. On the far left 
side of the figure we see the domain of the classify project and its entity that models 

 

 

 
Figure 6.2-1 – Interface of the cirInstance class of the classify project 
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an element (a device/instance) – cirInstance . From this class we inherit the class 
Cir_VirtualDevice . Therefore, in any place where the algorithm expects an 
instance of the class cirInstance  one can pass, transparently, the instance of some 
of the realisations of the (abstract) class Cir_VirtualDevice . 

Looking towards NLDB (right, predominant area of the figure), 
Cir_VirtualDevice  is the child class of Virtual_Device , as well. More-
over, another class Cir_VirtualMOS  is written in order to connect the Vir-
tual_MOS  class of the (generic) Virtual Layer with the classify project. What have 
we achieved with this (complex) architecture? The classify project models all devices 
with a single class (cirInstance) and further classifies them according to the value of a 
method getType() , while in NLDB project we have an abstract class Ac-
cess_Device  and a family of descendents. By employing such architecture where 
we have a common hybrid object as a subclass of both cirInstance  and Vir-
tual_Device , we achieve that the hybrid classes that stand for descendents of 
Virtual_Device  (Access_Device ) can be seen from the single class cirIn-
stance in the domain of classify project.  
 We further have to partially adapt the interface of the class cirInstance, in its 
descendent Cir_VirtualDevice , to the implementation that employs complex 
algorithms of the VFV. In order to identify exactly the places where this is necessary, 
we will split the interface of the cirInstance  into two parts. The first part corre-
sponds to the application domain specific interface. This is the interface which en-
ables the pattern matching algorithm proper execution. Particularly, those are the 
methods of the first group in Figure 6.2-1:  
 

� setMatch(), 
� clearMatch()  and  
� isMatched() . 

  
 The methods that handle the iteration process and the navigation between the 
elements of the in-memory circuit model of classify project are forwarded to the 

 
Figure 6.2-2 – Placement of the hybrid layer classes in the Access_Device inheritance diagram 
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NLDB! These methods are identified as navigation methods of the class cirIn-
stance . In this way we achieve the property that the objects of the MFDP are pre-
sented to classify in 100% adapted way. Classify analyses the objects, navigates their 
(virtually flattened) neighbourhood and decides if the given topology is equivalent to 
the pattern or not, than it issues an action of encapsulating the objects which are parts 
of the MFDP into a separate instance. All the calls are translated to the operations of 
the VFV which further handles the objects of the MFDP performing the embossing 
step (5.9). In this way both algorithms manage to see the objects from their “worlds” 
and to communicate with them using the appropriate methods. Therefore, the whole 
hybrid view plays a role of a bi-directional adapter.  
 Analogue to the example of MOS element that we have specified, all VFV 
relevant classes are connected to the corresponding classes on the classify project 
side.  
 In general, the wrapping process can face some interface incompatibility prob-
lems. For instance, one project can use the aggregations based on the container-
iterator concept, while another can use linked lists. In the first case a special object 
(iterator) grasps the actual element that is iterated over, while in the second case the 
object itself has the information about its position in the container. Problems like 
these can be easily solved by minimal adaptations of the application domain algorithm 
or employing Adapter Design Pattern [48]. 

6.2.2 Cir_VirtualBuilder, the concretisation of the  Vir-
tual_ElementBuilder 
 
Once we have specified the application domain flavoured classes we have to 

assure that the objects of this kind are going to be built by the VFV instead of generic 
NLDB Virtual_<class>  instantiations. The view design is already prepared for 
the flexible object creation and all that is necessary to be done is to create an appro-
priate specialization of the Virtual_ElementBuilder (5.5) . To do so, we 
will specify a class Cir_VirtualBuilder . This specialisation class is provided 
with the implementations for a set of pure virtual functions of the abstract class Vir-
tual_ElementBuilder . Therefore, all methods that wrap the object creation are 
defined here. They are set-up to create new hybrid objects that are derivated from 
their generic ancestor classes everywhere the VFV wants to create an instance of the 
Virtual_<class>  family. For instance in order to build the Cir_VirtualMOS  
class we simply specify:  

 
Virtual_MOS* InstVirtual_MOS( netlist ::Base_MOS* ptr)  

                { return new Cir_VirtualMOS (ptr);} 
 

Logically, the consistency is vital for the proper implementation of this method fam-
ily. Still, the way the creation process wrapper functions are written, with precisely 
defined return types, should notify the user about possible errors, (for instance defin-
ing the InstVirtual_MOS()  to return CirVirtual_Res* ) already in the com-
pilation time. 
 After specifying this function family we will provide the function implementa-
tion for another generic part of the VFV. In Section 5.9, we have isolated and sepa-
rately defined a templated function to handle the refinement step of the embossing 
process. This part detaches all elements of the current MFDP content that are consid-
ered environment of the structure in focus. For the pattern matching application, the 
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implementation of the templated function will use a part of the interface of the appli-
cation domain specific side. The function would simply run through each of the hash 
containers and keep only the mappings of the elements that are marked as “matched”. 
This means that the algorithm has paired them with a corresponding device in the pat-
tern which is being matched. The implementation of the algorithm is simple. We have 
three loops that iterate over all pin, device and node mappings. The algorithm tests the 
function: isMatched()  and if the element is not matched, mapping is removed 
from the hash, while the virtual copy gets deleted! 
 Having defined a specific builder class, we have prepared the view for the 
execution of the incremental pattern matching algorithm. Therefore, upon the VFV 
creation, we construct the object of the Virtual_Netlist  class with the instantia-
tion of the class Cir_VirtualBuilder .   
 

6.3 Adaptations of the flat algorithm 

The main concepts of the incremental pattern matching algorithm work 
smoothly with the described hybrid view. Still, in order to minimize the execution 
time of the algorithm, we want to apply the greedy algorithm that has been written to 
optimize the execution of classify for flat pattern matching. This algorithm has en-
abled the intelligent path choosing technique for the pattern matching algorithm that is 
driven by the templated rules, the rules that incorporate the concept of optional ports. 
In order to achieve that, the best path first algorithm, (section 2.6) has used specific 
global quantities (the number of neighbouring elements for each net). Therefore, the 
path that appears to be the best, following the net with the least number of neighbours 
is chosen. In a flat netlist, it is trivial to acquire the quantities about the number of 
neighbouring elements of a net. This kind of information is then built while forming 
the flat netlist. Such handy quantities are unfortunately not possible to have in a hier-
archical netlist. In the case of hierarchical netlists, we have port nodes that are con-
nected up the hierarchy. Instances of a single variant are connected to different to-
pologies with different number of neighbouring devices.  

As an alternative to the flat netlist statistics we have developed an algorithm 
that labels the nodes in the hierarchical netlist according to their hierarchical proper-
ties. We create a factor that determines the node deepness, or, to how many hierarchi-
cal levels is the node distributed. In addition we specify also the wideness of the node, 
meaning to how many instances a node gets connected in a single hierarchical level. 
This technique would enable us to favour “shallow” hierarchical nodes, those that 
have as local connectivity as possible. It is natural that such nodes don’t have some 
dramatic number of devices connected to them which would cause the linear search 
complexity to dominate in the algorithm complexity bringing extensive runtimes.  To 
depict the extremes: on one hand we have a node with deepness 0, this node would be 
a local node that has just a couple of neighbouring devices connected to it. On the 
other hand we have the supply node which leads to every subcircuit of the design! An 
alternative to the best order of execution algorithm is applying the concept of stop 
nets. We can assign that the nets of a certain type (supply nets, reference voltage nets) 
are the places where the recursive search stops. Stopping the recursion at stop nets 
does not handicap the algorithm execution, as no pattern is connected exclusively 
through supply nets.  

 The statistics about the nodes are collected in global walks over all variants. 
First the bottom-up walk over all variants is performed. In this process we perform the 
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iteration over all instances that are referenced in the given variant and than iterate 
over all pins of the instance in focus. Once the proper pin of the instance is picked, we 
acquire the handle to the nodes it pairs, hence the node in the domain of the variant 
which is in focus and the port node inside the definition of the instance. As we are 
performing the bottom-up walk over the TopDownVariants  vector, we are sure 
that the lower node already was processed. Therefore, we perform a check and pass 
the integer label that is built by the following code to the higher node. 

 
if ( nodeDeepnessVector->at(upper_node) < (nodeDeepne ssVector->at(lower_node) + 1  

   + upper_node->instPins()->size()) ) 
    nodeDeepnessVector->at(upper_node) =  
    nodeDeepnessVector->at(lower_node) + 1 + upper_ node->instPins()->size(); 
 

The values are stored in a separate vector for each variant of the hierarchical 
netlist. Each vector’s size corresponds to the count of all nodes in that variant. 

After the described step we have the appropriate label for all the different 
nodes in the variant graph on the root level for each of the hierarchical nodes. Now we 
pass the acquired values in another similar walk, this time iterating top-down over the 
variants. Now we know that each higher node was already processed and we pass its 
label to the lower node.  

 
if (nodeDeepnessVector->at(lower_node) < nodeDeepness Vector->at(upper_node)) 
    nodeDeepnessVector->at(lower_node) = nodeDeepne ssVector->at(upper_node); 

 
 For the proper assignment of the hierarchical node labels we use standard API 

of NLDB developed for the variant concept.    
 
defineNodeDeepness dnd; 
ForAllVariantsBottomUp(cellIt, dnd); 
passNodeDeepness pnd; 
ForAllVariantsTopDown(cellIt, pnd); 

 
Classes defineNodeDeepness  and passNodeDeepness  are defined as 

function objects, having an operator function compatible with the global iterating 
functions ForAllVariantsBottomUp()  and ForAllVariantsTopDown() . 

In this way we have achieved to define the alternative strategy to drive the BPF 
algorithm. 

6.4 Hierarchical result reports 

In chapter 2, we have already stated that the output of the classify tool is a spe-
cific protocol file that lists the contexts which satisfy the specific conditions. That is 
actually the file that stores the results of the matching process.  

The protocol file was developed for the purposes of ERC where it was neces-
sary to point to the specific device that was isolated by the particular algorithmic 
check. Each occurrence of the protocol error in that case was a single device. The pro-
tocol file would be parsed by a specially devised algorithm that than marks the errors 
directly in the Composer® IDE. Therefore the standard syntax of the file was as fol-
lowing:  

 
<global summary > 
<error report 1> 
<error report 2> 
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… 
 

The global summary gives a review of the checks specifying the number of 
matches per rule or the overall flat and hierarchical number of matches. 

The syntax of the each error report consists conceptually of:  
 
<paths> 
<device(s)> 
 

For each hierarchical occurrence of the faulty device the list of paths would be 
given. The paths get then analyzed by the IDE in order to mark the proper instances 
along the path, in the end pointing directly to the isolated device which was the target 
of the check.  

The protocol file is written in general to support the hierarchical pointing to 
the specific devices in the design. Therefore this file marks “errors” that consist of 
two parts. First, we have the path, followed by the devices which represent the objects 
that are isolated by the corresponding tool’s algorithm.  

 The flat classify reports syntax was following the above defined struc-
ture, still as no hierarchy was present in the input files, the paths in the reports were 
hard coded with the statement “--Root Level--“.  Thus, all results that are specified 
reside in the top level of the electronic circuit. Hierarchical classify offers isolation of 
errors directly in the subcircuit where they are defined. For this reason we have up-
graded the algorithms that generate the protocol files of the original classify in order 
to support the path generation. As the devices of the given pattern can be further dis-
tributed through the hierarchy (deeper than the relative top level), we have introduced 

Flat: 
===============================  
Classify  - Netlist Checks 
=============================== 
Summary of errors:  
2 violations - NAND 
Total number of error classes: 1 
Total number of parameter errors: 2 
=============================== 
Error 1 
Title: Find All Inverters 
------------------------------------------------------ 
Path: -- Root Level -- 
------------------------------------------------------ 
Device(s): 
m/x1/x2/mN0  
m/x1/x1/mP0 
=============================== 
Error 2 
Title: Find All Inverters 
------------------------------------------------------ 
Path: -- Root Level -- 
------------------------------------------------------ 
Device(s): 
m/x2/x2/mN0  
m/x2/x1/mP0 
=============================== 

Hierarchical: 
===================================  
HClassify  - Netlist Checks 
=================================== 
Summary of errors:  
2 violations - NAND 
Total number of error classes: 1 
Total number of parameter errors: 2 
Total number of hierarchical parameter errors: 1 
=================================== 
Error 1 
Title: Find All Inverters 
----------------------------------------------------------- 
 path: X1 [A ] ( X2)  
----------------------------------------------------------- 
Device(s): 
X2/mN0  
X1/mP0 
=================================== 

Figure 6.4-1 – Flat and hierarchical error protocols. The example shows the output of the inverter 
search process. 
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a specific relative path. This path is written directly in front of the device’s name in 
the reported devices list.  

The above described protocol file can be illustrated by the example given in 
Figure 6.4-1. In this example we have reported the occurrences of inverters that ap-
pear in the hierarchical design in Figure 2.3-3.  The flat version of the report (that 
assumes the flattened input netlist prior to algorithm execution) reports two errors. On 
the other side, the hierarchical version of the report registers one hierarchical occur-
rence of the inverter, but specifies the multiple paths of its instantiation. Note that the 
path which is given in the example is also “condensed”. Condensing paths means that 
the common parts of two different paths are grouped together while the different in-
stantiation paths of the given hierarchical level are listed in brackets. The example in 
the Figure 6.4-1 is simple; it contains two paths of one hierarchical level that are 
combined. We read the path in the example as: “in instance X1 of the cell A and also 
in instance X2”. In the example we have just one hierarchical level, if the hierarchy is 
deeper, we can get very compact paths and consequently shorter, more readable out-
put file.  

The hierarchical error protocol reports aggregate non-redundant results. This is 
very important in order to suppress the time needed for their analysis. In the trivial 
example that we have specified, the counts of the reported errors in the flat and the 
hierarchical results differ by the factor of 2. In realistic examples, as we will show in 
the next section through our experiments, this factor is two orders of magnitude in 
average. This achievement clearly points out the benefits of the hierarchical algorithm 
and is one of the key results of our research project. 

In order to compare two versions of the protocol file, thus to prove the func-
tional equivalence between the flat and the hierarchical algorithm, we have written a 
specific Perl script. The script “flattens” the hierarchical report by connecting the 
paths of the reported devices of each error with their names (combined with relative 
paths) as a prefix. Thus, in the example, from the single error report with two paths, 
we would get two pairs of CMOS transistors. Thus, we obtain the redundant flat list 
of errors that is comparable to the originally flat error report.  

 

6.5 Example of the matching process by incremental hierar-
chical structural pattern matching 

 Once we have prepared the VFV and connected it to the pattern matching tool 
classify, we can perform incremental structural pattern matching directly on hierarchi-
cal designs. In order to illustrate this process we include a simple matching example 
where we match all latches in a given hierarchical design in two incremental steps. 
First we will match all inverters and than all latches that are instantiated in the given 
design. The example that we give in Appendix C emphasises the background actions 
of VFV during the matching process.   

6.6 Case study 

In order to provide evidence of the functional correctness, qualitative benefits 
and to measure the typical runtime and memory consumption of the application of the 
VFV on an search oriented incremental pattern matching algorithm, we have em-
ployed a number of tests.  
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 The runtime performance tests were computed on a machine with AMD Op-
teron processor at 2.6 GHz and 64 GB operating memory, running Linux RHE 4. 
Throughout tests, the memory consumption was measured externally, by evaluating 
the relevant process size using the third party tool - massif, from the valgrind package 
[57]. The authors of the tool claim the precision within 1% for the obtained results 
(the peak memory usage of the process).  

 We have tested two flat classify versions and four hierarchical classify ver-
sions. They are result of the algorithm evolution, depicted in Figure 6.6-1.The pro-
gram version named c42 is the initial version of the incremental pattern matching tool 
classify that sequentially picks the terminals of each device while proceeding into the 
DFS. The version that implements the enhancement where the flat algorithm picks the 
best path, by the greedy approach is denoted as c44.  

Further, we have the default hierarchical classify version is c52, which is the 
c42 flat algorithm ran on VFV. The version c54 is the flat algorithm version c44 ran 
on VFV. In addition a specific optimisation (fingerprint verification) of the iteration 
directly inside the VFV in order to test how this fact influences the execution of the 
hierarchical pattern matching is implemented. This version is denoted as c52f and 
c54f, when applied on c42 flat algorithm and c44 flat algorithm, respectively. The 
fingerprint verification principle is given in (Appendix B).  Note that the implementa-
tion of this principle is just preliminary and approximate and that it, in some cases, 
misses the matches of highly distributed contexts. This can be eliminated by further 
work on the implementation of the fingerprint verification principle. Thus, we include 
this version of the algorithm just to prove if the potential benefits it brings are worth 
the time to implement such an enhancement in order to make the specific application 
of the VFV on structural pattern matching more robust. 

Throughout the experiments, the behaviour of the mentioned program versions 
against five different rule sets was analysed. Four rule sets were written in order to 
recognize the elementary circuit elements:  

 
• All inverters 
• All flipflops (as a single, flat rule) 
• All inverters and than all flipflops 
• All NANDs. 
 

 
Figure 6.6-1 – Structural pattern matching tool – Classify - algorithm evolution and available 
versions. 
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The rules have in common the net type predefinitions, where all standard 
names for the supply and constant voltage nets are marked. This part is followed by 
the individual definitions of the block rules(s) to recognise above given simple con-
texts. The contexts that were recognised are then reported in the protocol file without 
any parameter evaluation. The evaluation of these examples can clearly show how 
various recognition rules behave and contribute to the global runtimes and memory 
consumptions of the more complex programs written for classify. This will be dis-
cussed together with the results we have obtained. 

As an additional rule set  we have included the test that isolates the realistic in-
dustrial contexts needed in order to  
 

• detect the slow nodes, that are driven with weak drivers (load-
check). 
 

 Loadcheck is a typical industrial check that is also given as the example of 
structural pattern matching application in VLSI, in the first chapter.   

 These five rule sets were run against two families of hierarchical netlists. The 
family of the given hierarchical netlist is obtained by gradually increasing the size of 
the netlist. This is achieved by allowing that the previous example netlist is one sub-
circuits instantiated  in the context of the next example netlist in the given family. In 
other words, the successive netlists of a given family are always contained one into 

 

 
Figure 6.6-2 – Quantities of the example hierarchical netlist families. a) Semilog graph that shows the 
relation between the flat and the relevant hierarchical element count. b) Graph that depicts the meas-
ured hierarchical design height. c) Hierarchical design density for the example families of netlists. 
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another. In this way we can get the opportunity to observe the scaling of different al-
gorithm parameters that we have measured across the developing size of the hierar-
chical netlist. As a measure of complexity of the netlist we take the equivalent flat 
netlist’s number of elements, or alternatively the number of atomic elements in the 
hierarchical netlist. Of course, as the connectivity of the elements is important and the 
hierarchies have different quantities we can not guarantee perfect scaling. In order to 
depict the quality of scaling the relation between the hierarchical and the flat element 
count, the height and the density of the example hierarchical netlists of both families 
are given in Figure 6.6-2. The figure shows constant increase of both parameter val-
ues. The two families are generated out of two realistic industrial hierarchical netlist 
examples. The example designs represent DRAM memories and thus contain a highly 
redundant and enormous in size array circuit. The array contains the memory cells. 
This subricruit of the hierarchical design is contained as the last example netlist of 
each of the families. As we can see in the figure, the growth of the flat element count 
compared to the hierarchical element count of both example netlist is very steep. Note 
that the scale of the graph is semi-logarithmic, having the logarithmic axis that quanti-
fies the number of flat elements of the given netlist.   
 With respect to the flat netlist size, we have two domains of hierarchical net-
lists, the lower and the upper domain. In the lower domain the flattening of the netlist 
and application of the flat algorithm is still possible, using typical available computer 
resources. The border between these two domains is than flexible and depends on the 
hardware that is used to execute the algorithm. In the lower domain we have com-
pared the execution behaviour of two algorithm strategies (flat and hierarchical). The 
measurements were done with flat netlists that contain up to 2 500 000 elements. In 
the higher (exclusively hierarchical domain) we have performed tests on examples 
that have up to 1 000 000 000 (one billion) (flat) elements. These example netlists had 
also a very high gain factor, eg. the one billion element example netlist consisted of 
just 5000 atomic elements. This is due to the already mentioned fact that the available 
big examples include a non-specific highly redundant DRAM array subcircuit. This 
part of the design topology has also non standard interconnections. Hence, a single 
transistor, the member of the memory cell is connected with millions of other similar 
transistors that belong to different memory cells, members of the array. The setup in 
order to successfully process this part of the memory chip demands further work. We 
have, with the already available setups, managed to run some of the tools/runsets on 
this highly redundant, non standard netlist.  
 All throughout the tests we have confirmed the functional correctness. Further, 
as the hierarchical approach was used, we witness the enormous enhancement in the 
relation between the hierarchical and flat report counts. This relation is depicted in 
Figure 6.6-4. The graph gives the distribution of the ration between the number of flat 
matching reports and the number of hierarchical (condensed) matching reports. The 
ration is distributed over the flat element count in both netlist families. Graphs overlap 
several measurements (for nand, inverter, flip/latch and loadcheck rules), as shown in 
the graph legend. We can see that the ratio between the  flat and hierarchical match 
count constantly increases and reaches, typically, the value of two orders of magni-
tude, for bigger, realistic in size, example designs. 
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 In order to illustrate the gain, the linear bar chart gives the growth of the num-
ber of flat matches compared to the number of hierarchical matches (Figure 6.6-3). 
The pairs of bars represent the numbers of flat and hierarchical number of matches, 
respectively, for 6 different (ordered according their size) hierarchical netlists. This 
graph clearly illustrates the difference in time needed by the user of the tool (the de-
signer) to evaluate the obtained error protocols. The result which is represented here is 
in the same time the most revolutionary achievement that the conceptually new hier-
archical pattern matching approach allows.  
 The performance tests are nevertheless also very important as the stable run-
time and low expected complexity of the progress of the memory requirement and the 
time requirement of the hierarchical pattern matching algorithm, allow usage of the 
hierarchical results in all realistic application cases. For this reason we have thor-
oughly tested the algorithm potentials from this aspect and proven the positive 
achievement as well as pointed out the issues that the new algorithm in this early de-
velopment stage has and that should be addressed in the future.  
 Let’s start with the distribution of the required time for matching of the ele-
mentary rules, over the complexity (number of flat elements) of the netlist. All meas-
urements for both netlist families are given together in the graphs in Figure 6.6-5. The 
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Figure 6.6-3 –  Nr. Hier. and flat matches for different hierarchical netlists. The blue bars 
depict the number of redundant, flat match reports, while in purple the number of corre-
sponding hierarchical matches is given. 
 

 
Figure 6.6-4 – Linear distribution of the ratio between the number of flat reports and the 
hierarchical reports. The graphs give together the obtained results for the nand, flip/latch 
inv and loadcheck rules. 
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tests were performed on 4 different (simple) rules and 6 different program versions, 
giving 24 curves in the graphs (a) and (b). The curves depicting the measured runtime 
of the flat algorithm version group in the higher domain of the graph, while the hier-
archical runtimes group low, with dramatic differences of the required time to com-
plete the algorithm execution for bigger target netlists. 

Apart from these two groups, one can notice that a line which describes the 
progression of the execution time of the 4.2 algorithm applied on the simple NAND 
rule shows the super-linear complexity and reaches higher values than typical for 
other rules of both flat classify versions. This rule is an example of the penalty that the 
suboptimal 4.2 algorithm version pays for blindly approaching the nets neighbouring 
the given device which it is analysing, following the nominal order of the device’s 
pins. The time required for the execution of the given rule by algorithm 4.4 is together 
with all other tested rules, inside the upper cluster. Note further that the differences 
between flat and hierarchical clusters are more drastic for the Family 1 than for the 
Family 2. This is in correlation with the difference in height of the hierarchies of the 

 

 
Figure 6.6-5 – time complexity of different algorithm versions. a) performance of elementary rules on 
Family 1. b) performance of elementary rules on Family 2. c) performance of the loadcheck ruleset 
on Family 1. d) performance of the loadcheck ruleset on Family 2. Different classify versions are 
denoted with cxx, where xx is the relevant program version. The elementary rules are: inverter, 
latch, flip and nand.  
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Family 1 and Family 2. Family 1 has higher hierarchies. This difference in values is 
noticeable also for the measurements of the memory usage of the algorithm run 
against two netlist families. 
 Once many rules were combined in the complex loadcheck program, the rele-
vant numbers got consequently larger, but the differences between the typical algo-
rithm runtimes became even clearer. This is given on two semi-logarithmic graphs 
that combine the execution times of different classify program versions for both fami-
lies (Figure 6.6-5.c,d). In this case we have the (trivial) runtimes of the hierarchal al-
gorithm grouping (for the first family) around the value of ~50 seconds for the netlists 
up to 2.5 millions of  elements, the enhanced flat classify algorithm at 103 and the  
measured runtime of the 4.2. classify version up to 1.2*105 (around one and the half 
days). The corresponding differences are present also in the case of Family 2, just 
with smaller gaps. To conclude, the measured difference between the execution times 
is by two orders of magnitudes compared to the enhanced flat algorithm, further, the 
difference between the enhanced flat algorithm and the initial version is another two 
orders of magnitude. Note that in this domain the differences between the hierarchical 
algorithm versions are not drastic. We can explain that by the fact that the hierarchal 
algorithm has far lower number of attempts to match the given context, it pays also 
the lower price for each false match.  
 Having in mind stated above, we have shown that the enhanced flat version 
allows the stable application of the flat algorithm in the domain where the flattening is 
possible. The progress of this algorithm version is then linear, the typical complexity 
claimed by different authors of algorithms in the domain of flat structural pattern 
matching. The version 4.2 unfortunately shows an indeterministic complexity. The 
success of the enhancement of the flat algorithm was also proven during the up today 
more than two years of professional industrial application.  The values measured for 
the hierarchical algorithm versions prove the sub-linear complexity, with respect to 
the flat size of the given hierarchical netlist.  
 The measurements of the memory consumption were done for the identical 
tests that were used to measure the gain in the relation between the hierarchical and 
flat number of reports and the time complexity of the algorithm. The results obtained 
are similar to the results of the time measurements, with the addition of identical 
memory consumption behaviour of the two flat algorithm versions. This was expected 
as the solution for BPF algorithm does not include the significant memory consump-

 
Figure 6.6-6 – Memory Consumption. a) Family 1. b) Family 2. In both families the elementary 
rule (flip, latch, inv and nand) memory usage measurements are given with solid lines, while 
the loadcheck memory consumption is depicted by the dotted line. The flat algorithms are 
marked with a square, while the hierarchical runs are marked with an x.  
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tion overhead. On the other hand similar statement is valid for the hierarchical algo-
rithm if one assumes that the size of the materialised flat data portion is neglectable. 
This is true as the patterns which are being searched for have just couple of elements 
each.  
  For given reasons, we have measured the memory consumption on the repre-
sentative algorithms of both groups, on versions c44 to get the typical memory con-
sumption of the flat pattern matching and c54 in order to get the results for the hierar-
chical algorithm (Figure 6.6-6). 
 The measurements have shown that the typical flat approach memory con-
sumption grows linearly, while the hierarchical memory consumption shows once 
again the sublinear complexity. In the case of the more complex rules the memory 
consumption is higher for both flat and hierarchical versions, as it is necessary to rep-
resent all relevant contexts that were recognised with the corresponding objects. 
 Let’s now analyse the performance of the algorithm in the higher domain, 
where no flattening is possible. In this domain we have compared the runtimes of the 
four different hierarchical versions, to investigate the benefits which the different hi-
erarchical approach enhancements bring. We have tested these algorithm versions 
against two example netlists which include the DRAM array. These netlists were the 
full-chip netlists of two example families containing roughly one half of the billion 
and one billion flat elements for the first and the second family, respectively. 
 The results we have obtained for measuring the time requirements for this al-
gorithm are given in Figure 6.6-7. 
 The bars show the runtimes for the latch, flip and the inverter check, respec-
tively. These are the rulesets for which we have managed to obtain the results against 
the hierarchical netlist that includes the non-standard array. From this graph we can 
conclude that the runtimes are the most stable and optimal for the algorithm version 
c54f.    
 The overall tests have shown that the concept where all the problems that the 
hierarchical data brings are solved inside the database (the way the data is presented 
to the algorithm) is feasible. The adaptation to the needs pattern matching algorithm 
was further easy due to the flexibility of the view architecture. The feasibility and thus 
functional correctness of the results gained by the application of the VFV to the flat 
pattern matching algorithm has been strengthened with the in average two orders of 

magnitude compression factor for the error reports. Further, the tests have shown that 
the potentials of the hierarchical algorithm bring the sublinear complexity in memory 

 
Figure 6.6-7 – Runtime requirements for the examples in the domain where no flattening is possi-
ble. 1 – latch rule, 2 – flip rule, 3 – inv rule.  
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requirements and required time (sublinear to the number of  elements in the equivalent 
flat neltist). Nevertheless the adaptations of the VFV are required in order to be able 
to run it in any application case and to get more robust algorithm for the domains of 
big hierarchical (unflattenable) netlists. In this domain we have, in some sense, the 
repeating of the history. The c42 flat algorithm had a non-optimal order of progress-
ing into recursion. This was fixed by the version c44 of the flat algorithm. This ver-
sion is still heuristic and there is no theoretical proof that it will work in any case. The 
long-term, stable industrial application has solicited the good quality of this approach. 
We have, in further work, to enhance the optimality of the ordering the pins of ele-
ments for the hierarchical algorithm and in despite of the additional complexity in 
acquiring the quantities weight the different paths properly. However the clear idea 
and the strategy to fight this problem is ready and should be implemented through the 
short term research to allow the smooth application of the powerful algorithm on ap-
plication cases that include atypical highly redundant DRAM array subcircuit.  
 To conclude, the performed experiments show high potentials of the chosen 
solution recommending it as a common solution for hierarchical structural pattern 
matching. Its flexibility and easy adaptability (with possible minimal changes of the 
view strategy) allows that other existing or future flat algorithms that analyse sche-
matic designs can take benefits of the hierarchical data representation.  
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7 Conclusion 
  
 We have completed the investigation of the problem of structural pattern 
matching in the area of static verification of VLSI hierarchical designs. A solution has 
been found for structural pattern matching in hierarchical designs. It can be also ap-
plied to other various similar algorithms that need transfer from the flat domain to the 
hierarchical. 
  Our contribution includes establishing the methodology of so-called layered 
views on the hierarchical schematic data. We have identified the standard view archi-
tecture that enables polymorphic views on the hierarchical organisation of the given 
data model. The standard architecture is specified using advanced object-oriented 
concepts. We have further defined the novel Virtually Flattened View (VFV)  using 
the proposed standard architecture. VFV presents the data of the hierarchical design 
locally flat. The highlighted, flat data portion can be formed orthogonal to the design 
hierarchy. Additionally, in order to make the view application easier and more power-
ful we have developed a technique that enables embossing of the flat data portion that 
has been created into the primary design hierarchy. This operation affects the design 
hierarchy and commits the given data portion as a separate subcircuit. The committing 
technique was designed to enable very quick changes. The complexity of the commit-
ting technique is thus tied to the size of the flat data portion and not the size of the cell 
that is being altered. VFV development included isolation of some specific data struc-
tures that enable the proper functioning of the view. It also included the creation of a 
set of very complex interrelated algorithms on those data structures. VFV architecture 
is generic and allows flexible upgrades of the view entities to meet specific user algo-
rithm requirements. Hence, entities of the view that model given database elements 
can include application-specific augmentations of the interface.  
 In order to provide the evidence of the feasibility of this concept and to 
achieve the needed hierarchical structural pattern matching method, we have applied 
the developed VFV on an existing project that implements the incremental pattern 
matching principle on flat netlists. With the aim of accomplishing this we have used 
the flexible view design, adapting its entities to the application domain. The flat algo-
rithm could be used with just minor changes. Changes included very local adaptations 
of the flat algorithm to allow it to handle the new principles, which a fact that the 
matching is performed on the cell definitions of the hierarchical database brings. The 
enhancement that is introduced is specified as an upgrade of the matching results re-
port protocol. We have introduced a hierarchical report protocol, where each match is 
tied to a specific cell of the hierarchical design. This new concept allows non-
redundant match reports.  
 The realistic tests which have been executed on industrial examples have con-
firmed the functional correctness of the method. Tests have allowed us to properly 
quantify the hierarchical pattern matching report protocol, which is conceptually new. 
We have concluded that this new report type allows the improvement of the effective-
ness of the algorithm by an average of two orders of magnitude. This means that, by 
taking use of the hierarchy one can now extract precisely the wanted topologies that 
are instead of being related to their instantiation contexts, now related to their non-
redundant definition contexts, dramatically suppressing needed effort (man power) to 
analyse the reports. 
 Performance tests of the algorithm have shown that, as designs increase in 
complexity, the growth of time and memory required is sub-linear.  The new algo-
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rithm is several orders of magnitude superior to the flat algorithm already for sample 
designs with  > 80 000 flat transistor count.. We have further shown that the algorithm 
is now capable of processing target designs that cannot be flattened (using current 
typical computer resources), those having more than a billion flat elements.  
 In this domain we have organized the roadmap of enhancement of the set of 
sophisticated concepts in order to achieve the optimal runtimes. Future work thus is 
related to exploring the identified possible improvements that the hierarchical data 
model can bring, as well as fine-tuning and adapting the specific hierarchical design 
personalisation concepts (the concept of cell variants) to the VFV. In this way we can 
exploit the new methodology optimally. 
 The overall results provide a strong recommendation that the described ap-
proach can be used as a standard for addressing the problems that hierarchical organi-
sation brings. 
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Apendix A (Personalisation by variants) 
 
Commercial EDA databases are in  most of the cases implementing the data 

model of the standard SPICE format. For this reason they should  support the concept 
of cell parameters, also present in the SPICE format. This concept is one of the crutial 
reasons for the personalization. The concept of parameters leaves a part of the data of 
the cell definition templated,  to be resolved later, in the context of its instantiation. In 
this way we can have cells with templated transistor widths, lengths or some other 
device parameters. This concept can be illustrated by the example in Figure A-1. In 
the example a hierarchical netlist, which apostrophes different concepts of flavouring 
the instances of the given cells is shown. Note that for clarity only this aspect was 
taken into account and that the example has no electrical sense. As it is shown, by 
different parameter defining techniques, instances of the cell A have different parame-
ter values. For example, the transistor in the instance I1 of cell A has the width of 2  
and the length of 2, on the other hand instance I2 of the same cell has the values w = 1 
and l = 1 for the transistor.  Further, as a part of the specific algorithm, nodes (nets) of 
the hierarchical netlist can be flavoured by type that describes their semantics. This 
concept is widely used in different applications through the technique of signal propa-
gation. This is another property that can flavour an instantiation of the given cell.  

Additionally, cells are characterised by the topology of its pins. Hence, a cell 
can have its pins shorted somewhere up in the hierarchy. The consequence of this is 
that two nets, cell pins that are connecting the cell with it’s environment, have to be 
merged (seen as a single net). This produces the topology which is slightly different 
than one which is given by the cell, depending only on the instantiation context.  

In order to suppress redundancy, and still provide user application with resolved 
templated data of the cell, in place, we introduce the concept of variants to group all 
instances with identical templated data that is interesting for the specified application. 

We create variants by grouping instances of the same definition by mentioned 
criteria. Therefore, according to the parameter value we can subdivide the given six 
instances of our example, which share the definition, in two groups. First group of 
instances has the definition which has parameters resolved with values w = 2 and l = 2 
(for instances I1, I3 and I5), and second group which has parameter values w=1 and l 
=1 (for instances I2, I4 and   I6). 

Without propagating node types over devices, we can again group different in-
stantiations of the cell A according to the node type. Therefore the grouping according 
to this criteria connects instances I1 and I3, as they have nets net1 and net2 without 
the type and grounded net3, further, instances I2 I4 and I6, which have net1 on vint -  
supply net type, net2 without  type and grounded net3 and in the end, instance I5 is in 
a different variant, as net 3 is at vnwl here. net1 and net2 again have no node type. 

A third classification criterion is grouping according to cell pin topology. In the 
given example we have a group with I1 and I3: net1 and net2 are connected and an-
other group of instances I2, I4, I5, and I6 where no pins are connected directly. In 
total two variants according to this criteria alone.  

In addition, it has shown up useful to create variants of the given cell by group-
ing instances according to their instantiation position. More precisely, according to the 
parent cell in which they are directly or indirectly instantiated. This can be useful in 
order to enable the user application to “concentrate” on the given block of the design 
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and perform specific algorithm only inside (or outside) it. Note that if we put each 
instance which has different parent cells to a separate variant, we might end up with a 
huge number of variants. Therefore, we build the variants based on "parent cell condi-
tions" to be defined and carefully used by the application. In the example, we can, for 
instance, distinguish between devices inside or outside of the cell GENBLK* and ad-
ditionally inside or outside SPINE cell. This rule would gives three additional vari-
ants:  

I1 and I2: In GENBLK* but not in SPINE, I3 and I4: In GENBLK* and in 
SPINE and in the end I5 and I6: Not in GENBLK* but in SPINE. 

Note that we can now group instances which share all of defined criteria in the 
same time. We achieve this by mutual intersections of all sets of instances, which rep-
resent variants according to the single grouping criterion. 

 To illustrate this we will refer to the example in  Figure A-1 once again. If we 
need parameters, node types, and pin topology but might omit parent cell conditions, 
we have the variants: 

 
• Variant V1: I1 and I3 

o r=0.1, w=2, l=2 
o net1 and net2 without nodetype, net3 with nodetype gnd 
o pin topology net1 - net2=net1 - net3 

• Variant V2: I2 and I4 
o r=0.1, w=1, l=1 

 
Figure A-1 – Variant criteria 
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o net1 with nodetype vint, net2 without nodetype, net3 with 
nodetype gnd 

o pin topology net1 - net2 - net3 
• Variant V3: I5 

o r=10, w=2, l=2 
o net1 and net2 without nodetype, net3 with nodetype vnwl 
o pin topology net1 - net2 - net3 

• Variant V4: I6 
o r=10, w=1, l=1 
o net1 with pintype vint, net2 without nodetype, net3 with 

nodetype gnd 
o pin topology net1 - net2 - net3 

 
In the end, it is possible to define any additional, algorithm specific criteria for 

creating groups of instances of the given cell. 
Variants are created in several global, self-altering, hierarchical walks over the 

TopDownVariants structure to build the variant graph . The walk over TopDownVa-
raints vector is at the beginning identical to the walk over TopDownCells  vector, fur-
ther, in the process of creating variants, duplicates of each cell according to defined 
criteria are inserted, altering the starting initial structure. 

Storing of Variants, interface to acquire templated  cell data 

Variants are stored in the database that was developed for the industrial appli-
cation of Qimonda AG with the explicit interface. They are “visible”. Therefore each 
application that employs the benefits of the variant concept has to explicitly control 
and achieve templated values using specific interface. This was not a must. Some 
other alternative implementation, whose vision we have shortly pointed out in Chapter 
4 can hide them and perform the regrouping of the instances into several subgroups 
for certain primary definition. The substantial difference between the variant of the 
cell and the cell appears once the variant adds some functionality. For instance our 
database does not, by default allow node types, they are completely introduced, to-
gether with the appropriate interface in the variant classes. Nevertheless, as the ques-
tion of the standard interface is relative, we assume in this thesis that the variant and 
the cell are actually equivalent terms. More precisely, the term variant just explains 
the way a given group of instances is obtained. Thus, it is more relevant to the way a 
given cell is implemented.  
 Coming back to the way variants are implemented in our industrial database: 
each Base_Cell has a list of variants associated with it, Figure A-2. Initially this list is 
void, while it gets populated during the variant creation process.  
 

 
Figure A-2 -  Relation between Base_Cell and Base_Variant 

 In the example of the previous section, we have shown that variants are cre-
ated according to all combinations of different building criteria. Therefore, in order to 
represent the data in the most optimal way, each variant object is linked to appropriate 
set of values, for each criteria type. On the other side, list of criteria value sets is 
maintained irredundant. This implies the fact that when a new variant is to be entered, 
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the insertion algorithm has to perform the linear search over the list of criteria value 
sets to determine if the identical set already exists. This linear search hasn’t domi-
nated in the runtime of the applications using variants in the industry realm, so far.  
The described concept is illustrated in Figure A-3.  Each variant references a set of 
criteria value sets. In the illustration, Variant 1 shares parameter Set 1 with the variant 
2. If, for instance, variant 1, during the application execution changes some value of 
the its parameter set, the relevant reference will be relinked to another set, that is ei-
ther already in the list, or is newly created after the search, while the link between the 
object of variant 2 and the parameter set one remains. 

 
Figure A-3– Variant Criteria storing data structure  

 
 Thus, a  template class Base_VariantData  stores different sets of variant 
specific data in vectors  
(template <class T> class Base_VariantDataList : pub lic 
vector<T *> ).  
 This kind of architecture allows flexible adding of potential new variant crite-
ria. 
 Standard NLDB data sets include vectors for:  

• parameters as the actual instance parameter values for the parameters which 
are needed in some arithmetic expression in a cell or its subcells. 

• nodeTypes are the types for each single node and also the collection of node 
types of nodes for each equivalence class (in different vectors). 

• pinTopology is the data structure to store the connectivity of pins up the hier-
archy. For each group of connected pins, the smallest index of connected pins 
is stored for all these pins. For example an instance with 5 pins, where pin_0 
and pin_4 are connected and pin_1 and pin_2 are connected, would have the 
pin topology vector 0,1,1,3,0. 
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• parentCells stores a '1' for a related CellPatternMatch containing a set of pat-
terns for parent cells, if one of the parent cell names matches one of these pat-
terns and a '0' otherwise. 

 
Class Base_Variant  provides interface methods to access all relevant data stored 
in Base_VariantData  object. 
 Apart from this interface, Base_Variant  class provides interface and im-
plementation for relations with other variants (father variants and children variants), 
to form the variant graph.  

TopDownVariants 

In different application algorithms, together with the variant creation algo-
rithm itself, it is important to access all variants, globally, in a specific order (bottom-
up, or top-down), similar to the TopDownCell  vector. For this reason we create a 
new container, abstracted in the class TopDownVariants , which with it’s iterator 
traverses over all variants of all cells of the design, in a way that, for bottom - up 
walk, all variants that are instantiated in a variant in focus have already been accessed, 
during the bottom up walk, and vice versa, for the top-down walk, no variant that is in 
the current focus has an no so far unvisited parent.    
Due to the similarity with TopDOwnCells  vector, the implementation architecture 
of the TopDownVariants  vector inherits classes TopDownCells  and the appro-
priate iterator from the class TopDownCells  and it’s iterator, simply adding the 
additional iteration, over all variants for a given object of the Base_Cell  class. This 
design solution is given in the class diagram in Figure A-3. 

 
Figure A-3 – TopDownVariants container 

 
 

Variant Graph 

Variant graph is analogue structure to the cell graph. Variant graph offers a 
structure which is, by the number of elements, somewhere between a definition tree 
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and a instance tree. It could be, more precisely, obtained by collapsing all instance 
nodes in the instance tree to one node, if these instances belong to the same variant. 
Therefore we get the ordered graph structure where each element has, in general, mul-
tiple number of parent nodes and multiple number of children nodes. Element with no 
parents in this data structure corresponds to the top variant and can be distinguished 
as a head of the variant graph. The elements without children nodes correspond to the 
bottom variants, with no referenced cells and can be distinguished as the leafs of the 
variant graph. Communication in both directions, from the child node to its parent and 
vice versa is possible. Therefore for a given variant the user algorithm can access all 
it’s father variants and all it’s children variants, directly.  

Variant graph allows the application to generate results that are valid for all in-
stances of the given variant simultaneously and still be able to, if necessary, commu-
nicate with current variant’s immediate parents or children. In order to realize this, a 
set of methods is added to Base_Variant  class, together with needed supporting 
data structures. Therefore, Base_Variant class defines a list of: 
• parents: the parent variants of the actual variant stored as a list of 

Base_VariantInstantiationLeader objects. Each Base_VariantInstantiationLeader 
is a parent variant and a list of instances of the current variant in this parent vari-
ant. A recursion over the parents gives all instantiations of a variant. 

• subVariants: maps each sub instance of the current variant to the associated vari-
ants. These subvariants pointers are again stored in a vector. The relation to the in-
stances themselves is again done via the HasIndex  class which is also a base 
class for the Base_Instance  class. The subVariants might be used for top-
down walks. 

 
  

Applications of the Variant Concept 

 
 The variant concept is applied in cases where the algorithm needs to personal-
ize given instantiations of the definitions resolving their parameters. The common 
application is  in ERC for highvoltage checks. Once we apply all relevant parameters 
and pass datatypes over the hierarchy we can create the optimal set of variants and get 
irredundantly the results valid for all instantiation places of each variant.  
 Variants are very important for our solution of the problem of hierarchical 
structural pattern matching. Pattern matching language allows the usage of node 
typses ,as well as device parameters.  For this reason we will build our algorithms on 
top of variants that upgrade Base_Cell definition with the important interface that 
handles the additional properties (the interface to access the information about the 
node type of the given cell).   
 For simplicity and not affecting the generality of the explanations of the con-
cepts that were used in this thesis, we will avoid the complication the current imple-
mentation of the variant concept introduces and use the terms cell and variant equally, 
as we have already stressed.  
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Appendix B (Fingerprint verification principle) 
 In order to explore the possible enhancements of the execution time that the 
employment of the hierarchical data model can offer, we have defined the fingerprint 
verification principle. This principle is adding additional functionality to the virtually 
flattened view. It is related to the way each net’s pins are iterated over. With finger-
print verification we tend to optimize the iteration process and skip all similar itera-
tions. This principle is an update of the multiple context hierarchical node iteration 
process. + 
 The principle can be well described and understood using the following exam-
ple: 
 

 
 
 In the figure above we see one hierarchical node. The iteration over its pins 
starts from the subnode in the variant A that is denoted with S. The default iteration 
would, after going up the hierarchy visit all the neighbors of the subnode T, than des-
cends to all of the variants that are instantiated in the context of the variant T. This is 
sometimes not optimal. The neighboring devices of the node 1 of the variant B would 
repeat twice in the iteration. If no positive conclusion (a successful matc-h) was done 
and the iteration was uninterrupted, we can skip all the redundant subnodes.  
 This is exactly how the fingerprint verification is defined. At the context of the 
subnode T, we can maintain information about the instantiations of the variants to 
which the algorithm has descended to. The information that is maintained is simply a 
pair formed by the pointer to the given variant and the pointer to the relevant variant 
pin. If we employ such strategy, at the level of the subnode T the algorithm would 
first verify if the relevant fingerprint for the Variant C exists, after the determining 
that the variant is new to the iteration the relevant fingerprint is stored in a specific 
container (of the given iteration context of the subnode T). The algorithm, further, 
descends to the Variant B, using the first pin, and skips the instance X3 of the Variant 
B, after finding that the relevant fingerprint already exists. The next instance where 
the optimized iteration would be continued is the instance X4, of the Variant B. This 
time the entry point to the variant is the pin 2, thus a different fingerprint to the one 
that was already left at the X2.  
 In order to assure the functional correctness of such an optimized iteration 
some issues have to be taken into account. For instance, the algorithm might enter the 
given variant at one pin and leave it at another concluding only outside of the given 
variant that it can’t find the proper match. This might not be the case for some other 
instantiation. Therefore, in the case where the algorithm leaves the context of the giv-
en variant (runs through it) no fingerprint should be left. The issues like this should be 
addressed in order to have the proper functionality of this optimization. 
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Appendix C (Hierarchical matching example) 
 

  In the following example we are going to match two patterns with the new 
hierarchical pattern matching algorithm. The algorithm works incrementally, i.e. a 
pattern can be based on the output of a previous pattern match. Therefore, at first we 
will isolate all inverters in the hierarchical design using the pattern in Figure C-1 (a). 
The second matching process is analogue to the first one, still in it we are searching 
for a specific interconnection of two inverters, Figure C-1 (b).  

 The pattern matching algorithm, in search for these two patterns will be ap-
plied on the example hierarchical design shown in Figure C-2. The given hierarchical 
design semantically describes a latch circuit. Transistors are abstracted in separate 
subcircuits, MP, which contains an mp transistor alone, and MN, which holds an in-
stance of the mn transistor device. These two cells are further, instantiated in the cell 
A, as instances X1 of MP and X2 of MN. On the top level, the cell A is, again, instan-
tiated twice: instance X1 of A and X2 of A. The instances are interconnected in a way 

       
Figure C-1 – Matching Patterns. a) a pattern to match an inverter out of two relevant transis-
tors. b) a pattern to match a latch out of two inverters. 

in 

Vdd 

in out 

 
Figure C-0-1 – Hierarchical representation of a latch circuit. 
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that the overall structure forms a topology of a latch circuit. Therefore, appropriate 
pins of instances X1 and X2 are shorted, or connected to defined fixed voltages Vdd 
and gnd. In this level, two semantically important nets are named in and out, for better 
understanding.  
 
 
 
 

 
 
 
 
 
 
STEP 1: The algorithm starts with the device mp in cell MN. The context level is the 
MN cell. Following the hierarchical node through port 1, we have to change to the 
next hierarchy level. The algorithm thus sets the relative top level of the virtual copy 
of the transistor mn to cell A.  This cell A exists in two places in the hierarchical cir-
cuit. Therefore also this virtual copy of the transistor exists twice when looked upon 
the circuit flat. These copies are marked with the yellow, semitransparent field. 
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STEP 2: As the matching of the first pattern continues, the VFV dynamically switches 
the active context from the cell A to the instance X1 of the cell MP, creating the vir-
tual copy of the transistor mp. In the figure, the algorithm has created a consistent flat 
view of the correct arrangement of two transistors (mp and mn). Still, thanks to the 
hierarchical layout of the example this virtual view occurs twice which is apostrophed 
with the yellow patch. 
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STEP 3: Since the current context view matches the topology of the pattern which 
was being searched the commitment step is performed. This means that a new in-
stance inv1 of the new subcircuit, whose topology is identical to the pattern, is added 
to the hierarchical schematics. This modifies the topology of the cells MP and MN 
inside of A. The devices mp and mn are removed from MP and MN and are moved to 
the newly inserted subcircuit inv1 . Note that this would produce a variant of the cell 
MP or MN if e.g. we had another instance of MP placed somewhere in the design 
without an adjacent MN. In such a case this instance of cell MP would keep its old 
topology. Proper connectivity is still maintained. Note that the position of the pins of 
cells MP and MN is changed to make the figure more elegant. That has, however, no 
electrical or semantic importance. Additionally, to depict the change of the hierarchi-
cal topology the shapes of the cells MP and MN intuitively show that some devices 
are now removed. 
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STEP 4: After the commitment the second pattern (interconnected inverters) is being 
searched for. Now the building blocks of this pattern are the inverters which have 
been recognized and committed to the hierarchy during the match process of the pre-
vious rule. This step is analogue to the matching of the previous pattern at STEP 1. 

 

 



Hierarchical Pattern Matching in VLSI – Marko Milošević – PhD Thesis 
 

149 

 
 
 
 
 
 

 
 
 

STEP 5:  The context of the flat view dynamically gets changed to the parent cell of 
the cell A. In our case it is the top cell, but in general it can be any regular cell. Again 
a virtual copy of the inv1 within the top cell is generated. The multiplicity of the lo-
cally flat view is now equal to the number of instantiations of this “relative top” cell. 
Note that the pattern is not anymore valid for the instance inv1 inside instance X2 of 
A!  
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STEP 6: This is analogue to the STEP 2 of the first matching process. The flat view 
properly represents the arrangement of two inverters and their interconnection. This 
leads to another match as the topology of the current flat view is identical to the to-
pology of the latch pattern. 
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STEP 7: This step is analogue to STEP 3 of the first matching process. An instance of 
a cell containing the latch pattern is committed to the relative top level. This influ-
ences the topology of two instances of the cell A. As the two instances are connected 
differently when looking from top level, two variants of the cell A are generated. The 
new hierarchical topology is consistent and prepared for any other algorithm. 
 
 To summarize, in this example we have successfully demonstrated one possi-
ble scenario where we have used the functionality of the VFV to be able to see spe-
cific parts of the hierarchical netlist as if they were flat. Therefore the utility algo-
rithm, could navigate through the neighbourhood of each starting device that was of-
fered by the specific device iterator of the VFV. For each matching place a material-
ized flat data portion was built and kept in consistency with the hierarchical netlist. 
For each successful match, the current state of the materialized flat data portion was 
committed to the hierarchical netlist, affecting the neighbouring hierarchy, by the so-
phisticated algorithm. 
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