
IEEE Communications Magazine • January 201668 0163-6804/16/$25.00 © 2016 IEEE

Abstract

SDR has increasingly become an invalu-
able research, development, and educational
tool within the telecommunications sector with
respect to rapidly prototyping new algorithms
and paradigms in actual radio hardware and
evaluating them in real-world over-the-air con-
ditions. Due to advances in microprocessor tech-
nology, radio frequency hardware, and software,
SDR has matured into a reliable tool that is now
part of almost every communication engineer’s
toolbox, and it has changed the way the telecom-
munication sector produces innovative solutions
to technical challenges. In this article, we explore
four case studies that highlight SDR as a reli-
able tool in industry, academia, and government.
Specifically, we study four examples that illus-
trate: advances in low-cost, reliable, and versatile
SDR platforms, open source and universal SDR
software development environments, powerful
technical computing environments employing
SDR hardware for real-world experimentation,
and educational paradigms for synthesizing dig-
ital communications and digital processing con-
cepts using SDR technology. By understanding
the impact of these case studies, we intend to
provide some insight on how the SDR revolu-
tion has changed the way the world designs and
implements telecommunication systems.

20 Years of SDR:
A Revolution in the Making

Software defined radio, or SDR, has increasingly
captured the attention of the telecommunica-
tions sector over the past several decades with
its promise of rapid design cycles, flexible real-
time operations, reusable hardware for different
transceiver implementations, ease of manufac-
turing, and upgrading, and accessibility to many
communication system engineers, technologists,
and researchers. This SDR vision, which has rev-
olutionized the telecommunications sector over
the past 20 years, has been fueled by significant
advances in digital processing technologies, ana-
log-to-digital and digital-to-analog converters,
software tools, and radio hardware. Consequent-
ly, SDR technology is finally beginning to fulfill
its promise, and become a mainstream, powerful,
and accessible communication system and net-
work prototyping tool.

In fact, at the time of the writing of this arti-
cle, many companies, research laboratories, and
universities are using SDR to support a wide
range of communications-related activities.

Although SDR technology possesses signif-
icant potential to make communication system
prototyping more efficient and accessible to the
telecommunications community, there were sev-
eral challenges that needed to be resolved in
order to realize this potential. In order to enable
the widespead use of SDR technology for proto-
typing communication systems and networks, the
following conditions need to be achieved:
•	Affordable SDR hardware platforms that pos-

sess sufficient computational horsepower,
operate across a wide range of carrier fre-
quencies and bandwidths, and are portable

•	Availability of SDR software development
environments that provide the communica-
tion technologist with a high level of control
of the SDR platform, a rich set of modules,
algorithms, and features, and a substantial
level of accessibility to the software (i.e.,
shallow learning curve)

•	Support between SDR hardware and powerful
technical computing software that enables
communication technologists to use reliable
software models and tools in experiments
using real-world SDR hardware in real time

•	Established SDR-based engineering under-
graduate curricula that introduce hands-on
SDR design, prototyping, and experimenta-
tion to the next generation of communica-
tion technologists
Fortunately, the latest advances in SDR tech-

nology have recently achieved these conditions,
making SDR more accessible to the telecommu-
nications sector for use in prototyping communi-
cation systems and networks.

In this article, we present four case studies
that highlight the SDR revolution by focusing on
how it was fueled by advances in SDR hardware
platforms, SDR software development environ-
ments, technical computing software solutions
for SDR, and undergraduate educational ped-
agogy using SDR systems. It is expected that
this article will provide the reader with a better
understanding of current SDR technology, the
many different layers that constitute these com-
plex systems, and their capabilities with respect
to prototyping communication systems.

The rest of this article is organized as fol-

Revolutionizing Software Defined Radio: Case
Studies in Hardware, Software, and Education

Alexander M. Wyglinski, Don P. Orofino, Matthew N. Ettus, and Thomas W. Rondeau

Software Defined Radio: 20 Years Later

SDR has increasingly
become an invaluable
research, development,
and educational tool
within the telecom-
munications sector
with respect to rapidly
prototyping new algo-
rithms and paradigms
in actual radio hard-
ware and evaluating
them in real-world
over-the-air conditions.
Due to advances
in microprocessor
technology, radio fre-
quency hardware, and
software, SDR has
matured into a reliable
tool that is now part
of almost every com-
munication engineer’s
toolbox.

Alexander M. Wyglinski is with Worcester Polytechnic Institute; Don P. Orofino is with MathWorks Inc.; Matthew N. Ettus is with Ettus Research;
Thomas W. Rondeau is with Rondeau Research LLC

IEEE Communications Magazine • January 2016 69

lows. We provide an overview of commonly used
SDR platforms, including the popular Univer-
sal Software Radio Peripheral (USRP) by Ettus
Research LLC. Software development tools
used to prototype SDR platforms are an essen-
tial element of the SDR revolution with respect
to implementing digital transceiver designs and
algorithms. Consequently, we examine several
such tools, including the widely used GNU Radio
project. We provide an overview of technical
computing software used in enabling over-the-
air experimentation via SDR technology, with a
focus on the MATLAB technical computing soft-
ware environment. Given all of these advances,
the transformation of engineering undergraduate
pedagogy with respect to digital communications
by using SDR platforms for prototyping designs
and algorithms is covered. Finally, several con-
cluding remarks are given.

Building an
SDR Platform for the Masses

The revolution in SDR hardware has always
been tightly coupled to advances in computing
technology, analog-to-digital converters (ADCs),
and digital-to-analog converters (DACs). Specif-
ically, the ability of SDR hardware to satisfac-
torily serve as a reliable interface between the
digital world of bits, packets, and user applica-
tions and the surrounding analog RF environ-
ment of electromagnetic spectrum significantly
depended on how quickly sample and continu-
ous signal information can be converted between
the two domains, as well as how fast the sample
signal information can be processed. Although
the technology for enabling SDR hardware has
been around for decades, the cost of this tech-
nology only recently became affordable to most
of the wireless community. Platforms such as
the WARP Radio [1], various NUTAQ systems
(formerly Lyrtech), and the Universal Software
Radio Peripheral (USRP) by Ettus Research

(now part of National Instruments) [2] have
enabled real-time over-the-air experimentation
in areas such as:
•	Wireless networking
•	Spectrum monitoring
•	Dynamic spectrum access
•	Global System for Mobile Communications

(GSM), wideband code-division multiple
access (WCDMA), and Long Term Evolu-
tion (LTE) mobile telephony base stations

•	RADAR
•	Radio astronomy and RADAR astronomy
•	Wildlife tracking
•	RF test equipment
•	Magnetic resonance imaging (MRI)
•	Motion tracking
•	Radio navigation and global positioning
•	Satellite communications
•	RF identification (RFID)
•	Wireless security research

To obtain some insight into the capabilities of
present-day SDR platforms, let us study a range
of systems and their technical specifications as
shown in Table 1. The Ettus USRP N210 (Fig. 1a)
is a widely used modular SDR platform consisting
of an RF front-end (RFFE), a field programmable
gate array (FPGA), and a general-purpose proces-
sor (GPP). This SDR platform is based on the ini-
tial framework devised by Matt Ettus in 2003 when
he started work on the USRP in order to help
lower the barrier of entry to SDR. The RFFE is
tasked with bridging the digital world of sequenc-
es of timed samples and the antenna via a direct
conversion architecture. A combination of low
noise amplifiers (LNAs), switches, variable attenu-
ators for gain control, local oscillators (LOs), and
lowpass filters, coupled with ADCs and DACs,
enabled the interfacing between the analog RF
domain and the baseband digital domain. The
FPGA performs all of the high-speed baseband
digital signal processing (DSP) operation on the
samples coming in and out, as well as all precision
timing and synchronization functions, which allow

Table 1. Family of available SDR platforms.

Ettus USRP
N200/N210

ZedBoard w/
Xilinx Zynq-7000 FPGA
& AD-FMCOMMS5-EBZ

NooElec NESDR
Mini SDR USB Stick

Ettus USRP
E300

Interface to host Computer Gigabit Ethernet Dual FMC
Connectors

USB 2.0 AXI4-MM interface to an embedded dual-core ARM
Cortex-A9 processor

RF front-end
Instantaneous bandwidth
RF frequency coverage

USRP daughterboards
25–50 MHz
DC to 6 GHz
(determined by daughterboard)

Integrated RFIC
56 MHz
70 MHz to 6 GHz

Integrated RFIC
3.2 MHz
24 to 1766 MHz

Integrated RFIC
56 MHz
70 MHz to 6 GHz

MIMO 1  1 per unit, up to 8  8
using multiple units

4  4 N/A 2  2

Full duplex Yes Yes Rx only Yes

ADC Dual 14-bit 100 MS/s Dual/quad 12-bit
61.44 MS/s

8-bit 3.2 MS/s Dual/quad 12-bit
61.44 MS/s

DAC Dual 16-bit 400 MS/s Dual/quad 12-bit
61.44 MS/s

None Dual/quad 12-bit
61.44 MS/s

FPGA
RFNoC-compatible
Cost

Xilinx Spartan 3A DSP
No
$$

Xilinx Zynq-7000
No
$$$

None
No
$

Xilinx Zynq-7000
Yes
$$$$

IEEE Communications Magazine • January 201670

for such capabilities as time-division duplexing
(TDD), time-division multiple access (TDMA),
and multiple-input multiple-output (MIMO)
operations across multiple devices. Finally, the
FPGA contains the logic to interface with the
GPP. To abstract away the interfacing and control
of the USRP devices and instead present the user
with a small set of primitives that can be used to
build real-time communication systems, the USRP
Hardware Driver (UHD) was developed in order
to provide a single application program interface
(API).

The combined ZedBoard-based Xilinx Zynq-
7000 FPGA with AD-FMCOMMS5-EBZ SDR
platform (Fig. 1b) is a joint venture between
Analog Devices and Xilinx to provide a high-per-
formance SDR evaluation system for the wireless
community. The system-on-chip (SoC) solution
available on the Xilinx Zynq-7000 FPGA enables
powerful, versatile computational performance
derived from both the onboard ARM proces-
sor and FPGA fabric. Thus, the Zynq-7000 can
support a wide range of digital functions on this
single platform. The AD-FMCOMMS5-EBZ
from Analog Devices is the fifth generation of
a family of high-speed analog RFFEs designed
to showcase the latest generation of high-speed
data converters, especially compute-intensive
FPGA-based radio applications. In particular,
the AD-FMCOMMS5-EBZ is designed around
the AD9361 2  2 RF Agile Transceiver, which is
capable of supporting instantaneous bandwidths
of up to 56 MHz across 70 MHz to 6 GHz. As
opposed to the USRP N210 SDR platform, the
Xilinx Zynq-7000 FPGA/AD-FMCOMMS5-EBZ
SDR platform is a standalone solution that does
not require a GPP-based host (a Linux-based
operating system can be supported on the Zynq-
7000). To support standalone applications, Ettus
Research released the USRP E300, which uses
much of the same components as the Xilinx
Zynq-7000 FPGA/AD-FMCOMMS5-EBZ SDR
platform and possesses similar specifications and
performance characteristics.

From a performance perspective, the USRP
N210, Xilinx Zynq-7000 FPGA/AD-FMCOM-
MS5-EBZ, and USRP E300 SDR platforms
are all very capable systems that can imple-
ment a wide range of solutions for different
applications. On the other hand, these solu-
tions range in cost from hundreds to thousands
of dollars, which might be prohibitively expen-
sive for relatively simple applications, such as
satellite communication signal reception, wire-
less spectrum sensing, or applications requiring

numerous SDR platforms. Consequently, the
SDR market has also witnessed the advent of
numerous low-cost low-complexity SDR plat-
forms such as the NooElec NESDR Mini SDR
USB Stick (Fig. 1c). On the order of tens of
dollars, these simple SDR receivers plug into
the USB port of a laptop computer and per-
form a wide range of operations based on the
available software packages installed on the
host computing platform.

As described previously, the USRP E300 SDR
platform is a highly capable standalone wire-
less system that can support sophisticated digi-
tal communications and DSP functionality. The
RFFE based on the AD9361 enables the USRP
E300 to support wireless communications across
a large part of the frequency spectrum, while
both the ADC and DAC accurately interface the
analog world with the digital baseband domain
of the FPGA and the ARM processors on the
Zynq-7000. Until recently, efficient and effective
utilization of SDR computing hardware resourc-
es by the larger wireless community has always
been a key technical challenge that prevented the
widescale use of SDR within the wireless sector.
Nevertheless, a new programming system called
the RF Network-On-Chip (RFNoC) hopes to
remedy this situation.

RF Network-On-Chip

RFNoC is a new programming system for
FPGAs developed at Ettus Research with the
goal of easing large SDR designs in FPGAs. This
architecture allows users to easily integrate cus-
tom modules, such as modulators, demodulators,
processors, and protocol stacks, without having
to become experts on FPGA design. The basic
concept behind RFNoC is that rather than treat-
ing the entire FPGA as a single monolithic sea
of gates, users instead operate with a network
of functional units called computation engines
(CEs). This network dramatically reduces the
complexity of large designs and allows for the
dynamic runtime flexibility that many applica-
tions, especially cognitive radios, require.

Each computation engine has the exact
same interface to the network, so they are eas-
ily interchangeable. This network of computa-
tion elements can scale across multiple FPGAs,
including those of different types, and this allows
for portability of CEs across all of the third gen-
eration USRP devices. It also makes dynamic
reconfiguration of the FPGA a much easier task
and makes it much easier to meet timing require-
ments in the FPGA.

The network fabric (a crossbar switch) con-
nects the computation engines, radios, and exter-
nal network interfaces. Figure 2 shows the FPGA
internals of an X300 device, with external 10G
Ethernet and PCIe interfaces. An E300 device
would look the same, but instead of Ethernet
and PCIe, it has interfaces to its on-chip ARM
CPU.

The network exists inside the FPGA, but it
also transparently routes across multiple FPGA
devices that can be connected directly or through
Ethernet switches and the like. This allows the
user to easily create large systems consisting of
many FPGAs and many MIMO-synchronized
radios easily.

Figure 1. Three examples of widely-used SDR platforms: a) Ettus Research
USRP N210 Platform; b) ZedBoard with Xilinx Zynq-7000 FPGA with
analog devices FMC-based RF I/O; c) NooElec NESDR Mini SDR USB
stick.

(a) (b) (c)

IEEE Communications Magazine • January 2016 71

Open Source Solutions for
SDR Prototyping

As discussed in the previous section, suitable dig-
ital/computing hardware combined with versatile
RFFEs are some of the necessary ingredients for
enabling the widescale adoption of SDR tech-
nology by the wireless community. Nevertheless,
the implementation of a communication system
also requires sufficient software support and
tools that are accessible to the user in order to
enable the rapid development and evolution of
ideas and designs. A variety of open source SDR
software projects exist in order to meet the needs
of the community, including OSSIE [3], CubicS-
DR, ALOE [4], and the widely used GNU Radio
project [5]. In order to obtain better understand-
ing of these open source software frameworks
for building and studying communications sys-
tems, we explore the revolution of open source
software for SDR by examining the history and
capabilities of GNU Radio.

GNU Radio

In 2001, Eric Blossom started the GNU Radio
project with the goal of providing a framework
for building SDR applications with free soft-
ware. It has attracted a large community of users
and developers from around the world, and has
become the design environment of choice for
much research in the area of SDR and cognitive
radio. GNU Radio works by using a pluggable
architecture, where blocks of signal processing
algorithms are placed together into a graph such
that samples flow through the graph, with each
block operating independently on these sam-
ples to produce the radio application. With this
concept of “drag-and-drop” signal processing,
designs can easily be modified. Furthermore,
GNU Radio comes with a variety of graphi-
cal plotting tools and simulation tools such as
various channel models in order to provide
straighforward ways to simulate and observe the
behavior of a new design. In order to under-
stand how software tools interface with the SDR
hardware, as well as how information is passed
between the hardware and software domains, let
us study how GNU Radio operates in handling
the design and implementation of various com-
munication systems.

Development Models: When it comes to build-
ing communication and other signal processing
systems, GNU Radio has a few modes that help
enable the movement of data through the system.
An intuitive way of handling the signal process-
ing is to move the data as a stream of samples.
GNU Radio has supported the streaming model
since its inception, and this solves a number of
communications issues. However, as interest in
packet-based communications has been steadi-
ly increasing, handling packets as an infinite
stream of samples has become problematic, with
decreased efficiency experienced when trying to
handle packet boundaries within the stream of
samples. Consequently, GNU Radio also imple-
ments a message passing system, where messages
of protocol data units (PDUs), which may rep-
resent a packet, frame, fragment, or similar, are
transferred as a single unit. Boundary conditions

are much more easily handled in this way and
thus enable the focus to shift to efficient pro-
cessing of the data within the PDU. The message
passing system is also a useful way to signal and
pass meta-data or control data between blocks.

GNU Radio has a third model for mov-
ing data around, called the tagged stream sys-
tem, which is specifically designed for passing
meta-data. A block can tag an item in the data
stream with information about the sample, such
as the time the sample was created, the signal-
to-noise ratio measured at that sample, or even
information about the state of the system such
as the frequency and gain settings of the RFFE.
The tags move synchronously with the data and
are handled appropriately through sample rate
changes. Each of the three models of moving
data around have their uses and application
spaces, and most of the real-world modems built
in GNU Radio use each concept to some extent.

The radio communications research commu-
nity has a number of problems that it is simul-
taneously addressing, such as examining existing
standards to explore other use cases, improve-
ments and efficiency issues, and security risks.
Furthermore, the research community is looking
at new models of communications that may or
may not be tied to existing systems or methods.
Finally, research is ever progressing to address the
next level of challenges for wireless data commu-
nications, such as the rapidly developing push for
5G standards. GNU Radio itself as a project is not
directly interested in specific standards. Instead,
GNU Radio develops the architectural framework
and API that enables the development and study
of these issues through the out-of-tree (OOT)
module project concept. On the other hand, there
are several software efforts that focus on specific
standards, implementations, and general technical
computing research efforts, which are covered in
the next section.

When SDR Meets
Technical Computing Software

Once the hardware device and software frame-
work for an SDR platform has been developed,
wireless prototyping of various communication
systems by the user can commence. Wireless pro-
totyping is a workflow for the design, verification,
and prototyping of radio systems. Traditionally,

Figure 2. Schematic of the Ettus USRP E300 architecture.

Radio transport router

Computation
engines

Radio0

Radio1

PCIe

CPU

Eth0

Eth1

PCIe
PHY

ETH/IP/
UDP

ETH/IP/
UDP

IEEE Communications Magazine • January 201672

wireless prototyping required mastery of many
distinct tools, languages, and interfaces, with very
little tool integration and workfl ow usability. This
posed a high cost of entry and limited wireless
prototyping to highly motivated and well fund-
ed organizations. Technical computing software
solutions, such as MATLAB [6] and SystemVUE
[7], enable this workflow; often, model-based
design is the preferred approach for design iter-
ation. Technical computing software has made
significant progress in recent years, with com-
prehensive support for cellular, wireless local
area networks, and other wireless waveforms,
enabling engineers to prototype commercially
relevant systems in hours instead of months. Bar-
riers to the wireless prototyping workflow are
vanishing. Furthermore, the wireless community
is at an inflection point in the pursuit of wire-
less prototyping given the availability of a wide
range of affordable SDR platform options (refer
to Table 1).

wireless PrototYPing workflow

A compelling vision for the wireless prototyping
workfl ow embodies four steps and places signifi -
cant demands on hardware integration with tech-
nical computing software.

System Simulation: The initial step of the
workfl ow executes all algorithms on the desktop
in a convenient and interactive fashion with syn-
thesized data. Desktop execution sidesteps the
constraints of the target embedded system, mak-
ing it easier to explore algorithm alternatives,
identify execution errors, and tune parameters as
a simulation is underway.

RF Integration: The second step config-
ures the RF I/O so that the desktop simulation
receives and transmits data using the target
hardware. This enables the simulation to include
sensor noise, quantization, fading, and power lev-
els that typically infl uence design decisions. RF
signals can be recorded for use during repeat-
ed testing and verifi cation using real-world data,
or streamed to the desktop in real time. This
enables desktop testing of wireless systems and
typically implicates multicore, GPU, and other
acceleration techniques that increase simulation
throughput.

Incremental Deployment: The third step gen-
erates code for elements of the design, replacing
desktop simulation with streaming execution on
target hardware. The highest-rate elements in
the front-end of the radio are typically moved to
target hardware fi rst, while the rest of the design
remains on the desktop. For an SDR, these ele-
ments are often destined for execution on an
FPGA. Additional elements are transitioned to
and validated on the target hardware iteratively,
using bit error rate (BER) or other quality met-
rics. This step places high importance on auto-
matic code generation and data transfer between
desktop and target hardware.

System Validation: The final step executes
the design on the target hardware and validates
it for correctness relative to simulation results
obtained in the first step. Synchronous (gated
execution) and asynchronous (full-speed stream-
ing) execution of hardware can be employed,
using techniques such as FPGA-in-the-loop, to
gain confi dence in fi nal system operation.

This workflow enables practitioners to min-
imize “time to next insight” throughout system
design. The productivity afforded by each step
has proven signifi cant on its own, based on feed-
back from academic, research, and commer-
cial wireless prototyping communities for the
MathWorks technical computing environment.
Gaining productivity from a technical comput-
ing environment should not require adopting the
entire workfl ow.

An unexpected benefi t of pursuing SDR with
a technical computing platform is the use of
RF modeling tools integrated into the platform.
Predicting the imperfections of RF hardware is
diffi cult, due in part to the complexity of nonlin-
ear RF transceivers and the impact of antenna
arrays; for example; the design of compensation
and equalization algorithms requires simulation.
RF modeling tools enable higher fi delity simula-
tion of the complete wireless system.

An exAMPle of wireless PrototYPing:
4g lte cellulAr coMMunicAtions

As an illustration of how straightforward it is to
perform the wireless prototyping workflow, let
us consider the example of migrating a fourth
generation (4G) LTE implementation from the
MATLAB technical computing software envi-
ronment to an actual SDR hardware platform.
Referring to Fig. 3, the LTE test waveform is
synthesized using an LTE resource grid that is
initially designed and then analyzed in MAT-
LAB. This figure also summarizes many details
within this test signal. The LTE waveform is then
transmitted using an SDR platform consisting
of a Xilinx Zynq-7000 FPGA with an Analog
Devices FMC-based RFFE, received by a second
SDR platform, and processed using MATLAB in
order to analyze the equalization of the physical
downlink control channel (PDCCH) symbols and
channel magnitude frequency response.

Note that throughout this experience, the
communication systems engineer did not need
to leave the MATLAB technical computing soft-
ware environment. Instead, once an implementa-
tion for the 4G LTE system has been verifi ed via
computer simulation, it can readily be applied to
actual SDR hardware for experimentation. Thus,
this example highlights the capability of SDR
technology with technical computing software.
As shown in the following section, this function-
ality can also be leveraged as a powerful educa-
tional tool for teaching wireless communications.

ProJect-bAseD leArning with sDr
SDR technology has become a viable instruction-
al resource for the teaching of undergraduate
courses in digital communications. The relative-
ly low cost of the SDR hardware can fit within
the equipment budget of an academic depart-
ment. Moreover, the increasing amount of soft-
ware support for SDR systems, the reliability
of SDR/software integration, and the growing
familiarity of undergraduate students with the
array of available technical/scientific software
tools have all contributed to a decrease in the
learning curve associated with the prototyping of
communication systems using SDR. Finally, the
availability of SDR-based instructional resources
for educators in the form of ready-to-use models

Barriers to the wireless

prototyping workfl ow

are vanishing. Fur-

thermore, the wireless

community is at an

infl ection point in the

pursuit of wireless

prototyping given the

availability of a wide

range of affordable SDR

platform options.

IEEE Communications Magazine • January 2016 73

and demostrations, laboratory guides, and text-
books has enabled the introduction of SDR into
the classroom [8].

Although the technology and resources for
SDR-based education are finally becoming wide-
ly available to both instructors and students, it
is very important to understand the context in
which SDR can be deployed within a classroom
environment in order to maximize the educa-
tional experience. Excellent coverage of lessons
learned via the pedagogical usage of SDR tech-
nology at Penn State, Worcester Polytechnic
Institute (WPI), the United States Naval Acad-
emy, Indiana University/Purdue University Fort
Worth, University of Utah, and Virginia Tech
was presented in a 2014 Feature Topic on Edu-
cation of IEEE Communications Magazine [9].
Based on these different university experiences,
the use of SDR in the classroom as a tool for
teaching, reinforcing, and synthesizing concepts
in digital communications can be decomposed
into three steps (Fig. 4):
Step 1. Sample-based perspective of digital

communications
Step 2. Insights on the fundamental building

blocks of these systems

Step 3. Open-ended communication system
design experiences

Understanding the Analog/Digital Divide

Most approaches for teaching undergraduate
digital communications focus on the study of the
transceiver from a binary perspective that gradu-
ally works toward the RFFE. Conversely, when
it comes to working with SDR hardware, the key
challenge in getting a digital communication sys-
tem working is understanding how the ADC and
DAC operate, since without the correct samples
nothing else will function properly [10]. Thus, it
has been observed that a digital communications
course using SDR yields the best outcomes when
students start the course from a sample-based
perspective. Thus, students need to understand
the functions of both the ADC and DAC, dec-
imation and interpolation, and other discrete
time signals and systems fundamentals.

Several key concepts with respect to sampling
covered in SDR-based undergraduate courses
include the following.

Signal Bandwidth: Given that the ADC and
DAC on the SDR platform often operate at a
fixed sampling rate, students need to understand

Figure 3. Results obtained using MATLAB, LTE system toolbox and Zynq SDR support from the communications system toolbox.

OFDM symbol index

Transmitted resource grid

(a)

2000

10

0

Su
bc

ar
rie

r i
nd

ex

20

30

40

50

60

70

400 600 800 1000
Frequency (kHz)

(b)

(d)

-800

-85
-90

Po
we

r s
pe

ctr
al

de
ns

ity
 (d

Bm
/H

z)

In-phase amplitude

(c)

Estimate of channel magnitude frequency responseEqualized PDCCH symbols

-1

-1

Q
ua

dr
at

ur
e

am
pl

itu
de

-0.5

0

0.5

1

-0.5 0 0.5 1 Subcarrier index
OFDM symbol index

60

1M
ag

ni
tu

de

80

-80

-75

-70

-65

-60

-55

-50

-600 -400 -200 0 200 400 600 800

Unused
Cell RS
PSS
SSS
PBCH
PCFICH
PHICH
PDCCH
PDSCH

1.1

1.2

1.3

1.4

0.9

0.8

40
20

0 0
50

100
150

Baseband LTE signal spectrum

IEEE Communications Magazine • January 201674

how the digital data can be interpolated to or
decimated from a target sample rate.

Appropriate Sampling Instants: Students
must understand the physical issues associated
with the ADC in terms of sampling at the correct
instants, as well as performing decimation that
results in the target samples being discarded.

Sampling Underflow and Overflow: There are
several data bottlenecks in the overall setup of
the SDR system, such as Gigabit Ethernet and
available processing power. Thus, students are
exposed to scenarios when too much data is
received by an SDR system such that some of the
information is lost (i.e., overflow) as well as when
not enough data is provided to the USRP N210
such that gaps appear in the transmission (i.e.,
undeflow).

Open-Ended Design Experience

Once the sampling concept and fundamental
modules needed for the construction of a func-
tional digital communication transceiver have
been covered by an SDR-based course, this pro-
vides several educational opportunities for pre-
senting concepts in medium access control and
wireless networking. One approach that could
be employed is the open-ended course design
project, where students work in teams of two or
three on a task with specific objectives but loose-
ly defined constraints on how to achieve them.
The purpose of these projects is to synthesize
the concepts already taught in class, combined
with the aforementioned modules, in order to
pursue a project-based experience that also pro-
motes teamwork and hands-on learning in order
to yield a real-world solution to a problem.

Step 3 of Fig. 4 shows how communication
nodes can serve as the building blocks for rela-
tively complex network architectures with sophis-
ticated medium access protocols, such as:
•	Wireless ad hoc networks capable of boot-

strapping from scratch
•	Jamming-resistant multihop wireless net-

works
•	Scaled-down cellular networks
These kind of projects expose students to the
challenges of coordinating multiple wireless
transceivers in order to perform a variety of
different operations. Some of these challenges
include bidirectional communications, establish-
ing contact between two wireless nodes, medium
access control, and timing of network operations.

Consequently, students obtain substantial insight
into a wireless network consisting of digital com-
munication transceivers from the bottom up.
In particular, these projects using actual SDR
hardware to prototype communication systems
and wireless networks have the ability to help
synthesize and reinforce digital communication
concepts while exposing students to real-world
issues encountered during transceiver and net-
work prototyping.

Conclusion
Advances in SDR technology have revolution-
ized the way the telecommunications sector con-
ducts research, development, and educational
activities. Low-cost, accessible, and reliable SDR
hardware coupled with open source SDR devel-
opment environments and powerful technical
computer software capable of interfacing with
SDR platforms have significantly transformed the
way we all think of prototyping new communica-
tion systems and networks. With hands-on SDR-
based communications and networking pedagogy
being introduced in engineering undergraduate
curricula, the skill set needed to wield these SDR
tools is becoming more widely available among
the next generation of telecommunication tech-
nologists. Twenty years ago, many of the advan-
tages and capabilities of SDR technology that we
take for granted today were unrealizable. Given
the rate at which advances are being made in this
sector, it is expected that this revolution in SDR
technology will continue for another 20 years.

References

[1] P. Murphy, A. Sabharwal, and B. Aazhang, “Design of WARP: A Wireless
Open-Access Research Platform,” Proc. 2006 14th Euro. Signal Process-
ing Conf., Sept. 2006, pp. 1–5.

[2] R. Dhar et al., “Supporting Integrated MAC and PHY Software Develop-
ment for the USRP SDR,” Proc. 1st IEEE Wksp. Networking Technologies
for Software Defined Radio Networks, Sept. 2006, pp. 68–77.

[3] M. Robert et al., “OSSIE: Open source SCA for Researchers,” Proc. SDR
Forum Tech. Conf., vol. 47, 2004.

[4] I. Gomez, V. Marojevic, and A. Gelonch, “Aloe: An Open-Source SDR Exe-
cution Environment with Cognitive Computing Resource Management
Capabilities,” IEEE Commun. Mag., vol. 49, no. 9, Sept. 2011, pp. 76–83.

[5] E. Blossom, “GNU Radio: Tools for Exploring the Radio Frequency Spec-
trum,” Linux J., vol. 2004, no. 122, p. 4, 2004.

[6] J. Proakis, M. Salehi, and G. Bauch, Contemporary Communication Sys-
tems Using MATLAB, Cengage Learning, 2012.

[7] D. Silage, Digital Communication System Using System VUE, Firewall
Media, 2006.

[8] D. Pu and A. M. Wyglinski, Digital Communication Systems Engineering
with Software-Defined Radio, Artech House: Norwood, MA, USA, 2013.

[9] S. G. Bilen et al., “Software-Defined Radio: A New Paradigm for integrated
Curriculum Delivery,” IEEE Commun. Mag., vol. 52, no. 5, 2014, pp. 184–93.

[10] R. G. Machado and A. M. Wyglinski, “Software-Defined Radio: Bridging
the Analog-Digital Divide,” Proc. IEEE, vol. 103, no. 3, 2015, pp. 409–23.

Biographies

Alexander M. Wyglinski [S’99, M’05, SM’11] (alexw@wpi.edu) received his
B.Eng. and Ph.D. degrees from McGill University, Montreal, Quebec, Canada,
in 1999 and 2005, respectively, and his M.Sc.(Eng.) degree from Queens Uni-
versity, Kingston, Ontario, Canada, in 2000, all in electrical engineering. He is
an associate professor of electrical and computer engineering with Worcester
Polytechnic Institute, Massachusetts, and the director of the Wireless Innova-
tion Laboratory (WI Lab). Throughout his academic career, he has published
over 35 journal papers, over 75 conference papers, nine book chapters, and
two textbooks. His current research activities include wireless communica-
tions, cognitive radio, software-defined radio, dynamic spectrum access, spec-
trum measurement and characterization, electromagnetic security, wireless
system optimization and adaptation, and cyber-physical systems. He is cur-
rently or has been sponsored by organizations such as the Defense Advanced
Research Projects Agency, the Naval Research Laboratory, the Office of Naval
Research, the Air Force Research Laboratory Space Vehicles Directorate,
MathWorks, Toyota InfoTechnology Center U.S.A., and the National Science
Foundation. He is a member of Sigma Xi, Eta Kappa Nu, and the ASEE.

Figure 4. Illustration of the educational paradigm employed in teaching digi-
tal communications using SDR hardware.

Step 3

Prototype
wireless
network

Software
defined

radio
transceiver

Node
1

Node
3

Node
2

DACBarker
seq

Frame
sync

x[n]

x̂ [n]
Freq
offset ADC

Step 1Step 2

RFFE
Baseband

digital
functions

IEEE Communications Magazine • January 2016 75

Don P. Orofino is director of engineering for signal processing at MathWorks,
leading product development for the analysis, design, and implementation of
signal processing, communications, and computer vision systems. He holds
18 patents related to engineering system simulation and automatic code
generation. Prior to joining MathWorks in 1995, he worked at Hewlett-Packard
Imaging Systems (Andover, Massachusetts). He earned a Ph.D. in Electrical
and Communications Engineering at Worcester Polytechnic Institute.

Matthew N. Ettus is a core contributor to the GNU Radio project, a free
framework for software radio, and is the creator of the Universal Software
Radio Peripheral (USRP). In 2004, he founded Ettus Research to develop,
support, and commercialize the USRP family of products. Ettus Research was
acquired by National Instruments in 2010, and he continues as its president.
USRPs are in use in over 100 countries for everything from cellular and satel-
lite communications to radio astronomy, medical imaging, and wildlife track-
ing. In 2010, the USRP family won the Technology of the Year award from the

Wireless Innovation Forum. In the past he has designed Bluetooth chips, GPS
systems, and high-performance microprocessors. Before that, he received
B.S.E.E. and B.S.C.S. degrees from Washington University, and an M.S.E.C.E.
degree from Carnegie-Mellon University. In 2011, he was named an eminent
member of Eta Kappa Nu. He is based in Mountain View, California.

Thomas W. Rondeau holds a Ph.D. from Virginia Tech in eectrical engineer-
ing, graduating in 2007. He is the current maintainer and lead developer of
GNU Radio and is a visiting scholar with the University of Pennsylvania. He
also works as a consultant on GNU Radio and wireless technology through
his firm Rondeau Research, LLC. His Ph.D. dissertation on aritifical intelli-
gence applied to wireless communications received the Council of Graduate
Schools’ Distinguished Dissertation for Math, Science, and Engineering. His
research interests span areas of communications theory, signal processing,
and software design, which are all part of his larger interests in software and
cognitive radios.

