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Abstract

SDR has increasingly become an invalu-
able research, development, and educational 
tool within the telecommunications sector with 
respect to rapidly prototyping new algorithms 
and paradigms in actual radio hardware and 
evaluating them in real-world over-the-air con-
ditions. Due to advances in microprocessor tech-
nology, radio frequency hardware, and software, 
SDR has matured into a reliable tool that is now 
part of almost every communication engineer’s 
toolbox, and it has changed the way the telecom-
munication sector produces innovative solutions 
to technical challenges. In this article, we explore 
four case studies that highlight SDR as a reli-
able tool in industry, academia, and government. 
Specifically, we study four examples that illus-
trate: advances in low-cost, reliable, and versatile 
SDR platforms, open source and universal SDR 
software development environments, powerful 
technical computing environments employing 
SDR hardware for real-world experimentation, 
and educational paradigms for synthesizing dig-
ital communications and digital processing con-
cepts using SDR technology. By understanding 
the impact of these case studies, we intend to 
provide some insight on how the SDR revolu-
tion has changed the way the world designs and 
implements telecommunication systems.

20 Years of SDR:  
A Revolution in the Making

Software defined radio, or SDR, has increasingly 
captured the attention of the telecommunica-
tions sector over the past several decades with 
its promise of rapid design cycles, flexible real-
time operations, reusable hardware for different 
transceiver implementations, ease of manufac-
turing, and upgrading, and accessibility to many 
communication system engineers, technologists, 
and researchers. This SDR vision, which has rev-
olutionized the telecommunications sector over 
the past 20 years, has been fueled by significant 
advances in digital processing technologies, ana-
log-to-digital and digital-to-analog converters, 
software tools, and radio hardware. Consequent-
ly, SDR technology is finally beginning to fulfill 
its promise, and become a mainstream, powerful, 
and accessible communication system and net-
work prototyping tool. 

In fact, at the time of the writing of this arti-
cle, many companies, research laboratories, and 
universities are using SDR to support a wide 
range of communications-related activities.

Although SDR technology possesses signif-
icant potential to make communication system 
prototyping more efficient and accessible to the 
telecommunications community, there were sev-
eral challenges that needed to be resolved in 
order to realize this potential. In order to enable 
the widespead use of SDR technology for proto-
typing communication systems and networks, the 
following conditions need to be achieved:
•	Affordable SDR hardware platforms that pos-

sess sufficient computational horsepower, 
operate across a wide range of carrier fre-
quencies and bandwidths, and are portable

•	Availability of SDR software development 
environments that provide the communica-
tion technologist with a high level of control 
of the SDR platform, a rich set of modules, 
algorithms, and features, and a substantial 
level of accessibility to the software (i.e., 
shallow learning curve)

•	Support between SDR hardware and powerful 
technical computing software that enables 
communication technologists to use reliable 
software models and tools in experiments 
using real-world SDR hardware in real time

•	Established SDR-based engineering under-
graduate curricula that introduce hands-on 
SDR design, prototyping, and experimenta-
tion to the next generation of communica-
tion technologists
Fortunately, the latest advances in SDR tech-

nology have recently achieved these conditions, 
making SDR more accessible to the telecommu-
nications sector for use in prototyping communi-
cation systems and networks.

In this article, we present four case studies 
that highlight the SDR revolution by focusing on 
how it was fueled by advances in SDR hardware 
platforms, SDR software development environ-
ments, technical computing software solutions 
for SDR, and undergraduate educational ped-
agogy using SDR systems. It is expected that 
this article will provide the reader with a better 
understanding of current SDR technology, the 
many different layers that constitute these com-
plex systems, and their capabilities with respect 
to prototyping communication systems.

The rest of this article is organized as fol-
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lows. We provide an overview of commonly used 
SDR platforms, including the popular Univer-
sal Software Radio Peripheral (USRP) by Ettus 
Research LLC. Software development tools 
used to prototype SDR platforms are an essen-
tial element of the SDR revolution with respect 
to implementing digital transceiver designs and 
algorithms. Consequently, we examine several 
such tools, including the widely used GNU Radio 
project. We provide an overview of technical 
computing software used in enabling over-the-
air experimentation via SDR technology, with a 
focus on the MATLAB technical computing soft-
ware environment. Given all of these advances, 
the transformation of engineering undergraduate 
pedagogy with respect to digital communications 
by using SDR platforms for prototyping designs 
and algorithms is covered. Finally, several con-
cluding remarks are given.

Building an 
SDR Platform for the Masses

The revolution in SDR hardware has always 
been tightly coupled to advances in computing 
technology, analog-to-digital converters (ADCs), 
and digital-to-analog converters (DACs). Specif-
ically, the ability of SDR hardware to satisfac-
torily serve as a reliable interface between the 
digital world of bits, packets, and user applica-
tions and the surrounding analog RF environ-
ment of electromagnetic spectrum significantly 
depended on how quickly sample and continu-
ous signal information can be converted between 
the two domains, as well as how fast the sample 
signal information can be processed. Although 
the technology for enabling SDR hardware has 
been around for decades, the cost of this tech-
nology only recently became affordable to most 
of the wireless community. Platforms such as 
the WARP Radio [1], various NUTAQ systems 
(formerly Lyrtech), and the Universal Software 
Radio Peripheral (USRP) by Ettus Research 

(now part of National Instruments) [2] have 
enabled real-time over-the-air experimentation 
in areas such as:
•	Wireless networking
•	Spectrum monitoring
•	Dynamic spectrum access
•	Global System for Mobile Communications 

(GSM), wideband code-division multiple 
access (WCDMA), and Long Term Evolu-
tion (LTE) mobile telephony base stations

•	RADAR
•	Radio astronomy and RADAR astronomy
•	Wildlife tracking
•	RF test equipment
•	Magnetic resonance imaging (MRI)
•	Motion tracking
•	Radio navigation and global positioning
•	Satellite communications
•	RF identification (RFID)
•	Wireless security research

To obtain some insight into the capabilities of 
present-day SDR platforms, let us study a range 
of systems and their technical specifications as 
shown in Table 1. The Ettus USRP N210 (Fig. 1a) 
is a widely used modular SDR platform consisting 
of an RF front-end (RFFE), a field programmable 
gate array (FPGA), and a general-purpose proces-
sor (GPP). This SDR platform is based on the ini-
tial framework devised by Matt Ettus in 2003 when 
he started work on the USRP in order to help 
lower the barrier of entry to SDR. The RFFE is 
tasked with bridging the digital world of sequenc-
es of timed samples and the antenna via a direct 
conversion architecture. A combination of low 
noise amplifiers (LNAs), switches, variable attenu-
ators for gain control, local oscillators (LOs), and 
lowpass filters, coupled with ADCs and DACs, 
enabled the interfacing between the analog RF 
domain and the baseband digital domain. The 
FPGA performs all of the high-speed baseband 
digital signal processing (DSP) operation on the 
samples coming in and out, as well as all precision 
timing and synchronization functions, which allow 

Table 1. Family of available SDR platforms.

Ettus USRP
N200/N210

ZedBoard w/
Xilinx Zynq-7000 FPGA 
& AD-FMCOMMS5-EBZ

NooElec NESDR 
Mini SDR USB Stick

Ettus USRP 
E300

Interface to host Computer Gigabit Ethernet Dual FMC
Connectors

USB 2.0 AXI4-MM interface to an embedded dual-core ARM 
Cortex-A9 processor

RF front-end
Instantaneous bandwidth
RF frequency coverage

USRP daughterboards
25–50 MHz
DC to 6 GHz
(determined by daughterboard)

Integrated RFIC
56 MHz 
70 MHz to 6 GHz

Integrated RFIC
3.2 MHz
24 to 1766 MHz

Integrated RFIC
56 MHz
70 MHz to 6 GHz

MIMO 1  1 per unit, up to 8  8
using multiple units

4  4 N/A 2  2

Full duplex Yes Yes Rx only Yes

ADC Dual 14-bit 100 MS/s Dual/quad 12-bit
61.44 MS/s

8-bit 3.2 MS/s Dual/quad 12-bit
61.44 MS/s

DAC Dual 16-bit 400 MS/s Dual/quad 12-bit
61.44 MS/s

None Dual/quad 12-bit
61.44 MS/s

FPGA
RFNoC-compatible
Cost

Xilinx Spartan 3A DSP
No
$$

Xilinx Zynq-7000
No
$$$

None
No
$

Xilinx Zynq-7000
Yes
$$$$
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for such capabilities as time-division duplexing 
(TDD), time-division multiple access (TDMA), 
and multiple-input multiple-output (MIMO) 
operations across multiple devices. Finally, the 
FPGA contains the logic to interface with the 
GPP. To abstract away the interfacing and control 
of the USRP devices and instead present the user 
with a small set of primitives that can be used to 
build real-time communication systems, the USRP 
Hardware Driver (UHD) was developed in order 
to provide a single application program interface 
(API).

The combined ZedBoard-based Xilinx Zynq-
7000 FPGA with AD-FMCOMMS5-EBZ SDR 
platform (Fig. 1b) is a joint venture between 
Analog Devices and Xilinx to provide a high-per-
formance SDR evaluation system for the wireless 
community. The system-on-chip (SoC) solution 
available on the Xilinx Zynq-7000 FPGA enables 
powerful, versatile computational performance 
derived from both the onboard ARM proces-
sor and FPGA fabric. Thus, the Zynq-7000 can 
support a wide range of digital functions on this 
single platform. The AD-FMCOMMS5-EBZ 
from Analog Devices is the fifth generation of 
a family of high-speed analog RFFEs designed 
to showcase the latest generation of high-speed 
data converters, especially compute-intensive 
FPGA-based radio applications. In particular, 
the AD-FMCOMMS5-EBZ is designed around 
the AD9361 2  2 RF Agile Transceiver, which is 
capable of supporting instantaneous bandwidths 
of up to 56 MHz across 70 MHz to 6 GHz. As 
opposed to the USRP N210 SDR platform, the 
Xilinx Zynq-7000 FPGA/AD-FMCOMMS5-EBZ 
SDR platform is a standalone solution that does 
not require a GPP-based host (a Linux-based 
operating system can be supported on the Zynq-
7000). To support standalone applications, Ettus 
Research released the USRP E300, which uses 
much of the same components as the Xilinx 
Zynq-7000 FPGA/AD-FMCOMMS5-EBZ SDR 
platform and possesses similar specifications and 
performance characteristics.

From a performance perspective, the USRP 
N210, Xilinx Zynq-7000 FPGA/AD-FMCOM-
MS5-EBZ, and USRP E300 SDR platforms 
are all very capable systems that can imple-
ment a wide range of solutions for different 
applications. On the other hand, these solu-
tions range in cost from hundreds to thousands 
of dollars, which might be prohibitively expen-
sive for relatively simple applications, such as 
satellite communication signal reception, wire-
less spectrum sensing, or applications requiring 

numerous SDR platforms. Consequently, the 
SDR market has also witnessed the advent of 
numerous low-cost low-complexity SDR plat-
forms such as the NooElec NESDR Mini SDR 
USB Stick (Fig. 1c). On the order of tens of 
dollars, these simple SDR receivers plug into 
the USB port of a laptop computer and per-
form a wide range of operations based on the 
available software packages installed on the 
host computing platform.

As described previously, the USRP E300 SDR 
platform is a highly capable standalone wire-
less system that can support sophisticated digi-
tal communications and DSP functionality. The 
RFFE based on the AD9361 enables the USRP 
E300 to support wireless communications across 
a large part of the frequency spectrum, while 
both the ADC and DAC accurately interface the 
analog world with the digital baseband domain 
of the FPGA and the ARM processors on the 
Zynq-7000. Until recently, efficient and effective 
utilization of SDR computing hardware resourc-
es by the larger wireless community has always 
been a key technical challenge that prevented the 
widescale use of SDR within the wireless sector. 
Nevertheless, a new programming system called 
the RF Network-On-Chip (RFNoC) hopes to 
remedy this situation.

RF Network-On-Chip

RFNoC is a new programming system for 
FPGAs developed at Ettus Research with the 
goal of easing large SDR designs in FPGAs. This 
architecture allows users to easily integrate cus-
tom modules, such as modulators, demodulators, 
processors, and protocol stacks, without having 
to become experts on FPGA design. The basic 
concept behind RFNoC is that rather than treat-
ing the entire FPGA as a single monolithic sea 
of gates, users instead operate with a network 
of functional units called computation engines 
(CEs). This network dramatically reduces the 
complexity of large designs and allows for the 
dynamic runtime flexibility that many applica-
tions, especially cognitive radios, require.

Each computation engine has the exact 
same interface to the network, so they are eas-
ily interchangeable. This network of computa-
tion elements can scale across multiple FPGAs, 
including those of different types, and this allows 
for portability of CEs across all of the third gen-
eration USRP devices. It also makes dynamic 
reconfiguration of the FPGA a much easier task 
and makes it much easier to meet timing require-
ments in the FPGA.

The network fabric (a crossbar switch) con-
nects the computation engines, radios, and exter-
nal network interfaces. Figure 2 shows the FPGA 
internals of an X300 device, with external 10G 
Ethernet and PCIe interfaces. An E300 device 
would look the same, but instead of Ethernet 
and PCIe, it has interfaces to its on-chip ARM 
CPU.

The network exists inside the FPGA, but it 
also transparently routes across multiple FPGA 
devices that can be connected directly or through 
Ethernet switches and the like. This allows the 
user to easily create large systems consisting of 
many FPGAs and many MIMO-synchronized 
radios easily.

Figure 1. Three examples of widely-used SDR platforms: a) Ettus Research 
USRP N210 Platform; b) ZedBoard with Xilinx Zynq-7000 FPGA with 
analog devices FMC-based RF I/O; c) NooElec NESDR Mini SDR USB 
stick.

(a) (b) (c)



IEEE Communications Magazine • January 2016 71

Open Source Solutions for 
SDR Prototyping

As discussed in the previous section, suitable dig-
ital/computing hardware combined with versatile 
RFFEs are some of the necessary ingredients for 
enabling the widescale adoption of SDR tech-
nology by the wireless community. Nevertheless, 
the implementation of a communication system 
also requires sufficient software support and 
tools that are accessible to the user in order to 
enable the rapid development and evolution of 
ideas and designs. A variety of open source SDR 
software projects exist in order to meet the needs 
of the community, including OSSIE [3], CubicS-
DR, ALOE [4], and the widely used GNU Radio 
project [5]. In order to obtain better understand-
ing of these open source software frameworks 
for building and studying communications sys-
tems, we explore the revolution of open source 
software for SDR by examining the history and 
capabilities of GNU Radio.

GNU Radio

In 2001, Eric Blossom started the GNU Radio 
project with the goal of providing a framework 
for building SDR applications with free soft-
ware. It has attracted a large community of users 
and developers from around the world, and has 
become the design environment of choice for 
much research in the area of SDR and cognitive 
radio. GNU Radio works by using a pluggable 
architecture, where blocks of signal processing 
algorithms are placed together into a graph such 
that samples flow through the graph, with each 
block operating independently on these sam-
ples to produce the radio application. With this 
concept of “drag-and-drop” signal processing, 
designs can easily be modified. Furthermore, 
GNU Radio comes with a variety of graphi-
cal plotting tools and simulation tools such as 
various channel models in order to provide 
straighforward ways to simulate and observe the 
behavior of a new design. In order to under-
stand how software tools interface with the SDR 
hardware, as well as how information is passed 
between the hardware and software domains, let 
us study how GNU Radio operates in handling 
the design and implementation of various com-
munication systems.

Development Models: When it comes to build-
ing communication and other signal processing 
systems, GNU Radio has a few modes that help 
enable the movement of data through the system. 
An intuitive way of handling the signal process-
ing is to move the data as a stream of samples. 
GNU Radio has supported the streaming model 
since its inception, and this solves a number of 
communications issues. However, as interest in 
packet-based communications has been steadi-
ly increasing, handling packets as an infinite 
stream of samples has become problematic, with 
decreased efficiency experienced when trying to 
handle packet boundaries within the stream of 
samples. Consequently, GNU Radio also imple-
ments a message passing system, where messages 
of protocol data units (PDUs), which may rep-
resent a packet, frame, fragment, or similar, are 
transferred as a single unit. Boundary conditions 

are much more easily handled in this way and 
thus enable the focus to shift to efficient pro-
cessing of the data within the PDU. The message 
passing system is also a useful way to signal and 
pass meta-data or control data between blocks.

GNU Radio has a third model for mov-
ing data around, called the tagged stream sys-
tem, which is specifically designed for passing 
meta-data. A block can tag an item in the data 
stream with information about the sample, such 
as the time the sample was created, the signal-
to-noise ratio measured at that sample, or even 
information about the state of the system such 
as the frequency and gain settings of the RFFE. 
The tags move synchronously with the data and 
are handled appropriately through sample rate 
changes. Each of the three models of moving 
data around have their uses and application 
spaces, and most of the real-world modems built 
in GNU Radio use each concept to some extent.

The radio communications research commu-
nity has a number of problems that it is simul-
taneously addressing, such as examining existing 
standards to explore other use cases, improve-
ments and efficiency issues, and security risks. 
Furthermore, the research community is looking 
at new models of communications that may or 
may not be tied to existing systems or methods. 
Finally, research is ever progressing to address the 
next level of challenges for wireless data commu-
nications, such as the rapidly developing push for 
5G standards. GNU Radio itself as a project is not 
directly interested in specific standards. Instead, 
GNU Radio develops the architectural framework 
and API that enables the development and study 
of these issues through the out-of-tree (OOT) 
module project concept. On the other hand, there 
are several software efforts that focus on specific 
standards, implementations, and general technical 
computing research efforts, which are covered in 
the next section.

When SDR Meets 
Technical Computing Software

Once the hardware device and software frame-
work for an SDR platform has been developed, 
wireless prototyping of various communication 
systems by the user can commence. Wireless pro-
totyping is a workflow for the design, verification, 
and prototyping of radio systems. Traditionally, 

Figure 2. Schematic of the Ettus USRP E300 architecture.
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wireless prototyping required mastery of many 
distinct tools, languages, and interfaces, with very 
little tool integration and workfl ow usability. This 
posed a high cost of entry and limited wireless 
prototyping to highly motivated and well fund-
ed organizations. Technical computing software 
solutions, such as MATLAB [6] and SystemVUE 
[7], enable this workflow; often, model-based 
design is the preferred approach for design iter-
ation. Technical computing software has made 
significant progress in recent years, with com-
prehensive support for cellular, wireless local 
area networks, and other wireless waveforms, 
enabling engineers to prototype commercially 
relevant systems in hours instead of months. Bar-
riers to the wireless prototyping workflow are 
vanishing. Furthermore, the wireless community 
is at an inflection point in the pursuit of wire-
less prototyping given the availability of a wide 
range of affordable SDR platform options (refer 
to Table 1). 

wireless PrototYPing workflow

A compelling vision for the wireless prototyping 
workfl ow embodies four steps and places signifi -
cant demands on hardware integration with tech-
nical computing software.

System Simulation: The initial step of the 
workfl ow executes all algorithms on the desktop 
in a convenient and interactive fashion with syn-
thesized data. Desktop execution sidesteps the 
constraints of the target embedded system, mak-
ing it easier to explore algorithm alternatives, 
identify execution errors, and tune parameters as 
a simulation is underway.

RF Integration: The second step config-
ures the RF I/O so that the desktop simulation 
receives and transmits data using the target 
hardware. This enables the simulation to include 
sensor noise, quantization, fading, and power lev-
els that typically infl uence design decisions. RF 
signals can be recorded for use during repeat-
ed testing and verifi cation using real-world data, 
or streamed to the desktop in real time. This 
enables desktop testing of wireless systems and 
typically implicates multicore, GPU, and other 
acceleration techniques that increase simulation 
throughput.

Incremental Deployment: The third step gen-
erates code for elements of the design, replacing 
desktop simulation with streaming execution on 
target hardware. The highest-rate elements in 
the front-end of the radio are typically moved to 
target hardware fi rst, while the rest of the design 
remains on the desktop. For an SDR, these ele-
ments are often destined for execution on an 
FPGA. Additional elements are transitioned to 
and validated on the target hardware iteratively, 
using bit error rate (BER) or other quality met-
rics. This step places high importance on auto-
matic code generation and data transfer between 
desktop and target hardware.

System Validation: The final step executes 
the design on the target hardware and validates 
it for correctness relative to simulation results 
obtained in the first step. Synchronous (gated 
execution) and asynchronous (full-speed stream-
ing) execution of hardware can be employed, 
using techniques such as FPGA-in-the-loop, to 
gain confi dence in fi nal system operation.

This workflow enables practitioners to min-
imize “time to next insight” throughout system 
design. The productivity afforded by each step 
has proven signifi cant on its own, based on feed-
back from academic, research, and commer-
cial wireless prototyping communities for the 
MathWorks technical computing environment. 
Gaining productivity from a technical comput-
ing environment should not require adopting the 
entire workfl ow.

An unexpected benefi t of pursuing SDR with 
a technical computing platform is the use of 
RF modeling tools integrated into the platform. 
Predicting the imperfections of RF hardware is 
diffi cult, due in part to the complexity of nonlin-
ear RF transceivers and the impact of antenna 
arrays; for example; the design of compensation 
and equalization algorithms requires simulation. 
RF modeling tools enable higher fi delity simula-
tion of the complete wireless system.

An exAMPle of wireless PrototYPing:
4g lte cellulAr coMMunicAtions

As an illustration of how straightforward it is to 
perform the wireless prototyping workflow, let 
us consider the example of migrating a fourth 
generation (4G) LTE implementation from the 
MATLAB technical computing software envi-
ronment to an actual SDR hardware platform. 
Referring to Fig. 3, the LTE test waveform is 
synthesized using an LTE resource grid that is 
initially designed and then analyzed in MAT-
LAB. This figure also summarizes many details 
within this test signal. The LTE waveform is then 
transmitted using an SDR platform consisting 
of a Xilinx Zynq-7000 FPGA with an Analog 
Devices FMC-based RFFE, received by a second 
SDR platform, and processed using MATLAB in 
order to analyze the equalization of the physical 
downlink control channel (PDCCH) symbols and 
channel magnitude frequency response. 

Note that throughout this experience, the 
communication systems engineer did not need 
to leave the MATLAB technical computing soft-
ware environment. Instead, once an implementa-
tion for the 4G LTE system has been verifi ed via 
computer simulation, it can readily be applied to 
actual SDR hardware for experimentation. Thus, 
this example highlights the capability of SDR 
technology with technical computing software. 
As shown in the following section, this function-
ality can also be leveraged as a powerful educa-
tional tool for teaching wireless communications.

ProJect-bAseD leArning with sDr
SDR technology has become a viable instruction-
al resource for the teaching of undergraduate 
courses in digital communications. The relative-
ly low cost of the SDR hardware can fit within 
the equipment budget of an academic depart-
ment. Moreover, the increasing amount of soft-
ware support for SDR systems, the reliability 
of SDR/software integration, and the growing 
familiarity of undergraduate students with the 
array of available technical/scientific software 
tools have all contributed to a decrease in the 
learning curve associated with the prototyping of 
communication systems using SDR. Finally, the 
availability of SDR-based instructional resources 
for educators in the form of ready-to-use models 
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and demostrations, laboratory guides, and text-
books has enabled the introduction of SDR into 
the classroom [8].

Although the technology and resources for 
SDR-based education are finally becoming wide-
ly available to both instructors and students, it 
is very important to understand the context in 
which SDR can be deployed within a classroom 
environment in order to maximize the educa-
tional experience. Excellent coverage of lessons 
learned via the pedagogical usage of SDR tech-
nology at Penn State, Worcester Polytechnic 
Institute (WPI), the United States Naval Acad-
emy, Indiana University/Purdue University Fort 
Worth, University of Utah, and Virginia Tech 
was presented in a 2014 Feature Topic on Edu-
cation of IEEE Communications Magazine [9]. 
Based on these different university experiences, 
the use of SDR in the classroom as a tool for 
teaching, reinforcing, and synthesizing concepts 
in digital communications can be decomposed 
into three steps (Fig. 4):
Step 1. Sample-based perspective of digital 

communications
Step 2. Insights on the fundamental building 

blocks of these systems

Step 3. Open-ended communication system 
design experiences

Understanding the Analog/Digital Divide

Most approaches for teaching undergraduate 
digital communications focus on the study of the 
transceiver from a binary perspective that gradu-
ally works toward the RFFE. Conversely, when 
it comes to working with SDR hardware, the key 
challenge in getting a digital communication sys-
tem working is understanding how the ADC and 
DAC operate, since without the correct samples 
nothing else will function properly [10]. Thus, it 
has been observed that a digital communications 
course using SDR yields the best outcomes when 
students start the course from a sample-based 
perspective. Thus, students need to understand 
the functions of both the ADC and DAC, dec-
imation and interpolation, and other discrete 
time signals and systems fundamentals. 

Several key concepts with respect to sampling 
covered in SDR-based undergraduate courses 
include the following.

Signal Bandwidth: Given that the ADC and 
DAC on the SDR platform often operate at a 
fixed sampling rate, students need to understand 

Figure 3. Results obtained using MATLAB, LTE system toolbox and Zynq SDR support from the communications system toolbox.
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how the digital data can be interpolated to or 
decimated from a target sample rate.

Appropriate Sampling Instants: Students 
must understand the physical issues associated 
with the ADC in terms of sampling at the correct 
instants, as well as performing decimation that 
results in the target samples being discarded.

Sampling Underflow and Overflow: There are 
several data bottlenecks in the overall setup of 
the SDR system, such as Gigabit Ethernet and 
available processing power. Thus, students are 
exposed to scenarios when too much data is 
received by an SDR system such that some of the 
information is lost (i.e., overflow) as well as when 
not enough data is provided to the USRP N210 
such that gaps appear in the transmission (i.e., 
undeflow).

Open-Ended Design Experience

Once the sampling concept and fundamental 
modules needed for the construction of a func-
tional digital communication transceiver have 
been covered by an SDR-based course, this pro-
vides several educational opportunities for pre-
senting concepts in medium access control and 
wireless networking. One approach that could 
be employed is the open-ended course design 
project, where students work in teams of two or 
three on a task with specific objectives but loose-
ly defined constraints on how to achieve them. 
The purpose of these projects is to synthesize 
the concepts already taught in class, combined 
with the aforementioned modules, in order to 
pursue a project-based experience that also pro-
motes teamwork and hands-on learning in order 
to yield a real-world solution to a problem.

Step 3 of Fig. 4 shows how communication 
nodes can serve as the building blocks for rela-
tively complex network architectures with sophis-
ticated medium access protocols, such as:
•	Wireless ad hoc networks capable of boot-

strapping from scratch
•	Jamming-resistant multihop wireless net-

works
•	Scaled-down cellular networks
These kind of projects expose students to the 
challenges of coordinating multiple wireless 
transceivers in order to perform a variety of 
different operations. Some of these challenges 
include bidirectional communications, establish-
ing contact between two wireless nodes, medium 
access control, and timing of network operations. 

Consequently, students obtain substantial insight 
into a wireless network consisting of digital com-
munication transceivers from the bottom up. 
In particular, these projects using actual SDR 
hardware to prototype communication systems 
and wireless networks have the ability to help 
synthesize and reinforce digital communication 
concepts while exposing students to real-world 
issues encountered during transceiver and net-
work prototyping.

Conclusion
Advances in SDR technology have revolution-
ized the way the telecommunications sector con-
ducts research, development, and educational 
activities. Low-cost, accessible, and reliable SDR 
hardware coupled with open source SDR devel-
opment environments and powerful technical 
computer software capable of interfacing with 
SDR platforms have significantly transformed the 
way we all think of prototyping new communica-
tion systems and networks. With hands-on SDR-
based communications and networking pedagogy 
being introduced in engineering undergraduate 
curricula, the skill set needed to wield these SDR 
tools is becoming more widely available among 
the next generation of telecommunication tech-
nologists. Twenty years ago, many of the advan-
tages and capabilities of SDR technology that we 
take for granted today were unrealizable. Given 
the rate at which advances are being made in this 
sector, it is expected that this revolution in SDR 
technology will continue for another 20 years.
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Figure 4. Illustration of the educational paradigm employed in teaching digi-
tal communications using SDR hardware.
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