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Abstract

This thesis is devoted to internal queries in texts, which ask to solve classic
text-processing problems for substrings of a given text. More precisely, the task is
to preprocess a static string T' of length n (called the text) and construct a data
structure answering certain questions about the substrings of 7'. The substrings
involved in each query are specified in constant space by their occurrences in 7',
called fragments of T, identified by the start and the end positions. Components
for internal queries often become parts of more complex data structures, and they
are used in many algorithms for text processing.

LoNGEST COMMON EXTENSION QUERIES, asking for the length of the longest
common prefix of two substrings of the text T', are by far the most popular internal
queries. They are used for checking if two fragments match (represent the same
string) and for lexicographic comparison of substrings. Due to an optimal solution
in the standard setting of texts over polynomially-bounded integer alphabets, with
O(1)-time queries, O(n) size, and O(n) construction time, they have found numerous
applications across stringology. In this dissertation, we provide the first optimal
data structure for smaller alphabets of size 0 < n: it handles queries in O(1) time,
takes O(n/log, n) space, and admits an O(n/log, n)-time construction (from the
packed representation of T' with ©(log, n) characters in each machine word).

We then go back to alphabets of size o polynomial in n and focus on more
complex internal queries. Our first data structure supports INTERNAL PATTERN
MATCHING QUERIES, which ask for the occurrences of one substring z within
another substring y. After O(n)-time preprocessing of the text 7', it answers these
queries in time proportional to the quotient |y|/|z| of substrings’ lengths, which
is required due to the information content of the output. We also use this data
structure for PERIOD QUERIES, asking for the periods of a given substring. Here, our
logarithmic query time is also optimal by a similar information-theoretic argument.

Further data structures are designed for MINIMAL SUFFIX and MINIMAL ROTA-
TION QUERIES, asking to compute the lexicographically smallest non-empty suffix
and cyclic rotation of a given substring, respectively. They are answered in O(1)
time after O(n)-time preprocessing. We also consider a more general problem of
simulating the suffix array of a given substring (SUBSTRING SUFFIX SELECTION
QUERIES, asking for the kth lexicographically smallest suffix of a substring) and
its inverse suffix array (SUBSTRING SUFFIX RANK QUERIES, asking for the lexico-
graphic rank of a substring’s suffix). Our data structure supports these queries in
O(logn) time, takes O(n) space, and can be constructed in O(n\/logn) time.

The tools developed in this dissertation additionally yield improved results for
several kinds of SUBSTRING COMPRESSION QUERIES, which ask for the compressed
representation of a given substring obtained using a specific method; we consider
schemes based on the Lempel-Ziv parsing and the Burrows—Wheeler transform.

Our results combine text-processing tools with combinatorics on words and
state-of-the-art general-purpose data structures. The key technical contribution
is a novel locally consistent symmetry-breaking scheme, formalized in terms of
synchronizing functions, which is central to our solutions for LONGEST COMMON
EXTENSION QUERIES and INTERNAL PATTERN MATCHING (QUERIES.
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Streszczenie

Rozprawa dotyczy zapytan wewnetrznych w tekstach, czyli rozwigzywania kla-
sycznych probleméw algorytmiki tekstéw dla podstéw danego stowa. Formalnie,
zadanie polega na wstepnym przetworzeniu statycznego stowa 7' dtugosci n (tekstu),
tak aby skonstruowaé strukture danych odpowiadajaca na pewne pytania dotyczace
jego podstéw. Podstowa te sg identyfikowane w stalej pamieci za pomoca wystapien
w T, zwanych fragmentami tekstu i reprezentowanych przez pozycje poczatkows oraz
koncowa. Komponenty dla zapytan wewnetrznych sa uzywane w wielu algorytmach
tekstowych i wchodza w sklad bardziej rozbudowanych struktur danych.

Zapytania o dlugo$¢ najdiuzszego wspdlnego prefiksu dwoch podstéw tekstu T
stanowia zdecydowanie najpowszechniejszy problem tego rodzaju. Uzywa sie ich
miedzy innymi do sprawdzania, czy dwa fragmenty pasuja do siebie (reprezentuja to
samo slowo), i do poréwnywania podstéw w porzadku leksykograficznym. Mnogosé
zastosowan wynika z istnienia optymalnego rozwiazania w standardowym modelu
tekstéw (nad alfabetem zlozonym z liczb naturalnych wielkoéci wielomianowej
ze wzgledu na n), czyli struktury danych wielkosci O(n), ktéra odpowiada na
zapytania w czasie O(1) i posiada procedure konstrukcji w czasie O(n). W rozprawie
przedstawiamy pierwsza optymalng strukture danych dla matych alfabetéw rozmiaru
o < n: strukture wielkosci O(n/log, n) charakteryzujaca si¢ czasem zapytania O(1)
i czasem konstrukcji O(n/log, n) (na podstawie spakowanej reprezentacji tekstu,
gdzie kazda komoérka pamieci zawiera ©(log, n) symboli).

W dalszej czeéci rozprawy wracamy do tekstow nad alfabetem wielkosci wie-
lomianowej ze wzgledu na n i skupiamy sie na bardziej ztozonych zapytaniach
wewnetrznych. Nasza pierwsza struktura danych rozwigzuje problem wewnetrznego
wyszukiwania wzorca, czyli zapytan o wystapienia jednego podstowa x w obrebie
drugiego podstowa y. Po przetworzeniu tekstu 7' w czasie O(n), odpowiada ona
na takie zapytania w czasie proporcjonalnym do ilorazu |y|/|z| dlugosci podstéw,
ktéry jest wymagany ze wzgledu na pesymistyczng ztozonosé informacji zawartej
w wyniku. Tej samej struktury danych uzywamy takze do zapytan o wszystkie okresy
wskazanego podstowa; uzyskany tutaj czas logarytmiczny réwniez jest optymalny.

Kolejne struktury danych stworzone zostaty do obstugi zapytan o najmniejszy
leksykograficznie sufiks i najmniejsza leksykograficznie rotacje cyklicznag wskazanego
podstowa. Odpowiadamy na nie w czasie O(1) po przetworzeniu tekstu w czasie O(n).
Rozwazamy takze bardziej ogélne pytania o k-ty leksykograficznie sufiks podstowa
(czyli o k-ty elementy tablicy sufiksowej podstowa) oraz o leksykograficzna range
wskazanego sufiksu podstowa (czyli element odwrotnej tablicy sufiksowej). Nasza
struktura danych przetwarza zapytania obydwu rodzajow w czasie O(logn), zajmuje
O(n) komérek pamieci i mozna ja zbudowaé w czasie O(n+/logn).

Stworzone w rozprawie narzedzia daja takze lepsze od znanych dotychczas
rozwiazania problemu kompresji podstow, czyli zapytan o reprezentacje podstowa
wedlug ustalonego algorytmu kompresji; rozwazamy w tym kontekécie metody oparte
na parsowaniu Lempela-Ziva i transformacie Burrowsa-Wheelera.

Rezultaty rozprawy tacza narzedzia do przetwarzania tekstow z kombinatoryka
stow i najnowszymi osiggnieciami w dziedzinie abstrakcyjnych struktur danych.
Nasza kluczowa technike stanowi innowacyjna metoda lokalnie zgodnego tamania
symetrii miedzy pozycjami tekstu, ktéra stoi za nowymi rozwigzaniami dla zapytan
o dlugosé najdtuzszego wspdlnego prefiksu i dla wewnetrznego wyszukiwania wzorca.

Tytul rozprawy w jezyku polskim: Efektywne struktury danych dla zapytan
wewnetrznych w tekstach

Stowa kluczowe: struktury danych, najdtuzszy wspdélny prefiks, lokalna zgodnosc,
najmniejszy sufiks, okres, kompresja podstéw, zapytania o podstowa
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Chapter 1

Introduction

Texts (strings, words)—finite sequences of symbols from some alphabet—are among the
most fundamental data types. They appear as natural-language passages, biological
sequences, computer programs, and machine-generated files. Furthermore, they are used
in data serialization and as a representation of network traffic, trajectories, time series,
etc. Consequently, computational tasks involving strings arise in many areas of applied
computer science, including bioinformatics, data compression, data mining, intrusion
detection, plagiarism detection, and search engines. The abundance of applications
motivates theoretical and experimental research on algorithms and data structures for
text processing; see [71, 48, 41] for textbooks covering the area.

The central problem of text processing is pattern matching, which asks to enumerate
the occurrences of one given string (a pattern) in another given string (a text), i.e., to
identify fragments of the text that match the pattern. A linear-time pattern matching
algorithm is known since 1970 [111], but optimization of space consumption and practical
performance led to multiple further developments [55]. Many scenarios require indexing
for pattern matching, where the task is to construct a data structure for the text allowing
for pattern-matching queries with arbitrary patterns. A suffix tree [142] is the classic
index with linear construction time and query time proportional to the pattern length.
Nevertheless, its relatively large size motivated the development of more space-efficient
alternatives such as the suffix array [107] and compressed indexes [119]. In the classic
setting, matching is defined in terms of equality of strings, but numerous relaxations
of this condition have been studied; see e.g. [116] for a survey on approximate string
matching.

Another major family of problems involves dictionary compression, a class of lossless
data compression methods including Lempel-Ziv [145] algorithms applied in many standard
formats (such as GIF, PNG, PDF, ZIP, gzip). The key tasks in this area are not limited to
efficient compression and decompression algorithms, but also include processing compressed
texts [102].

A further main research direction is to seek regular structures, such as repetitions or
palindromes, that can appear in strings [137]. Such structures are primarily interesting
from the combinatorial point of view. Some also naturally appear in application-specific
contexts (e.g. tandem repeats in DNA sequences), while others in the solutions of seemingly
unrelated text-processing problems.

In many modern applications, the size of the textual data is in gigabytes. For example,
already a single human genome consists of over 3 billion characters (base pairs), and
computational tasks often involve many genomes. This amount of data requires fast and
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space-efficient processing, which poses many algorithmic challenges. As a result, designing
text algorithms typically involves optimizing factors separating the running time from
what is necessary to read the input. Space consumption of algorithms and data structures
is even more important due to a risk of exceeding the capacity of the main memory.
Consequently, research aims at achieving linear running time and working space. Often
the goal is even more ambitious: to overcome this natural barrier, for example with the
use of bit-parallelism; see [117] for a textbook on compact data structures.

1.1 Internal Queries in Texts

A diverse collection of text processing problems requires many algorithmic techniques.
Nevertheless, some auxiliary tasks appear throughout the whole area, resulting in a
widespread use of the tools employed to solve them. A prime example is a problem of
determining the length of the longest common prefix of any two suffixes of the input text.
Among many other applications, these LONGEST COMMON EXTENSION (LCE) QUERIES,
also known as LONGEST COMMON PREFIX (LCP) QUERIES, arise in approximate
pattern matching [99], during the construction of text indexing data structures such as
the suffix tree [53] or the suffix array [82], and in the problem of identifying maximal
repetitions [14].

Note that the longest common prefix is a notion defined for arbitrary two strings,
and a naive scan determines its length in the optimal linear time if these strings are
given explicitly in the input. In the problem of answering LCE QUERIES, we restrict
the possible inputs to the suffixes of a fixed text T, with each suffix identified by its
starting position. This transformation makes the problem much more interesting and
brings many applications because now we can determine the longest common prefix in
constant time after linear-time preprocessing of the text 7[99, 53]. A straightforward
generalization supports queries concerning arbitrary substrings of T', each represented
by its occurrence in 7', which we call a fragment of T, identified by the start and end
position. LCE QUERIES are also used for answering even more basic questions concerning
the fragments of T": to decide whether two fragments match, i.e., if they are occurrences
of the same substring, and to compare them lexicographically.

A similar transformation can be applied to other problems involving one or more
strings; the resulting questions are called internal queries in this thesis. In other words,
the task is to build a data structure for a given text T such that later we can solve
instances of a certain problem with input strings given as fragments of 7. In more
practical applications, the text T' can be interpreted as a corpus containing all the data
gathered for a given study (such as the concatenation of genomes to be compared). On
the other hand, when internal queries arise during the execution of algorithms, then 7' is
typically the input to be processed.

Note that the setting of internal queries does not include problems like text indexing,
where the pattern is explicitly provided at query time. This restricts the expressibility of
internal queries but at the same time allows for better running times, which do not need to
account for reading any strings. Another difference is in the typical usage scenario: Data
structures for the indexing problems are primarily designed to be interactively queried
by a user. In other words, they are meant to be constructed relatively rarely, but they
need to be stored for prolonged periods of time. As a result, space usage (including
the multiplicative constants) is heavily optimized, while the efficiency of construction
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procedures is of secondary importance. On the other hand, internal queries often arise
during bulk processing of textual data. The relevant data structures are then built
within the preprocessing phase of the enclosing algorithms, so the running times of
the construction procedures are counted towards the overall processing time. In this
setting, efficient construction is as significant as fast queries. Components with linear-time
deterministic construction and constant-time queries (like the classic solution for LCE
QUERIES) are particularly valued, because algorithms can use them essentially for free,
i.e., with no negative effect on the overall complexity in the standard theoretical setting.

In this thesis, we develop data structures for several types of internal queries; some
have appeared in the literature prior to our work, while others are internal versions of
classic problems of text algorithms. Below, we discuss each query type, state relevant
previous and our results, and cover their consequences.

We always denote the input text by 7" and its length by n. We also make a standard
assumption that the characters of T are (or can be identified with) integers {0,...,0 — 1},
where the alphabet size o is bounded by a polynomial in n. Our results are designed for
the standard word RAM model with machine words of size Q2(logn). All the algorithms
we develop are deterministic.

1.1.1 Longest Common Extension Queries

In retrospect, the origins of internal queries in texts can be traced back to the invention
of LONGEST COMMON EXTENSION QUERIES, originally introduced by Landau and
Vishkin for approximate pattern matching with respect to edit distance [99] and Hamming
distance [60, 98]. Recall that this auxiliary task is to build a data structure that handles
the following queries concerning the text 7'

LONGEST COMMON EXTENSION (QUERIES
Given two positions 4,4 in the text T, compute LCE(i,") = lep(T[i..], T[i". .]), i.e.,
the length of the longest common prefix of the suffixes starting at positions ¢ and 7’.

Technically, this formulation does not let us classify LCE QUERIES as internal queries.
However, if 2 = T[i..j] and y = T[i’ .. j'] are arbitrary fragments of T', then their longest
common prefix is of length lep(z,y) = min(LCE(4,4), |z|, |y|). Thus, LCE QUERIES
admit the following equivalent formulation:

LCE QUERIES (formulated as internal queries)
Given two fragments x, y of the text 7', compute lep(z, y), i.e., the length of the longest
common prefix of the underlying substrings of 7'

The classic data structure for LCE QUERIES is based on the suffix tree [142] of the
text T equipped with a component for lowest common ancestor queries [73]. It takes
O(n) space, supports constant-time queries, and can be constructed in O(n) time from
the suffix tree of T'. Early suffix tree construction algorithms took O(nlogo) time, but
Farach [53] later designed an O(n)-time algorithm for any o = n®®). Nevertheless, modern
implementations of LCE QUERIES achieve the same results based on simpler and more
practical tools: the suffix array and the LC'P table of T' [107], with a component for range
minimum queries [17] built on top of the latter table.

The O(n) construction time and O(1) query time are obviously optimal, and the size
of O(n) machine words (which is O(n logn) bits) is also necessary in general. Nevertheless,
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this bound is no longer tight if the alphabet size o is much smaller than the text length n.
More precisely, the text only takes O(nlogo) bits, which is o(nlogn) for ¢ = n°W.
Furthermore, such a packed representation of T can be allowed in the input, making way
for o(n)-time construction.

Recent work of multiple research groups brings improvements to LCE QUERIES in
this setting. Tanimura et al. [140] and Munro et al. [114] showed that constant-time
queries can be implemented using data structures of O(n+/log nlog o) and O(n+/lognlog o)
bits, respectively. The latter result admits an O(n/vlog, n)-time construction from the
packed representation of T'. In yet another study, Birenzwige et al. [24] applied our local
consistency techniques (discussed in Section 1.2.1) so that constant-time LCE QUERIES
in the optimal space of O(nlogo) bits can be deduced as a corollary. Nevertheless, the
original implementation of these tools only yields an O(n)-time randomized construction
algorithm. In the thesis, we provide a deterministic construction optimized for the packed
setting, which lets us derive our first main result:

Theorem 1.1.1. For every text T of length n over an alphabet of size o, there exists a
data structure of O(nlogo) bits (i.e., O(n/log, n) machine words) which answers LCE
QUERIES in O(1) time. It can be constructed in O(n/log, n) time given the packed
representation of the text T'.

Related Work

Several other active streams of research concern LCE QUERIES in various settings. One
of them trades query time for improved additional space on top of the text T, which
is then assumed to be stored in a read-only memory (or, equivalently, to be given by
an oracle providing random access to individual characters). Many papers covering this
setting [20, 22, 23, 24, 65, 139] provide randomized and deterministic data structures with
various trade-offs between additional space usage and query time, as well as time and
space complexity of the construction algorithms. Moreover, there is a tight unconditional
lower bound [94] for the case when the additional space is relatively large (£2(n) bits).

An alternative direction [57, 129] is to reuse the n[log o] bits representing the text 7',
storing instead a data structure which not only allows accessing T" but also supports fast
LCE QUERIES. In this setting, the additional space consumption can be reduced to as
little as O(1) machine words [129].

Nevertheless, compression allows storing many real-life texts in much less than n[log |
bits. This phenomenon has been exploited in the development of data structures for LCE
QUERIES in compressed texts [19, 21, 74, 75, 121, 139].

Another line of work studies LCE QUERIES in texts over abstract alphabets beyond
the polynomially-bounded integers. Depending on whether such an alphabet is linearly
ordered, it can be reduced to {0,...,n — 1} using O(nlogn) or O(n?) comparisons. Such
a reduction often becomes the bottleneck of algorithms using LCE QUERIES, and various
ways to circumvent this issue have been considered [44, 66, 93].

LCE QUERIES have also been studied in dynamic settings, where queries are interleaved
with updates to the text [2, 64, 110, 121].

1.1.2 Period Queries

One of the central notions of combinatorics on words is that of a period of a string. An
integer p is a period of a length-m string w if 1 < p < m and there is a length-p string u
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such that w is a prefix of u* (the concatenation of k copies of u) for a sufficiently large
integer k. Equivalently, w has a period p if and only if its prefix of length m — p matches
the suffix of length m — p; such a substring, which occurs both as a prefix and as a suffix
of w, is called a border of w.

The set of all periods of a string is computed in O(m) time as a step of the Morris—
Pratt pattern matching algorithm [111]. A later version of this procedure [85] lets one
further observe that while a string may have up to m periods, the sorted sequence of these
values can be cut into O(log m) arithmetic progressions. A complete characterization of
the possible families of periods [70] further shows that the size of such a representation
(O(log® m) bits) is asymptotically tight. Hence, we adopt it in the internal version of the
problem of finding all periods of a string, formally specified below.

PERIOD QUERIES
Given a fragment x of the text T, report all periods of x (represented by non-overlapping
arithmetic progressions).

We have introduced PERIOD QUERIES in [88], presenting two solutions. The first data
structure takes O(nlogn) space and answers PERIOD QUERIES in the optimal O(log |z|)
time after O(n logn)-time randomized construction. The other one is based on orthogonal
range searching; its size is O(n+Sysucc(n)) and the query time is O(Qrsucc(n)-log |x]), where
Srsuce(n) and Qsuee(n) are analogous values for data structures answering range successor
queries; see Section 3.7 for a definition. The state-of-the-art trade-offs are S,succ(n) = O(n)
and Qsucc(n) = O(log® n) for every constant € > 0 [120], Sysuec(n) = O(nloglogn) and
Qrsuce(n) = O(loglogn) [144], as well as Syguee(n) = O(n'*¢) and Qsyee(n) = O(1) for
every constant ¢ > 0 [46]. The first of these data structures can be constructed in time
Chrsuce(n) = O(ny/Iogn) [16], and the third one in time Cygyee(n) = O(n'™e) [46]. On the
other hand, no efficient construction algorithm has been provided for the second trade-off.

In this thesis, we develop a data structure that is asymptotically optimal for texts
over polynomially-bounded integer alphabets.

Theorem 1.1.2. For every text T' of length n, there exists a data structure of size O(n)
which answers PERIOD QUERIES in O(log |z|) time. It can be constructed in O(n) time.

Our query algorithm is based on the intrinsic relation between borders and periods of
a string. In fact, to answer each PERIOD QUERY, it combines the results of the following
PREFIX-SUFFIX QUERIES, used with x = y to determine the borders of the fragment x.

PREFIX-SUFFIX QUERIES

Given fragments x and y of the text T and a positive integer d, report all suffixes of
y of length between d and 2d — 1 that also occur as prefixes of = (represented as an
arithmetic progression of their lengths).

In other words, we actually prove the following auxiliary result, which has already
been applied in the dynamic longest common substring problem [5] and for computing
the longest unbordered substring [87].

Theorem 1.1.3. For every text T of length n, there ezists a data structure of size O(n)
which answers PREFIX-SUFFIX QUERIES in O(1) time. It can be constructed in O(n)
time.
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In many scenarios, very long periods (p = m — o(m) for a string of length m) are
irrelevant. The remaining periods correspond to borders of length ©(m) and thus can
be retrieved with just a constant number of PREFIX-SUFFIX QUERIES. This restricted
version of PERIOD QUERIES turned out to be useful for algorithms detecting gapped
repeats and subrepetitions [91, 63].

The case of p < %m is especially important since fragments x with periods not exceeding
%|m|7 called periodic fragments, can be extended to maximal repetitions (also known as
runs; see Section 1.2.2). Our solution to arbitrary PREFIX-SUFFIX QUERIES actually relies
on a specialized component covering this particular case. This component has already
been applied for approximate period recovery [3], identifying two-dimensional maximal
repetitions [7], and detecting one-variable patterns [95]. Moreover, Bannai et al. [14]
presented its alternative optimal implementation. The underlying special case of PERIOD
QUERIES also generalizes PRIMITIVITY QUERIES (asking if a fragment x is primitive,
i.e., whether it does not match u* for any string u and integer k > 2), earlier considered
by Crochemore et al. [45], who developed a data structure of size O(n + Sysuec(n)) with
O(Qrsuce(n))-time query algorithm.

1.1.3 Internal Pattern Matching Queries

The main technical contribution behind our solution to PREFIX-SUFFIX QUERIES is, in
fact, a data structure for the internal version of the pattern matching problem, which asks
for the occurrences of one substring within another substring:

INTERNAL PATTERN MATCHING (IPM) QUERIES

Given fragments = and y of the text T satisfying |y| < 2|z|, report the starting
positions of fragments matching = and contained in y (represented as an arithmetic
progression).

We impose a restriction |y| < 2|z| on the fragments involved in a query so that the
starting positions of the occurrences of x within y form a single arithmetic progression
and thus can be represented in constant space; see e.g. [27, 127] for a proof of this folklore
property. Note that if |y| > 2|z|, then one can ask O(|y|/|z|) IPM QUERIES (for the
occurrences of x within fragments ' of length 2|z| — 1 contained in y, with overlaps of
at least |z| — 1 characters between the subsequent fragments y’) and report O(|y|/|z|)
arithmetic progressions on the output.

Theorem 1.1.4. For every text T of length n, there ezists a data structure of size O(n)
which answers IPM QUERIES in O(1) time. It can be constructed in O(n) time.

While IPM QUERIES have not been studied before, Keller et al. [83] showed that
the decision version of these queries can be answered in O(Qsu.(n)) time using a data
structure of size O(n + Syeuec(n)) that can be constructed in O(n + Chgyee(n)) time.! The
aforementioned query time is valid for arbitrary lengths |z| and |y|, so the efficiency of
this data structure is incomparable to ours. Keller et al. [83] also introduced more general
BOUNDED LONGEST COMMON PREFIX QUERIES, defined as follows:

Recall that Srsuce(n), Qrsuce(n), and Cprguee(n) have been introduced in Section 1.1.2 as the space,
query time, and construction time needed to answer range successor queries; see Section 3.7 for details.
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BoUNDED LONGEST COMMON PREFIX (QUERIES
Given two fragments x and y of the text T, find the longest prefix p of x which occurs
in y.

Our result for IPM QUERIES can be combined with the techniques of [83] in a more
efficient implementation of BOUNDED LONGEST COMMON PREFIX QUERIES. Compared
to the original version in [83], the resulting data structure, specified below, has a loglog |p|
factor instead of a log |p| factor in the query time.

Theorem 1.1.5. For every text T of length n, there exists a data structure of size
O(n+ Srsuce(n)) which answers BOUNDED LONGEST COMMON PREFIX QUERIES in time
O(Qrsuce(n) loglog |p|). It can be constructed in O(n + Crsyec(n)) time.

1.1.4 Substring Compression Queries

The original motivation behind BOUNDED LONGEST COMMON PREFIX QUERIES is
in answering SUBSTRING COMPRESSION QQUERIES, i.e., internal queries asking for a
compressed representation of a substring or for the (exact or approximate) size of this
representation. This family of problems was introduced by Cormode and Muthukrish-
nan [39], and some of the results were later improved by Keller et al. [83]. SUBSTRING
COMPRESSION QUERIES have a fairly direct motivation: Consider a server holding a
long repetitive text T and clients asking for substrings of T' (e.g., chunks that should be
displayed). A limited capacity of the communication channel justifies compressing these
substrings.

Both the aforementioned papers apply the classic LZ77 compression scheme [145],
and among other problems, they consider internal queries for the LZ factorization of a
given fragment = and for the generalized factorization of one fragment x in the context of
another fragment y. The latter is defined as the part representing = in the LZ factorization
of a string y#x, where # is a special sentinel symbol not present in the text. BOUNDED
LoNGEST COMMON PREFIX QUERIES naturally appear in the solution to the following
queries:

GENERALIZED LZ SUBSTRING COMPRESSION QUERIES
Given two fragments x and y of the text T', compute the generalized LZ factorization
of x with respect to y.

Consequently, the improved results for BOUNDED LONGEST COMMON PREFIX
QUERIES immediately yield a solution to GENERALIZED LZ SUBSTRING COMPRES-
SION QUERIES with O(C' - Q succ log log %') query time, compared to the previously known

O(C' - Qyrsuce log %')—time queries of [83]; here, C'is the number of phrases in the reported
factorization. We also observe that other variants of LZ77, such as the non-overlapping
(non-self-referential) factorization of x or the factorization of z relative to y (into substrings
of y), can be constructed in O(C' + Q suee log log %) time; see Section 2.3 for formal defini-
tions and sample factorizations. For comparison, the basic LZ SUBSTRING COMPRESSION
QUERIES are answered in O(C' + Q) time [83].

While the original works on substring compression focus on LZ77, Cormode and
Muthukrishnan [39] left other compression schemes for further research. In particular,

they mention methods based on the Burrows-Wheeler transform [29] in this context. We
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make a major step in this direction and study substring compression queries with respect
to the simplest of the schemes based on the BWT: the one where the transformed string
is run-length encoded (see Section 2.3 for definitions).

BWT+RLE SUBSTRING COMPRESSION (QUERIES
Given a fragment x of the text T, compute the run-length encoding RLE(BWT(z)) of
the Burrows—Wheeler transform of the underlying substring.

Our data structure answers these queries with a logarithmic-time overhead.

Theorem 1.1.6. For every text T of length n, there exists a data structure of size O(n)
which answers BWT+RLE SUBSTRING COMPRESSION QUERIES in O(C - log |z|) time,
where C' is the size of the run-length encoded Burrows—Wheeler transform of x. The data
structure can be constructed in O(n+/logn) time.

1.1.5 Substring Suffix Rank and Selection Queries

The primary use for the data structure behind BWT+RLE SUBSTRING COMPRESSION
QUERIES is actually emulating the suffix array [107] and the inverse suffix array of a
substring. Retrieving the kth entry in such a suffix array can be formulated as the
following internal queries:

SUBSTRING SUFFIX SELECTION QUERIES
Given a fragment z of the text 7" and an integer k, find the kth lexicographically
smallest suffix of z.

Recall that the (k + 1)th character of the Burrows-Wheeler transform BWT(x) precedes
the kth lexicographically smallest suffix of x. Hence, the SUBSTRING SUFFIX SELECTION
QUERIES also provide random access to BWT(x).

The problem of emulating the inverse suffix array is to compute the rank of a particular
suffix of x among all the suffixes of z, i.e., to count the suffixes lexicographically smaller
than or equal to the given one. Our SUBSTRING SUFFIX RANK QUERIES, defined below,
are slightly more general as they take arbitrary fragments of 7" in the input.

SUBSTRING SUFFIX RANK QUERIES
Given fragments x and y of the text T', find the lexicographic rank of y among the
suffixes of x.

Our data structure for SUBSTRING SUFFIX SELECTION QUERIES and SUBSTRING
SUFFIX RANK QUERIES combines characteristic features of suffix trees [142] and wavelet
trees [68], and thus we call it a wavelet suffiz tree. Its implementation also relies on
INTERNAL PATTERN MATCHING QUERIES.

Theorem 1.1.7. For every text T of length n, there ezists a data structure of size O(n)
which answers SUBSTRING SUFFIX SELECTION QUERIES and SUBSTRING SUFFIX RANK
QUERIES in O(log |x|) time. It can be constructed in O(n+/logn) time.

While the logarithmic query time is not necessarily optimal, a simple reduction to
orthogonal range queries (range counting and selection queries; see Section 3.7) proves
that it cannot be improved by more than an O(loglogn) factor, even at the cost of slightly
increasing the data structure size.
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Proposition 1.1.8. A data structure of size O(nlog® n) must take Q(bl;%) time
in the worst case for both SUBSTRING SUFFIX SELECTION QUERIES and SUBSTRING

SUFFIX RANK QUERIES.

1.1.6 Minimal Suffix and Rotation Queries

For kK = 1 and k = |x|, SUBSTRING SUFFIX SELECTION QQUERIES reduce to computing the
lexicographically smallest and the lexicographically largest suffixes of a given substring.

MINIMAL (MAXIMAL) SUFFIX QUERIES
Given a fragment x of the text T, report the lexicographically smallest (largest)
non-empty suffix of x.

A classic algorithm by Duval [52] computes both the minimal and the maximal suffix of a
string in linear time using constant additional space. A simple extension of this procedure
also determines these suffixes for all prefixes of the input string. Consequently, the answers
to MINIMAL and MAXIMAL SUFFIX QUERIES can be precomputed in quadratic time.

The first data structures for these internal queries are due to Babenko et al. [13], who
showed how to answer MINIMAL SUFFIX QUERIES in O(log't*n) time and MAXIMAL
SUFFIX QUERIES in O(logn) time, both using O(n) space. A later work [11] improved
the query times to constant, preserving the linear size of the data structures. The one
for MAXIMAL SUFFIX QUERIES also admits an O(n)-time construction algorithm, which
makes it optimal for polynomially-bounded integer alphabets. On the other hand, the
component for constant-time MINIMAL SUFFIX QUERIES is constructed in O(nlogn)
time, which might be improved to O(nlo%) at the cost of increasing the query time to
O(7) (for 1 <7 <logn).

In this thesis, we develop the first data structure for MINIMAL SUFFIX QUERIES to
achieve both O(n) construction time and O(1) query time.

Theorem 1.1.9. For every text T of length n, there exists a data structure of size O(n)
which answers MINIMAL SUFFIX QUERIES in O(1) time. It can be constructed in O(n)
time.

Our techniques give an optimal implementation of MAXIMAL SUFFIX QUERIES too,
which lets us reproduce the results of Babenko et al. [11]. More importantly, they are
also useful in answering related queries for the lexicographically smallest or largest cyclic
rotation of a substring. The two versions of these queries are symmetric (up reversing of
the order of the alphabet), so we focus on the following MINIMAL ROTATION (QUERIES:

MINIMAL ROTATION QUERIES
Given a fragment x of the text T', report the lexicographically smallest cyclic rotation
of x.

The first linear-time algorithms computing the smallest cyclic rotation of a given
string are due to Booth [26] and Shiloach [136], whereas Duval [52] later provided a
constant-space implementation of such a procedure. However, unlike for MINIMAL SUFFIX
QUERIES, the first linear-time algorithm determining the answers to MINIMAL ROTATION
QUERIES for all prefixes of a given text is by Apostolico and Crochemore [10].

Our data structure is the first one for MINIMAL ROTATION QUERIES, but it is already
optimal for texts over polynomially-bounded integer alphabets.
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Theorem 1.1.10. For every text T of length n, there exists a data structure of size O(n)
which answers MINIMAL ROTATION QUERIES in O(1) time. It can be constructed in
O(n) time.

Both MINIMAL SUFFIX QUERIES and MINIMAL ROTATION QUERIES have a few
natural applications. The former can be used for computing the Lyndon factorization [35]
of an arbitrary substring. With Theorem 1.1.9, we achieve query time proportional to
the number of distinct Lyndon words in the factorization. The primary application of
MINIMAL ROTATION QUERIES, on the other hand, is canonization of substrings, i.e.,
classifying them according to cyclic equivalence (conjugacy). In particular, Theorem 1.1.10
yields matching results for the following CyCLIC EQUIVALENCE QUERIES:

CycLic EQUIVALENCE QUERIES
Given two fragment x and y of the text T', decide whether x and y are cyclically
equivalent.

For technical reasons, our data structures also handle GENERALIZED MINIMAL SUFFIX
QUERIES and GENERALIZED MINIMAL ROTATION QUERIES: rather then just substrings
of the text T, they support concatenations of such substrings as well. The query time for a
concatenation of k substrings (each represented by an occurrence in T') increases to O(k?).
Even though we have not optimized this value, GENERALIZED MINIMAL ROTATION
QUERIES have already been applied in the context of finding repetitions in partial words
(strings with don’t cares) [33].

1.1.7 Related Queries

Internal queries are not the only problems in the literature involving fragments of a static
text. For example, the INTERVAL LONGEST COMMON PREFIX QUERIES of [39, 83] ask to
find the maximum value LCE(%, j) for a given index ¢ and an index j from a given interval
{¢,...,r}. Similarly, the RANGE LONGEST COMMON PREFIX QUERIES [1, 4, 8, 123] ask
to maximize LCE(4, j) across distinct positions 4, j both contained in a given interval. A
closely related internal query would be to find the longest repeat in a substring, i.e., the
longest string with at least two occurrences within the given fragment x of the text.

A few further problems cannot be classified as internal queries since their formulation
involves the entire family of all fragments of the text 7. This includes SUBSTRING
HASHING QUERIES [54, 62, 67], which ask to evaluate a function h such that h(z) = h(z’)
holds for fragments x, 2’ if and only if the two fragments match. On the other hand,
FRAGMENTED PATTERN MATCHING QUERIES [6, 67] ask whether the concatenation of
given substrings (each represented by its occurrence in T') is itself a substring of 7.

In many indexing problems, the text 7" is logically partitioned into several documents.
While most queries considered in this setting take an additional string in the input, in
CROSS-DOCUMENT PATTERN MATCHING QUERIES [92] such a string is specified by its
occurrence as a fragment of one of the considered documents.

1.2 Our Techniques

Beyond the results stated above, technical advancements are also an outcome of our
research. Similarly to many modern works in text processing, this thesis relies on tools
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from combinatorics on words, classic string algorithms, and state-of-the-art general-
purpose data structures. On top of that, we introduce some novel ideas and contribute to
the development of several existing techniques. Below, we briefly introduce a few most
important foundations of our work.

1.2.1 Local Consistency

Our main innovation and the key tool behind the solutions for LONGEST COMMON
EXTENSION QUERIES and INTERNAL PATTERN MATCHING QUERIES is a novel imple-
mentation of local consistency—the idea to make symmetry-breaking decisions involving
a position 7 of the text T" based on the characters at the nearby positions. As a result,
positions ¢ and ' are handled consistently provided that they appear in the same context.
This way, we can guarantee that matching fragments of the text are represented in the
same way.

The previous implementations of local consistency involve parsing the text. The first
locally consistent parsing, by Sahinalp and Vishkin [133], is based on the deterministic coin
tossing technique [38]. It has been successfully used for many problems such as parallel
suffix tree construction, approximate pattern matching, and dynamic text indexing [133,
134, 132]. A closely related edit-sensitive parsing can be used to approximate edit
distance with moves [40] and compressibility with respect to the LZ77 compression
scheme [39]. Mehlhorn et al. [110] proposed an alternative randomized construction of
a locally consistent parsing. Much more recently, Jez invented recompression [80]: a
technique which results in a simpler and more efficient parsing scheme. Besides bringing
new applications, such as solving word equations [80] and pattern matching in grammar-
compressed texts [79], recompression also allowed for improving and extending several
results originally relying on earlier locally consistent parsing schemes; see e.g. [64, 61].

Unfortunately, the structure of all these schemes is not suitable for constant-time
implementation of internal queries. This is because extracting any useful information
about a fragment requires time proportional to the height of the parsing, which is typically
logarithmic. Moreover, the context size at a given level of the parsing is expressed in
terms of the number of phrases, whose lengths may vary significantly between regions of
the text. To overcome these limitations, rather than using a locally consistent parsing, we
define synchronizing functions, which select O(n/7) fragments of a given length 7 based
on a context of a size O(7). Uniform context size and constant evaluation time are the
main distinctive features of this implementation.

A related technique is already known to practitioners working on sequence similarity:
Synchronizing functions resemble winnowing schemes introduced by Schleimer et al. [135]
and rediscovered as minimizers by Roberts et al. [130]. These tools have been applied for
plagiarism detection [135, 138, 30], network forensics [128], and bioinformatics [130, 143,
51, 101]. Growing usage in the latter domain has also inspired a line of research providing
rigorous analysis and performance improvements for uniformly random texts [108, 109,
122]. Nevertheless, none of these results is applicable in the worst-case scenario studied in
theory, mainly because highly repetitive fragments cannot be ignored in our setting.

1.2.2 Maximal Repetitions (Runs)

Repetitive fragments require special treatment in many text-processing techniques. This
includes applications of local consistency because symmetry-breaking choices are often
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infeasible within periodic regions of the text. Locally consistent parsing schemes auto-
matically find repetitive fragments and collapse them using run-length encoding. On the
other hand, when building synchronizing functions, we need an external tool to detect
periodic regions of the text. Then, our implementation of LCE QUERIES seamlessly
handles these substrings (as opposed to the earlier data structure of Birenzwige et al. [24]).
On the other hand, our approach to IPM QUERIES fails if the pattern x has a small
period. Consequently, we develop a specialized component for this special case (answering
so-called INTERNAL PERIODIC PATTERN MATCHING (QUERIES).

To handle periodic fragments, we exploit the fact that the structure of these fragments
can be encoded by mazimal repetitions (also known as runs) [106, 90]. This notion has been
intensely studied over the past two decades, both in the algorithmic and combinatorial
context, and the underlying line of research recently resulted in breakthrough structural
and quantitative results [14]. Our main new technical contribution in this area is an
auxiliary component allowing to efficiently extend an arbitrary periodic fragment to the
maximal repetition with the same period. Nevertheless, our usage of maximal repetitions
also relies on an earlier paper [45], which provides a convenient algorithmic interface for
extracting relevant information from maximal repetitions.

1.2.3 Lyndon Words

Lyndon words are a further notion of combinatorics on words central to some results of this
dissertation. Introduced by Lyndon [104] in the context of Lie algebras, they are widely
used in algebra and combinatorics. They also have surprising algorithmic applications,
including ones related to constant-space pattern matching [47], maximal repetitions [14],
and the shortest common superstring problem [112]. The key combinatorial property
of Lyndon words, proved by Chen et al. [35], states that every string can be uniquely
decomposed into a non-increasing sequence of Lyndon words. Our approach to MINIMAL
SUFFIX QUERIES and MINIMAL ROTATION QUERIES is centered around the notion of
significant suffizes of this factorization, introduced by I et al. [76] to compute the Lyndon
factorizations of grammar-compressed texts. While the Lyndon factorization is known
to be crucially related to the lexicographically largest and smallest suffixes of a string
(see [52], for example), ours is the first data structure for MINIMAL SUFFIX QQUERIES
relying on this connection.

1.2.4 Orthogonal Range Searching

A routine approach to many fragment-related queries is based on orthogonal range
searching; see [100] for a survey covering many applications of this technique. Orthogonal
range searching involves a collection of n points in a d-dimensional space (typically
d = 2 in text processing), which has to be preprocessed subject to queries concerning
points contained in a given (hyper)rectangle. A textbook solution to these computational-
geometry problems is based on range trees [18]. Despite many significant improvements [34,
31, 16] and ongoing attention from leading researchers, even usage of the 2-dimensional
range emptiness queries results in overheads in the asymptotic query time or data structure
space. Moreover, the state-of-the-art construction time is no better than ©(n+/logn).
Thus, the main challenge in designing efficient data structures for some internal queries
is to avoid orthogonal range searching. In the case of IPM QUERIES and PREFIX-SUFFIX
QUERIES, this strategy let us obtain optimal solutions (for large alphabets). Other internal
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queries are more challenging, often at least as difficult as some range queries; we then apply
IPM QUERIES just to make the overhead as small as possible. Sometimes (for BOUNDED
LONGEST COMMON PREFIX QQUERIES), we can use data structures for orthogonal range
searching as black boxes. In other cases (for SUBSTRING SUFFIX SELECTION QUERIES
and SUBSTRING SUFFIX RANK QUERIES), we need to adjust a modern data structure
for range queries (a wavelet tree [68]) to our purposes. Due to this connection, the
research reported in this thesis also resulted in a faster wavelet tree construction algorithm,
originally applied for range selection [12] and later for range successor queries [16].

1.2.5 Fusion Trees

Orthogonal range searching is not the only family of abstract problems that naturally
appear in the context of internal queries in texts. Our procedures for MINIMAL SUFFIX
QUERIES and MINIMAL ROTATION QUERIES also crucially rely on predecessor search in
sets of O(logn) integers. In the word RAM model, these auxiliary queries can be answered
in O(1) time using fusion trees [59] of Fredman and Willard. The original implementation
of these trees does not provide an efficient construction procedure, so we actually apply
much more recent dynamic fusion trees [126] by Patragcu and Thorup. Our usage of
fusion trees also extends to IPM QUERIES for short patterns of length |z| = O(logn).
The specialized implementation for this case is needed to compensate for the overheads
arising in the construction of deterministic dictionaries [131] and synchronizing functions,
both central to answering IPM QUERIES for longer patterns.

1.3 Organization of the Thesis

The technical part of this dissertation starts with two preliminary chapters, where we recall
standard notions and results related to text algorithms (Chapter 2) and abstract data
structures (Chapter 3). Next, in Chapter 4, we study LONGEST COMMON EXTENSION
QUERIES in texts over small integer alphabets. Chapter 5 is devoted to handling periodic
fragments of the input text. The auxiliary components developed there are then used in
Chapter 6, where we show how to answer INTERNAL PATTERN MATCHING QUERIES.
Chapter 7 covers applications of IPM QUERIES to further internal queries, including
PERIOD QUERIES and subroutines later used within wavelet suffix trees, developed in
Chapter 8 to answer SUBSTRING SUFFIX SELECTION QUERIES and SUBSTRING SUFFIX
RANK QUERIES. Our data structures for MINIMAL SUFFIX and MINIMAL ROTATION
QUERIES are described in Chapter 9. We conclude with Chapter 10, where we discuss
possible directions for further research concerning internal queries.

1.4 Concise Summary of Our Main Contributions

Our primary results are data structures answering the following internal queries:

LCE QUERIES in texts over small alphabets (see Theorem 1.1.1 and Chapter 4);
PERIOD QUERIES (see Theorem 1.1.2 and Chapter 7);

PREFIX-SUFFIX QUERIES (see Theorem 1.1.3 and Chapter 7);

INTERNAL PATTERN MATCHING QUERIES (see Theorem 1.1.4 and Chapter 6);
BOUNDED LONGEST COMMON PREFIX QQUERIES (see Theorem 1.1.5 and Chapter 7);
LZ SUBSTRING COMPRESSION QUERIES (see Section 1.1.4 and Chapter 7);
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e BWT+RLE SUBSTRING COMPRESSION QUERIES (see Theorem 1.1.6 and Chapter 8);

e SUBSTRING SUFFIX SELECTION QUERIES and SUBSTRING SUFFIX RANK QUERIES
(see Theorem 1.1.7 and Chapter 8);

e MINIMAL SUFFIX QUERIES (see Theorem 1.1.9 and Chapter 9);

e MINIMAL ROTATION QUERIES (see Theorem 1.1.10 and Chapter 9).

Some of the underlying techniques are also of independent interest beyond internal queries:

e synchronizing functions, a novel implementation of local consistency suitable for efficient
processing of static texts (see Section 1.2.1 and Chapter 4);

e new applications of maximal repetitions (runs), including a component for extending
periodic fragments to maximal repetitions (see Section 1.2.2 and Chapter 5).

1.5 Papers Covered in the Thesis

Most of the results included in this dissertation come from the following conference papers:

e [Internal pattern matching queries in a text and applications [89], a joint work with Jakub
Radoszewski, Wojciech Rytter, and Tomasz Walen, published in the Proceedings of the
26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015). This paper
comprises results for INTERNAL PATTERN MATCHING QUERIES, PERIOD QUERIES,
and LZ SUBSTRING COMPRESSION QUERIES. Our data structure answering LONGEST
CoMMON EXTENSION QUERIES is a new application of the underlying techniques.
Moreover, deterministic construction algorithms are provided in the thesis instead of
earlier randomized ones.

o Wavelet trees meet suffic trees [12], a joint work with Maxim Babenko, Pawel Gawry-
chowski, and Tatiana Starikovskaya, published in the Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2015). This paper includes
results for SUBSTRING SUFFIX SELECTION (QQUERIES, SUBSTRING SUFFIX RANK
QUERIES, and BWT+RLE SUBSTRING COMPRESSION (QUERIES.

e Minimal suffix and rotation of a substring in optimal time [86], published in the
Proceedings of the 27th Annual Symposium on Combinatorial Pattern Matching (CPM
2016), distinguished with the Alberto Apostolico Best Paper Award. This paper comprises
results for MINIMAL SUFFIX QUERIES and MINIMAL ROTATION QQUERIES.



Chapter 2

Preliminaries I: Strings

We consider strings over an alphabet X, i.e., finite sequences of characters from the
set . Throughout the thesis, we assume that ¥ is identified with a range! [0,0 — 1] of
non-negative integers. In the algorithmic results, we further assume that the alphabet
size o does not exceed n®Y | where n is the length of the input string, called the text
and typically denoted as T'. Such an alphabet, called a (polynomially-bounded) integer
alphabet, is currently standard in the literature.

In this chapter, we recall some basic concepts and results of text algorithms. This
includes fundamental notions from combinatorics on words and standard data structures
for text processing. A more detailed exposition can be found in the classic textbooks [103,
71, 48, 41]; they do not include some of the most recent developments, though.

2.1 Basic Combinatorics on Words

The set of all strings over ¥ is denoted by ¥*, the empty string is €, and ¥+ = X*\ {e} is
the set of non-empty strings over ¥. The concatenation of two strings u,v € ¥* is denoted
UV or uv.

Let us fix a string w € ¥* of length |w| = n. For 1 < i < n, we refer to the ith
character as w[i] (we use 1-based indexing). We identify strings of length 1 with the
underlying characters, which lets us write w = w[1] - - - w[n]. The string wf = wn] - - - w[1]
is called the reverse of w.

For a fixed string w, we say that an integer ¢ such that 1 <1 < |w| is a position in w.
A string u is called a substring (or a factor) of w if there are two positions ¢ < j in w
such that uw = wi] - - - w[j]. In this case, we say that u occurs in w at position i, and we
denote by wli..j] the occurrence of u at position .

We call wli..j] a fragment of w. Formally, the fragment w(i .. j] is a pair of positions
i,7 in w such that i < j: the start position i and the end position j. If w[i..j] is an
occurrence of a string u, then we write u = wli..j] and say that wl[i..j] matches u.
Similarly, if w[i..j] and w[i’..j'] are occurrences of the same string, we denote this by
wli..j] =2 wli’..j'], and we say that these fragments match. On the other hand, the
equality of fragments w[i..j| = w[i’'..j'] is reserved for occasions when wli.. j] is the
same fragment as w[i’ .. 7’| (i.e., i =4 and j = j'). We assume that a fragment = of w,
x = wli..j], inherits some notions from the underlying substring: the length |z| = j—i+1,
the characters x[i'] for 1 <1’ < |z|, defined as w[i’ + ¢ — 1], and the subfragments x[i’ .. j'|

! For any integers i, j with i < j, we denote the range (the integer interval) {i,...,5} by [i, ]

15
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for 1 <7 < j <|z|, defined as the fragments w[i' +¢ —1..5 4+ — 1].

A fragment wli..j| also has a natural interpretation as a range [i, j] of positions
in w. This lets us consider disjoint or intersecting (overlapping) fragments and define
the containment relation (C) on fragments. Moreover, for positions ¢ < j < k, fragments
wli..j] and w[j + 1..k] are called consecutive and wli.. k| = wli..jlw[j + 1..k] is
assumed to be their concatenation. If fragments wli. . j] and wi’ .. j'] intersect, we define
their intersection w[max(i,4")..min(j, 5')] by wli..j] Nw[i"..j]. Similarly, if wli.. j]
and w(i' .. '] are overlapping or consecutive, then their union wli..j] U w[i'..j'] is
wlmin(z,") .. max(j, j')].

A fragment z of w of length |z| < |w| is called a proper fragment of w. A fragment
starting at position 1 is called a prefiz of w and a fragment ending at position |w| is
called a suffiz of w. We sometimes use abbreviated notation w]. . j] and w[i..] for a prefix
wll..j] and a suffix w[i .. |w]|] of w, respectively. We extend the notions of a prefix and a
suffix to the underlying substrings. A string u is a common prefiz of two strings v, w if it
is a prefix of both v and w; common suffizes are defined symmetrically. The length of the
longest common prefix of two strings v, w is denoted by lep(v, w), and the length of their
longest common suffix is denoted by les(v, w).

We denote by < the natural order on Y and extend this order in the standard
way to the lexicographic order on »*: a string x is lexicographically smaller than y
(denoted = < y) if either z is a proper prefix of y, or lep(z,y) < min(|z|, |y|) and
zllep(z, y) + 1] < yllep(z, y) + 1].

We introduce two distinct sentinel symbols #,$ ¢ 3 and extend the order < to
> = YU {#,$} so that # < ¢ < $ for every ¢ € ¥. In the algorithmic results, we assume
that ¥ is the input alphabet, while ¥ is sometimes internally used by our solutions.

2.2 Periodic Structures in Strings

An integer p, 1 < p < |w], is a period of a string w € YT if w[i] = w[i + p| for
1 <i < |w| — p. The shortest period of w is denoted as per(w); the ezponent of w is
pelﬁ’quv). We call w periodic if exp(w) > 2 and highly periodic
if exp(w) > 3. A border of a string w is a substring of w which occurs both as a prefix
and as a suffix of w. Note that p is a period of w if and only if w has a border of length
|w| — p. Periods of a string w satisfy the periodicity lemma, one of the classic results in

combinatorics on words.

then defined as exp(w) =

Lemma 2.2.1 (Periodicity Lemma [105, 56]). Let w be a string with periods p and q. If
p+q—ged(p, q) < |w|, then ged(p, q) is also a period of w.

For a string w € ¥* and an integer k£ € Z>(, we denote the concatenation of k£ copies
of w by w¥. In the case of k > 2, the string w* is called a power of w (with root w); w? is
called a square and w? is a cube. A non-empty string v € XV is primitive if it is not a
power, i.e., u # w” for every integer k > 2 and every root w. Primitive strings enjoy a
synchronizing property, which is an easy consequence of Lemma 2.2.1.

Lemma 2.2.2 (see [41, Lemma 1.11]). A non-empty string u is primitive if and only if it
occurs ezactly twice in u? (as a prefix and as a suffiz).

We say that a string w’ is a rotation (cyclic shift, conjugate) of a string w if there
exists a decomposition w = uv such that w’ = vu. Here, w’ is the left rotation of w by |u
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characters and the right rotation of w by |v| characters. By Lemma 2.2.2; a string w € X+
is primitive if and only if it has |w| distinct cyclic rotations. A string w € X7 is called a
Lyndon word [104, 35] if w is primitive and w < w’ for every cyclic rotation w’ of w.

2.2.1 Maximal Repetitions (Runs)

A run (maximal repetition) [106, 90] in a string w is a periodic fragment v = wli. . j]
which can be extended neither to the left nor to the right without increasing the shortest
period p = per(y), that is, w[i — 1] # w[i + p — 1] and w[j — p + 1] # w[j + 1] provided
that the respective positions exist. The algorithms considered in this thesis always store
runs together with their periods so that per(vy) can be retrieved in constant time. We
denote the set of all runs in a string w by R(w).

Ezxample 2.2.3. A string w = baababaababb has three runs with period 1: w[2..3] = aa,
w[7..8] = aa, and w[11..12] = bb; two runs with period 2: w[3..7] = ababa and
w[8..11] = abab; one run with period 3: w[5..10] = abaaba; and one run with period 5:
wl[l..11] = baababaabab.

Figure 2.1: An illustration of a run v extending a fragment u. We have run(u) =~ and
per(u) = per(y) = p < 3lul.

We say that a run 7 eztends a fragment x if = is contained in v (z C ) and
per(x) = per(7); see Figure 2.1. Note that every periodic fragment can be extended to
a run with the same period. Moreover, the following easy consequence of Lemma 2.2.1
implies that this extension is unique:

Fact 2.2.4. Let v # +' be overlapping runs in a string w. If p = per(y) and p’ = per(v/),
then |y N+ <p+p' — ged(p,p).

Proof. For a proof by contradiction, suppose that |y N ~'| > p+ p’ — ged(p,p’). By
Lemma 2.2.1, this means that ged(p, p') is a period of the intersection v N ~/, which we
denote w[l..r]. Since v # 7/, one of these runs must contain position £ — 1 or r 4+ 1. Due
to symmetry, we may assume without loss of generality that v contains position ¢ — 1.
Observe that positions £+p—1 and £+ p’ —1 are located within yNv/, so w[l+p—1] =
w[l + p' — 1]. On the other hand, w[¢ — 1] = w[l + p — 1] (because v contains position
¢—1) and w[l — 1] # w[l + p’ — 1] (by maximality of 7). Thus, w[l — 1] =w[l +p—1] =
wll + p' — 1] # w[¢ — 1], which is a contradiction that concludes the proof. O

We denote the unique run extending x by run(z). If = is not periodic, we leave run(z)
undefined, which we denote as run(xz) = L.

Kolpakov and Kucherov [90] proved O(n) upper bounds on the number of runs in a text
of length n and on the sum of their exponents. They also designed an O(n)-time algorithm
for computing runs (for texts over constant-sized alphabets). A number of follow-up papers
improved the constants in these combinatorial bounds. Also, the linear-time algorithm
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has been extended to texts over integer alphabets [42]. In a recent breakthrough paper,
Bannai et al. [14] proved that |R(w)| < |w| and that 3, cx ) exp(y) < 3|w|. They also
gave a significantly simpler linear-time algorithm for computing runs, which is based on
the structure of Lyndon words in the text. Nevertheless, our results rely on the asymptotic
bounds only:

Proposition 2.2.5 ([90, 42, 14]). Given a text T of length n, the set R(T) of all runs in
T (together with their periods) can be computed in O(n) time. Moreover, the number of
runs R(T) and the sum of their exponents Y- crry exp(y) are both O(n).

2.3 String Compression

Some of the problems considered in this thesis ask to compute compressed representations
of strings. We work with two compression methods: the Lempel-Ziv LZ77 algorithm [145]
and the run-length encoding of the Burrows—Wheeler transform [29].

2.3.1 LZ77 Compression

Consider a string w € ¥*. We say that a fragment w[l..r] has a previous occurrence
(or is a previous fragment) if w[¢..r] = w[l’ ..r'] for some positions ¢’ < ¢ and r" < r.
The fragment w[l..r] has a non-overlapping previous occurrence (or is a non-overlapping
previous fragment) if additionally " < /.

The Lempel-Ziv factorization LZ(w) is a factorization w = f; --- fi into fragments
(called phrases) such that each phrase f; is the longest previous fragment starting at
position 1+ |f;--- fi_1|, or a single letter if there is no such previous fragment. The
non-overlapping Lempel-Ziv factorization LZy(w) is defined in an analogous way, allowing
for non-overlapping previous fragments only. Both factorizations (and several closely
related variants) are useful for compression because a previous fragment can be represented
using a reference to the previous occurrence (e.g., the positions of its endpoints).

Strings w € ¥* are sometimes compressed with respect to a context string (or dictionary
string) v € ¥*. Essentially, there are two ways to define the factorization LZ(w | v) of w
with respect to v. In the relative LZ factorization [146, 97] LZgr(w | v), each phrase is the
longest fragment of w which starts at the given position and occurs in v (or a single letter
if there is no such fragment). An alternative approach is to allow both substrings of v
and previous fragments of w as phrases. This results in the generalized LZ factorization,
denoted LZg(w | v); see [39, 83]. Equivalently, LZq(w | v) can be defined as the suffix of
LZ(v#w) corresponding to w. The previous fragments in the non-overlapping generalized
LZ factorization LZyg(w | v) must be non-overlapping.

FExample 2.3.1. Let w = aaaabaabaaaa and v = baabab. We have

LZ(w) = a-aaa-b-aabaa- aa,

LZy(w) =a-a-aa-b-aab-aaaa,

)

)

LZgr(w | v) = aa - aaba-aba-aa- a,

LZg(w | v) = aa - aaba - abaa - aa,
)=

LZgny(w | v) = aa - aaba - aba - aaa.



2.4. INFINITE STRINGS 19

2.3.2 BWT+RLE Compression

The Burrows—Wheeler transform [29] (BWT) of a string w is a string BWT(w) =
biby - - - bw+1, where by is the character preceding the kth lexicographically smallest
suffix of w# (assuming that # precedes w[l]). Defined this way, BWT(w) uniquely
determines the original string w. Moreover, if w is repetitive, then BWT(w) tends to
contain long segments of equal characters, i.e., long runs with period 1 (see Section 2.2.1).
This, combined with run-length encoding (RLE), allows compressing strings efficiently.
The run-length encoding of a string is obtained by replacing each run with period 1 by a
pair consisting of the character that forms the run and the length of the run.

Ezample 2.3.2. The Burrows—Wheeler transform of a string w = bacaca is BWT(w) =
accb#taa, whose run-length encoding is RLE(BWT(w)) = a'c?b'4#£'a%.

2.4 Infinite Strings

Occasionally, we also work with the family ¥ of infinite strings (indexed by positive
integers). The notion of concatenation uv extends to u € ¥* and v € 3°°, resulting in
uv € ¥°°. Also, the notions of substrings, fragments, suffixes, prefixes (including the
longest common prefix of two strings), as well as the lexicographic order naturally extend
to infinite strings. For a word w € X1, we also introduce the infinite power w™ € X,
i.e., the concatenation of infinitely many copies of w. More formally, this is the unique
infinite string which has w* as a prefix for every k € Zs; see Figure 2.2.

/\/\/\/\/\/\/’/’
abcabcabcabcabcabec -

I Y
abcabcababahb

Figure 2.2: Lexicographic comparison of a finite and an infinite string. We have
lep((abc)™, abcabeababab) = 8 and (abc)™ - abcabcababab.

2.5 Suffix Arrays, LCE Queries, and Applications

The suffiz array [107] of a text T of length n is a permutation SA of {1,...,n} defining
the lexicographic order on the suffixes of T: T[SAi]..] < T[SA[j]..] if and only if i < j.
The suffix array takes O(n) space and can be constructed in O(n) time [82].

One of the most important applications of the suffix array is in answering LCE
QUERIES, first introduced by Landau and Vishkin in the context of approximate pat-
tern matching [99]. Given two positions i, in T, these queries ask for LCE(i, j) =
lep(T'[i..],T[j..]). The standard solution is to build the suffix array SA, its inverse ISA
(defined so that SA[ISA[i]] = i), the LC'P table (storing LC P[i] = LCE(SA[i — 1], SA[i])
for 2 <1i < n), and a data structure for range minimum queries (see Section 3.7) built on
the LC'P table; see [82, 53, 99].

Proposition 2.5.1 (Answering LCE QUERIES). Given a text T of length n, one can
construct in O(n) time a data structure of size O(n) answering LCE QUERIES in O(1)
time.
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The LCE QUERIES can be used to answer further questions concerning fragments of
the input text T

Fact 2.5.2 (Applications of LCE QUERIES). Assume that we have access to a text
T equipped with a data structure answering LCE QUERIES in constant time. Given
fragments x,y of T, the following queries can be answered in O(1) time:

(a) compute the length of the longest common prefix lep(z,y),
(b) decide whether v <y, x =y, orx >y,
(c) compute lep(x™,y) and decide if z>° <y or x> = y.

Proof. Let x =Ti,..j,) and y = T'iy .. j,].

(a) We have lep(z, y) = min(LCE(iy, i), ||, [y])-

(b) Let £ =lcp(z,y). If £ = min(|x|, |y|), then the lexicographic order of z and y coincides
with the order of |z| and |y|. Otherwise, it coincides with the order of z[¢ + 1] and y[¢ + 1].
(c) If lep(z,y) < |z, i.e., x is not a prefix of y, then lep(z*,y) = lep(z, y) and the order
between x> and y is the same as between x and y. If x = y on the other hand, then
clearly lep(z™,y) = |z| and 2 > y. Otherwise, consider a fragment v’ = T'[i,, + |z| .. j,].
A simple inductive proof shows that lep(z>,y) = |z| + lep(x*,y’) = |z| + lep(y, ¥') and
that the order between x> and y is the same as between y and 3. Consequently, the
query can be answered in constant time in each case. O

2.6 Tries, Compressed Tries, and Suffix Trees

A trie is a rooted tree whose nodes correspond to prefixes of strings in a given (finite)
family of strings A C ¥*. If v is a node, then the corresponding prefix v is called the
value of the node. The node with value v is called the locus of v.

The parent-child relation in the trie is defined so that the root is the locus of ¢, while
the parent p of a node v is the locus of the value of v with the last character removed.
This character is the label of the edge from p and v. In general, if p is an ancestor of v,
then the label of the path from p to v is the concatenation of edge labels on the path.

A node is branching if it has at least two children and terminal if its value belongs
to A. A compacted trie is obtained from the underlying trie by dissolving all nodes except
the root, branching nodes, and terminal nodes. In other words, we compress paths of
vertices with single children, and thus the number of remaining nodes becomes bounded
by 2|A|. In general, we refer to all preserved nodes of the trie as explicit (since they
are stored explicitly) and to the dissolved ones as implicit. An implicit node v can be
represented as a pair (u,d), where p is the lowest explicit descendant of v, and d is the
distance (in the uncompacted trie) from v to pu. The pair (u,d) is called the locus of the
value of v in the compacted trie, and p is called its explicit locus. Edges of a compacted
trie correspond to paths in the underlying trie and thus their labels are strings in X+.
Typically, these labels are stored as references to fragments of the strings in A.

The suffiz trie of a text T' € ¥* is the trie of all suffixes of T'. Consequently, there is a
bijection between substrings of 7" and nodes of the suffix trie. The suffiz tree of T [142],
denoted Teus(7'), is the compacted suffix trie of T. For a text T of length n, it takes O(n)
space and can be constructed in O(n) time either directly [53] or from the suffix array
of T'; see [48, 41].



Chapter 3

Preliminaries II: Data Structures

In Chapter 2, we introduced classic combinatorial and algorithmic tools for text processing.
The results of this thesis also rely on several abstract data structures, which we recall
below. All these data structures are static—they are constructed for some input data
(which cannot be modified) and their task is to answer queries about this data.

We start, in Section 3.1, with a brief description of the word RAM model of computation
used throughout the thesis. Section 3.2 presents the standard packed representation of
strings over small alphabet in the word RAM model. Next, in Section 3.3, we define
fundamental abstract queries: rank, selection, predecessor, and successor. In the following
sections, we recall data structures answering these queries in various settings. Fusion trees
(Section 3.4) are efficient for small integer sets, while data structures based on bitmasks
(Section 3.5) can be used for relatively small universes. Rank and selection on bitmasks
can be generalized to similar queries on sequences over a larger alphabet. In Section 3.6,
we discuss the standard tool for this setting: a wavelet tree. We give a relatively detailed
description of wavelet trees since the main data structure of Chapter 8 is based on them.
We conclude by recalling results for several types of range queries in Section 3.7.

3.1 Word RAM Model

Throughout the thesis, we assume the standard word RAM model of computation,
which nowadays is the default choice for sequential internal-memory algorithms and data
structures. Below, we briefly introduce the model; we refer to [72] for a full exposition.

In the word RAM model, the memory is composed of M cells which hold machine
words, i.e., W-bit integers (from [0,2" — 1]). Cells are addressed by consecutive integers
[0, M — 1], which must fit in machine words (this requires M < 2"'). We always assume
that the memory is large enough to fit the input data. Consequently, W > log N, where
N is the input size.! The model supports constant-time random access to the memory
(reads and writes of the cell at an arbitrary address), as well as constant-time bit-wise
and arithmetic operations on W-bit integers (including multiplication). A non-trivial
consequence of these assumptions in that the positions of the most significant bit and the
least significant bit can be retrieved in O(1) time:

Proposition 3.1.1 (Fredman and Willard [59]). There is a constant-time word RAM
algorithm which, given a W-bit integer x # 0, returns |log x|, i.e., the index of the most
significant bit in x which is set to one.

'The log function denotes the binary logarithm unless a different base appears in the subscript.

21
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Corollary 3.1.2. There is a constant-time word RAM algorithm which, given a W -bit
integer x # 0, returns the index of the least significant bit of x which is set to one.

Proof. It suffices to observe that the least significant bit of x can be retrieved as the
most significant bit of z @& (x — 1), where & denotes the bit-wise ‘xor’. O

Memory cells (machine words) are the default unit while measuring the space complexity
of algorithms and the size of data structures. Single bits can be used as an alternative
unit (if mentioned explicitly). Lower bounds for the time and space complexity of data
structures in the word RAM model are usually proved for a more powerful cell-probe
model, whose memory organization is the same, but only memory access operations are
counted towards the running time (which means that computation on individual machine
words is free).

3.2 Packed Representation of Strings

Strings are typically represented in the word RAM model as arrays, with each character
occupying a single memory cell. Nevertheless, this representation is wasteful for small
alphabets; see e.g. [85]. If the alphabet X is of size o, then a single character can be
represented using [log o] bits, which might be much less than 1. Consequently, one may
store a text 7' € X" using a sequence of n [logo] bits occupying [%W consecutive
memory cells. In the packed representation of T', we assume that the first character
corresponds to the [logo] least significant bits of the first cell and so on. Constant-
time operations available in the word RAM model let us efficiently retrieve packed

representations of substrings and perform some basic operations.

Proposition 3.2.1. Let T be a text over an alphabet of size o, stored in the packed
representation. The packed representation of T of any length-{ fragment of T can be
retrieved in (9((“35" ) time. Moreover, the length of the longest common prefiz of two
length-€ fragments can be computed in the same time.

Proof. The bit sequence corresponding to any fragment of length ¢ is contained in the

concatenation of at most 1 + [%W memory cells of the packed representation of T'. Its

location can be determined in O(1) time, and the resulting sequence can be aligned using
O((“O%D bit-wise shift operations, as well as O(1) bit-wise ‘and’ operations to mask out
the adjacent characters. This results in a packed representation of the length-¢ fragment
of T. In order to compute the length of the longest common prefix of two such fragments,
we ‘xor’ the packed representations and find the position p of the least significant bit
in the resulting sequence, repeatedly applying Corollary 3.1.2. The resulting length is

hﬁ;ﬂ assuming 1-based indexing of positions. O

A particularly important case is that of binary strings, which we sometimes call

bitmasks. A bitmask of length n can be stored in just [%W memory cells.

3.3 Basic Queries

Let U be an arbitrary universe and let < be a linear order on U. Consider a finite multiset
A C U. Rank queries, given an element x € U, return the rank of x in A, which is defined
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as the number (i.e., the total multiplicity) of elements y € A not exceeding :
rank4(z) = [{y € A:y 2 x}|.

Similarly, selection queries, given an integer k € [1, |A|], return the kth smallest element
in A (1-based). Formally, select4(k) can be defined as the smallest € U such that
rank 4(z) > k. For k ¢ [1,]A]], we leave select 4(k) undefined, i.e., select 4(k) = L.

In general, rank and select queries can be used to determine the predecessor and the
successor of x € U in A, i.e.,

pred 4(z) =max{y € A:y <z}

and
succq(x) =min{y € A:y = z}.

Indeed, pred 4(x) = select 4(rank 4(z)) and succ4(z) = select 4(rank 4(x) + 1). In some
natural settings, predecessor and successor queries are actually strictly easier than rank
and selection; see e.g. Section 3.7.

3.4 Fusion Trees

In the word RAM model, the most natural universe U consists of W-bit integers (recall
that W is the machine word size). In this framework, dynamic fusion trees by Patragcu
and Thorup [126] provide a very efficient solution even in the static setting.

Theorem 3.4.1 (Fusion trees [126, 59]). For every set A of W-bit integers, there exists
a data structure of size O(|A|) which answers rank 4, select 4, pred 4, and succq queries
in O(1 +logy, |A|) time. It can be constructed in O(|.A|) time if A is sorted in the input.

Proof. The original static fusion trees by Fredman and Willard [59] match the claimed size
and query time bound, but their construction procedure is not sufficiently fast. Patragcu
and Thorup [126] dynamized fusion trees, with updates implemented in O(1 + logy, |.A|)
time, which immediately yields an O(|.A|(1 + logy |A|))-time construction. We observe
that this running time can be easily improved to O(|.A|) in the static setting.

The main technical contribution of [126] is that the queries and updates are supported
in O(1) time if |A| < W'/%; such components are called dynamic fusion nodes. The fusion
tree is implemented in [126] as a B-tree [15] with B = ©(W1/*) and keys (elements of A)
stored in the leaves. Each internal node is a dynamic fusion node storing the smallest
elements of its children’s subtrees. The total size of dynamic fusion nodes is O(|Al), so
the whole fusion tree can be constructed in O(|.4]) time provided that A is already sorted.
Moreover, the rank 4 operation is easy to implement in O(1+ logy, |A|)-time by traversing
a root-to-leaf path, with rank queries on fusion nodes applied to retrieve the child to
proceed to. To answer select 4 in the static setting, we can simply store A in an array. [

In some applications, we need to trade the linear size for faster queries.

Corollary 3.4.2. For every set A C [1,n] and parameter 7 € [1,n], there ezists a data
structure of size O(|A| + ) which answers rank 4, select 4, pred 4, and succy queries in
O(1 +logy, 7) time. It can be constructed in O(|A| + 2) time if A is sorted in the input.
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Proof. We partition the universe [1,n] into blocks B; = [1+ (i — 1)7,i7]. For each block,
we store the fusion tree of A; = AN B;, as well as the values

ri =ranka((i — 1)7) = | Ay + - - + | Aizq]-
This way, for each z € B;, we have
rank 4(z) = r; + rank 4, ().

Consequently, rank 4 queries can be answered in O(logy, 7) time. For O(1)-time select 4
queries, we simply store A in a sorted array. Each block requires O(|.A4;| + 1) space and
construction time, which is O(|A| 4+ %) in total. O

3.4.1 Evaluating Functions Given by Step Representations

In Chapters 4 to 6, we repeatedly need to evaluate piecewise constant functions on integer

domains. Below, we describe this simple application of Theorem 3.4.1 and Corollary 3.4.2.
Suppose we have a function f defined on [1,n] and that we are to support random

access to values f(z) for z € [1,n]. In general, the best we can do is to store f in an

array of size n. If the values of f fit in O(1) machine words each, this takes O(n) space

and O(1) evaluation time. However, we are often going to work with functions for which

the values f(z) and f(z + 1) are usually equal. For such functions, we identify steps,

which are maximal integer intervals I C [1,n] such that f is constant on I. Formally, the

step representation Step(f) of f is defined as a sequence ([¢;,7;],v;)72, which satisfies

the following conditions:

f(z) =v; for x € [¢;,r)],

¢y =1and r, =n,

Uiy =rj+1for 1 <j<m,

vj # vjpr for 1 <7 <m.

The value m is called the size of the step representation, denoted |Step(f)].
Observe that we have x € [{;,r;] for j = ranky,.1<;<m})(z). For this reason, Theo-
rem 3.4.1 is useful to answer the evaluation queries, whose formal definition follows.

EVALUATION QUERIES

Input: The step representation Step(f) of a function f : [1,n] — U whose values fit
into O(1) machine words.

Queries: Given z € [1,n], return the step ([¢,r],v) € Step(f) such that x € [¢,7]
(in particular, f(z) =v).

Lemma 3.4.3. For every function f : [1,n] — U and trade-off parameter T € [1,n],
there is a data structure of size O(|Step(f)| + %) that answers evaluation queries in time
O(logy, min(r, |Step(f)|)). It can be constructed from Step(f) in O(|Step(f)| +2) time.

Proof. Let Step(f) = ([¢;,7;],v)j=,. We apply Theorem 3.4.1 to construct a data
structure for rank queries in £ = {¢; : 1 < j < m}. Moreover, we store the Step(f)
in a sorted array of size m. As we have already observed, the index of the step to be
reported is rank,(7), so these components let us handle evaluation queries in O(logy, m) =
O(logyy, [Step(f)]) time after O(|Step(f)|)-time preprocessing.

If 7 < |Step(f)|, we use Corollary 3.4.2 instead of Theorem 3.4.1 so that the query
time becomes O(logy, 7) at the price of extra O(Z) terms in the size and construction
time. [
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For 7 = W (or, in general, 7 = Wo(l)), Lemma 3.4.3 yields constant query time.

Corollary 3.4.4. For any function f : [1,n] — U, there exists a data structure of size
O(|Step(f)| + 5) that answers evaluation queries in O(1) time. It can be constructed in
O(|Step(f)| + ) time given Step(f).

3.5 Rank and Selection Queries on Bitmasks

In text processing, rank and selection queries are very often used for sets given as bitmasks.
More precisely, a set B C [1, N] can be represented using a bitmask B[1..N] such that
B[i] = 1 if and only if i € B. Following this convention, we define rankp = rankz and
selectp = selects. In other words, rankg(7) is the number of set bits (1’s) in BJ[1..1]
and selectp(i) returns the position of the ith set bit (the ith 1) in B. Often, one also
defines rankp o and selectp ¢ which operate on 0’s instead of 1’s. In this setting, rankp 1
and selectp 1 are used to denote the standard versions dealing with 1’s. Also, B in the
subscript is sometimes omitted if the bitmask is clear from the context.

Jacobson [77], Munro [113], and Clark [36] proved that one can build an additional
structure of o(/N) bits so that rankg and selectp queries can be answered in constant
time. However, an efficient construction procedure was missing for many years. We have
provided such an algorithm [12, Lemma 2.1] in parallel with Munro et al. [115, Theorem 5].

Proposition 3.5.1 ([12, 115]). Given a bitmask B[l .. N| packed in [%1 machine words

and a parameter 7 € [1,W], we can extend it in O([2]) time with a constant-time

rank/select data structure occupying O([*22T]) additional space, assuming o(27) prepro-
cessing time and bits of space shared by all instances of the data structure.

3.6 Wavelet Trees

Recall that for a bitmask B and a symbol ¢ € {0, 1} we defined the rankp . and selectp .
functions based on the set of positions where ¢ occurs in B. These notions naturally
generalize to strings over a larger alphabet ¥ = [0,0 — 1].

A standard tool for answering these queries in O(log o) time is the wavelet tree of a
string. Invented by Grossi, Gupta, and Vitter [68] for space-efficient text indexing, it is an
important data structure with a vast number of applications far beyond stringology (see
[118] for a survey). In Section 3.7, we shall see that answering orthogonal range queries is
among these applications. The data structure we develop in Chapter 8, called wavelet
suffix tree, is based on wavelet trees of a certain shape.

In Section 3.6.1, we recall a formal definition of wavelet trees in the standard (binary,
perfectly balanced) version. Next, in Section 3.6.2, we discuss efficient construction
algorithms. We conclude by introducing wavelet trees of arbitrary shape in Section 3.6.3.

3.6.1 Wavelet Tree Definition

Consider a string s of length n over an alphabet ¥ = [0, — 1]. We assume that o is a
power of two (otherwise, we artificially extend ¥). The wavelet tree of s is defined as
follows. First, we create the root node r and construct its bitmask B, of length n. To
build the bitmask, we think of every character si] as of a binary number consisting of
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exactly logo bits and put the most significant bit of s[i] in B,[i]. Then, we partition
s into two subsequences sy and s; by scanning through s and appending the character
s[i] with the most significant bit removed to either sy or s1, depending on whether the
removed bit of s[i] was 0 or 1, respectively. Finally, we recursively define the wavelet trees
for so and sy, which are strings over the alphabet [0,0/2 — 1], and attach these trees to
the root. We stop when the alphabet is unary. The final result is a perfect binary tree on
o leaves with a bitmask associated to every non-leaf node; see Figure 3.1 for an example.

1011100000101011 |

11100001 10100101

o] |oi| Joi| || |10 [10] |o1] |10]

00@0@@@@@@

Figure 3.1: The wavelet tree for a string 127 1115964012103 1358 14 = 1100,
01115 10115 11115 10015 01105 01005 00005 00015 00105 10102 00115 11015 01015 10004
11105. The leaves are labeled with the corresponding characters ¢ € .

Assuming that the edges are labeled by 0 or 1 depending on whether they go to the
left or to the right, respectively, we can define the label of a node to be the concatenation
of the labels of the edges on the path from the root to this node. This way, leaf labels are
the binary representations of the characters in [0, 0 — 1].

In virtually all applications, each bitmask B, is augmented with a structure supporting
constant-time rank and selection queries; see Proposition 3.5.1.

The bitmasks and their corresponding rank/selection structures are stored one after
another, each starting at a new machine word. The total space occupied by the bitmasks
alone is O(nlog o) bits because there are log o levels and the lengths of the bitmasks for
all nodes at one level sum up to n. A rank/select structure built for a bitmask B[1.. V]
takes o(IN) bits, so the space taken by all of them is o(nlogo) bits. Additionally, we
might lose one machine word per node because of the word alignment, which sums up
to O(o). For efficient navigation, we number the nodes in a heap-like fashion and, using
O(o) space, store for every node the offset where its bitmasks and the corresponding
rank /select structures begin. Thus, the total size of a wavelet tree is O(o 4+ n/log, n)
machine words, which is O(n/log, n) for 0 = O(n).

3.6.2 Binary Wavelet Tree Construction

Despite the importance of wavelet trees, until very recently there has not been much
research concerning the efficient construction of this data structure. For a string s of
length n, one can derive a construction algorithm with running time O(nlog o) directly
from the definition. Apart from this, two works [141, 37| present construction algorithms
in the setting where only limited extra space is allowed. The running times of these
procedures are higher than that of the naive algorithm.

One of our results (not included in the thesis) [12, Theorem 2.1] is a novel determin-
istic algorithm for constructing a wavelet tree in O(nlogo/y/logn) time. In a parallel
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independent work, Munro et al. [115, Theorem 1] obtained essentially the same result.

Theorem 3.6.1 ([12, 115]). Given the packed representation of a string s of length n
over ¥ = [0,0 — 1] for 0 = O(n), we can construct its wavelet tree in O(nlogo/v/logn)
time.

3.6.3 Arbitrarily-Shaped Wavelet Trees

Standard wavelet trees form a perfect binary tree with ¢ nodes, but different shapes have
been introduced for several applications. Among others, this includes wavelet trees for
Huffman encoding [58] and wavelet tries [69] that have the shape of a trie for a given set
of strings.

In this setting, apart from the string s, we are given an arbitrary full binary tree Tghp
(i.e., a rooted tree whose nodes have 0 or 2 children) on o leaves, together with a bijective
mapping between the leaves and the characters in 3. Then, while defining the bitmasks B,),
we do not remove the most significant bit of each character, and instead of partitioning
the values based on this bit, we make a decision based on whether the leaf corresponding
to the character lies in the left or in the right subtree of v. Both construction algorithms
behind Theorem 3.6.1 generalize to such arbitrarily-shaped wavelet trees. The running
time bound is preserved provided that the height of Tg, is O(logo); see [12, Theorem
2.2] and [115, Theorem 2].

Theorem 3.6.2 ([12, 115]). Let s be a string of length n over ¥ = [0,0 —1] for o = O(n),
and let Tenp be a full binary tree of height O(log o) with o leaves, each assigned a distinct
character in 3. The Tap-shaped wavelet tree of s can be constructed in O(nlogo/+/logn)
time given Tsp and the packed representation of s.

3.7 Range Queries

An important setting for the basic queries defined in Section 3.3 is when the multiset A is
defined as A[R] := {A[i] : i € R}, where A[1..n] is an array of integers from a universe U
and R = [¢,r] is a range contained in [1,n]. Then, we obtain the following queries:

RANGE RANK QUERIES (RANGE COUNTING QUERIES)
Given a range R and an element « € U, compute ranka(z)(x).

RANGE SELECTION QUERIES
Given a range R and a value k € [1, |R|], compute select 4z (k)
(and an index j € R such that A[j] = selects[z)(k)).

RANGE PREDECESSOR (QUERIES
Given a range R and an element z € U, compute pred 4z ()
(and an index j € R such that A[j] = pred 4 z)(), if any).

RANGE SUCCESSOR QUERIES (RANGE NEXT VALUE QUERIES)
Given a range R and an element z € U, compute succag)(z)
(and an index j € R such that A[j] = succag (), if any).
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In the literature, range queries are sometimes defined in a slightly different way, with
a set X of n points in a 2-dimensional space instead of the array A, which could be
represented by points (i, Afz]). In this setting, range counting queries, for example, ask to
count points in a given orthogonal region bounded from three sides (which is sufficient for
counting points in an arbitrary orthogonal rectangle). Range predecessor and successor
queries admit a similar interpretation. This is why these queries are often called (2-
dimensional) orthogonal range queries. While the geometric interpretation formally makes
the queries more general, a simple reduction (replacing the coordinates with their ranks)
allows going back to the more restricted variant at a negligible cost and the state-of-the-art
implementations exploit this phenomenon. Thus, we stick to the array setting, which is
also more natural for applications contained in this thesis.

Range counting queries have been widely studied and the optimal query time is known.

Proposition 3.7.1 (JaJ& et al. [78]). There is a data structure of size O(n), which

answers range counting queries in O(lolgoign) time.

Proposition 3.7.2 (Patrascu [125, 124]). In the cell-probe model with W-bit cells, a
static data structure of size ¢ -n must take Q(bgii%) time for range counting queries.
The lower bounds already holds if U = [1,n] and the array A forms a permutation.

More recently, Chan and Patragcu [32] designed an O(ny/logn)-time construction
algorithm for a data structure satisfying Proposition 3.7.1. Recall that the wavelet tree for
the array A (with elements replaced by their ranks to reduce the alphabet size to o < n)
can be constructed in the same time. This is not a coincidence: such a wavelet tree can
answer range counting queries in O(logn) time, and its variant, which involves nodes of
arity log® n, achieves the optimal O(logn/loglogn) time. Moreover, one can see deep
structural similarities between wavelet tree construction [12, 115] and the construction
algorithm by Chan and Patragcu [32].

Results for range selection are analogous, but they came with a delay of a few years.

Proposition 3.7.3 (Brodal et al. [28]). There is a data structure of size O(n), which

. . . 1 .
answers range selection queries in (’)(logoﬁ)gn) time.

Proposition 3.7.4 (Jorgensen and Larsen [81]). In the cell-probe model with W -bit cells,
a static data structure of size ¢-n must take Q(log(ﬁ%) time for range selection queries.
The lower bounds already holds if U = [1,n] and A is a permutation.

Chan and Patragcu [32] also gave an O(ny/logn) time construction algorithm, but
the query time of their data structure is O(logn). An improvement came only after the
applicability of wavelet trees became evident: we showed in [12] that multiary wavelet
trees can be extended to support range selection in O(logn/loglogn) time.

Range successor and predecessor queries have been introduced more recently, motivated
by several applications in text processing. The Q(logn/loglogn) lower bound for the
query time of O(n log®®) n)-space data structures does not hold for these queries. The
following three trade-offs describe the current state of the art.

Proposition 3.7.5 (Nekrich and Navarro [120], Zhou [144], Crochemore et al. [46]). For
the functions Srsuce and Qrsuce specified below, there is a data structure of size Sysyec(n)
answering range predecessor and successor queries in Qrsye.(n) time:

(a) Srsuce(n) = O(n) and Qrsucc(n) = O(log® n) (for every constant € > 0),
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(b) Sysuce(n) = O(nloglogn) and Q se(n) = O(loglogn),
(¢) Srsuce(n) = O(n'*) and Qsuce(n) = O(1) (for every constant € > 0).

In a recent paper, Belazzougui and Puglisi [16] designed an efficient construction
algorithm for a data structure (based on multiary wavelet trees) satisfying (a). Its
running time is Chgyee(n) = O(ny/logn). The data structure for (c) can be constructed in
Chrsuce(n) = O(n'*) time [46], while [144] does not give any construction algorithm for
(b).

We conclude by recalling a famous special case of both range selection queries and
range successor queries.

RANGE MINIMUM QUERIES (RMQ)
Given a range R and a value k € [1, |R|], compute min{A[R]}
(and an index j € R such that A[j] = min{A[R]}).

Proposition 3.7.6 (Harel and Tarjan [73], Bender et al. [17]). There is a data structure
of size O(n) that answers range minimum queries in O(1) time. It can be constructed in
O(n) time.
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Chapter 4

LCE Queries for Small Alphabets

In this chapter, we develop new data structures for the classic LCE QUERIES:

LoNGEST COMMON EXTENSION (QUERIES
Given two positions 4,4 in the text T, compute LCE(i, ") = lep(T'[i..], T[i". ]), i.e.,
the length of the longest common prefix of the suffixes starting at positions i and 4’.

We already introduced these queries in Section 2.5 along with a standard O(n)-size data
structure answering LCE QUERIES in O(1) time after O(n)-time preprocessing. The
O(n) size and construction time is optimal for texts over (polynomially-bounded) integer
alphabets. However, if the alphabet size o is significantly smaller than n, then the input
text can be encoded in O(nlogo) bits so that it fits within O(n/log, n) machine words.
Such a compact encoding, called the packed representation, is specified in Section 3.2.

Our main contribution in this chapter is a data structure of size O(n/log, n) which
answers LCE QUERIES in O(1) time and can be constructed in O(n/log, n) time from
the packed representation of 7'; this is an optimal solution for the standard machine word
size W = ©(logn). In our data structure, we apply techniques originating from LCE
QUERIES in the read-only random access model, where the characters of the text T" are
available through an oracle and the text size is not counted towards the space complexity.
As a side result, we present a data structure of size O(2) (for a trade-off parameter
7 € [1,[2]]) which answers LCE QUERIES in O([Z222]) time assuming oracle access
to the packed representation of T'. Its construction has not been optimized though: it
requires O(n) time and O(n) working space.

4.1 Overview

We follow an approach similar to that of many data structures answering LCE QUERIES
in the read-only random access model [20, 22, 23, 24, 65, 139]. The high-level idea is
to spend some space and preprocessing time so that computing LCE(7, ') is easier if
both i and i’ belong to a certain set S C [1,n] of selected positions. Given arbitrary
positions 7,7, one can start a naive scan checking if T'[i + 0] = T'[i’ + ¢] for consecutive
integers 6 > 0. If LCE(4,4) is small, then this procedure terminates quickly. Otherwise,
we hope to reach a shift § such that both i+ € S and i’ + 0 € S so that we can apply
the component for selected positions to calculate LCE(i,7') = 6 + LCE(i 4+ 6,7 4+ §). In
most solutions, this component allows extracting the precise value LCE(i 4 0,7 + §) or an
additive approximation, in which case another naive scan is needed to determine the final
answer. More sophisticated implementations involve multiple layers of selected positions.

31
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The number of the selected positions is often subject to a trade-off between the space
consumption and the query time. The positions are usually selected based on the text
length n and a trade-off parameter 7 only, even though the nearby selected positions
i+ 0,9 + 6 € S are useful only if LCE(7, ') is relatively large. This observation has not
been exploited prior to the recent work of Birenzwige et al. [24], who select positions
based on local consistency [133, 132], a concept that has been successfully used for LCE
QUERIES in dynamic [2, 64, 121] and grammar-compressed strings [74, 140].

In this setting, the decision to select a position p € [1,n] depends only on the
context T'[p — A..p+ A] for some threshold parameter A rather than on the integer p.
This way, essentially the same positions are selected within two matching fragments
Tli..7] = T[. .5 (any differences must be within the boundary regions of length A).
Consequently, if the set S is sufficiently dense, then we are guaranteed to find positions
i+ 0,9 + 0 € S relatively early while computing LCE(¢,7'). Unfortunately, this method
fails for very highly periodic regions of T. For example, if T"= a", then we would need to

choose all positions A +1,...,n — A or none of them. We cannot select ©(n) positions,
so the query algorithm in [24] is adapted so that it skips periodic regions without selected
positions.

Our data structure is based on the same ideas as the one in [24], but the deterministic
construction algorithms require a novel approach. Moreover, we provide an alternative
formalization which results in a query procedure seamlessly handling periodic fragments.

The central notion of our approach is that of a 7-synchronizing function (for a trade-off
parameter 7 € [1, [§]]), introduced in Section 4.2. In the language of selected positions
introduced above, it consistently assigns selected positions to fragments of length 27 —1 (so
that matching fragments obtain analogous positions). In our interpretation, the selected
positions represent synchronizing fragments of length 7 starting there and are associated
with integer identifiers of the underlying substrings. A single synchronizing fragment is
usually assigned to multiple subsequent fragments of length 27 — 1, so we use the step
representations (of Section 3.4.1) to store synchronizing functions.

In Section 4.3, we show how a synchronizing function (with the associated identifiers)
can be used to efficiently approximate LCE(i,i") in a certain sense. Our approach
incurs a constant-factor overhead in space consumption (compared to the size of the
step representation) and does not require access to the text 7. The central technical
contribution of this chapter is presented in Section 4.4, where we describe two deterministic
algorithms constructing 7-synchronizing functions with step representations of size O(%).
The first procedure takes O(n) time for any given 7 € [1, [§]], while the second one runs
in O(n/1) time for a specific value 7 = ©(log, n). We conclude with Section 4.5, where
all the components are combined to develop the announced data structures for LCE
QUERIES.

4.2 Fundamental Concepts

Throughout this chapter, we fix a text T of length n. We denote by F the family of
(non-empty) fragments of 7" and for = € F, we distinguish the subset F[z] C F of all
fragments contained in x. For a fixed length m € [1,n], we also identify subsets F,, C F
and F,,[z] C F[z] which consist of length-m fragments. We also introduce a family

N = {z € F:per(z) > i[z|}
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of non-highly-periodic fragments of T and its subfamilies N,,, N[z], and N,,[x] defined for
any m € [1,n] and x € F.

Observe that for every m there is a natural bijection mapping [1,n —m + 1] to F,,.
We denote it by F), so that F,,(i) :=T[i..i+m — 1] fori € [1,n —m + 1].

The single most important concept for our data structure is that of a 7-synchronizing
function; its intuitive interpretation is provided in the overview above. Note that there is
much freedom on when to leave the value of the synchronizing function undefined, and
our specific choice below is somewhat arbitrary.

Definition 4.2.1. Consider a text T' of length n and a parameter T € [1,[5]]. We say
that a function sync : Fo, 1 — F, U{L} is a T-synchronizing function if it satisfies the
following conditions for each fragment x € Fo,_1:
(a) if sync(z) = L, then N,[z] = 0;
(b) if sync(z) # L, then sync(x) € N, [z];
(c) if sync(z) = x[i..i + 7 — 1] for some position i, then sync(z') = 2'[i..i +71 — 1] for
each fragment x' € Fo, 1 matching x (satisfying x = z’).

Fragments in the image sync(Fy,_1) are called the synchronizing fragments (of sync).

The 7-synchronizing functions sync used in our data structure often assign the same
value to subsequent fragments Fy, (i) and Fy,_1(i 4+ 1). Thus, we store sync using the
step representation of synco Fy, 4, as defined in Section 3.4.1. We slightly abuse notation
and write Step(sync) instead of Step(synco Fy,_1).

We also introduce a partition P,, = F,,/= so that x,z’ € F,, belong to the same
equivalence class if and only if they match. This way, each length-m substring of T'
corresponds to a class P € P, of its occurrences. Our algorithms often represent the
partition P, using an m-identifier function id : F,, — [1,n°V] such that id(z) = id(z’) if
and only if x and 2’ match.

4.3 Approximate LCE with Synchronizing Functions

The key intuition behind Definition 4.2.1 is that a synchronizing function must con-
sistently handle matching fragments. Formally, we say that fragments xz,2’ € Fo,_;
are consistent with respect to sync, denoted x ~gync @', if sync(z) = sync(z’) = L or
sync(z) =zfi..i+7—1] = 2'[i..i + 7 — 1] = sync(z’) for some position i.

Fact 4.3.1. If fragments x,x' € Fo,_1 match (i.e., x = 1'), then they are consistent with
respect to any T-synchronizing function sync (i.e., T ~enc &' ).

Proof. 1f sync(z) = L, then N;[z] = 0 by Definition 4.2.1(a), which implies N, [2'] = ()
due to the natural bijection between Flzx| and F[z']. Consequently, sync(z’) = L by
Definition 4.2.1(b).

Otherwise, sync(x) = z[i..i+ 7 — 1] for some position 7, so sync(z’) = 2'[i..i + 7 — 1]
by Definition 4.2.1(c). Moreover, this yields sync(z) = sync(z’) due to = = «’. O

The inverse implication does not hold in general, but consistency can be used to
approximate the values LCE(4,4’). For this, we define LCCEgync(i,14) as the largest integer
A such that For_1(i +0) ~eync For—1(i' +6) for 0 <0 < A.
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Lemma 4.3.2. If two positions i,i" in T satisfy LCE(i,7) > 7 — 1, then
LCCEqync(i, i) + (7 — 1) < LCE(4, i) < LCCEgync(i, 1) + 2(7 — 1)
holds for every T-synchronizing function sync.

Proof. To prove the upper bound on LCE(i, '), let us take ¢ € [0, LCE(,4") — (27 — 1)]
and consider fragments z = Fy, (i + J) and 2’ = Fy, (/' + 0). Note that z = 2/, so
T ~gyne ©' due to Fact 4.3.1. Thus, LCCEgnc(i,4") > LCE(4,4") — 2(7 — 1), as claimed.

For the other inequality, we inductively prove that LCE(i + 0,7’ + ¢) > 7 holds for
every 0 € [0, LCCEgnc(i,4") — 1]. The assumption (for § = 0) or the inductive hypothesis
(for § > 0) yields LCE(i + d,7 + §) > 7 — 1. Moreover, the fragments z = Fy,_1(i + 0)
and ' = Fy._1(i' + 0) are consistent with respect to sync by definition of §. This can be
due to one of the two reasons.

The first possibility is that sync(z) = sync(z’) = L. Definition 4.2.1(a) implies N, [z] =
N-[2'] =0, so p = per(z[l..7]) and p’ = per(a’[1..7]) are both at most %. Applying the
Periodicity Lemma (Lemma 2.2.1), we conclude that ged(p, p’) is a period of the common
prefix z[l..7 — 1] = 2'[1..7 — 1. Thus, z[r] = z[r — p| = z[r — p'] = 2'[r = p/] = 2'[7],
i.e., lep(z,2') > 1.

The other possibility is that sync(z) = x[i..i+7—1] =Za'[i..i+ 7 — 1] = sync(z’) for
some position 7 € [1,7]. In particular, this yields ¢ < 7 <i+4 7 — 1, so sync(z) = sync(a’)
implies z|[7| = 2/[7] and lep(x, ') > 7.

Consequently, LCE(i + 0,4' + 0) > 7 for each ¢ € [0, LCCEgync(i,4) — 1], which means
that LCE(4,7) > LCCEgync(i,4") + 7 — 1 holds as claimed. O

In the light of Lemma 4.3.2, the value LCCEqync(i,4') for 4,7 € [1,n] can be used to
approximate LCE(4,4"). The following fact lets us utilize the step representation Step(sync)
in the computation of LCCEgync(i,7').

Fact 4.3.3. Let sync be a T-synchronizing function, and let z,y,x’,y" € For_1 be fragments
starting at positions i, i+ 1, V', and i + 1, respectively. If x ~gnc &' and sync(x) = sync(y),
then sync(x’) = sync(y') is equivalent to y ~sync Y’

Proof. First, suppose that sync(z) = sync(z’) = L. We have sync(y) = sync(z) = L, so
Y ~eync Y s equivalent to sync(y’) = L, i.e., to sync(y’) = sync(z’).

The other case is that sync(z) = z[j..j+7—1] =2 2'[j..j + 7 — 1] = sync(a’) for
some position j. The equality sync(y) = sync(z) yields sync(y) =y[j —1..j+7—2], so
Y ~eync Y 1s equivalent to sync(y') =¢/[j —1..j+ 7 — 2], i.e,, to sync(y’) = sync(z’). O

Due to the property formulated above, computing LCCEqync (4, ") based on Step(sync)
turns out to be closely related to answering LCE QUERIES in run-length encoded strings.
We apply this intuition to design the following component.

Lemma 4.3.4. If |Step(sync)| < M for a T-synchronizing function sync and an integer
M, then there exists a data structure of size O(M) which computes LCCEgync(i,4") for any
positions i, of T in O(logy, 17) time. For any € > 0, one can build it in O(M + n®) time
given Step(sync), the value M, and a T-identifier id(y) for each synchronizing fragment y.

Proof. Let Step(sync) = ([¢;, ;11 — 1],9;)L, be the step representation of sync o Fy, ;.
Below, we reduce the queries to computation of LCCEgyc(¢;,¢;) for 1 < j,7" < m.
Thus, for j € [1,m] we define x; = F5,_1(¢;) and 6, so that §; = L if y; = L and
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y; = x[0;..0; + 7 — 1] otherwise. Observe that Fy,_1({;) ~eync For—1(¢;) if and only
if 6; = 6; and id(y;) = id(y;/) (assuming id(_L) = L). Moreover, repeated application
of Fact 4.3.3 y1€1dS LCCESynC(Kj,gj/) = tjt1 — éj + LCCEsync<‘€j+1; €j/+1) if &ddlthIlaHy
i1 = b5 = Lyrgr — Ly

Consequently, our data structure consists of the following two components of size
O(M) each:

e a string V' of length m such that V[j| = (9;,id(y;),¢;+1 — ¢;) equipped with the

component of Proposition 2.5.1 for LCE QUERIES, and
o the set £L = {¢; : 1 <j <m} equipped with the component of Corollary 3.4.2 for

rank, queries, constructed for a trade-off parameter 7.

The string V' is easy to build in O(m) time because id(y) is available for each synchronizing
fragment y. Sorting the characters of V' takes O(M + n®) time because each character
consists of three integers bounded by O(n). After this alphabet reduction, Proposition 2.5.1
guarantees O(m) construction time. The data structure of Corollary 3.4.2 is built in
O(m+ M) = O(M) time. This completes the description of the construction algorithm.
Now, suppose that we are to handle a query asking for LCCEgync(,4"). We assume that
i,i" € [1,n —2(1 — 1)] (otherwise, we immediately return 0). Our first goal is to compute
sync(z) for the fragment x = Fy,_1(¢). For this, we retrieve j = rank,(7) and observe
that sync(z) = L if §; = L and sync(z) = sync(z;) = x;[0;..6; + 7 — 1] = F.({; + 6; — 1)
otherwise. We repeat the same process for ' = Fy, 1(i') so that we can test whether
x ~enc &', If the fragments x and 2’ are not consistent with respect to sync, we must
return 0, while in the other case we may use Fact 4.3.3. Its repeated application yields

. . . . . .
m1n(€j+1 — 1, gj’+1 — Z) if €j+1 —1 7£ gjurl — 1,

LCCEgnc(,7) =
' (Z Z ) {gﬁrl —i+ LCCEsync(@H, Ejud) otherwise.

Further processing is needed in the second case only. We make an LCE QUERY in V/,
asking for the length d of the longest common prefix of V[j +1..m] and V[’ + 1..m]
and conclude that

LCCEsync(ia Zl) = Lj+1 — 1+ LCCEsync(Ej—i-la Ej’—f—l) = Lj+d+1 — 1+ LCCEsync(ej-i-d—i-la Ej,-f—d-‘rl)-

To compute the latter LCCEqyn. value, we recursively run the query algorithm. Observe
that V[j +d+ 1] # V[j' +d + 1] implies For 1 ({ja11) 7sync For1(Cjrpas1) or Lipayo —
Citir1 # Cjrvara — Ljrvar1, so no further recursive call will be made.

The total query time is constant except for the rank, queries, which take O(logy, 77)
time due to Corollary 3.4.2. O

4.4 Synchronizing Function Construction

In this section, we design algorithms that construct 7-synchronizing functions with step
representations of size O(%). Our procedures rely on a single generic scheme, applying a
carefully chosen 7-identifier function to derive a 7-synchronizing function.

Construction 4.4.1. Let id be a T-identifier function, and let 7 € [1,[5]]. For a
fragment x € Fo, 1, we define sync(x) = L if N.[z] = 0. Otherwise, sync(x) is the leftmost
fragment y € N.[z] which minimizes id(y).

Construction 4.4.1 clearly yields a well-defined function sync. Below, we prove that it
is a 7-synchronizing function.
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Fact 4.4.2. The function sync defined with Construction 4.4.1 satisfies Definition 4.2.1.

Proof. Conditions (a) and (b) are clearly satisfied. As for condition (c), we observe
that the natural bijection between F,[z] and F,[2'] for matching fragments z, 2’ € Fy, 1
preserves the T-identifiers: id(z[i..i+7 — 1)) =id(2'[i..1 + 7 — 1]) for i € [1, 7]. O

The main challenge in building a 7-synchronizing function sync with Construction 4.4.1
is to choose an appropriate 7-identifier id function so that Step(sync) is small. As we
show in Section 4.4.1, choosing id uniformly at random leads to satisfactory results if no
length-7 fragment is highly periodic. We aim at deterministic algorithms, so we also design
an O(n)-time deterministic construction procedure resulting in |Step(sync)| = O(%). We
study the structure of highly periodic length-7 fragments in Section 4.4.2 in order to
drop the assumption N, = F, in the subsequent Section 4.4.3, where we adapt both our
constructions so that they work for arbitrary strings. We conclude in Section 4.4.4 with
an O(n/log, n)-time procedure which constructs the step representation of a E log,, nJ—
synchronizing function given the packed representation of T'.

4.4.1 Construction for Texts with N, = F,

The key feature of non-highly-periodic strings is that their occurrences cannot overlap
too much. To formalize this property, we say that a set A C F is d-sparse if the starting
positions 7,7 of any distinct x, 2’ € A satisfy i — | > d.

Fact 4.4.3. An equivalence class P € P, is %T-sparse if PCN,.

Proof. Suppose that F.(i), (i) € P for positions 7,7 such that i < i’ < i+ %7’. We have
Tli..i+7—=1)=T['..i'+7—1],soper(Tli..i" +7 —1]) <7 —i < g7. In particular,
this yields per(T'[i..i+7 —1]) < 37, s0 F.(i) € N;, i.e., P Z N,. O

As announced, we start with an existential proof based on the probabilistic method.

Lemma 4.4.4. Let T be a text of length n and let T € [1,[51]. If N. = F;, then there
exists a T-identifier function id such that Construction 4.4.1 results in |Step(sync)| < 67".

Proof. We shall prove that E[|Step(sync)|] <  if id is uniformly random. Formally, we
construct a uniformly random bijection = mapping P, to [1, |P-|] and define id(z) = 7(P)
for x € P.

Observe that for each fragment = € Fo,_1, we have |N,[z]| = 7. Moreover, Fact 4.4.3
guarantees that |N.[z] N P| < 3 for each class P € P,. Thus, fragments in N.[z] belong
to at least % distinct classes. Each of these classes has the same probability of having the
smallest identifier, so P[sync(z) = y] < 2 for any y € N;[z]. Next, consider z = Fy,_; (i)
and ¥’ = Fy,_1(i + 1). If sync(z) and sync(z’) both belong to N.[z] N N [z], then
sync(z) = sync(z’) by Construction 4.4.1. Consequently,

P[sync(z) # sync(z’)] < Plsync(z) = z[1..7]] + P[sync(z’) = 2'[r..27 = 1]] < 2 + 2 = &,
By linearity of expectation, we conclude that

n—(27—1)
E[|Step(sync)|] = 14+ > Plsync(For_1(i)) # sync(For_1(i+1))] < 1+w < o

=1

In particular, we must have |Step(sync)| < % for some 7-synchronizing function id. ~ [J
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Next, we provide an efficient deterministic construction. The idea is to assign the
consecutive positive integers, one at a time, to classes P € P,. Our choice is guided by a
scoring function carefully designed to keep |Step(sync)| low.

Lemma 4.4.5. Given a text T' of length n and a parameter T € [1, [5]] such that N, = F,
in O(n) time one can construct a T-identifier function id and a T-synchronizing function
sync (defined with Construction 4.4.1 based on id) such that |Step(sync)| < 2.

Proof. First, we build the partition P, and sort the fragments in each class according to
the left-to-right order. A simple O(n)-time implementation is based on the suffix array
and the LC'P table of T' (see Section 2.5): We cut the suffix array before any position
i with LC'P[i] < 7 and remove the positions ¢ with SA[i] > n — 7 + 1. For each of the
remaining regions SA[(..r], {F;(SA[i]) : i € [¢,r]} belongs to P,. Hence, we initialize
a new object for this class P € P, and store a pointer to this object at each fragment
F,(SA[i]) € P. We then iterate over all length-7 fragments in the left to right order, and
we append each fragment to the list constructed for the class it belongs to.

Next, we iteratively construct the functions id and sync. Initially, each value id(y)
and sync(z) is undefined (L). In the jth iteration, we choose a partition class P; € P
and process y € P; from left to right: we assign id(y) = j and set sync(z) = y for all
x € Fo,_y such that sync(z) = L and y € F,[z]. Due to the order of identifiers assigned and
fragments processed, this results in a function sync compatible with Construction 4.4.1.

To define the scoring function, we distinguish active blocks, which are inclusion-wise
maximal fragments z € F such that |z| > 27 — 1 and id(y) = L for each y € F,[z]; note
that sync(z) = L holds for x € Fo,_; if and only if = is contained in an active block. For
each active block z, we assign scores to active fragments y € F.[z]. The score is —1 for the
leftmost and the rightmost ETJ fragments in F.[z], and +2 for the remaining fragments
in F.[z]. Note that |F,[z]| > 7, so the total score is non-negative.

We explicitly maintain the aggregate score of active fragments from each partition class
P € P,, and a collection P C P, of unprocessed classes with non-negative aggregate
scores. The class P; to be processed in the jth iteration is chosen arbitrarily from P;;
such a class exists because the total score is non-negative and the already processed classes
do not contain active fragments.

Having chosen P;, we need to update the maintained data. For every y € P;, we
assign id(y) = j and, if y € P; is active, we set sync(z) = y for each x € Fo,_; such that
sync(z) = L and y € F.[z]. As a result, some fragments may cease to be active and
the score of some active fragments may change. Nevertheless, this happens only if y is
active and the affected fragments overlap y. Thus, O(7) time per active fragment y € P;
is sufficient to process these changes and amend the aggregate scores of classes P € P,
possibly moving these classes into P, or out of this collection.

To analyze the running time, we define sets A; C P; of fragments which were active
prior to processing P; and A;r C A; of active fragments which had score +2 at that time.
Note that |A;] < 3|A]| because the aggregate score of P; was non-negative. The running
time of the jth iteration is therefore O(|P;| + 7]4;|) = O(|P;| + 7|Af]), and the number
of steps introduced in sync is at most |4;| < 3|Aj|. Thus, the overall number of steps is
|Step(sync)| < 3|A*| and the total running time is O(n + 7|A*|), where A" = {J; A].

Consequently, our final goal is to bound the size of AT. We shall prove that this set is
s7-sparse. Consider two distinct fragments y, 3’ € A" such that y € A} and y’ € Af. Due
to Fact 4.4.3, A;“ is %T—sparse. Thus, we may assume without loss of generality that ;' < j.
Prior to processing P;, the fragment y’ was not active and y had score +2. Hence, there
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must have been at least ETJ active fragments with score —1 in between, so the starting

positions of y and 1’ are at distance at least 1 + ETJ > %T. Consequently, |AT| < 37”, SO
|Step(sync)| < 97" and the overall running time of the construction procedure is O(n). O

4.4.2 Structure of Highly Periodic Fragments

In this section, we study the structure of the set N, of the non-highly-periodic length-7
fragments of T" so that the approach from Section 4.4.1 can be generalized to arbitrary
texts. The probabilistic argument in the proof of Lemma 4.4.4 relies on a large number of
possibilities for sync(z) that we had due to N.[z] = F,[z] for each x € Fy, ;. However,
even |N,[z]| =1 is possible in general. To handle fragments with N.[z] # F,[z], we define

B, = {y € N-:per(y[l..7 —1]) < 37 or per(y[2..7]) < 37}

for 7 € [2,n]. Moreover, we set By = () and B, [z] = F.[z] N B, for every fragment = € F.
Intuitively, B, forms a boundary which separates N, from its complement F. \ N., as
formalized in the fact below. However, it also contains some additional fragments included
to make sure that our choice is consistent, i.e., that y € B, is equivalent to iy € B, if the
two fragments match.

Fact 4.4.6. If N,[z] # 0 and N.[z] # F.[z] for a fragment x € F, then B;[z] # 0.

Proof. We proceed by induction on |z|. The first non-trivial case is |z| = 7 4+ 1, when
|F.[z]| = 2. Let N;[z] = {y}, F;[z] = {y,v'}, and z = z[2..7]. Note that z =y Ny, so
per(z) < per(y’) < 37 yields y € B-[z].

For the inductive step, it suffices to note that if N.[z] # ) and N, [z] # F.[z] for a
fragment = of length |x| > 7 + 1, then the length-(|z| — 1) prefix or suffix of x satisfies an
analogous condition. O]

The sets N, and B, can be characterized using the notion of runs (maximal repetitions)
defined in Section 2.2. For this, we introduce a set R, of T-runs:

R.={yeR(T): |y| =7 —1and per(y) < 37}.

Lemma 4.4.7. Let T be a text of length n and let 7 € [1,n]. For eachy € F:

(a) Ify ¢ N., then y is contained in a unique T-run vy € R,; otherwise, there is no such
T-TUN 7.

(b) If y € B,, then there exists a unique T-run v € R, such that |y N~y| = 7 — 1;
otherwise, there is no such T-run 7.

Moreover, |R.| < 2% and |B.| < 2.

Proof. We assume 7 € [3,n]; otherwise, N, = F, and R, = () = B,, so all the claims are
trivial. First, we observe that |yNv/| < %7‘ —1 for any distinct v,v" € R, due to Fact 2.2.4.
Since both 7-runs are of length at least 7 — 1, they must start at least 7—1— |y N~/| > %7’
positions apart, i.e., |R,| < 2.

(a) Recall that y ¢ N, means that y is highly periodic, so v = run(y) satisfies
per(y) = per(y) < 3|yl = 37 and |y| > |y| > 7 — 1. Thus, y is contained in run(y) € R,.
On the other hand, if y C v for a 7-run =, then per(y) < per(y) < 37, so y & N,.
Moreover, we must have v = run(y) due to |y Nrun(y)| > 7 > 27 — 1 and Fact 2.2.4.
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(b) If y € B, then a fragment z € F,_;(y) (the prefix or the suffix of y) satisfies
per(z) < 7 and |z| = 7 — 1> 27, s0 z is periodic and v = run(z) € R,. Moreover, y Z ~
due to y € N;. Thus, yN~y =z, so |[yN~y| = |z| = 7 — 1. For the converse implication,
suppose that [yNvy| = 7—1 for a 7-run v € R,. In this case, we must have y[2..7—1] C ~.
Moreover, if a 7-run ' contains y[2..7 — 1], then [y N | >7—-2 > %7’ —1,s0v=+"by
Fact 2.2.4. Consequently, the run v satisfying (b) is unique and, due to [yNy| =7—1
and per(y Nv) < 57, we also conclude that y € B..

Finally, we note that the characterization (b) yields |B,| < 2|R,| < . O

4.4.3 Construction for Arbitrary Texts

The combinatorial structure described in Section 4.4.2 lets us adopt the constructions
of Lemmas 4.4.4 and 4.4.5 to arbitrary texts. The crucial trick is to assign the smallest
identifiers to B;. In other words, we use the fragments of B, as synchronizing fragments
whenever possible. A probabilistic construction explains why this is very helpful.

Lemma 4.4.8. Let T be a text of lengthn. For each T € [1,[51], there exists a T-identifier
function id such that Construction 4.4.1 results in |Step(sync)| = O(2).

Proof. Again, we take a random bijection 7 : P, — [1,|P,|] and set id(y) = «(P) if
y € P. However, this time we draw 7 uniformly at random among bijections such that if
P C B, and P'NB, =0 for classes P, P' € P,, then n(P) < w(P’). (Note that each class
in P, is either contained in B, or is disjoint with this set.)

We shall prove that Plsync(z) = y] < 2 if y € N.[z] \ B;[z]. The constraint on
7 guarantees that B,[z] = 0 if sync(z) € N, [z] \ B;[z]. Obviously, we must also have
N.[z] # () in this case, so Fact 4.4.6 yields N, [z] = F,[z]. Consequently, as in the proof of
Lemma 4.4.4, by Fact 4.4.3, N-[z] contains members of at least % classes P € P,. These
classes are disjoint with B,, so they have the same probability of getting the smallest
identifier.

As a result, if x, 2’ € Fo,_; start at the consecutive positions i and 7 + 1, then
P[sync(z) # sync(z’)] < Plsync(z) = z[1..7]] + P[sync(z’) = 2'[r..27 — 1]} < &

unless F, (i) = z[1..i] € B; or F.(i+71) = 2'[t..21 — 1] € B,. Consequently, due to
Lemma 4.4.7:

n—(27—1)
E[[Step(sync)[] = 1+ D Plsync(Far—1(i)) # sync(Far—1(i + 1))] <
i=1
<1+ 2|B,| + Sn=Cr=h) < 180
In particular, |Step(sync)| < 2% = O(2) for some 7-identifier function id. O

Our adaptation of the deterministic construction is based on similar arguments and
on the characterization of Lemma 4.4.7 to efficiently retrieve N, and B..

Lemma 4.4.9. Given a text T' of length n and a parameter T € [1,[5]], in O(n) time
one can construct a T-identifier function id and a T-synchronizing function sync (defined
with Construction 4.4.1 based on id) such that |Step(sync)| = O(%).
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Proof. 'We proceed as in the proof of Lemma 4.4.5, with some extra care for fragments
x € Fo,_q such that F.[z] # N, [z].

The construction of the partition P, still takes O(n) time. During the preprocessing
phase, we additionally build the sets N, and B.. It is easy to come up with a linear-time
implementation using Proposition 2.2.5 and Lemma 4.4.7: We apply Proposition 2.2.5
to build R(T) in O(n) time, and we filter out runs v with [y| <7 —1 or per(y) > 57 to
obtain R,. For each 7-run v = T'[(..r| € R,, as instructed by Lemma 4.4.7, we mark
that:

e F.({—1) belongs to B, if £ > 1,
e F.(r— 7+ 2) belongs to B, if r < n,
e fragments F.({),..., F,(r — 7+ 1) do not belong to N,.

Lemma 4.4.7 also implies that no fragment is marked twice and that the unmarked
fragments belong to N, \ B,. Hence, we retrieve N, and B, in O(n) time.

After the preprocessing, we gradually construct id and sync, handling one partition
class P € P, at a time. This procedure has three phases now: we start with classes
contained in B,, then we process the remaining classes contained in N,. At this point,
the synchronizing function sync is already in its final form, but for completeness of the
function id, in the third phase, we assign identifiers to highly periodic length-7 fragments.

Classes P C B,, which obtain the initial identifiers, are processed in an arbitrary order.
Each y € B, is processed in O(7) time so the whole first phase takes O(|B,|7) = O(n)
time due to Lemma 4.4.7. Moreover, Step(sync) contains at most |B,| < % steps with
value in B, .

In the second phase, we process the remaining classes P C N, as in the proof of
Lemma 4.4.5. We only need to make sure that it is always possible to choose such a class
with a non-negative aggregate score. For this, let us analyze an active block z. After
the first phase, we have id(y) # L for y € B, so B;[z] = 0. Due to Fact 4.4.6, this
yields N.[z] = 0 or N.[z] = F,[z]. In other words, highly periodic active fragments form
separate active blocks which we do not need to be bothered with because the total score
in each active block is non-negative. Thus, we can indeed reuse the original algorithm. To
analyze the running time, we reintroduce the set A* containing, for each iteration j, active
fragments y € P; which had score +2 prior to processing P;. Since AT C N, this set is still
s7-sparse, and consequently the running time of the second phase is O(n+7|A*|) = O(n).
Moreover, Step(sync) contains at most 3|A*| < 22 steps with value in N, \ B;.

In the third phase, we just assign the remaining identifiers to highly periodic fragments
of length 7, which takes O(n) time. The synchronizing function sync is not modified
anymore, but we need to account for the steps with value 1, which correspond to active
blocks after the second phase. Such blocks start at least 7 positions apart (because they
do not share active fragments), so the number of steps with value L is at most 2.

Summing up, the overall running time is O(n) and the total number of steps is
|Step(sync)| < & 4 90 4 n < O

T

4.4.4 Faster Implementation for 7 = O(log, n)

Below, we provide a more efficient construction procedure for a specific value 7 = Lé log, n|.

Lemma 4.4.10. Given the packed representation of a text T of length n over an alphabet
of size o, in O(n/log, n) time one can construct Step(sync) for a T-synchronizing function
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sync defined with Construction 4.4.1 based on a T-identifier function id for T = L% log, n].
The identifier id(y) is reported along with each synchronizing fragment y.

Proof. We simulate the algorithm described in the proof of Lemma 4.4.9, exploiting
local consistency of the underlying approach. More specifically, we observe that the way
this procedure handles a fragment y = F.(i) depends only on the classes of the nearby
fragments F.(j) with |j — 4| < 7. In particular, these classes determine the score of y
during the algorithm and, if y becomes a synchronizing fragment, the relative location of
the step of Step(sync) with value y.

Motivated by this observation, we partition F, into [2] blocks so that the kth block
contains fragments F, (i) with [£] = k. We also define the context of the kth block as a
string T[1 + (k — 2)7]--- T[(k + 2)7], assuming that T'[i] = # if ¢ is not a position of T,
and we say that two blocks are equivalent if they share the same context.

Based on the initial observation, we note that if two blocks are equivalent, then the
corresponding fragments y, 3y’ € F, (with the same relative position within each block) are
processed in the same way by the procedure of Lemma 4.4.9. This essentially means that
it suffices to process just one representative block in each equivalence class.

Proposition 3.2.1 lets us retrieve each context in O([72627) = O(1) time. Consequently,
it takes O(n/log, n) time to partition the blocks into equivalence classes and to construct
a family B of representative blocks. Furthermore, our choice of 7 guarantees that |B| =
O(1 + o'7) = O(n*?). Similarly, the class P € P, of a fragment y € F, is determined
by the underlying substring, so |P.| = O(c7) = O(n'/%) and the substring can also
be retrieved in O(1) time. Consequently, the procedure in the proof of Lemma 4.4.9
has O(n'/%) iterations. If we spend ©(7°")) time for each representative block at each
iteration, we still obtain the overall running time o(logn). This generous margin allows for
a relatively straightforward approach.

Our implementation maintains classes P € P, indexed by the underlying substrings.
For each class, we store the value id(y) assigned to the occurrences y € P, a list of
occurrences y € P contained in the representative blocks, and information whether
P C N, and whether P C B,. To initialize these components (with the values id(y) set to
L at first), we scan all representative blocks, spending O(7°®") time per block, which
results in O(|B|7°W) = 0(josy) time in total.

In the first phase, we simply assign initial positive integers to classes P C B,. Second-
phase iterations are more complicated because they involve computing scores. To determine
the score of a particular class P € P, we iterate over all occurrences y = F,(i) € P
contained in representative blocks. We retrieve the class of each fragment F;(j) with
|7 —i| < 7 in order to compute the score of y. We add this score, multiplied by the number
of equivalent blocks, to the aggregate score of P. Having computed the score of each class,
we take an arbitrary class P; with a non-negative score (and no value assigned yet), and
we assign the subsequent value j to this class. As announced above, the running time of
a single iteration is O(|B|7°W) since we spend O(7°W) time for each fragment y € F,
contained in a representative block.

In the post-processing, we compute Step(sync) restricted to values from the representa-
tive blocks (with id(y) stored for each synchronizing fragment ). To achieve this goal, for
every y = F, (i) contained in a representative block, we retrieve the classes of the nearby
fragments F.(j) (with |7 —i| < 7) to check whether y is a synchronizing fragment and, if
s0, to determine its step in Step(sync). This takes O(7°() time per fragment y, which is
O(|B|m°M) = o(+2-) in total.

logn
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Finally, we build Step(sync): For each block, we copy the representation from the
corresponding representative block (shifting the indices accordingly). Next, we concatenate
the step representations, inserting steps with value L to fill the gaps.

The running time of this final phase is O(|Step(sync)| 4 %); this is O(%) because we
simulated the construction in the proof of Lemma 4.4.9. O

4.5 Data Structure

We are now ready to present the data structures for LCE QUERIES in texts over small
alphabets. We assume that the packed representation of the text is available. Nevertheless,
our construction algorithm for arbitrary 7 uses ©(n) time and ©(n) working space.

Theorem 4.5.1. Let T be a text of length n over an alphabet of size o, packed into
O(["IO%D machine words stored in a read-only random-access memory. For every
parameter 7 € [1,[5]], there is a data structure of size O(Z) which answers LCE

QUERIES in O([Th’%ﬂ time. It can be constructed in O(n) time.

Proof. We use Lemma 4.4.9 to construct a 7-identifier function id and a 7-synchronizing
function sync with |Step(sync)| = O(%). We compute Step(sync), associate each synchro-
nizing fragment y with its identifier id(y), and discard the remaining 7-identifiers. Finally,
we plug Step(sync) to Lemma 4.3.4, which results in a component answering LCCEgyc
queries in O(logy, 7) time. This way, we obtain an O(n)-time construction algorithm of a
data structure taking O(%) space.

The remaining challenge is to implement LCE(7,d") queries. First, we compute
min(LCE(4,4), 27—1) using Proposition 3.2.1, which takes (9([710%1) time. If LCE(7,7') <
27 — 1, this already gives us the sought value LCE(¢,4"). Otherwise, we determine
¢ := LCCEgync(%,7') + (7 — 1) using Lemma 4.3.4. Based on Lemma 4.4.9, we conclude
that

LCE(4,i") = ¢ +min(LCE(i + ¢,¢ + ), 7 — 1).

The latter LCE value is determined using Proposition 3.2.1 again. The overall query time
is O([ 757 + logy, 7) = O[] + [ 1) = O([5E2D). O

For 7 = E log,, nJ, we achieve optimal construction time based on Lemma 4.4.10.

Theorem 1.1.1. For every text T of length n over an alphabet of size o, there exists a
data structure of O(nlogo) bits (i.e., O(n/log, n) machine words) which answers LCE
QUERIES in O(1) time. It can be constructed in O(n/log,n) time given the packed
representation of the text T'.

Proof. We keep the packed representation of T' so that it becomes a part of the data
structure. We also plug it to Lemma 4.4.10, which results in Step(sync) including identifiers
associated with synchronizing positions. Finally, we use this representation of sync to
construct the component (of Lemma 4.3.4) for LCCEgyn. queries.
The procedure of Lemma 4.4.10 runs in O(n/log, n) time and results in |Step(sync)| =
O(n/log, n). Consequently, the running time in Lemma 4.3.4 is also O(n/log, n).
Queries are processed in O([12&=21877) — O([%"]) — O(1) time as in the proof of

W 1%
Theorem 4.5.1. OJ




Chapter 5

Queries Concerning Periodic
Fragments

In this chapter, we develop data structures for two types of queries concerning periodic
fragments of the input text: PERIODIC EXTENSION QUERIES and INTERNAL PERIODIC
PATTERN MATCHING QUERIES, both defined below. The latter is a special case of
INTERNAL PATTERN MATCHING QUERIES discussed in Chapter 6.

PERIODIC EXTENSION QUERIES
Given a fragment x of the text 7', compute the run run(z) extending z. (Recall that
run(z) = L if x is not periodic.)

INTERNAL PERIODIC PATTERN MATCHING (IPPM) QUERIES

Given a periodic fragment = and a fragment y of the text 7" with |y| < 2|z, report
the starting positions of fragments matching = and contained in y (represented as an
arithmetic progression).

Both our data structures handle queries in O(1) time and admit O(n)-time construc-
tion algorithms, which makes them optimal for integer alphabets. The solutions are
based on similar tools: the structure of runs (maximal repetitions) in the text (intro-
duced in Section 2.2.1) and efficient representation of piecewise-constant functions (see
Section 3.4.1).

5.1 Periodic Extension Queries

A combinatorial fact allowing for an efficient implementation of PERIODIC EXTENSION
QUERIES is, briefly speaking, that at most two runs induce periodic fragments of similar
lengths starting at the same position. Its precise formulation, along with a proof based
on the Three Squares Lemma, is stated in Section 5.1.1. Motivated by this property, in
Section 5.1.2 we organize the fragments of 7" into O(logn) layers. Although a single run
v may induce periodic fragments in several layers, the number of such layers is O(exp(7)),
so due Proposition 2.2.5 we can afford to spend O(1) space on ~ for each of these layers.
Each layer is handled by a separate component, which stores the step representations of a
certain function, equipped with a tool of Corollary 3.4.4 for O(1)-time evaluation.
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5.1.1 Runs Extending Fragments of Similar Lengths
Fragments x satisfying run(z) = v admit an elegant characterization:

Observation 5.1.1. Consider a text T and a run v € R(T). A fragment x of T satisfies
run(x) =~ if and only if x is contained in v and |x| > 2 per(y).

Consequently, for a fixed starting position ¢ and a run v € R(T), the lengths of the
fragments T[¢..r] with run(T[¢..7]) = v form an interval. Moreover, if the interval is
non-empty, then T'[¢.. ¢+ 2per(y) — 1] is a primitively rooted square. The number of such
squares (and thus the number of runs extending a periodic fragment starting at position ¢)
is bounded by O(logn) due to the following classic result:

Lemma 5.1.2 (Three Squares Lemma [49, 43]). Let vy, va, v be strings such that v} is a

proper prefiz of v3, v3 is a proper prefiz of v, and vy is primitive. Then |vi| + |va] < |vs].

Our data structure is based on the following consequence of Lemma 5.1.2:

Corollary 5.1.3. Let x1,x9, x3 be periodic fragments of the text T', all starting at the same
position €. If |log|x1|] = |log |xa|] = [log |x3|], then run(uy), run(usg), run(ug) cannot be
all distinct.

Proof. Let k be the common value of |log|z;||. For a proof by contradiction, suppose
that the runs ; = run(u;) are pairwise distinct, and let p; = per(y;) be their periods.
Without loss generality, assume that p; < ps < ps.

Note that p; < §|z;| < 2% and |y; N ;] > 2F for every i, € {0,1,2}. Thus, Fact 2.2.4
implies p; < pa < p3. Consequently, strings v; = T[¢.. ¢ + p; — 1] satisfy the assumptions
of Lemma 5.1.2, which yields p; + p» < p3 < 2*. However, Fact 2.2.4 further implies
p1+ P2 > 1+ pe — ged(pr, p2) > |71 N el > 2%, a contradiction. ]

5.1.2 Data Structure

With the combinatorial tools at hand, we are ready to describe our data structure.

Theorem 5.1.4. Using a data structure of size O(n) which can be constructed in O(n)
time, one can answer PERIODIC EXTENSION QUERIES in O(1) time.

Proof. For each k € [0, [logn|], let us define a function Ry, : [1,n] — 2%) which assigns
to each position ¢ the set of runs « such that v = run(z) for a fragment x which starts
at position ¢ and satisfies |log |x|] = k. We shall store the step representation Step(Ry)
equipped with a component of Corollary 3.4.4 for O(1)-time evaluation.

Answering a query for x = T'[(..r] is simple since run(z) € R|iog|q||(¢) or run(z) = L.
Thus, we compute k = [log |z|] (applying Proposition 3.1.1) and make an evaluation query
to retrieve Ry (¢). Corollary 5.1.3 guarantees that |Rg(¢)| < 2, so we use Observation 5.1.1
for each v € Ry({) to verify whether v = run(z). If none of these checks succeeds, we
conclude that run(z) = L.

Designing an O(n)-time construction algorithm is slightly more demanding; the key
challenge is to build the step representations Step(Ry). For this, let us analyze when a run
v="T[..r] € R(T) belongs to Ry(i). The characterization of Observation 5.1.1 provides
an answer: v € Ry (i) if and only if per(y) < 2% and i € [¢,7 — max(2per(y),2*) + 1].
Moreover, we note the set of runs satisfying this condition for some position ¢ is Ry(T') =
{v € R(T) : per(y) < 2% < |y|}. For each run v € Ry(T), we shall prepare two events:
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addy,(¢,v) and removey,(r — max(2 per(v), 2¥) +2,7). Now, in order to transform Ry (i — 1)
into Ry(7), it suffices to process the events removey(i,~y) and addg (7, 7).

This approach is implemented as follows. First, we apply Proposition 2.2.5 to build
the set R(T) of all runs and we process each run v = T[(..r] € R(T) to construct
the appropriate events. For this, we compute an interval [|log(per(vy))] + 1, |log |v]]]
consisting of indices k such that v € Ry(T). For each such k, we create two events:
addy(¢,7) and remove,(r — max(2per(y),2*) + 2,7). Next, we sort the events by the
position and group them by the layer k. To construct Step(Ry), we scan the sorted list of
events for layer k, maintaining the set Ry(¢), initialized as (). If there are no events at
position i, we are guaranteed that Ry (i) = Ry(i — 1), so we do not need to do anything.
Otherwise, we process the events to transform Ry (i — 1) into Ry (i) and start a new step
in Step(Rg). In the final phase, we equip the step representations Step(Ry) with the
components of Corollary 3.4.4.

Let us bound the running time of the procedure above. Due to Proposition 2.2.5,
constructing R(T") takes O(n) time. The number of events created for a single run = is

[{k 17 € Ri(T)}| = [log |7]] — [logper(y)] < 1+log - =1+ logexp(y) < exp(v),

where the last inequality follows from exp(y) > 2. The total number of events is O(n)
because Proposition 2.2.5 states that 3 cr () exp(y) = O(n). Sorting the events also
takes O(n) time since the keys are positive integers bounded by n. As we generate
Step(Ry), the maintained set is of constant size due to Corollary 5.1.3, so each event is
processed in O(1) time. Finally, applying Corollary 3.4.4 takes O(|Step(R:)| + 7i) space
and construction time per layer, which is O(n) in total. Thus, our construction procedure
takes O(n) time and the resulting data structure is of size O(n). O

5.2 Internal Periodic Pattern Matching Queries

Our approach to IPPM QUERIES mainly relies on the structure of runs in the text (see
Section 2.2.1) and on the following trivial observation in particular.

Observation 5.2.1. If x and ' are matching fragments of the text T, then the runs
v =run(x) and v = run(z’), extending x and x' respectively, have equal periods.

We use PERIODIC EXTENSION QUERIES of Section 5.1 to compute v = run(z) and
derive the period per(y). Next, we look for runs 4’ which may extend the fragments
2’ matching z and contained within y. Due to Observation 5.2.1 and the assumption
ly| < 2|x|, it suffices to find all runs of period per(7y) which contain the middle position of
y (formally defined as the position of T' corresponding to y[[3]y|1]). In Section 5.2.1, we
show that there are at most two such runs and develop a component for RUN FINDING
QUERIES, specified below, allowing us to identify them efficiently. Its implementation
relies on the tools of Section 3.4.1 (evaluation of functions with small step representations).

RUN FINDING QUERIES
Given a position ¢ of the text 7" and an integer p, find all runs v € R(T') of period p
containing position %.

Next, we look for the occurrences of x contained in each of the candidate runs 7. We
use techniques based on Lyndon roots and compatibility of runs, recalled in Section 5.2.2,
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originating from a paper by Crochemore et al. [45]. We may ignore runs + incompatible
with ~, while for the compatible runs 7/, it is easy to find all occurrences of x in y N~/
We obtain at most two arithmetic progressions representing the occurrences of = in y, but
the following folklore result guarantees that they can be merged into a single progression.

Fact 5.2.2 (Breslauer and Galil [27], Plandowski and Rytter [127]). Let x, y be strings
satisfying ly| < 2|x|. The set of starting positions of the occurrences of x in y forms a
single arithmetic progression.

5.2.1 Run Finding Queries

Before we proceed to an implementation of RUN FINDING QUERIES, let us prove that
the query output consists of at most two runs.

Fact 5.2.3. Each position i of the text T lies within at most two runs of the same period p.

Proof. Suppose that there are three distinct runs vy, 72, and 3 with period p, all
containing position 7. Observe that each of these runs contains positions ¢ — p or 7 + p, and
thus T'[i..i+ p] or T[i — p. .14 lies in the intersection of some two of them. However, by
Fact 2.2.4, such an intersection may contain at most p — 1 positions, a contradiction. [J

Lemma 5.2.4. For every text T', there exist a data structure that answers RUN FINDING
QUERIES in O(1) time, takes O(n) space, and can be constructed in O(n) time.

Proof. For each period p, let RP(T') = {y € R(T) : per(7y) = p}. Let us define a function
RP : [1,n] — 2%°(™) such that RP(i) consists of runs containing position 7. Observe that
RP(i) # RP(i + 1) only if a run v € RP(T) ends at position i or starts at position i + 1.
Hence, the size of the step representation of RP is bounded by 1+ 2|R?(T")|, which is O(n)
in total. Moreover, it is easy to compute the step representations Step(R?) in O(n) time.

Nevertheless, the total size of evaluators E(RP) of Corollary 3.4.4 would be by far too
large: @(”—Mi) As a workaround, we observe that it suffices to evaluate RP at positions
i divisible by p. Indeed, every run v € RP(7) satisfies |y| > 2p, so RP(i) C Rp(pLZ%J) U
RP(p (ﬂ) Due to Fact 5.2.3, the right-hand side consists of at most 4 runs, and we can
afford to check which of them contain position i.

Thus, we define RP(j) = RP(p - j) and note that the step representation of RP is
easy to construct from the step representation of RP (and the size cannot increase).
The total size of evaluators £(RP) can be expressed as follows using harmonic numbers
H, = E?:l% <1l+Inn:

n

1O (14 2+ [RY(T)]) = O (n+ 2= 4+ n) = O(n).

p=

Corollary 3.4.4 also yields O(n) total construction time of these evaluators. O

5.2.2 Compatibility of Strings

Recall that a string which is both primitive and lexicographically minimal in the class of
its cyclic rotations is called a Lyndon word; see Section 2.2. Let u be a string with the
shortest period per(u) = p. The Lyndon root A of u is the Lyndon word that is a cyclic
rotation of the prefix u[l]---u[p], i.e., the minimal cyclic rotation of that prefix. We say
that two strings are compatible if they have the same Lyndon root.
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A string u with Lyndon root A can be uniquely represented as M\’ where ) is a
proper suffix of A\, \ is a proper prefix of A, and k € Z>( is a non-negative integer. The
Lyndon signature of u is defined as (|\'|, k, |\"]). Note that the Lyndon signature uniquely
determines v within its compatibility class. This representation is very convenient for
pattern matching if the text is compatible with the pattern.

Lemma 5.2.5. Let x and y be compatible strings. The set of positions where x occurs
in y is an arithmetic progression that can be computed in O(1) time given the Lyndon
signatures of x and y.

Proof. Let X be the common Lyndon root of x and y and let their Lyndon signatures be
(p, k,s) and (p/, k', s") respectively. Lemma 2.2.2 (synchronization property) implies that
A occurs in y only at positions ¢ such that ¢ = p’ +1 (mod |\|). Consequently, x occurs
in y only at positions ¢ such that i = p’ — p+ 1 (mod |A|). Clearly, z occurs in y at all
such positions ¢ within the interval [1,|y| — |z| 4+ 1]. Therefore, it is a matter of simple
calculations to compute the arithmetic progression of these positions. O

Crochemore et al. [45] already showed how to efficiently compute Lyndon signatures
of the runs of a given text.

Fact 5.2.6 (Crochemore et al. [45]). Given a text T of length n, in O(n) time one can
compute Lyndon signatures of all runs in T and partition the runs into compatibility
classes.

Next, we note that the Lyndon signature of a run ~ determines the Lyndon signatures
of periodic fragments z induced by ~, i.e., satisfying v = run(x).

Observation 5.2.7. Let w be a periodic string of period p. If u is a fragment of w and
|u| > 2p, then u is compatible with w. Moreover, given the Lyndon signature of w, one
can compute the Lyndon signature of u in constant time.

5.2.3 Implementation of IPPM Queries

In this section, we describe our data structure for IPPM QUERIES. It consists of:
1. the set of runs R(T"), each run accompanied with its period, Lyndon signature and
an identifier of the compatibility class;
2. the data structure of Theorem 5.1.4 for PERIODIC EXTENSION QUERIES; and
3. the data structure of Lemma 5.2.4 for RUN FINDING QUERIES.
Note that Proposition 2.2.5 and Fact 5.2.6 guarantee that the first component takes O(n)
space and can be constructed in O(n) time. For the latter two components, Theorem 5.1.4
and Lemma 5.2.4 yield the same bounds.
Next, we show that this data structure can handle IPPM QUERIES in O(1) time. The
query algorithm consists of the following steps, introduced at the beginning of Section 5.2:
(A) Compute the run v = run(x) (raise an error if run(z) = L1).
(B) Find all runs " with per(v’) = per(vy) containing the middle position of y, defined
as T[| 5] for y =T[C..7].
(C) Filter out runs 4/ incompatible with .
(D) For each of the compatible runs 7/, compute an arithmetic progression representing
the occurrences of x in y N~'.
(E) Combine the resulting occurrences of x in y into a single arithmetic progression.
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Before implementing these steps, let us justify the correctness of the algorithm. Clearly,
a fragment matching x (and contained in y) starts at each of the reported positions. It
remains to prove that no occurrence z’ is missed. By Observation 5.2.1, 7' = run(z’) is a
run of period per(v). Note that 2’ cannot end earlier than at position ¢ 4 |z| — 1 and it
cannot start later than at position r — |z| 4+ 1. Due to |y| < 2|z|, we have

r—]x\+1§r—['y‘7“]+1:[“7ﬂ§[HTT]:€+[“"T“]—1§€+\95|—1,

so ' must contain the middle position of y. Therefore, v = run(2’) is among the runs
found in step (B). By Observation 5.2.7, v is compatible with z and 7 is compatible with
x’. Since z and 2z’ match, v and 4" must be compatible. Hence, v is considered in step (D)
and the starting position of 2’ is reported in step (E).

We conclude with the implementation of the subsequent steps of the query algorithm.
In step (A), we simply evaluate v = run(z) using a PERIODIC EXTENSION QUERY of
Theorem 5.1.4. In step (B), we retrieve p = per() and use a RUN FINDING QUERY
to identify all runs +" with per(y’) = p containing the middle position of y. Fact 5.2.3
guarantees that we obtain at most two runs 7. We use the partition of runs into
compatibility classes to implement step (C). For the remaining (compatible) runs 7/,
we apply Lemma 5.2.5 to find the occurrences of x in y N 4'. There is nothing to do if
|z| > |y N~'|. Otherwise, |y Nv/| > |z| > 2per(y) = 2per(y’), so Observation 5.2.7 lets
us retrieve the Lyndon signatures of both z and y N +/. We are left with at most two
arithmetic progressions (one for each compatible run 7). As discussed above, their union
represents all occurrences of x in y. By Fact 5.2.2, this set must form a single arithmetic
progression. If the progressions are stored by (at most) three elements—the last one and
the first two—it is easy to compute the union in constant time. This concludes the proof
of the following result:

Theorem 5.2.8. There exists a data structure of size O(n) which can be constructed in
O(n) time and answers IPPM QUERIES in O(1) time. The query algorithm reports an
error whenever the query pattern x is not periodic.



Chapter 6

Internal Pattern Matching Queries

This chapter is devoted to our solution for INTERNAL PATTERN MATCHING (QUERIES,
formally defined as follows:

INTERNAL PATTERN MATCHING (IPM) QUERIES

Given fragments = and y of the text T satisfying |y| < 2|z|, report the starting
positions of fragments matching x and contained in y (represented as an arithmetic
progression).

The description of our data structure is organized as follows. We outline the main
ideas in Section 6.1; in particular, this is where we introduce our central combinatorial
tool—the notion of a representative assignment assigning representative fragments repr(x)
to fragments x of the text 1. Section 6.2 is devoted to constructing a representative
assignment. We start with a simple construction resulting in O(nlogn) representative
fragments. Next, using the synchronizing functions of Chapter 4, we reduce the number of
representative fragments to O(n) and obtain an O(nlogn)-time construction algorithm of
the underlying assignment. We then improve the construction time to O(n) by restricting
the representative assignment to fragments of length |z| = Q(W) only. (Recall that
W = Q(logn) is the machine word size.) At the same time, the number of representative
fragments is reduced to O(%). Consequently, in the final Section 6.3, we develop two
components: an auxiliary one for IPM QUERIES queries with short patterns (using fusion
trees; see Section 3.4) and the main one handling long patterns based on the representative
assignment.

6.1 Overview

Throughout the chapter, we fix a text T" of length n. In order to support IPM QUERIES
in T, we use a classic idea of pattern matching by sampling in a novel way. To every
fragment x of the text T, we assign a representative (a sample) repr(x), which is a fragment
of T' contained in x. We make sure that this assignment is consistent, i.e., if x and 2’
match, then the location of repr(z’) relative to 2’ must be the same as the location of
repr(z) relative to x; see Figure 6.1. This property is crucial for answering IPM QUERIES:
if a fragment 2’ contained in y matches z, then we are guaranteed that repr(z’) and repr(x)
also match. Applying this fact, our query algorithm locates the representative fragments
matching repr(z) and contained in y, and it checks which of them can be extended to
occurrences of z; see Figure 6.2.
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xT: repr(x) ' repr(z’)

Figure 6.1:  If x and 2’ match, then repr(z) and repr(z’) must be chosen consistently:
lengths marked in the same way must be equal. In particular, repr(z) and repr(z’) also
match.

|
T

| I 1y
<> <—H—> > —HH—>

r rep(2) A — R —

Figure 6.2: The main idea of the query algorithm for fragments x and y. We find the
representative fragments matching repr(x) and contained in y (depicted as gray rectangles).
If there is an occurrence z’ of = contained in y, then repr(z’) is one of these representative
fragments. Thus, 2’ must be one of the fragments marked with dashed rectangles.

In order to achieve constant query time with this approach, we need to guarantee
that repr(x) has O(1) representative occurrences in y. For this, we need to impose some
conditions on the representative fragments. First, we require that |repr(z)| = ©O(|z|).
Since |y| < 2|z|, this way we make sure that the number of non-overlapping occurrences
of repr(x) in y is constant. However, there might still be many occurrences with large
overlaps. To exclude this possibility, we prohibit representative fragments with very small
periods and rely on the following fact for the remaining substrings of 7.

Fact 6.1.1 (Sparsity of occurrences). The set of positions where a substring u occurs in
a text T is per(u)-sparse, i.e., every two distinct positions i,i" satisfy |i — i'| > per(u).

Proof. If u occurs in T at positions ¢ and i + d such that i < i +d < i + |u|, then
ulj + d] = ulj] for every j € [1, |u| — d], i.e., d is a period of w. O

Unfortunately, the restriction per(repr(z)) = O(|z|) makes assigning a representative
repr(z) unfeasible for some fragments x. Nevertheless, this may happen only if per(z) =
o(]z|), and thus only answering IPM QUERIES with periodic patterns becomes problematic.
This special case is covered by INTERNAL PERIODIC PATTERN MATCHING QUERIES
considered in Section 5.2, so we build the specialized component of Theorem 5.2.8 to deal
with periodic patterns.

Consequently, we define repr only for a subset G of the family F of fragments of the
text T. The co-domain R of repr is another subset of F and its members are called the
representative fragments. The number |R| of the representative fragments is the main
parameter governing the size of our data structure.

Definition 6.1.2. A representative assignment for G is a function repr : G — R mapping
G CF to R CF such that for each x € G:
(a) the fragment repr(zx) is contained in x and its period satisfies per(repr(x)) = O(|z|),
(b) if 2’ € F matches x, then ' € G and the location of repr(x’) relative to x’ is the same
as the location of repr(x) relative to x, i.e., repr(x) = x[i..j] and repr(z') = 2'[i .. j]
for some positions 1 < i < j < |z].

To implement IPM QUERIES with patterns x € G, the underlying representative
assignment repr : G — R also needs to satisfy certain algorithmic properties listed below.
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Definition 6.1.3. We say that a representative assignment repr : G — R admits an
efficient implementation if it can be stored in O(n) space so that:

(1) the representative repr(z) of a given fragment x € G can be computed in O(1) time;
(2) the representative fragments can be listed in O(|R|) time.

6.2 Representative Assignment Construction

Our goal in this section is to build an efficient representative assignment, i.e., a function
which satisfies both the combinatorial requirements of Definition 6.1.2 and the algorithmic
properties specified in Definition 6.1.3. We start in Section 6.2.1 with a simple repre-
sentative assignments for the family N = {y € F : per(y) > %|y|} of non-highly-periodic
fragments of T. The representative fragments of this assignment are basic fragments,
whose length is a power of 2. The construction makes use of the characterization of N
provided in Section 4.4.2.

To achieve O(n) representative fragments, in Section 6.2.2 we introduce a representative
assignment for N based on O(logn) synchronizing functions of Section 4.2 and their
construction specified in Section 4.4. Lemma 4.4.9 yields an O(n)-time construction
algorithm for a single synchronizing function, so it takes O(nlogn) time to build this
representative assignment. In the final Section 6.2.3, we provide an O(n)-time construction
of a similar representative assignment restricted to fragments of length |z| > W.

6.2.1 O(nlogn) Representative Fragments in O(n) Time

Let us first analyze simple ways to obtain a representative assignment for N. Arguably,
the most trivial construction sets repr(z) = z for each # € N. The correctness is obvious,
but it is also clear that the number of representative fragments might be ©(n?).

An easy way to dramatically reduce the number of representative fragments is to
partition N into several layers so that fragments in a single layer have representatives of
the same length. The number of layers must be {2(logn) because Definition 6.1.2 requires
repr(z)| = ©(|z|). For example, we can impose a condition that |repr(x)| = 281zl for
each € N. As a result, only the O(nlogn) basic fragments (fragments whose length is
a power of 2) might be representative fragments. A naive choice of repr(z) would then
be the longest prefix of x which is a basic fragment, but such a prefix might have a very
small period even if = does not have one. Thus, we need to be more careful; for example,
as repr(z) we may set the leftmost fragment of length 2U°8ll which is contained in z
and belongs to N. Below, we formally define the resulting representative assignment
and provide an efficient implementation, partially based on the characterization of N in
Section 4.4.2.

Formal Definition

Recall the subsets F,,, F[z], and F,,[z] of F (defined in Section 4.2) that consist of,
respectively, fragments of a given length m € [1,n], fragments contained in a given
fragment x € F, and fragments satisfying both conditions. We also use analogous notions
for subsets of the set N of non-highly-periodic fragments of T

Construction 6.2.1. For a fragment x € N, we define repr(x) as the leftmost fragment
y € Now[z] with k = |log|z|].
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To prove that the value repr(z) is well defined for every z € N, we apply the character-
ization of Lemma 4.4.7 to derive the following result:

Fact 6.2.2. If a fragment « € F satisfies |x| > 7 and per(z) > 37 for an integer T € [1,n],
then N.[z] # 0.

Proof. If the prefix x[l1..7] belongs to N,, the claim holds trivially. Otherwise, by
Lemma 4.4.7(a), there exists a 7-run v € R, containing that prefix. Note that per(y) <
%T < per(x), so x is not contained in v. Thus, there exists a fragment y € F.[z] such that
lyn~| =7 —1. By Lemma 4.4.7(b), we have y € B, which yields y € N, [z]. O

Now, it is easy to prove that the constructed assignment satisfies Definition 6.1.2.

Observation 6.2.3. The function repr : N — R defined with Construction 6.2.1, where R
is the set of all O(nlogn) basic fragments of T', is a representative assignment.

Efficient Implementation

Our next goal is to provide an efficient implementation for the representative assignment
defined with Construction 6.2.1. To meet condition (1) of Definition 6.1.3, we build step
representations of functions mapping a position i € [1,n—28+1] to 1if T[i..i+2F—1] €
Nyx and to 0 otherwise. Formally, such a function is the composition of the function Fy
(defined in Section 4.2, mapping i € [1,n—2"+1] to T'[i..i+2F—1]) with the characteristic
function of Nox. However, we slightly abuse notation and denote its step representation as
Step(Nyx ). Below, we show that these step representations can be constructed efficiently
across all k € [0, [logn]]. We rely on Lemma 4.4.7, which characterizes N, using the
family R, of 7-runs (see Section 4.4.2 for definition), so as an intermediate step we also
construct these families for each 7 = 2.

Fact 6.2.4. Given a text T' of length n,
o the families Rox of 28-runs (in the left-to-right order), and
o the step representations Step(Nox)

can be computed for all k € [0, |[logn]] in O(n) total time.

Proof. To construct the sets Rox, we first determine the set R(T") of all runs in 7" using
Proposition 2.2.5, and we order the runs by their starting positions. Next, we iterate over
v € R(T) and add ~ to the appropriate sets Rox (for log(3 per()) < k <log(|y| + 1); the
integer boundaries of this interval can be computed using Proposition 3.1.1). We have
|Ror| < 3—2 by Lemma 4.4.7, so the total size of the produced sets and the total running
time are both O(n).

By the characterization of Lemma 4.4.7, there is a bijection between 2¥-runs of length
at least 2% and value-0 steps in Step(Nax): each such run T'[i .. j] corresponds to a step
([i,5 — 2% +1],0) € Step(Ngx). Hence, Step(Nyx) can be built from Rye in time O(25). O

We are now ready to provide an efficient implementation of the representative assign-
ment of Construction 6.2.1.

Proposition 6.2.5. Given text T' of length n, a representative assignment repr : N — R
with an efficient implementation and |R| = O(nlogn) can be constructed in O(n) time.
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Proof. At the preprocessing phase, we build the step representations Step(Nox ) (Fact 6.2.4)
and equip them with the components for evaluation queries (Corollary 3.4.4). The resulting
construction time is O(n + Z,Eﬁ%nJ (2% + %)) = O(n) and this is also a bound on the
data structure size.

Our family R of representative fragments consists of all basic fragments of T, so it is
trivial to report it in O(|R|) = O(nlogn) time. In order to determine the representative
repr(z) of x = T[¢..r], we compute k = |log|z|] (using Proposition 3.1.1) and make an
evaluation query asking for the step ([¢',r'],v) € Step(Nyr) containing ¢. If v = 1, then
Fyr(£) € Ngr, and we report this fragment as repr(z). Otherwise, we return repr(z) =
For(r" 4+ 1); due to Fact 6.2.2, € N guarantees that repr(z) is indeed contained in z. [

6.2.2 O(n) Representative Fragments in O(nlogn) Time

Our next goal is to reduce the number of representative fragments to O(n). For this,
we pursue a stronger goal of reducing the number of representative fragments of length
2k to O(3). In order to let more fragments share the same representative, we alter
the partition of N into layers. The kth layer, with representatives of length 2¥, is going
tobe Ly = {x € N : k = [log(|z| +1) — 1]}. This way, |Far[z]| > 2* for each z € L,
(although |Nax[x]| could be much smaller). To simplify notation, for m € [1,n] we set
k(m) = [log(m + 1) — 1] to be the index of the layer containing fragments of length m.

The problem of consistently choosing representative fragments for Ly is similar to the
one of constructing a 2F-synchronizing function (see Section 4.2). In fact, we use the
following black-box reduction to build a representative assignment.

Construction 6.2.6. For each k € [0,k(n)], let sync, be a 2F-synchronizing function.
For every © € Ly, we define repr(x) = sync,(y), where y is the leftmost fragment in
Forr1_q[x] with sync,(y) # L.

It is not hard to prove that Construction 6.2.6 indeed gives a representative assignment.

Lemma 6.2.7. The function repr : N — R defined with Construction 6.2.6, based on the
2k _synchronizing functions sync, with k € [0,k(n)], is a representative assignment. Here,
R consists of all the synchronizing fragments of the functions sync.

Proof. First, we shall prove that repr is well defined. If x € Ly, then |z| > 2F1 —1 > 2k
and per(z) > 3|z > & - 2%, so Ny[2] # 0 by Fact 6.2.2. In particular, Nox[y] # @ for some
y € Fort1_y[x], and thus sync,(y) # L by Definition 4.2.1(a). This means that repr(x) is
indeed well defined and that we have repr(z) = sync,(y) for some y € Fort1_;[z]. Hence,
repr(z) € Nax[y] C Nyr[z] due to Definition 4.2.1(b). Moreover, per(repr(z)) > 5 - 2F =
& 282 > L]z|, which implies condition (a) of Definition 6.1.2.

As for condition (b), note that x = 2" induces a natural bijection between F[z] and F[z']
which pairs up matching fragments. Consequently, consistency follows from Fact 4.3.1. [J

We conclude with an efficient implementation of a representative assignment based on
Construction 6.2.6, with Lemma 4.4.9 applied to build the synchronizing functions. Recall
that Step(sync;) is an abbreviated notion for the step representation of sync, o Fyr1_;.

Proposition 6.2.8. Given a text T of length n, a representative assignment repr : N — R
with an efficient implementation and |R| = O(n) can be constructed in O(nlogn) time.
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Proof. We decompose N into layers Ly, with k& € [0, k(n)]. For each layer, the represen-
tative assignment repr is based on Construction 6.2.6 with the underlying synchronizing
function sync,, constructed using Lemma 4.4.9 in O(n) time.

For an efficient implementation, we build the evaluators of Corollary 3.4.4 for the
2¥-synchronizing functions sync,. The size of a single evaluator is O({ + [Step(sync,,)|) =
O(& + &), which is O(™%" + n) = O(n) in total. The overall construction time is
O(nlogn) due to Lemma 4.4.9.

To list the representative fragments in O(|R|) time, we simply report z for each step
([4,7], z) € Step(sync;,) with z # L. The queries for repr(z) with = T'[¢..r] are answered
as follows. First, we determine the layer Ly containing z, i.e., we compute k& = k(|z|).
Next, we retrieve the step ([¢',7], z) € Step(sync,,) with ¢ € [¢',r]. If z # L, we report
repr(z) = z. Otherwise, we determine the subsequent step (starting at position r' + 1)
and report its value as repr(x). The overall query time is constant. O

6.2.3 O(n)-Time Construction for Long Fragments Only

Our final goal is to construct a representative assignment in O(n) time and to reduce the
number of representative fragments to o(n). The latter is impossible if we allow very short
fragments in the domain G of repr, so we set G = Ny defined as {z € N : |z| > W}.
The bottleneck of the construction algorithm behind Proposition 6.2.8 is the repeated
use of Lemma 4.4.9 to construct the 2*-synchronizing functions sync, with step represen-
tations of size O(5r). To overcome this issue, we provide an alternative scheme allowing
for faster construction of synchronizing functions with larger step representations. The
key idea is to transform a 7-synchronizing function sync into a 7’-synchronizing function
sync’ with 7/ > 7. We rely on the sets N, and B,/, the latter defined in Section 4.4.2.

Construction 6.2.9. Let sync be a T-synchronizing function and let 7 € [1,[51]]. We
define a function sync’ : Forr—y — F U{L} so that for each © € Forr_q:
e IfN.[x] =0, then sync'(x) = L.
o IfB,[x] # 0, then sync'(x) is the leftmost fragment of B [x].
e Otherwise, sync'(z) = F.(p), where F.(p) = sync(y) and y € Fo, _1[x| is the leftmost
fragment with sync(y) # L.

Below, we prove that Construction 6.2.9 indeed results in a 7’-synchronizing function.
Note that at first it is not necessarily clear that sync’(z) C z holds in the third case.

Fact 6.2.10. Construction 6.2.9 defines a 7'-synchronizing function sync’.

Proof. Consider a fragment x € Fo 1. If sync’(z) = L, then N.[z] = ), so condition (a)
of Definition 4.2.1 is clearly satisfied. Moreover, if B.[z] # ), then sync’(z) € B,/[z] C
N.[z]. Otherwise, N,.[z] = F..[z] holds by Fact 4.4.6. In particular z := x[1..7'] € N/[x].
By Fact 6.2.2, this yields N,[z] # 0, so there is a fragment y' € Fy,_1[x] such that
N, [z Ny'] # 0. The latter condition yields sync(y’) # L due to Definition 4.2.1(b). As a
result, the fragment y in the definition of sync’(z) also satisfies |z Ny| > 7. Consequently,
F.(p) = sync(y) has a non-empty overlap with z and therefore F,/(p) is contained within
x. Hence, sync’'(x) € N, [z] holds also in the third case. This concludes the proof that
sync’ satisfies Definition 4.2.1(b).

Finally, we note that sync’(z) satisfies condition (c) of Definition 4.2.1 because whenever
x' = x, the natural bijection between F[z| and F'[z] pairs up matching fragments, and
these fragments are treated consistently by sync as well as by N and B. O
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Next, we show how to efficiently implement Construction 6.2.9.

Lemma 6.2.11. Given the step representation Step(sync) of a T-synchronizing function,
an integer 7" € [1,[51], and the family R, of T'-runs (in the left-to-right order), in
O(Z + |Step(sync)|) time we can construct the step representation Step(sync’) of a 7'-
synchronizing function sync’ defined with Construction 6.2.9.

Proof. Steps arising from each of the three cases are constructed separately. For the first
two cases, we rely on Lemma 4.4.7, which characterizes N, and B, in terms of R,..

In particular, we observe that every 7/-run v = T'[i .. j] with |y| > 27/ — 1 gives rise to
a step ([i,7 — 27" 4 2], L); these are the only steps of sync’ with value L.

Next, we use Lemma 4.4.7(b) to generate B, from R, (again, in the left-to-right
order). Each z = F.(p) belongs to B,/[Fa ()] for i € [p—7'+1,p]. This gives rise to a
step ([p — 7"+ 1, p], ). Before inserting this step to Step(sync’), we trim it so that it does
not overlap steps created for the already processed fragments of B, (i.e., Fr.(p') € By
with p’ < p) and to make sure that it is contained in the domain [1,n — 27" + 2] of Fo/_;.

The gaps between the already created steps of sync’ need to be filled based on sync
according to the third case of Construction 6.2.9. For this, we first remove the 1-value
steps of sync and fill each of the created gaps by extending the step to the right of the gap.
The resulting function maps a position i to the value sync(y) of the leftmost fragment
y = Fy._1(j) with j > i and sync(y) # L. Next, we replace any value F.(p) with F.(p),
removing the trailing steps for which this is impossible due to p > n — 7/ 4+ 1. Finally,
we fill all the gaps of sync’ by copying the corresponding parts of this auxiliary step
representation.

Observe that the first two phases of the algorithm take O(Z) time because this is
an upper bound on R,/ (see Lemma 4.4.7), while the construction of the auxiliary step
representation takes O(|Step(sync)|) time. Hence, |Step(sync’)| = O(Z% + [Step(sync)|) and
this is also an upper bound on the overall running time. O]

Finally, we use Lemma 6.2.11 to build an efficient representative assignment for the
family N>y of non-highly-periodic fragments of length at least W.

Proposition 6.2.12. Given text T' of length n, a representative assignment repr : N>y —

R with an efficient implementation and |R| = O(%) can be constructed in O(n) time.

Proof. We decompose N>y into layers Ly, for & € [k(W),k(n)] (the first of these layers
does not need to be fully contained within N>y ). For each later Ly, we construct a 2k_
synchronizing function sync; and define repr based on Construction 6.2.6. We build sync,
using Lemma 4.4.9 so that its step representation is of size O(53;). Based on SYNCy(yyy, We
build 2*-synchronizing functions sync, for subsequent layers L;, with k(W) < k < k(W?)
using Lemma 6.2.11. The total size of their step representations is O(MOTgW). For k =
k(W?), we use Lemma 4.4.9 again so that in this case |Step(syncy(y2))| = O(5=). For the
remaining layers Ly, (with k(W?) < k < k(n)), we apply Lemma 6.2.11 plugging sync, 2
to obtain 2¥-synchronizing functions sync,. The total size of their step representations is
O("5") = O()-

Across all layers, the total size of step representations is O(%), as claimed. The
construction algorithm needs O(n) time both to use Lemma 4.4.9 twice and to generate the
families Ror of 2F-runs for each layer Ly, (see Fact 6.2.4). On the top of that, applications
of Lemma 6.2.11 take O(MOTgW) = o(n) time in total.

Once the synchronizing functions are constructed, the efficient implementation of the
resulting representative assignment repr is exactly as in the proof of Proposition 6.2.8. [
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6.3 Implementation of the Data Structure

In this section, we give a complete description of the data structure for IPM QUERIES.
As mentioned in Section 6.2.1, periodic patterns are supported using Theorem 5.2.8.
We also need a specialized component for short patterns (of length |z| < W), which
is described in Section 6.3.1. In Section 6.3.2, we present the main part of the data
structure which handles long non-periodic patterns using the representative assignment of
Proposition 6.2.12.

6.3.1 Short Patterns

Before we present our data structure for IPM QUERIES with patterns x of length || < W,
let us consider a special case of a very short text of length n = O(W). In the general case,
we then partition the text 7" into overlapping blocks of length O(W).

Lemma 6.3.1. Let T be a text of length n = O(W) over an alphabet consisting of W -bit
integers. In O(n) time, one can construct a data structure of size O(n) which, given a
fragment x of T, in O(1) time computes a bitmask representing the starting positions of
the fragments of T' matching x.

Proof. We specify the data structure using the suffix array SA[l..n], the inverse suffix
array ISA[l..n], and the LCP table LCP[2..n] of the text T; see Section 2.5 for
definitions. It consists of the following components:

e the inverse suffix array I.SA of the text T
e for each value k € [1,n+ 1]:
— a bitmask Ix[1..n] such that I[i] = 1 if and only if ISA[i] < k,
— a bitmask Lg[l..n + 1] such that Lg[:] = 1 if and only if i € {I,n + 1} or
LCP[i| < k.
Clearly, the inverse suffix array takes O(n) space and each of the 2n + 2 bitmasks can be
stored in O([;|) = O(1) machine words. Hence, the size of the data structure is O(n).

Let us proceed to a description of the query algorithm for x = T'[i .. j]. First, we retrieve
the predecessor £ and the successor r of ISA[i] in L,. To compute ¢, we mask out bits at
positions larger than I.SA[i] and retrieve the most significant bit using Proposition 3.1.1.
Similarly, to determine r, we mask out bits at positions ISA[i] or smaller and compute
the least significant bit using Corollary 3.1.2. Now, [¢,r — 1] is the maximal interval
containing IS A[i] such that LC'P[p] > |z| for p € [¢ +1,r — 1]. Consequently, a fragment
matching « starts at position i’ of T" if and only if ISA[i'| € [¢,r —1]. The latter condition
can be expressed as [,.[i'] =1 and I;[i'] =0, so the resulting bitmask is the bit-wise ‘and’
of I, and the complement of I,. This concludes the implementation of an O(1)-time query
algorithm.

It remains to develop an O(n)-time construction procedure. As noted in Section 2.5,
the suffix array, the inverse suffix array, and the LCP table can be constructed in O(n)
time. To compute the bitmasks I, we observe that I; consists of zeros only, and I, can
be obtained from I by setting to one the bit at index ¢ = SA[k] (so that [SA[i] = k).
Thus, these bitmasks can be computed in O(1) time each. The construction of bitmasks
Ly, is similar: to obtain Lyy; from Ly, we need to set to one every bit at an index ¢ such
that LC P[i| = k. The list of such indices i for each k can be determined by sorting the
pairs (LC'PJi], i) for i € [2,n]. The overall running time is clearly O(n). O
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Corollary 6.3.2. There is a data structure of size O(n) which can answer IPM QUERIES
in O(1) time for patterns x of length |x| < W. It can be constructed in O(n) time.

Proof. Our data structure contains the suffix array SA[1..n| of the text T', the inverse
suffix array ISA[l..n], and the component for LCE QUERIES in T'; see Proposition 2.5.1.
Moreover, we introduce m = |5 | blocks—fragments 711, ..., T}, of length 41/ and starting
every 2W positions, i.e., T, = T[2W (b — 1) + 1..2W (b + 3)] (the last two blocks are
trimmed to fit within 7"). For each block T}, we build the data structure of Lemma 6.3.1
and a fusion tree (of Theorem 3.4.1) storing values I SA[j] for the leftmost 3W positions
j contained in the block (or |Ty| positions if the block is shorter than 3W). These
components clearly take O(n) space and can be constructed in O(n) time in total.

Hence, the main challenge is to provide an O(1)-time query algorithm. Suppose that
we are given a query with a pattern z and a text y, starting at positions ¢, and i,,
respectively. Observe that the rightmost block containing y is Tj, for b = [5#:]. Moreover,
y starts within the first 2W positions of Tj, so the sought occurrences of x must start
within the first 2W + |y| — |z| < 2W + |x| < 3W positions of T},. If a fragment matching
x starts at any position p € [1,3W] of Ty, we could reduce the query in T to a query in
T,. Otherwise, we are guaranteed that no occurrence of x is contained in y.

To take this approach, we use the fusion tree for the bth block to retrieve the predecessor
¢ and the successor r of IS AJi,| (among the values IS A[j] for the leftmost 3W positions
J contained in the block). Observe that if = occurs at one of these positions, then it also
occurs at position SA[(] or SA[r|. We verify this by checking if LCE(i,, SA[{]) > |x| and
LCE(i,, SA[r]) > ||, respectively. If z occurs at neither of the two positions, we report
that it has no occurrence in y. Otherwise, we have a fragment 2’ contained in T} and
matching x. We apply the component of Lemma 6.3.1 to retrieve a bitmask of positions
where the fragments matching 2’ (equivalently, the fragments matching x) start in Tj.
We mask out positions which do not correspond to occurrences contained in y and use
Proposition 3.1.1 and Corollary 3.1.2 to retrieve positions of the first, the second, and
the last occurrence of z in y. These at most three positions let us derive the arithmetic
sequence representing all the occurrences. Each step of the query algorithm takes O(1)
time. O

6.3.2 Long Patterns

In this section, we present the main component responsible for IPM QUERIES with
patterns z € N>yp. Our implementation relies on an arbitrary representative assignment
repr : N>y — R with an efficient implementation. However, we provide the complexity
analysis based on the bounds obtained in Proposition 6.2.12 for a specific construction.

As outlined in Section 6.1, to search for the occurrences of x in y, we first find the
representative occurrences of repr(x) contained in y, i.e., representative fragments matching
repr(x) and contained in y. This step is implemented using auxiliary RESTRICTED [PM
QUERIES specified below. Next, we apply LCE QUERIES (see Section 2.5) to check
which of these representative occurrences can be extended to fragments matching x and
contained in y; see also Figure 6.2.

RESTRICTED IPM QUERIES

Input: A text T" and a family R C F of fragments of T'.

Queries: Given a fragment x € R and a fragment y € F, report all fragments 2’ € R
contained in y and matching x.
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Due to the sparsity of occurrences (Fact 6.1.1), it is relatively easy to implement
RESTRICTED IPM QUERIES in O(|y|/ per(z)) time using deterministic dictionaries [131].

Lemma 6.3.3. For a text T of length n and a family R C F of fragments of T', there exists
a data structure of size O(|R|) that answers RESTRICTED IPM QUERIES in O(|y|/ per(x))
time. It can be constructed in O(n + |R|log®log|R|) time.

Proof. Given the family R, we construct an identifier function id such that id(x) = id(2’)
if and only if the two fragments x,2’ € R match. For this, we order the fragments
x=TI[l..r] € R by the length |z| and the lexicographic rank ISA[{] of the suffix T[¢. ]
among the suffixes of T' (see Section 2.5). Matching fragments = € R appear consecutively
in this order, so we use LCE QUERIES (see Proposition 2.5.1) to determine the boundaries
between the equivalence classes. Finally, we store the id function in a static dictionary [131]
mapping each fragment © = T'[¢..r| € R (represented by the positions ¢ and r) to the
identifier id(z). The overall running time of this phase is O(n + |R|log® log |R|).

Next, consider a class of matching fragments x € R with a common identifier ¢ = id(x)
and length m = |z|. We partition the text 7" into blocks of length 2m — 1 with overlaps
of length m — 1 (the last block can be shorter). The resulting family of blocks is denoted
by Y(i). We precompute the answers to RESTRICTED IPM QUERIES with id(z) = ¢
and y € Y(i), and we store non-empty answers in another static dictionary [131]. Note
that {F,,[y] : ¥y € Y(i)} forms a partition of F,,, so each x € R appears in exactly one
precomputed answer. Consequently, the running time of this phase is O(|R|log® log |R|)
in total across all classes.

To answer a query, we first compute ¢ = id(x) and m = |z|. Next, we use simple
arithmetics to obtain O(|y|/|x|) blocks ¥ € Y(i) such that F,,[y] is contained in the union
of F,,[y] across these blocks. We also take the union of the corresponding precomputed
answers to obtain a collection of fragments 2’ € R matching x and contained in one of the
blocks 3. By Fact 6.1.1, there are O(|y|/ per(x)) such fragments z’, so we can filter and
report those contained in y, spending O(1) time on each candidate z’. m

We conclude with a full description of the data structure supporting IPM QUERIES.

Theorem 1.1.4. For every text T of length n, there ezists a data structure of size O(n)
which answers IPM QUERIES in O(1) time. It can be constructed in O(n) time.

Proof. The main component of our data structure is an efficient implementation of
the representative assignment repr : N>y — R constructed using Proposition 6.2.12.
Additionally, we include the components for RESTRICTED IPM QUERIES (Lemma 6.3.3),
for LCE QUERIES (Proposition 2.5.1), for IPPM QUERIES (Theorem 5.2.8), and for
IPM QUERIES with short patterns (Corollary 6.3.2).

The efficient representative assignment takes O(n) space due to Definition 6.1.3,
and Proposition 6.2.12 provides an O(n)-time construction algorithm. Furthermore,
Proposition 6.2.12 guarantees that the family R of representative fragments satisfies

IR| = O(%) and can be enumerated in O(|R|) time. Consequently, the component for

RESTRICTED IPM QUERIES takes O(n + vafflog”) =0(n+ "k’l‘ff:%) = O(n) time
to construct. The remaining three components are also built in O(n) time each.

The query algorithm for fragments = and y works as follows. If |x| < W, we simply
forward the query to the component of Corollary 6.3.2. For |x| > W, we first try using the
component of Theorem 5.2.8. It successfully answers the query if z is periodic. Otherwise, it

reports an error, and we are guaranteed that z € N>y,. By condition (1) of Definition 6.1.3,
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repr(z) can therefore be retrieved in O(1) time. Next, we query the component of
Lemma 6.3.3 to find all representative fragments matching repr(z) and contained in y.
Due to Definition 6.1.2(a) and |y| < 2|z|, this takes O(|y|/ per(repr(z))) = O(1) time.
The consistency of the representative assignment (Definition 6.1.2(b)) guarantees that
for every fragment x’ contained y and equal to z, the representative repr(z’) is one of
the identified representative fragments. Thus, we have a constant number of positions
where x may occur in y. We verify them using LCE QUERIES in O(1) time each. Since
x is not periodic in the current case, by Fact 6.1.1 it has at most two occurrences in y.
Consequently, their starting positions trivially form an arithmetic progression. O]
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Chapter 7

Applications of IPM Queries

In this short chapter, we present immediate applications of our data structure for INTERNAL
PATTERN MATCHING QUERIES. This includes answering PERIOD QUERIES (Section 7.2)
and variants of LZ SUBSTRING COMPRESSION (QUERIES (Section 7.3). Before that,
we introduce a few auxiliary tools which are useful for processing the output of IPM
QUERIES not only here but also in Chapter 8.

7.1 Periodic Progressions

We say that a sequence p of positions py < p; < -+ < pr_1 in a string w is a periodic
progression of length k (in w) if wipy..p1 — 1] = - Zwlpg—o..pp—1 — 1]. If £ > 2, we
call the string v = wp; .. p;11 — 1] the (string) period of p, while its length p; 1 — p; is
the difference of p. Periodic progressions p, p’ are called non-overlapping if the last term
of p is smaller than the first term of p’ or vice versa, the last term of p’ is smaller than
the first term of p. Note that every periodic progression is an arithmetic progression and
consequently it can be represented by three integers, e.g., the terms pg, p1, and pr_1 (with
p1 omitted if k =1, i.e., if pp_1 = po). Periodic progressions appear in our work because
of the following characterization (see also Fact 5.2.2):

Observation 7.1.1. Let z, y be fragments of a string w satisfying |y| < 2|z|. The
positions where x occurs in y form a periodic progression in w.

All our applications of IPM QUERIES rely on the structure of the values LCE(p;, q)
for a periodic progression (p;)=4. Below, we formally state this combinatorial property
(in a slightly more general form) and group its immediate algorithmic applications in a
single black-box lemma. Let us start with a simple combinatorial result.

Fact 7.1.2. For strings u,v € ¥* and p € ¥, let d, = lep(p™,u) and d, = lep(p™,v).
(a) If d, > d,, then lcp(u,v) =d, and u < v < p™ < v.
(b) If d, = d,, then lep(u,v) > d, = d,.
(c) If d, < d,, then lcp(u,v) =dy, and u < v & u < p™.

Proof. Let d = min(d,,d,). Note that u[l..d] = (p>)[1..d] = v[l..d], so lep(u,v) > d.
If d =d, <d,, then v[d+ 1] = (p>)[d + 1] # u[d + 1], so lep(u,v) = d. If |u| = d, then
u is a common prefix v and p*°. Otherwise, u < v is equivalent to u[d + 1] < v[d + 1],
uld + 1] < (p>)[d + 1], and u < p>. The case of d = d, < d,, is symmetric. O
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P P
U0| | v |

U1| |
U2| l v |

<

Figure 7.1: An illustration of notions used in Corollary 7.1.3 and Lemma 7.1.4. Shaded

rectangles represent the common prefixes of u; and v. In this case, d“‘;ld“ =

Corollary 7.1.3. Let p = (p;)i=4 be a periodic progression of length k > 2 in a string w
and, for i € [0,k — 1], let u; be substrings of w with occurrences starting at positions p;
and ending at a common position. Also, let v be an arbitrary string.

Denote d,, = lcp(p™,up) and d, = lep(p™,v), where p is the string period of p. Then
we have p™° < ug < -+ < Up_1 or p>=° = ug = -+ = ux_1. Moreover,

(a) ifi < d“|;|d“, then lep(u;, v) = dy, and u; < v < p™ < v;

(b) 'lfl = du|;|dv7 then le('U,Z',’U) Z du - Z|p| = dv;

(c) ifi> d“|;|d“, then lep(u, v) = dy, —ilp| and u; < v < ug < p™.

Proof. Observe that ug = p'u;, so lep(p™, u;) = lep(p™, up) — ilp| = dy — ilp)|.

We start with the first claim. We shall inductively prove that p>*° < ug < -+ < u; or
P = ug > - = u; (fori =0,...,k—1). This is trivial for i« = 0 due to ug # p*>. For
the proof of the inductive step, we apply Fact 7.1.2 with (u,v) := (u;, u;+1). We have
lep(p™, w;) > lep(p™, wiv1), S0 u; < w;4q is equivalent to p™° < ;11 = p - u; and therefore
to p>° < u;. Thus, p>*° < ug < --+ < u; yields u; < u;pq and p™ = ug > --- = u; yields
u; = u;r1, which completes the inductive proof.

Since d, = d,, — dmd” -|p|, the claims in cases (a)—(c) immediately follow from Fact 7.1.2

applied for (u,v) := (u;,v). O

Although each of our applications uses Corollary 7.1.3 for a slightly different purpose,
the overall scheme is the same each time. Consequently, we group the application-specific
queries in a single algorithmic lemma.

Lemma 7.1.4. Suppose that we are given a text T equipped with a data structure answering
LCE QUERIES in constant time. Given a fragment v of T and a collection of fragments
u; = T[p;..r] represented with a periodic progression p = (p;)i=4 and a common end
position r, the following queries can be answered in constant time:

(a) Report all indices i such that u; occurs as a prefic of v.

(b) Report all indices i such that u; < v (or all indices i such that u; = v).

(c) Report all indices i such that lep(u;, v) is mazimized (along with the lcp value).
The results are represented as subintervals of [0,k — 1].

Proof. There is nothing to do for k£ = 0; for k = 1, Fact 2.5.2 lets us easily check if wug
satisfies the required conditions. Thus, we shall assume k£ > 2. In this case, we retrieve
an occurrence T'[pg .. p1 — 1] of the string period p and apply Fact 2.5.2(¢) to determine
d, and d, (as defined in Corollary 7.1.3). We also compute i, = %.

(a) We shall report i such that lep(u;,v) = |u;|. For i < i, we have lep(u;,v) = d, <
dy — i|p| < |ug| — i|p| = |u;|, so these indices are never reported. If 7, is a valid index, we
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compute lep(u,,, v) using Fact 2.5.2(a) and this index may need to be reported. For i > i,
we have lep(u;, v) = d, —i|p| and |u;| = |ug| — i|p|, so we either report all these indices (if
d, = |ug|), or none of them (otherwise).

(b) In this query, we apply Fact 2.5.2(c) to retrieve the order between p> and ug, and
between p> and v. For i < i;, we either report all the indices or none (depending on
whether p> < v). For ¢ > i;, we also either report all the indices or none (depending on
whether uy < p>). If i; is a valid index, we use Fact 2.5.2(b) to manually check if the
index needs to be reported; note that this is the only case where u; = v is possible. Recall
that the sequence (u;)¥7} is monotone, so the result is always a single interval.

(c) Note that lep(u;, v) < d, unless ¢ = i;. Hence, if i; is a valid index and lep(u;,, v) > d,,
then the only index maximizing lep(u;, v) is i;. Otherwise, we have lep(u;, v) = d, if and
only if 7 < 4;. Hence, provided that ¢, > 0, we report all indices ¢ satisfying ¢ < 7;. Finally,
if i, < 0, then we have lep(u;,v) = d, — i|p| for every i, and the only maximum is d,,
attained at ¢ = 0. [

7.2 Period Queries

In this section, we show the solution for PREFIX-SUFFIX QUERIES and PERIOD QUERIES
using IPM QUERIES. Let us recall the definition of the former.

PREFIX-SUFFIX (QUERIES

Given fragments x and y of the text T" and a positive integer d, report all suffixes of
y of length between d and 2d — 1 that also occur as prefixes of = (represented as an
arithmetic progression of their lengths).

We assume that |x|, |y| > d; otherwise, there are no suffixes to report. Let ' be the
prefix of  of length d and ' be the suffix of y of length min(2d — 1, |y|). Suppose that a
suffix z of y occurs as a prefix z. If |z| > d, then z must start with a fragment matching
x’. Moreover, if |z| < 2d — 1, then z is a suffix of ¥/, so this yields an occurrence of z’ in
y’. We find all such occurrences with a single IPM QUERY and then use Lemma 7.1.4 to
find out which of them can be extended to the sought suffixes z of y.

2d -1 d
) — 7 Ty -
Yo | a’ |
v | a! |
vz | 7/ |
Oce(2',y')

Figure 7.2: The notions used in the algorithms answering PREFIX-SUFFIX (QUERIES and
BOUNDED LONGEST COMMON PREFIX (QUERIES.

More formally, denote by Occ(x’, 1) the set of starting positions of fragments matching
2" and contained in y’. By Observation 7.1.1, Occ(z’,y’) forms a periodic sequence of
positions in T". Let y; be the suffix of y starting with the ith occurrence of z’; see Figure 7.2.
We need to check which of the fragments y; occur as prefixes of x. This is possible using
Lemma 7.1.4(a), which lets us find all indices ¢ such that y; is a prefix of z. The result is
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an integer interval of indices, which can be transformed into an arithmetic sequence of
lengths |y;|. Consequently, the data structure of Theorem 1.1.4 (which already contains
the component of Proposition 2.5.1 for LCE QUERIES) can answer PREFIX-SUFFIX
QUERIES in O(1) time. Hence, we obtain the following results.

Theorem 1.1.3. For every text T' of length n, there exists a data structure of size O(n)
which answers PREFIX-SUFFIX QUERIES in O(1) time. It can be constructed in O(n)
time.

PERIOD QUERIES
Given a fragment z of the text T', report all periods of x (represented by non-overlapping
arithmetic progressions).

Theorem 1.1.2. For every text T of length n, there ezists a data structure of size O(n)
which answers PERIOD QUERIES in O(log |x|) time. It can be constructed in O(n) time.

Proof. PERIOD QUERIES can be answered using the data structure for PREFIX-SUFFIX
QUERIES. To compute all periods of x, we use PREFIX-SUFFIX QUERIES to find all
borders of x of length between 2 and 2¥*1 — 1 for each k € [0, [log|z||]. The lengths of
borders can be easily transformed to periods since x has period p if and only if it has a
border of length |z| — p. O

7.3 LZ Substring Compression Queries

In this section, we consider LZ SUBSTRING COMPRESSION QUERIES and its variants
based on several types of LZ factorizations introduced in Section 2.3.1.

(NON-OVERLAPPING) LZ SUBSTRING COMPRESSION QUERIES
Given a fragment x of the text 7', compute the (non-overlapping) LZ factorization of
x, ie., LZ(x) (LZN(z), respectively).

RELATIVE LZ SUBSTRING COMPRESSION (QQUERIES
Given two fragments z and y of the text T', compute the relative LZ factorization of x
with respect to y, i.e., LZg(x|y).

GENERALIZED (NON-OVERLAPPING) LZ SUBSTRING COMPRESSION QUERIES
Given two fragments x and y of the text 7', compute the generalized (non-overlapping)
LZ factorization of = with respect to y, i.e., LZg(x|y) (LZan(z|y), respectively).

Our query algorithms heavily rely on the results of Keller et al. [83] for LZ SUBSTRING
COMPRESSION QUERIES and GENERALIZED LLZ SUBSTRING COMPRESSION (QUERIES.
The main improvement is a more efficient solution for the following auxiliary problem:

BoUNDED LONGEST COMMON PREFIX (QUERIES
Given two fragments x and y of the text T, find the longest prefix p of x which occurs
in y.

The other, easier auxiliary problem defined in [83] is used as a black box.
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INTERVAL LONGEST COMMON PREFIX (QUERIES
Given a fragment x of the text 7" and an interval [¢,r] of positions in 7', find the
longest prefix p of  which occurs in T" at some position within [¢, r].

The data structure for INTERVAL LONGEST COMMON PREFIX QUERIES is based on
range successor queries, defined in Section 3.7. Several trade-offs are available for these
queries (they are listed in Proposition 3.7.5), so we state the complexity in an abstract
form. This convention gets propagated to further results in this section.

Lemma 7.3.1 (Keller et al. [83]). For a text T' of length n, there exists a data structure
of size O(n + Spsuce(n)) that answers INTERVAL LONGEST COMMON PREFIX QUERIES
in O(Qrsuce(n)) time. The data structure can be constructed in O(n + Chrgyec(n)) time.

As observed in [83], the decision version of IPM QUERIES easily reduces to INTERVAL
LONGEST COMMON PREFIX QUERIES. For x =T'[{,..r,] and y = T[¢, ..r,], it suffices
to check if the longest prefix of  occurring at some position in [¢,, 7, — 1, + £,] is = itself.

Corollary 7.3.2 (Keller et al. [83]). For a text T of length n, there exists a data structure
of size O(n+ Sysuce(n)) that, given fragments x,y of the text T', can decide in O(Qrsucc(n))
time whether x occurs in y. The data structure can be constructed in O(n + Chrgyee(n))
time.

We proceed with our solution for BOUNDED LONGEST COMMON PREFIX QUERIES.
Let ¢ = T[(,..r,] and y = T[¢, ..r,]. First, we search for the largest k such that the
prefix of = of length 2% (i.e., T[(, .. ¢, + 2% —1]) occurs in y. We use a variant of the binary
search involving exponential search (also called galloping search), which requires O(log K)
steps, where K is the optimal value of k. At each step, for a fixed k we need to decide if
T[l, .. 0y +2*—1] occurs in y. This can be done in O(Q suce(n)) time using Corollary 7.3.2.
At this point, we have an integer K such that the optimal prefix p has length |p| €
[2, 25+ — 1]. The running time is O(Qsyce(n) log K) = O(Qrsuce(n) loglog |p|) so far.

Let p’ be the prefix obtained from an INTERVAL LONGEST COMMON PREFIX QUERY
for z and [¢,,r, — 25 + 1]. Note that T[(, .. ¢, + 25+t — 1] does not occur in y, so
Ip'| < 25*! and thus the occurrence of p’ starting in [¢,,r, — 25+ + 1] lies within y.
Consequently, |p| > |p/|; moreover, if p occurs at a position within [¢,,r, — 25+ + 1],
then p = p'.

The other possibility is that p only occurs near the end of y, i.e., within the suffix of y of
length 25+1 — 1, which we denote as 3/. We use a similar approach as for PREFIX-SUFFIX
QUERIES with d = 2 to detect p in this case. We define 2’ as the prefix of = of length 2.
Note that an occurrence of p must start with an occurrence of 2/, so we find all occurrences
of 2/ in y/. If there are no such occurrences, we conclude that p = p’. Otherwise, we define
y; as the suffix of y starting with the ¢th occurrence of x; see Figure 7.2. Next, we apply
Lemma 7.1.4(c) to compute max; lep(y;, ). By the discussion above, this must be the
length of the longest prefix of  which occurs in y’. We compare its length to |p'| and
choose the final answer p as the longer of the two candidates.

Thus, the data structure for IPM QUERIES, accompanied by the components of
Lemma 7.3.1, Corollary 7.3.2, and Proposition 2.5.1, yields the following result:

Theorem 1.1.5. For every text T of length n, there exists a data structure of size
O(n+ Srsuce(n)) which answers BOUNDED LONGEST COMMON PREFIX QUERIES in time
O(Qrsuce(n) loglog |p|). It can be constructed in O(n + Crsyec(n)) time.
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Finally, we generalize the approach of [83] to support multiple types of LZ SUBSTRING
COMPRESSION QUERIES using Theorem 1.1.5 to improve the running time.

Theorem 7.3.3. For every text T' of length n, there is a data structure of size O(n +
Srsuce(n)) that answers:

(a) NON-OVERLAPPING LZ SUBSTRING COMPRESSION (QUERIES,

(b) RELATIVE LZ SUBSTRING COMPRESSION (QUERIES,

(¢) GENERALIZED LZ SUBSTRING COMPRESSION QUERIES, and

(d) GENERALIZED NON-OVERLAPPING LZ SUBSTRING COMPRESSION (QUERIES,

each in O(F * Qrsuce(n) log log liF‘) time, where F' is the number of phrases reported. The
data structure can be constructed in O(n + Cisyec(n)) time.

Proof. Let x =T[{, ..r,] and suppose that we have already factorized ' = T'[(,,.. m — 1],
i.e., the next phrase needs to be a prefix of 2 = T'[m .. r,|. Depending on the factorization
type (see Section 2.3.1 for definitions), it is chosen among the longest prefix of z” that is
a previous fragment of = (i.e., has an occurrence starting within [¢,, m — 1]), the longest
prefix of 2” that is a non-overlapping previous fragment of x (i.e., occurs in z’), or the
longest prefix of z” that occurs in y. Clearly, the first case reduces to an INTERVAL
LoNGEST COMMON PREFIX QUERY, while the latter two—to BOUNDED LONGEST
CoMMON PREFIX QUERIES. For each factorization type, we compute the relevant
candidates and choose the longest one as the phrase; if there are no valid candidates, the
next phrase is a single letter, i.e., T'[m..m].

Thus, regardless of the factorization type, we report each phrase f; of the factoriza-
tion x = f1 -+ fr in O(Qrsuce(n) loglog |f;]) time. This way, the total running time is
O( S Qrsuce(n) loglog \fi|), which is O(F * Qrsuce(n) log log %) due to Jensen’s equality
applied to the concave loglog function. O

Note that in the case of ordinary LLZ SUBSTRING COMPRESSION (QUERIES the approach
presented in Theorem 7.3.3 would result in O(F - Qpsucc(n)) query time because only
INTERVAL LONGEST COMMON PREFIX QUERIES would be used. In fact, this is exactly
the algorithm for LZ SUBSTRING COMPRESSION QUERIES provided in [83].

Hence, despite our improvements, there is still an overhead for using variants of the
LZ factorization other than the standard one. Nevertheless, the overhead disappears if
we use the state-of-the-art O(n)-size data structure for range successor queries. This is
because the O(log® n) time complexity lets us hide log®™ n factors by choosing a slightly
different €. Formally, Theorem 7.3.3 and Proposition 3.7.5 yield the following result:

Corollary 7.3.4. For every text T of length n and constant € > 0, there is a data structure
of size O(n) that answers BOUNDED LONGEST COMMON PREFIX QUERIES in O(log® n)
time and LZ SUBSTRING COMPRESSION QUERIES (for all five factorization types defined
in Section 2.5.1) in O(log® n) time per phrase reported. Moreover, the data structure can

be constructed in O(ny/logn) time.



Chapter 8

Wavelet Suffix Trees

In this chapter, we introduce wavelet suffix trees, a data structure combining features of
wavelet trees and suffix trees (see Sections 2.6 and 3.6, respectively). The wavelet suffix
tree of a text T" of length n is similar to the wavelet tree built for the suffix array of T (see
Section 2.5). However, its shape resembles the suffix tree of 7" to the extent possible for
a tree of height O(logn). Wavelet suffix trees are equipped with additional components
for text processing (including the data structure for INTERNAL PATTERN MATCHING
QUERIES developed in Chapter 6) so that they become a powerful tool. With O(n) size
and O(ny/logn) construction time, they allow answering the following queries in O(logn)
time:

SUBSTRING SUFFIX SELECTION QUERIES
Given a fragment x of the text T" and an integer k, find the kth lexicographically
smallest suffix of x.

SUBSTRING SUFFIX RANK (QQUERIES
Given fragments x and y of the text T, find the lexicographic rank of y among the
suffixes of x.

Moreover, wavelet suffix trees allow for efficient substring compression with respect to
the BWT+RLE scheme defined in Section 2.3.2. The running time of the following queries
is O(| RLE(BWT(z))|logn) time, i.e., O(logn) per run in the run-length encoding.

BWT+RLE SUBSTRING COMPRESSION (QUERIES
Given a fragment x of the text T, compute the run-length encoding RLE(BWT(z)) of
the Burrows—-Wheeler transform of the underlying substring.

Section 8.1 provides a high-level description of the wavelet suffix trees. It forms an
interface between the query algorithms (Section 8.4) and the more technical content: full
description of the data structure (Section 8.2) and its construction algorithm (Section 8.3).
Consequently, Sections 8.2 and 8.4 can be read separately. The latter additionally contains
simple Q(logn/loglogn) cell-probe lower bounds for SUBSTRING SUFFIX SELECTION
QUERIES and SUBSTRING SUFFIX RANK QUERIES valid for all data structures of size
O(n logo(l) n). We conclude with Section 8.5, where we present a generic transformation
of the data structure which allows replacing the dependence on n with a dependence on
|z| in the running times of the query algorithms.
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8.1 Overview

The wavelet suffiz tree of a text T of length n is a full binary tree of logarithmic height.
Each of its n + 1 leaves corresponds to a non-empty suffix of T'#. The lexicographic order
of suffixes is preserved as the left-to-right order of leaves.

Each node v of the wavelet suffix tree stores two bitmasks. Bits of the first bitmask
correspond to suffixes in the subtree of v sorted by their starting positions, and bits of
the second bitmask correspond to these suffixes sorted first according to the preceding
character and then according to the starting position. The ith bit of either bitmask is set
to 0 if the ith suffix belongs to the left subtree of v and set to 1 otherwise. Like in the
standard wavelet trees, on top of the bitmasks we maintain a component for rank and
selection queries (see Proposition 3.5.1). Figure 8.1 provides a sample wavelet suffix tree
with both bitmasks depicted inside each node.

Each edge e of the wavelet suffix tree is associated with a sorted list L(e) containing
substrings of T. The wavelet suffix tree enjoys an important lexicographic property:
Suppose that we traverse the tree depth-first, and when going down an edge e, we write
out the contents of L(e), whereas when visiting a leaf, we output the corresponding suffix
of T#. Then, we obtain the lexicographically sorted list of all non-empty substrings of

0101101010110
0111110100010
b
111110 0100010
111110 0100100
ab bb
01001 11110
01001 11110
abab
ababab abb bab
abababb
1001
1010
babab babb
bababab
01
10

babababb bababb

Figure 8.1: The wavelet suffix tree of a text 17" = ababbabababb. Leaves corresponding to
Tli..]# are labeled with i. Elements of the lists L(e) are listed next to e, with ellipses
denoting further substrings up to the suffix of T'. Suffixes of x = are marked green,
and of x = abababb—Dblue. Note that the substrings occurring at position i do not need
to lie above the leaf i (see T'[1..5] = ababb), and the substrings above the leaf i do not
need to be prefixes of T'[i..| (see T[10..]# = abb# and aba).
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T# (without repetitions).! This, in particular, implies that the substrings in L(e) are
consecutive prefixes of the longest substring in L(e) and that for each substring y of T’
there is exactly one edge e such that the y € L(e).

In the query algorithms, we actually work with L,(e), containing the suffixes of x
among the elements of L(e). For each edge e, starting positions of these suffixes form
O(1) non-overlapping periodic progressions (defined in Section 7.1), and consequently
the list L,(e) admits a constant-space representation. Nevertheless, we do not store the
lists explicitly, but instead generate some of them on the fly. This is one of the auxiliary
operations, each of which is supported by the wavelet suffix tree in constant time.

(1) For a fragment x = Ti..j| and an edge e, output the list L,(e) represented as
O(1) non-overlapping periodic progressions (of the starting positions of the reported
suffixes of z).

(2) Compute the number of suffixes of x = T'[i..j] in the left/right subtree of a node
(given along with the segment of its first bitmask corresponding to suffixes of T#
that start at a position in [, j]).

(3) Compute the number of suffixes of x = T[i .. j] that are preceded by a character ¢
and lie in the left /right subtree of a node (given along with the segment of its second
bitmask corresponding to the suffixes of T# that start at a position in [i, j] and
are preceded by c).

(4) For a fragment = and an edge e, compute the run-length encoding of the sequence
of characters preceding the suffixes in L,(e).

In order to implement these operations efficiently, we assume that the wavelet suffix
tree contains two external components built for the text T'. These are the data structure
for LONGEST COMMON EXTENSION QUERIES (see Proposition 2.5.1), and our data
structure for INTERNAL PATTERN MATCHING QUERIES implemented in Chapter 6 (see
Theorem 1.1.4).

8.2 Full Description of Wavelet Suffix Trees

We start the description with Section 8.2.1, where we introduce string intervals, a notion
central to the definition of wavelet suffix trees. We also show that LCE QUERIES (see
Proposition 2.5.1) let us efficiently deal with string intervals. Then, in Section 8.2.2, we give
a precise definition of wavelet suffix trees and prove its several combinatorial consequences.
We conclude with Section 8.2.3, where we implement the auxiliary operations listed in
Section 8.1. These procedures heavily rely on the IPM QUERIES of Chapter 6.

8.2.1 String Intervals

To define wavelet suffix trees, we often need to compare substrings of T'# restricted to a
certain number of leading characters. If instead of x and y, we compare their counterparts
trimmed to the first ¢ characters, i.e., z[1.. min(¢, |z|)] and y[1.. min(¢, |y|)], we use ¢ in
the subscript of the operator, e.g., x <, y or x <, ¥.

For a pair of strings s,t and a positive integer ¢, we define string intervals [s,t], =
{ze¥ :s=,2=,t}and (s,t), = {z € £* : 5 <4 2 <, t}. Intervals [s,t), and (s, t], are
defined analogously. The strings s and t are called the endpoints of these intervals.

LA similar property holds for suffix trees if we define L(e) so that it contains the labels of all implicit
nodes on e and the label of the lower explicit endpoint of e.
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Recall that in Section 7.1 we introduced periodic progressions and, in Lemma 7.1.4,
showed that LCE QUERIES can be applied for processing such progressions. In Sec-
tion 8.2.3, we shall apply these results using the following lemma as an interface:

Lemma 8.2.1. Suppose that we are given a text T equipped with a data structure answering
LCE QUERIES in constant time. Given a periodic progression pg < --- < pg_1 in 1T, a
position j > pr_1, and a string interval I whose endpoints are given as fragments of T,
we can report in O(1) time, as a single periodic progression, all positions p; such that

Proof. Let u; = T'[p; .. j]. We shall compute the subinterval of [0, k — 1] consisting of
the indices i such that u; € I. The indices are consecutive because the sequence (u;)¥Z] is
monotone (as proved in Corollary 7.1.3).

Let s and t be the endpoints of I. First, we shall compute a subinterval of positions
i such that u; € (s,t). For this, we apply Lemma 7.1.4(b) twice, asking for u; > s and
u; < t, and we intersect the obtained intervals. Next, we find the indices 7 such that
lep(u;, s) > € and the indices ¢ such that lep(u;,t) > £. For this, we apply Lemma 7.1.4(c)
for v = s[1..max(|s|,¢)] and v = t[1..max(|t|,¢)], respectively. If the resulting lcp
values are smaller than |v|, we replace the obtained interval with an empty one. Finally,
depending on the type of the string interval I, we add or subtract the obtained interval
from the subinterval of [0,k — 1] corresponding to (s, t).

Once we know the indices ¢ such that u; € I, we simply retrieve the periodic progression
of the starting positions p; of these fragments ;. O

8.2.2 Definition of Wavelet Suffix Trees

Let T be a text of length n. To define the wavelet suffix tree of T', we start from an
auxiliary tree T,y of height O(logn) with O(nlogn) nodes. Its leaves represent non-empty
suffixes of T'#, and the left-to-right order of leaves corresponds to the lexicographic order
on the suffixes. Internal nodes of T,,, represent all substrings of T whose length is a power
of two, with an exception of the root, which represents the empty word. Edges in T,. are
defined so that a node representing v is an ancestor of a node representing v’ if and only
if v is a prefix of v'. To each non-root node v, we assign the level {(v) := 2|v|, where v
is the substring that v represents. For the root r, we set ¢(r) := 1; see Figure 8.2 for a
sample tree T, with levels assigned to nodes.

For a node v, we define S(v) to be the set of suffixes of T# that are represented by v
or its descendants. Note that S(v) is a singleton if v is a leaf. The following observation
characterizes the levels and the sets S(v).

Observation 8.2.2. For every node v other than the root:
(a) L(parent(v)) < L(v),
(b) if y € S(v) and y' is a suffic of T# such that lcp(y,y’) > {(parent(v)), then
y e Sv),
(c) if y,y' € SWw), then lep(y,y') > [34(v)).

Next, we modify Taux to obtain a binary tree of O(n) nodes. In order to reduce the
number of nodes, we dissolve all internal nodes with exactly one child, i.e., while there is
a non-root node v with exactly one child v/, we set parent(v') := parent(v) and remove v.
To make the tree binary, for each node v with k > 2 children, we remove the edges
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Figure 8.2: An auxiliary tree T, introduced to define the wavelet suffix tree of T" =
ababbabababb. Levels are written inside the nodes. The gray nodes are dissolved during
the construction of the wavelet suffix tree.

between v and its children, and instead we put a replacement tree: a full binary tree
with & leaves whose root is v, and whose leaves are the k children of v (preserving the
left-to-right order). We choose the replacement trees so that the resulting tree still has
height O(logn). In Section 8.3.1, we provide a constructive proof that such a choice is
possible. This procedure introduces new nodes (inner nodes of the replacement trees);
their levels are inherited from the parents.

The obtained tree is the wavelet suffix tree of T'; see Figure 8.3 for an example. Observe
that, as claimed in Section 8.1, it is a full binary tree of logarithmic height whose leaves
correspond to non-empty suffixes of T#. Moreover, it is easy to see that this tree still
satisfies Observation 8.2.2.

As described in Section 8.1, each node v (except for the leaves) stores two bitmasks.
In either bitmask, each bit corresponds to a suffix y € S(v), and it is equal to O if
y € S(lchild(v)) and to 1 if y € S(rchild(v)), where [child(v) and rchild(v) denote
the children of v. In the first bitmask, the suffixes y = T[j..]# are ordered by the
starting position j, and in the second bitmask—by pairs (T'[j — 1], j) (assuming 7'[0] = #).
Both bitmasks are equipped with data structures for rank and selection queries; see
Proposition 3.5.1.

Additionally, each node and each edge of the wavelet suffix tree is associated with a
string interval whose endpoints are suffixes of T#. Namely, for an arbitrary node v, we de-
fine I(v) = [min S(v), max S(v)]ew). Additionally, if v is not a leaf, we set I (v, lchild(v)) =
[min S(v), ylew) and I (v, rchild(v)) = (y, max S(v)]yw), where y = max S(Ichild(v)) is the
suffix corresponding to the rightmost leaf in the left subtree of v; see also Figure 8.3.
For each node v, we store the starting positions of min S(v) and max S(v) in order to
efficiently retrieve a representation of I(v) and I(e) for incident edges e. The following
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bb# bbabababb#

abb#

abbabababb#

ababbabababb#

abababb# ababb# babababb# bababb# babb# babbabababb#

Figure 8.3: The wavelet suffix tree of a text 7' = ababbabababb (see also Figures 8.1
and 8.2). Levels are written inside the nodes. The gray nodes have been introduced as
inner nodes of replacement trees. The corresponding suffix is written down below each
leaf. Selected edges e are depicted with the corresponding intervals I(e); their endpoints
are trimmed for visual clarity.

lemma characterizes the intervals.

Lemma 8.2.3. For every node v of the wavelet suffiz tree, we have:
(a) If v is not a leaf, then I(v) is a disjoint union of I1(v,lchild(v)) and I(v,rchild(v)).
(b) If y is a suffix of T#, then y € I(v) if and only if y € S(v).
(¢) If v is not the root, then I(v) C I(parent(v),v).

Proof. (a) This claim is a trivial consequence of the definitions.

(b) Clearly, y € S(v) if and only if y € [minS(v), maxS(v)]. Therefore, it suffices to
show that if lep(y, y') > ¢(v) for y = minS(v) or ¥ = maxS(v), then y € S(v). This is,
however, a consequence of points (a) and (b) of Observation 8.2.2.

(c) Let £, = l(parent(v)). If v = Ichild(parent(v)), then S(v) C S(parent(v)) and, by
Observation 8.2.2(a), ¢(v) > {,, which implies the statement.

Therefore, assume that v = rchild(parent(v)), and let v/ be the left sibling of v. Note
that I(parent(v),v) = (maxS(v'), max S(v)],, and I(v) C [minS(v), max S(v)]y,, since
{(v) > ¢, by Observation 8.2.2(a). Consequently, it suffices to prove that max S(v') <,
min S(v). This is, however, a consequence of Observation 8.2.2(b) for y = min S(v) and
y' = maxS(V'), and the fact that the left-to-right order of leaves coincides with the
lexicographic order of the corresponding suffixes of T'#. O

For each edge e = (parent(v),v) of the wavelet suffix tree, we define L(e) to be the
sorted list of those substrings of T which belong to I(e) \ I(v).

Recall that the wavelet suffix tree shall enjoy the lexicographic property: if we traverse
the tree, and when going down an edge e, we write out the contents of L(e), whereas
when visiting a leaf, we output the corresponding suffix of T'#, we shall obtain the
lexicographically sorted list of all non-empty substrings of T#. This is proved in the
following series of claims.

Lemma 8.2.4. Let e = (parent(v),v) for a node v. Substrings in L(e) are smaller than
any string in I(v).



8.2. FULL DESCRIPTION OF WAVELET SUFFIX TREES 73

Proof.  We use a shorthand ¢, for {(parent(v)). Let y = max S(v) be the rightmost suffix
in the subtree of v. Consider a substring s € L(e) and its occurrence T'[k .. j] = s; also
let t =Tk ..|#.

We first prove that s < y. Note that I(e) = [z,yl,, or I(e) = (x,y]s, for some string z.
We have s € L(e) C I(e), and thus s <, y. If lep(s,y) < £, this already implies that
s = y. Thus, let us assume that lep(s,y) > £,. The suffix ¢ has s as a prefix, so this also
means that lep(¢,y) > ¢,. By Observation 8.2.2(b), we conclude that t € S(v), so t < .
Therefore, s <t <y, as claimed.

Finally, note that y € S(v) C I(v), s ¢ I(v), and I(v) is a string interval. Consequently,
s < y implies that s is lexicographically smaller than any string in /(v). O

Lemma 8.2.5. The wavelet suffix tree satisfies the lexicographic property.

Proof. Note that for the root r we have I(r) = [#, c]1, where ¢ is the largest character
present in 7. Thus, I(r) contains all non-empty substrings of T#, and it suffices to show
that if we traverse the subtree of r, writing out the contents of L(e) when going down
an edge e and the corresponding suffix when visiting a leaf, we obtain a sorted list of
substrings of T# contained in I(r). We will prove that this property actually holds not
just for r but for all nodes v of the wavelet suffix tree.

This is clear if v is a leaf since I(v) consists of the corresponding suffix of T'# only.
Next, if we have already proved the hypothesis for v, then prepending the output with
the contents of L(parent(v),v), by Lemmas 8.2.4 and 8.2.3(c), we obtain a sorted list of
substrings of T# contained in I(parent(v),v). Applying this property for both children
of a non-leaf node v/, we conclude that if the hypothesis holds for children of v/ then, by
Lemma 8.2.3(a), it also holds for v/'. O

Corollary 8.2.6. For each edge e of the wavelet suffix tree, the list L(e) contains consec-
utive prefizes of the largest element of L(e).

Proof. Note that if x < y are substrings of 7" such that x is not a prefix of y, then z can
be extended to a suffix 2" of T# such that x < 2’ < y. However, L(e) does not contain
any suffix of T#. By Lemma 8.2.5, L(e) contains lexicographically consecutive substrings
of T#, so x and y cannot be both present in L(e). Consequently, each element of L(e) is a
prefix of max L(e). Similarly, since L(e) contains lexicographically consecutive substrings
of T'#, it must comprise all prefixes of max L(e) no shorter than min L(e). O

8.2.3 Implementation of Auxiliary Queries

Recall that for a given fragment = and an edge e of the wavelet suffix tree, the list L,(e)
consists of the suffixes of = present in L(e). The wavelet suffix tree shall handle the
following four types of queries, answering each in constant time:

(1) For a fragment x = T[i..j| and an edge e, output the list L,(e) represented as
O(1) non-overlapping periodic progressions (of the starting positions of the reported
suffixes of x);

(2) Compute the number of suffixes of x = T'[i .. j] in the left/right subtree of a node
(given along with the segment of its first bitmask corresponding to suffixes of T#
that start at a position in [, j]);

(3) Compute the number of suffixes © = T[i .. j] that are preceded by a character ¢ and
lie in the left /right subtree of a node (given along with the segment of its second
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bitmask corresponding to the suffixes of T# that start at a position in [i, j] and
are preceded by c);

(4) For a fragment x and an edge e, compute the run-length encoding of the sequence
of characters preceding the suffixes in L,(e).

We start with an auxiliary lemma applied in the solutions to all four query types.

Lemma 8.2.7. Let v be a node of the wavelet suffix tree of a text T'. The following
operations can be implemented in constant time.
(1) Given a fragment x of T, |x| < (v), return, as a single periodic progression of
starting positions, all suffizes s of x such that s € 1(v).
(2) Given a range of positions [i, j], j —i < £(v), return all positions k € [i, j]| such that
Tk..)# € I(v), represented as at most two non-overlapping periodic progressions.

Proof. Let p be the longest common prefix of all strings in I(v); by Observation 8.2.2(c),
1

we have [p| > [54(v)]. Moreover, we can use lcp(min S(v), max S(v)) to determine in
O(1) time a fragment of 7" matching p.

(1) Assume z = Ti..j]. We make IPM QUERIES (Theorem 1.1.4) to find all occurrences
of p within . By Observation 7.1.1, their starting positions can be represented as a single
periodic progression due to |z| < ¢(v) —1 < 2|34(v)] < 2|p|. Then, using Lemma 8.2.1,
we filter positions k for which Tk .. j] € I(v).

(2)Letz=T[i..j+|p|—1] (or x =Ti..]# if j+|p|—1 > |T|). We make IPM QUERIES
to find all occurrences of p within . By Observation 7.1.1, their starting positions can
represented as two non-overlapping periodic progression due to |z| < ¢(v) + |p| — 1 <
2[50(v)] + |p| < 3|p|. Like previously, using Lemma 8.2.1, we filter positions k for which

Tk.]# € I(v). O
We are now ready to implement the auxiliary queries.

Lemma 8.2.8. The wavelet suffic tree allows answering queries (1) in constant time. In
more details, for any edge e = (parent(v),v) and fragment x of T, the starting positions
of suffizes in L,(e) form at most three non-overlapping periodic progressions which can be
reported in O(1) time.

Proof. First, we consider short suffixes. We use Lemma 8.2.7(1) to find all suffixes
s of z of length |s| < {(parent(v)) such that s € I(parent(v)). Lemma 8.2.3 yields
L(e) C I(parent(v)), so we apply Lemma 8.2.1 to filter all suffixes belonging to L(e), i.e.,
to I(e) \ I(v). By Lemma 8.2.4, we obtain at most one periodic progression.

Now, it suffices to generate suffixes s of length |s| > ¢(parent(v)) that belong to L(e).
Suppose that s = T[k..j]. If s € I(e), then equivalently T'[k..]# € I(e), since s is a long
enough prefix of T'[k..]# to determine whether the latter belongs to I(e). Consequently,
by Lemma 8.2.3, T[k..]# € I(v). This implies |s| < ¢(v) (otherwise we would have
s € I(v)), e, ke[j—Llv)+2,j— lparent(v)) + 1]. We apply Lemma 8.2.7(2) to
compute all positions k in this range for which T'[k..]# € I(v). Then, using Lemma 8.2.1,
we filter positions k such that T'[k..j] € I(e)\ I(v). By Lemma 8.2.4, this cannot increase
the number of periodic progressions, so we end up with at most two non-overlapping
periodic progressions from the case of |s| > f(parent(v)) and at most three in total. [

Lemma 8.2.9. The wavelet suffix tree allows answering queries (2) in constant time.
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Proof. Let v be the given node and v/ be its right/left child (depending on the variant of
the query). First, we use Lemma 8.2.7(1) to find all suffixes s of x of length |s| < ¢(v)
such that s € I(v). Then, we apply Lemma 8.2.3 to filter suffixes s € I(v,V'), i.e., such
that s lies in the appropriate subtree of v. We add the number of these suffixes to the
result.

Thus, it remains to count suffixes of length at least ¢(v). Suppose that s = T[k .. j]
is a suffix of z such that |s| > ¢(v) and s € I(v,v'). Then T[k..]# € I(v,V'), and the
number of suffixes T'[k..]# € I(v,v') such that k € [, j] is simply the number of 1’s or
0’s in the given segment of the first bitmask in v, which we can compute in constant
time using a rank query. Observe, however, that we have also counted positions k such
that |T'[k..7]| < ¢(v) and T[k..]# € I(v,V'); we need to subtract the number of these
positions. For this, we use Lemma 8.2.7(2) to retrieve the positions k € [j — £(v) + 2, j]
such that T[k..]# € I(v) and Lemma 8.2.3 to filter those with T[k..|# € I(v,v). We
determine the total size of the obtained periodic progressions and subtract it from the
final result. O

Lemma 8.2.10. The wavelet suffix tree allows answering queries (3) and (4) in constant
time.

Proof. Observe that every periodic progression py, ..., px_1 satisfies T|p; — 1] = ... =
T[pr—1 — 1]. While T'[py — 1] may be a different character, it is still straightforward to
determine in O(1) time which positions of such a progression are preceded by a given
character c.

Answering queries (3) is analogous to answering queries (2); we just use the second
bitmask at the given node and consider only positions preceded by ¢ instead of counting
the sizes of the whole periodic progressions.

To answer queries (4), we first retrieve L, (e) using Lemma 8.2.8. By Corollary 8.2.6,
the suffixes in L, (e) are prefixes of one another, so the lexicographic order on these suffixes
coincides with the order of ascending lengths. Consequently, the run-length encoding of the
piece corresponding to L,(e) has at most six phrases (runs) and can be easily constructed
in O(1) time from the at most three periodic progressions representing L, (e). O

8.3 Construction of Wavelet Suffix Trees

The actual construction algorithm is presented in Section 8.3.2. Before, in Section 8.3.1,
we introduce several auxiliary tools for abstract weighted trees.

8.3.1 Toolbox for Weighted Trees

Let T be a rooted ordered tree with positive integer weights on edges, n leaves, and no
inner nodes of degree one. We say that Ly,..., L, 1 is an LCA sequence of T, if L; is
the (weighted) depth of the lowest common ancestor of the ¢th and (i + 1)th leaves. The
following fact is usually applied to construct the suffix tree of a string from the suffix
array and the LCP table; see e.g. [48].

Fact 8.3.1. Given a sequence (L;)'=}' of non-negative integers, one can construct in O(n)

time a tree whose LCA sequence is (L)'=}

The LCA sequence suffices to detect if a tree is binary.
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n—1

Observation 8.3.2. A rooted tree is a binary tree if and only if its LCA sequence (L;)7—;
satisfies the following property for every ¢ < j: if L, = L;, then there exists k, 1 < k < j,
such that Ly, < L;.

The trees constructed by the following lemma can be seen as a variant of the
weight-balanced trees, whose existence for arbitrary weights was by proved Blum and

Mehlhorn [25].

Lemma 8.3.3. Given a sequence wy,...,w, of positive integers, one can construct in
O(n) time a binary tree T with n leaves such that the depth of the ith leaf is O(1 + log 1%),
where W = 2?21 w.

Proof. Define W, = Z;zl w; for i € [0,n]. Let p; be the 0-based position of the
most significant bit where the binary representations of W;_; and W; differ, and let
P = max! | p;. Observe that P = |[logW] and p; > |logw;|. Using Fact 8.3.1, we
construct a tree 7 with n 4+ 1 leaves whose LCA sequence is L; = P — p; for i € [1,n].
Note that this sequence satisfies the condition of Observation 8.3.2, and thus the tree T
is binary.

Next, we insert an extra leaf between the two children of every node to make the tree
ternary. The ith of these leaves is inserted at (weighted) depth 1 + L; = O(1 + log &),
which is also an upper bound for its unweighted depth. Next, we remove the originzal
leaves. This way, we get a tree satisfying the lemma, except for the fact that inner nodes
may have between one and three children rather than exactly two.

In order to resolve this issue, we remove (dissolve) all inner nodes with exactly one
child, and for each node v with three children pq, ps, 13, we introduce a new node v/,
setting pu1, 1o as the children of v/ and v/, ug as the children of v. This way, we get a full
binary tree, and the depth of every node may increase at most twice. In particular, the
depth of the ith leaf stays within O(1 + log 1%) O

Let 7 be an ordered rooted tree and let v be a node of 7 which is neither the root nor
a leaf. Also, let u be the parent of v. We say that T is obtained from T by contracting
the edge (u,v) if v is removed and the children of v replace v at its original location in
the list of the children of . If 77 is obtained from 7 by a sequence of edge contractions,
we say that 7' is a contraction of T. Note that contraction alters neither the pre-order
nor the post-order of the preserved nodes, which implies that the ancestor-descendant
relation also remains unchanged for these nodes.

Corollary 8.3.4. Let T be an ordered rooted tree of height h, which has n leaves and no
inner node with exactly one child. Then, in O(n) time one can construct a full binary
ordered rooted tree T' of height O(h + logn) such that T is a contraction of T' and T’
has O(n) nodes.

Proof. For each node v of T with three or more children, we replace the star-shaped tree
joining it with its children py,. .., ux with an appropriate replacement tree: Let W (v)
be the number of leaves in the subtree of v, and let W (u;) be the number of leaves in
the subtrees of p; for 1 < i < k. We use Lemma 8.3.3 for w; = W (y;) to construct the
replacement tree. Consequently, a node v with depth d in 7 has depth O(d + log W?y)) in
T, as one can prove with an easy top-down induction. In particular, the resulting tree
has the claimed height O(h + logn). O
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8.3.2 Construction Algorithm

In this section, we show how to construct the wavelet suffix tree of a text T" of length n in
O(n+/Togn) time. The construction algorithm has two phases: first, it builds the shape
of the wavelet suffix tree following the description in Section 8.2.2, and then it uses the
results of Section 3.6 to obtain the bitmasks. Prior to that, we construct the component
of Proposition 2.5.1 for LCE QUERIES in T#, which includes the suffix array and the
LCP table for T#. We also build the data structure of Theorem 1.1.4 for IPM QUERIES.

Recall that in the definition of the wavelet suffix tree, we have started with a tree
of size O(nlogn). We cannot afford that in an o(nlogn)-time construction. Thus, we
construct the tree T« already without the inner nodes having exactly one child. Observe
that this tree is closely related to the suffix tree 7gu¢(T'#). The only difference is that if
the longest common prefix of two consecutive suffixes is d, their root-to-leaf paths diverge
at weighted depth [log(d + 1)] instead of d. Guided by this property, we use Fact 8.3.1
for L; = [log(LCP[i] + 1)] (rather than L, = LCP[i] which we would use for the suffix
tree). This way, an inner node v at weighted depth j represents a substring of length 2771,
The level £(v) of such an inner node v is set to 2/. If v is the leaf representing a suffix
s of T#, we set {(v) = 2|s|. After this operation, the tree T,,x may have inner nodes of
large degree, so we use Corollary 8.3.4 to obtain a binary tree 7., such that T, is its
contraction. We set this binary tree as the shape of the wavelet suffix tree. Since 7, has
height O(logn), so does T,

To construct the bitmasks, we apply Theorem 3.6.2 for the shape T, with the leaf
representing T'[i . .]# assigned to i. The sequence s for the first bitmask satisfies s[i] = i for
each position i. For the second bitmask, we sort all positions ¢ with respect to (T'[i — 1], %)
and take the resulting sequence of the second coordinates as s.

This way, we complete the proof of the main theorem concerning wavelet suffix trees.

Theorem 8.3.5. The wavelet suffix tree of a text T of length n occupies O(n) space and
can be constructed in O(n+/logn) time.

8.4 Applications

In this section, we show how to implement SUBSTRING SUFFIX RANK QUERIES, SUB-
STRING SUFFIX SELECTION QUERIES, and BWT+RLE SUBSTRING COMPRESSION
QUERIES using the wavelet suffix tree of the text T

8.4.1 Substring Suffix Rank and Selection

Recall that in the substring suffix rank problem, we are asked to find the lexicographic
rank of a fragment y among the suffixes of another fragment x. The substring suffix
selection problem, in contrast, is to find the kth lexicographically smallest suffix of = for a
given an integer k and a fragment x of T'.

Theorem 8.4.1. The wavelet suffix tree can answer SUBSTRING SUFFIX RANK QUERIES
in O(logn) time.

Proof. Using a binary search on the leaves of the wavelet suffix tree of T', we locate the
lexicographically smallest suffix ¢ of T# such that ¢t > y. Let m denote the path from
the root to the leaf corresponding to t. Due to the lexicographic property, the rank of y
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among the suffixes of x is equal to the sum of two values. The first one is the number of
suffixes of x in the left subtrees hanging from the path 7, whereas the second summand is
the number of suffixes not exceeding y in the lists L,(e) for e € 7.

To compute those two numbers, we traverse 7 maintaining a segment [/, 7] of the first
bitmask corresponding to the suffixes of T'# starting within . When we descend to the
left child, we set [¢,r] := [ranko(¢ — 1) + 1, ranky(r)], while for the right child, we set
[¢,7] := [rank; (¢ — 1) 4+ 1, rank; (r)]. In the latter case, we pass [¢,7] to type (2) queries,
which let us count the suffixes of x in the left subtree hanging from 7 in the current node.
This way, we compute the first summand.

For the second number, we use type (1) queries to generate all lists L,(e) for e € .
For each list, we use Lemma 7.1.4(b) to determine the number of elements not exceeding v,
and we add this value to the final result.

The described procedure takes O(logn) time since type (1) and (2) queries, as well as
LCE QUERIES, are implemented in O(1) time. O

Theorem 8.4.2. The wavelet suffiz tree can answer SUBSTRING SUFFIX SELECTION
QUERIES in O(logn) time.

Proof. The algorithm traverses a path in the wavelet suffix tree of T'. It maintains a
segment [¢,r] of the first bitmask corresponding to the suffixes of T starting within
x =TIi..j], and a variable k' counting the suffixes of x represented in the left subtrees
hanging from the path or on the edges of the path. The algorithm starts at the root
initializing [¢, ] with [7, j] and &" with 0.

At each node v, it first decides to which child of v to proceed. For this, it performs
a type (2) query to determine k”, the number of suffixes of x in the left subtree of v. If
k' + k" > k. it chooses to go to the left child, otherwise to the right one; in the latter case,
it also updates k' := k' + k”. The algorithm additionally updates the segment [¢, 7] using
the rank queries on the first bitmask at v.

Let v/ be the child of v that the algorithm has chosen to proceed to. Before reaching
V', the algorithm performs a type (1) query to compute L,(v,v'). If k' summed with
the size of this list is at least k, then the algorithm terminates, returning the (k — &')th
element of the list (which is easy to retrieve from the representation as O(1) periodic
progressions). Otherwise, it sets k' := k" + | L, (v, V)| so that k' satisfies the definition for
the newly extended path from the root to /.

The correctness of the algorithm follows from the lexicographic property, which implies
that at the beginning of each step, the sought suffix of = is the (k — &’)th smallest suffix
of x represented in the subtree of v. In particular, the procedure always terminates
before reaching a leaf. The running time of the algorithm is O(logn) due to O(1)-time
implementations of type (1) and (2) queries. O

A simple reduction proves that the query time in Theorems 8.4.1 and 8.4.2 is nearly
optimal: in the word RAM model with machine words of size W = O(logn), any data

structure of size O(n logo(l) n) must have query time Q(@?ign)-

Proposition 8.4.3. In the cell-probe model with W -bit cells, a static data structure of
size ¢ - n must take Q<m£+§w> time both for SUBSTRING SUFFIX RANK QUERIES and
SUBSTRING SUFFIX SELECTION QUERIES.

Proof. 'We shall prove that SUBSTRING SUFFIX RANK QUERIES and SUBSTRING SUFFIX
SELECTION QQUERIES are at least as difficult as range rank and selection queries (defined
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in Section 3.7), respectively. Propositions 3.7.2 and 3.7.4 show that these range queries
require Q(logi‘jr%) time already if the input array A is a permutation of [1,7n]. Such
an array A can be interpreted as a text T over ¥ = [1,n] (with Ti] = A[i]). Since
A is a permutation, the order of non-empty fragments of 7T is specified by their first
characters and (as a secondary criterion) by their lengths. In particular, for a range
R = [¢,r] C [1,n] and an integer k € [1,|R]], if A[j] = selecta(g)(k), then T'[j..7] is
the kth lexicographically smallest suffix of T'[¢..r]. Similarly, the rank(z)(c) of a value
¢ € [1,n] occurring in T" at some position i equals the rank of T'[i.. 4] among the suffixes
of T[¢..r] or one plus the rank of T[i..i] among the suffixes of T[¢..r] (the latter holds
if and only if £ < i < r). Consequently, in order to support range rank and selection on
a permutation A, it suffices to make a single SUBSTRING SUFFIX RANK QUERY and
SUBSTRING SUFFIX SELECTION QUERY, respectively. In the former case, we also need
to store the inverse permutation A™!, which takes negligible O(n) space. O

8.4.2 BWT+RLE Substring Compression

Wavelet suffix trees can also be used to compute the run-length encoding of the Burrows—
Wheeler transform of a substring; see Section 2.3.2 for a definition. Consider a fragment
x=TIi..jland, for 1 <k < |z|, let Ti) .. j] be the kth lexicographically smallest suffix of
x. Observe that BWT(z) is a string bibs - - - bjz41 where by = T'[j] and, for 2 < k < |z|+1,
we have by, = T[ix_1 — 1] if ix_1 > i and by = # if i), = i.

Our algorithm initially generates a string almost equal to BWT(x) which instead of #
contains T'[i — 1]. However, we know that # should occur at the position equal to one
plus the rank of x among all the suffixes of . Consequently, a single SUBSTRING SUFFIX
RANK QUERY suffices to find the position which needs to be corrected.

Recall that the wavelet suffix tree satisfies the lexicographic property. Consequently, if
we traverse the tree and write out the characters preceding the suffixes in the lists L,(e),
we obtain BWT(x) (without the first symbol by). Our algorithm simulates such a traversal.
Assume that the last character appended to BWT(x) is ¢, and the algorithm is to move
down an edge e = (v, /). Before deciding to do so, it checks whether all the suffixes of = in
the appropriate (left or right) subtree of v are preceded with c. For this, it performs type
(2) and (3) queries, and if both results are equal to the same value ¢, it simply appends ¢4
to BWT(z) and decides not to proceed to v/. In order to make these queries possible, for
each node on the path from the root to v, the algorithm maintains segments corresponding
to [i, 7] in the first bitmasks, and to (¢, [i, j]) in the second bitmasks. These segments
are updated using rank queries on the bitmasks while moving down the tree.

Before the algorithm continues at v/, if it decides to do so, suffixes in L,(e) need to be
handled. We perform a type (4) query to compute the characters preceding these suffixes,
and append the result to BWT(x). This, however, may result in ¢ no longer being the last
symbol appended to BWT(z). If so, the algorithm updates the segments of the second
bitmask for all nodes on the path from the root to /. We assume that the root stores
all positions i sorted by (T'[i — 1],7), which lets us binary search for both endpoints of
the segment at the root. For the subsequent nodes on the path, the rank queries on the
second bitmasks are applied. Overall, this update takes O(logn) time and it is necessary
at most once per run of BWT(z).

Now, let us estimate the number of edges visited. Observe that if we go down an edge,
then the last character of BWT(x) changes at least once before we go up this edge. Thus,
all the edges traversed down between such character changes form a path. The length
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of any path is O(logn), and consequently the total number of visited edges is O(rlogn),
where r is the number of runs.

Theorem 8.4.4. The wavelet suffix tree can compute the run-length encoding of the
Burrows—Wheeler transform of a fragment x in O(|RLE(BWT(x))|logn) time, where
| RLE(BWT(z))| is the number of runs in the Burrows—Wheeler transform.

8.5 Speeding up Queries

Finally, we note that building wavelet suffix trees for several fragments of T', we can make
the query time adaptive to the length of the query fragment x. In other words, we can
replace the O(logn) factor in the running times by O(log |z|).

Theorem 8.5.1. Using a data structure of size O(n), which can be constructed in
O(n+/Togn) time, SUBSTRING SUFFIX RANK QUERIES and SUBSTRING SUFFIX SELEC-
TION QUERIES can be answered in O(log |x|) time. The run-length encoding RLE(BWT(z))
of the BWT of a fragment x can be found in O(| RLE(BWT(x))|log |z|) time.

Proof. We build wavelet suffix trees for some fragments of each length n, = |[n® |
with &k € [0, [loglogn]]. For such length ny, we choose every |$ny|th fragment, starting
from the prefix and, additionally, we choose the suffix. Auxiliary data structures of
Proposition 2.5.1 and 1.1.4 are built for T" only.

We have n; = {MJ, so ng_1 < (ng + 1)? and thus every fragment z of T lies
within a fragment v, |v] < 2(|z| + 1)?, for which we store the wavelet suffix tree. For
each m, 1 < m < n, we store the length nj such that 2m < n, < 2(m+ 1)2. This reduces
finding an appropriate fragment v to simple arithmetics. Using the wavelet suffix tree for
v instead of the tree for the whole text T" gives the announced query times. The only thing
we must be careful about is that the input for the SUBSTRING SUFFIX RANK QUERIES
also consists of a fragment y, which does not need to be contained in v. However, looking
at the query algorithm, it is easy to see that y is only accessed through the LCE QUERIES
of Proposition 2.5.1.

It remains to analyze the space usage and construction time. Observe that the wavelet
suffix tree of a fragment v is simply a binary tree with two bitmasks at each node and
with some pointers to the positions of the string 7. In particular, it does not contain any
characters of T" and, if all pointers are stored as relative values, it can be stored using

O(|v|log |v]) bits, i.e., O(\v|%‘z|) machine words. For each ny, the total length of selected

fragments is O(n), and thus the space usage is O(n%) = O(n27*) machine words,

which sums up to O(n) across all lengths ng. The construction time is O(|v|/log |v]) for

every fragment v (including alphabet renumbering), and this sums up to O(n4/27*logn)
for each length ny, which is O(n+/logn) in total. O



Chapter 9

Minimal Suffix and Rotation Queries

The main result of this chapter is an optimal data structure for MINIMAL SUFFIX QUERIES,
formally defined as follows:

MINIMAL SUFFIX QUERIES
Given a fragment v of the text 7', report the lexicographically smallest non-empty
suffix of v.

In Section 9.1, we study combinatorics of minimal suffixes. Our main tool there is the
notion of significant suffizes, introduced by I et al. [76] to compute Lyndon factorizations
of grammar-compressed strings. Section 9.2 is devoted to an efficient computation of
the set of significant suffixes of a given fragment of 7. Next, in Section 9.3, we develop
our data structure for MINIMAL SUFFIX QUERIES. We use fusion trees by Patragcu and
Thorup [126] to improve the query time from logarithmic to O(log™ |v|), and then, by
preprocessing shorts strings, we achieve constant query time. That final step uses a notion
of order-isomorphism [96, 84| to reduce the number of precomputed values. Next, in

Section 9.4, we repeat the same steps for the following more general queries, answered in
O(k?) time.

GENERALIZED MINIMAL SUFFIX QUERIES
Given a sequence of fragments vy, ..., v, of the text T', report the lexicographically
smallest non-empty suffix of their concatenation vjvs - - - vy (represented by its length).

Our main motivation for GENERALIZED MINIMAL SUFFIX QUERIES is to efficiently
handle MINIMAL ROTATION QUERIES, defined below. The simple reduction is given in
Section 9.5 along with a brief discussion of other applications.

MINIMAL ROTATION QUERIES
Given a fragment v of the text 7', report the lexicographically smallest rotation of v
(represented by the number of positions to shift).

9.1 Combinatorics of Minimal and Maximal Suffixes
For a non-empty string v, the minimal suffiz MinSuf(v) is the lexicographically smallest

non-empty suffix s of v. Similarly, for an arbitrary string v the maximal suffic MaxSuf(v)
is the lexicographically largest suffix s of v. We extend these notions as follows: for a pair

81
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of strings v, w we define MinSuf (v, w) and MaxSuf(v,w) as the lexicographically smallest
(resp. largest) string sw such that s is a (possibly empty) suffix of v.

In order to relate minimal and maximal suffixes, we introduce the reverse order <%
on the extended alphabet ¥ = ¥ U {$,#} (defined in Section 2.1), and we extend it to
the reverse lexicographic order on £*. Observe that we have $ <% ¢ <% 4 for every ¢ € 3.
This lets us relate < and <*.

Observation 9.1.1. The following conditions are equivalent for u,v € 3*:
(a) u=<"v,
(b) u$ <% v,
(c) u$ > v$.

We use MinSuf? and MaxSuf? to denote the minimal and the maximal suffixes with
respect to the reverse order <*.

Ezample 9.1.2. Consider a string v = abaabaa. We have MaxSuf(abaabaa) = baabaa,
MinSuf (abaabaa) = a, MaxSuf”(abaabaa) = aabaa, and MinSuf”(abaabaa) = baa.

The following observation relates the notions we introduced:

Observation 9.1.3. (a) MaxSuf(v,e) = MaxSuf(v) for every v € ¥*,
(b) MinSuf (vw) = min(MinSuf (v, w), MinSuf (w)) for every v € £* and w € £+,
(¢) MinSuf(ve) = MinSuf (v, ¢) for every v € ¥* and ¢ € %,
(d) MinSuf(v, w$) = MaxSuf”(v,w)$ for every v,w € ¥,
(e) MinSuf(v$) = MaxSuf®(v)$ for every v € ©*.

Remark 9.1.4. A property seemingly similar to (e) is false: for every v € X%, we have
$ = MinSuf”(v$) # MaxSuf(v)$.

Recall that Lyndon words have been defined in Section 2.1 as primitive strings which
are minimal in their conjugacy class. Equivalently, a string w is a Lyndon word if and
only w = MinSuf(w); see [103]. Note that a Lyndon word w does not have proper borders
since a border would be a non-empty suffix smaller than w. A Lyndon factorization
of a string u € ¥* is a representation u = u{" ... uPm where u; are Lyndon words such
that wy > ... > u, and py,...,pn € Zso are integer exponents. Every string has a
unique Lyndon factorization [35], which can be computed in linear time and constant
auxiliary space [52]. The following result characterizes the Lyndon factorization of the
concatenation of two strings (see also Figure 9.1):

Lemma 9.1.5 ([9, 50]). Let u=u}"---ulr and v =v{" --- v} be Lyndon factorizations.
Then the Lyndon factorization of uv is uv = uf* - - ubezFv it - vt for integers c,d, k

and a Lyndon word z such that 0 < c<m, 0 <d </, and 2F = w23 - - ubrmoft - 080,
Next, we prove another simple yet useful property of Lyndon words:

Fact 9.1.6. Let v,w € X be strings such that w is a Lyndon word. If v < w, then
v < w.

’@\a a bla a b\‘-’\a blla a b\@@‘:’@\a abaabablaa b\@@‘

Figure 9.1: Lyndon factorizations of baabaab, abaabaa, and their concatenation.
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Proof. For a proof by contradiction suppose that v < w < v*>°. Let w = v¥s, where the
integer exponent k is largest possible, i.e., v is not a prefix of s. Due to w = v¥s < v*,
we have s < v*°. On the other hand, w is a Lyndon word, so w < s. Consequently,
v <w =X s < v, which means that v is a prefix of s and contradicts its definition. [

9.1.1 Significant Suffixes

Below, we recall a notion of significant suffizes, introduced by I et al. [76] in order to com-
pute Lyndon factorizations of grammar-compressed strings. Then, we state combinatorial
properties of significant suffixes; some of them are novel and some were proved in [76].

Definition 9.1.7 (see [76]). A suffir s of a string v € ¥* is a significant suffix of v if
sw = MinSuf (v, w) for some w € ¥*.

Ezample 9.1.8. For v = abaabaa, we have A(v) = {aabaa, aa,c}. Witness strings w are
bb, b, and a, respectively. Note that a = MinSuf(v) ¢ A(v) because aw > min(w, aaw).

Let v =" ... vPm be the Lyndon factorization of a string v € X*. For 1 < j < m, we
denote s; = vfj -+ - yPm: moreover, we assume S,,11 = €. Let A be the smallest index such
that s;,1 is a prefix of v; for A < i < m; see Figure 9.2. Observe that

Sx > Ux > Sxg1 > "+ > S = Uy ™ Syl = €

in fact, each string in this sequence is a prefix of the previous one. We define y; so that
v; = S;+1Yi, and we set x; = y;5;41. Note that

o B _ B o i
8; = V7" Sip1 = (Sit1¥i)V"si41 = Sip1 (UiSip1)V" = sy
We also denote

A(’U) = {S)\, .. .,Sm,8m+1},
X)) ={2%,..., 2},

see Figure 9.2 for examples. The observation below lists several immediate properties of
the introduced strings:

v:@]a abaaba bHa a b\@@ 32:]a ab a aHb a bHa a\@@@

U1 U2 Uz U4y Y2 S4 Y3 Ya Ya
52:]aabaababaabaa\ x?z]babaabaa\
w-@avaal| X0 o —baa
o=l [ 4 ~EE

55 =|

Figure 9.2: Ilustration of the sets A(v) and X'(v) for v = baabaababaabaa. We have
m =4 and A\ = 2.
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Observation 9.1.9. For each i, A <1i < m:
(a) 23° = ai' = x; = y;,
(b) =¥ is a suffix of v of length |s;| — |sit1],
(c) Isil > 2|sital.

Consequently, |A(v)| = O(log |v]).

The following lemma shows that A(v) is equal to the set of significant suffixes of v.
The significant suffixes are actually defined in [76] as A(v) and only later proved to be
characterized by the condition stated in Definition 9.1.7. In fact, the lemma is much
deeper; in particular, the formula for MaxSuf(v,w) is one of the key ingredients of our
efficient algorithms answering MINIMAL SUFFIX QUERIES.

Lemma 9.1.10 (I et al. [76], Lemmas 12-14). For a string v € 7, let s;, A, x;, and y;
be defined as above. Then

Nl TN S S (s el R IO T il OO
Moreover, for every string w € ¥*, we have

S\w if w > x$°,
MinSuf (v, w) = 4 s;w if x22 = w = xF for A <i<m,

Smp1W  if x00 = w.
In other words, MinSuf (v, w) = Spy41-rw, where r = rank y () (w).
Ezample 9.1.11. For a string v = baabaababaabaa (see Figure 9.2), we have:

aabaababaabaa - w if (babaabaa)™ < w,

MinSuf (v, w) aabaa - w %f (baa)>® < w < (babaabaa)®™,
aa - w if a*° < w < (baa)>,
w it w < a™.

Lemma 9.1.10 yields several properties of the set A(v) of significant suffixes.

Corollary 9.1.12. Consider a stringv € ¥.7.
(a) The longest suffiz in A(v) is MaxSuf™(v) and A(v) = A(MaxSuf®(v)).
(b) If a decomposition v = uv'" satisfies |u| < [v'| 4+ 1, then

A(v) € A(v") U {MaxSuff(v)} € A(v") U {MaxSuf®(u,v')}.
Consequently, MinSuf (v, w) € {MaxSuf®(u, v')w, MinSuf (v, w)} for every w € £*.

Proof. Throughout the proof, we use the notation introduced just above Observation 9.1.9.

To prove (a), observe that z), € X, so 2 < $. Consequently, Lemma 9.1.10
states that s,$ = MinSuf(v,$). However, we have MinSuf(v,$) = MaxSuf®(v)$ by
Observation 9.1.3(e), and thus sy = MaxSuf®(v). Uniqueness of the Lyndon factorization
implies that «}*---uPm is the Lyndon factorization of sy, and hence A(v) = A(sy) by
definition of A(-).

For a proof of the first inclusion in (b), we shall show that for i > A + 1 the string
s; is a significant suffix of v'. The suffix s,,.1 = € is clearly a significant suffix of
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v, so we assume A < ¢ < m. Note that, by Observation 9.1.9, s; is a suffix of v/

since 2|s;| + 1 < |s;-1] < |sa] < |Jv] < 2]¢'| + 1. By Lemma 9.1.10, one can choose
w € X* (setting 2%, = w = £2°) so that s;w = MinSuf(v, w). However, this also implies
s;w = MinSuf(v’, w) because all suffixes of v' are suffixes of v. Consequently, s; is a
significant suffix of v/, as claimed.

Note that MaxSuf®(v) = MaxSuf®(uv’) € {MaxSuf®(u,v’), MaxSuf®(v')} by Ob-
servation 9.1.3. Moreover, part (a) yields MaxSuf®(v') € A(v'), so MaxSuff(v) €
A(v") U {MaxSuf”(u,v')}. This proves the second inclusion in (b). The final claim follows
from A(v) € A(v') U {MaxSuf®(u,v")} due to the definition of significant suffixes. O

Next, we provide a precise characterization of A(uv) for |u| < |v| in terms of A(v) and
MaxSuff(u, v); see Table 9.1. This is another key ingredient of our data structure. In
Section 9.2, we use it to efficiently compute significant suffixes of a given fragment of 7.

Lemma 9.1.13. Let u,v € X1 be strings such that |u| < |v|. Moreover, let A(v) =
{55, .. Sme1}, 8 = MaxSuff(u,v), and let s; be the longest suffiz in A(v) which is a
prefiz of s'. Then

{Sx, -y Smi1} if 8 <R sy (e, if sx X8 and i # \),
A(wv) = < {8, Siv1, -y Smat} if 8 =T sy, i <m, and |s;| — |si11] is a period of &,
{5, Siy Sit1y---,Sme1} otherwise.

Proof. Observation 9.1.3 yields MaxSuf”(uv) € {MaxSuf”(u,v), MaxSuf”(v)}, which is
equivalent to MaxSuf®(uv) € {s', s} by Corollary 9.1.12(a). Consequently, if s' < sy,
then MaxSuf®(uv) = s, and Corollary 9.1.12(a) implies A(uv) = A(sy) = A(v), as
claimed.

Thus, we may assume that s’ = s, and in particular that s’ = MaxSuf™(uv). Let
s; be the longest suffix in A(uv) N A(v) (A < j < m+1). By Corollary 9.1.12(b),
A(uv) C{s'}U{sj, 841, Smy1}. Lemma 9.1.5 and the definition the A(-) set in terms
of the Lyndon factorization yield that the inclusion above is actually an equality. Moreover,
the definition also implies that s; is a prefix of s’, and thus j > . If i = m + 1, this
already proves our statement, so in the remainder of the proof we assume i < m.

First, let us suppose that j > i+ 1. We shall prove that j =i+ 1 and |s;| — |s;11| is a
period of s'. Let v’ be a string such that s’ = u’s;. Note that vf* ... 0’7" is a border of v’
since s; is a border of s'. Moreover, by definition of A(uv), the string v’ must be a power
of a Lyndon word. Lyndon words do not have proper borders, so any border of u must
be a power of the same Lyndon word. Thus, v/ and v! ...v"" " are powers of the same

=1
u v s’ s <Ry | A(uv)

abaabaa abaabaa aa abaabaa no 3 {aaabaabaa, aa, 5}

babaaba abaabaa aaba abaabaa no 2 {aabaabaabaa, aa, &?}

baabaab abaabaa | aabaab abaabaa no 2 {aabaababaabaa, aabaa, aa, 5}

ababaab abaabaa aab abaabaa yes 3 {aabaa, aa,c}

Table 9.1: Example applications of Lemma 9.1.13 for v = abaabaa and various strings .
We have v = ab-aab-a-a, m =4, A =2, and A(v) = {s9, 83,54} = {aabaa, aa, c}.
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Lyndon word, which must be v; = v;_; by the uniqueness of the Lyndon factorization.
What is more, as s;41 is a prefix of v;, we conclude that |v;| is a period of s = u's;;.
Therefore, |s;| — |s;11| = pi|vi| is also a period of §'.

It remains to prove that j = ¢ implies that |s;| — |s;41| is not a period of s’. Suppose
that i = j, i.e., s; € A(uv). By definition of A(uv), we have s’ = (v')”'s; for a Lyndon
word v" which has s; as a prefix. Since v’ cannot have a proper border, the shortest period
of &' is at least |v'| > |s;| > |si| — |sit1]- Thus, |s;| — |si+1| indeed is not a period of s'. [

We conclude with two combinatorial lemmas which are both useful in determining
MaxSuf®(u, v) for |u| < |v|. The first of them is also applied later in Section 9.4.

Lemma 9.1.14. Let v € Xt and w,w' € &1 be strings such that w < w' and the longest
common prefix of w and w' is not a proper substring of v. Also, let A(v) = {sxr,..., Sm-1}
If MinSuf (v, w) = s;w, then MinSuf (v, w’) € {s;_1w’, s;w'}.

Proof. Due to the characterization in Lemma 9.1.10, we may equivalently prove that
rank x () (w') is rank x () (w) or rank x () (w) + 1. Clearly, rank x(,)(w) < ranky)(w’), so it
suffices to show that rankx(w') < rankx(,)(w) + 1. This is clear if | X (v)| = 1, so we
assume | X (v)| > 1. This assumption in particular yields that X’(v) consists of proper
substrings of v, and thus ranky/(,)(w) = rankx:(,)(w") by the condition on the longest
common prefix of w and w’. However, the inequality in Lemma 9.1.10 implies

rank x () (w’) < rankx(,)(w') = rankxr () (w) < rankx,)(w) + 1.
This concludes the proof. O

Lemma 9.1.15. Let v € X%, v = v{" ---vbm be the Lyndon factorization of v, and let
A(w) ={sx,.. ., Sme1}. If MinSuf (v, w) = s;w for some w € ¥* and A <i < m+ 1, then
vi_18;w = sw for every suffix s of v satisfying |s| > |s;|.

Proof. Let s’ be a non-empty string such that s = §’s;. First, suppose that |s| < |v;_1s;|.
In this case, s’ is a proper suffix of the Lyndon word v;_1; thus, s’ > v;_; and, moreover,
sw = ' = v;_15;w. Consequently, we may assume that |s| > |v;_15;].

Let w' = v;_1s;w and let v be a string such that v = v'v;_1s;. Observe that it suffices
to prove that MinSuf(v', w’) = w', which implies that sw = w’ = v;_1s;w for |s| > |v;_1s;].
If v = ¢, then there is nothing to prove, so we shall assume [v'| > 0. Note that we have
the Lyndon factorization v/ = o' ---v"7' " with i > 2 or p;_; > 1. By Lemma 9.1.10,
MinSuf(v,w) = s;w implies w < x°,, whereas MinSuf (v, w’) = w’ is equivalent to
w' < vy (if piog > 1) or w' < v, (if p;—1 = 1). We have

! co oo oo o 0
W = Vi 18W < V;18;T;_ 1 = Uz'—lsi(yi—lsi) = Ui—l(siyi—1> =Vi—1V;,_1 = V;_1-

If p;_1 > 1, this already concludes the proof, and thus we may assume that p, ; = 1. By
definition of the Lyndon factorization, we have v;_o > v;_1, and by Fact 9.1.6, this implies
Vi—g > v5°,. Hence, w' < v{® < v;_9 < v7°,, which concludes the proof. O

9.2 Computing Significant Suffixes

In this section, we develop a data structure computing A(v) for a given fragment v of the
input text T'. We call it the augmented suffix array of T because it only consists of fairly
standard components built on top of the suffix array of 7" and its reverse T%:
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e the data structures for LCE QUERIES in T' and T (see Proposition 2.5.1), and

e the inverse suffix array IS A of T' with a component for range minimum queries (see
Section 3.7).

The same tools have already been applied in [11]. As stated below, the augmented suffix
array lets us efficiently support many basic queries, some of which are listed in Fact 2.5.2.

Proposition 9.2.1 (Augmented suffix array). The augmented suffix array of a text T of
length n takes O(n) space, can be constructed in O(n) time, and answers in O(1) time
the following queries for fragments x,y of T or fragments x,y of T*:
(a) compute the length of the longest common prefix lep(z,y);
(b) determine if v <y, ¥ =y, or x =y (as well as whether x <By, x 2y, orx =% y);
(c) compute lep(z™,y) and determine if 1 < y or x> =y (as well as whether z>° <%y
or z>° =1 y).
Moreover, given indices i,j € [1,n], it can compute in O(1) time the lexicographically
smallest suffix among {T[k..]: k € [i,j]}.

Proof. The time and space complexity of the components for LCE QUERIES is specified
by Proposition 2.5.1. The inverse suffix array I.SA and a component for constant-time
range minimum queries are also constructed in O(n); see Proposition 3.7.6.

Queries (a)—(c) can be answered efficiently due to Fact 2.5.2; note that the reverse
lexicographic order, just like the usual lexicographic order, is determined by the characters
following the longest common prefix (or the lack of these characters). For the final query
type, recall that ISA[k] is the rank of T'[k..] among the suffixes of T' (with respect to
the lexicographic order). Hence, the minimum suffix among {T'[k..] : k € [i,j]} and the
minimum value in {ISA[k] : k € [i,j]} are attained for the same index k. O

Efficient computation of significant suffixes is based on Lemma 9.1.13, which yields a
recursive procedure. The only “new” suffix needed at each step is determined using the
following result, which can be seen as a cleaner formulation of Lemma 14 in [11].

Lemma 9.2.2. Letu=T[(..r] andv =T[r+1..r'] be fragments of T such that |u| < |v].
Using the augmented suffiz array of T, we can compute MaxSuf®(u,v) in O(1) time.

Proof. Let sv = MaxSuf®(u, v). Note that sv$ = MinSuf(u, v$) by Observation 9.1.3(d).
Let us focus on determining the latter value. The augmented suffix array lets us com-
pute an index k € [¢,r] which minimizes T[k..]. Equivalently, we have T[k..] =
MinSuf(u, T'[r +1..]). Consequently, T'[k..r] € A(u), ie., T[k..r] = s; for some
i € [A\,m+ 1], where {sy,...,Sms1} = A(u). Note that |v| = lep(v$,T[r + 1..]) and
v is not a proper substring of u because |u| < |v|. Hence, by Lemma 9.1.14, we have
s € {s;_1,s;} (if i = A, then s = s;).

Thus, we shall generate a suffix of T'[¢..r| which matches s;_; if i > A, and return the
better of the two candidates for MinSuf(u, v$). If £ = ¢, we must have i = A and there is
nothing to do. Hence, let us assume k£ > /. By Lemma 9.1.15, if we compute an index
k' € [[¢, k — 1] which minimizes T'[k’..], we shall have T'[k’.. k — 1] = v;_; provided that

i > \. Now, the exponent p;,_; can be generated as the largest integer such that v{*7" is a

suffix of T[¢. .k — 1]. In other words, p;_; = {ﬁ lep((T[K' ..k — 1)), T[. .k — 1]R)J
can be computed using the augmented suffix array. Our candidates for sv are Tk ..1/|
and Tk — p;—1(k — k') ..7"]. We use the augmented suffix array to find the larger of the

two with respect to <*. O
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Lemma 9.2.3. Given a fragment v of T, we can compute A(v) in O(log |v|) time using
the augmented suffix array of T .

Proof. 1f |v] = 1, we return A(v) = {v,e}. Otherwise, we decompose v = uv’ so
that [v/| = Eh}” We recursively generate A(v') and use Lemma 9.2.2 to compute

s = MaxSuf(u,v"). Then, we apply the characterization of Lemma 9.1.13 to determine
A(v) = A(w’), using the augmented suffix array (Proposition 9.2.1) to lexicographically
compare fragments of T

We store the lengths of the significant suffixes in an ordered list. This way, we can
implement a single phase (excluding the recursive call) in time proportional to O(1) plus
the number of suffixes removed from A(v’) to obtain A(v). Since this is amortized constant
time, the total running time becomes O(log|v|) as announced. O

9.3 Minimal Suffix Queries

In this section, we present our data structure for MINIMAL SUFFIX QUERIES. We proceed
in three steps improving the query time from O(log |v|) via O(log™ |v]) to O(1). The first
solution is an immediate application of Observation 9.1.3(c), the notion of significant
suffixes, and the procedure computing these suffixes (Lemma 9.2.3).

Corollary 9.3.1. MINIMAL SUFFIX QUERIES can be answered in O(log|v|) time using
the augmented suffix array of T.

Proof. Recall that Observation 9.1.3(c) yields MinSuf(v) = MinSuf(v[1..m — 1],v[m]),
where m = |v|. Consequently, MinSuf(v) = s - v[m| for some s € A(v[1l..m — 1]). We
apply Lemma 9.2.3 to compute A(v[l..m — 1]) and determine the answer among the
O(log |v|) candidates using the lexicographic comparison of fragments, which is supported
by the augmented suffix array (Proposition 9.2.1). O

An alternative O(log |v|)-time algorithm can be stated as a recursive procedure:
decompose v = uv' so that [v/| > |u| and return min(MaxSuf®(u,v"), MinSuf(v')). The
result is MinSuf(v) due to Corollary 9.1.12(b) and Observation 9.1.3(c). Here, the first
candidate MaxSuf®(u,v’) is determined using Lemma 9.2.2, while the second one is
obtained from a recursive call. A way to improve query time to O(1) at the price of
O(nlogn)-time preprocessing is to precompute the answers for the basic fragments, i.e.,
for fragments whose length is a power of two. Then, in order to determine MinSuf(v), we
perform just a single step of the aforementioned procedure, making sure that v’ is a basic
fragment. Both these ideas are actually present in [11], along with a smooth trade-off
between their preprocessing and query times.

9.3.1 O(log"|v|)-Time Minimal Suffix Queries

Our O(log™ |v|)-time query algorithm combines recursion with preprocessing for certain
distinguished basic fragments. More precisely, we say that v = T'[¢..r] is distinguished if
both |v| = 27 and f(29) |  for some positive integer ¢, where f(z) = 2Us1s=]* Note that

the number of distinguished fragments of length 2¢ is at most = (O(q[f1> ).

ztloquQ
The query algorithm is based on the following decomposition (z > f(z) for z > 216):

Fact 9.3.2. Given a fragment v such that |v| > f(|v]), we can in constant time decompose
v =uw'v" so that 1 < |v"| < f(|v|), v’ is distinguished, and |u| < |V'|.
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Proof. Let v =T[l..r], ¢ = |log|v|] and ¢’ = |logq|*. We determine 7’ as the largest
integer strictly smaller than r divisible by 27 = f(|v|). By the assumption that |v| > 27,
we conclude that r > ' > r — 27 > (. We define v = T[r'+ 1..r] and partition
T[C..r'"] =uv' so that |v/| is the largest possible power of two. This guarantees |u| < |v/|.
Moreover, |v'| < |v| assures that f(|v']) | f(|v]), so f(|v']) | 7', and therefore v" is indeed
distinguished. O

Observation 9.1.3(b) implies MinSuf(v) € {MinSuf(uv’, v"), MinSuf(v”) }, and Corol-
lary 9.1.12(b) further yields MinSuf(v) € {MaxSuf®(u, v')v”, MinSuf(v/, v"), MinSuf (v")}.
Thus, there are three candidates for MinSuf(v). Our query algorithm uses Lemma 9.2.2
to obtain MaxSuf(u,v')v” and computes MinSuf(v”) recursively. It determines the re-
maining candidate, MinSuf(v', v”), through the characterization of Lemma 9.1.10. This is
performed using the following component, which is based on a fusion tree and built for all
distinguished fragments.

Lemma 9.3.3. Let v = T[(..r] be a fragment of T. There exists a data structure of
size O(log |v]) which answers the following queries in O(1) time: given a position r' > r
compute MinSuf (v, T[r + 1..7"]). Moreover, this data structure can be constructed in
O(log |v]) time using the augmented suffix array of T.

Proof. By Lemma 9.1.10, we have MinSuf (v, w) = Sm+1-rank y (o (w) W, SO in order to deter-
mine MinSuf (v, T'[r + 1. .7']), it suffices to store A(v) and efficiently compute rank x () (w)
given w = T[r + 1..7']. We shall reduce these rank queries to rank queries in an integer
multiset R(v); see Figure 9.3.

Claim 9.3.4. Denote X (v) = {z%,...,2°} and define a multiset
R)={r+1+lep(z*,Tlr+1.]): 2} € X(w) and 27 < T[r +1..]}.

For every index 7/, r < r’ < n, we have rankx,)(T[r + 1..7']) = rankp,)(r').

Proof. We shall prove that for each j, A < 7 < m, we have
2P 2T+ 1.0 = (r+1+1lep@® Tr+1.) <r' A 2 <Tlr+1.]),

First, if 23° = T[r+1. ], then clearly 25° = T'[r +1..7'] and both sides of the equivalence
are false. Therefore, we may assume z° < T[r + 1..]. Observe that in this case
d:=lep(T[r+1..],25°) <n—r (ie, T[r+1..]is not a prefix of 23°), and T[r+1..r+d] <
v <Tlr+1..r+d+1]. Hence, z5° < T[r+1..7'] if and only if r + 1 +d < 7', as
claimed. O

v="T[2..15] R(v)

T=albaabaababaabaa
1 2 3 4 5 6 7

L] L] L]
b abaabba
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A(v)

Figure 9.3: Ilustration of Claim 9.3.4 for a fragment v = T'[2. . 15] matching the string con-
sidered in Figure 9.2 and Example 9.1.11. For example, we have MinSuf (v, T'[16 .. 16]) =
T[14..16] because rankpg)(16) = 1, MinSuf(v,7[16..20]) = T[11..20] because
rank p(,)(20) = 2, and MinSuf (v, T[16..22]) = T'[3..22] because rankp(,)(22) = 3.
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We apply Theorem 3.4.1 to build a fusion tree for R(v) so that the ranks are can be
obtained in O(1 + lolgofx)‘) time, which is O(1 + %) = O(1) by Observation 9.1.9.

The construction algorithm uses Lemma 9.2.3 to compute A(v) = {sx,..., Smi1}
Next, for each j, A < j < m, we need to determine lep(T[r +1..],25°). This is the same
as lep(T[r + 1. ], («}7)) and, by Observation 9.1.9, 27’ matches the suffix of v of length
|si| — |siy1]- Hence, the augmented suffix array can be used to compute these longest

common prefixes and therefore to construct R(v) in O(|A(v)]) = O(log |v|) time. O

With this central component, we are ready to give a full description of our data
structure with O(log™ |v|)-time queries.

Theorem 9.3.5. For every text T' of length n, there exists a data structure of size O(n)
which answers MINIMAL SUFFIX QUERIES in O(log" |v|) time and can be constructed in
O(n) time.

Proof. Our data structure consists of the augmented suffix array (Proposition 9.2.1) and
the components of Lemma 9.3.3 for all distinguished fragments of T'. Each such fragment
of length 27 contributes O(q) to the space consumption and to the construction time,
which in total over all lengths sums up to O(3, ¢zty) = O, Zty) = O(n).

Let us proceed to the query algorithm. Assume we are to compute the minimal
suffix of a fragment v. If [v| < f(|v]) (i.e., if Jv| < 2'6), we use the logarithmic-time
query algorithm given in Corollary 9.3.1. If |v| > 29, we apply Fact 9.3.2 to determine
a decomposition v = wv'v”, which gives us three candidates for MinSuf(v). As already
described, MinSuf(v”) is computed recursively, MinSuf(v’, v”) using Lemma 9.3.3, and
MaxSuf®(u, v')v” using Lemma 9.2.2. The latter two procedures both support constant-
time queries, so the overall time complexity is proportional to the depth of the recursion.
We have [v"| < f(Jv]) < |v], so it terminates. Moreover,

f(f(!lf)) — 2Llog(logf(z))J2 < 2(log(loglogac)2)2 _ 24(10glogloga[:)2 _ 2o(loglogx) — O(IOg iL‘)

Thus, f(f(z)) < logz unless + = O(1). Consequently, unless |[v| = O(1), when the
algorithm clearly needs constant time, the length of the queried fragment is in two steps
reduced from |v| to at most log |v|. This concludes the proof that the query time is

O(log™ |v]). O

9.3.2 O(1)-Time Minimal Suffix Queries

The O(log™ |v|) time complexity of the query algorithm of Theorem 9.3.5 is only due to
the recursion, which in a single step reduces the length of the queried fragment from |v]
to f(|v|), where f(z) = 2Ulslog=*  Since f(f(x)) = 2°0°8187) after just two steps the
fragment length does not exceed f(f(n)) = 2°0glen) = (Jogn)°) = (101;1%). In this
section, we show that the minimal suffixes of such short fragments can be precomputed in
a certain sense, and thus after reaching 7 = f(f(n)) we do not need to perform further
recursive calls.

For alphabets of constant size o, we could actually store all the answers for the
O(c™) = n°M strings of length up to 7. Nevertheless, in general all letters of T', and
consequently all fragments of T, could even be distinct strings. However, the answers to
MINIMAL SUFFIX QUERIES actually depend only on the relative order between letters,
which is captured by order-isomorphism.
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Two strings x and y are called order-isomorphic [96, 84], denoted as x =~ y, if |z| = |y|
and for every two positions 4,7 (1 < 4,5 < |z|) we have z[i] < z[j] < y[i] < y[j].
Note that the equivalence extends to arbitrary corresponding fragments of x and v, i.e.,
xli..j] <z[i’..j ]| <= yli..j] < y[i’..7']. Consequently, order-isomorphic strings cannot
be distinguished using MINIMAL SUFFIX QUERIES.

FExample 9.3.6. Strings © = bcbecbef and y = abadbabg are order-isomorphic. Conse-
quently, MinSuf(z[2..7]) = MinSuf(cbecbc) = bc = z[6.. 7] implies MinSuf(y[2..7]) =
y[6..7]. We have oid(x) = oid(y) = (1000001 000010001 000001 011), for m = 8.

Moreover, observe that every string of length m is order-isomorphic to a string over
an alphabet [0, m — 1]. Consequently, order-isomorphism partitions strings of length
up to m into O(m™) equivalence classes. The following fact lets us compute canonical
representations of strings whose length is bounded by m = WO,

Fact 9.3.7. For every fixed integer m, there exists a function oid mapping each string
w of length up to m to a non-negative integer oid(w) with O(mlogm) bits, so that
w ~ w' <= oid(w) = oid(w'). Moreover, the function oid can be evaluated in O(m) time

if m = Wow,

Proof. To compute oid(w), we first build a fusion tree storing all (distinct) letters which
occur in w. Next, we replace each character of w with its rank (minus one) among these
letters. We allocate [logm]| bits per character and prepend the representation with an
extra 1. This way, oid(w) is a sequence of 1 + |w| [logm] = O(mlogm) bits. Using
Theorem 3.4.1 to build the fusion tree, we obtain an O(m)-time evaluation algorithm. [

To answer queries for short fragments of 7', we define overlapping blocks of length
m = 27: for 0 <4 < 2, we create a block T; = T'[1 + 47 .. min(n, (i + 2)7)]. For each
block, we apply Fact 9.3.7 to compute the identifier 0id(7;) of the underlying string. The
total length of the blocks is bounded 2n, so this takes O(n) time. The identifiers use
O(Z7logT) = O(nlog ) bits of space.

Moreover, for each distinct identifier oid(7;), we store the answers to all the MINIMAL
SUFFIX QUERIES in T;. This takes O(logm) bits per answer and O(2°0°e™)m?2]og m) =
20(rlog7) in total. Since T = o(log’ign), this is n°M). The preprocessing time is also n°0).

It is a matter of simple arithmetics to extend a given fragment v of T, |v| < 7, to an
enclosing block T;. We use the precomputed answers stored for oid(7;) to determine the
minimal suffix of v. We only need to translate the indices within 7; to indices within 7'
before returning the answer. Below, we state our results for short and arbitrary fragments,
respectively:

Theorem 9.3.8. For every text T of length n and every parameter T = o(log’ign), there
nlog T

exists a data structure of size O(F75F) which answers in O(1) time MINIMAL SUFFIX

QUERIES for fragments of length not exceeding . Moreover, it can be constructed in O(n)
time.

Theorem 1.1.9. For every text T of length n, there ezists a data structure of size O(n)
which answers MINIMAL SUFFIX QUERIES in O(1) time. It can be constructed in O(n)
time.
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9.4 Generalized Minimal Suffix Queries

In this section, we develop a data structure answering GENERALIZED MINIMAL SUFFIX
QUERIES. We start with preliminary definitions and then we describe the counterparts of
the three data structures presented in Section 9.3. Their query times are O(k?log |v]),
O(k?log* [v|), and O(k?*), respectively, i.e., there is an O(k?) overhead compared to
MINIMAL SUFFIX QUERIES.

We define a k-fragment of the text T as a sequence T'[¢y..7q] - T[ly ..7g] of k frag-
ments of 7. Observe that a k-fragment can be stored in O(k) space as a sequence of pairs
(¢;,7;). If a string w admits such a decomposition using &’ (k" < k) substrings of 7', we call
it a k-substring of T'. Every k'-fragment (with &’ < k) whose value is equal to w is called
an occurrence of w as a k-substring of T'. Observe that a substring of a k-substring w of T’
is itself a k-substring of 7. Moreover, given an occurrence of w, one can canonically assign
each fragment of w to a k’-fragment of 7' (K’ < k). This subroutine can be implemented in
O(k) time and referring to w[¢..r| in our algorithms, we assume that such an operation
is performed behind the scenes.

The augmented suffix array can answer basic queries regarding k-fragments since they
are easily reduced to the counterparts for fragments.

Observation 9.4.1. The augmented suffiz array answers queries (a)—(c) in O(k) time if
x and y are k-fragments of T' or k-fragments of TE.

We answer GENERALIZED MINIMAL SUFFIX QUERIES using the following auxiliary
queries:

AUXILIARY MINIMAL SUFFIX QUERIES
Given a fragment v of T' and a k-fragment w of T, compute MinSuf (v, w) (represented
by its length).

Lemma 9.4.2. For every text T, the minimal suffix of a k-fragment v can be determined
by k AUXILIARY MINIMAL SUFFIX QUERIES (asked for k'-fragments w with k' < k) and
additional O(k?)-time processing using the augmented suffiz array of T.

Proof. Let v = vy ---vg. By Observation 9.1.3(b), either MinSuf(v) = MinSuf(v;) or
MinSuf(v) = MinSuf(v;, v;41 - - - vx) for some i € [1,k]. Hence, we apply AUXILIARY
MINIMAL SUFFIX QUERIES to determine MinSuf(v;, v;41---vg) for each 1 < i < k.
Observation 9.1.3(c) lets us reduce computing MinSuf(vg) to another auxiliary query.
Having obtained k candidates for MinSuf(v), we use the augmented suffix array to return
the lexicographically smallest of them using k& — 1 comparisons, each performed in O(k)
time; see Proposition 9.2.1 and Observation 9.4.1. O

Fact 9.4.3. AUXILIARY MINIMAL SUFFIX QUERIES can be answered in O(klog|v|) time
using the augmented suffix array of T.

Proof. We apply Lemma 9.2.3 to determine A(v), and then we compute the smallest
string among {sw : s € A(v)}. These strings occur as (k + 1)-fragments of 7" and thus a
single comparison takes O(k) time using the augmented suffix array. O]

Corollary 9.4.4. GENERALIZED MINIMAL SUFFIX QUERIES can be answered in
O(k*log |v|) time using the augmented suffix array of T
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9.4.1 O(klog" |v|)-Time Auxiliary Minimal Suffix Queries

Our data structure closely follows its counterpart described in Section 9.3.1. We define
distinguished fragments in the same manner and provide a recursive algorithm based on
Fact 9.3.2. However, instead of applying Lemma 9.3.3, for each distinguished fragment we
build the following much stronger data structure. Its implementation is the main technical
contribution of this section.

Lemma 9.4.5. Let v be a fragment of T. There exists a data structure of size O(log? [v])
which answers the following queries in O(k) time: determine MinSuf (v, w) for a given
k-fragment w of T. The data structure can be constructed in O(log® |v|) time, assuming
that it has access to the augmented suffix array of T'.

Before proving Lemma 9.4.5, we describe how it is used for answering AUXILIARY
MINIMAL SUFFIX QUERIES. If f([v]) > |v] (Jv| < 2'9), we use Fact 9.4.3 to compute
MinSuf (v, w) in O(klog |v]) = O(k) time. Otherwise, we apply Fact 9.3.2 to decompose
v = uv'v” so that v’ is distinguished, |u| < |v/|, and |[v”| < f(|v]), where f(z) = 2lloslog=]®,
The characterization of Observation 9.1.3 and Corollary 9.1.12(b) again gives three
candidates for MinSuf (v, w): MaxSuf®(u, v')v"w, MinSuf(v',v"w), and MinSuf(v”, w).
We determine the first using Lemma 9.2.2, the second using Lemma 9.4.5, and the third
one is computed recursively. The application of Lemma 9.4.5 takes O(k + 1) time since
v"w is a (k + 1)-fragment of T. We return the best of the three candidates using the
augmented suffix array to choose it in O(k) time. Since f(f(z)) = o(logx), the depth of
the recursion is O(log™ [v]). This concludes the proof of the following result:

Theorem 9.4.6. For every text T of length n, there exists a data structure of size
O(n) which answers AUXILIARY MINIMAL SUFFIX QUERIES in O(klog™ |v|) time and
GENERALIZED MINIMAL SUFFIX QUERIES in O(k*log” |v|) time. It can be constructed
in O(n) time.

Rank queries in a collection of fragments

The crucial tool we use in the proof of Lemma 9.4.5 is a data structure constructed
for a collection A of WO fragments of T to support rank4(w) queries for arbitrary
k-fragments w of T'. It heavily relies on the compacted trie of the fragments in A (see
Section 2.6 for the definition of compacted tries and related concepts).

Before we proceed with ranking a k-fragment in a collection of fragments, let us prove
that fusion trees make it relatively easy to rank a suffix in a collection of WOW suffixes.

Fact 9.4.7. Let A be a set of WOW suffives of T. There exists a data structure of size
O(|A|), which answers the following queries in O(1) time: given a suffix v of T, find a
suffic u € A maximizing lep(u,v). The data structure can be constructed in O(|A]) time,
assuming that it has access to the augmented suffix array of T.

Proof. Let A={T[l,..],...,T[ln..]}. We build a fusion tree storing the ranks {ISA[{;] :
1 <i < m} and during a query for v = T'[¢..], we determine the predecessor and the
successor of I SA[(]. We use the suffix array (the SA table) to translate these integers into
indices ¢;, and £;,. Since the order of the ranks I.S A[¢;] coincides with the lexicographic
order of suffixes T'[¢; . ], the suffixes T'[(;, ..] and T'[¢;, . .| are the predecessor pred 4(v) and
the successor succa(v), respectively. These are the two candidates for v € A maximizing
lep(u,v). We perform two LONGEST COMMON EXTENSION QUERIES and return the
candidate for which the obtained value is larger, breaking ties arbitrarily. O
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Lemma 9.4.8. Let A be a set of WO fragments of T. There exists a data structure
of size O(|A|*) which answers the following queries in O(k) time: determine the rank
rank4(v) of a given k-fragment v of T. The data structure can be constructed in O(|A|?)
time, assuming that it has access to the augmented suffiz array of T.

Proof. Let A = {T[ty..r1],...,T[lm..7]} and let T be the compacted trie of the
underlying substrings of 7. Note that 7 can be easily constructed in O(mlogm) time
using the augmented suffix array. For each edge, we store a fragment of 1" representing
its label, and for each terminal node, we store its rank in A. Moreover, for each explicit
node v of T, we store pointers to the first and last (in pre-order) terminal nodes in its
subtree as well as the following two components: a fusion tree containing the children of v
indexed by the first character of the corresponding edge label, and an instance of the data
structure of Fact 9.4.7 for {T'[¢; + d, ..] : ¢; € L,}, where d, is the (weighted) depth of v
and L, contains ¢; whenever the locus of T'[(;..r;] is in the subtree of v. Finally, for each
¢;, we store a fusion tree containing (pointers to) all explicit nodes of 7 which represent
prefixes of T'[¢; ..], indexed by their (weighted) node depths. All these components can be
constructed in O(m?) overall time, with Theorem 3.4.1 applied to build fusion trees.

Let us proceed to a description of the query algorithm. Let v = vy---v; be the
decomposition of the given k-fragment into fragments, and let p; = vy ---v; for 0 < i < k.
We shall scan all v; consecutively and after processing v;, store a pointer to the (possibly
implicit) node v; defined as the locus of the longest prefix of p; present in 7. We start with
po = €, whose locus is the root of 7. Therefore, it suffices to describe how to determine v;
provided that we already know v;_.

If v;_1 is at a depth smaller than |p;,_1|, then there is nothing to do since v; = v;_1.
Otherwise, we proceed as follows: Let v be the nearest explicit descendant of v;_ (v = v;_4
if already v;_; is explicit), and let u be a fragment of T" representing the label from v;_;
to v. First, we check if u matches a proper prefix of v;. If not, v; is on the same edge
of T and its depth is |p;—1| + lep(u, v;). Thus, we may assume that u matches a proper
prefix of v;. Let v; = w-T[¢..r]. We make a query for the suffix T[¢..] to the data
structure of Fact 9.4.7 built for ». This lets us determine an index ¢; € L, such that
lep(T[¢..],T[¢; +d, ..]) is largest possible. This is also an index ¢; € L, which maximizes
D :=1ep(p;, T ..]) =d, + lep(T[C..7],T[¢; +d, . .]). Consequently, we observe that v;
represents T'[¢; .. ¢; + D —1]. To obtain the locus of v;, we compute its depth D using the
augmented suffix array and retrieve the nearest explicit descendant of v; from the fusion
tree built for ¢; as the node whose depth is equal to D or is the successor of D.

After processing the whole k-fragment v, we are left with 14, which is the locus of
the longest prefix p of v present in 7. First, suppose that |p| < |v| and let ¢ = v[|p| + 1].
Note that by definition of v, this node does not have an outgoing edge labeled with c.
If vy, is a leaf (and, consequently, a terminal node), then p = pred,(v) and we return
the rank of v,. If 14 is not a leaf, but it does not have any outgoing edge labeled with a
character smaller then ¢, then the first terminal node of the subtree rooted at the leftmost
child of v, represents the successor of v in A. We return its rank minus one as the rank
of v. Otherwise (if v, has an outgoing edge specified above), we determine the edge going
from v, to some node v so that the edge label is smaller than ¢ and largest possible. If
v, is explicit, we use the appropriate fusion tree to determine v. We observe that the
predecessor of v in A is the last terminal node in the subtree of v and thus we return the
rank stored at that terminal node as the rank of v.

Thus, it remains to consider the case when p = v. If v} is a terminal node, we simply
return its rank. Otherwise, the first terminal node in the subtree of v is the successor of
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v in A, and thus we return the rank of that node minus one. O]

Proof of Lemma 9.4.5

Having developed the key component, we are ready to generalize Lemma 9.3.3, i.e., to
prove Lemma 9.4.5. Its statement is repeated below for completeness.

Lemma 9.4.5. Let v be a fragment of T. There exists a data structure of size O(log® |v|)
which answers the following queries in O(k) time: determine MinSuf (v, w) for a given
k-fragment w of T. The data structure can be constructed in O(log? |v|) time, assuming
that it has access to the augmented suffix array of T'.

Proof. We use Lemma 9.2.3 to compute A(v) in O(log |v|) time. By Lemma 9.1.10, in
order to find MinSuf(v,w), it suffices determine rank x,(w). Moreover, by Lemma 9.1.10
and Observation 9.1.9, rankx(,)(w) € {ranky(,)(w), rank /) (w) — 1}, where X'(v) =
{z8>, ... 2Pm} can be determined in O(log |v|) time from A(v). We build the data structure
of Lemma 9.4.8 for A = X’(v) so that we can determine rankx/(,)(w) in O(k) time. This
leaves two possibilities for rank y ) (w), i.e., for MinSuf (v, w). We simply need to compare
siw, ;1w for these two candidates suffixes s;, s;11 € A(v). Using the augmented suffix
array, this takes O(k) time. Consequently, the query algorithm takes O(k) time in total.
In the preprocessing, we need to construct A(v) and the data structure of Lemma 9.4.8 for
A = X'(v), which takes O(log [v] + |A(v)[?) = O(log® |v|) time. The space consumption is
also O(log® v]). O

9.4.2 O(k)-Time Auxiliary Minimal Suffix Queries

Like in Section 9.3.2, in order to improve the query time in the data structure of Theo-
rem 9.4.6, we simply add a component responsible for computing MinSuf (v, w) for |v| < 7
where 7 = f(f(n)) = o(log)ﬁ)gn).

Again, we partition 7" into [2] overlapping blocks T; of length m = O(7), so that the
number of blocks is much larger than the number of order-isomorphism classes of strings
of length at most m. Next, we precompute some data for each equivalence class and we
reduce a query in 7' to a query in one of the blocks T;.

While this approach was easy to apply for computing MinSuf(v) for a fragment v
(with |v] < 1), it is much more difficult for MinSuf(v, w) for a fragment v (Jv| < 7) and a
k-fragment w. That is because w might be composed of fragments w; starting in different
blocks. As a workaround, we shall replace w by a similar (in a certain sense) k'-fragment
of T;$ (with ¥’ < k + 1) where T; is a block containing v.

For 0 <i < 2, we define T; := T'[iT + 1..min(n, (i 4+ 3)7)]. We determine oid(7;$) for
each block using Fact 9.3.7. For a single block T; per each identifier, we build the augmented
suffix array of T;$, and for all fragments v of T;$, we construct the set A(v) along with
the data structure of Lemma 9.4.5. In total, this data takes O(20(m1gm),O0M)) = pe(l)
space and time to construct.

Now, suppose that we are to compute MinSuf(v,w) where |v| < 7 and w is a k-
fragment of 7. We determine the rightmost block T} containing v. Next, we shall try to
represent w as a k-fragment of T;. We will either succeed or obtain a k’-fragment w’ of T;
(k' < k) and a character ¢ € ¥ such that w’c matches a prefix of w but does not match
any substring of v. In this case, Lemma 9.1.14 states that MinSuf (v, w’c) can be used to
determine two candidates for MinSuf (v, w).
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We decompose w = wy - - - wy, into fragments and process them one by one. Given a
fragment w;, we shall either find an equal fragment of T; or determine a fragment w’; of T;
and a character ¢ € ¥ such that wjc matches a prefix of w; but not a substring of v. Clearly,
if we proceed to w;;1 in the first case and terminate in the second case, at the end we either
successfully represent w or we find a k’-fragment w’ = wy . .. wy_w}, satistying the desired
condition. Note that since v is a substring of T[iT + 1..min(n, (i + 2)7)], every substring
of v must occur in 7" at one of the positions in R; = {it+1, ... ,min(n, (i+2)7)}. Hence, for
each block we build an instance of the data structure of Fact 9.4.7 for suffixes of T" starting
in R;. Given wj, this lets us determine a position ¢ € R; such that d; = lep(T'[(. ], w;) is
largest possible. If d; = |w;| and d; < 7, we have found w; occurring as a substring of 7;.
Otherwise, we set w’; = w;[1..min(d;, 7)], which is a substring of T}, and ¢ = w;[|wj| + 1].
Clearly, w’c is a prefix of w;, so we shall only prove that it is not a substring of v. If d; > 7,
then simply [w)c| > 7 > |v|. Otherwise, by the choice of £ maximizing d; = lep(T'[¢ . .], w;)
among ¢ € R;, the string w;»c cannot occur at any position in R; and, in particular, it
cannot be a substring of v.

If the described procedure succeeds in finding a k-fragment of T} equal to w, we simply
apply the data structure of Lemma 9.4.5 built for v to determine MinSuf(v, w) in O(k)
time. Thus, we may assume that this is not the case and it returns a k’-fragment w’ and
a character c¢. As already mentioned, having computed MinSuf (v, w’c), we can determine
MinSuf (v, w) just by comparing the two candidates with the augmented suffix array. If ¢
occurs in T;, then w'c is a (k' 4 1)-fragment of T; and we may use Lemma 9.4.5 to compute
MinSuf (v, w'c). Otherwise, we replace ¢ by its successor among letters occurring in 7;9$.
The successor can be computed in constant time provided that for each block we store
a fusion tree of all characters occurring in T;$ (mapping each character to an arbitrary
position where is occurs). To see that replacing ¢ by its successor ¢ does not change the
answer, observe that Lemma 9.1.10 expresses MinSuf (v, w'c) in terms of rankx ) (w'c).
The ranks rankx(,)(w'c) and rankx ) (w'c’) are equal because X (v) consists of infinite
strings composed of characters of v (which are automatically present in 7;), and the
modification increases to ¢’ the character ¢ (not present in T;) at the last position of w'c.

Theorem 9.4.9. For every text T of length n and every parameter T = o(log’ign), there

exists a data structure of size O(n) which answers AUXILIARY MINIMAL SUFFIX QUERIES
in O(k) time if |v| < 7. The data structure can be constructed in O(n) time.

This was the last missing ingredient necessary for the strongest result of this chapter.

Theorem 9.4.10. For every text T of length n, there exists a data structure of size O(n)
which answers AUXILIARY MINIMAL SUFFIX QUERIES in O(k) time and GENERALIZED
MINIMAL SUFFIX QUERIES in O(k?) time. The data structure can be constructed in O(n)
time.

9.5 Applications

As already noted in [11], MINIMAL SUFFIX QUERIES can be used to compute the Lyndon
factorization of a fragment. For fragments of T, and in general k-fragments of T" with
k = O(1), we obtain an optimal solution:

Corollary 9.5.1. For every text T of length n, there exists a data structure of size O(n)
which determines the Lyndon factorization v = vi*...v% of a given k-fragment v of T in
O(k*m) time. The data structure can be constructed in O(n) time.
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Our main motivation for introducing GENERALIZED MINIMAL SUFFIX (QUERIES,
however, was to answer MINIMAL ROTATION QUERIES, for which we obtain constant
query time after linear-time preprocessing. This is achieved using the following observation:

Fact 9.5.2 (see [48]). The lexicographically smallest cyclic rotation of v is the prefiz of
MinSuf (v, v) of length |v|.

Proof. Note that the rotations of v are precisely the length-|v| prefixes of strings sv,
where s is a suffix of v. Consequently, the lexicographic order of rotations coincides with
the lexicographic order of the strings sv; the characters following the length-|v| prefixes
only serve as a tie-breaker. O]

Due to Fact 9.5.2, MINIMAL ROTATION QUERIES trivially reduce to AUXILIARY
MINIMAL SUFFIX QUERIES.

Theorem 9.5.3. For every text T' of length n, there exists a data structure of size O(n)
which given determines the lexicographically smallest cyclic rotation of a given k-fragment
v of the text T in O(k?) time. The data structure can be constructed in O(n) time.

The minimal rotation can be used as a canonical representation of a string in its cyclic
equivalence class. Consequently, one can verify the cyclic equivalence of two fragments of
T by first computing their minimal rotations, which can be represented as 2-fragments,
and then by checking whether these 2-fragments match (using Observation 9.4.1). Thus,
we can answer the following CycLiC EQUIVALENCE QUERIES in O(1) time.

CycLic EQUIVALENCE QUERIES
Given two fragment x and y of the text T', decide whether z and y are cyclically
equivalent.

The same approach generalizes to arbitrary k-fragments.

Corollary 9.5.4. For every text T of length n, there exists a data structure of size O(n)
which given two k-fragments x and y of T, checks in O(k?) time whether x and y are
cyclically equivalent. The data structure can be constructed in O(n) time.

Finally, we note that due to Observation 9.1.3(e), queries for maximal suffixes can be
answered using the data structure of Theorem 9.4.10 constructed for the text T'$ with the
alphabet order reversed.

Corollary 9.5.5. For every text T of length n, there exists a data structure of size O(n)
which answers AUXILIARY MAXIMAL SUFFIX QUERIES in O(k) time and GENERALIZED
MAXIMAL SUFFIX QUERIES in O(k?) time. The data structure can be constructed in
O(n) time.
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Chapter 10

Final Remarks

In this dissertation, we have presented efficient data structures for several types of internal
queries in texts. Many of our solutions are optimal in the standard setting of texts
over polynomially-bounded integer alphabets. Nevertheless, tight complexity bounds for
the remaining problems are yet to be settled; this happens to be the case whenever we
apply orthogonal range queries. In particular, the wavelet suffix trees handle SUBSTRING
SUFFIX RANK QUERIES and SUBSTRING SUFFIX SELECTION QUERIES in O(logn) time
compared to the lower bound of 2(logn/loglogn) inherited from range rank and selection
(tight for these range queries). A natural open question is whether this is an indication
of the limitations of our tools or of the inherent difficulty of the internal queries studied.
The gap is even bigger for BOUNDED LONGEST COMMON PREFIX QUERIES and all
kinds of SUBSTRING COMPRESSION QUERIES, for which no lower bounds are known,
even conditioned on the hardness of range searching problems.

The optimality of O(logn) query time for PERIOD QUERIES, on the other hand, follows
from the fact that we ask for a representation of all periods of the specified fragment.
This argument is not valid for a related natural question of computing the shortest period
only. Yet, we do not know how to improve the worst-case query time compared to the
base variant. Perhaps one can prove some lower bound for this restricted version. The
situation with INTERNAL PATTERN MATCHING QUERIES is somewhat similar: We obtain
O(lyl/|x|) query time if we drop the assumption that |y| < 2|z|. This is optimal in the
worst-case (due to an information-theoretic lower bound on the output size), but one
may be interested in a restricted output (the leftmost occurrence only, for example) or an
output-sensitive query time. It is not clear to what extent (if any) our techniques surpass
orthogonal range searching in these scenarios.

Another research direction is to further investigate the applicability of our data
structures. In particular, we have not yet explored the consequences of the most recent
result contained in this thesis—the optimal solution for LONGEST COMMON EXTENSION
(QUERIES in texts over small alphabets. A growing number of algorithms using PREFIX-
SUFFIX QUERIES [3, 5, 7, 63, 87, 91] also indicates a potential for new applications of the
less established query types. However, conducting a systematic study is difficult because
the existing work is not formulated in terms of these recently introduced problems. For
the same reason, it is possible that an important and useful type of internal queries is
still to be discovered.

The contribution of this dissertation is not only in the main theorems but also in
a few novel techniques. In particular, our implementation of local consistency seems
to be a powerful tool. It is likely to be useful for other problems on texts over small
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alphabets, including fundamental tasks such as the efficient construction of text indexing
data structures (see [114] for recent developments). At the same time, further research
should indicate whether our formalization in terms of synchronizing functions can be
replaced by a more elegant one. A natural specific goal is to design a more versatile
way of handling periodic fragments so that they could be captured automatically rather
than being extracted from maximal repetitions. Currently, this drawback seems to hinder
adaptability to some settings where locally consistent parsing schemes turned out to be
very successful.

A wide variety of existing results for LCE QUERIES suggests many possible scenarios
where other internal queries can be studied as well. The best-established ones involve
grammar-compressed and dynamic texts. Other interesting questions concern optimality
for small alphabets (which we have studied for LCE QUERIES only) and the existence
of time-space trade-offs with limited additional memory (on top of the text stored in a
random-access read-only memory).
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