
High-Speed Multioperand Decimal Adders
Robert D. Kenney and Michael J. Schulte, Senior Member, IEEE

Abstract—There is increasing interest in hardware support for decimal arithmetic as a result of recent growth in commercial, financial,

and Internet-based applications. Consequently, new specifications for decimal floating-point arithmetic have been added to the draft

revision of the IEEE-754 Standard for Floating-Point Arithmetic. This paper introduces and analyzes three techniques for performing

fast decimal addition on multiple binary coded decimal (BCD) operands. Two of the techniques speculate BCD correction values and

correct intermediate results while adding the input operands. The first speculates over one addition. The second speculates over two

additions. The third technique uses a binary carry-save adder tree and produces a binary sum. Combinational logic is then used to

correct the sum and determine the carry into the next more significant digit. Multioperand adder designs are constructed and

synthesized for four to 16 input operands. Analyses are performed on the synthesis results and the merits of each technique are

discussed. Finally, these techniques are compared to several previous techniques for high-speed decimal addition.

Index Terms—Computer arithmetic, decimal arithmetic, multioperand adders, hardware designs.

�

1 INTRODUCTION

DECIMAL computer arithmetic has been around since the
beginning of modern computing. One of the earliest

digital computers, the ENIAC, became operational in 1945
and used a decimal base for its arithmetic operations [1].
Calculators also provide direct support for decimal arith-
metic. Though similar to the way humans perform
arithmetic, decimal arithmetic in general purpose compu-
ters was quickly replaced by binary arithmetic, which is a
more natural approach in digital circuits. With hardware
being such a precious commodity in early computers,
representing only 10 decimal numbers with four bits in a
binary coded decimal (BCD) format was much less efficient
than representing 16 binary numbers with the same four
bits. Furthermore, decimal arithmetic operations are typi-
cally more complex and slower than binary arithmetic
operations since they need to handle a wider range of digits,
carries across both bit and digit boundaries, and the
correction of invalid result digits.

Recently, support for decimal arithmetic has received
increased attention due to the growing importance of
financial, commercial, and Internet-based applications
which cannot tolerate errors from converting between
decimal and binary formats. Since many decimal numbers,
such as 0.2, cannot be exactly represented in binary, these
applications often store data in a decimal format and
process data using decimal arithmetic software [2].
Although decimal arithmetic software eliminates conver-
sion errors, it is typically 100 to 1,000 times slower than
binary arithmetic implemented in hardware [2].

Due to the growing importance of decimal arithmetic,
specifications for it have recently been added to the draft

revision of the IEEE 754 Standard for Floating-Point
Arithmetic [3]. The current IEEE 754 Standard, which was
adopted in 1985, specifies support for binary floating-point
arithmetic and is implemented on most general-purpose
computers [4]. It is anticipated that, once the revised IEEE
754 Standard has been officially ratified, computer compa-
nies will begin to incorporate hardware support for decimal
floating-point arithmetic on their processors for financial,
commercial, and Internet-based applications. As transistor
costs continue to decrease, the opportunity exists to
incorporate high-speed decimal arithmetic units on future
processors.

This paper introduces and analyzes various techniques
for high-speed multioperand decimal addition. Multioper-
and addition is important because it often forms the core of
other arithmetic operations, such as multiplication and
division [5]. Consequently, efficient multioperand decimal
addition is essential to the implementation of fast decimal
multipliers and dividers. Multioperand decimal addition
may also be useful for quickly summing large amounts of
decimal data. Section 2 gives an overview of two-operand
decimal addition, which has been the focus of most
previous research in this area. Section 3 introduces three
techniques for multioperand addition and discusses their
hardware costs and worst-case delay paths. Section 4
presents area and delay estimates for the multioperand
decimal adders, along with estimates for multioperand
binary adders. Section 5 describes related work on decimal
addition. Section 6 gives our conclusions. This paper is an
extension of our research presented in [6]. Additional
information on decimal arithmetic is available from
http://mesa.ece.wisc.edu and http://www2.hursley.ibm.
com/decimal/.

In the remainder of this paper, decimal numbers are
assumed to be in Binary Coded Decimal (BCD) format.
Subscripts next to constants are used to denote the base of
the constant. For example, 10012 represents the binary
number equal to nine. When no subscript is given next to a
constant, a decimal base is implied. An upper case variable
(e.g., Ai) denotes an entire operand word. A lower case

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005 953

. R.D. Kenney is with IBM Corp. and can be reached at 4023 Valley Ridge
Rd., Middleton, WI 53562. E-mail: rdkenney@uwalumni.com.

. M.J. Schulte is with the Department of Electrical and Computer
Engineering, University of Wisconsin-Madison, 1415 Engineering Dr.,
Madison, WI 53706. E-mail: schulte@engr.wisc.edu.

Manuscript received 3 Sept. 2004; revised 4 Feb. 2005; accepted 5 Apr. 2005;
published online 15 June 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0285-0904.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

variable (e.g., ai) denotes a single digit in that operand. A
digit referenced with brackets (e.g., ai½4�) denotes a single
bit in that digit.

2 TWO-OPERAND BCD ADDITION

In BCD format, each decimal digit is represented using four
bits, where the bit patterns 00002 to 10012 represent decimal
digits 0 to 9 and the bit patterns 10102 to 11112 are invalid.
In the most straightforward approach to BCD addition, two
BCD digits are added together and the resulting sum is
examined. If the sum is greater than nine, a correction value
of six is added to the sum. Adding six skips the invalid bit
patterns and yields the correct BCD sum digit and a carry-
out of the digit [7]. For example, to compute 7þ 7 ¼ 14 in
BCD, the two sevens are added to produce 11102. Since this
sum is greater than 9, a correction of 6 ¼ 01102 is added to
11102, which yields a carry-out of 1 and a sum of 01002,
which corresponds to the correct BCD representation of
14 ¼ 0001 01002.

Fig. 1 illustrates the difficulty in performing a word-wide
BCD addition, using the example 2; 575þ 3; 428 ¼ 6; 003.
This addition cannot be completed with one word-wide
binary carry-propagate addition and correction. After the
first carry-propagate addition of the two input operands, all
resulting sumdigits in Sum1potentially need tobe corrected.
In this example, only the 11012 in Sum 1 needs to be corrected
since it is greater than nine. The addition of 01102 to 11012 in
Correction 1 causes a carry to be passed to the next more
significant digit. Now, the 10102 in Sum 2 needs to be
corrected using Correction 2. This creates 10102 in Sum 3,
which needs to be corrected. Finally, the correct BCD sum is
produced in Result. In this example, four decimal carry-
propagate additions are performed. To avoid repetitive
word-wide additions and corrections, the least significant
digits of A and B can be added, compared to nine, and
corrected before proceeding to the addition of the next pair of
digits with the correct carry-in. This approach, however,
causes digit additions to be performed sequentially.

One way to improve the performance of BCD addition is
to speculate that the sum for each pair of digits will be
greater than nine [7]. This is done by adding six along with
each pair of digits from the original input operands. As a
result, carries between 4-bit digits now correspond to the
value 10, rather than 16. The advantage of this approach is
that the correct carries between digits are generated during
the first addition. The resulting sum digits need to be
corrected by subtracting six modulo 16 (i.e., adding 10102) if
the carry-out is zero. This approach is illustrated in Fig. 2.
First, the Speculated Correction, 6666, is added with A and

B using binary carry-save addition to produce Sum and
Carry. A word-wide binary carry-propagate addition is
then performed to obtain Compressed Sum and Carry.
After this, the Final Correction is subtracted using only
digit-wide subtractions since all sum digits are guaranteed
to be at least six.

One variant of decimal addition, called direct decimal
addition, is proposed by Schmookler and Weinberger in [8].
This technique uses combinational logic to produce digit
generate and propagate signals for each pair of BCD digits.
The digit propagate and generate signals are then sent to
carry-lookahead logic, which is used to compute digit
carries in parallel. Finally, the digit carries and additional
carry-lookahead logic within each digit are used to quickly
produce the sum digits. The advantage of this method is
that the combinational logic directly computes the correct
sum digits, without the need for corrections.

Multioperand decimal addition can be performed by
repetitively using two-operand decimal addition to add each
operand. This approach, however, is very slow since each
addition has carry propagation. A faster approach, which is
introduced in this paper, is to use binary carry-save addition
to compute intermediate results. When several operands are
added together, the intermediate results are kept in binary
carry-save format, delaying the carry-propagate addition
until the end. Themultioperand decimal addition algorithms
introduced in this paper speed up the process of decimal
addition when multiple BCD operands are added together.
These algorithms are fundamentally different from multi-
operand binary addition algorithms [9], [10] since the sum
and carry digits need to be corrected to ensure that proper
BCD results are produced.

3 PROPOSED TECHNIQUES FOR MULTIOPERAND

DECIMAL ADDITION

In this section, we introduce and analyze three techniques for
performing fast decimal addition onmultiple BCDoperands.
Two of the techniques speculate BCD correction values and
correct intermediate resultswhile adding the input operands.
The first technique, Single Correction Speculation, speculates
over one addition. The second technique, Double Correction
Speculation, speculates over two additions. The third
technique, Nonspeculative Addition, uses a binary carry-
save adder tree [11] and produces a binary sum. Combina-
tional logic is then used to correct the sum and determine
the carry into the next more significant digit. The designs
are first described for 1-digit multioperand decimal adders.
We then explain how multiple 1-digit multioperand adders
can be used to form word-wide multioperand decimal

954 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 1. Example BCD addition of 2; 575þ 3; 428 ¼ 6; 003 with iterative

correction.

Fig. 2. Example BCD addition of 2; 575þ 3; 428 ¼ 6; 003 with speculative

correction.

adders. In the following discussion, m denotes the number
of input operands and n denotes the number of digits in
each input operand.

3.1 Single Correction Speculation

The algorithm for Single Correction Speculation is shown in
Fig. 3. The algorithm is called Single Correction Speculation
since we implicitly speculate that the addition a0 þ a1 does
not need to be corrected. If a carry out of the current digit
position occurs, this speculation is incorrect and a correc-
tion value of six is added along with the next input
operand. With Single Correction Speculation, BCD digits
from the first two input operands, a0 and a1, are added
using simplified binary carry-save addition to produce a
4-bit sum digit, s1, and a 4-bit carry digit, c1, such that
s1 þ c1 ¼ a0 þ a1. The 4-bit simplified binary carry-save
addition is performed using four half adders that operate
in parallel to add corresponding bits from a0 and a1 and
produce sum and carry vectors, s1 and c1, respectively.
Using a simplified binary carry-save adder, which adds two
input digits, instead of a conventional carry-save adder,
which adds three input digits, allows there to be one
correction for each addition. This simplifies the final
correction logic and results in a less complex overall design.

When performing carry-save addition, each carry digit is
shiftedonebitposition to the left relative to thecorresponding
sum digit. Thus, each sum digit, si, has bit positions si½3 : 0�,
while each carry digit, ci, has bit positions ci½4 : 1�. Although
each inputdigit,ai, is aBCDdigitwith0 � ai � 9, the sumand
carry digits, si and ci, are 4-bit values, where, in general, 0 �
si � 15 and 0 � ci � 30. The range of ci is twice as large as that
of si since it is shifted one bit position to the left.

If the most significant bit of the first carry digit, c1½4�, is
equal to one, then a carry out of the current digit position
has occurred. In this case, a correction value of six is added
to compensate for the fact that c1½4� has a weight of 16, while
a decimal carry has a weight of 10. This can be expressed
mathematically as

c1½4 : 1� ¼ 16c1½4� þ 8c1½3� þ 4c1½2� þ 2c1½1�
¼ 6c1½4� þ ð10c1½4� þ 8c1½3� þ 4c1½2� þ 2c1½1�Þ:

ð1Þ

Thus, c1½4� can be treated as a decimal carry, with a weight
of 10, if a correction value of 6 is added when c1½4� ¼ 1.

To keep the addition of the correction value off the critical
delay path, the correction value is added to the BCD digit of
the next input operand, a2, in advance and c1½4� is used to
select between a2 and a2 þ 6 as the next value to be added. A
similar process continues for m-2 iterations (2 � i < m), until
all m input operands are added with appropriate correction
values. Each iteration, the most significant bit of the carry
digit in the previous iteration, ci�1½4�, is examined. If ci�1½4� is

one, then a carry out of the current digit has occurred and
ai þ 6 is added to si�1 and ci�1 using carry-save addition to
produce si þ ci ¼ si�1 þ ci�1 þ ðai þ 6Þ. Otherwise, no correc-
tion is needed and ai is added to si�1 and ci�1 to produce
si þ ci ¼ si�1 þ ci�1 þ ai.

At the end of the algorithm,

1. a speculation correction value, sc, is added to sm�1

and cm�1 based on cm�1½4�,
2. a 1-digit carry-propagate addition is performed to

compress the sum and carry digits to obtain a 5-bit
preliminary sum, z0½4 : 0� ¼ sm þ cm,

3. the preliminary sum is corrected to produce z, and
4. a digit carry, co, is produced.

In Fig. 3, {co, z} corresponds to the 5-bit value obtained by
concatenating co and z. It is useful to note that the
corrections for the first m-1 iterations compensate for
carries out of the current digit position, while the final
corrections also help ensure that the final result is a valid
BCD digit.

The algorithm produces the correct result since each time
a carry-out of the current digit occurs (i.e., ci½4� ¼ 1), a
correction value of six is added, which allows the digit
carries to maintain a value of 10, rather than 16. This is
expressed mathematically as

ci½4 : 1� ¼ 16ci½4� þ 8ci½3� þ 4ci½2� þ 2ci½1�
¼ 6ci½4� þ ð10ci½4� þ 8ci½3� þ 4ci½2� þ 2ci½1�Þ:

ð2Þ

Thus, each time ci½4� ¼ 1, six is added to the current digit
position to correct the sum.

Since corrections are performed after each carry-save
addition, the final correction steps are fairly simple, as
shown in Table 1 and Table 2. Table 1 determines the
correction value needed due to adding the last input
operand. If cm�1½4� ¼ 1, then sc ¼ 6 to correct for the carry
out of the current digit position; otherwise, sc ¼ 0. Table 2
determines the final correction value needed for Step 5 of
Fig. 3. The logic that implements Table 2 examines the last
two carry bits, cm½4� and z0½4�, and the preliminary sum digit,
z0½3 : 0�. A value of six needs to be added to the current digit
position when cm½4� ¼ 1, when z0½4� ¼ 1, or when
z0½3 : 0� � 10. Thus, the value of f, which corrects for all of
these cases is:

f ¼ 6� ðcm½4� þ z0½4� þ zge10Þ; ð3Þ

where zge10 ¼ 1when z0½3 : 0� � 10. The final row of Table 2
cannot occur since cm½4� and z0½4� each has a weight of 16
and sm�1 þ cm�1 þ sc � 36.

Fig. 4a shows an example of performing the 1-digit
multioperand decimal addition 9þ 8þ 7þ 6þ 5 ¼ 35 using
the Single Correction Speculation Algorithm, where carries

KENNEY AND SCHULTE: HIGH-SPEED MULTIOPERAND DECIMAL ADDERS 955

Fig. 3. Single Correction Speculation Algorithm.

out of the current digit position are shown in bold. When

the algorithm completes, z ¼ 5. Since there are a total of

three carries out of the current digit position with a value of

1 (i.e., c1½4� ¼ 1, c4½4� ¼ 1, and co ¼ 1), the correct result of 35

is produced.
Fig. 5 shows the block diagram of a 1-digit, 5-operand

Single Correction Speculation Adder, where CSA and CPA

correspond to Carry-Save Adder and Carry-Propagate

Adder, respectively. Each multiplexer selects ai when

ci�1½4� is zero and ai þ 6 when ci�1½4� is one. Since ai is a

4-bit BCD digit in the range of 0 to 9, ai þ 6 is in the range of

6 to 15. Thus, ai þ 6 is represented using just 4 bits and is

computed from ai using simple two-level logic [13]. Since

the values for ai þ 6 are computed as soon as the input

operands are ready, these additions are no longer on the

critical delay path. Once all the input operands are added

using carry-save addition, one more carry-save addition

and two 4-bit carry-propagate additions are used to per-

form the last two corrections and obtain the final sum.

A 1-digit, m-operand Single Correction Speculation
Adder requires m 4-bit carry-save adders, (m-1) 4-bit
2:1 multiplexers, (m-2) combinational logic blocks to find
ai þ 6, two 4-bit carry-propagate adders, and one 4-level
combinational logic block to produce the final correction, f.
Its critical delay path has m carry-save additions, (m-1) 4-bit
2:1 multiplexers, two 4-bit carry-propagate additions, and
the logic to implement Table 2, which is a 6-variable
Boolean function that is realized in four levels of logic.

3.2 Double Correction Speculation

One improvement that can be made to the Single Correction
Speculation Algorithm is to speculate that the first two
additions will not need to be corrected. With the Double
Correction Speculation Algorithm, shown in Fig. 6, ci�2½4� is
used to select whether ai or ai þ 6 is added to si�1 and ci�1.
This removes the multiplexers that select between ai and
ai þ 6 from the critical path since the correction for aiþ1 is
selected while the carry-save addition of ai or ai þ 6 with
si�1 and ci�1 is being performed. It also removes the logic
needed to produce a2 þ 6 since a2 is always added without a
correction value. The only negative consequence of Double
Correction Speculation is that determining the speculation
correction value, sc, is slightly more complex since two
speculative additions need to be corrected, instead of one.
The value used for speculation correction is 0, 6, or 12,
based on cm�2½4� and cm�1½4�, as shown in Table 3. Fig. 4b
shows an example of performing the 1-digit BCD addition
9þ 8þ 7þ 6þ 5 ¼ 35 using the Double Correction Spec-
ulation Algorithm.

Fig. 7 shows a block diagram for a 1-digit, 5-operand
Double Correction Speculation Adder. A 1-digit, m-operand

956 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

TABLE 1
Speculation Correction Selection for Step 3 of Fig. 3

TABLE 2
Correction Selection for Step 5 of Fig. 3

Fig. 4. Examples of 1-digit multioperand decimal addition for

9þ 8þ 7þ 6þ 5 ¼ 35. (a) Single Correction. (b) Double Correction.

(c) Nonspeculative.

Fig. 5. 1-digit, 5-operand Single Correction Speculation Adder.

Double Correction Speculation Adder requires m 4-bit
carry-save adders, (m-3) 4-bit 2:1 multiplexers, (m-3) com-
binational logic blocks to find ai þ 6, one 4-bit 4:1 multi-
plexer, two 4-bit carry-propagate adders, and one 4-level
combinational logic block to produce the final correction, f.
Its critical delay path consists of m carry-save additions, one
4-bit 2:1 multiplexer delay, two 4-bit carry-propagate
additions, and 4-levels of logic to implement Table 3.
Compared to the Single Correction Speculation Adder, the
Double Correction Speculation Adder removes (m-2) 4-bit
2:1 multiplexers from the critical delay path. Speculating
beyond two additions does not further decrease delay since
the multiplexers are already off of the critical delay path.

3.3 Word-Wide Decimal Addition

The techniques discussed in Sections 3.1 and 3.2 have been
described for 1-digit (4-bit) multioperand speculative
addition. When adding input operands with multiple
digits, the algorithms are performed in the same manner
described previously, but ci½0� is set to the carry-out from
the previous less significant carry digit and bit position ci½4�
is passed to the least significant bit of the next more
significant carry digit. Thus, an n-digit multioperand
decimal adder is composed of n 1-digit multioperand
decimal adders that operate in parallel with carries from
one digit fed to the next more significant digit. The 4-bit
sum digits and 1-bit carry digits produced at the bottom of
the 1-digit multioperand adders are fed into a word-wide
decimal carry-propagate adder to obtain the final result.

In our designs, the word-wide decimal carry-propagate
adder is implemented using a decimal carry-lookahead
adder. This adder is similar to the decimal carry-lookahead
adder presented in [8], except one of the input operands has
digits corresponding to carry bits with values of zero or one.
The adder performs word-wide decimal carry-lookahead
addition in three steps. First, interdigit carries are generated
in parallel. Then, the proper decimal correction values are
selected for each digit. Finally, the correction values are
added to the 4-bit sum digits.

Fig. 8a and Fig. 8b show examples of word-wide
multioperand decimal addition using the Single and Double
Correction Speculation Algorithms, respectively. In these

examples, capital letters are used to indicate that the

operation is performed on operand words with multiple

digits. Ai corresponds to input operand Ai after the

correction values have been conditionally added. Carries

between digits are shown in bold. While adding the input

operands, carries out of digit position j become carries

into digit position j + 1. The carries out of the most

significant digit position can either be summed, if the

output operand has more digits than the input operands,

or discarded, if the output operand has the same number

of digits same as the input operands. When performing

the digit carry-propagate additions, z0 ¼ sm�1 þ cm�1, each

carry-out, z0½4�, is concatenated with the final correction, f,

of the next more significant digit and then added to

z0½3 : 0�. For the word-wide operations, this is denoted as

Z ¼ Z0 þ ðF;Z0½4�Þ. In the final step, the carry-propagate

adder performs SUM ¼ Zþ ðR;C0Þ, where C0 corresponds

to the digit carries from the previous addition and R

corresponds to digit corrections produced by the word-

wide decimal carry-propagate adder.

KENNEY AND SCHULTE: HIGH-SPEED MULTIOPERAND DECIMAL ADDERS 957

Fig. 6. Double Correction Speculation Algorithm.

TABLE 3
Speculation Correction Selection Table for Step 4

Fig. 7. One-digit, 5-operand Double Correction Speculation Adder.

3.4 Nonspeculative Addition

NonspeculativeAdders sumBCD input operands in a binary

carry-save tree, passing carriesgeneratedalong theway to the

next more significant digit. A preliminary binary sum is then

produced. These sums and carry-outs from the carry-save

adder tree are fed into combinational logic, which produces a

decimal sum and carry corrections if needed.
The algorithm for Nonspeculative Addition is shown in

Fig. 9. In the algorithm, the input operands are shown as

being added serially. In practice, however, a tree of binary

carry-save adders is used to add the input operands. Once

all the input operands are added, combinational logic is

used to determine the sum correction, g, and the carry

correction, cout, for the next more significant digit. These

values are determined based on the number of carries out of

the current digit position, ci½4� (for 1 � i � m� 2) and the

preliminary sum digit z0½4 : 0�.
With the nonspeculative addition algorithm, the sum

and carry correction logic varies based on the number of

input operands added. The sum correction, g, is determined

by recognizing that 1) a correction of six should be added

for each multiple of 10 in the sum of the input digits, 2) each

carry-out of the current position, ci½4� has a weight of 16,

and 3) since g is limited to a 4-bit digit, its value is

computed modulo 16. Thus, the sum correction is

g ¼ z0½4 : 0� þ 16�
Pm�2

i¼1 ci½4�
10

$ %
� 6

 !
mod 16: ð4Þ

The carry correction, cout, is determine by recognizing that

1) for each multiple of 10 in the sum of the input digits, a

958 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 8. Examples of multioperand decimal addition for 299þ 398þ 497þ 596þ 695 ¼ 2; 485. (a) Single Correction Speculation. (b) Double Correction

Speculation. (c) Nonspeculative.

Fig. 9. Serial implementation of the Nonspeculative Addition Algorithm.

carry-out of the current digit position should be generated
and 2) the carries, ci½4�, that have already been passed to the
next more significant digit do not need to be produced by
the carry correction logic. Thus, the carry correction is:

cout ¼ z0½4 : 0� þ 16�
Pm�2

i¼1 ci½4�
10

$ %
�
Xm�2

i¼1

ci½4�: ð5Þ

Because of how cout is determined, z0½4� and z½4� are
discarded, instead of being passed to the next more
significant digit, which simplifies the overall hardware
design.

For a given number of input operands, m, efficient
combinational logic can be designed to produce g and
cout. Table 4 shows how g and cout are determined
based on the sum of the intermediate digit carries, ci½4�
(for 1 � i � m� 2) and the preliminary sum, z0½4 : 0�, when
m ¼ 5. For example, when c1½4� þ c2½4� þ c3½4� ¼ 1 and
14 � z0½4 : 0� < 24, the sum of the input digits is 30 �
a0 þ a1 þ a2 þ a3 þ a4 < 40 since ci½4� has a weight of 16.
Thus, the sum correction is g ¼ ð3� 6Þmod 16 ¼ 2 and the
carry correction is cout ¼ 3� 1 ¼ 2. The same basic ap-
proach is used for other values of m, but the sum and carry
correction logic becomes more complex as m increases.

Fig. 4c shows an example of performing the 1-digit BCD
addition 9þ 8þ 7þ 6þ 5 ¼ 35 using the Nonspeculative
Addition Algorithm. In this example, c1½4� þ c2½4� þ c3½4� ¼ 1
and z0½4 : 0� ¼ 19. Based on Table 4 or (4) and (5), this gives
cout ¼ 2 and g ¼ 2. Adding g to z0½3 : 0� gives 5 and adding
cout to c1½4� þ c2½4� þ c3½4� gives 3, so the correct result of 35
is produced. As noted previously, z0½4� is discarded, which
simplifies the carry correction logic.

Fig. 10 shows a block diagram for a 1-digit, 5-operand
Nonspeculative Adder. The five BCD operand digits are
added using a binary carry-save tree and a 4-bit CPA. The
result is a 5-bit binary sum, z0½4 : 0�, and three intermediate
carry-outs, c1½4�, c2½4�, and c3½4�. The 5-bit binary sum and
the three carry-outs are fed into sum and carry correction
logic to produce g and cout, which is passed to the next
more significant digit. The sum correction, g, and the lower
four bits of the binary sum, z0½3 : 0�, are passed through a
1-digit CPA to produce the correct BCD sum, z.

A 1-digit, m-operand Nonspeculative Adder requires
(m-2) 4-bit carry-save adders, one 4-bit carry-propagate
adder, one 5-level combinational logic block to generate the
carry-out and correction digits (for up to 16 input
operands), and one 3-bit carry-propagate adder to add the

correction digit to the binary sum. Its critical delay path
consists of roughly blog3=2 ðm� 1Þc carry-save additions,
one 4-bit carry-propagate addition, one 5-level logic block,
and one 3-bit carry-propagate addition. Unlike the Correc-
tion Speculation Adders, which use an array of binary
carry-save adders and have a linear delay, the Nonspecu-
lative Adders use a tree of binary carry-save adders and
have logarithmic delay.

The word-wide BCD adder for the Nonspeculative
Adders uses decimal carry-lookahead logic, similar to that
described in [8]. The addition is done using a variation of
direct decimal addition [8] in which each 1-digit adder takes
a sum and carry digit and produces digit propagate and
generate signals. The digit propagate and generate signals
are then sent to carry-lookahead logic, which is used to
compute digit carries in parallel. Finally, the digit carries
and additional carry-lookahead logic within each digit are
used to quickly produce the sum digits.

An example of word-wide Nonspeculative Addition is
shown in Fig. 8c. In this example, the input operands are
added using three word-wide carry-save additions and
parallel digit-wide carry-propagate additions to produce Z0.
For each digit, z0½4 : 0� and c4½i� (1 � i � m� 2) are examined
to determine the g and cout. G is added to Z0 using parallel
digit-wide carry-propagate additions to produce Z and then
COUT is added to Z using decimal carry-lookahead
addition [8] to produce SUM.

3.5 Binary Multioperand Adders

For comparison, binary multioperand carry-save adders are
built to evaluate the additional cost of performing multi-
operand decimal addition. One set of binary multioperand

KENNEY AND SCHULTE: HIGH-SPEED MULTIOPERAND DECIMAL ADDERS 959

TABLE 4
Sum and Carry Correction for m ¼ 5

Fig. 10. One-digit, 5-operand Nonspeculative Adder.

adders is designed to be similar to the Correction Specula-

tion Adders and contains a linear array of binary carry-save

adders. The other set is designed to be similar to the

Nonspeculative Adders and uses a tree of binary carry-save

adders. Both types of binary multioperand adders use the

same word-wide carry-propagate adder. In the word-wide

carry-propagate adder, two levels of carry-lookahead logic

are implemented. The first level produces group generate

and propagate signals for 4-bit blocks. The second level uses

the group generate and propagate signals to obtain the

carries into each 4-bit block.

4 SYNTHESIS RESULTS

Decimal and binary multioperand adders were modeled in

Verilog and simulated extensively to ensure correct

functionality. They were then synthesized using Synopsys

Design Compiler and the LSI Logic’s lcbg11p 0.18 micron

CMOS standard cell library. When performing synthesis,

the designs were optimized for area. Four-bit (1-digit) and

32-bit (8-digit) multioperand adders were constructed for

each of the techniques proposed, including the two types of

binary multioperand adders discussed in Section 3.5. Each

32-bit multioperand decimal adder is constructed from

eight 1-digit multioperand adders, followed by a word-

wide decimal carry-lookahead adder. Each 32-bit binary

multioperand adder is constructed using a linear array or

logarithmic tree of carry-save adders, followed by a word-
wide binary carry-lookahead adder. The number of input
operands for the adders constructed ranges from four to
16 operands.

The delay and area for the 4-bit multioperand adders are
shown in Figs. 11 and 12, respectively. The delay and area
for the 32-bit adders are shown in Figs. 13 and 14,
respectively. Similar conclusions can be reached using
either the 4-bit or the 32-bit multioperand adder results.
The 32-bit multioperand adder results, which show the
overall area and delay due to processing multiple digits and
performing word-wide carry-lookahead addition, are dis-
cussed throughout the rest of this section.

For all speculative multoperand adders and also the
binary array multioperand adders, the delay increases
linearly with the number of input operands. The difference
in delay between Double and Single Correction Speculation

Adders grows with more input operands because the
multiplexer delays to select ai or ai þ 6 are hidden in the
Double Correction Speculation Adders.

The Nonspeculative Adders have lower delays than all
of the Speculative Adders. The biggest advantage of the
Nonspeculative Adders is that their delay grows logarith-
mically, rather than linearly, since operands are added
using a tree of binary carry-save adders. Their logarithmic

960 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 11. Delay for 4-bit multioperand adders.

Fig. 12. Area for 4-bit multioperand adders.

delay is particularly useful when a large number of input

operands are added. The area for each of the decimal

adders is similar. On average, the Double Correction

Speculation Adders have slightly less area than the other

decimal adders. The Nonspeculative Adders can also be

implemented using (4:2) compressors to further improve

performance and regularity [12].
Although the Nonspeculative Adders have a significant

delay advantage over the Speculative Adders for the

selected standard cell libraries, there are situations in which

the Speculative Adders may have some distinct advantages.

First, the designs of the Speculative Adders are more

regular, which made lead to advantages in full-custom,

deep-submicron design. Second, the final correction logic

for the Speculative Adders is independent of the number of

input operands. This may lead to advantages when

designing iterative multioperand adders in which the

number of input operands can vary since the same final

correction logic can be used regardless of the number of

input operands.
The areas and delays for binary adders are shown for

comparison. The cost of performing multioperand decimal

addition versus multioperand binary addition is calculated

by comparing the Nonspeculative Adders, which have the

smallest delay and small overall area, to the Binary Tree

Adders. The Nonspeculative Adders have 1.44 to 2.34 times

more delay and 1.61 to 2.03 times more area than the Binary

Tree Adders.

5 RELATED WORK ON DECIMAL ADDITION

Many techniques have been developed to speed up the
process of decimal addition [7], [8], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23]. Since these techniques were
designed for either adding two decimal operands or for
adding a small number of partial products in decimal
multipliers, they are not as well suited for multioperand
decimal addition as the techniques presented in this paper.
In this section, we summarize the previous techniques for
decimal addition that can be more efficiently adopted to
perform multioperand decimal addition and compare them
to our proposed techniques. Further details on the previous
techniques are provided in [8], [14], [15], [16].

One efficient technique for two-operand decimal addi-
tion is direct decimal addition [8]. With this technique,
combinational logic first produces digit generate and
propagate signals for each pair of BCD digits. These signals
are similar to the group generate and propagate signals
used in binary carry-lookahead adders [5], but are modified
to correctly handle decimal operands. The digit propagate
and generate signals are then sent to carry-lookahead logic,
which is used to compute digit carries in parallel. Finally,
the digit carries and additional carry-lookahead logic within
each digit are used to quickly produce the sum digits,
without the need for a final correction. Using this approach
repetitively to perform multioperand decimal addition has
far more delay than the techniques presented in this paper,
since adding m input operands requires (m-1) word-wide
carry-propagate additions.

KENNEY AND SCHULTE: HIGH-SPEED MULTIOPERAND DECIMAL ADDERS 961

Fig. 13. Delay for 32-bit multioperand adders.

Fig. 14. Area for 32-bit multioperand adders.

Erle and Schulte proposed a different technique for
decimal addition for use in an iterative decimal multiplier
[14]. With this technique, a variant of direct decimal
addition is used to produce intermediate results in a
decimal carry-save format. As introduced in [14], a decimal
(3:2) counter accepts as inputs two 4-bit BCD digits and a
1-bit carry and outputs a 4-bit BCD sum digit and a 1-bit
carry. Similarly, a decimal (4:2) compressor accepts as
inputs two 4-bit BCD digits and two 1-bit carries and
outputs a 4-bit BCD sum digit and a 1-bit carry. To perform
multioperand addition, the decimal (4:2) compressor pre-
sented in [14] can be modified to take four BCD digits and
produce a 4-bit sum digit and a 2-bit carry digit since the
largest sum of four BCD digits is 36. A tree of modified
decimal (4:2) compressors can then be used to add the input
operands, using techniques similar to those employed by
binary (4:2) compressors [10], to produce the result in
decimal carry-save format. A word-wide decimal carry-
propagate adder can then be used to add the resulting sum
and carry digits. This approach, however, is slower and
requires more hardware than the Nonspeculative Adders
presented in this paper since each 1-digit modified decimal
(4:2) compressor requires two binary carry-save additions, a
4-bit binary carry-propagate addition, and decimal sum
correction.

Another approach, proposed by Ohtsuki et al., uses
decimal carry-save addition in a decimal multiplier to
iteratively accumulate partial products [15]. With their
approach, a correction value of six is added to each digit of
the first partial product using a binary carry-save adder. For
each partial product added, the 4-bit sum and 4-bit carry
outputs of the binary carry-save adder are examined, using
fairly complex logic, to see if a correction value of zero, six,
or 12 should be added to the sum digit using a second
carry-save addition. After all of the partial products have
been added, a word-wide carry-propagate addition is
performed. Each digit with a carry-out of zero is then
corrected by subtracting six from the digit. The technique
presented in [15] is similar to the speculative correction
techniques described in Sections 3.1-3.3, with partial
products being analogous to input operands. One advan-
tage of our speculative correction techniques is that our
correction determination logic is much simpler since only
the most significant bit of the carry digit is examined.
Another advantage is that the correction value is added to
the input operands via combinational logic, whereas, in
[15], the correction is added to the new sum, which is on the
critical path of their circuit. With the technique presented in
[15], each input operand added requires two binary carry-
save additions and fairly complex sum digit correction
logic. Although the final correction step used in [15], is
simpler than the final correction step in our techniques, our
techniques are still superior since the iterative portion is
faster and requires less hardware. Furthermore, our Non-
speculative technique has logarithmic delay, while the
technique presented in [15] has linear delay.

Shirazi et al. propose a technique for constant time
decimal addition, called Redundant Binary Coded Decimal
(RBCD), in [16], [17]. When using RBCD to add multiple
BCD operands, the BCD operands are first converted to an

RBCD representation and then added. Both conversion

from BCD to RBCD and RBCD addition are done in

constant time because carry propagation is eliminated.

When the multioperand addition is complete, the RBCD

sum is converted back to BCD using a circuit that is similar

to a word-wide carry-propagate adder. One advantage to

using our techniques over RBCD is that no conversion to or

from RBCD is required. Our techniques also have the

advantage in that they only have one carry-save addition on

the critical path for each input operand. In comparison, the

RBCD adder has two 4-bit carry-propagate adders and two

PLA accesses for each digit addition performed. Our

techniques need two 4-bit carry-propagate additions only

after all of the operands have been added. Thus, our

techniques are faster and use less area, than the techniques

presented in [16], [17].

6 CONCLUSIONS

In this paper, we have proposed three algorithms for

multioperand decimal addition. The first two algorithms,

which have linear delay, speculate BCD corrections and

correct results based on carries from previous additions.

The third algorithm, which has logarithmic delay, adds the

input operands using a tree of carry-save tree adders and

produces a binary sum. Combinational logic is then used to

correct the binary sum and produce the proper decimal

carry. Our studies show that, compared to the Speculative

Adders, the Nonspeculative Adders have less delay and

roughly the same area. Compared to previous techniques

for decimal addition, our techniques provide a significant

area and speed advantage when multiple decimal input

operands are added.

ACKNOWLEDGMENTS

This research was supported in part by an IBM Faculty

Award. The authors are grateful to the anonymous

reviewers for their excellent advice on revising the paper.

REFERENCES

[1] M. Hill, N. Jouppi, and G. Sohi, Readings in Computer Architecture.
San Francisco: Morgan Kaufmann, 2000.

[2] M.F. Cowlishaw, “Decimal Floating-Point: Algorism for Compu-
ters,” Proc. 16th IEEE Symp. Computer Arithmetic, pp. 104-111, June
2003.

[3] Draft IEEE Standard for Floating-Point Arithmetic. New York: IEEE,
Inc., 2004, http://754r.ucbtest.org/drafts.

[4] IEEE Standard for Binary Floating-Point Arithmetic. New York: IEEE
Inc., 1985.

[5] P. Parhami, Computer Arithmetic: Algorithms and Hardware Designs.
New York: Oxford Univ. Press, 2000.

[6] R.D. Kenney and M.J. Schulte, “Multioperand Decimal Addition,”
Proc. IEEE CS Ann. Symp. VLSI, pp. 251-253, Feb. 2004.

[7] R.K. Richards, Arithmetic Operations in Digital Computers. D. Van
Nostrand Company, Inc., 1955.

[8] M. Schmookler and A. Weinberger, “High Speed Decimal
Addition,” IEEE Trans. Computers, vol. 20, no. 8, pp. 862-867,
Aug. 1971.

[9] C.-H. Yeh and B. Parhami, “Efficient Pipelined Multi-Operand
Adders with High Throughput and Low Latency: Designs and
Applications,” Conf. Record 30th Asilomar Conf. Signals, Systems and
Computers, vol. 2, pp. 894-898, Nov. 1996.

962 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

[10] P. Kornerup, “Reviewing 4-to-2 Adders for Multi-Operand
Addition,” Proc. IEEE Int’l Conf. Application-Specific Systems,
Architectures, and Processors, pp. 218-229, July 2002.

[11] C.S. Wallace, “Suggestion for a Fast Multiplier,” IEEE Trans.
Electronic Computers, vol. 13, pp. 14-17, 1964.

[12] M.T. Santoro and M.A. Horowitz, “SPIM: A Pipelined 64x64 Bit
Iterative Multiplier,” IEEE J. Solid-State Circuits, vol. 24, pp. 487-
494, 1989.

[13] H. Schmid, Decimal Computation. John Wiley & Sons, 1974.
[14] M.A. Erle and M.J. Schulte, “Decimal Multiplication via Carry-

Save Addition,” Proc. IEEE 14th Int’l Conf. Application-Specific
Systems, Architectures, and Processors, pp. 348-358, June 2003.

[15] T. Ohtsuki et al., “Apparatus for Decimal Multiplication,”
US Patent #4,677,583, June 1987.

[16] B. Shirazi, D.Y. Yun, and C.N. Zhang, “RBCD: Redundant Binary
Coded Decimal Adder,” IEE Proc.—Part E, vol. 136, no. 2, Mar.
1989.

[17] B. Shirazi, D.Y. Yun, and C.N. Zhang, “VLSI Designs for
Redundant Binary-Coded Decimal Addition,” Proc. Seventh Ann.
Int’l Conf. Computers and Comm., pp. 52-56, Mar. 1988.

[18] W. Bultmann, W. Haller, H. Wetter, and A. Worner Alexander,
“Binary and Decimal Adder Unit,” US Patent #6,292,819, Sept.
2001.

[19] J.R. Eaton and K. Hughes, “Decimal Arithmetic Apparatus and
Method,” US Patent #5,745,399, Apr. 1998.

[20] S. InSeok, “High-Speed Binary and Decimal Arithmetic Logic
Unit,” US Patent #4,866,656, Sept. 1989.

[21] S. Singh, “High-Speed Radix 100 Parallel Adder,” US Patent
#6,546,411, Apr. 2003.

[22] W. Haller, U. Krauch, T. Ludwig, and H. Wetter, “Combined
Binary/Decimal Adder Unit,” US Patent #6,546,411, July 1999.

[23] M.J. Adiletta and V.C. Lamere, “BCD Adder Circuit,” US Patent
#4,805,131, Feb. 1989.

[24] J.L. Anderson, “Binary or BCD Adder with Precorrected Result,”
US Patent #4,172,288, Oct. 1979.

Robert D. Kenney received the bachelor’s
degree in computer engineering from the Uni-
versity of Wisconsin-Madison in 2002. He re-
ceived the master’s degree in electrical
engineering from the University of Wisconsin-
Madison in 2004, where, under the direction of
Dr. Schulte, he focused his research efforts on
decimal arithmetic. He is currently employed at
IBM designing test methodologies for the multi-
core Cell Processor.

Michael J. Schulte received the BS degree in
electrical engineering from the University of
Wisconsin-Madison in 1991, and the MS and
PhD degrees in electrical engineering from the
University of Texas at Austin in 1992 and 1996,
respectively. From 1996 to 2002, he was an
assistant and associate professor at Lehigh
University, where he directed the Computer
Architecture and Arithmetic Research Labora-
tory. In 1997, he received a US National Science

Foundation CAREER Award to research hardware support for accurate
and reliable numerical computations. He is currently an assistant
professor at the University of Wisconsin-Madison, where he leads the
Madison Embedded Systems and Architectures Group. His research
interests include high-performance embedded processors, computer
architecture, domain-specific systems, computer arithmetic, and wire-
less security. He is a senior member of the IEEE and the IEEE
Computer Society and an associate editor for the IEEE Transactions on
Computers and the Journal of VLSI Signal Processing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KENNEY AND SCHULTE: HIGH-SPEED MULTIOPERAND DECIMAL ADDERS 963

