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Detectina Ventricular 
Fib r iI I a t i i n  
Selecting the uppropriute time- frequency 
unulysis tool for the upplicution 

utomat ic  e x t e r n a l  def ibr i l la tors  
A ( A E D  s) require arrhythmia classifica- 
tion algorithms that can distinguish shock- 
able cardiac rhythms from nonshockable 
cardiac rhythms. During ventricular fibril- 
lation, the chaotic electrical activity in the 
myocardium results in diminished cardiac 
output, which if not treated can be fatal. 
AEDs should be able to detect shockable 
arrhythmias, distinguish these from non- 
shockable arrhythmias, and defibrillate 
the heart only when a shockable arrhyth- 
mia is detected. 

Many algorithms to detect shockable 
rhythms have been reported in the literature 
[ 11. Some algorithms use information from 
the time domain and others use information 
from the frequency domain. The perform- 
ance of these algorithms is not ideal and each 
can be improved. The algorithms based on 
the frequency domain incorporate the short 
time Fourier transform ( S m )  to compute 
the energy distribution of the electrocardio- 
gram (ECG). Features are extracted from the 
energy distribution and are used in diagnos- 
tic classification algorithms [2]. The STFT 
is well known to have a tradeoff in resolution 
between time and frequency, and the fea- 
tures are thus limited by the accuracy of the 
frequency distribution. Accurate methods of 
computing the time-frequency distribution 
(TFD) need to be determined for arrhythmia 
classification algorithms. The objective of 
this article is to compare the TFD of normal 
and ventricular rhythms using such algo- 
rithms as the STIT, and time-frequency dis- 
tributions such as the smoothed pseudo 
Wigner-Ville distribution (SPWVD), and 
the cone-shaped kemel (CKD) method. This 
is a pilot study to show that more discrimi- 
natory features can be extracted from the 
CKD or SPWVD than from the STFT for 
use in algorithms to distinguish VF and 
NSR. 

Shockable versus nonshockable 
rhythms 

The Association for the Advancement 
of Medical Instrumentation (AAMI), rec- 
ommends that AEDs be able to distinguish 
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between shockable and nonshockable 
rhythms [3]. Shockable rhythms include 
ventricular fibrillation (VFib) and possi- 
bly ventricular tachycardia (VT). Non- 
shockable rhythms include all other 
arrhythmias including normal sinus 
rhythm (NSR), atrial fibrillation, idioven- 
tricular rhythms, and asystole. Figures 1 
and 2 show examples of NSR and VFib 
respectively. Figure 3 shows an ECG that 
changes rhythm from VT to VFib. 

Time-frequency distributions 
There are a number of methods for 

transforming a 1-D signal in time into a 
2-D distribution of signal strength in time 
and frequency [4]. The TFD gives a meas- 
ure of the intensity of frequencies over 
time. Various transformation methods 
have certain properties that may have 
benefit in different applications [4, 51. 
Some transformation methods such as the 
Wigner distribution provide very good 
resolution in time and frequency of the 
underlying structure of the signal. How- 
ever, in the case of signals with more than 
one frequency at any time instant (e.g., the 
ECG), an inaccurate TFD results due to 
the presence of cross terms or interference 
terms [6]. These are spurious frequencies 
which show up in the TFD and are not due 
to the real signal. 

The TFD obtained using the STFT 
method has a tradeoff between time and 
frequency resolution. Increased resolution 
in frequency requires a longer data seg- 
ment of the ECG. However, in the case of 
ECG signals, longer data segments have a 
frequency distribution that varies in time. 
Increased time resolution thus requires a 
shorter window length. Other methods of 
computing the TFD include the CKD 
method and the SPWVD, which are de- 
signed to reduce the cross terms in the 
TFD. 

None of these methods work well for 
all types of signals, and furthermore, none 
were designed explicitly for analyzing the 
ECG. However, a comparison of various 
methods of time-frequency analysis will 
indicate better methods for the ECG than 
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1. An example of normal sinus rhythm. 

Ventricular fibrillation 

L 
s b 5  0 1  0.15 0.2 0 25 

Time. min 

2. An example of ventricular fibrillation. 

5528 5 5 3  5532 5534 5536 5538 554  5542 
Time, min 

V Flulter 55 52 min 

2 200 

6 100 B 
5544 5546 5548 5 5 5  5552 5554 5556 5558 556  

Time, min 

2 200 

g 100 

6 55'62 55'64 55'66 55'68 557  55'72 55'74 55'76' 
Time min 

w 2 200 
6 100 

55 85 55 9 55 95 56 
Time, min 

3. The electrocardiogram changes rhythm from ventricular tachycardia to ventricu- 
lar flutter to ventricular fibrillation. 

the more commonly used STFT, and also 
the need for improved methods of comput- 
ing TFDs. 

Discriminatory features 
Arrhythmia classification algorithms 

incorporate various features from the time 
and frequency domain of the ECG [I].  The 
frequency domain of a normal sinus 
rhythm signal has harmonics that cover a 
wide range of frequencies. The frequency 
domain of VFib signals covers a narrower 
range of frequencies of about 4-7 Hz [ 1, 
21. It is thus useful to extract features from 
the frequency domain to classify arrhyth- 
mias. A VFib detection algorithm reported 
in [ 2 ]  uses the fast Fourier transform to 
compute the energy of the signal from a 
segment of the ECG. First, the frequency 
Fm with the maximum energy is deter- 
mined. Then, the normalized energy in the 
frequency band from 0.7Fm to 1 .4Fm (Hz) 
is computed. Finally, the normalized en- 
ergy in the harmonics of Fm is computed. 
These features are chosen to determine the 
predominant frequency in the signal and 
the relative energy in this frequency band, 
and serve as a measure of the charac- 
teristics of VFib and normal rhythms in 
the frequency domain. 

In order to extract features from the 
frequency domain, it is important to have 
an accurate frequency representation of 
the signal. Since it is also important to 
detect VFib and other arrhythmias as soon 
as they occur, optimal time resolution is 
necessary. An optimal method of comput- 
ing the time-frequency distribution for use 
in arrhythmia classification needs to be 
determined. 

Time-Frequency Distributions 
Time-frequency analysis such as the 

short time Fourier transform, Wigner dis- 
tribution, smoothed pseudo Wigner-Ville 
distribution, and cone-shaped kernel are 
described in the literature [4,6,7,9]. The 
properties of each these time-frequency 
analysis methods are already described in 
great detail elsewhere. The main goal of 
this article is to compare these different 
methods for potential use in arrhythmia 
classification algorithms. For the sake of 
completeness, a short explanation is given 
of each method and its relevant parame- 
ters. 

Short time Fourier transform 
(STFT) 

Let g (t) be a finite length window, and 
g (t'- t) the same window centered about 
time t. The STFT is defined as: 

S T F T ( t , f )  = Js ( t ' ) y  * e-J2"'dt' 

Note that the STFT computes the strength 
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of frequencies in the signal around time t. 
The spectrogram can then be obtained by 
squaring the STFT modulus. Properties of 
this transformation are discussed in [4, 5,  

The window, ?I(t), suppresses the signal 
outside a neighborhood around the analy- 
sis time point t' = t, and thus the STFT 
gives a localized measure of the strength 
of the signal's frequencies around the time 
t. The filter bank interpretation [4] helps 
in visualizing the STFT as a bank of band- 
pass filters, each centered around the fre- 
quency being evaluated. The signal x(t) 
passes through each bandpass filter, which 
is essentially the FT of the window y(t(t). 
Optimal frequency resolution requires 
that the bandwidth of the bandpass filter 
be arbitrarily small. This is accomplished 
if the window y(t) has infinite length. 
However, in order to have good time reso- 
lution, the window y(t) should have a short 
length. The obvious limitation of the 
STFT is that it is not possible to have both 
optimal time resolution and optimal fre- 
quency resolution at the same time. Since 
the STFT depends only on one window, 
its time and frequency resolutions cannot 
both be high. This is the main disadvan- 
tage of the STFT. The other distributions 
described below attempt to improve on the 
time-frequency resolution of a signal by 
introducing a quadratic function with re- 
spect to the input signal. 

71. 

Wigner distribution (WD) 
The Wigner distribution has very high 

resolution in time and frequency [4, 71. It 
is defined as: 

W o , ( t > f )  = 

The WD is a quadratic distribution that 
satisfies many desirable properties of 
TFDs. However, for multicomponent sig- 
nals (i.e., those with more than one fre- 
quency), there are interference terms, also 
called cross terms, which cause problems 
in the interpretation of the TFD. For ex- 
ample, if there is a signal at ti with fre- 
quency f i  and another signal at t:! with 
frequency f2, then there is a cross term 
present at time ti2 =(ti + t2)/2,with fre- 
quency f i 2  = (fi + f2)/2. The literature 
provides an analysis of how the cross 
terms arise [4]. 

Although the WD provides improved 
time and frequency resolution, the pres- 
ence of the cross terms is a disadvantage. 
The cross terms show up as intensities in 
time and frequency that are not truly pre- 
sent in the signal. A feature such as the 
energy in a frequency band will be af- 
fected by the cross terms and not the signal 
itself. This feature will lead to an incorrect 

classification of the ECG. Thus, the main 
disadvantage of the WD is the presence of 
cross terms. 

Smoothed pseudo Wigner-Ville 
Distribution (SPWVD) 

A variant of the W D  incorporates 
smoothing the TFD by independent win- 
dows in time and frequency [6]: 

The two windows, Wf and Wf , inde- 
pendently determine the amount of 
smoothing in time, and frequency, respec- 
tively. The choice of the length of the 
windows determines the amount of cross 
term suppression obtainable. The lengths 
of the windows must be determined em- 
pirically for the type of signals being ana- 
lyzed [4,6]. 

Cone-shaped kernel distribution 
(CKD) 

The CKD offers a method of obtaining 
improved time and frequency resolution 
for nonstationary signals with reduced 
cross terms [9]. The CKD is given by: 

The above equation is a generalized 
expression for computing a TFD. Differ- 
ent methods of computing the TFD design 
the kernel q(), such that the TFD meets 
many desired properties. Some of these 
properties include nonnegativity, main- 
taining time and frequency marginals, fi- 
nite support, and reduced interference 
terms [5,7]. The cone-shaped kernel is 
designed as a lateral inhibition function. 
Thus, when computing the intensity of the 
signal at a particular frequency, a small 
neighborhood around this frequency con- 
tributes positively, while frequencies out- 
s i d e  the  n e i g h b o r h o o d  cont r ibu te  
negatively. The cone-shaped kernel is 
given by 

where 2 2 a < 00. 
A discretized algorithm given in [9] is 

used in this study. The CKD does not 
satisfy the nonnegative property of TFDs, 

but it does have good cross term suppres- 
sion. 

Methods 

ECG database 
This study uses the Staley cardiac ar- 

rhythmia database [ 101. The raw data for 
this database was acquired by the Wiscon- 
sin-Dane County EMT-defibrillation pro- 
gram, and includes multiple recordings of 
ventricular fibrillation, asystole, and other 
rhythms. Lead I1 of the ECG was acquired 
with a semiautomatic defibrillator (Mar- 
quette, Inc., Milwaukee, WI, model Re- 
sponder 1200) at a sampling rate of 100 
Hz and 8-bit amplitude resolution. A 
SRAM card in the defibrillator stored the 
sampled ECG until it was downloaded to 
a PC. Physicians, comments, and interpre- 
tations of the ECG recordings were then 
added to the database. Since the Staley 
database consists of actual abnormal ECG 
recordings collected on emergency runs, 
it is useful for the development and testing 
of ECG processing or monitoring algo- 
rithms and instruments. 

Signal preprocessing 
We extracted normal sinus rhythm 

(NSR) signals from the MIT/BIH data- 
base, which has a sampling rate of 360 Hz, 
as opposed to 100 Hz for the Staley data- 
base. Then, the NSR signals were down- 
sampled to 100 Hz using software 
provided with the MIT/BIH database. We 
extracted recordings of VFib, VFlut, and 
VTach signals from the Staley database. 

After this, we processed all the ECG 
signals with a bandpass filter using 2 Hz 
and 20 Hz as cutoff frequencies. The filter 
design used a MATLABB command, 
which implements the window method. 
Based on a Hamming window, the order 
of the filter was 61. The window used is 
not important in this study as long as the 
filter has linear phase and the attenuation 
outside the frequency range of interest is 
reasonably large. The cutoff frequencies 
for the bandpass filter were chosen based 
on studies of the frequency domain of 
ECG signals, in particular VFib signals 
[ 1 11, and features of the frequency domain 
used in VFib detection algorithms [2]. 

Computing TFDs 
The parameters in the different meth- 

ods of computing the TFD were deter- 
mined by first testing the methods on an 
artificial signal with frequencies similar to 
that of a VFib signal. An artificial signal 
was generated with a 100 Hz sampling 
rate. The  signal constituted a 5-Hz 
sinusoid from 0-0.5 min, a 6-Hz sinusoid 
from 0.45-0.56 min, and a 7-Hz sinusoid 
from 0.52-1 min. We chose the frequen- 
cies of the sinusoids to be in the expected 
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4. (a) Contour plot of the STFT is given for the artificial signal. The outermost con- 
tour is drawn at a level of half of the average of maximum intensities in the time-fre 
quency distribution. The contours are not as closely spaced as in the SPWVD (b), 
and CKD (c). Contour plot of the SPWVD (b) is given for the artificial signal. The 
contours are more closely spaced than in the STFT (a). Contour plot of the CKD (c) 
is given for the artificial signal. The contours are more closely spaced than in the 
STFT (a). 

range of VFib signals [ 1 I]. We can deter- 
mine frequency resolution because of the 
coexisting sinusoids. We can determine 
the ability to detect onset of the signals 
since the sinusoids are time limited. 

Using a Hanning window based STFT, 
the contour plots showed best time and 
frequency resolution using 2.56 s (0.043 
min) data segments. In order to do a fair 
comparison of the STFT with the SPWVD 
and CKD methods, the length of the data 
segment for each method was kept as simi- 
lar as possible. The SPWVD used a 2.59 
s data segment with time and frequency 
smoothing windows each of 1.28 s. The 
CKD method also used a 2.59 s data seg- 
ment. 

At each time instant, the previous 2.56 
s (or 2.59 s for SPWVD and CKD) of data 
is transformed into the frequency domain, 
a fact that must be clear when analyzing 
the TFDs and accounting for the delay 
inherent in the time-frequency analysis. 
The time axis of the contour plots in this 
article indicates the time each transforma- 
tion was computed. The STFT, SPWVD, 
and CKD methods of computing the TFD 
were implemented using a Hewlett 
Packard RISC 700 series computer with 
the C and MATLAB programming lan- 
guages. 

Contour plots 
The I-D signal in time, the ECG, is 

transformed using different methods into 
a 3-D plot of signal intensity as a function 
of time and frequency. Based on the 
method of transformation, the 3-D TFD of 
the signal manifests to varying degrees of 
accuracy the true time-frequency structure 
of the ECG. 

It is difficult to visualize these 3-D 
plots from one 2-D representation. Thus, 
we have presented certain features of the 
3-D TFD by drawing contour plots. For a 
given TFD, the maximum intensity is 
noted over all frequencies for each time 
instant (or time slice). Similar maximum 
intensities are recorded for each time slice 
in the TFD. These maximum intensities 
are sorted in descending order of magni- 
tude and the average is also computed. 

Using the sorted values of maximum 
intensities, contours are drawn on the 3-D 
TFD at levels ranging from the maximum 
intensity down to the lowest intensity, 
skipping every few values along the way. 
A contour is also drawn at the level of half 
of the average of the maximum intensities. 
This contour gives an indication of the 
dynamic range of the intensity of the sig- 
nal in time and frequency. A narrow con- 
tour indicates good time-frequency 
resolution, as compared to a wide contour. 
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Results 

TFD contour plots 
of artificial signal 

The contour plots of the TFD for the 
artificial signal are given in Fig. 4. The 
time axis denotes the time at which the 
transformation to the frequency domain 
was computed by using data collected up 
to that time. Thus in Fig. 4a, the time slice 
at 0.46 min was computed from the pre- 
vious 2.56 s of a 5 Hz signal, with only 0.6 
s (0.1 min) of the 6 Hz signal. Recall that 
the artificial signal was made up of a 5 Hz 
signal from 0-0.5 min, a 6 Hz signal from 
0.45-0.56 min, and a 7 Hz signal from 
0.52- 1 .O min. 

The contour plot from the STFT algo- 
rithm shown in Fig. 4a has less resolution 
in the frequency domain than that of the 
SPWVD in Fig. 4b, and of the CKD algo- 
rithms in Fig. 4c. For example, the time 
slice at 0.46 rnin shows a wider spread of 
the contours in frequency than do the 
SPWVD and CKD algorithms. The time 
slice at about 0.5 rnin indicates that the 
SPWVD algorithm can resolve the 5 Hz 
and 6 Hz sinusoids better than the STFT. 
Note that the proximity of the contours 
indicates the intensity of each sinusoid in 
the TFD contour plot. 

There are spurious cross terms that 
show up in the CK contour plot and, to a 
lesser extent, in the SPWVD contour plot. 
For example, in Figs. 4b and 4c, the time 
slice at about 0.505 rnin shows cross terms 
between the true frequencies of 5 and 6 
Hz. The STFT does not manifest these 
cross terms. However, even at this time 
instant, the resolution of the true sinusoids 
is still lowest in the STFT shown in Fig. 
4a. 

Time resolution can be compared by 
studying the plots in Fig. 4 around the time 
of 0.55 min and frequency of 7 Hz. At this 
time slice, the STFT of Fig. 4a has less 
dense ly-spaced  contours  a s  in the  
SPWVD of Fig. 4b, and the CKD of Fig. 
4c. This indicates that the 7 Hz sinusoid is 
detected sooner in the SPWVD and CKD 
than in the STFT. As noted above, there is 
an inherent delay in all the algorithms. 
Even though the 7 Hz signal begins at 0.52 
min, the time slice of the TFD at 0.55 min 
was computed using only about 0.03 min 
(0.55 - 0.52 rnin), of the 7 Hz sinusoid. 

TFD contour plots of 
normal sinus rhythm 

Figure 1 shows an ECG with a normal 
sinus rhythm. The contour plots of the 
STFT, SPWVD, and CKD are shown in 
Figs. 5a, 5b, and 5c, respectively. As 
stated above, the time axis indicates the 
time of the end of the data segment used 
in the transformation to the frequency do- 
main. 

STFT of normal sinus rhythm 

0.581 

SPWVD of normal sinus rhythm 
I '  . _ _  

. 4 1 . -  
A * . *  

0.561 

0.54 ~ 

c 
E 

0.52 - 

c 

0.5 - 

0.481 

Freq, Hz 

CKD of normal sinus rhythm 

0 58 

0 56 

054 

E 
$0.52 
k 

0.5 

0.48 

0.46 

2 4 6 8 10 12 14 16 18 
Freo. Hz 

5. (a) Contour plot of the STFT for normal sinus rhythm. Harmonics characteristic 
of NSR are observed. This plot should he compared with the SPWVD (h) and CKD 
(c). Contour plot of the SPWVD (h) for normal sinus rhythm. This plot shows 
higher time-frequency resolution than the STFT (a). However, cross terms are also 
visible around the time of 0.54 min and frequency of 5 Hz. Contour plot of the CKD 
(c) for normal sinus rhythm. This plot shows higher time-frequency resolution than 
the STFT (a). Features such as the energy in the harmonics of the peak frequency 
will he more discriminatory than from the STFT. 
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6. (a) Contour plot of the STFT for ventricular fibrillation. The characteristic one 
dominant frequency is observed. Contour plot of the SPWVD (b) for ventricular fib- 
rillation. The contours are more closely spaced than in the STFT (a), indicating bet- 
ter time-frequency resolution. Contour plot of the CKD (c) for ventricular 
fibrillation. The contours are more closely spaced than in the STFT (a) and SPWVD 
(b), indicating better time-frequency resolution. 

All the TFDs show the harmonics in 
the frequency domain that are charac- 
teristic of NSR. However, the proximity 
of the various contour levels is different 
for the different TFDs. The frequency 
resolution of the S T F I  is not as high the 
SPWVD and the CKD. For example, the 
time slice at about 0.465 rnin has contours 
that are most closely spaced in the CKD 
and comparable in the SPWVD. The prox- 
imity of the contours in the TFD indicates 
that there is a peak in the intensity of the 
signal for that time and frequency. How- 
ever, the STFT at the time slice 0.465 rnin 
does not show such a high resolution in 
frequency. 

Similarly, around 0.465 min and a fre- 
quency of 14 Hz, the resolution in time can 
be compared. Contours from the SPWVD 
and CKD show more closely spaced con- 
tours than those of the STFT. At about this 
frequency, 14 Hz, the signal intensity 
around time 0.465 min is more prominent 
in the CKD plot than in the STFT plot. The 
contour plot of the CKD shows the har- 
monics of NSR signal more remarkably 
than the SPWVD and STFT. 

TFD contour plots of 
ventricular fibrillation 

Figure 2 shows an example of a ven- 
tricular fibrillation rhythm. The contour 
plots of the STIT, SPWVD, and CKD are 
given in Figs. 6a, 6b, and 6c, respectively. 
The time axis indicates the end of the data 
segment used for computation of each 
time slice in the TFD, and thus the TFD 
can be compared with the real VFib signal 
shown in Fig. 2. 

The contour plots of all the TFDs show 
similar time-frequency structures for the 
VFib signal. However, the contour plots 
of the SPWVD and CKD show an in- 
creased time and frequency resolution 
compared to the STFI .  This is manifested 
by the proximity of the contours in each of 
the plots. For example, within the 3-4 Hz 
frequency range, and during the 0.20-0.22 
rnin time interval, the contours cover a 
narrower range in frequency in the 
SPWVD and the CKD than in the STFT. 

TFD contour plots 
during rhythm changes 

Figure 3 shows a ventricular rhythm 
that changes from tachycardia to flutter to 
fibrillation. The contour plots for the 
STFT, SPWVD, and CKD are given in 
Figs. 7a, 7b, and 7c, respectively. 

During the VTach rhythm, two fre- 
quencies are present. When the rhythm 
progresses to VFlut (around 55.52 rnin), 
there is a range of frequencies that is mani- 
fested with more frequency resolution in 
the contour plot of the CKD than that of 
the STFT. The SPWVD, on the other 
hand, shows some spurious frequencies, 
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which may be a result of the cross terms. 
During VFib, the characteristic one-fre- 
quency pattern is manifested again. How- 
ever, the variation in this one-frequency 
pattern is more discernible in the CKD 
than in the STFT. 

Discussion 
T h e  contour plots of the STFT, 

SPWVD, and CKD of the ECG signals 
shown above manifest a similar time-fre- 
quency structure. However, as stated 
above, further processing is usually per- 
formed on the TFDs to extract features 
that may characterize the ECG rhythm. 
Examples of these parameters are the fre- 
quency of maximal intensity, Fm (peak 
frequency), the normalized energy in the 
peak frequency band defined around F,, 
and the normalized energy in the harmon- 
ics of Fm. It is crucial that these features 
be extracted from an accurate time-fre- 
quency structure of the signal. 

For example, during VFib the normal- 
ized energy in the peak frequency band 
would be different if obtained from the 
STFT (Fig. 6a) than if obtained from the 
CKD (Fig. 6c). Similarly, during ventricu- 
lar flutter (Fig. 3, about 5.52 min), the 
CKD (Fig. 7c) shows a different pattern 
than the STFT (Fig. 7a). Features such as 
the peak frequency, normalized energy in 
the peak frequency band, and normalized 
energy in the harmonics of the peak fre- 
quency would be more discriminatory us- 
ing the CKD than the STFT. 

By comparing the contour plots from 
the various arrhythmias, we note that 
tracking high intensity frequencies over 
time would be useful for an arrhythmia 
classifier. Most VFib detection algorithms 
reported in the literature incorporate fre- 
quency domain information from a par- 
ticular time slice in the TFD. But it is 
apparent from the contour plots of the 
CKD that tracking frequencies in time will 
be useful to arrhythmia classification. 

However, a very natural step, or an 
unfortunate reflex, of the many time-fre- 
quency algorithms available in the litera- 
ture is to implement one or more of them, 
extract some or many features from the 
resulting TFDs, and then use them in clas- 
sification algorithms. The various meth- 
ods of time-frequency analysis reported in 
the literature are designed to meet desir- 
able mathematical properties. Many of 
these mathematical properties such as the 
nonnegativity of a TFD are important. But 
it is equally important to design an optimal 
TFD for a specific application, which in 
this case, is arrhythmia analysis. Thus an 
accurate TFD should first be obtained, and 
then more discriminatory features can be 
extracted for classifying algorithms. 
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7. (a) Contour plot of the STFT for changes in ventricular rhythm from tachycardia 
to flutter to fibrillation. The time-frequency structure changes from two predomi- 
nant frequencies characteristic of ventricular tachycardia to one predominant fre- 
quency characteristic of ventricular fibrillation. (b) Contour plot of the SPWVD for 
changes in ventricular rhythm from tachycardia to flutter to fibrillation. Spurious 
cross terms are observed in the TFD. (c) The contour plot of the CKD for changes in 
ventricular rhythm from tachycardia to flutter to fibrillation. The TFD shows fea- 
tures of the time-frequency structure with better resolution than the STFT (a) and 
SPWVD(b). 
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Summary 
this article, the short time ~~~~i~~ 

transform, smoothed pseudo Wigner Ville 
distribution, and cone-shaped kernel dis- 
tribution have been used to compare the 
time-frequency distribution of normal si- Willis J.  Tompkins, an 
nus rhythm, ventricular tachycardia, ven- IEEE Fellow, received 
tricular flutter, and ventricular fibrillation the B.S. and M.S de- 
signals. This work is a pilot study to illus- grees in electrical engi- 
trate that the CKD and SPWVD have bet- neer ing  f r o m  t h e  
ter time and frequency resolution than the University of Maine in 
STFT. It demonstrates that accurate meth- 1963, and 1965, respec- 
ods of computing the time-frequency do- tively, and the Ph.D de- 

g r e e  in  b iomedica l  main should be found for ECG signals. 

design discriminatory features and classi- sity of Pennsylvania, Philadelphia, in 
1973. He has been on the faculty of the fiers for arrhythmias. 

gree. His research interests include time- 
frequency analysis of biomedical signals, 
and the aPPllcation of signal Processing to 
biomedical problems. 

Only then future work be done to electronici engineering from the Univer- 
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