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0 IntroductionAlgorithms based on genetic ideas were �rst used to solve optimization problems more than twentyyears ago[4] following the development of the fundamental ideas of genetic algorithms by JohnHolland at the University of Michigan. During the 1970's this work continued, but was largelyunknown. In the last few years, however, there has been increasing interest in genetic algorithms(see for example the conference proceedings[25, 6] and the books[7, 8, 13]).A number of researchers have looked at the application of genetic algorithms to optimization ofnonlinear functions; our interest, however, is in the application of this technique to combinatorialoptimization problems. There has been a variety of work done in this area, much of it consideringthe application of genetic algorithms to the solution of the travelling salesman problem[19, 29, 16].This is not surprising given the importance of the travelling salesman problem and its frequent useas a vehicle for testing new methods in combinatorial optimization. However there are particulardi�culties with the use of a genetic algorithm for the travelling salesman problem and it is ourbelief that the usefulness of the method for other combinatorial optimization problems cannot befairly assessed on the basis of its performance on the travelling salesman problem alone.It is appropriate to start with an outline description of the way in which a genetic algorithmworks. The method operates with a set of potential solutions. This is referred to as a populationand members of the population are sometimes called individuals. The population changes overtime, but always has the same size, N say. Each individual is represented by a single string ofcharacters. At every iteration of the algorithm a �tness value, f(i)(i = 1; : : : ; N), is calculated foreach of the current individuals. Based on this �tness function a number of individuals are selectedas potential parents. These form what is sometimes called a mating pool. The mating pool willhaveN members but some will be duplicates of each other, so that it contains several copies of someindividuals in the current population and no copies of others. Individuals which are not selectedfor the mating pool are lost.Two new individuals can be obtained from two parents in the mating pool by choosing a randompoint along the string, splitting both strings at that point and then joining the front part of oneparent to the back part of the other parent and vice versa. Thus parents A-B-C-A-B-C-A-B-Cand A-A-B-B-C-C-C-B-A might produce o�spring A-B-C-B-C-C-C-B-A and A-A-B-A-B-C-A-B-Cwhen mated. This process is called crossover. It is not necessary for every member of the matingpool to be involved in crossover; some will be left unchanged. Individuals in the mating poolmay also change through random mutation, when characters within a string are changed directly.Normally each character is given such a small probability of being changed, that most of the timeindividuals are left unaltered. The processes of crossover and mutation are collectively referredto as recombination. The end result is a new population (the next \generation") and the wholeprocess repeats. Over time this leads to convergence within a population with fewer and fewerdi�erences between individuals. When a genetic algorithm works well the population converges toa good solution of the underlying optimization problem and the best individual in the populationafter many generations is likely to be close to the global optimum.A model algorithm is given in Exhibit I. 2



Exhibit I . Model Algorithmrepeatfor each individual i do evaluate �tness f(i)create mating pool of size N based on �tness values f(i)for i = 1 to (N=2) doremove pairs of individuals fj; kg from mating poolrecombine using individuals j and kuntil population variance is smallA more detailed description of some elements of the method is given in the next section. It isimportant to realize that we have chosen one simple method of implementing a genetic algorithm,as has been described by [Gol89]. There are many other versions which have been suggested, someof which do not operate on a generation by generation basis and others of which use di�erentmechanisms for reproduction. At the heart of all these methods, however, is the idea that goodnew solutions can be obtained by using as building blocks parts of previously existing solutions.There has been an increasing interest in the use of search techniques which contain a stochas-tic element as methods for the solution of hard combinatorial optimization problems. SimulatedAnnealing[23, 9, 14] has this property, as does Tabu Search[12, 17] in some implementations. Therehas also been some recent work which has considered techniques which combine local search andthe genetic algorithm ideas outlined above. For example Aarts et al.[1] have shown that such atechnique is competitive with Simulated Annealing for some job shop scheduling problems. Also,recent careful computational work by Johnson et al.[20] has demonstrated that simulated annealing,for example, can be competitive with the best available heuristic methods for certain very largecombinatorial optimization problems. This is the context in which the genetic algorithm approachshould be evaluated. An optimistic assessment of the potential of this method is that, for at leastsome di�cult combinatorial problems, a suitably tuned genetic algorithm may be competitive withthe best available heuristic techniques.There are a number of similarities between a genetic algorithm and other stochastic searchtechniques. The running time of these methods will depend on certain parameter settings, with agreater likelihood that an optimal or near{optimal solution is found if the algorithm is allowed torun for a long time. Also such methods have applicability across a wide range of problem domains{ part of their attraction is that they hold out the promise of e�ectiveness without being dependenton a detailed knowledge of the problem domain. One of the major di�erences between geneticalgorithms and other stochastic search methods is that genetic algorithms operate using a wholepopulation of individuals, and in this sense they have a kind of natural parallelism not found inSimulated Annealing or Tabu Search techniques.It is not easy to assess the e�ectiveness of this type of algorithm. For any particular problemthere are likely to be special purpose techniques and heuristics which will outperform a more generalpurpose method. In a sense this may not be important. One advantage of simulated annealing, forexample, is that for many problems a very small amount of programming e�ort and a single longcomputation will su�ce to �nd as good a solution as would be obtainable with a much faster andmore sophisticated method which might take weeks to understand and program. Might something3



similar be true for genetic algorithms?The primary aim of this paper is to demonstrate that genetic algorithms can be e�ective in thesolution of combinatorial optimization problems and to give some guidance on the implementationof the genetic algorithm for both serial and parallel architectures. Many previous implementationsof this method have been guided by experiments initially carried out by [22] and later extended bya number of other authors (for example [25]). In the great majority of these experiments nonlinearfunction optimization problems have been solved rather than combinatorial optimization problems.We believe that there is much more to be learnt about the best implementation of genetic algorithmsfor combinatorial problems.The paper consists of two parts. In the �rst part we describe a fairly standard implementationof the genetic algorithm technique for the Assembly Line Balancing Problem. A careful discussionis given of the appropriate setting for the various parameters involved and some experiments arereported to indicate the relative importance of the genetic operators of crossover and selection.Provided that an appropriate scaling of �tness values is carried out, coupled with a relatively highmutation rate, the genetic algorithm we have implemented is an e�ective solution procedure forthis problem. In the second part of the paper we describe an alternative parallel version of thealgorithm for use on a message passing system. Some computational comparisons are carried out.1 The Assembly Line Balancing ProblemWe will look at the application of genetic algorithms to a particular problem occurring in OperationsManagement, namely the Assembly Line Balancing Problem (ALBP). It is helpful to have a speci�cproblem class in mind when discussing the details of a genetic algorithm implementation and webelieve that the issues which arise in dealing with the ALBP are in many cases the same issueswhich arise in tackling other combinatorial optimization problems. As we shall see the ALBP hasa natural coding scheme which makes it attractive as a vehicle for testing genetic algorithms. Theproblem can be described as follows:Suppose we wish to design a manufacturing line using a given number of stations, n. At eachstation someone will perform a number of operations on each item being made, before passing it onto the next station in the line. The problem is to assign the operations to the n stations in such away as to produce a balanced line, given the time that each operation will take. The total output ofthe line will be determined by the slowest station, which is the station with the most work assignedto it. Our aim is to minimize the amount of work assigned to this station and thus to maximizethe total throughput of the line. Thus far we have described a common type of balancing problem{ in a scheduling context this would be equivalent to minimizing makespan on identical parallelmachines. The crucial feature of the ALBP, however, is that certain operations must be performedbefore others can be started. If we have this type of precedence relation between operations A andB, for example, then we cannot assign operation B to a station earlier than operation A (thoughboth operations may be assigned to the same station). Figure 1 gives an example of an ALBP, witharrows used to show the direction of precedence constraints. A possible solution to the problemwith three stations is shown. Station 1 is assigned operations 1,2 and 4 and has a total processingtime of 38 minutes. Stations 2 and 3 have total processing times of 42 and 33 minutes respectively.The ALBP has attracted the attention of many researchers. Both heuristic and exact methodshave been proposed for its solution. For a review of some of these methods see the papers [27, 21].Note that the ALBP is sometimes posed with the total operation time for each station constrainedby some upper bound (the desired \cycle time") and the number of stations as the variable to be4
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Figure 1: An example of a precedence graphminimized.Note that we do not expect a genetic algorithm to be as e�ective as some of the special pur-pose heuristic methods for the ALBP. As we mentioned above our aim is not to demonstrate thesuperiority of a genetic algorithm for this particular problem, but rather to give some indication ofthe potential of this technique for other combinatorial optimization problems.There are a number of issues to be resolved in implementing a genetic algorithm for the ALBP.We will now deal with the major issues in turn. At this point we are concerned with the underlyingmechanisms which should be used, rather than the most computationally e�cient implementation.CodingThere are two aspects to the coding scheme for a genetic algorithm. One is the way that a solutionis related to the elements of the string which codes for it. As we mentioned above a natural codingis available for the ALBP. In this coding a solution is represented by a string each element of whichis a number. The number in the i'th place in the string is the station to which the i'th operationis to be assigned. This still leaves one aspect of the coding undetermined: the numbering of theoperations. This numbering will be important since the crossover operation will be less likely toseparate two pieces of information (\genes" in the genetic description) if they are close togetheron the string. It seems sensible to put the operations into an order consistent with the precedencerelations (so that if one operation is necessary before starting another its assignment will comein an earlier position in the string). For the example of Figure 1 we might choose to order theoperations within the string with the operation numbers given. Then the assignment shown wouldbe coded as 1121223233.It is perhaps appropriate to note that the majority of genetic algorithm research has beencarried out on strings using a binary alphabet (so that each element in a string is either a 0 or a 1).We do not believe that translating the coding scheme we have used into a binary alphabet wouldbe sensible for this problem. 5



Achieving feasible solutionsMany of the possible assignments of operations to station are infeasible because they break oneor more of the precedence constraints. It is a characteristic of the genetic algorithm that, for thisand many other problems, infeasible solutions are often generated by both crossover and mutationoperators. Some authors have advocated the use of non-standard forms of crossover and mutationin order to guarantee that only feasible solutions are produced. We have chosen to use the thestandard genetic operators, and with this restriction there are three ways in which the problemcan be dealt with. One method is to use some penalty function to drive the solutions towardsfeasibility. A second approach is to force each string generated to correspond to a feasible solution.Thus after crossover and mutation have been carried out a correction routine needs to be invokedwhich adjusts the string so that it becomes feasible. The third approach is similar and can bedescribed as a decoding of the string. The individual string remains unaltered in the population,but it is decoded using rules which guarantee a feasible assignment. Thus the genetic informationwithin an infeasible string remains present in the population, but this is not expressed in the currentindividual. For this problem, we have carried out some limited experiments using these di�erentmethods, and the penalty approach appears to be the most e�ective.Fitness and selection for the mating poolAt the heart of a GA is some calculation of �tness for each member of the population. This willdetermine how likely it is that an individual survives into the next generation, or is selected formating. For the ALBP the �tness will include an element corresponding to the total time for theoperations assigned to the slowest station. In addition, as mentioned above, we also wish to assignsome penalty cost to any solutions which are infeasible because of precedence constraints. In factwe de�ne the value of a solution as maxi (Si) + kNvwhere Si is the total time for operations assigned to station i, Nv is the number of precedenceviolations and k is a constant which we set equal to the largest single operation time.Given this de�nition we now wish to minimize the objective function. Notice that the valueof the objective is not a measure of �tness, since we consider the maximization of �tness not itsminimization. There are obviously a number of ways in which we can proceed. One approach is totake as the �tness value some large constant minus the objective value. The constant is chosen inorder that the �tness values are positive. A second idea is to take �tness as the reciprocal of theobjective value, assuming that all objective values are positive. Yet another technique is to choosethe �tness by fi = exp(�hvi)where h is chosen to make the �tnesses lie in a particular range. The drawback of both thelatter schemes is that they alter the relative �tnesses of di�erent individuals in quite a complicatedway, while the �rst scheme involves the choice of an arbitrary constant. These di�culties can beovercome by taking into account the scaling of �tness values more explicitly. Many researchers haverecognized the usefulness of a scaling procedure in order to achieve some degree of control over thespeed of convergence of a genetic algorithm.Suppose we are given the values of our current individuals and we wish to determine a �tnessdistribution. If we have a maximization problem, we de�ne the �tness of individual i, fi, as thevalue of the objective for that individual vi. If we have a minimization problem, then we take as6



the �tness, �vi. This has the advantage of making as little change as possible to the structure ofthe original objective function.We now perform a linear scaling on the values, with the aim of producing a �tness distribution,Fi, i = 1; : : : ; N with the following properties:1. PNi=1 Fi = 12. maxi Fi = �PNi=1 Fi=N3. Fi � 0 for all iwhere � is a scale factor chosen in order to achieve a particular speed of convergence. It is notalways possible to achieve all three aims, in which case we choose to vary the choice of the scalefactor �.De�ne the linear scaling by Fi = mfi+c. We use the �rst two criterion above in order to choosem and c. We obtain m = �� 1N(maxi fi)�PNi=1 fiand c = N(maxi fi)� �PNi=1 fiN(N(maxi fi)�PNi=1 fi)However, this will not guarantee that each Fi is nonnegative. We choose to modify the scaleparameter � in such a way as to guarantee that all Fi are nonnegative. We therefore require(�� 1)fkN(maxi fi)�PNi=1 fi + N(maxi fi)� �PNi=1 fiN(N(maxi fi)�PNi=1 fi) � 0for all k. A simple calculation shows that this gives the choice of � as� = minf�g; ��gwhere �g is the given value of scaling required, and ��, the maximum value possible for �, is�� = mink ( (maxi fi)� fkPNi=1 fi=N � fk ����� fk � NXi=1 fi=N ) :We have carried out some limited experiments comparing this approach to the problems of �tnessand scaling with some other (more complicated) approaches. We found it to be more e�ective thanthe other methods we tried and we have used this method in all the experiments we report here.We also tried a number of di�erent methods to select individuals for the mating pool. Theunderlying approach is to select an individual with a probability proportional to its �tness. Thuseach time a selection is made individual i is chosen with probability given by Fi, the scaled �tnessvalue. It is found to be helpful to alter this simple approach in such a way as to limit the variabilityinherent in this scheme. It is better to ensure that any individual with above average �tness isautomatically selected. The method we use to achieve this is called Stochastic Universal Samplingand is described in detail by Baker[5]. In brief, the procedure can be described as follows. Takethe members of the population and reorder them randomly. Assign to each individual an intervalproportional to its �tness, and scaled so that the total length of all the intervals is N . Considerthe intervals laid end to end along the line from 0 to N . Choose a random number x uniformly7



on [0; 1] and put the individuals corresponding to the intervals in which the points x; x + 1; x +2; :::x+N lie into the mating pool. Pairs of individuals are then removed from the mating pool andrecombined using crossover and mutation. We made some comparisons with another commonlyused method called \remainder stochastic sampling without replacement", and found this to besimilar in performance to Stochastic Universal Sampling.Crossover and mutationWe turn next to consider the operations of crossover and mutation, which together make up theprocess of recombination. We have made some limited experiments with di�erent crossover mecha-nisms with the aim of incorporating some problem speci�c knowledge. This has been shown to bee�ective in some previous studies[16]. For our problem, however, these approaches do not appearto lead to any substantial improvements over the more standard crossover mechanism described inthe introduction. When a pair of individuals has been selected for mating, crossover occurs at asingle random point with probability pc, and with probability 1� pc the o�spring are identical tothe parents.Following mating the two o�spring produced then undergo mutation. Though we have carriedout some experiments with di�erent forms of mutation, there seems to be little, if any, disadvantagein adopting the standard approach as it appears in the literature of genetic algorithms. This involvesthe random change of allocations of operations to stations. For each operation in turn with somesmall probability, pm, we change the station to which it is assigned either to the station immediatelybefore it, or to the station immediately after it. Thus we change particular elements in the stringby plus or minus one. Actual implementation of this mutation operation is most e�ciently carriedout by generating a random variable to determine the next position on the string to which mutationwill be applied.There are two ways in which we have adjusted the standard procedures for reproduction. Firstlywe have inserted into a random position in the population an individual from the previous generationwith the best �tness. This has the e�ect of guaranteeing that the �nal generation contains the bestsolution ever found, which is desirable from the point of view of assessing the relative performanceof di�erent versions of the genetic algorithm. This procedure, called elitism, has been used by anumber of other researchers. The second change we have made has, as far as we are aware, notbeen investigated previously. When o�spring are produced after crossover and mutation (or justone of these), if either of the o�spring has a worse �tness than the worst member of the previousgeneration then that individual is not retained and instead one of the parents is allowed to continueunchanged into the next generation. The e�ect of this is that the worst member of the populationis never worse than the worst in the previous generation. Our experiments show that this cansubstantially improve the convergence behavior of the algorithm. Clearly by forcing the worstindividual in each generation to be no worse than that of the previous generation we will speedup the convergence of the algorithm. In some circumstances this would not be an advantage - ifconvergence is too fast we are likely to end up at a poor quality solution. In this case, however,we can adjust the rate of convergence using the scaling mechanism described above, so that theoverall speed of convergence is unchanged. This turns out to give a signi�cant net bene�t in termsof the algorithm performance. 8



2 Experimental results from the serial implementationWe have carried out a number of experimental tests. First to �nd appropriate settings for theparameters involved in the genetic algorithm, and second to assess the e�ectiveness of the geneticalgorithm in comparison with other approaches. There are a number of di�culties involved in car-rying out such experiments and it may be helpful to make some general comments before describingour results in detail.First note that we have not made any attempt to optimize the code used to implement thegenetic algorithm. There are a number of areas where we could expect to improve on computationtimes by using relatively more sophisticated programming techniques. Our aim in these tests is to�nd good solutions with a relatively small number of function evaluations and we will look only atthe total number of generations in the genetic algorithm rather than the computation time. In factfor this problem the work in function evaluation (which includes counting the number of violatedconstraints) was in any case the dominant part of the computation.Second we should note that it is important to carry out comparisons between di�erent methodsonly when the number of generations used is roughly the same. By changing the scaling factor it ispossible to obtain convergence in a greater or lesser number of generations. Runs in which a largenumber of generations were necessary to achieve convergence will typically have considered manymore individual solutions and thus are, for this reason alone, likely to do better than runs whichconverge more quickly, if all runs are allowed to continue till convergence. There is a danger thatsome change to the parameter settings appears to be making an improvement when in fact it is achange in the speed of convergence. Thus we choose to make comparisons by �xing the numberof generations in a run and looking at the best individual in the �nal population. We can use thescaling parameter to adjust the speed of convergence. Our experimental results, reported below,show that it is best to adjust the scaling factor to ensure convergence at about the same time asthe run will come to an end.To understand the reason for this it is helpful to see the behavior of the algorithm showngraphically. The graphs in Figure 2 show how the value of the worst and the best in the populationplotted against generation number for three di�erent scaling factors. These are taken for singleruns of the algorithm on one problem, but are reasonably representative. One can see that withunlimited computational time a low scaling factor would be best, but if runs were to be stoppedafter 200 generations, for example, it would be best to choose a scaling factor leading to convergenceat about this point or a little later.Thirdly, it is not clear how the genetic algorithm population should be initialized. We exper-imented with two kinds of starting population. The �rst scheme generated the initial populationentirely at random. In order that one can e�ectively program a genetic code quickly, this wouldbe the method of preference for generating initial solutions. In the second scheme we generated aset of initial solutions using a method due to Arcus[3]. This is extremely e�ective. In a signi�cantproportion of cases the initial set of Arcus solutions contains at least one which is never improvedupon by the GA and in the other cases the best of the Arcus solutions is never far from the bestsolution found. Interestingly, however, the performance of the GA scheme was not as good fromthis preselected starting population as it was from a random start. It seems that there is prematureconvergence of the method around the few individuals which are generated by the Arcus scheme;with insu�cient variability in the population the GA is unable to work well. Consequently theresults we report here all start with a random initial population.Experiments were performed on randomly generated problems having 50 operations; these are tobe assigned to 5 stations. Problems were generated so that operation times are uniformly distributed9
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integers between 50 and 500. We construct the precedence relations using the upper triangular partof a matrix W . Task i precedes j if and only if W (i; j) 6= 0, where W is a matrix determined asfollows. W has n(n�1)2 � � nonzero entries, where � is the density of precedence, normally set to0:2. Two distinct indices from a uniform distribution are generated and the corresponding entry ofthe upper triangular part of W is made nonzero. This process is repeated until W has the correctnumber of entries.We begin by describing the results of experiments we carried out to �nd appropriate values forthe three parameters: probability of crossover pc; probability of mutation pm; and desired scalefactor �g. We arbitrarily chose 350 generations as the limit for each run (the parameter values thatwe choose would be markedly di�erent if the length of a run was altered). We have not carried outextensive tests on populations with di�erent sizes; all our experiments have used a population sizeof 64. What little experimentation we have carried out leads us to believe that this is a reasonablevalue for the size of problem we have tackled. It is also appropriate for the parallel implementationfor which we use a hypercube architecture with 32 processors.The results we obtained are shown in Tables 1, 2 and 3 for probabilities of crossover of 0.6,0.7 and 0.8 respectively. The probability of mutation (of each element of the string) is chosenfrom the set of values 0.005, 0.01, 0.015, 0.02, 0.025, 0.030, 0.035 and 0.04. The scaling factor ischosen from the set of values 1.1, 1.2, 1.3, 1.4, 1.5, 1,6, 1,7, 1.8 and a value which tries to force ascaling of 2.5 (labeled big, since in many cases this scaling is not achieved due to the non-negativityrequirement). We chose to carry out experiments using 5 randomly generated problems, for each ofwhich we carried out 8 runs of the genetic algorithm using di�erent random number seeds. For eachset of parameter values we thus have the results of 40 runs. These are summarized in the tables bygiving: (a) the average of the percentage deviation of the best solutions in the �nal generation fromthe best solution ever found for each problem; (b) the average percentage of individuals in the �nalpopulation which had the same value as the best in that generation; and (c) the �rst generation atwhich an average of 90% or more of the individuals in the population have the same value as thebest in the population (or left blank if this still has not occurred by generation 350).Hence the �rst number given is a measure of the quality of the solutions obtained, while thesecond and third numbers reect the speed of convergence. To make the tables easier to read we haveomitted entries for parameter values which lead to convergence either much earlier than generation350 or much later. To be precise we have left out entries either where convergence (measured by90% of the individuals having the same value) occurs before generation 150, or where, on average,the number of individuals in the �nal population having the same (best) value is less than 3.Interpretation of these results is not entirely clearcut. Notice that the lowest value that occursin any table is that of 1.34 with pm = 0:04, pc = 0:7 and scaling factor \big". The use of a bigscaling factor, however, can lead to erratic results and for this reason we would recommend thevalues pm = 0:03, pc = 0:6, scale factor = 1.8. if runs are stopped after 350 generations. Thesechoices are not particularly critical. Notice that this represents a very much higher level of mutationthan has been recommended in previous studies. Since each individual is represented by a stringof length 50, the probability that an individual does not receive any mutation is 0.282 with thisvalue of pm. The reason that we can use such a large probability of mutation is that towards theend of the run many of the mutations generate individuals worse than the worst current individual,and are thus ignored. In e�ect our method bene�ts from a higher mutation rate early in the run,without this interfering with the convergence of the algorithm at the later stages. This approachthus lends support to the suggestion (see for example [10]) that a reduction in mutation during thecourse of a run may be bene�cial, in a similar way to the reduction in \temperature" which is usedin simulated annealing methods. 11



Table 1: pc = 0:6| - 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 biga 17.37 24.25 33.10 37.230.005 b 15.39 99.02 100 100 * * * * *c | 254 191 157a 17.49 5.03 8.83 11.53 11.090.010 b 3.48 27.27 100 100 100 * * * *c | | 264 207 176a 9.19 5.20 4.83 7.72 9.63 10.570.015 b * 3.67 28.05 99.80 100 100 100 * *c | | 276 232 182 165a 6.34 2.72 2.40 3.64 4.04 4.61 4.760.020 b * * 4.02 19.57 81.52 99.45 100 100 100c | | | 269 235 226 214a 10.01 5.93 3.83 2.50 3.02 2.54 3.350.025 b * * 3.24 4.61 14.14 77.73 94.41 99.88 98.36c | | | | 320 279 279a 9.64 5.80 2.84 1.90 1.68 1.680.030 b * * * 3.01 4.96 9.34 35.70 64.38 90.70c | | | | | 349a 10.03 5.46 3.75 2.31 2.340.035 b * * * * 3.36 4.49 9.18 22.19 49.96c | | | | |a 6.74 6.46 4.16 1.750.040 b * * * * * 3.75 4.18 7.15 26.18c | | | |
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Table 2: pc = 0:7| - 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 biga 13.00 18.27 28.070.005 b 26.68 100 100 * * * * * *c | 241 186a 18.37 6.37 8.56 12.19 17.880.010 b 3.67 32.77 100 100 100 * * * *c | | 256 189 169a 8.03 3.51 5.17 7.40 8.98 10.160.015 b * 3.52 36.52 97.70 100 100 100 * *c | | 286 217 178 152a 6.70 4.91 2.20 3.47 4.50 5.54 6.400.020 b * * 4.41 31.84 92.81 99.80 100 100 100c | | 340 267 233 226 218a 5.10 3.05 3.21 3.34 2.60 2.520.025 b * * * 4.80 18.52 73.01 96.13 99.57 100c | | | 333 285 255a 6.43 4.45 3.31 2.48 2.17 2.090.030 b * * * 3.24 5.23 11.72 42.77 68.98 91.84c | | | | | 359a 6.14 3.71 3.00 2.16 1.930.035 b * * * * 3.32 5.00 11.80 21.95 63.32c | | | | |a 5.74 4.68 2.60 1.340.040 b * * * * * 3.67 4.57 8.88 28.36c | | | |
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Table 3: pc = 0:8| - 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 biga 14.10 15.55 20.11 31.480.005 b 35.98 100 100 100 * * * * *c | 239 183 150a 11.90 5.59 5.77 9.03 16.150.010 b 4.06 61.52 100 100 100 * * * *c | | 245 191 169a 7.56 3.12 4.96 4.81 6.87 9.120.015 b * 3.83 50.98 100 100 100 100 * *c | | 271 215 187 161a 4.63 1.72 3.68 3.64 4.32 3.21 3.760.020 b * * 5.23 37.85 99.92 97.58 100 100 100c | | 290 269 229 224 204a 7.33 3.44 2.09 2.91 2.48 3.11 2.410.025 b * * 3.05 5.12 24.69 81.76 97.66 95.82 97.70c | | | | 305 281 262a 6.73 4.92 2.92 2.50 2.25 2.420.030 b * * * 3.32 5.74 16.68 45.63 61.88 92.54c | | | | | 354a 4.94 3.27 3.76 2.24 2.150.035 b * * * * 3.32 5.20 8.83 19.69 63.63c | | | | |a 3.78 3.21 3.23 1.860.040 b * * * * * 3.55 5.47 7.70 28.09c | | | |
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Table 4: selection only, replace if improved| 1.05 1.07 1.1 1.12 1.15 1.18 1.2 1.30.005 490.65 447.01 378.95 332.85 308.20 292.73 253.61 212.300.010 268.88 218.14 172.74 179.97 141.83 139.43 117.20 115.970.015 149.97 112.30 89.25 79.53 70.24 72.81 58.28 69.000.020 92.77 72.72 50.94 44.59 42.59 36.01 42.45 46.830.025 64.41 52.89 40.42 35.01 24.08 26.80 35.16 42.130.030 46.18 38.45 30.84 30.56 23.92 27.77 22.69 39.210.035 39.58 32.30 26.57 22.52 20.61 26.34 27.65 27.610.040 38.02 28.21 23.62 25.06 17.92 23.79 21.01 23.980.045 32.37 24.89 19.09 17.49 18.01 21.50 26.24 22.780.050 35.74 26.61 21.72 18.20 15.12 19.03 18.29 25.340.055 28.40 24.51 19.39 18.86 22.07 16.38 21.42 25.810.060 33.66 23.77 18.88 16.85 15.15 22.72 19.44 21.450.065 31.72 20.25 18.00 17.03 18.11 20.45 18.10 18.440.070 31.71 25.36 19.92 16.44 18.45 19.30 19.46 20.250.075 34.54 26.41 16.82 21.42 18.60 16.52 17.96 23.56The genetic algorithm involves a selection operator which can be introduced without the use ofcrossover. We carried out some experiments to estimate the proportion of the improved performanceof the genetic algorithm, compared with straightforward local search, which was accounted for bythe selection operator. There are two implementations of this approach which are of interest. Firstwe can carry out selection on a population in which mutation only takes place if the previoussolution is improved. This is similar to a simple local search technique, except that we throw awaysome solutions that are not progressing well and replace them with copies of solutions which areprogressing better. There are now two parameters to choose, pm and the scale factor �g. Table 4gives the percentage deviation from optimality for various choices of these parameters using thisscheme. The best choices of these were found to be pm = 0:05 and �g = 1:15 at which values thebest solution after 350 generations was on average 15% away from the best ever found. Note thatthe percentage deviation from optimality is much greater than in Tables 1, 2 or 3.An alternative implementation of the same basic idea is to allow the mutation operator togenerate a solution which is worse than the current solution, and use the selection operator to obtainimprovements in the overall quality of the solutions represented in the population. This is closerto the spirit of the genetic algorithm and allows the possibility of jumping out of a local optimum.In implementing this approach we incorporated the elitist approach of inserting the previous bestsolution back into the population, and also the elimination of any mutations which produced asolution worse than the worst member of the previous population. With this implementation thevalues of pm and �g which worked best were 0:01 and 2:0. With these parameter settings we thenachieved best solutions after 350 generations which were on average 32% away from the best everfound (see Table 5).We note that the results given above support the conclusions given in [18] that the combinationof selection and crossover is far more e�ective for optimization than an exclusive use of eithertechnique. The choice of a suitable weighting of these operators may be problem speci�c, but theircombined usage is of great importance in producing an e�ective method for the given problem.15



Table 5: selection only, always replace| 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 big0.005 345.3 235.5 183.7 127.0 119.1 112.4 106.2 97.2 100.5 109.6 105.00.010 295.5 167.2 97.6 72.0 49.9 46.8 41.9 45.0 32.2 39.0 42.50.015 299.1 166.1 116.0 70.0 51.0 39.5 34.1 44.8 37.1 35.2 37.40.020 335.4 218.4 141.7 85.9 65.4 54.4 46.2 43.8 43.9 45.3 39.40.025 326.8 229.8 165.1 116.5 94.1 68.6 61.3 62.1 57.4 52.3 53.40.030 372.5 259.3 191.7 142.6 114.0 87.2 75.3 74.6 67.7 64.0 65.30.035 393.4 268.1 211.8 163.9 129.6 107.1 90.9 89.7 88.7 90.2 86.10.040 423.1 323.3 234.0 186.3 151.0 127.7 120.7 108.5 104.5 105.7 97.33 A Parallel Implementation Using NeighborhoodsUp to this point we have only been concerned with a comparison of the genetic algorithm withother schemes used to solve our problem. In the remainder of this paper we will look at theparallelism associated with the genetic algorithm. A genetic algorithm would appear to be ideal forparallel architectures since evaluation and reproduction can be performed concurrently. For a largepopulation of individuals, the use of many processors would seem enticing. However, this ignoresthe problem of communication and synchronization which are inherent in the selection mechanismdescribed above. In this section we discuss how selection can be performed in a way which reducesthe message passing required in a parallel architecture. For a parallel implementation, we assumethat each individual in the population resides on a processor (with one or more individuals assignedto each processor) and communication is carried out by message passing. For descriptions of otherimplementations of parallel genetic algorithms see the references[11, 19, 24, 26, 28].We consider �rst the mechanisms that would be involved in an e�ective parallelization of thegenetic algorithm we have described above. First of all, a global sum operation should be usedto compute the sum of all the scaled �tness values, after which each individual could computeits scaled �tness value. Using a parallel pre�x operation, the partial sums of the scaled �tnessvalues could be calculated on each processor. These values could be used by the processors inorder to sample the individuals residing on that processor. The mating pool is thus formed butis distributed over all the processors. The pairs of individuals used for mating are then selectedfrom this pool by some process of random requests. In the serial case, this is achieved by randomlypermuting the mating pool and then taking pairs of individuals from the top of the pool. Inthe parallel case, the permutation could be generated in parallel so that the individuals required(for mating) at a given processor would be known. Each processor would also need to know theprocessor holding the ith entry of the mating pool so that it could request this individual from thatprocessor. This information could be determined by an all-to-all personalized communication (infact just the number of individuals in the mating pool residing on each processor is needed).Though the parallelization outlined above is clearly feasible, there are obvious communicationcosts and some di�culties in specifying the precise way in which some parts of the process arecarried out. We have chosen instead to make comparisons with a di�erent form of genetic algorithmusing a parallel scheme in which each individual resides at a \location". In the sequel, we shallassociate the location and the (unique) individual that is residing there. We need to introducethe notion of a location because, in practice, the computations required by each individual will16



be carried out on a single processor. It is convenient, however, to distinguish between processorsand locations because a single processor may handle more than one individual. Each locationis connected to a small subset of the other locations which we will call its neighborhood. Theassignment of locations to processors may be optimized to reduce communication costs. Thoughthis approach will mean some substantial changes in the basic algorithm, it does lead to a methodwhich is very well suited to parallel processing. Recently, this type of approach has been successfullyused by a number of researchers, see for example the work of H. M�uhlenbein and M. Gorges{Schleuter who have developed the ASPARAGOS system to implement an asynchronous parallelgenetic algorithm[11, 24].A model algorithm for a scheme in which �tness information is only compared locally is displayedin Exhibit II.Exhibit II . Synchronous Neighborhood Algorithmrepeatfor each individual i doevaluate f(i)broadcast f(i) in the neighborhood of ireceive f(j) for all individuals j in the neighborhoodselect individuals j and k to mate from the neighborhood based on �tnessrequest individuals j and ksynchronizereproduce using individuals j and kremove individual i from its location andreplace it with one of the o�spring of j and kuntil population variance is smallThe �rst question that arises is how to de�ne the neighborhood of each location. This may bedictated to some extent by the architecture of the parallel processor { we will wish to avoid passingmessages which require transmission through large numbers of processors. We have carried outexperiments with a number of neighborhood structures[2] without coming to a �rm conclusion. Inthe experiments that we report below we have used a neighborhood structure we call ring8. Thisis de�ned by stating that locations i and j are considered neighboring ifi 2 nbd(j) () ji� jj � 4This can be viewed as every location being on a ring with neighboring locations no further thanfour links away. Strictly then we need to replace ji� jj bymin(ji� jj ; ji+N � jj ; ji�N � jj):The neighborhood size is eight.In the form given above, for each location the algorithm selects two individuals j and k fromthe neighborhood of that location based on �tness. In order to reduce communication costs itis possible to make one of these selections be the individual already residing at the location. In17



this case, we only need to select one individual from the neighborhood with which to mate. Wehave carried out some experiments which show that this technique performs at least as well andfrequently better than the original scheme, and we have adopted it for all the results reportedbelow. Since we only need to select one individual at each location the methods we discussed inthe context of a serial implementation are no longer relevant and selection is carried out in thesimplest way so that individual i is chosen from the neighborhood with probability given byfi= Xj2nbd(i) fj:Reproduction produces two o�spring. Our strategy was to replace the current individual withits best o�spring provided this o�spring is better than the worst individual in the neighborhood.The question arises whether it is possible to use the other o�spring? We have carried out someexperiments in order to answer this[2] and it seems that the performance of the algorithm is not de-graded by throwing the less �t o�spring away. This is the policy which is adopted in the experimentsreported below.This method e�ectively deals with communication penalties provided that care is taken to usea neighborhood structure which is appropriate for the machine architecture. The synchronizationissue remains largely unsolved, but the asynchronous scheme (see Exhibit III) has proven verye�ective in practice.Exhibit III . Asynchronous Neighborhood Algorithmrepeatfor each individual i doevaluate f(i)broadcast f(i) in the neighborhood of ireceive f(j) for all individuals j in the neighborhoodselect an individual j to mate from neighborhood based on �tnessrequest individual jreproduce using individuals i and juntil population variance is smallNote that since we have removed the synchronization step, it may happen that we requestan individual based on its �tness, but in fact receive an individual which has replaced the onerequested. In practice, this does not seem to matter.4 Experimental Results for the Parallel ImplementationOur aim in this section of the paper is to compare the performance of the parallel implementationof the algorithm with a serial version. First we try to understand the behavior of the synchronousparallel algorithm by implementing this version on the Intel Hypercube iPSC/2 with 32 processors.This will enable us to assess the e�ect of moving to a parallel implementation, which as we havealready seen is quite di�erent in the way that selection is carried out. We tested the procedure onthe same set of 5 test problems that were used in the serial implementation. For the ALBP, using18



Table 6: synchronous; pc = 0:7| - 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 biga 26.78 32.40 29.38 32.80 30.49 32.30 33.44 35.15 40.570.005 b 95.32 95.64 98.20 99.28 99.64 99.52 100 100 100c 122 94 94 84 86 72 73 69 36a 22.70 22.27 22.44 24.57 24.08 26.17 28.89 27.14 32.720.010 b 95.20 95.56 95.80 96.24 96.84 98.04 98.44 98.44 100c 157 151 142 124 116 120 100 101 53a 13.80 16.81 17.70 17.76 17.72 22.34 20.08 20.57 27.810.015 b 75.00 82.56 79.00 89.68 93.48 95.04 97.28 96.76 100c | | | | 207 162 143 139 73a 10.86 12.10 12.55 14.36 13.54 14.72 15.27 15.98 23.500.020 b 67.44 67.72 70.80 75.80 80.88 75.16 84.36 85.36 95.48c | | | | | | | | 98a 8.40 10.32 10.22 9.03 12.10 11.98 12.83 12.78 19.240.025 b 45.24 47.92 50.16 59.72 64.32 64.64 68.48 70.64 91.64c | | | | | | | | 115a 7.98 7.83 7.39 8.66 8.64 7.82 9.88 10.04 17.290.030 b 16.64 26.56 35.04 35.56 45.28 44.48 54.68 57.60 81.24c | | | | | | | | |a 7.13 8.65 8.26 7.71 7.75 7.84 7.04 7.60 13.230.035 b 3.84 5.72 6.00 9.80 12.08 14.96 19.76 30.36 73.20c | | | | | | | | |a 8.17 8.85 7.73 7.24 7.47 7.15 7.67 6.96 12.100.040 b 3.84 4.08 3.84 5.00 6.28 6.44 7.88 11.72 62.96c | | | | | | | | |the notion of neighborhoods, the computational timings are entirely dominated by the evaluationof �tness values which includes a check on the feasibility of newly generated solutions.As for the serial case it is necessary to set three parameters. Similar tests were carried out tothose reported in tables 1, 2 and 3. The best choice of the probability of crossover turned out to be0.7 and Table 6 gives the results obtained with this value. The only di�erence to the experimentalarrangement and that for the serial experiments relates to the population size in a run which ishere set to 32. This is only half the number used in the serial implementation as at each generationa total of 2N individuals are looked at, two at each processor. Thus using half the populationsize will imply the same number of function evaluations (leaving aside any consideration of thesaving in function evaluations when an individual is passed through to the next generation withoutundergoing either crossover or mutation).It seems that good choices for the parameters are pm = 0:035 and a scale factor of 1.7. Theresults, however, are not as good as for the sequential algorithm. Notice that the convergenceis substantially slowed with many fewer cases of complete convergence. As we have pointed outearlier, premature convergence can be detrimental to the quality of the �nal solution. It is alsoclear from these results that the performance of the parallel algorithm is less sensitive to the correctchoice of scaling factor than the serial algorithm.19



Table 7: asynchronous; pc = 0:7| - 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 biga 24.72 28.05 25.21 22.65 26.31 28.29 30.62 32.61 36.230.005 b 93.38 96.62 98.00 98.24 99.32 99.28 100 100 100c 131 124 111 114 105 88 81 70 36a 20.23 20.01 19.49 17.52 20.14 20.37 24.91 25.41 33.270.010 b 91.26 93.58 94.88 96.28 96.64 98.68 98.88 100 100c | 162 140 137 108 122 109 111 56a 12.51 15.92 18.73 16.51 16.71 22.68 21.48 19.51 28.180.015 b 72.04 80.62 80.04 87.62 90.40 94.82 97.44 98.72 100c | | | | | 173 163 125 87a 9.88 10.01 11.58 12.49 12.51 13.02 16.22 16.90 24.080.020 b 67.40 68.78 70.02 72.08 76.82 76.84 80.32 83.62 97.58c | | | | | | | | 110a 9.45 9.36 11.02 8.41 10.19 12.67 13.78 13.73 20.250.025 b 40.42 42.98 48.22 53.28 60.34 64.88 69.08 70.04 89.46c | | | | | | | | 127a 6.78 7.89 7.99 8.91 8.31 7.43 6.34 9.03 15.210.030 b 17.44 28.52 31.40 38.50 40.24 44.56 52.86 55.06 79.40c | | | | | | | | |a 6.42 7.25 6.29 5.80 7.35 7.62 6.56 5.98 13.330.035 b 2.88 4.76 8.08 10.82 11.56 14.04 18.66 32.66 72.02c | | | | | | | | |a 8.62 8.98 7.93 6.94 6.42 7.15 7.82 7.06 10.150.040 b 2.84 3.08 4.82 5.02 6.22 6.48 7.98 12.76 60.60c | | | | | | | | |The asynchronous scheme has also been implemented on the Intel Hypercube iPSC/2. Thebehavior of this version of the algorithm is consistently better than the synchronous scheme. Thecorresponding results are given in Table 7. Nevertheless, the quality of the solutions remains worsethan the best results obtained using the serial algorithm.5 ConclusionsThere are a number of conclusions that can be drawn from these experiments. We begin bynoting that we have been quite successful with a version of the \standard" form of the geneticalgorithm. For example we have not tried to combine ideas from genetic algorithms with localsearch procedures. The signi�cant changes that we have made to the usual genetic algorithm areas follows. First we reject individuals who would decrease the �tness of the worst member of apopulation. Second we carefully control scaling to ensure the best behavior for the algorithm and�nally we use much higher rates of mutation than has been usual in previous work. We recommendthat others wishing to implement a genetic algorithm for combinatorial optimization problemsadopt all three of these measures. 20
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