Quickstep: A Data Platform Based on the Scaling-In Approach

Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Hakan Memisoglu,
Navneet Potti, Saket Saurabh, Marc Spehlmann, Zuyu Zhang

University of Wisconsin — Madison

Submission Type: Research

Abstract

Modern servers pack enough storage and computing
power that just a decade ago was spread across a modest-
sized cluster. This paper presents a prototype system,
called Quickstep, to exploit the large amount of paral-
lelism that is packed inside such modern servers. Quick-
step builds on a vast body of previous work on meth-
ods for organizing data, optimizing, scheduling and ex-
ecuting queries, and brings them together in a single sys-
tem. Quickstep also includes new query processing meth-
ods that go beyond previous approaches. To keep the
project focused, the project’s initial target is read-mostly
in-memory data warehousing workloads in single-node
settings. In this paper, we describe the design and imple-
mentation of Quickstep for this target application space.
In this paper, we also present experimental results com-
paring the performance of Quickstep to a number of other
systems. These experiments show that Quickstep is of-
ten faster than many other contemporary systems, and in
some cases faster by an order-of-magnitude. Quickstep is
an Apache (incubating) project and lives at: https://
github.com/apache/incubator—-quickstep.

1 Introduction

Query processing systems today face a host of challenges
that were not as prominent just a few years ago. First,
the hardware landscape has changed dramatically in re-
cent years, driven by the need to consider energy as a first-
class (hardware) design parameter. Consequently, across
the entire processor-IO hierarchy, the hardware paradigm
today looks very different than it did just a few years ago.
Because of this shift, we are now experiencing a grow-
ing deficit between the pace of hardware performance im-
provements and the pace that is demanded of data process-
ing kernels to keep up with the growth in data volumes.
Figure 1 illustrates this deficit issue by comparing im-
provements in processor performance (blue line) with just
the growth rate of data (green line) that is indexed by
Google. This data growth rate is conservative for many
organizations, which tend to see a far higher rate of in-
crease in the data volume; for example, Facebook’s ware-

. =0= CINT2006 @~ # cores/chip ={= # pages

—~

o

N 254 - e

S u

L2004 S Fe-m--o- T At e

= » -

gasH - e

L

B

g 10 —s=-- -

[G] T T T T T
2011 2012 2013 2014 2015 2016

Year

Figure 1: Processor performance improvement as measured by
the highest reported CINT2006 benchmark result for Intel Xeon
chips from [50] compared to the number of pages indexed by
Google (data till 2014, which is the last year for which estimates
made by [51] are currently available). The figure does not show
the increase in the number of queries (which is about 2.5X for
Google search queries over the same period), and the increase in
the complexity of queries as applications request richer analyt-
ics. These aspects make the deficit problem worse. Also shown
in the figure is the maximum number of cores used in reported
CINT2006 results over time. Interestingly (and not shown in the
figure), both the minimum and the average amount of memory
per chip in the reported CINT2006 results have grown by about
4X between 2011 and 2016.

house grew by 3X in 2014 [41]. This figure also shows
(using a dotted orange line) the growth in the number of
cores/processor over time. As one can observe, the num-
ber of cores/processor is rising rapidly as multi-core tech-
niques are critical to realizing overall higher processor
performance. In addition, as noted in the caption of the
figure, since 2011 the main memory sizes are also grow-
ing rapidly, and there is an increasing shift to larger main
memory configurations. Thus, there is a critical need for
in-memory data processing methods that scale-in to ex-
ploit the full (parallel) processing power that is locked
in commodity servers today. Quickstep targets this need,
and in this paper we describe the initial version of Quick-
step that targets single-node settings, and for the important
case of in-memory read-mostly analytic workloads.

Next, we describe key aspects of the Quickstep sys-
tem. First, to pay off the deficit (discussed above), we
have taken the approach of thinking bottom-up from the
hardware to the software. A crucial design is to use
mechanisms that allow for high intra-operator paral-

lelism. Such mechanisms are important to exploit the full
potential of the high level of hardware compute paral-
lelism that is present in modern servers (the dotted or-
ange line in Figure 1). Unlike most database manage-
ment systems (DBMSs), Quickstep has a storage man-
ager with a block layout, where each block behaves like
a mini self-contained database [13]. This “independent”
block-based storage design is leveraged by a highly paral-
lelizable query execution paradigm in which independent
work orders are generated at the block level. Query execu-
tion then amounts to creating and scheduling work orders,
which can be done in a generic way. Thus, the scheduler is
a crucial system component, and the Quickstep scheduler
is designed to cleanly separate (scheduling) policies from
the underlying scheduling mechanisms. This separation
allows the system to elastically scale the resources that are
allocated to queries, and to adjust the resource allocations
dynamically to meet various policy-related goals.

Recognizing that random memory access patterns and
materialization costs often dominate the execution time
in main-memory DBMSs, Quickstep uses a number of
query processing techniques that take the “drop early,
drop fast” approach: eliminating redundant rows as
early as possible, as fast as possible. For instance,
Quickstep aggressively pushes down complex disjunc-
tive predicates involving multiple tables using a predicate
over-approximation scheme. Quickstep also uses cache-
efficient filter data structures to pass information across
primary key-foreign key equijoins, eliminating semi-joins
entirely in some cases.

Quickstep is designed to be easy to use in a variety of
settings, including as a standalone server and as an em-
bedded database engine in virtualized containers. Quick-
step employs a unified buffer manager to store both the
database tables and any intermediate results (including
hash tables that are built during query execution). In many
database systems various memory knobs have to be “set
right” for high performance. Quickstep does not require
such tuning. Similarly, Quickstep automatically senses
the parallelism in the hardware environment (number of
cores) and uses this information to naturally set the degree
of parallelism for query execution. Thus, Quickstep can
be spun up in any standalone server/container without re-
quiring tuning knobs, and the system auto-tunes to exploit
the full parallelism potential in the underlying hardware.

The contributions of this paper are as follows:

* We present the end-to-end design for Quickstep,
which brings together in a single artifact a number
of methods for in-memory query processing.

* We present how Quickstep uses query processing
techniques for aggressively pushing down complex
disjunctive predicates involving multiple relations,
as well as for eliminating certain types of equijoins
using exact filters.

* The design of the system also focuses on ease-of-
use paying attention to a number of issues, includ-
ing not relying on performance knobs by employing
methods such as using a holistic approach to memory
management, and elastically scaling query resource
usage at runtime to gracefully deal with concurrent
queries with varying query priorities.

* We present results from an initial end-to-end evalua-
tion that compares Quickstep with a number of other
existing systems (Spark, PostgreSQL, MonetDB and
VectorWise). Our results show that in some cases,
Quickstep is faster by an order-of-magnitude over
some of these existing systems.

* We make Quickstep available as open-source. We
note that our community has attempted to take repro-
ducability seriously [12, 34, 35], which is naturally
easier to achieve with open-source systems. How-
ever, open-sourcing a system goes beyond reprodu-
cability as it allows for transparency that permits a
deeper understanding of the end-to-end system ef-
fects. This aspect is especially critical when work-
ing on research problems where the impact of spe-
cific techniques is important only when cast within
the context of the overall system behavior.

2 QUICKSTEP Architecture

At its core, Quickstep implements a collection of rela-
tional algebraic operators, using efficient algorithms for
each operation. This “kernel” can be used to run a vari-
ety of applications, including SQL-based data warehous-
ing analytics (the focus of this paper) and other classes of
analytics/machine learning (using the approach outlined
in [17,58]). This paper focuses only on SQL analytics.

2.1 Data Model and Query Language

Quickstep uses a relational data model, and SQL as
the query language. Currently, the system supports
the following basic types: INTEGER (32-bit signed),
BIGINT/LONG (64-bit signed), REAL/FLOAT (IEEE
754 binary32 format), DOUBLE PRECISION (IEEE
754 binary64 format), fixed-point DECIMAL, fixed-
length CHAR strings, variable-length VARCHAR strings,
DATETIME/TIMESTAMP (with microsecond resolution),
date-time INTERVAL, and year-month INTERVAL.

2.2 System Overview

The internal architecture of Quickstep resembles the ar-
chitecture of a typical database engine, with perhaps the
exception of giving a first-class role to the query sched-
uler (which is described in more detail in Section 4.2). A
SQL parser converts the input query into a syntax tree,
which is then transformed by an optimizer into a physical
plan. The optimizer uses a rules-based approach [20] to

transform the logical plan into an optimal physical plan.
The current optimizer supports projection and selection
push-down, and both bushy and left-deep trees.

A catalog manager stores the logical and physical
schema information, and associated statistics, which in-
cludes table cardinalities, the number of distinct values
for each attribute, and the minimum and maximum values
for numerical attributes.

A storage manager organizes the data into large multi-
MB blocks, and is described in Section 3.

An execution plan in Quickstep is a directed acyclic
graph (DAG) of relational operators. The execution plan
is created by the optimizer, and then sent to the scheduler.
The scheduler is described in Section 4.

The relational operator library contains implementa-
tion of various relational operators. Currently, the system
has implementations for the following operators: select,
project, join (equi-join, semi-join, anti-join and outer-
join), aggregate, sort, and top-k.

Quickstep implements a hash join algorithm in which
the two phases, the build phase and the probe phase, are
implemented as separate operators. The build hash table
operator reads blocks of the build relation, and builds a
single cache-efficient hash table in memory using the join
predicate as the key (using the method proposed in [8]).
The probe hash table operator reads blocks of the probe
relation, probes the hash table, and materializes joined tu-
ples into in-memory blocks. Both the build and probe op-
erators take advantage of block-level parallelism, and use
a latch-free concurrent hash table to allow multiple work-
ers to proceed at the same time.

For non-equijoins, a block-nested loops algorithm is
used. The hash join method has also been adapted to sup-
port left outer join, left semijoin, and antijoin operations.

For aggregation without GROUP BY, the operator com-
putes local aggregates for each input block, which are then
merged to compute the global aggregate. For aggregation
with GROUP BY, the operator builds a global latch-free
hash table of aggregation handles in parallel, using the
grouping columns as the key.

The sort and top-K operators use a two-phase algo-
rithm. In the first phase, each block of the input rela-
tion is sorted in-place, or copied to a single temporary
sorted block. In the second phase, runs of sorted blocks
are merged to produce a fully sorted output relation.

3 Block-based Storage Manager

The Quickstep storage manager [13] is based on a block-
based architecture. Storage for a particular table in Quick-
step is divided into many blocks with possibly different
layouts, with individual tuples wholly contained in a sin-
gle block. Blocks of different sizes are supported, and the
default block size is 4 megabytes. On systems that support

large virtual-memory pages, Quickstep constrains block
sizes to be an exact multiple of the hardware large-page
size (e.g. 2 megabytes on x86-64) so that it can allocate
buffer pool memory using large pages and make more ef-
ficient use of processor TLB entries.

Internally, a block consists of a small metadata header
(the block’s self-description), a single tuple-storage sub-
block and any number of index sub-blocks, all packed in
the block’s contiguous memory space. There are multiple
implementations of both types of sub-blocks, and the API
for sub-blocks is generic and extensible, making it easy to
add more sub-block types in the future. Both row-stores
and column-store formats are supported, and orthogonally
these stores can be compressed. Quickstep supports type-
specific order-preserving compression schemes.

3.1 Template Metaprogramming

As noted above, Quickstep has a variety of different stor-
age block formats. A template metaprogramming-based
implementation is used to allow efficient access to data
in the blocks. This approach is inspired by the princi-
ple of zero-cost abstractions exemplified by the design of
the C++ standard template library (STL). In the STL, the
implementations of containers (such as vectors and maps)
and algorithms (like find and sort) are separated from each
other. The crucial abstraction that enables this separation
is the notion of iterators, which allow containers to expose
common data access patterns (hiding implementation de-
tails) and algorithms to be implemented against the itera-
tor interface (rather than containers directly).

Quickstep has an analogous design where various
ValueAccessors mediate access to data residing in
corresponding storage block types, and all relational oper-
ators are implemented against this ValueAccessor in-
terface. We then use C++ template metaprogramming to
statically generate code for all execution choices (i.e., re-
lational operators and block types). In contrast to run-time
code generation techniques, there is no additional run-
time cost, but there is an increase in the (one-time) compi-
lation cost and the size of the compiled binary. A key ben-
efit of this approach is that a clean and simple implemen-
tation of these ValueAccessors (e.g., one that avoids
branching and indirection) usually makes them amenable
to hardware prefetching and compiler auto-vectorization.

3.2 Holistic Memory Management

The Quickstep storage manager maintains a buffer pool
of memory that is used to create blocks, and to load them
from persistent storage on-demand. Large allocations of
unstructured memory are also made from this buffer pool,
and are used for shared run-time data structures like hash
tables for joins and aggregation operations. These large
allocations for run-time data structures are called blobs.
The buffer pool is organized as a collection of slots, and

the slots in the buffer pool (either blocks or blobs) are
treated like a larger-sized version of page slots in a con-
ventional DBMS buffer pool.

We note that in Quickstep all memory for caching base
data, temporary tables, and run-time data structures is al-
located and managed by the buffer pool manager. This
holistic view of memory management implies that the
user does not have to worry about how to partition mem-
ory for these different components. The buffer pool em-
ploys an eviction policy to determine the pages to cache
in memory. Quickstep has a mechanism where different
“pluggable” eviction policies can be activated to choose
how and when blocks are evicted from memory, and (if
necessary) written back to persistent storage if the page is
“dirty.”. The default eviction policy is LRU-2 [39].

Data from the storage manager can be persisted through
a file manager abstraction that currently supports the
Linux file system (default), and also HDFS [4].

4 Query Scheduling & Execution

In this section, we describe how the design of the query
processing engine in Quickstep achieves three key objec-
tives. First, we believe that separating the control flow
and the data flow involved in query processing allows for
greater flexibility in reacting to runtime conditions and fa-
cilitates maintainability and extensibility of the system.
To achieve this objective, the engine separates responsibil-
ities between a scheduler, which makes work scheduling
decisions, and workers that execute the data processing
kernels (cf. Section 4.1).

Second, in our scaling-in approach, it is crucial to max-
imally utilize the high degree of parallelism offered by
modern processors. Quickstep complements its block-
based storage design with a work order-based schedul-
ing model (cf. Section 4.2) to obtain high intra-query and
intra-operator parallelism.

Finally, to support diverse scheduling policies for shar-
ing resources (such as CPU and memory) between con-
currently executing queries, the scheduler design sepa-
rates the choice of policies from the mechanism of their
implementation (cf. Section 4.3).

4.1 Threading Model

The Quickstep execution engine consists of a single
scheduler thread and a pool of workers. The sched-
uler thread uses the query plan to generate and schedule
work for the workers. When multiple queries are concur-
rently executing in the system, the scheduler is responsi-
ble for enforcing resource allocation policies across con-
current queries and controlling query admittance under
high load. Furthermore, the scheduler monitors query ex-
ecution progress, enabling status reports as illustrated in
Section 6.8.

The workers are responsible for executing the relational
operation tasks that are scheduled by the scheduler. Each
worker is a single thread that is pinned to a CPU core
(possibly a virtual core), and there are as many workers
as cores available to Quickstep. The workers are cre-
ated when the Quickstep process starts, and are kept alive
across query executions, minimizing query initialization
cost. The workers are stateless; thus, the worker pool can
elastically grow or shrink dynamically.

4.2 Work Order-based Scheduler

The Quickstep scheduler divides the work for the entire
query into a series of work orders. In this section, we first
describe the work order abstraction and provide a few ex-
ample work order types. Next, we explain how the sched-
uler generates work orders for different relational opera-
tors in a query plan, including handling of pipelining and
internal memory management during query execution.

The optimizer sends to the scheduler a physical query
plan represented as a directed acyclic graph (DAG) in
which each node is a relational operator. Figure 2 shows
the DAG for the example query shown below. Note that
the edges in the DAG are annotated with whether the pro-
ducer operator is blocking or permits pipelining.

SELECT SUM (sales)

FROM Product P NATURAL JOIN Buys B
WHERE B.buy_month = 'March'

AND P.category = 'swim'

4.2.1 Work Order

A work order is a unit of intra-operator parallelism for
a relational operator. Each relational operator in Quick-
step describes its work in the form of a set of work or-
ders, which contains references to its inputs and all its
parameters. For example, a selection work order contains
a reference to its input relation, a filtering predicate, and
a projection list of attributes (or expressions) as well as a
reference to a particular input block. A selection operator
generates as many work orders as there are blocks in the
input relation. Similarly, a build hash work order contains
a reference to its input relation, the build key attribute, a
hash table reference, and a reference to a single block of
the input build relation to insert into the hash table.

4.2.2 Work Order Generation and Execution

The scheduler employs a simple DAG traversal algorithm
to activate nodes in the DAG. An active node in the
DAG can generate schedulable work orders, which can
be fetched by the scheduler. In the example query, ini-
tially, only the Select operators (shown in Figure 2 using
the symbol o) are active. Operators such as the probe
hash and the aggregation operations are initially inactive

as their blocking dependencies have not finished execu-
tion. The scheduler begins executing this query by fetch-
ing work orders for the select operators. Later, other op-
erators will become active as their dependencies are met,
and the scheduler will fetch work orders from them.

The scheduler assigns these work orders to available
workers, which then execute them. All output results are
written to temporary storage blocks. After executing a
work order, the worker sends a completion message to the
scheduler, which includes execution statistics that can be
used to analyze the query execution behavior.

4.2.3 Implementation of Pipelining

In our example DAG, the edge from the Probe hash oper-
ator to the Aggregate operator allows for data pipelining.
As described earlier, the output of each probe hash work
order is written in some temporary blocks. Fully-filled
output blocks of probe hash operators can be streamed to
the aggregation operator (shown using the symbol v in the
figure). The aggregation operator can generate one work
order for each streamed input block that it receives from
the probe operator, thereby achieving pipelining.

The design of the Quickstep scheduler separates con-
trol flow from data flow. The control flow decisions are
encapsulated in the work order scheduling policy. This
policy can be tuned to achieve different objectives, such as
aiming for high performance, staying with a certain level
of concurrency/CPU resource consumption for a query,
etc. In the current implementation, the scheduler eagerly
schedules work orders as soon as they are available.

4.2.4 Output Management During Query Execution

During query execution, intermediate results are written
to temporary blocks. To minimize internal fragmentation,
workers reuse blocks belonging to the same output rela-
tion until they become full. To avoid memory pressure,
these intermediate relations are dropped as soon as they
have been completely consumed (see the Drop o Outputs
operator in the DAG). Hash tables are also freed similarly
(see the Drop Hash Table operator). An interesting avenue
for future work is to explore whether delaying these Drop
operators can allow sub-query reuse across queries.

4.3 Separation of Policy and Mechanism

Quickstep’s scheduler supports concurrent query execu-
tion. Recall that a query is decomposed into several work
orders during execution. These work orders are organized
in a data structure called the Work Order Container. The
scheduler maintains one such container per query. A sin-
gle scheduling decision involves: selection of a query —
selection of a work order from the query — dispatch-
ing the work order to a worker thread. When concurrent

Query Result

@ Drop Join

H Output
Drop o
Outputs

Drop Y
Table

Product

Buys
----- > Pipeline breaking

—> Non-pipeline breaking

Figure 2: DAG plan for the sample query.

queries are present, a key aspect of the scheduling deci-
sion is to select a query from the set of active concurrent
queries, which we describe next.

The selection of a query is driven by a high level pol-
icy. One concrete example of such policy is Fair which
can be interpreted as follows: In a given time interval, all
active queries get an equal proportion of the total CPU
cycles across all the cores. Another such policy is High-
est Priority First (HPF), which gives preference to higher
priority queries. (The HPF policy is illustrated later in
Section 6.7.) Thus, Quickstep’s scheduler consists of a
component called the Policy Enforcer that transforms the
policy specifications in each of the scheduling decisions.

The Policy Enforcer uses a probabilistic framework for
selecting queries for scheduling decisions. It assigns each
query a probability value, which indicates the likelihood
of that query being selected in the next scheduling deci-
sion. The probabilistic framework forms the mechanism
to realize the high level policies and remains decoupled
from the policies. This design is inspired from the classi-
cal separation of policies from mechanism principle [29].

A key challenge in implementing the Policy Enforcer
lies in transforming the policy specifications to probability
values, one for each query. A critical piece of information
used to determine the probability values is the prediction
of the execution time of the future work order for a query.
This information provides the Policy Enforcer some in-
sight into the future resource requirements of the queries
in the system. The Policy Enforcer is aware of the current
resource allocation to different queries in the system, and
using these predictions, it can adjust the future resource
allocation with the goal of enforcing the specified policy
for resource sharing.

The predictions about execution time of future work or-
ders of a query are provided by a component called the
Learning Agent. It uses a prediction model that takes ex-
ecution statistics of the past work orders of a query as in-
put and estimates the execution time for the future work
orders for the query.

The mathematical formulation of probability values for
different policies implemented in Quickstep and their re-
lation with the estimated work order execution time is pre-
sented in [16].

To prevent the system from thrashing (e.g. out of mem-
ory), a load controller is in-built into the scheduler. Dur-
ing concurrent execution of the queries, the load controller
can control the admission of queries into the system and
it may suspend resource intensive queries, to ensure re-
source availability.

Finally, we note that by simply tracking the work or-
ders that are completed, Quickstep can provide a built-in
generic query progress monitor (shown in Section 6.8).

S Efficient Query Processing

Quickstep builds on a number of existing query process-
ing methods (as described in Section 2.2). The system
also improves on existing methods for specific common
query processing patterns. We describe these query pro-
cessing methods in this section.

Below, we first describe a technique that pushes down
certain disjunctive predicates more aggressively than is
common in traditional query processing engines. Next,
we describe how certain joins can be transformed into
cache-efficient semi-joins using exact filters. Finally, we
describe a technique called LIP that uses Bloom filters to
speed up the execution of join trees with a star schema
pattern.

The unifying theme that underlies these query process-
ing methods is to eliminate redundant computation and
materialization using a “drop early, drop fast” approach:
aggressively pushing down filters in a query plan to drop
redundant rows as early as possible, and using efficient
mechanisms to pass and apply such filters to drop them as
fast as possible.

5.1 Partial Predicate Push-down

While query optimizers regularly push conjunctive (AND)
predicates down to selections, it is difficult to do so
for complex, multi-table predicates involving disjunctions
(OR). Quickstep addresses this issue by using an optimiza-
tion rule that pushes down partial predicates that conser-
vatively approximate the result of the original predicate.

Consider a complex disjunctive multi-relation predicate
Pintheform P = (p1a A~ Apimy) V-V (D1 A
-+ +APn,m,,)» Where each term p; ; may itself be a complex
predicate but depends only on a single relation. While
P itself cannot be pushed down to any of the referenced
relations (say %), we show how an appropriate relaxation
of P, P'(R), can indeed be pushed down and applied at a
relation R.

This predicate approximation technique derives from
the insight that if any of the terms p; ; in P does not de-

pend on R, it is possible to relax it by replacing it with the
tautological predicate T (i.e., TRUE). Clearly, this tech-
nique is only useful if R appears in every conjunctive
clause in P, since otherwise P relaxes and simplifies to
the trivial predicate T. So let us assume without loss of
generality that R appears in the first term of every clause,
i.e., in each p; ; for7 = 1,2,...,n. After relaxation, P
then simplifies to P'(R) = p11 Vp1,2V...Vp1,y, which
only references the relation R.

The predicate P’ can now be pushed down to R, which
often leads to significantly fewer redundant tuples flow-
ing through the rest of the plan. However, since the exact
predicate must later be evaluated again, such a partial push
down is only useful if the predicate is selective. Quickstep
uses a rule-based approach to decide when to push down
predicates, but in the future we plan to expand this method
to consider a cost-based approach based on estimated car-
dinalities and selectivities instead.

5.2 Exact Filters: Join to Semi-join Trans-
formation

A new query processing approach that we introduce in this
paper (which, to the best of our knowledge, has not been
described before) is to identify opportunities when a join
can be transformed to a semi-join, and to then use a fast,
cache-efficient semi-join implementation using a succinct
bitvector data structure to evaluate the join(s) efficiently.
This bitvector data structure is called an Exact Filter, and
we describe it in more detail below.

To illustrate this technique, consider the SSB query
Q4.1 (see Figure 3a). Notice that in this query the part
table does not contribute any attributes to the join result
with 1ineorder, and the primary key constraint guar-
antees that the part table does not contain duplicates of
the join key. Based on these observations, we can trans-
form the 1ineorder — part join into a semi-join, as
shown in Figure 3b. During query execution, after the se-
lection predicate is applied on the part table, we insert
each resulting value in the join key (p-partkey) into
an exact filter. This filter is implemented as a bitvector,
with one bit for each potential p_partkey in the part
table. The size of this bitvector is known during query
compilation based on the min-max statistics present in the
catalog. (These statistics in the catalog are kept updated
for permanent tables even if the data is modified.) The
Exact Filter is then probed using the 1ineorder table.
The lineorder — supplier join also benefits from
this optimization.

The implementation of semi-join operation using Exact
Filter rather than hash tables improves performance for
many reasons. First, by turning insertions and probes into
fast bit operations, it eliminates the costs of hashing keys
and chasing collision chains in a hash table. Further, since
the filter is far more succinct than a hash table, it greatly

()

date

(YO
S

date

@ O(customer) O(customer)
CONE CORREED
lineorder O(supplier) lineorder G(supplier) lineorder O(supplier)
(a) Original query plan (b) Plan using join to semi-join transformation (¢) Query plan using LIP (only)

Figure 3: SSB Query 4.1

improves the cache hit ratio. Finally, the predictable size
of the filter eliminates costly hash table resize operations
that occur when selectivity estimates are poor.

The same optimization rule also transforms anti-joins
into semi-anti-joins, which are implemented similarly us-
ing Exact Filters.

5.3 Lookahead Information Passing (LIP)

Quickstep also employs a join processing technique called
LIP that combines the “drop early” and “drop fast” prin-
ciples underlying the techniques we described above. We
only briefly discuss this technique here, and refer the
reader to related work [60] for more details.

Consider SSB Query 4.1 from Figure 3a again. The
running time for this query plan is dominated by the
cost of processing the tree of joins. We observe that a
lineorder row may pass the joins with supplier
and part, only to be dropped by the join with
customer. Even if we assume that the joins are per-
formed in the optimal order, the original query plan per-
forms redundant hash table probes and materializations
for this row. The essence of the LIP technique is to look
ahead in the query plan and drop such rows early. In or-
der to do so efficiently, we use LIP filters, typically an
appropriately-configured Bloom filter [9].

The LIP technique is based on semi-join processing
and sideways information passing [6,7,25], but is applied
more aggressively and optimized for left-deep hash join
trees in the main-memory context. For each join in the
join tree, during the hash-table build phase, we insert the
build-side join keys into an LIP filter. Then, these filters
are all passed to the probe-side table, as shown in Fig-
ure 3c. During the probe phase of the hash join, the probe-
side join keys are looked up in all the LIP filters prior to
probing the hash tables. Due to the succinct nature of the
Bloom filters, this LIP filter probe phase is more efficient
than hash table probes, while allowing us to drop most
of the redundant rows early, effectively pushing down all
build-side predicates to the probe-side table scan.

During query optimization, Quickstep first pushes
down predicates (including partial push-down described

above) and transforms joins to semi-joins. The LIP tech-
nique is then used to speed up the remaining joins. Note
that our implementation of LIP generalizes beyond the
discussion here to also push down filters across other
types of joins, as well as aggregations. In addition to its
performance benefits, LIP also provably improves robust-
ness to join order selection through the use of an adaptive
technique. These details are discussed in [60].

6 Evaluation

In this section, we present results from an empirical eval-
uation comparing Quickstep with a number of other sys-
tems. We note that a large number of different SQL data
platforms have been built over the past four decades. A
comparison of all systems in this ecosystem is beyond the
scope of this paper. Thus for this evaluation, we chose
three other open-source systems and one commercial sys-
tem that each have different approaches to high perfor-
mance analytics, and support stand-alone/single node in-
memory query execution.

The three open-source systems that we use are Mon-
etDB, PostgreSQL and Spark and the commercial system
is VectorWise [61]. (We would have liked to try Hy-
per [27], as both VectorWise and Hyper represent sys-
tems in this space that were designed over the last decade;
but as readers may be aware, Hyper is no longer avail-
able for evaluation.) We also note that the open-source
nature of Quickstep means that anyone can use Quick-
step for benchmarking without needing to hide the prod-
uct name, allowing more transparent comparisons across
different papers on the same topic. Furthermore, access
to the source code allows one to better understand the rea-
sons behind certain performance behaviors, which is oth-
erwise hard to do when only binaries are available.

Next, we outline our reasons for choosing these four
systems. MonetDB [24], is an early column-store
database engine that has seen over two decades of devel-
opment. We use their latest release (December 2016 re-
lease and the associated bugfixes). We also compare with
VectorWise, which is a commercial column store system

[PostgreSQL [Spark HEEE MonetDB HEE VectorWise HEEM Quickstep

Time (seconds), log scale

TPC-H Query

Figure 4: Comparison with TPC-H, scale factor 100. Q17 and Q20 did not finish on PostgreSQL after an hour.

with origins in MonetDB. We use the latest release that
is available for free evaluation. PostgreSQL [42] is repre-
sentative of a traditional relational data platform that has
had decades to mature, and is also the basis for popu-
lar MPP databases like CitusDB [14], GreenPlum [21],
and Redshift [47]. We use the latest release of Post-
greSQL, namely v. 9.6.2, which includes about a decade’s
worth of work by the community to add intra-query par-
allelism [43]. We chose Spark [5,57] as it is an increas-
ingly popular, and arguably the dominant, in-memory data
platform. Thus, it is instructive just for comparison pur-
poses, to consider the relative performance of Quickstep
with Spark. We use Spark 2.1.0, which includes the recent
improvements for vectorized evaluation [48].

6.1 Workload

For the evaluation, we use the TPC-H benchmark at scale
factor 100 (~100GB in size) as well as the Star Schema
Benchmark (SSB) at scale factors 50 and 100 (~50 GB
and 100 GB in size). Both these benchmarks illustrate
workloads for decision support systems. The TPC-H
database contains 8 tables in a snowflake schema, with
two large fact tables (1ineitem and orders) and six
dimension tables of widely varying sizes. For evaluation,
we use the 22 read-only queries in the benchmark, which
vary greatly in complexity.

We also use the Star Schema Benchmark (SSB) [40]
which is a simpler version of the TPC-H benchmark. The
SSB database contains 5 tables in a star schema, reflect-
ing the data model often resulting from the popular Kim-
ball [28] approach for data warehouse schema creation.
The workload consists of a set of 13 read-only queries
that are significantly simpler than the TPC-H queries. The
simplicity of SSB makes it an appealing (albeit simpler)
workload to reason about the effects of various system de-
sign choices, and as such, has been used extensively in
prior work, e.g. [2,53].

For the results presented below, we ran each query 5
times in succession in the same session. Thus, the first run
of the query fetches the required input data into memory,
and the subsequent runs are “hot.” We collect these five
execution times and report the average of the middle three
execution times.

6.2 System Configuration

For the experiments presented below, we use a server that
is provisioned as a dedicated “bare-metal” box in a larger
cloud infrastructure. The server has two Intel Xeon In-
tel ES-2660 2.60 GHz (Haswell EP) processors. Each
processor has 10 cores and 20 hyper-threading hardware
threads. The machine runs Ubuntu 14.04.1 LTS. The
server has a total of 160GB ECC memory, with 80GB of
directly-attached memory per NUMA node. Each proces-
sor has a 25MB L3 cache, which is shared across all the
cores on that processor. Each core has a 32KB L1 instruc-
tion cache, 32KB L1 data cache, and a 256KB L2 cache.
This server also has two 1.2 TB 10K RPM SAS HDDs,
and one 480 GB SAS SSD device.

6.3 System Tuning

Tuning systems for optimal performance is a cumbersome
task. One of the goals of Quickstep is to operate at high
performance without requiring the user to set performance
“knobs.” When Quickstep starts, it automatically senses
the available memory and grabs about 80% of the mem-
ory for its buffer pool. This buffer pool is used for both
caching the database and also for creating temporary data
structures such as hash tables for joins and aggregates.
Quickstep also automatically determines the maximum
available hardware parallelism, and uses that to automat-
ically determine and set the right degree of intra-operator
and intra-query parallelism. Thus, there are no tuning
knobs in Quickstep, making it easy to operate in any en-
vironment, including containers of varying sizes.

MonetDB too aims to work without performance
knobs. MonetDB however does not have a buffer pool,
so some care has to be taken to not run with a database
that pushes the edge of the memory limit. MonetDB also
has a read-only mode for higher performance, and after
the database was loaded, we switched to this mode.

The other systems require some tuning to achieve good
performance, as we discuss below.

For VectorWise, we increased the buffer pool size to
match the size of the memory on the machine (VectorWise
has a default setting of 40 GB). We also set the number of
cores and the maximum parallelism level flags to match
the number of cores with hyper-threading turned on.

[PostgreSQL 1 Spark HEEE MonetDB B VectorWise HEEM Quickstep

100 L

Time (seconds), log scale

SSB query

Figure 5: Comparison with SSB, scale factor 100.

PostgreSQL was tuned to set the degree of parallelism
to match the number of hyper-threaded cores in the sys-
tem. In addition, the shared buffer space was increased
to allow the system to cache the entire database in mem-
ory. The temporary buffer space was set to about half the
shared buffer space. This combination produced the best
performance for PostgreSQL.

Spark was configured in standalone mode and
queries were issued using Spark-SQL from a
Scala program. We set the number of partitions
(spark.sgl.shuffle.partitions) to the num-
ber of hyperthreaded cores. We experimented with
various settings for the number of workers and partitions,
and used the best combination. This combination was
often when the number of workers was a small number
like 2 or 4 and the number of partitions was set to the
number of hyper-threaded cores.

Unlike the other systems, Spark sometimes picks exe-
cution plans that are quite expensive. These queries in-
cluded the three most complex queries in the SSB bench-
mark (the Q4.X queries). Spark chose a Cartesian prod-
uct of the dimension tables for these queries. As a result,
these queries ran for a long time and eventually crashed
the process when it ran out of memory. We rewrote the
FROM clause in these queries to enforce a better join or-
der. We report results from these rewritten queries below.

6.4 TPC-H at Scale Factor 100

Figure 4 shows the results for all systems when using the
TPC-H dataset at SF 100 (~100GB dataset).

As can be seen in Figure 4, Quickstep far outperforms
MonetDB, PostgreSQL and Spark across all the queries,
and in many cases by an order-of-magnitude (the y-axis is
on a log scale). These gains are due to three key aspects
of the design of the Quickstep system: the storage and
scheduling model that maximally utilize available hard-
ware parallelism, the template metaprogramming frame-
work that ensures that individual operator kernels run ef-
ficiently on the underlying hardware, and the query pro-
cessing and optimization techniques that eliminate redun-
dant work using cache-efficient data structures. Com-
paring the total execution time across all the queries in

the benchmark, both Quickstep and VectorWise are about
2X faster than MonetDB and orders-of-magnitude faster
than Spark and PostgreSQL.

When comparing Quickstep and VectorWise, the total
run times for the two systems (across all the queries) is 53s
and 70s respectively, making Quickstep 25% faster than
VectorWise. Across each query, there are queries where
each system outperforms the other significantly. Given the
closed-source nature of VectorWise, we can only specu-
late about possible reasons for performance differences.

VectorWise is significantly faster (at least 50%
speedup) in 4 of the 22 queries. The most common rea-
son for Quickstep’s slowdown is the large cost incurred
in materializing intermediate results in queries with deep
join trees, particularly query 7. While the use of partial
push-down greatly reduced this materialization cost al-
ready (by about 6X in query 7, for instance), such queries
produce large intermediate results. Quickstep currently
does not have an implementation for late materialization
of columns in join results [49], which hurts its perfor-
mance. Quickstep also lacks a fast implementation for
joins when the join condition contains non-equality pred-
icates (resulting in 4X slowdown in query 17), as well
as for aggregation hash tables with composite, variable-
length keys (such as query 10). Finally, the lack of code-
generation methods for predicate evaluation in Quickstep
leads to a 2.5X slowdown in query 1, which contains
many arithmetic expressions. (Addressing this is part of
future work.)

On the other hand, Quickstep significantly outperforms
VectorWise (at least 50% speedup) in 9 of the 22 queries.
Across the board, the use of LIP and exact filters improves
Quickstep’s performance by about 2X. In particular, we
believe that Quickstep’s 4X speedup over VectorWise in
query 5 can be attributed to LIP (due to its deep join trees
with highly selective predicates on build-side). Similarly,
we attribute a speedup of 4.5X in query 11 to exact filters,
since every one of the four hash joins in a naive query plan
is eliminated using this technique. The combination of
these features also explains about 2X speedups in queries
3 and 11. We also see a 4.5X speedup for query 6, which
we have not been able to explain given that we only have
access to the VectorWise binaries. Query 19 is 3X faster

100

[PostgreSQL] Spark HEEE MonetDB HEE VectorWise HEEM Quickstep

2

B

% 100 3
° 3
= 10 F
3 3
g 1

3

Z 0.1
g f
= 0.01

S

SB query

Figure 6: Comparison with denormalized SSB, scale factor 50.

in Quickstep. This query benefits significantly from the
partial predicate push-down technique (cf. Section 5.1).
VectorWise appears to also do predicate pushdown [11],
but its approach may not be as general as our approach.

For the remaining 9 queries, Quickstep and VectorWise
have comparable running times.

6.5 SSB at Scale Factor 100

In this next experiment, we use the SSB benchmark at
scale factor 100. Compared to the previous experiment,
this benchmark shows the impact of using a simpler
schema and simpler queries for warehousing workloads.
The 13 queries in SSB are divided into four classes, and
the queries in each class are similar in their structure and
complexity (number of joins and tables). In the discus-
sion below, we refer to each query as QX.Y, where X
is the class (1 < X < 4) and Y is the query number
within the class. Classes 1, 2 and 4 have three queries
each, while class 3 has four queries. Queries in the first
class have one join operation, queries in the second and
third classes have three join operations, and queries in the
last class have four join operations. This arrangement of
query classes in SSB allows one to examine the impact of
increasing join query complexity on the systems.

The results for this experiment are shown in Figure 5.
This figure shows that compared to MonetDB, Post-
greSQL and Spark, the gains for Quickstep are consistent
across the board, from the simpler queries (Q1.Y which
have only one join) to the more complex queries (Q4.Y
which have four joins). Quickstep is often more than 10X
faster than PostgreSQL and Spark.

Quickstep is also faster than MonetDB and VectorWise
across the queries. The total execution time for all the
queries with Quickstep, VectorWise, and MonetDB is 7s,
14s, and 21s, respectively, resulting in an overall 2X and
3X improvement in performance compared to VectorWise
and MonetDB respectively. The gains for Quickstep come
from its ability to naturally run each operator using a high
level of intra-operator parallelism and the use of the Ex-
act Filter and LIP (cf. Section 5) methods. (There are
no opportunities for the push-down technique discussed
in Section 5.1 with SSB.) Quickstep particularly outper-
forms MonetDB and VectorWise on the more complex

10

Q4.X queries that have a long chain of join, which are
particularly amenable for the Exact Filter and LIP tech-
niques.

6.6 Denormalizing for higher performance

In this experiment, we consider a technique that is some-
times used to speed up read-mostly data warehouses. The
technique is denormalization, and data warehousing soft-
ware product manuals often recommend considering this
technique for read-mostly databases (e.g. [23,36,52]).

For this experiment, we use a specific schema-based
denormalization technique that has been previously pro-
posed [33]. This technique walks through the schema
graph of the database, and converts all foreign-key
primary-key “links” into an outer-join expression (to pre-
serve NULL semantics). The resulting “flattened” ta-
ble is called a WideTable, and it is essentially a denor-
malized view of the entire database. The columns in
this WideTable are stored as column stores, and complex
queries then become scans on this table.

An advantage of the WideTable-based denormalization
is that it is largely agnostic to the workload characteristics
(it is a schema-based transformation). Thus, it is easier to
use in practice than selected materialized view methods.

We note that every denormalization technique has the
drawback of making updates and data loading more
expensive. For example, loading the denormalized
WideTable in Quickstep takes about 10X longer than
loading the corresponding normalized database. Thus,
this method is well-suited for very low update and/or ap-
pend only environments.

For this experiment, we used the SSB dataset at scale
factor 50. The raw denormalized dataset file is 128GB.

The results for this experiment are shown in Figure 6.
The total time to run all the thirteen queries was 1.6s, 3.2s,
23.2s, 1,014s, and 111.9s across Quickstep, VectorWise,
MonetDB, PostgreSQL and Spark respectively. Quick-
step’s relative advantage over MonetDB now increases
to over an order-of-magnitude (14X) across most of the
queries. MonetDB struggles with the WideTable that has
58 attributes. MonetDB uses a BAT file format, in which
it stores the pair (attribute and object-id) for each column.
In contrast, Quickstep’s block-based storage design does

CPU Utilization

CIQ43(2)
KX Q4.2 (2)
Q4.1 (1)
ZZ3 Q3.4 (1)
I Q33(1)
N Q3.2 (1)
B Q3.1 (1)
Pz Q2.3 (1)
I Q22(1)
B Q2.1 (1)
B Q1.3 (1)
FZZ Q1.2 (1)
QL)

20.0

Time in seconds

Figure 7: Prioritized query execution. QX.Y(1) indicates that Query X.Y has a priority 1. Q4.2 and Q4.3 have higher

priority (2) than the other queries (1).

not have the overhead of storing the object-id/tuple-id for
each attribute (and for each tuple). The disk footprint of
the database file is only 42 GB for Quickstep while it
is 99 GB for MonetDB. Tables with such large schemas
hurt MonetDB, while Quickstep’s storage design allows it
to easily deal with such schemas. Since queries now do
not require joins (they become scans on the WideTable),
Quickstep sees a significant increase in performance.

Quickstep is also about 2X faster than VectorWise,
likely because of similar reasons as that for MonetDB. To
the best of our knowledge, the internal details about Vec-
torWise’s implementation have not been described pub-
licly, but they likely inherit aspects of MonetDB’s design,
since the database disk footprint is 63 GB.

Quickstep’s speedup over the other systems also con-
tinues when working with tables with a large number of
attributes. Compared to Spark and PostgreSQL, Quick-
step is 70X and 640X faster. Notice that compared to the
other systems, PostgreSQL has only a pure row-store im-
plementation, which hurts it significantly when working
with tables with a large number of attributes.

6.7 Elasticity

In this experiment, we evaluate Quickstep’s ability to
quickly change the degree of inter-query parallelism,
driven by the design of its work-order based schedul-
ing approach (cf. Section 4.2). For this experiment we
use the 100 scale factor SSB dataset. The experiment
starts by concurrently issuing the first 11 queries from
the SSB benchmark (i.e. Q1.1 to Q4.1), against an in-
stance of Quickstep that has just been spun up (i.e. it has
an empty/cold database buffer pool). All these queries
are tagged with equal priority, so the Quickstep scheduler
aims to provide an equal share of the resources to each
of these queries. While the concurrent execution of these
11 queries is in progress, two high priority queries enter
the system at two different time points. The results for
this experiment are shown in Figure 7. In this figure, the
y-axis shows the fraction of CPU resources that are used
by each query, which is measured as the fraction of the
overall CPU cycles utilized by the query.

11

Notice in Figure 7, at around the 5 second mark when
the high priority query Q4.2 arrives, the Quickstep sched-
uler quickly stops scheduling work orders from the lower
priority queries and allocates all the CPU resources to the
high-priority query Q4.2. As the execution of Q4.2 com-
pletes, other queries simply resume their execution.

Another high priority query (Q4.3) enters the system
at around 15 seconds. Once again, the scheduler dedi-
cates all the CPU resources to Q4.3 and stops scheduling
work orders from the lower priority queries. At around
17 seconds, as the execution of query Q4.3 completes, the
scheduler resumes the scheduling of work orders from all
remaining active lower priority queries.

This experiment highlights two important features of
the Quickstep scheduler. First, it can dynamically and
quickly adapt its scheduling strategies. Second, the
Quickstep scheduler can naturally support query sus-
pension (without requiring complex operator code such
as [15]), which is an important concern for managing re-
sources in actual deployments.

6.8 Built-in Query Progress Monitoring

An interesting aspect of using a work-order based sched-
uler (described in Section 4.2) is that the state of the
scheduler can easily be used to monitor the status of a
query, without requiring any changes to the operator code.
Thus, there is a generic in-built mechanism to monitor the
progress of queries.

Quickstep can output the progress of the query as
viewed by the scheduler, and this information can be
graphically shown to the user. As an example, Figure 8
shows the progress of a query with three join operations,
one aggregation, and one sort operation.

7 Related Work

We have noted related work throughout the presentation
of this paper, and we highlight some of the key areas of
overlapping research here.

There is tremendous interest in the area of main-
memory databases and a number of systems have been

[13] SortMergeRunOperator
Not started

[11] Destroy AggregationStateOperator [12] SortRunGenerationOperator
Not started Not started
v

[10] Finali}eAggmgalionOpera(or
Not started
3

91 Aggrega;ionOperator
Not started

[8] HashJoinOperator
Not started
v

[5] BuildHashOperator
Span: [84ms, 84ms] (0.06%)
Effective concurrency: 1.00

Completed

[7] HashJoinOperator
Not started

"

[3] BuildHashOperator
Span: [89ms, 96ms] (1.27%)
Effective concurrency: 10.5

Completed

[6] HashJoinOperator
probe side stored relation [lineorder]
Span: [111ms, 620ms] (81.96%)
Effective concurrency: 37.92
In progress
1y

[4] SelectOperator
Input stored relation [ddate]
Span: [78ms, 83ms] (0.87%)
Effective concurrency: 1.00

Completed

[2] SelectOperator
Input stored relation [customer]
Span: [Oms, 88ms] (14.32%)
Effective concurrency: 27.55
Completed

[1] BuildHashOperator
Span: [45ms, 80ms] (5.61%)
Effective concurrency: 1.12

Completed

[0] SelectOperator
Input stored relation [supplier]
Span: [0ms, 38ms] (6.15%)
Effective concurrency: 6.89
Completed

Figure 8: Query progress status. Green nodes (0-5) in-
dicate work that is completed, the yellow node (6) corre-
sponds to operators whose work-orders are currently be-
ing executed, and the blue nodes (7-13) show the work
that has yet to be started.

developed, including [3,5,10,18,27,30,45,56,61], While
similar in motivation, our work employs a unique block-
based architecture for storage and query processing, as
well as fast query processing techniques for in-memory
processing. The combination of these techniques not only
leads to high performance, but also gives rise to interest-
ing properties in this end-to-end system, such as elasticity
(as shown in Section 6.7).

Quickstep’s template metaprogramming-based ap-
proach relies on compiler optimizations to make auto-
matic use of SIMD instructions. Our method is comple-
mentary to run-time code generation (such as [1,19,26,32,
37,44,46,54,55,59]), and we plan to add run-time code
generation to the system in the future.

Our use of a block-based storage design naturally leads
to a block-based scheduling method for query process-
ing, and this connection was first articulated in [13]. The
recent morsel-based query processing [31] method also
philosophically belongs to this style of query processing.

The drive to extract higher performance from exist-
ing hardware has re-kindled interest in using code gen-
eration for queries at run-time. While this technique
has been around for many decades [22], it is now
making a come-back (e.g. [5, 38]). In contrast, our
template metaprogramming-based approach in Quickstep
uses static (compile-time) generation of the appropriate

12

code for processing tuples in each block. This approach
eliminates the per-query run-time code generation cost,
which can be prohibitively expensive for short-running
queries. An interesting direction for future work is to con-
sider combining these two approaches.

There is a quick reference to a join-dependent expres-
sion filter pushdown technique in [11], but the overall al-
gorithm for generalization, and associated details, are not
presented. The partial predicate push-down can be consid-
ered a generalization of such techniques. The exact filters
build on the rich history of semi-join optimization dating
back at least to Bernstein and Chiu [7]. The LIP technique
presented in Section 5.3 also draws on similar ideas, and
is described in greater detail in [60].

Overall, we articulate the growing need for the scaling-
in approach, and present the design of Quickstep that
is designed for a very high-level of intra-operator paral-
lelism to address this need. We also present a set of related
query processing and optimization methods. Collectively
our methods achieve high performance on modern multi-
core multi-socket machines for in-memory settings.

8 Conclusions and Future Work

Compute and memory densities inside individual servers
continues to grow at an astonishing pace. Thus, there is
a clear need to complement the emphasis on “scaling-
out” with an approach to “scaling-in” to exploit the full
potential of parallelism that is packed inside individual
servers. This paper has presented the design and imple-
mentation of Quickstep that emphasizes a scaling-in ap-
proach. Quickstep currently targets in-memory analytic
workloads that run on servers with multiple processors,
each with multiple cores. Quickstep uses a novel inde-
pendent block-based storage organization, a task-based
method for executing queries, a template metaprogram-
ming mechanism to generate efficient code statically at
compile-time, and optimizations for predicate push-down
and join processing. We also present end-to-end evalua-
tions comparing the performance of Quickstep and a num-
ber of other contemporary systems. Our results show that
Quickstep delivers high performance, and in some cases is
faster than some of the existing systems by over an order-
of-magnitude.

Aiming for higher performance is a never-ending goal,
and there are a number of additional opportunities to
achieve even higher performance in Quickstep. Some of
these opportunities include operator sharing, fusing oper-
ators in a pipeline, improvements in individual operator
algorithms, dynamic code generation, and exploring the
use of adaptive indexing/storage techniques. We plan on
exploring these issues as part of future work. We also plan
on building a distributed version of Quickstep.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

D. J. Abadi, S. Madden, and M. Ferreira. Integrat-
ing compression and execution in column-oriented
database systems. In SIGMOD, pages 671-682,
2006.

D. J. Abadi, S. Madden, and N. Hachem. Column-
stores vs. row-stores: how different are they really?
In SIGMOD, pages 967-980, 2008.

L. Abraham, J. Allen, O. Barykin, V. R. Borkar,
B. Chopra, C. Gerea, D. Merl, J. Metzler, D. Reiss,
S. Subramanian, J. L. Wiener, and O. Zed. Scuba:
Diving into data at facebook. PVLDB, 6(11):1057—
1067, 2013.

Apache Foundation. = The Hadoop Distributed

File System. https://hadoop.apache.org,
2015.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: relational
data processing in spark. In SIGMOD, pages 1383—
1394, 2015.

C. Beeri and R. Ramakrishnan. On the power of
magic. In PODS, pages 269-284, 1987.

P. A. Bernstein and D.-M. W. Chiu. Using semi-
joins to solve relational queries. J. ACM, 28(1):25—
40, Jan. 1981.

S. Blanas, Y. Li, and J. M. Patel. Design and evalua-
tion of main memory hash join algorithms for multi-
core cpus. In SIGMOD, pages 37-48, 2011.

B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. CACM, 13:422-426, 1970.

P. A. Boncz, M. L. Kersten, and S. Manegold.
Breaking the memory wall in MonetDB. Commun.
ACM, 51(12):77-85, 2008.

P. A. Boncz, T. Neumann, and O. Erling. TPC-H an-
alyzed: Hidden messages and lessons learned from
an influential benchmark. In 5th TPC Technology
Conference, TPCTC, pages 61-76, 2013.

P. Bonnet, S. Manegold, M. Bjgrling, W. Cao,
J. Gonzalez, J. A. Granados, N. Hall, S. Idreos,
M. Ivanova, R. Johnson, D. Koop, T. Kraska,
R. Miiller, D. Olteanu, P. Papotti, C. Reilly,
D. Tsirogiannis, C. Yu, J. Freire, and D. E. Shasha.
Repeatability and workability evaluation of SIG-
MOD 2011. SIGMOD Record, 40(2):45-48, 2011.

13

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

C. Chasseur and J. M. Patel. Design and eval-
uation of storage organizations for read-optimized
main memory databases. PVLDB, 6(13):1474—1485,
2013.

Citus Data.
2016.

https://www.citusdata.com,

D. L. Davison and G. Graefe. Memory-contention
responsive hash joins. In VLDB, 1994.

H. Deshmukh, H. Memisoglu, and J. M. Patel.
Adaptive concurrent query execution framework for
an analytical in-memory database system. /EEE Big-
Data Congress (to appear), 2017.

J.Fan, A. G. S. Raj, and J. M. Patel. The case against
specialized graph analytics engines. In CIDR, 2015.

F. Firber, N. May, W. Lehner, P. Gro3e, 1. Miiller,
H. Rauhe, and J. Dees. The SAP HANA database
— an architecture overview. IEEE Data Eng. Bull.,
35(1):28-33, 2012.

Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice:
Pushing the envelop of main memory data process-
ing with a new storage layout. In SIGMOD, pages
31-46, 2015.

G. Graefe. Encapsulation of parallelism in the vol-
cano query processing system. In SIGMOD, pages
102-111, 1990.

Greenplum database.
org, 2016.

http://greenplum.

J. M. Hellerstein, M. Stonebraker, and J. R. Hamil-
ton. Architecture of a database system. Foundations
and Trends in Databases, 1(2):141-259, 2007.

IBM Corp. Database design with denormalization.
http://ibm.co/2eKWmWl.

S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. MonetDB: Two
decades of research in column-oriented database ar-
chitectures. [EEE Data Eng. Bull., 35(1):40-45,
2012.

Z. G. Ives and N. E. Taylor. Sideways information
passing for push-style query processing. In ICDE
"08, pages 774-783, 2008.

R. Johnson, V. Raman, R. Sidle, and G. Swart.
Row-wise parallel predicate evaluation. PVLDB,
1(1):622-634, 2008.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In ICDE, pages 195—
206, 2011.

R. Kimball and M. Ross. The Data Warehouse
Toolkit: The Complete Guide to Dimensional Mod-
eling. John Wiley & Sons, Inc., New York, NY,
USA, 2nd edition, 2002.

B. W. Lampson and H. E. Sturgis. Reflections on an
operating system design. Commun. ACM, 1976.

P. Larson, C. Clinciu, C. Fraser, E. N. Hanson,
M. Mokhtar, M. Nowakiewicz, V. Papadimos, S. L.
Price, S. Rangarajan, R. Rusanu, and M. Saubhasik.
Enhancements to SQL server column stores. In Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2013,
New York, NY, USA, June 22-27, 2013, pages 1159-
1168, 2013.

V. Leis, P. A. Boncz, A. Kemper, and T. Neu-
mann. Morsel-driven parallelism: a numa-aware

query evaluation framework for the many-core age.
In SIGMOD, pages 743-754, 2014.

Y. Li and J. M. Patel. Bitweaving: Fast scans for
main memory data processing. In SIGMOD, pages
289-300, 2013.

Y. Li and J. M. Patel. WideTable: An accelerator for
analytical data processing. PVLDB, 7(10):907-918,
2014.

S. Manegold, 1. Manolescu, L. Afanasiev, J. Feng,
G. Gou, M. Hadjieleftheriou, S. Harizopoulos,
P. Kalnis, K. Karanasos, D. Laurent, M. Lupu,
N. Onose, C. Ré, V. Sans, P. Senellart, T. Wu, and
D. E. Shasha. Repeatability & workability evalua-
tion of SIGMOD 2009. SIGMOD Record, 38(3):40-
43, 2009.

I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich,
S. Manegold, N. Polyzotis, K. Schnaitter, P. Senel-
lart, S. Zoupanos, and D. E. Shasha. The repeatabil-
ity experiment of SIGMOD 2008. SIGMOD Record,
37(1):39-45, 2008.

Microsoft Corp. Optimizing the Database Design by
Denormalizing. https://msdn.microsoft.
com/en-us/library/cc505841.aspx.

F. Nagel, G. M. Bierman, and S. D. Viglas. Code
generation for efficient query processing in managed
runtimes. PVLDB, 7(12):1095-1106, 2014.

14

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

T. Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, 4(9):539-550,
2011.

E.J. O’Neil, P. E. O’Neil, and G. Weikum. An op-
timality proof of the Iru-K page replacement algo-
rithm. J. ACM, 46(1):92-112, 1999.

P. O’Neil, E. O’Neil, and X. Chen. The star
schema benchmark. http://www.cs.umb.
edu/~poneil/StarSchemaB.pdf, Jan 2007.

Pamela Vagata and Kevin Wilfong. Scal-
ing the Facebook data warehouse to 300
PB. https://code. facebook.

com/posts/229861827208629/

scaling-the-facebook-data-warehouse-to-300-pb/

2014.

PostgreSQL. http://www.postgresqgl.org,
2016.

PostgreSQL. Parallel Query. https://wiki.
postgresgl.org/wiki/Parallel_Query.

L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M.
Lohman. Main-memory scan sharing for multi-core
cpus. PVLDB, 1(1):610-621, 2008.

V. Raman, G. K. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra, S. Light-
stone, S. Liu, G. M. Lohman, T. Malkemus,
R. Miiller, 1. Pandis, B. Schiefer, D. Sharpe, R. Si-
dle, A.J. Storm, and L. Zhang. DB2 with BLU ac-
celeration: So much more than just a column store.
PVLDB, 6(11):1080-1091, 2013.

V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani,
D. Kossmann, I. Narang, and R. Sidle. Constant-
time query processing. In ICDE, pages 60—69, 2008.

Amazon Redshift. https://aws.amazon.
com/redshift/, 2016.

Reynold Xin. Technical ~ Preview
of Apache Spark 2.0. https://
databricks.com/blog/2016/05/11/

apache-spark-2-0-technical-preview-easier—-fast

html.

L. Shrinivas, S. Bodagala, R. Varadarajan, A. Cary,
V. Bharathan, and C. Bear. Materialization strategies
in the vertica analytic database: Lessons learned. In
ICDE, pages 1196-1207. IEEE, 2013.

Standard Performance Evaluation = Corpora-
tion. INT2006 (Integer Component of SPEC
CPU2006). https://www.spec.org/
cpu2006/CINT2006, 2016.

[51]

[52]

[53]

[54]

[55]

[56]

Statistic Brain Research Institute. Google
Annual Search Statistics. http://www.
statisticbrain.com/google—searches,
2016.

Sybase Inc. Denormalizing Tables and Columns.
http://infocenter.sybase.com.

S. Tu, M. E. Kaashoek, S. Madden, and N. Zel-
dovich. Processing analytical queries over encrypted
data. PVLDB, 6(5):289-300, 2013.

T. Willhalm, I. Oukid, I. Miiller, and F. Faerber. Vec-
torizing database column scans with complex predi-
cates. In ADMS, pages 1-12, 2013.

T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Schaffner. SIMD-scan: Ultra fast in-
memory table scan using on-chip vector processing
units. PVLDB, 2(1):385-394, 2009.

R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: SQL and rich ana-
lytics at scale. In SIGMOD, pages 13-24, 2013.

15

[57]

(58]

[59]

[60]

[61]

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Sto-
ica. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In
USENIX, pages 15-28, 2012.

Q. Zeng, J. M. Patel, and D. Page.
Scalable inductive logic programming.
8(3):197-208, 2014.

Quickfoil:
PVLDB,

J. Zhou and K. A. Ross. Implementing database
operations using SIMD instructions. In SIGMOD,
pages 145-156, 2002.

J.Zhu, N. Potti, S. Saurabh, and J. M. Patel. Looking
ahead makes query plans robust. Proceedings of the
VLDB Endowment, 10(8), 2017.

M. Zukowski and P. A. Boncz. Vectorwise: Beyond
column stores. I[EEE Data Eng. Bull., 35(1):21-27,

2012.

