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Abstract

This work surveys the current state of the art in Local Differential Privacy counting 
queries, specifically for epidemiological use cases. In particular we focus on Hadamard 
Response techniques [2], and how Relaxations of HRs can be parameterized by via 
static and data driven priors on the underlying distribution. Thus far, experiments have 
shown improvements in power law distributions in ideal settings, and fairly re-liable 
performance in mock epidemiological settings.

One perhaps un-intuitive results is that Relaxations don’t even need to reduce pri-
vacy for performance gains. Uniform and multi-modal distributions pose a bigger 
challenge but are arguably  more rewarding. Finally, extensive literature review has 
inspired variants of the HR which we hope to formalize, implement, and test - time 
permitting.

Thesis Supervisor: Ramesh Raskar
Title: Associate Professor
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Chapter 1

Proposal

1.1 Intro

Local Differential Privacy (LDP) is the ideal tool for Private Frequency Estimation

and Counting Problems, since it does not assume a centralized trusted administra-

tor/server, and provides perpetual privacy to user records. However, this privacy

comes at the cost of utility (accuracy) and sample complexity - the number of partic-

ipants required to provide accuracy within a certain degree of confidence. The more

private an LDP scheme is the less utility it can provide.

The COVID-19 pandemic has highlighted the potential for LDP in major pub-

lic health monitoring and aggregation services - specifically symptom reporting and

heatmap generation [14][15]. However, implementing LDP algorithms effectively re-

quires strong assumptions about, or prior knowledge of underlying data. The privacy

of an LDP algorithm is a function of two components. The sensitivity of the aggregate

query - ie how much a single user can affect the output of particular query - and the

security hyper-parameter ✏. The value of ✏ is inversely proportional to the security of

the algorithm - commonly denoted as ✏-DP Differential Privacy - and ✏-LDP in LDP.

Optimal choice of ✏ is crucial to maximizing utility. Low ✏ may guarantee user pri-

vacy, but aggregate statistics may also render query results un-usable. In Frequency
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Estimation this has an adverse effect on less frequent elements of the domain. For

example a variant of a largely successful and widely deployed LDP implementation -

Google’s RAPPOR Zero - discards elements below a certain count due to low confi-

dence. This is acceptable in the case of web traffic estimation. But in public health

the diversity and complexity of the problem space make it harder to decide which

trends are statistically insignificant. Thus retaining as much signal as possible from

these tail elements is desirable.

This work seeks to address the pain points of LDP that may arise in standard

epidemiological use-cases by exploiting prior knowledge about the underlying distri-

bution. We pay special attention to online learning algorithms for scenarios with

limited prior knowledge. Our fundamental question is: how can we use limited prior

knowledge to increase utility, while losing minimal privacy? To do this, we focus on

the counting query sub-problem, a generalized version of the symptom vector prob-

lem for COVID-19. Our preliminary results suggest that certain distributions don’t

even require reduction in overall ✏ to see significant utility gains. We hope to take

those results a step further via our proposed iterative bootstrapping algorithms and

input-dependent LDP techniques [3].

1.2 Background and Related Work

1.2.1 COVID-19 Background and Data

State of the art Exposure Notification Systems like GEAN, Google and Apple’s Expo-

sure Notification platform emphasize privacy, but GEAN and other purely bluetooth

based protocols are not complete solutions . They don’t contain information about

the context of encounters, and require active peer to peer connections to function

[15]. They also don’t provide public health officials with useful statistics to combat

the spread of disease. Securely providing histograms of these statistics (namely symp-

tom vectors) is precisely the point of private counting queries.

14
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To simulate a realistic Covid-19 symptom vector setting, we use Google’s Symptom

Search Query dataset [4] to generate underlying symptom distributions that vary by

region. From these distributions we draw samples to simulate LDP user responses.

For methods that show promise on synthetic data-sets, we will perform further testing

on this realistic synthetic data to build confidence in our methods before moving on

to live-data scenarios (if possible).

1.2.2 Differential Privacy and Counting Queries

In this section we introduce notation and formal definitions of Differential Privacy

from [16]. All Differential Privacy methods require an arregator (server) to perform

algorithm A on a collection of user inputs D (aka. a database). The result t is an

obfuscated aggregate statistic. Formally:

Definition 1.2.1 (Differential Privacy). An algorithm A is ✏-differentially private

(✏-DP) if and only if for all ✏ � 0 and datasets D, D0 that differ in at most one

element (row)

8t 2 Range(A) : Pr[A(D) = t]  eE Pr [A (D0) = t] (1.1)

In an ✏-LDP scheme, users perform two steps before sending their data to the

aggregator: First the Encode step, which maps an input value to a data-domain. Sec-

ond the Perturb step which adds a calibrated amount of noise to the data encoding

such that it satisfies ✏-DP at a per-record level instead of at the database level.

One of the most fundamental aggregation objectives is a counting query, which es-

sentially asks the aggregator: "How many elements in the database satisfy a given

property?". Formally a counting query consists of n users. Each user reports once,

and can only contribute once per domain element {1, 2, . . . , d} (which we will abbrevi-

ate as [d]). In this setup there are d possible queries, and each query has a sensitivity

of 1. This can be generalized to a sensitivity of k by allowing users k contributions
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per domain element.

We focus our efforts on the Hadamard Response, which boasts the best run-time,

computational complexity and sample complexity of all LDP frequency estimation

variants [2]. Other counting query techniques documented in [16] include Warner’s

classic (k-)Randomized Response, variants of the Google Rappor [6], and the foun-

dations for Apple’s Private Count Min Sketch [1].

1.2.3 Relaxations on Differential Privacy

✏-LDP mechanisms require more noise in total than ✏-DP methods to achieve the same

amount of privacy, and yield poorer results. However generic ✏-LDP algorithms make

a strong assumption: That all pairs of elements in the domain are assumed

to be equally sensitive. This is not always the case and has subtle implications.

Consider privacy in geo-spatial queries, where densely populated areas require less

noise to obfuscate a user’s location to the same extent as would be necessary for a

sparsely populated area. Locally Lipschitz privacy was introduced in [10] as a possi-

ble solution to this problem. The authors provide a data derived "privacy map" of

✏ parameters for each domain element or subgroup. Their method does not always

yield a solution, but the notion of semantic security Lipschitz Privacy proposes is

essential to using ✏-LDP in practice. This thesis does not address that problem.

When one considers that not all pairs of elements in the domain are equally sensi-

tive, a natural conclusion is that one could improve overall utility by reducing privacy

for less sensitive domain elements. Acharya et al. seek to exploit that in [3] by intro-

ducing two input dependent relaxations of Hadamard Response: 1) High Low LDP

(HLLDP) which emulates Mangat’s Randomized Response[13] in which only some

elements are obfuscated 2) Block Structured LDP (BSLDP) which could be used to

implement the Lipshcitz privacy map from [16]. We hope to extend the contribu-

tions from [3] by showing that these relaxations can be realistically implemented (ie

with bootstrapping methods). We also see strong potential for a new ✏-LDP method
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inspired by the HLLDP scheme.

1.2.4 Theoretical work in relaxing privacy

Formal privacy guarantees for all algorithms and techniques we propose can be derived

with the composition theorems of Differential Privacy. Specifically the sequential

composition theorem [9], the parallel composition theorem, and the k-fold adaptive

composition theorem [5]. We may also draw upon prior theoretical work on the

gradual relaxation of differential privacy to explain empirical behavior [11].

1.2.5 Frequency Estimation

This work was heavily inspired by research on Learned Data Structures. Hsu et al.

used Learned Data Structures for a homologous objective - Count Min Sketch fre-

quency estimation [7]. They exploit information about the underlying distribution

through features of the input data via learned classifiers. These are typically Neural

nets with the task of predicting "Heavy Hitters" (most frequent) elements. However

[7] does not condider privacy. Learning a classifier adds an attack vector for member-

ship inference since the model would be publicly available to users in an LDP scheme.

Other work on Learned Index Structures can be found in this seminal paper [12].

Prior and gained knowledge about the distribution can also be exploited with post

processing, which preserves privacy and can be added to any LDP algorithm [8]. Post

processing methods for frequency estimation are often Bayesian, however the Cali-

brate method from [8] uses the predictions themselves as a data dependent prior for

smoothing, yielding significant gains in utility.

1.3 Proposed Work

We focus on the Hadamard Response (HR) [2], and HR based LDP techniques due to

their superior performance (see section on Differential Privacy and Counting Queries).

We use the term Relaxations to refer to modifications in the Encode and Perturb
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steps of ✏-LDP algorithms based on our data dependent prior. Our Proposed con-

tributions are currently planned around the following relaxations (items with a † are

potential contributions):

• Split domain - Splitting domain elements into 2 separate HRs.

• High Low LDP (HLLDP)1 [3].

• Block Structured LDP (BSLDP) [3].

• Oracle Relaxation2.

† Meta Hadamard Response - Inspired by [14].

† Tiered K Randomized Randomized Response - Possible variant on HLLDP.

All relaxations require at least 2 rounds of estimation. The first round can be

considered a ramp up round for the prior, from which relaxation parameters are

derived. We propose the following contributions in this thesis (from highest to lowest

priority).

1. Empirical proof of the benefits of various LDP relaxations.

2. Empirical proof of the effectiveness of iterative bootstrapping with LDP to

parameterize these relaxations.

3. Formal privacy guarantees for 1 & 2.

4. Analysis and theoretical justification of 1 & 2.

5. An open source implementation of the High Low LDP relaxation from [3].

6. Developing a new variant of context aware LDP based on the Hadamard Re-

sponse.

1Does not necessarily preserve the privacy of all elements, awaiting confirmation from authors
2Doesn’t not preserve the privacy of certain elements
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Figure 1-1: Examples of ground truth distributions over 1000 domain items [d]. Note
the log-scale on the power law distributions.

To measure utility we use the `2 loss (error) between the estimated and ground

truth distributions. We evaluate the following frequency distributions: Uniform,

Dirchlet, Two-Step, Zipf, and Geometric (see fig. 1-1). Privacy is denoted as ✏. The

following subsections detail the goals, results, and next steps for salient contributions

of this work. A proposed timeline of all contribution milestones can be found at the

end of this section.

1.3.1 Empirical Study: Existing LDP Methods/Relaxations

Goal: To evaluate the proposed ✏-LDP relaxations and any the conditions under

which they consistently outperform standard ✏-LDP. Successful relaxations will show

decreases in loss while maintaining privacy or allowing for a pre-designated relaxation

factor.

Preliminary Results: In preliminary testing, the Split Domain relaxation has

shown significant improvements in the first two rounds of experimental trials with-

out reducing ✏ at all. However it only shows significant improvement in power law

distributions (Zipf and Geometric1-2). Distributions without distinct sets of Heavy

Hitters may require an alternat approach, such as HLLDP or other input specific

methods. We observed similar gains in non-private Learned Count Min Sketch ex-

periment based on [7].

Next Steps: 1) A logical next step is to begin analyzing how results correspond

with existing theory. Specifically, using sample complexity bound on the Hadamard

Response to explain the effectiveness of the split domain relaxation on power law

distributions. 2) Implementing the other existing relaxations, and determining their

effectiveness could be crucial to improving performance on other distributions. 3)

19
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Figure 1-2: Preliminary results for the Split Domain relaxation. The top left chart
shows the `2 loss of a Hadamard Sketch along the y axis as the number of inputs
changes along the x axis. For the remaining charts the Y axis remains `2 loss, but
the x axis becomes iteration. Each iteration releases the predicted distribution to
the public. The prediction then becomes the data driven prior for the next round
of estimation. Note that the first datapoint is equivalent to the baseline singe HR

case. The first and last row depict preliminary results from Relaxations in Empirical
Study: Existing LDP Methods/Relaxations. The middle row shows the preliminary
results for Iterative Relaxation 1.3.2. See each section experimental setup details.
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Adapting our current implementation from the high privacy variant of the Hadamard

Response to a general purpose algorithm [2] will be key to discovering new perfor-

mance gains. Relaxing ✏ did not consistently show improvements, which could be due

to the high privacy variant only being effective for low values of ✏. 4) Depending on

early results on synthetic Covid-19 Data, we hope to submit our findings to the ACM

conference in early January.

1.3.2 Iterative Relaxation Algorithm

Goal: To determine whether the relaxations can practically and reliably be deployed

in real world scenarios while preserving privacy. Since ✏-LDP techniques cannot be

used repeatedly on the same data without reductions in privacy, bootstrapping meth-

ods must be used to parameterize the relaxation methods of 1.3.1. This contribution is

slightly more open ended than the first, but success could include either an algorithm

that converges to optimal utility for one or more ✏-LDP relaxations or analyzing the

conditions under which the best ✏-LDP relaxation can be effectively bootstrapped.

We are currently experimenting with the following algorithm for split domain.

Algorithm 1: Simulate a split domain ✏-LDP relaxation
Result: ⇥⇤ for an ✏-LDP relaxation

Sample n0 elements X0 from the distribution with initial params ⇥;

Predict distribution P0 = A(X0,⇥), where A satisfies ✏-LDP specified by ⇥;

Using P0 define ⇥1 = (⇥1
HH

, ⇥1
reg

).;

while i < max_iterations do

Sample ni elements X i where ni � ni�1;

Split elements into sub-domains X i

HH
, X i

reg
= split(X i,⇥i);

Predict new distribution Pi = A(X i

HH
,⇥i

HH
) � A(X i

reg
,⇥i

reg
);

Define ⇥i+1 = ⇥i+1
HH

, ⇥i+1
reg

;

end

Note that in Algorithm 1 we include the domain elements d and ✏ in the param-

eters ⇥ for each round. Let ⇥t

HH
include the set of predicted Heavy hitter elements
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predicted in round t� 1 and likewise for ⇥t

reg

Preliminary Results: The middle row of fig. 1-2 shows results of Algorithm

1 with an initial sample size n0 as a percentage of total number of samples N . The

following T points grew exponentially as follows: ni = n0 + (N � n0) ⇤ 2�(T�i). With

an n0 of 1%, most choices of N converged roughly to pre-relaxation loss by T = 10

but did not show uniform convergence. Results were notably worse than in Section

1.3.1.

Next Steps: 1) Further experimentation in this setting requires varying ✏, hence

adapting the general purpose Hadamard Response will also be crucial for this contri-

bution. 2) Incorporating information from previous rounds to get a somewhat noisy,

but reasonable estimate for the entire population in the first round will give us a

better idea of utility in a scenario with limited resources. Empirical proof of this is

crucial to our ACM submission. 3) If sampling with replacement is necessary, we can

bound losses in privacy by using the k-fold adaptive composition theorem from [5].

4) For both of these contributions, empirically determining their effective ✏ is compu-

tationally intractable, but there may be research to give empirical upper bounds and

validate our theoretical contributions WHP.

1.3.3 Stretch Goal: New LDP Mechanism

Goal: I have highlighted 2 possibilities for new LDP mechanisms. These may prove

essential in case existing relaxations are not as promising as we hoped on non-power

law distributions. The first is inspired by this recent meta estimation paper [14]. The

second seeks to improve the High Low LDP mechanism from [3] by adding tiers of

security. It is still not clear to me whether the High low LDP actually provides no

privacy for nonsensitive elements given their scheme. That will require some analysis.

Finally, if either of these algorithms is theoretically sound, I would implement it and

use my current test-bed for evaluation.
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1.3.4 Proposed Timeline

1. IAP 2021

(a) December 2020

i. Neurips Literature Review

ii. Complete analysis for Split Domain Relaxation and Iterative Relax-

ation

iii. Incorporate sample complexity into above experiments

iv. Build Synthetic Covid dataset Generator

(b) January 2021

i. ACM abstract due Jan 7th

ii. IJCAI abstract due Jan 12th

iii. Complete General Purpose HR analysis

iv. Theoretical analysis and privacy guarantees for the above.

2. Spring 2021

(a) February 2021

i. Deep dive on HLLDP

ii. Theoretical proof of concepts for Meta HR and Tiered KRR (new LDP

algorithms)

iii. Implement and sanity check one or more of the above Relaxations.

(b) March 2021

i. Analyze empirical results on syntehtic Covid Data or Real data-sets

ii. Provide formal privacy guarantees and draw parallels to theory.

iii. Derive meta theorems about analyzed techniques

(c) April 2021

i. Prepare Final Thesis Report
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