Прејди на содржината

Податотека:Prime number theorem absolute error.svg

Содржината на страницата не е поддржана на други јазици.
Од Википедија — слободната енциклопедија

Изворна податотека (SVG податотека, номинално 283 × 178 пиксели, големина: 94 КБ)

Врска до Ризницата Ова е податотека од Ризницата на Викимедија и може да се користи на други проекти. Подолу е наведена содржината на нејзината описна страница.
Заедничката ризница е складиште на слободно-лиценцирани слики и снимки. И Вие можете да помогнете.

Опис

Опис
English: A log-log plot showing the absolute error of two estimates to the prime-counting function , given by and . The x axis is and is logarithmic (labelled in evenly spaced powers of 10), going up to 1024, the largest for which is currently known. The y axis is also logarithmic, going up to the absolute error of at 1024. The error of both functions appears to increase as a power of , with Li(x)'s power being smaller; both clearly diverge. The error of Li(x) appears to smooth out after 109 but this is an artifact due to less data availability for in the larger region. Source used to generate this chart is shown below.
Датум
Извор сопствено дело
Автор Dcoetzee
SVG разработка
InfoField
 
SVG-кодот е исправен.
 
Оваа векторска слика е изработена со Mathematica
 
и со Inkscape.
 
 Оваа податотека користи вграден текст што може лесно да се преведе со уредувач на текст.
Изворен код
InfoField

Mathematica code

base = N[][10]/600)];
diffs = Table[][base^x], 
    N[][][base^x] - (base^x/(x*Log[base]))]}, {x, 1, 
    Floor[][2, base]}];
diffsli = 
  Table[][base^x], 
    N[][][base^x] - (LogIntegral[base^x] - LogIntegral[2])]}, {x, 
    Ceiling[][base, 2], Floor[][2, base]}];
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
     29844570422669}, {10^16, 279238341033925}, {10^17, 
    2623557157654233}, {10^18, 24739954287740860}, {10^19, 
    234057667276344607}, {10^20, 2220819602560918840}, {10^21, 
    21127269486018731928}, {10^22, 201467286689315906290}, {10^23, 
    1925320391606803968923}, {10^24, 18435599767349200867866}};
diffs2 = Abs[][][][[1]], N[][[2]]] - (#[[1]]/(Log[][[1]]]))} &, 
     LargePiPrime]]];
diffsli2 = 
  Abs[][][][[1]], 
       N[][[2]]] - (LogIntegral[][[1]]] - LogIntegral[2])} &, 
     LargePiPrime]]];
(* Plot with log x axis, together with the horizontal line y=1 *)
Show[][1, {x, 1, 10^24}, PlotRange -> {1, 10^21}], 
 ListLogLogPlot[{diffs2, diffsli2}, Joined -> True, 
  PlotRange -> {1, 10^21}], LabelStyle -> FontSize -> 14]

LaTeX source for labels code

$$ {\pi(x)} - {\frac{x}{\ln x}} $$
$$ {\int_2^x \frac{1}{\ln t} \mathrm{d}t} - {\pi(x)} $$

Лиценцирање

Јас, праводржецот на ова дело, со ова го објавувам истото под следнава лиценца:
Creative Commons CC-Zero Оваа податотека е достапна под лиценцата Криејтив комонс CC0 1.0 Предавање во јавна сопственост.
Лицето поврзано со делото со овој документ го има предадено истото во јавна сопственост, откажувајќи се од сите права на тоа дело за цел свет, под законот за авторско право и поврзани или сродни законски права што ги имало на тоа дело, дотолку колку што е дозволено со закон. Делата под CC0 не бараат припишување (наведување автор и/или извор). Кога го наведувате делото, наводот не треба да подразбира каква било поддршка од авторот.

Source

All source released under CC0 waiver.

Mathematica source to generate graph (which was then saved as SVG from Mathematica):


These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif in Inkscape.

Описи

Опишете во еден ред што претставува податотекава

Предмети прикажани на податотекава

прикажува

21 март 2013

Историја на податотеката

Стиснете на датум/време за да ја видите податотеката како изгледала тогаш.

Датум/времеМинијатураДимензииКорисникКоментар
тековна15:47, 21 март 2013Минијатура на верзијата од 15:47, 21 март 2013283 × 178 (94 КБ)Dcoetzee== {{int:filedesc}} == {{Information |Description ={{en|1=A log-log plot showing the absolute error of two estimates to the prime-counting function <math>\pi(x)</math>, given by <math>\frac{x}{\ln x}</math> and <math>\int_2^x \frac{1}{\ln t} \mathrm...

Податотекава се користи во следнава страница:

Глобална употреба на податотеката

Оваа податотека ја користат и следниве викија:

Метаподатоци