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Abstract—Recent advances in ultra-high-throughput mi-
croscopy have enabled a new generation of cell classifi-
cation methodologies using image-based cell phenotypes
alone. In contrast to current single-cell analysis techniques
that rely solely on slow and costly genetic/epigenetic anal-
ysis, these image-based analyses allow morphological pro-
filing and screening of thousands or even millions of single
cells at a fraction of the cost, and have been proven to
demonstrate the statistical significance required for under-
standing the role of cell heterogeneity in diverse biological
applications, ranging from cancer screening to drug candi-
date identification/validation processes. This paper exam-
ines the efficacies and opportunities presented by machine
learning algorithms in processing large scale datasets with
millions of label-free cell images. An automatic single-cell
classification framework using convolutional neural net-
work (CNN) has been developed. A comparative analysis
of its efficiency in classifying large datasets against con-
ventional k-nearest neighbors (kNN) and support vector
machine (SVM) based methods are also presented. Exper-
iments have shown that our proposed framework can effi-
ciently identify multiple types cells with over 99% accuracy
based on the phenotypic label-free bright-field images;
and CNN-based models perform well and relatively stable
against data volume compared with kNN and SVM.

Index Terms—Cell classification, convolutional neural
network, bright field imaging, multiclass classification.

I. INTRODUCTION

IMAGE-BASED cell analytic methodologies hold great
promises to enable a new research paradigm in understand-

ing cell heterogeneities and developments. With this class of
image-based workflow, information about the underlying bio-
logical system is inferred solely by analyzing images of the
target cells. Compared to conventional genetic and epigenetic-
based workflows that are complex, time-consuming and costly,
obtaining and analyzing cell images is a relatively simple and
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economical process. As a result, they promise unprecedented
processing throughput and latency that make them attractive
alternatives for tasks such as large-scale label-free rapid cell
profiling and cell screening [1], [2].

However, existing microscopy technologies can either pro-
duce very high content images at low throughput, or they can
image with high throughput by sacrificing image fidelity. As a
result, to understand cell heterogeneity by using image-based
methodologies remains a great challenge.

In this work, by exploiting recent advances in time-stretch mi-
croscopy technologies to produce high-content cell images with
high throughput [3]–[6], we explore the opportunities and chal-
lenges in using modern deep learning algorithms for large-scale
label-free multi-class cell classification. We hypothesize that the
large quantity of high-content cell images will facilitate modern
deep learning algorithms to achieve multi-class cell classifica-
tion with accuracy and specificity comparable to conventional
genetic and epigenetic methods. Starting with a convolutional
neural network (CNN) classifier as a baseline, we compare its
performance against a support vector machine (SVM) with the
radial basis function (RBF) kernel and a k-nearest neighbor
(kNN) classifier. We explain in detail a practical way to utilize
CNN for learning useful features among different types of cells,
focusing in particular on designing an appropriate framework
by analyzing the learned features of each layer. The effect of
data volume and image quality is also studied experimentally
with the 3 classification methods.

Results show that the accuracy of our CNN classifier contin-
ues to increase with a larger volume of input data, approaching
a peak classification accuracy of over 99%. On the other hand,
while the classification accuracy of our SVM classifier initially
benefits from a larger data volume, its performance is less stable
and appears to suffer from overfitting, when the input training
data volume increases to beyond 100 000. Finally, our kNN
classifier, while relatively simple in design, fails to achieve
comparable classification accuracy compared to the other 2
classifiers.

The rest of the paper is organized as follows. Section II re-
views some previous work on cell classification. Section III
presents our CNN-based framework and discusses the models
and dataset. In Section IV, we report on the experimental inves-
tigation and comparisons. Section V details the experimental
results and further analyzes the learned features to shed some
light on the good performance of our proposed model. Finally,
some concluding remarks are given in Section VI.
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II. RELATED WORK

Many human somatic cell types can be highly dynamic in
both morphology and behavior, even under homeostatic condi-
tions. Researches encompassing technologies for characterizing
heterogeneous behavior over time at the single cell resolution
are of fundamental importance when studying rare events such
as cancerization, or transition events such as differentiation.
High-content screening (HCS) with high throughput biotech-
nology allows quantification of phenotypic changes of kinetic
cells in various circumstances [7], but often depends on reliable
fluorescent labels for accurate identification of cell characteris-
tics [8]–[10]. The invasive and disruptive effects often associ-
ated with fluorescent dyes may limit the life-cycle and alter the
characteristics of the cells under investigation [11], [12].

Over the years, many approaches have been proposed for
cell classification involving fluorescent images, especially dur-
ing the HEp-2 cell classification competitions. Previous at-
tempts mostly consist of separate stages, where hand-crafted
features are extracted and then fed into classifiers. Many popu-
lar image features, including intensity histogram, gray-level co-
occurrence matrix, Fourier spectrum and wavelet coefficients,
have been introduced to provide useful information for identifi-
cation [13]. In addition, more elaborated features, such as the co-
occurrence of adjacent local binary patterns (CoALBP), which
can describe complex textures among adjacent patterns, have
been utilized to learn the distribution of image micro-patterns
as well [14], [15].

Recently, deep learning-based techniques have shown to
outperform algorithms using hand-crafted features in many
problems involving object classification and detection [16]–
[24], and this has led to widespread interest in CNN-based
classification model for cell recognition tasks [25], [26],
such as mitosis detection in breast cancer histopathology
images [27]. The benefits of deep learning architecture lead
to the elimination of distinct feature extraction, as all the
representations are learned directly from the training data.
A recent work [28], using a model based on LeNet [29],
demonstrates good performance and adaptability on HEp-2 cell
classification. Another representative work of Liu et al. [30]
provides a method to relieve the heavy reliance on a large
dataset by combining deep neural network with autoencoder.

With more work to differentiate various cells based on the
CNN model, deep learning has been increasingly accepted as
a powerful technique for learning staining patterns from the
fluorescent images. Compared with the time-consuming tech-
niques to obtain such fluorescent labels, phenotypic methods
have distinct advantages. High throughput imaging platforms
have emerged to enable the study of cell biology across a large
number of cell images [31], [32]. Bright field image yields the
possibility of identifying more descriptive features such as cell
shape and texture. A few recent publications have shown that
incorporating data from bright-field microscopy can yield in-
teresting results. Van Valen et al. [33] designed a deep CNN for
quantitative analysis of single living cells, and the experiments
present an improvement in semantic segmentation accuracy
and a significant reduction in curation time. Cohen et al. [34]
developed a computational method to predict cell division by

Fig. 1. Examples of single-cell images. Each row represents a specific
type, from top to bottom: THP1, MCF7, MB231, and PBMC.

analyzing dynamic features of living cells. Meanwhile, Scherf
et al. [35] in their work quantified changes in morphology of
colonies of embryonic stem cells in different circumstances.

In this work, we propose a learning-based model for cell
identification based on phenotypic images. Two major contri-
butions distinguish our work from previous attempts. First, our
model performs adaptively and noticeably well on large-scale
multi-class cell dataset. It has been tested on the ultrafast imag-
ing system for identifying four different types of cells, and
experiments show that our system successfully recognizes them
with over 99% accuracy. Moreover, all the scanning images
are label-free without any staining patterns. Classification relies
solely on image intensities, which is challenging due to cellular
heterogeneity. Compared with two other real-time classification
systems, CNN performs relatively stable along with data vol-
ume, while maintaining a high accuracy. Furthermore, we use
t-distributed stochastic neighbor embedding (t-SNE) to show
that the system is able to learn linearly separable features, and
the probability map illustrates that those features are extracted
mostly according to the cell edge textures.

III. METHOD

A. Data

We use an ultrafast imaging system known as asymmetric-
detection time-stretch optical microscopy (ATOM) [3],
[36]–[38] to collect a large dataset of cell images for training
and evaluation. This unique imaging approach can achieve
label-free and high-contrast flow imaging with good cellular
resolution at a very high speed. In our dataset, each acquired
image belongs to one of the four classes: THP1, MCF7,
MB231 and PBMC, as shown in Fig. 1. More precisely, they
belong to two collections of images captured separately at
different instances. One contains over 8,000 samples of three
types of cells (MCF7, PBMC, and THP1), while the other is
significantly larger, with over 900,000 cell images of MB231,
MCF7, and THP1 cells. Our objective is to augment the
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Fig. 2. The number of samples of different cell types.

imaging with a high-speed and robust classification system that
is sensitive to the representations of different cell types.

The cell images are captured with different experimental
settings such as illumination and focus, necessitating a clas-
sification system that is robust against these variations. Further-
more, the raw cell images are of different sizes, ranging from
21 × 102 to 68 × 440 pixels. Intentionally, some of the captured
images also do not contain any cell sample. Thus, we first need
to pre-process the images.

B. Image Pre-processing

Our first pre-processing step is to discard poorly formed
source images, including those failing to capture a complete
cell, containing defocus blur, or with some ghost artifacts. We
use a simple classifier to select and abandon such images, noting
that it is generally fine to be conservative and discard images
whenever they appear to be problematic. For our dataset, this
process drops 25.7% of the MB231 samples, 23.3% of MCF7,
37.5% of THP1, and a few samples of PBMC. Next, to unify the
image dimension for subsequent training, we resize the samples
to 128 × 128. To deal with the smaller raw images, we upsam-
ple both horizontally and vertically using bilinear interpolation
(better super-resolution scheme is also possible [39]); for others,
we typically need to downsample the height while upsampling
the width. We also normalize the average intensity to enhance
the robustness to illumination fluctuations. Furthermore, consid-
ering that there are significantly fewer PBMC images than the
other three types, we introduce data augmentation to balance the
distribution. This is achieved through introducing affine trans-
formations (flipping, translation, and rotation) on the existing
cell images, as well as adding blur and noise to the image data.
Fig. 2 shows the quantity of each type of cells before and after
this process. This can reduce error due to skewed data.

C. Network Architecture

Image texture is a commonly used feature that can distinguish
different types of cells efficiently [40]. The texture features can
be described as a set of primitive pixels that provide the spatial
information of image intensities in a region. To ensure informa-
tion is not lost in the process, we keep a relatively large filter size
(11 × 11) for the first convolutional layer, and gradually reduce
the size of the filter to 3 × 3. Image convolution highlights those
local structures that resemble the convolution kernel throughout

TABLE I
NETWORK PARAMETERS

an image region. In this way, the filters can learn texture-level
features useful for the following fully connected layers.

On the basis of these analyses, our proposed network is
designed as shown in Table I. Specifically, it contains eight
layers. The first six layers are convolutional layers alternating
with pooling layers, and the last two are fully connected layers
for classification.

1) Convolutional Layer: For the kth convolutional layer,
let N (k) denote the number of feature maps at this layer.
Accordingly, each feature map is denoted as hj (k) , where
j = 1, 2, . . . , N (k) . Each convolutional layer is parameterized
by an array of two-dimensional filters Wij

(k) , which combine
the ith feature map hi (k−1) in the previous layer with the jth
feature map hj (k) in the present layer and the bias bj

(k) . Each
filter acts as a specific feature detector by convolving with the
input feature map. In this way, all the filters pass through it
with constant strides. The results are then fed into a nonlinear
activation function ψ(·) such as the rectified linear unit (ReLU).
Overall, the feature maps of the kth layer can be expressed as

hj (k) = ψ

⎛
⎝
N (k −1 )∑
i=1

hi (k−1) ∗ Wij
(k) + bj

(k)

⎞
⎠ , (1)

for j = 1, 2, . . . , N (k) , where ∗ represents the convolution op-
eration.

2) Pooling Layer: A pooling layer performs the downsam-
pling operation to the feature map. This greatly reduces the
redundant information and also relieves the computation work-
load in training a CNN. Max-pooling and average-pooling are
two commonly used techniques. The former picks the maximum
pixel value as the representation of a small pooling region, while
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Fig. 3. The framework of our deep CNN classification system for cell images. Each block within the feature extraction stage denotes a feature
map. The fully connected layer is abbreviated as FC. The annotations between two layers stand for the corresponding operation.

the latter uses the average. We make use of the former, which
generally gives a better performance [41], [42].

3) Classifier: Classification layers are usually composed of
one or more fully connected layers at the top of a CNN. Our
network contains two, where the first one takes the output of
Layer 6 as input, applies matrix multiplication with weights
W(7) , and then sums with b(7) . The output of this layer is
therefore

h(7) = ψ
(
W(7)h(6) + h(7)

)
. (2)

The second fully-connected layer is similar, and contains n neu-
rons, which denotes the number of categories. The output prob-
ability y =

[
y1 , y2 , . . . , yn

]T
via softmax regression, where yj

is the output probability of the jth neuron, is

h(8) = W(8)h(7) + b(8) , (3)

yj =
exp

{
hj

(8)
}

∑n

i=1
exp

{
hi

(8)
} , j = 1, 2, . . . , n. (4)

Our network architecture is illustrated in Fig. 3. When a cell
image is fed into the network, the spatial resolution of each
feature map decreases as the features are extracted hierarchically
from the earlier layer to the next one. These features are usually
invariant to translational and small variations.

IV. EXPERIMENTS

A. Experimental Setup

The evaluation of our model is based on a train-validation-test
scheme. To train our network, we randomly partition the over
1 million cell images into three subsets, with 65% for training
(653,250 images), 15% for validation (150,750 images) and 20%
for test (201,000 images). The training set allows the model to
learn good representations, while the validation set is used for
fine-tuning the hyper-parameters. The overall performance of
the network is assessed on the test set. To give a comprehensive
display of network performance, we use the F-score, which is

defined as the harmonic mean of precision and recall, and the
average accuracy as evaluation metrics. Mathematically, let TP
be the number of true positives, FP the number of false positives,
and FN the number of false negatives. Precision and recall are
given by

precision =
TP

TP + FP
, recall =

TP
TP + FN

, (5)

and the F-score and average accuracy can be computed as

accuracy =
TP + TN

TP + TN + FP + FN
, (6)

F-score = 2 × precision × recall
precision + recall

. (7)

B. Network Training

Training a network is essentially optimizing a nonlinear func-
tion with respect to weights and biases. The experiments are
carried out using the Adam optimizer [43] to minimize the cat-
egorical cross entropy, which computes the dissimilarity of the
approximated output distribution. The parameters include the
learning rate, the exponential decay rate for the moving aver-
ages of the gradient, and the squared gradient. We set the final
learning rate to be 0.0001, the decay rate to be 0.9, and the
moving average to be 0.999. All the weights are initialized us-
ing truncated normalization, with a standard deviation of 0.1,
and the biases are initialized with a random constant value. The
weight updates are performed in every mini-batch, each con-
taining 1300 images.

The network is implemented using TensorFlow [44] and com-
puted on a Linux OS computer with an Intel Core i7-@2.60 GHz
CPU and an Nvidia Tesla K40c card.

V. RESULTS

We evaluate our proposed CNN-based classification system
on two datasets using the metrics defined in Eqs. (6)–(7). The
experimental results are presented in three parts. First, we illus-
trate the cell images used for classification. Next, we explore
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Fig. 4. The cell images used for training and evaluation of our model,
together with the cell region enclosed by a tight bounding box.

the influence of the dataset size on the model performance. and
compare with some traditional methods in order to provide an
analysis of the differences between our work and some previ-
ous cell classification methods. Third, we give a comprehensive
analysis of the performance of our network.

A sample cell image with size 128 × 128 is shown in Fig. 4.
Note that the cell region only occupies around 150 pixels in total
within a tight bounding box. All cell images used for training
and evaluation are obtained directly from the ATOM imaging
system with a high throughput [3]. To overcome the challenges
in single-cell imaging, a large dataset can be very helpful, and
therefore using this ultrafast imaging system is advantageous in
allowing us to obtain enough cell images in a reasonable time.

A. Comparison of Methods

After applying the image pre-processing discussed earlier in
our CNN model, the resulting images are fed to different classi-
fiers for comparison. We implement these comparison methods
where the parameters for each approach are picked using a
trial-and-error procedure on the validation dataset. We compare
mainly with two classical machine learning approaches, the first
one being kNN, and the second one being SVM with the RBF
kernel.

When compared to the CNN and SVM classification ap-
proaches where there are distinct training and inference phases,
the kNN model classifies images by comparing the incoming
image against previously encountered images. The incoming
image is classified through a majority vote of its nearest neigh-
bors in the training samples. In terms of computational resource
requirements, kNN thus has a clear advantage over CNN and
SVM when the amount of data volume is small. However, such
advantage diminishes as the number of training samples in-
crease. In our experiments, we classifies images against a ran-
domly subsampled set containing 6500 samples of our training
data to limit its run time.

CNNs, on the other hand, can take advantage of increases
in the amount of available computation and data. Indeed, our
experiments demonstrate that the size of the dataset used for
training-validation-test is crucial to tune it for better conver-
gence. We first shuffle the image data and subsample it to obtain
several smaller datasets. The subsampling rate ranges from 0.1
to 0.001, and we then test the performance of the three machine
learning algorithms on each subset. In Fig. 5, their accuracies are
compared across different data volumes. We observe that kNN
is most insensitive to changes in data volumes. As the amount
of data increases, learning-based techniques show greater po-
tential. When the size of dataset is relatively small, the accuracy

Fig. 5. Demonstration of the impact of data volume, comparing CNN
with kNN and SVM with the RBF kernel.

curves of SVM increase rapidly as the amount of data increases.
When the dataset becomes rather large, however, the perfor-
mance becomes stagnant and the accuracy can even drop. This
indicates that the additional data can hardly provide any addi-
tional useful knowledge in tuning the support vectors. In con-
trast, CNN delivers a good performance over all possible size of
the dataset and exhibits its power for extracting representative
features from the whole dataset, with accuracy steadily improv-
ing along with an increasing data size. Table II presents a more
detailed view of the classification results using different meth-
ods, including a comparison with another recently-proposed
CNN-based technique [28]. We adopted the CNN structure pro-
posed by Gao et al. [28] to our cell classification problem.
Our implementation strictly followed the framework presented
in their paper except for changing the size of input images to
128 × 128 (the same input size of our model). In addition, the
number of outputs in the final fully-connected layer is changed
to 4 to meet the number of cell types in our dataset.

B. Analysis of the Network Performance

Although deep convolutional networks have brought break-
throughs in processing images, features automatically learned
by a multilayer neutral network are incomprehensible by hu-
mans most of the time. In this section, we provide some de-
tailed discussion on the performance of our CNN-based model.
Fig. 6 presents the validation accuracy and loss curve during
the training process. Our model converges rapidly for the first
500 iterations, and continues to converge until around 3000 it-
erations. Both loss and accuracy curves are rather smooth with
only small fluctuations. The validation loss continues to drop,
reflecting that our proposed CNN-based model fits the problem
well. Fig 7 compares the model convergence of different loss
functions. The model converges faster and better by using cross
entropy based on softmax outputs as the loss function.

Next, we explore the learned features by probing into the
filters of the convolutional layers. The features (filters) learned
by the first and second layers after the training process are
presented in Fig. 8. The filters of the first layer detect the texture
features within a small region. The filters of the second layer
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TABLE II
CLASSIFICATION ACCURACY OF KNN, SVM WITH RBF KERNEL, AND CNN WITH DIFFERENT DATA VOLUME

Fig. 6. The accuracy and loss curves of a batch of validation data
during the training process.

Fig. 7. The validation accuracy with respect to iteration during the
training process. The cross entropy loss calculated based on softmax
probability shows faster and better convergence when applied to training
the proposed model.

Fig. 8. Filters of the convolutional layers by training on our data.
(a) The filters of the first layer. (b) The filters of the second layer.

TABLE III
COMPARISONS OF THE CLASSIFICATION PERFORMANCE ON THE VALIDATION
DATASET AMONG KNN, SVM WITH RBF KERNEL, AND CNN. THE RED AND

BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCE

Fig. 9. The reverse probability hotmap to reflect the attention of our
proposed network.

detect more elaborate textures based on the information of the
first convolution layer.

We also use the t-SNE algorithm to visualize the learned rep-
resentations after each layer. As shown in Fig. 10, a noticeable
trend is that deeper network tends to present more distinguish-
able features. From the output of the first convolution layer to
the second fully-connected layer, the point clouds of each cell
types become progressively linearly separable. This reflects that
our model can learn representative features of each class effec-
tively. Table III and Table IV further provide a clearer and more
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Fig. 10. The intermediate features extracted by the proposed network using t-SNE. We extract the intermediate output of each block and reduce
the output dimension to two. (a) and (b) visualize the t-SNE of the second and third pooling layers. (c) and (d) show the results of the first and
second fully connected layers. All the plots show only 1000 cell image samples randomly selected from the entire dataset.

TABLE IV
COMPARISONS OF THE CLASSIFICATION PERFORMANCE ON THE TEST

DATASET AMONG KNN, SVM WITH RBF KERNEL, AND CNN. THE RED AND
BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCE

comprehensive results of the classification performance on the
validation and test datasets, showing that our CNN-based model
is superior to the comparison methods.

Finally, Fig. 9 displays some randomly selected cell images
and their corresponding reverse probability hotmaps. We use a
small mask to cover each cell image and feed it into our proposed
model. Then, we replace the covered region with the output
probability value to obtain the hotmap. Since the covered region
may contain some distinguishable features, the performance
should deterioriate. In this way, we can visualize which part of
the cell that CNN puts a larger weight. According to Fig. 9, cell
types THP1 and PBMC contain some distinguishable features
inside the cells, while for MCF7 and MB231, the cell edges
have a heavier weight than inside.

VI. CONCLUSIONS

This paper proposes an automatic single-cell image classifi-
cation framework with deep CNN. The network consists of 3
convolutional layers with 2 × 2 kernels and ReLU activations,
followed by max-pooling layers with batch normalization oper-
ations. We give a detailed description on various aspects of this
framework and discuss the data volume influence on classifi-
cation performance, showing that deep learning models benefit
more with a larger dataset. The proposed framework achieves

over 99% accuracy in identifying multiple types of cells with
label-free images. In addition, the proposed CNN benefit most
from the increased data volume when compared to the two other
tested method with SVM and kNN.
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