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Abstract

This paper studies the joint dynamics of oil prices and interest in electric cars,
measured as the volume of Google searches for related phrases. Not surprisingly, I
find that oil price shocks predict increases in Google searches for electric cars. Much
more surprisingly, I also find that an increase in Google searches predicts declines in
oil prices. The high level of public interest in electric cars between April and August
of 2008 can explain approximately half of the decline in oil prices during the second
half of 2008. These findings are significant because they show that oil markets respond
to developments related to alternative technologies. I investigate several hypotheses
explaining these results.
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1 Introduction

This paper is an empirical study of the joint dynamics of oil prices and interest in electric cars.

Typically, studies of the determinants of oil prices have focused on macroeconomic conditions

and supply disruptions rather than developments related to alternatives to oil.1 I argue that

these developments, technological as well as political, are relevant to understanding oil price

fluctuations. I also show evidence that interest in alternatives is responsive to changes in the

price of oil.

To learn about the joint dynamics of oil prices and the level of interest in electric cars, I use

a Bayesian Vector Autoregression (BVAR) with these two variables treated as endogenous.

I measure interest in electric cars using data –made publicly available by Google– on the

volume of internet searches for phrases related to electric cars, such as ‘electric car’, ‘electric

cars’, ‘electric vehicles’, and so on.2

The main findings are as follows. Oil prices respond negatively to shocks to the level

of interest in electric cars. The response is economically significant. After a typical shock

to interest in electric cars, oil prices decline –gradually– for around six months, reaching a

minimum estimated decline of around 5%. This magnitude is of the same order as the typical

oil shock in the system. A shock to oil prices, in turn, raises the level of interest in electric

cars for around four months. A simulation using only the estimated shocks to interest in

electric cars, and no oil shocks, shows that approximately half of the decline in oil prices

during the second half of 2008 can be explained by an increase in the level of public interest

in electric cars.

The idea that the availability of alternative technologies can play a role in the deter-

mination of oil prices is not new. In the second half of the nineteenth century, the most

1For recent surveys on the economics of oil prices, see Kilian (2008) and Hamilton (2009b).
2The phrases are selected based on the top searches related to electric cars according to Google Insights,

as described in more detail in section 2.
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important use for oil was illumination using kerosene lamps. The development of electric

lighting by Thomas A. Edison in 1879 and of alternating current by George Westinghouse in

1886 provided a substitute for kerosene lighting which was safer, cleaner, and more conve-

nient. According to Williamson and Daum (1959, pages 680-684), the emergence of electric

lighting and other alternatives to petroleum products contributed to the stability of oil prices

in the last decades of the nineteenth century, despite this being a period of rapid economic

expansion. As shown in Figure 1, prices after 1879 were considerably lower and less volatile

than in the previous decades.3

Some argue that a similar move from petroleum to electricity is currently under devel-

opment in the transportation sector.4 In the past two years, many countries and regions

–including Israel, Denmark, Australia, California, Hawaii and Ontario– have partnered with

a startup company called Better Place to provide infrastructure and incentives for the adop-

tion of electric cars. The Chinese government has also publicized its intentions to invest

in infrastructure for electric cars and promote them through incentives. At the same time,

virtually all of the major car companies have announced their interest in mass-producing

electric vehicles. If these high expectations for electric cars were to be realized, there would

be a drastic reduction in the long-run demand for oil.

The endogeneity of oil prices with respect to interest in alternatives is problematic for

policymakers. The drop in prices after an increase in interest may make it politically more

difficult to support the adoption of alternatives to oil. It has the double effect of shifting the

public’s attention to other topics and making alternatives less competitive.

This paper provides evidence that supports the hypothesis that public interest in energy

alternatives is responsive to oil prices. In addition, it shows that oil prices may respond to

3Dvir and Rogoff (2009) show that there was a statistical break in the volatility and persistence of oil
prices at some point around 1877. They, alternatively, argue that these changes occurred because Standard
Oil, through the installation of oil pipelines, gained enough market power to break the railroads’ monopoly
on transportation.

4See, for example, Better Place (2008), Deutsche Bank (2008), and Becker (2009).
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increases in public interest, thus slowing down the political momentum in favor of alternatives.

The price of oil is a crucial ingredient in any cost-benefit calculation regarding alternatives,

and its endogeneity should be taken into consideration when evaluating energy policy.

2 Data

I measure interest in electric cars using the volume of Google searches for phrases related

to electric cars. To choose relevant keywords, I use the top searches related to electric cars

according to Google Insights, which is a tool that, given a phrase, provides a ranking of

related keywords that people often query on Google before and after that phrase. The top

searches in the ‘automotive’ category related to the phrase “electric cars” are shown in Figure

2.5 Given a set of phrases, Google Trends then reports a search volume index. The latter

is the number of searches for the given the set of phrases relative to the total number of

searches at a given moment in time (the index is normalized so that its mean is equal to

one). I use the search volume index for the phrase “electric cars” and for the search terms

reported in Figure 2 as a measure of public interest in electric cars.

To illustrate what kinds of behavior the Google Trends data can capture, the volume

indexes for searches for “ice cream”, “pumpkin”, “down goose” and “economics” are shown

in Figure 3. The seasonal patterns that the searches reflect are what one would expect:

searches for ice cream are high during summer; searches for pumpkin are low during most

of the year but rise sharply at the end of every October; searches for “down goose” increase

during the winter; and searches for “economics” decrease during periods of summer vacation

and winter holidays. Note that although these examples show clear seasonal patterns the

electric car search volume data does not seem to be seasonal.

5Google classifies searches into 27 categories, using natural language processing methods. One of the
categories is ‘automotive’, to which I restrict the phrases to avoid searches for remote-control electric toy
cars.
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Data on internet search volume has been used to track flu epidemics by Polgreen et al.

(2008) and Ginsberg et al. (2009).6 This data has also recently been used by Choi and Varian

(2009) to forecast economic series –such as auto sales– before the official data is released.

Figure 4 shows the measure of interest in electric cars described above, together with oil

prices.7 The data is weekly and goes from the first week of 2004 to July 2009.8 The figure

shows how events like Hurricane Katrina, the public introduction of prototypes of the Tesla

Roadster –a high-end electric sports car– and the simultaneous release of the movie “Who

Killed the Electric Car”, as well as press releases from the startup company Better Place,

were all followed by substantial increases in interest in electric cars. These were not the only

developments that generated search activity for electric cars, but they give an idea of the

kind of developments that could be driving public interest.

3 Empirical Strategy

3.1 Modeling the Joint Behavior of Oil Prices and Searches for

“Electric Car”

The empirical framework is a Bayesian Vector Autoregression with oil prices and interest

in electric cars as the endogenous variables. Thus, I assume that oil prices and interest in

electric cars –both in logs– can be described by a structural equation of the form:

Γ(L)yt = c + ǫt, (1)

6This kind of analysis is currently published in real time by Google on its website
http://www.google.org/flutrends/.

7The data for oil prices is the Cushing, Oklahoma WTI Spot Price FOB, in dollars per barrel, which can
be downloaded from the website of the Energy Information Administration.

8Weekly search volume data measures the intensity of searches from Sunday to Saturday. I define oil price
at time t to be the average of the closing prices during the week of searches assigned time t.

4



where Γ(L) is a matrix valued lag polynomial in the nonnegative powers of the lag operator L.

The errors ǫt are uncorrelated in the time dimension and have a diagonal variance covariance

matrix Λ. One can estimate the reduced form vector autoregression

Γ−1
0 Γ(L)yt = Γ−1

0 c + Γ−1
0 ǫt, (2)

where Γ0 is the submatrix of Γ(L) corresponding to the zero lag. The latter can be rewritten

as

yt = d + B(L)yt + et, (3)

where V ar(et) = Σ. Here, we have defined

d = Γ−1
0 c (4)

I − B(L) = Γ−1
0 Γ(L) (5)

et = Γ−1
0 ǫt. (6)

This implies that Σ = Γ−1
0 ΛΓ−1

0
′.

I use 16 lags, which for weekly data corresponds to around four months. For identification

purposes, I use the assumption that the contemporaneous effect of shocks to interest in electric

cars on oil prices is zero. The correlation between the estimated shocks is low (.8%), and the

main results don’t change if one reverses the order of the variables, or if one uses a symmetric

square root instead of the Choleski decomposition.

3.2 Prior

I use a Minnesota prior as described in Sims and Zha (1998), which centers prior beliefs

around independent unit root behavior. The parameter values are standard and described
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in Appendix A. Qualitatively, the results are not dependent on the prior parameterization,

as is shown in Appendix A. The magnitude and level of persistence of the response of oil

prices to its own shocks and to shocks to interest in electric cars, however, do depend on the

parameters.

4 Results

4.1 Impulse Responses

The posterior densities for the impulse responses are shown in Figure 5. In the density plots,

the outer bands represent 90% bands, then 80%, 70%, etc., until they reach 10% bands.

These error bands are interpreted as the posterior uncertainty for the impulse responses, as

discussed in Sims and Zha (1999), not as classical confidence intervals. A shock to oil prices

generates a positive response of interest in electric cars, which dies out after around six

months. A shock to interest in electric cars produces a negative response of oil prices. After

the shock, the oil price declines gradually for around six months, and then slowly reverts to

the mean. The magnitude of the response is economically significant: the median response

of oil prices to a one standard deviation shock reaches its peak at around negative 5%, which

is comparable to the magnitude of a one standard deviation oil shock.

4.2 Simulations with Only Shocks to Interest in Electric Cars

Figure 6 shows the predicted values for both variables when simulating the model without

any shocks. This shows the transient generated by the initial conditions. Figure 7 shows the

simulation using only the orthogonalized shocks to interest in electric cars, after subtracting

the predicted values with no shocks shown in the previous figure. An increase in interest in

electric cars in mid-2006 –due in part to the release of the movie “Who killed the electric
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car” and the public introduction of the Tesla roadster– can explain most of the decline in oil

prices observed in the second half of 2006. Also, a diminished interest in electric cars in late

2007 and early 2008 can explain some of the increase in prices during that period. The high

level of interest in electric cars between April and August of 2008 can explain a part of the

subsequent crash in prices. Finally, some of the recent increase in prices can be explained by

a low level of interest in electric cars at the end 2008 and the first half of 2009.

Most of the increase in interest in electric cars between April and August of 2008 after

the price of oil crossed 100USD is assigned to exogenous shocks to interest, rather than to

a response to rising oil prices. However, the response of the level of interest in electric cars

to oil price shocks could be non-linear. For example, the response could be higher with oil

prices above some threshold. This could happen for at least two reasons. First, there might

be a psychological threshold at round numbers like 100. Second, it is also possible that there

is a value around which electric cars become cost competitive compared to gasoline cars.

The value could be around 100USD per barrel, according to calculations by Deutsche Bank

(2008), as shown in Table 1.9 If there is a threshold, it is likely to decrease over time, as the

cost of producing batteries decreases and their life cycle increases.

4.3 Distribution of the Estimated Shocks

Figure 8 shows quantile-quantile plots of the residuals for both equations. The residuals

appear to be non-normal –which is confirmed by conducting a Jarque-Bera test. The distri-

butions have fat tails and more positive outliers than negative ones. This raises the concern

that a few outliers could be driving the results. By regressing the squared residuals on their

lagged values, I also find evidence of serial correlation in the error variances. To address these

9According to the estimates reported in the table, electric cars would be cheaper to fuel –including the
cost of electricity and battery depreciation– than gasoline cars at gasoline prices of $3.50 per gallon or more.
Using a regression of oil prices on gas prices in the United States with data for 2008 and 2009, the expected
value of oil prices given gas prices at $3.50 is slightly above 100USD per barrel of oil.
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concerns, I re-estimated the vector autoregression allowing for regime-switching in the means

and variances of the error terms, which allows for a general error distribution –with both fat

tails and asymmetry– and for autocorrelation in the error variances. The impulse responses

from the regime-switching model look quite similar to the normal model. The magnitude

of the effect is smaller, but still statistically and economically significant. The estimation

procedure and results are described in detail in Appendix B.

5 Discussion

5.1 Why Would Interest in Electric Cars Affect Oil Prices?

The fact that interest in electric cars responds to changes in oil prices is intuitive. But why

would interest in electric cars, or in alternatives in general, precede declines in the price

of oil? I will discuss possible mechanisms that could be driving the results. A conclusive

analysis, however, is beyond the scope of this paper.

One possibility is that interest in electric cars may be acting as a proxy for technological,

business, and policy developments related to electric cars. These can translate into a higher

long-run price elasticity of the demand for oil, because possible alternatives become more

convenient or cheaper. This higher long-run elasticity would translate into lower oil prices.

A second possible mechanism is that oil producers with market power may react strate-

gically to increased public interest in alternative technologies, in an effort to slow down the

substitution of oil by the former. To do this, they could lower oil prices when there is a sub-

stantial increase in public interest in alternatives. Conversely, during periods when interest

in alternative technologies is low, prices would go up.

Lower oil prices would work against the adoption of alternatives for several reasons.

First, they may make it politically harder to pass legislation to facilitate and incentivize the
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adoption of alternatives. With lower oil prices, alternatives become less attractive relative

to oil in terms of cost leading to a decline in public interest in alternatives. Second, a

decline in oil prices reduces the incentives for car companies to make long-term investment

decisions related to the manufacturing of fuel efficient cars. Finally, lower oil prices also put

financial strain on startup companies related to alternative technologies. For example, Tesla

Motors was having financial troubles in October 2008, having to fire workers and postpone

the introduction of their second car model. According to a news article in BusinessWeek,

“[i]f oil prices continue their fall and stay below $80 a barrel, Tesla, which currently spends

nothing on marketing, could lose some of its buzz.”10

Whichever the underlying mechanism, the sluggishness of the estimated reaction of oil

prices after a shock to interest in electric cars requires an explanation. If the mechanism is

through financial markets, then this could be understood in the context of delayed reaction

to news. In informationally efficient markets, the reaction of oil prices to shocks to interest

in electric cars should be instantaneous. This said, the empirical evidence shows that there is

underreaction to news at short-run horizons (three months to a year) in financial markets.11

Hong et al. (2000) show that the underreaction is stronger for stocks with a low level of

analyst coverage. Thus, if oil analysts are focused on macroeconomic devlopments and supply

disruptions rather than long-run developments of alternative technologies, it is plausible that

the reaction to changes in interest in electric cars would be delayed. Hong and Stein (1999),

Barberis et al. (1998) and Daniel et al. (1998) propose behavioral models that can account for

this behavior. Theories of rational inattention could also be a useful theoretical framework

to model delayed reaction to news in financial markets.

If the mechanism is a strategic reaction by oil producers, the same arguments hold. Due to

natural limitations in informaton processing capacity, they could become aware of changes in

10David Welch, ”Electric Carmaker Tesla Downshifts,” BusinessWeek, October 23, 2008, Section Autos.
11See, for example Cutler et al. (1990) and Jegadeesh and Titman (1993).
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interest in alternatives gradually, and take time to react. Moreover, the speed of the reaction

might be strategic as well, since oil producers have an interest in keeping price volatility low.

5.2 Why Did Oil Prices Rise and Fall in 2008?

As shown in the simulations in Figure 7 described in Section 4.2, some of the increase in

oil prices in 2007 and the first half of 2008, and a substantial part of the fall in oil prices

in the second half of 2008 can be explained by changes in interest in electric cars. This is

consistent with the view expressed by Hamilton (2009a) that the rise and fall in oil prices

during this period were likely due to changes in the long-run elasticity of the demand for

oil. In particular, he argues that the economic downturn by itself is not sufficient to explain

the magnitude of the decline in oil prices observed in the second half of 2008. Instead, he

attributes the price collapse to an increase in the long-run elasticity of the demand for oil.

It is interesting to compare the behavior of spot and futures prices during this period.

Futures prices for contracts with a maturity of several years provide information on the

traders’ for the oil market many years into the future. Figure 9 shows the prices oil futures

contracts with times to maturity of 35 and 72 months, together with the spot price.12 The

rise in prices until mid-July of 2008 was similar for spot and futures prices. The decline of

futures prices starting in mid-July of 2008 was also similar to that of spot prices –although

spot prices fell more. This suggests that both the rise and decline in oil prices during 2008

were driven primarily by changes in expectations regarding the long-run demand and supply

of oil, rather than short-run considerations such as business cycles or capacity constraints.

A way to examine the relative importance of the recession versus developments related to

alternatives is to run a three-variable Vector Autoregression adding a measure of economic

activity as an endogenous variable. There are no official measures of economic activity at

12There are missing values for some days in the Bloomberg data for long-term futures contracts. The
35-month contract had data for most days of the 2004-2009 period; contracts with a maturity of 36 months
or more have more missing values.

10



the weekly frequency, but Aruoba et al. (2008) calculate a filtered daily index of business

conditions, published by the Federal Reserve Bank of Philadelphia.

Figure 10 shows the resulting impulse responses. Figure 11 shows the counterfactuals of

oil prices with shocks to interest in electric cars only, and with only shocks to the Aruoba-

Diebold-Scotti Business Conditions Index. As can be seen from the figures, shocks to interest

in electric cars still have a significant negative impact on oil prices, and can explain a large

fraction of the decline in the price of oil during the second half of 2008. A shock to business

conditions has a positive impact on the oil price. The orthogonalized shocks to business

conditions can account for some of the price decline during the second half of 2008. How-

ever, the fraction of the price decline that can explained by shocks to business conditions is

substantially smaller than that which can be explained by shocks to interest in electric cars.

Also, in the simulation using only shocks to business conditions, oil prices start to decline at

the end of 2007, while actual oil prices rose steeply until mid-July of 2008.

6 Summary and Conclusion

This paper shows evidence that oil prices respond negatively to shocks to the level of public

interest in electric cars. It also shows that public interest in electric cars responds to shocks to

oil prices. Changes in the level of interest in electric cars can explain around half of the price

decline in the second half of 2008. These results suggests that oil prices are not driven only by

macroeconomic factors and supply risks. Technological, business, and political developments

related to alternative technologies may be just as relevant in understanding changes in oil

prices.

I have provided only an informal discussion of the underlying mechanisms that could

explain the results. A more thorough exploration is a natural avenue for further research. The

results are likely to have implications for policy analysis. Clearly, one of the main ingredients
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in any cost-benefit analysis regarding alternatives to oil is the price of oil itself. However,

the price of oil is endogenous with respect to policy related to alternative technologies. This

paper presents evidence that suggests that the magnitude of the effect of policy on prices

could be economically significant. This price endogeneity has at least two implications for

policy analysis. The first is that it represents a change in the terms of trade favorable to oil

importers. The second is that it slows down the adoption of alternatives. This makes the

policy less effective in promoting alternatives than what a policymaker that treats the price

of oil as exogenous would expect.
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Appendices

A Minnesota Prior

A.1 Parameterization for the Reported Results

The parameterization of the prior is standard.13 The weights on the sum-of-coefficients

dummy λ, the weight on the no-cointegration dummies µ, and the overall tightness parameter

on the ‘Minnesota-prior’ dummies π1 are set to 5, 2, and 3, respectively. The parameter that

allows different weights between own lags and coefficients on other variables, π2, is omitted,

which is the same as setting it to 1. This is required to be able to implement the prior

using system-wide dummy observations. The decay parameter π3 is set to one half. The σk

parameters, which measure variability of variable k, are set equal to the standard deviations

of the differences in each variable. The weight on the variance-covariance matrix dummy w

is set to 1. The values assigned are summarized in Table A.1.

A.2 Sensitivity to Different Values for the Hyperparameters

Figures A.1 to A.4 show the response of oil prices to its own shocks and to shocks to interest

in electric cars for different values of the hyperparameters. The impulse responses are almost

identical for different values of λ, π1, and π3. Changing the weight µ on the no-cointegration

dummies affects the persistence of the response of oil prices to both types of shocks, with

higher values implying a higher level of persistence. A value of µ = 0 imply fast mean

reversion of oil prices, with a typical shock vanishing completely around 80 weeks after

impact.

13The notation follows that of Chris Sims’ lecture notes and VAR tools –available at
http://sims.princeton.edu/– rather than that in Sims and Zha (1998).
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B Regime-Switching Vector Autoregression

This section describes the Vector Autoregression model with regime-switching for the error

means and variances, and an MCMC algorithm to sample from the posterior distribution.

The model is flexible enough to allow for both non-normality in the error distribution and

serial correlation in the error variances.14

B.1 Description of the Model

One can rewrite the VAR model as a multivariate regression

yt
1×n

= Xt
1×k

B + ǫt, (7)

where Xt includes the lagged values of yt and a constant term. The error term ǫt has

multivariate normal distribution with mean µSt
and variance-covariance matrix ΣSt

, where

St is the state of the system at time t. Each period, the state takes one of m possible values.

The state evolves over time according to the stationary first-order Markov finite state model.

Thus, the probability of state j given that in the previous period the state was i is

P [St = j | St−1 = i, Su(u < t − 1), A] = (8)

P [St = j | St−1 = i, A] = pij, (9)

where A denotes the model.

Define the transition matrix as P = [pij] and the series of the states S. In the stationary

first-order Markov finite state model, the unconditional distribution of the state is always the

14Since the seminal contribution of Hamilton (1989), the number of papers using Markov regime-switching
in dynamic models has been enormous. The model described in this section is similar to that in Sims and
Zha (2006).
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stationary distribution π with the property πP = π. Thus, one does not need to impose a

prior density on the initial value of the state. Denote the mapping from P to the stationary

distribution π(P) = [π1(P), . . . , πm(P)]. The likelihood with the states fixed is

p(S | P, A) = πS1
(P)

∏

i,j

p
nij

ij (10)

where nij is the number of dates t = 2 . . . T such that St−1 = i and St = j.

Conditional on the state being equal to j, and the lagged values of yt, ǫt is a multivariate

normal random variable with mean µj and variance-covariance matrix Σj (these are grouped

in µ and Σ, to ease notation).

The observables density conditional on the state is given by

yt | {Xt, B, µ,Σ, St = j} ∼ N(XtB + µj, Σj). (11)

Note that the Xt can include a constant term or not. If it does, it is possible to identify

the constant and the means of the errors by introducing a tighter prior centered around zero

for the error means µj. The vectors of interest are the impulse response functions, which

depend only on B(L) and Γ−1
0 , and the calculations do not involve the constant term or the

error means separately. Thus, even though it is possible to include and identify a constant

term separately from the error means –and this is the approach taken in this project– it is

not necessary to do so, and the convergence may be slightly faster without including it.

The joint distribution of the yt (denote all the observations by y and X, and group the
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probabilities of the states in π and the errors in ǫ) is thus given by

p [y | X, B, µ,Σ,S, π] (12)

∝

T
∏

t=1

|ΣSt
|−

1

2 exp

{

−
1

2
(yt − XtB − µSt

)Σ−1
St

(yt − XtB − µSt
)′
}

(13)

=
m
∏

j=1

|Σj|
−Tj/2 exp

{

−
1

2

∑

t:St=j

(yt − XtB − µj)Σ
−1
j (yt − XtB − µj)

′

}

(14)

=
m
∏

j=1

|Σj|
−Tj/2 exp

{

−
1

2
tr(Σ−1

j Σ̂j)

}

, (15)

where Σ̂j = (y − XB)′(y − XB)|for t:St=j.

B.1.1 Rewriting the Model in Stacked Form

It is useful to rewrite the system in stacked form. First, define

Z
T×m

= [z1, . . . , zT ]′ = [δ(St, j)], W
T×(m+k)

= [Z X] , Φ
(m+k)×n

= [µ B] .

Define:

γ = vec(Φ) (16)

ỹ = vec(y) (17)

W̃ = I ⊗ W (18)

ǫ̃ = vec(ǫ) (19)

Q = Cov(ǫ̃) =

[

m
∑

j=1

(Σj ⊗ diag(Z·,j))

]

−1

. (20)
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With this notation, we can rewrite the joint distribution of ỹ as

p(ỹ | X, γ,Σ,S, π) ∝ |Q|1/2 exp

[

−
1

2
(ỹ − W̃γ)′Q(ỹ − W̃γ)

]

.

B.1.2 Prior

The prior for each column pi of the transition matrix P is Dirichlet with parameters aij:

p(pi) ∝
m
∏

j=1

p
aij−1
ij . (21)

For the Σj, it is convenient to use independent inverse Wishart priors:

p(Σ−1
j ) ∝ |Σj|

−
1

2
(ν−2) exp

(

−
1

2
trΣ−1

j H−1

)

, (22)

that is, Σ−1
j is assumed to have a Wishart distribution with ν + n − 1 degrees of freedom

with scale matrix H.

Finally, the prior for γ is a multivariate normal with mean γ and precision matrix Hγ,

where:

γ
n(m+k)×1

=







0

β






, Hγ

n(m+k)×n(m+k)

=







hαInm 0

0 Hβ






.

There are two ways to implement a Minnesota prior in this framework. The first is to

incorporate it directly into the prior for γ. The second approach –the one used in this paper–

is to add the dummy observations to the dataset as described in Sims and Zha (1998).

Then, one can simply work with the markov-switching VAR model just described using the

dummy-observation-augmented data. The parameters for the dummies are the same as those

described in Table A.1.

In addition to the dummy observations, I set values for the prior parameters in the model.
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The Dirichlet parameters of the prior for P are all set to 1. For the prior on Σj, I use ν equal

to 10, which corresponds to ν + n − 1 = 11 degrees of freedom and scale matrix equal to

the inverse of the variance covariance matrix of the errors in the results from a BVAR using

Sims’ codes with the same data, divided by ν + n − 1. The coefficients are (after thinking

of the dummies as data) all centered around zero. The precision matrix is diagonal, with a

precision of zero for the constant and the coefficients on the lagged variables, and a precision

of 1 for the error means, which allows identification. Despite some elements of the diagonal

of the precision matrix being set to zero, the prior is not improper because of the inclusion

of the dummy observations. The number of mixtures is fixed at five and, as before, I use 16

lags.

B.2 MCMC Algorithm for Exploring the Posterior Distribution

The Metropolis-within-Gibbs algorithm to sample from the posterior is based on making

successive draws from the conditional posterior distributions of γ, Σj, P, and the time series

of states St. In the stationary first-order Markov finite state model there is a restriction on

P and thus the posterior is not a standard distribution. However, sampling is possible using

an independence Metropolis-Hastings step.

The conditional posterior density of γ is given by

γ | (X, ỹ,Σ,S, π) ∼ N(γ̄, H̄γ)

H̄γ = Hγ + W̃QW̃

γ̄ = H̄−1
γ

[

Hγγ + W̃Qỹ
]

.

This is analogous to the derivation in Geweke (2005), section 6.4.2. Note that, because Q is

not diagonal, the system cannot be estimated equation by equation as in the standard Vector

Autoregression model.
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The conditional posterior density of Σj is given by the product of (13) and (22), which is

an inverse Wishart with Tj + ν + n − 1 degrees of freedom and scale matrix
[

Σ̂j + H−1
]

−1

:

Σj | (X, ỹ, γ,S, π)

∝ |Σj|
−Tj/2 exp

{

−
1

2
tr(Σ−1

j Σ̂j)

}

|Σj|
−

1

2
(ν−2) exp

(

−
1

2
trΣ−1

j H−1

)

= |Σj|
−(Tj+ν−2)/2 exp

{

−
1

2
tr(Σ−1

j (Σ̂j + H−1)

}

.

The conditional posterior of the states is

p(S | γ,Σ,P,y,X, A) ∝ πS1
|ΣS1

|−
1

2 exp

[

−
1

2
(y1 − X1B − µS1

) Σ−1
S1

(y1 − X1B − µS1
)′
]

T
∏

t=2

pSt−1St
|ΣSt

|−
1

2 exp

[

−
1

2
(yt − XtB − µSt

) Σ−1
St

(yt − XtB − µSt
)′
]

.

An algorithm to sample directly from this density is due to Chib (1996).

The conditional posterior density of P is

p(P | S, A) = πS1
(P)

∏

i,j

p
aij+nij−1
ij . (23)

As described in Geweke (2005), section 7.2.2, a method to sample from this distribution is

using an independence Metropolis-Hastings algorithm. First, each column p∗

i
of the candidate

P∗ is drawn from a Dirichlet with parameters ai1 +ni1−1, . . . , aim +nim−1. The acceptance

probability is min [πj(P
∗)/πj(P), 1].

B.3 Results

Impulse responses from the Markov-Switching model are shown in Figure B.1. The responses

look similar to those from the standard BVAR, although the estimated effect of interest in
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electric cars on oil prices is smaller. Figure B.2 shows the estimated variances over time from

the Markov-Switching model, calculated as the average variance for each time period over all

the iterations of the posterior sampling. Interest in electric cars has several periods of high

variance; the variance of oil prices, on the other hand, is quite stable except for a period

of high variance from September 2008 until January 2009. Figure B.3 shows the estimated

density of the stationary distribution in the last iteration of the Gibbs sampler, together with

the estimated residuals from that iteration.

C Interest in Other Alternatives

In this section, I compare the response of oil prices to interest in electric cars with the response

to interest in hybrid and alternative vehicles in general, interest in hybrids in particular, and

interest in ethanol. To measure interest in hybrid and alternative vehicles in general, I use

the “Hybrids and Alternative Vehicles” category of Google Insights. This category captures

a broad range of search terms related to alternative vehicles, including electric cars and

hybrids. Using Google Insights, I find that all the top ten search terms related to “hybrids”

in the automotive category include the words “hybrid” or “hybrids”. All the top ten searches

related to “ethanol” include the terms “ethanol” or “e85”.

Figure C.1 shows the responses of oil prices to the search volume indexes for electric

cars, hybrid and alternative vehicles, hybrids, and ethanol. The responses to the hybrid and

alternative vehicles category and to the search index for hybrids are similar to the response

to interest in electric cars, although the latter response is stronger. The three measures of

search volume are highly correlated (the correlation between any of them is around 90%).

The response to interest in ethanol is also negative, but the error bands are much wider. The

correlation between interest in ethanol and the other three series is lower, around 50%.
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D Estimation Without the Recession Period

Figure D.1 shows the impulse responses for the pre-recession period. This excludes from the

sample 86 weeks of data, from December 2007 to July 2009. The magnitude of a typical oil

shock was considerably smaller for the pre-recession period, as was the response to a shock

to interest in electric cars. The response to interest in electric cars is still of a magnitude

comparable to a typical oil shock.
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Electricity Gasoline
US Brazil UK Germany

Cost per Galon / kWh 0.10 4.00 5.95 8.38 9.28
Miles per Gallon / kWh 5 35 35 35 35
Fuel Cost per Mile 0.02 0.11 0.17 0.24 0.27
Battery Depr per Mile 0.08 - - - -

Miles per Year 15,000 15,000 15,000 15,000 15,000
Fuel Cost per Year 1,500 1,714 2,550 3,591 3,977

Table 1
Cost of Fueling: Electric vs. Gasoline ($)

Source: Deutsche Bank (2008).
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Parameter Description Value

λ Weight on the sum-of-coefficients dummy 5
µ Weight on the no-cointegration dummies 2
π1 Tightness parameter on the ‘Minnesota prior dummies’ 3
π2 Weight of own lags relative to coefficients on other variables 1
π3 Decay parameter 1/2
σk Degree of variability of the kth variable stdev(∆yk)
w Weight on variance-covariance dummy 1

Table A.1
Parameter Values for the Minnesota Prior
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Figure 2
Top Ten Search Terms Related to Electric Cars, 2004-2009

Source: Google Insights. This figure shows the keywords that users search for the most

before searching for “electric cars,” as well as after. The numbers measure the relative

intensity of searches for the phrases before and after searches for “electric cars.” The volume

numbers are normalized, with the top search assigned a volume of 100.
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Figure 5
Posterior Density of Impulse Responses to Shocks to Interest in Electric Cars and Oil Prices

Note: In every case, the x axis indicates the number of weeks after the shock. The

first column shows the response of each variable to a shock to oil prices and the second the

response to a shock to interest in electric cars.
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Simulation Using Only Shocks to Interest in Electric Cars, Subtracting the Values

Predicted Without Shocks
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(a) Shocks to interest in electric cars.
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Figure 8
Quantile-Quantile Plots of the Residuals
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Oil Spot and Futures Prices

Note: Weekly average of closing prices in US dollars. Source: Bloomberg, Energy Infor-

mation Administration, and author’s calculations.
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Three-Variable BVAR: Simulations Using Only Shocks to Interest in Electric Cars, and
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Figure A.1
Responses for Different Values of λ, Holding Other Hyperparameters Fixed at the Baseline

Values
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Figure A.2
Responses for Different Values of µ, Holding Other Hyperparameters Fixed at the Baseline

Values
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Figure A.3
Responses for Different Values of π1, Holding Other Hyperparameters Fixed at the Baseline

Values
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Figure A.4
Responses for Different Values of π3, Holding Other Hyperparameters Fixed at the Baseline

Values
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Figure B.1
Impulse Responses from the Markov Switching BVAR
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Figure B.2
Estimated Variances of the Shocks Over Time, and Estimated Residuals Squared
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Figure B.3
Estimated Shocks and Contour plot of the Estimated Joint Density of the Shocks (Last

Iteration of the MCMC Simulation)
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Figure C.1
Responses of Oil prices to a Shock to Interest in Different Alternatives

Note: Two-variable BVARs estimated separately, including prices and the given search

phrase search volume index.
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Figure D.1
Impulse Responses Without the Recession Period (January 2004 - November 2007)
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