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Abstract 
 
This paper tests and compares the CAPM of Black (1972) and the Mean Lower Partial 

Moment (MLPM) Capital Asset Pricing Model of Bawa and Lindenberg (1977) and 

Harlow and Rao (1989) in the context of emerging markets. It is well known that 

returns in emerging markets are non-normal and have greater predictability than in the 

developed markets. Considering these stylized facts the paper extends the Harlow-Rao 

Likelihood Ratio test of a Black (1972) type version of the MLPM model and develops 

a Wald test that allow for non-normality of the returns. The paper also formulates a 

GMM test that is valid under the conditions of heteroskedasticity and serial dependence. 

For the test of the CAPM hypothesis against the MLPM alternative the paper remedies 

an econometric problem of testing in presence of a nuisance parameter. In the empirical 

application on an emerging market data it is shown that the conclusion on the validity of 

the asset pricing model are reversed when the correct p-values obtained through the 

bootstrap test are employed. We demonstrate that the empirical results appear to support 

both the Black version of the CAPM and the MLPM model when performed against 

unspecified alternative but the CAPM is supported when an MLPM alternative is 

specified.  

* Presenting author, Email: Javed.Iqbal@buseco.monash.edu.au 
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I. Introduction  
 
The capital asset pricing model of Sharp-Lintner-Black is the consequence of the 

Markowitz (1959) portfolio optimization theory which is based on the expected return 

and variance of the return distribution and assumes the multivariate normality of the 

joint return distribution of the underlying assets. The theory considers beta as the sole 

measure of the systematic risk in a diversified portfolio. The beta is estimated via a 

market model that assumes that the estimated beta is valid for all the market conditions. 

A plethora of empirical tests have been performed which implicitly assume the mean-

variance based preference of the investors. Statistical tractability of mean-variance 

analysis based on multivariate normality was a more important consideration in the 

development of the theory than the explicit recognition of real world investor’s 

preferences. The theory considers the volatility as undesirable by investors. In its 

treatment deviation both below and above the mean are penalized. It is intuitive that the 

variance above mean is not considered undesirable by the investors. Beginning 

primarily from the last quarter of the twentieth century alternative theories based on the 

better risk perception of the investors have challenged the dominance of the mean-

variance theory. The most prominent of these is the asset pricing theory which is based 

on recognizing risk as the deviation below a critical target rate of return. These 

downside risk measures and associated asset pricing models are motivated both by the 

economic and statistical considerations-the investors psychology is consistent with 

asymmetric treatment of the variations in the returns; the empirical return distribution 

also appears to be non-normal.  

Bawa (1975) advocates a mean lower partial moment as the appropriate risk measure 

and proves that the MLPM model will produce portfolios that will dominate all other 

portfolios according to the concept of stochastic dominance. Moreover the MLPM 
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analysis is justified for a quite general set of utility function covering the quadratic 

utility as a special case. Bawa and Lindenberg (1977) developed an asset pricing model-

the mean-lower partial moment model based on downside risk. For normal and Student-

t-distributions of returns the LPM based model reduces to the conventional CAPM. 

They argue that their model must explain the data at least as well as the CAPM. In the 

MLPM model the lower partial moment based downside beta measure replaces the 

CAPM beta. In the Bawa-Lindenberg model the risk is defined as the deviation below 

the risk free rate. Harlow and Rao (1989) developed an asset pricing model that is more 

general in that the risk can be defined as the deviation below an arbitrary target rate.  

They demonstrate that because of this generality several risk measures can be expressed 

as a special case of their lower partial moment beta with an arbitrary target arte.  The 

resulting asset pricing model is expressed as: 
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In this model a particular asset contributes to the risk only if its return and the market 

return are below the target rateτ .  

The non-normality of the asset return distribution is also well studied. As Kan and Zhou 

(2006) remark “the reason for the wide use of the normality assumption is not because it 

models financial data well, but due to its tractability that allows interesting economic 

questions to be asked and answered without substantial technical impediments”. Fama 

(1965), Kon (1984), Affleck-Graves and McDonald (1989), Richardson and Smith 
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(1993), and Dufour, Khalaf and Beaulieu (2003), among others provide strong evidence 

against normality of stock returns.   

Asset pricing in emerging markets is of particular interest for this paper. It can be 

argued that if the mean-variance asset pricing appears to be incompatible with the 

theory and evidence in the developed markets it should be so in emerging markets to an 

even greater extent.  With identical regulatory environment and taxes the extra utility of 

a dollar gain for the developed market investor who has higher initial wealth is lower 

compared to an emerging market investor with lower wealth endowment. Conversely 

the disutility of a dollar loss in investment is higher for the emerging market investor 

with lower initial wealth compared to developed market investors. Thus downside risk 

measures should better reflect the risk aversion in emerging markets. In addition with 

lower liquidity, infrequent trading and volatile political and macroeconomic conditions, 

the assumptions underlying smooth and symmetric behaviours of the security return is 

unlikely to be the case in emerging markets.  These are precisely the characteristics of 

emerging markets. It is therefore a challenging task to model the investment risk in 

emerging equity markets and establish the risk return relationship.    

The empirical evidence also appears to suggest inapplicability of the mean-variance 

based asset pricing model and the normality of the stock returns in emerging markets. 

Bekaert et al (1998) show that emerging market equities display significant skewness 

and kurtosis in their returns, while Bekaert and Harvey (1995, 1997) find that the degree 

of skewness and kurtosis changes over time. Eftekhari and Satchell (1996) and 

Claessens et al. (1995) also provide evidence of non-normality in emerging markets. 

Hwang and Pedersen (2004) linked the applicability of the CAPM and asymmetric 

pricing models with regional and timing effects in emerging markets and found that as 

the market mature over time the returns tend to be more normal. Harvey (2001) and 

Bekaert et al. (1998) among others suggest that empirical relationships between risk and 
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stock returns in emerging markets are not appropriately described by the CAPM. 

Harvey (2000) and Estrada (2000, 2002) tested various equilibrium and non-equilibrium 

based risk measures and suggested that downside risk measures such as semi-standard 

deviation are relevant measures of risk for emerging market equity indices. Estrada 

(2000) argues that the costs of equity based on downside risk are consistent with 

partially-integrated emerging markets.  Despite the intuitive appeal of the downside risk 

measures, there has been limited consideration in the empirical applicability of the 

downside models.  For example Pedersen and Hwang (2003) conclude that although 

LPM-CAPM explains equity returns better than the conventional CAPM, the proportion 

of equities benefiting from using the downside beta is not large enough to improve asset 

pricing models significantly except for some smaller stocks. 

This paper provides an empirical study of the Black-CAPM and Harlow and Rao (1989) 

MLPM asset pricing model using both the univariate Fama and Macbeth (1973) type of 

cross section methodology and the multivariate methodology actually employed by 

Harlow  and Rao. Despite the sound theoretical foundation of Harlow-Rao model there 

has been no application of their asset pricing test in emerging markets. A possible 

reason is because Harlow and Row employed a Likelihood Ratio test in their study.  

This test is based on the normality, homoskedasticity and serial independence 

assumption of the returns of the asset and the residuals. The validity of these 

assumptions is questionable in emerging markets. The empirical evidence suggests that 

emerging markets returns may be predictable and non-normal. Harvey (1995) and 

Salomons and Grootveld (2003) among others provide empirical evidence that the 

emerging market returns show greater evidence of predictability than in the developed 

markets. If only non-normality is evident in the data then the Likelihood Ratio test can 

be replaced by a Wald test. The Likelihood Ratio test, the Lagrange Multiplier test and 

the Wald test are generally applied for testing non linear parametric hypothesis. Among 
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the three asymptotic tests only the Wald test is robust to non-normality. Computation of 

this test requires only the unrestricted parameter estimates for which least squares 

estimates can be employed. If in addition the heteroskedasticity and serial dependence 

of the residuals are also of concern then the tests based the Generalized Method of 

Moments can be considered. The GMM based tests do not require strong distributional 

assumption regarding normality, heteroskedasticity and serial independence of the 

residuals. Therefore in addition to the Likelihood Ratio test we formulate the robust 

Wald and the GMM test for the Harlow-Rao MLPM model. The GMM test is based on 

specifying a set of orthogonality conditions between the residuals and the fragmented 

market portfolios return. The Black-CAPM and the Harlow-Rao asset pricing 

framework particularly suit an emerging market environment in that the empirical tests 

for this model do not require specification of a risk free rate. This is an advantage in 

empirical studies in emerging markets where the imperfect money markets make a 

suitable risk free rate difficult to obtain.  

Harlow and Rao also conducted multivariate tests of the CAPM restriction against the 

MLPM alternative. Under the null hypothesis of the CAPM the beta on up and down 

markets are equal. In this case the critical parameter of their model i.e. the target rate 

becomes unidentified while under the alternative of the MLPM it continues to play its 

role. This is a non-standard hypothesis testing problem and the asymptotic Chi Square 

p-values are no longer valid in this case.  The Harlow and Rao study does not address 

this issue and continued to use the asymptotic Chi Square p-values. The tests for the non 

standard problems are quite well studied in econometric literature for example Hansen 

(1996, 1997) discussed the testing problem and provide a bootstrap method to test the 

hypothesis of linearity in a threshold autoregressive model. Andrews and Ploberger 

(1994) developed tests for structural break for unknown change point in time series. 

Garcia (1998) developed a Likelihood Ratio test for testing linearity against a Markov 
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switching alternative. Keeping the testing problem in mind this paper uses a Supremum 

Likelihood Ratio test and a robust Supremum Wald test with the p-values generated 

from the bootstrap methodology.  

The tests are applied to Karachi stock market which is the largest stock exchange in 

Pakistan1. This market has received considerable attention in recent years when in 2002 

it was declared the best performing stock market in the world in terms of the percent 

increase in the local market index value. The trading activity is also quite high therefore 

it will be interesting to study which, if any, of the alternative risk measures and the 

associated asset pricing model track the return behaviour in this emerging market. For 

greater details on the institutional features and some preliminary analysis for the 

market, see Iqbal and Brooks (2006b, 2007). The framework of the analysis for this 

paper, however, is quite general and can be applicable for asset pricing tests in 

emerging markets in general. Following this introduction the plan of the paper is as 

follows: Section II discusses multivariate tests of the CAPM and MLPM Model. In 

Section III robust tests for MLPM are discussed. The data and residual diagnostic tests 

are considered in section IV. Section V discusses empirical results and the conclusion is 

provided in section VI.  

II.   Multivariate Tests of CAPM and MLPM Model 
 
A.  Large Sample Tests of the Black’s CAPM 
 
Assume that the return generating process is the familiar market model 

(1)    TtRR tmtt ,...,2,1, =++= εβα                      

                                                 
1 Karachi Stock Exchange is the largest of the three stock markets in Pakistan. On April 17, 2006 the market 

capitalization was US$ 57 billion which is 46 percent of Pakistan’s GDP for the Fiscal Year 2005-06. (Ref: Pakistan 

Economic Survey 2005-06) 
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Here  is the  ]'...[ 21 tNttt RRRR = 1×N  vector of raw returns on N portfolios, tε is the 

vector of disturbances,1×N α and β are 1×N vector of the intercept and slope 

parameters respectively for each of the N market model time series regressions. The 

Black-CAPM specifies the following cross sectional relation. 

(2) ))(()( γβγ −=− mtNt REIRE  

Here γ  is the parameter representing returns on a zero-beta portfolio. Applying 

expectations on (1) yields  

(3) )()1()( mtt RERE ββγ +−=     

The joint restrictions on the parameter imposed by the CAPM are expressed in the 

following non linear hypothesis. 

(4) NiH ii ...,2,1,)1(:0 =−= βγα  

This is essentially a non-linear restriction on the system of the market model equations. 

Gibbons (1982) provides an iterative estimation and testing of a Likelihood Ratio test of 

the null hypothesis where 

1

2|)ˆ|log|*ˆ|(log −⎯→⎯Σ−Σ=
N

d
TLR χ  

Here and are the estimated restricted and unrestricted covariance matrices of the 

system of the market model (1) respectively. The test is derived under the assumption 

of multivariate normality of the returns. Chou (2000) developed a Wald test that 

permits the model to be estimated entirely in terms of alphas and betas by expressing 

the hypothesis as   
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11 ]...[ NN βαβαθ = and X is the 2×T  design matrix with a column of 1’s 

and a column of return of the market portfolio. The partial derivatives 
'θ∂

∂g
 are 

evaluated at the OLS estimates from the unrestricted system. For extension to the GMM 

case see Chou (2000). Prompted by return predictability in emerging markets, Iqbal and 

Brooks (2006a) present a version of the GMM test that is more general and allows for 

the dynamics of the residuals dependence in addition to heteroskedasticity. Further, 

Iqbal and Brooks (2006a) provide an alternative formulation of the Wald test that is 

designed to achieve better small sample properties. 

 
B.  Tests of MLPM Model 

 
The market model (1) assumes that beta is valid for all market conditions. An 

alternative is to allow asymmetry of systematic risk; downside and upside deviations. 

The downside risk is measured as the deviation below a target rateτ . To investigate 

asymmetry in systematic risk Bawa, Brown and Klein (1981) developed a data 

generating process called the asymmetric response model (ARM) which is expressed as,  

(6)    ittimtimtiiit DRRR εδββα +−+++= ++−− )1(
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This model by construction creates a distinction between downside and upside 

movement in the market. The downside beta captures the co-movement of asset i 
−

iβ
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with the market when the market return falls below the target rate of return, 

measures the co-movement of the asset with the market when the market return is 

above the target rate. Following Harlow and Rao (1989) we assume that 

 where . The ARM has been 

employed by Pederson and Hwang (2004) and Eftekari and Satchel (1996) among 

others for estimating downside beta in emerging markets. The ARM estimation is 

facilitated if expressed in a slightly different form which requires only one new variable 

 to be created. 

+
iβ

)( +− −= iii ββϕδ )|()(/)( ττϕ >=>= +
mtmtmtmt RRERPRE

tD

(7)   
ittimttimttiiit DRDRDR εδββα +−+−++= +−

)1()1(

Harlow and Rao (1989) show that is indeed the mean lower partial moment beta
−

iβ
2 

and derived the following Gibbon (1982) type of restriction for testing a Black’s version 

of the lower partial moment model. 

(8)     )1(:0
−−= iiH βγα

They tested the restriction as a Bartlett factor corrected Likelihood Ratio test (eq 9) 

against an unspecified alternative assuming multivariate normality of the returns.  

(9)  1
2|)ˆ|log|*ˆ|)(log2/52/( −⎯→⎯Σ−Σ−−= N

d
NTLR χ

Here and are the estimated restricted and unrestricted covariance matrices of the 

system of ARM (6) respectively.  

*Σ̂ Σ̂

 
 
 
 
 
 

                                                 
2 Taking expectation on both sides of (6) 

    +++= ++−− )()()( mimiii RERERE ββα )()( τββϕ >− +−
RmPii

substituting and using the fact that  follows:  )(/)( τϕ >= +
mtmt RPRE mm RRR =+ −+

    )()( miii RERE
−+= βα
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III.  Robust Testing of MLPM Model 
 
A. The test of MLPM Model 

 
The Likelihood Ratio test employed by Harlow and Rao (1989) assumes that the 

returns are multivariate normal and the model disturbances are homoskedastic and 

serially independent. The validity of these assumptions is questionable in emerging 

markets. The empirical evidence suggests that emerging markets returns may be 

predictable and non-normal. Assuming that the model disturbances are iid a normality-

robust Wald test similar to that in equation 5 can be established for the MLPM model 

with the following 4N× 1 vector of parameters and N-1 vector of restrictions. 
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The design matrix X in this case is 4×T

/])1()1(1[ DRDRDX mm −−= oo  

 The partial derivatives 
'θ∂

∂g
 (equation 12) are evaluated at the Seemingly Unrelated 

Regression (SUR) estimates from the unrestricted system. A more robust GMM based 

test that is valid under general return distribution, heteroskedasticity and serial 

dependence of the residuals can be established. If N assets and T time series 

observations on each asset are available the moment conditions vector on the 

disturbance of system (7) can be defined as  
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Here ,  

and . The notation ‘ o’ represents 

the element wise product of the vectors.  The parameter vector is as in (10). There are 

4N moment conditions and 4N parameters to be estimated therefore the multivariate 

system of equations is exactly identified. The GMM

/])1()1(1[ tmttmttt DRDRDx −−= oo /
21 ]...[)(

tNttt εεεθε =

)1()1( timttimttiiitit DRDRDR −−−−−−= +− δββαε

3 parameters are estimated by 

minimizing a quadratic form of the sample moment restriction vector; 

)()'(minargˆ θθθ TTTGMM hUh=                                    

Here UT is a positive definite weighting matrix whose elements can be functions of 

parameters and data. Hansen (1982) shows that the optimal weighting matrix is  

11 )]}([{ −− == θTT hTVarAsySU                                   

The asymptotic covariance matrix of the GMM estimator is  

                                                 
3 The just identified system therefore leads to a simple method of moment estimator rather than a 

generalized method of moment estimator. We continue to use the term GMM following similar treatment 

of this case in literature.  
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11 ]'[ −− ∆∆= SV                               

Where )](
'

[lim θ
θ ThP
∂
∂

=∆ . In practice ‘ ’ and ‘S ∆ ’ are unknown but the asymptotic 

results are valid for some consistent estimator ‘ ’ and ‘TS T∆ ’. Following Mackinlay and 

Richardson (1991) portfolio efficiency testing case the MLPM hypothesis for this 

exactly identified case can be tested by first estimating the unrestricted system and then 

computing the test statistic of market efficiency hypothesis which involve these 

unrestricted estimates. In this case the GMM estimator is independent of the weighting 

matrix and is the same as the SUR estimator; however the covariance matrix must be 

adjusted to allow for heteroskedasticity and serial correlation. The GMM estimates are 

asymptotically normally distributed  

),0()ˆ( VN~T θθ −  

Here V is as defined above.  Therefore non-linear function g( )θ̂ of the parameter is also 

asymptotically normal 
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The GMM Wald test of the MLPM restrictions can be formulated as  
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The covariance matrix in this case is . We estimate and  

matrices as follows. 
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The matrix ‘ ’ is estimated by the Newey-West (1987) HAC covariance matrix, for 

details see Ray et al (1998).  
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Here ttt xe ⊗=η  so that '' tttttt xx⊗= εεηη . The lag length ‘p’ in the auto-covariance 

matrices and  ∑ −vttT ')/1( ηη ∑ − tvtT ')/1( ηη  can be specified by considering the time 

period   beyond which we are willing to assume that the correlations between tη  and 

vt−η  are essentially zero. The data dependent Newey-West fixed 

bandwidth ])
100

(4int[ 9/2T
p = , can be employed where int[] denotes  the integer part of 

the number in bracket. The auto-covariance matrices can be computed from the SUR 

residuals of the asymmetric response model (7)4. For example for the lag 1 we have  

 

                                                 
4 The actual computations can be performed using commercially available softwares. The computations 
here are performed using Eviews with built-in Newey-West HAC covariance matrix. 
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Where it ,ε̂  is the SUR residual from the ith equation at time t. Note that in portfolio 

efficiency applications in Mackinlay and Richardson (1991) and Chou (2000) the 

covariance matrix ‘ ’ employed is the White (1980) covariance matrix. In other words 

these authors assume that the disturbances are heteroskedastic but serially independent. 

Considering the return predicability evidence from the emerging markets it is better to 

use the general robust covariance matrix.   It can be noted that because of the nature of 

the explanatory variables in the asymmetric response model the parameter estimates 

may have high variances which can even results in  a near singular covariance matrix 

making the estimates of the system difficult. It is therefore beneficial to use instruments 

for explanatory variables for precise estimation. In present case the estimation can be 

carried out with the instrument vector . 

TS

]1[ 2
tmmt DRRZ =

 
B. The Test of CAPM against MLPM Alternative 
 
The asymmetric response model subject to the MLPM restriction is  

(12)    ittimtimtiiit DRRR εδβββγ +−+++−= ++−−− )1()1(

The CAPM can be deduced from this model with the restrictions  and +− = ii ββ 0=iδ  

imposed5. Harlow and Rao (1989) test these restrictions as a Likelihood Ratio test with 

                                                 
5 These restrictions reduce the asymmetric response model to the market model.   
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asymptotic Chi Square critical values6. The restricted model is the CAPM whereas the 

unrestricted model is the MLPM. They strongly reject the null of CAPM against the 

MLPM alternative. It is however evident that testing the null hypothesis of CAPM in 

this case is conditional on a specified target rate parameter τ  which is not identified 

under the null hypothesis, while τ  appears in the alternative. Therefore the problem of 

testing is non-standard and the asymptotic Chi Square distribution is not valid in this 

case. Tests for this non standard problem are well documented in econometric literature; 

see for example,   Hansen (1997) for a discussion on the non-standard problem and a   

bootstrap method to test the hypothesis of linearity in a threshold autoregressive model. 

The appropriate test is a Sup Likelihood Ratio test whose sampling distribution is 

unknown. However the p-values can be generated from the bootstrap method as 

follows.  

(1) Estimate the following system of market model subject to the null hypothesis of 

Black CAPM using time series regression by SUR; generate the parameter 

estimates and form a residual matrix.   

   itmtiiit RR εββγ ++−= )1(    Ni ..,2,1=  

(2) Re-sample T rows of the residual matrix and using the parameter estimates 

obtained in step (1) above generate the return  from the system 

*ˆ)ˆ1(ˆ* itmtiiit RR εββγ ++−=  

(3) Compute the Sup Likelihood Ratio statistics  )(* ττ LRSupLR =   

(4) Repeat steps (2) and (3) a large number B of times and compute the p-value of 

the test as the proportion of cases in which the bootstrap statistic exceed the Sup 

                                                 
6 The degrees of freedom employed by Harlow and Rao (1989) table 4 page 303 are N-2. However in the 

testing of null hypothesis a total of 2N restrictions are imposed therefore the appropriate number of 

degrees of freedom with the asymptotic Chi square is 2N.   
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test statistics obtained using the real data. Reject the null hypothesis if this p-

value is smaller than the level of significance specified.  

 

Although the paper uses the bootstrap as a method of computing p-values of the non-

standard test the superiority of the bootstrap based tests over the asymptotic tests in 

general is well established see for example MacKinnon (2002). Keeping in view the 

dependencies in time series of residual we have also employed the Sieve Bootstrap7 of 

Buhlmann (1997). The results are however qualitatively not much different from the iid 

case and therefore not reported with the main results. 

 

The robust Wald and GMM tests can also be constructed for this case.  The 3N+1 

parameter vector is  

(13)  /
222111 ]...[ NNN δββδββδββγθ +−+−+−=

The 2N  vector of null restrictions to be tested is 1×

0]...[)(: /
2221110 =−−−= +−+−+−

NNNgH δββδββδββθ  

 The (2N× 3N+1) matrix of derivatives simply contains 1,-1 and zeros and is given by 

 

⎥
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⎢
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⎢

⎣

⎡
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...

...
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0..0110000
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A Sup Wald test can be easily constructed which employs the parameter estimates 

under the unrestricted alternative model (12) and the null hypothesis can be tested using 

the similar bootstrap procedure as adopted in the Likelihood Ratio test. 

                                                 
7 This method proceeds by assuming that the errors follow an autoregressive process. The appropriate 

order of the model is selected by AIC criteria. The resampling is done iteratively from the estimated 

autoregressive model. 
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IV.  The Data and the Residual Diagnostics Tests 
 
The tests discussed in section III are applied to portfolios formed from a sample of 

stocks from the Karachi Stock Exchange. The monthly closing prices of 101 stocks and 

the Karachi Stock Exchange 100 index are collected from the DataStream database. The 

sample period covers 13 ½ years from September 1992 to April 2006.  The criteria for 

the stocks selection was based on the availability of time series data on active stocks for 

which the prices have been adjusted for dividend, stock split, merger and other 

corporate actions. The KSE-100 index is a market capitalization weighted index. It 

comprises top companies from each sector of KSE in terms of their respective market 

capitalization. The rest of the companies are picked on the basis of market capitalization 

without considering their sector. This paper uses the KSE-100 index as a proxy for 

market portfolio. The 101 stocks in the sample comprise of about 80 % market 

capitalization of the entire market. Market capitalization data is not available 

historically for all firms in the database. However the financial daily Business 

Recorder8 has some recent year data. We selected the market capitalization of all 

selected stocks at the beginning of July 1999 which roughly corresponds to the middle 

of the sample period considered in the study. The monthly raw returns are calculated 

assuming continuously compounding of the returns as, 100)/ln( 1 ×= −ttit PPR . The 30 day 

repurchase option rate was used as a proxy for the risk free rate of return. We formulate 

the size portfolios as equally weighted portfolios from the selected stocks. The market 

capitalization data of mid sample (July 1999) are used to rank the stocks into 17 

portfolios from the lowest to the highest capitalized stocks. The first portfolio consists 

of 5 stocks while the rest comprise 6 stocks each. The portfolio return is calculated as 

the equally weighted average return of the stocks in the portfolio. For the industry 

portfolios the stocks are classified into sixteen major industrial sectors. The sector sizes 
                                                 
8 www.businessrecorder.com.pk 
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range from two stocks in transport and communication to 13 stocks in textile sector and 

13 in the investment banks and financial companies9. These sectors serve as natural 

portfolios. The beta portfolios are based on the CAPM beta estimates obtained through 

Least Square method for the entire sample period. The construction method of 17 beta 

portfolios is similar to the size portfolios. The choice of 16 and 17 portfolios is made by 

keeping a balance between the numbers of stocks in the portfolios and proving a 

reasonable number of observations for the cross section analysis. The three different 

portfolios procedure is employed to achieve more confident in empirical results. Some 

studies, such as Groenewold and Fraser (2001), report that the conclusion of the 

analysis may be different and even conflicting when different portfolios are employed. 

The size anomaly urges the need to control size so that the true price effect is 

discovered. The Harlow-Rao study used only LPM beta portfolios for their analysis 

except for the tests of CAPM against MLPM model which were conducted for 

portfolios based on both CAPM and LPM betas. It will be of interest to investigate the 

robustness of the results in this study if factors such as size and industry are controlled 

by constructing portfolios based on these characteristics.  

[Table 1 Here] 

All residual diagnostics and the asset pricing tests are performed for the three distinct 

sub-periods i.e. March 1992 to March 1997, April 1997 to October 1997 and November 

1997 to April 2006. The objective here is to examine the stability of the risk return 

relationship in the three sub periods. This is important because the volatile political and 

macroeconomic scenario in emerging markets might make the risk return relationship 

                                                 
9 The industry sectors employed are Auto and allied, Chemicals, Commercial Banks, Food products, 

Industrial Engineering, Insurance, Oil and Gas, Investment banks and other financial companies, Paper 

and board, Pharmacy, Power and utility, Synthetic and Rayon, Textile, Textile Spinning and Weaving, 

Transport and communication and Other /Miscellaneous firms that include tobacco, metal and building 

material companies.  
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non stationary and unstable. Each sub-period consist of 54 monthly observations that 

correspond to 4 ½   year of monthly data.  This sample sub period is closer to 60 months 

sub period employed in most asset pricing studies in US markets. Panel A of Table 1 

reports the Mardia (1970) test of multivariate normality of the residuals of the 

unrestricted asymmetric response model for the size, industry and beta sorted portfolios. 

This test is based on multivariate equivalents of skewness and kurtosis measures. The 

results are reported for the test based on skewness and kurtosis measures separately. 

The tests are performed for the risk free rate as the target returns. At 10 % level of 

significance the skewness test is significant for all cases with size and industry 

portfolios. The asymmetric risk measures might provide better measures of investment 

risk in this market. The kurtosis test is not significant in the first part of the sample 

period for the industry portfolios and the last two parts for the size portfolios. For size 

and industry portfolios the source of non-normality is primarily due to skewness 

whereas the excess kurtosis is responsible for non-normality for the beta portfolios. 

Panel B of Table 1 reports the Hosking (1980) multivariate portmanteau test of no 

autocorrelation for up to lag 3 in the asymmetric response model residuals. This test is a 

multivariate generalization of the univariate test10 of Box and Pierce (1970). The results 

do not provide evidence of predictability in the residuals for both size and industry data 

when the risk free rate is specified as the target rate.  

 
 
 
 
 
 

                                                 
10 The univariate JB tests for normality and the LB test of autocorrelation are also performed which 

indicate that normality and serial independence is rejected for roughly 50% of the individual portfolios 

regressions. The results are not reported to save space but are available on request. 
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V. Results of Empirical Analysis 
 

A. Univariate analysis   

As a preliminary cross-section analysis, Fama-MacBeth (1973) type regressions are run 

with CAPM beta and MLPM beta separately as the only risk variable. Initially the 

CAPM beta and the MLPM beta are estimated using time series data over a 4 ½-year 

period. The CAPM beta is estimated through the market model whereas the MLPM beta 

is estimated by the asymmetric response model with average risk-free rate, average 

market return and zero rate of return as the target rate of return respectively. The 

portfolio returns in the subsequent testing period are then cross sectionally regressed on 

the portfolio beta risk estimated over the previous estimation period. These cross 

section tests are predictive in nature. The two steps are repeated over two sub-sample 

periods. 

Panels A, B and C of Table 2 report the resulting average coefficients and an indication 

of statistical significance for size, industry and CAPM beta portfolios respectively. 

Although the regressions with the CAPM beta have slightly better explanatory power as 

measured by coefficient of determination, the CAPM beta risk does not appear to be 

priced in any of the sample periods for both size portfolios and industry portfolios11. 

The systematic risk measured by the CAPM beta is priced (at the 10 per cent level) for 

beta sorted portfolios in the most recent sub-sample period namely, November 2001 

through to April 2006. Contrary to the theory, the sign of the premium for CAPM beta 

is negative in the testing period of April 1997 to October 2001.  The downside risk 

measured by LPM beta is priced for all three target rates with size portfolios and for the 

target rate of average market returns in beta portfolios. With industry portfolios neither 

                                                 
11 In an earlier study Iqbal and Brooks (2006b) show that the beta risk premium is positive and significant 

in the most recent sub period when other explanatory variables beside the beta are used in the cross 

section regression. The risk-return relationship is however nonlinear in beta. 
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risk measure appears to explain cross section variation in the returns. The downside risk 

premiums are in general higher for size portfolios compared to industry and beta 

portfolios. The risk premium for both CAPM beta and the downside beta are positive in 

the most recent sub period indicating that the market has became mature enough to 

reveal the anticipated direction of risk-return relationship.  

[Table 2 here] 

 
B. Multivariate analysis 
 
Table 3 presents the multivariate test of the Black-CAPM. The diagnostic tests do not 

provide evidence of return predictability. However, normality is rejected and therefore 

only the results of the Likelihood Ratio test and the Wald test are reported.12  Both 

Likelihood Ratio test and the Wald test fail to reject the market portfolio efficiency 

implied by the CAPM. The numerical values of the Likelihood Ratio test statistic are 

higher and the corresponding p-values are smaller compared to those of the Wald test. 

The tests imply that the Likelihood Ratio in this case appears to be robust enough to 

distributional features to yield results that are similar to those obtained in the robust 

Wald test.  

[Table 3 here] 

Table 4 reports the results of multivariate tests of the MLPM model. With size 

portfolios the Likelihood Ratio tests do not reject the restriction of the MLPM model in 

all sample periods considered. Similar results are observed with the CAPM beta and 

industry sorted portfolios.  Under all three portfolios sorting schemes the conclusion in 

the Wald test is similar to that in the Likelihood Ratio test.  The MLPM restriction is 

                                                 
12 The GMM based test resulted in a qualitatively similar conclusion to the Wald test except that the 

numerical values of the GMM tests are higher compared to the Wald test. The detailed results are 

available from the authors upon request. 
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not rejected in any of the cases considered. In general the data do not reject the CAPM 

and the MLPM (with a pre-specified target rate) when tested separately.  

[Table 4 here] 

Multivariate tests can be sensitive to the specified alternative hypothesis. Therefore we 

test the null hypothesis of CAPM against the MLPM alterative as well. Table 5 reports 

the result of this test.13 The bootstrap based Likelihood Ratio test and the Wald test 

provide strong evidence in favour of the mean-variance CAPM model as an alternative 

to the MLPM model.14  

[Table 5 here] 

C. Comparison of univariate and multivariate test results 

In univariate Fama-MacBeth regressions, results of which are reported in Table 2, we 

observe weak evidence (at the 10 per cent level) that MLPM beta is priced in the last 

sub-sample period for size portfolios.  This is not supported by the multivariate test 

results reported in Table 5.  Several reasons may be advanced for this inconsistent 

result. Firstly, in the Fama-MacBeth type test current returns are cross sectionally 

regressed against the risk variables estimated in previous periods whereas the 

multivariate test use contemporaneous risk and return. Secondly, Fama-MacBeth type 

test employ beta and MLPM beta estimated from the data and therefore are subject to 

measurement error. The multivariate test does not employ beta as a risk variable, 

instead beta is used only as a parameter. Moreover, the Fama-MacBeth test implicitly 

assumes that beta is time varying while the multivariate tests assume that the systematic 

beta risk and downside beta risk is time invariant. Therefore it is probable that results in 

the two types of tests may differ in empirical studies. Moreover, the multivariate test 

                                                 
13 The bootstrap tests are computed over 1000 simulations. 

14 An exception is with beta sorted portfolios in the most recent sub-sample period where the CAPM is 

rejected in favour of the MLPM at the 5 per cent level of significance. 
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may not be powerful enough to detect any deviation that might result when risk 

measures are generated from an asymmetric response model rather than the market 

model. The lack of power of multivariate Likelihood Ratio test and the Wald test for 

portfolio efficiency for emerging market data is reported in Iqbal and Brooks (2006a).  

D. Choice of test procedure 

Here we discuss the pros and cons of using different test procedures: Sup LR/Sup Wald 

with p-values from Chi Square (2N) and p-values via bootstrap. In Table 5 we report p-

values from the asymptotic Chi Square test for comparison. In section IIIB we argue 

that the asymptotic p-value may not be valid since the Sup Likelihood Ratio test and the 

Sup Wald test do not have a known sampling distribution and the nuisance parameter 

problem makes inference difficult.  

Fig 1 displays the Chi Square probability density function with 2N degrees of freedom 

and the kernel density fitted on the LR statistic obtained in the bootstrap simulation for 

size sorted portfolios in the first sub-sample period: April 1997 through to October 

2001. The vertical line in Figure 1 (cuts the horizontal axis at 49.5) indicates the 

observed value of the Sup test statistic from the observed data. It is clear that for the 

asymptotic Chi Square distribution the value of 49.6 is unusual whereas in the bootstrap 

distribution 49.6 is a highly probable value with 53.5 per cent of the cases exceeding 

this value.  The asymptotic distribution therefore does not appear to be valid for the Sup 

LR test considered. A similar observation is made with the Sup Wald test.  

As evident in Table 5, only in two cases the Likelihood Ratio test fails to reject the 

CAPM against the MLPM alternative. This non-rejection is observed in industry and 

beta portfolios in the second sub-sample period. In general the asymptotic Chi-Square 

test rejects the CAPM as an alternative to the MLPM model while the bootstrap test 

does not. This observation highlights the importance of the choice of procedure when 

testing the CAPM against the MLPM alternative.     
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VI. Conclusion 
 
This paper compares the CAPM and the Mean Lower Partial Moment asset pricing 

model in the context of emerging markets. Keeping in consideration the stylized facts of 

emerging markets the paper extends the Harlow-Rao Likelihood Ratio test of the 

Black’s version of the MLPM and develops a Wald test and a GMM based robust tests 

that allows for non-normality and serial dependence in the returns. Moreover for the test 

of the CAPM hypothesis against the MLPM alternative the paper remedies an 

econometric problem of testing in the presence of a nuisance parameter.  It is shown 

that the conclusion on the validity of the asset pricing model with asymptotic test is 

reversed when the correct p-values obtained through bootstrap test are employed. We 

show that the univariate asset pricing tests of Fama MacBeth style may yield different 

conclusion than the multivariate tests which take into consideration the 

contemporaneous covariance among the assets under study. The multivariate tests 

appear to support both the Black version of the CAPM and the MLPM alternative 

model while the univariate test indicates that downside risk is priced in the most recent 

sample period from November 2001 to April 2006 for all target rates with size based 

portfolios and with beta portfolios when the average market return as the target rate is 

employed.  To gain a better insight on whether the return for the emerging market under 

study are sensitive to the mean variance beta or the downside risk the paper conducts a 

multivariate test of CAPM against the MLPM alliterative. The results support the 

former asset pricing model.  The results with the Likelihood Ratio test and the Wald test 

do not differ greatly. This is not surprising if we note that the multivariate diagnostic 

test does not reveal significant autocorrelations in the residuals in this study.  
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Table 1: Diagnostics Tests for the residuals for the Multivariate Asymmetric Response 
model system 
Panel A: Mardia (1970) Test of Multivariate Normality 

Size Portfolios Industry Portfolios Beta Portfolios Sample Period 
Skewness 
(P-value) 

Kurtosis 
(P-value) 

Skewness 
(P-value) 

Kurtosis 
(P-value) 

Skewness 
(P-value) 

Kurtosis 
(P-value) 

Sep 92 – Mar 97 123.633 
(0.001) 

335.371 
(0.036) 

108.644 
(0.000) 

295.502 
(0.125) 

108.408 
(0.433) 

301.718 
(0.001) 

Apr 97 – Oct  01 115.509 
(0.056) 

329.031 
(0.192) 

112.931 
(0.000) 

303.591 
(0.008) 

94.336 
(0.997) 

289.061 
(0.000) 

Nov 01 – Apr 06 121.991 
(0.002) 

331.018 
(0.123) 

103.887 
(0.002) 

297.364 
(0.075) 

98.339 
(0.974) 

291.479 
(0.000) 

 
 
Panel B: Hosking  (1980) Multivariate  portmanteau test of serial independence 

Size Portfolios Industry Portfolios Beta Portfolios Sample 
Period Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 

Sep 92 – Mar 
97 

301.768 
(0.291) 

599.747 
(0.257) 

890.913 
(0.279) 

274.839 
(0.199) 

504.416 
(0.586) 

756.258 
(0.611) 

300.810 
(0.304) 

583.848
(0.424) 

868.386 
(0.528) 

Apr 97 – Oct  
01 

286.209 
(0.535) 

575.223 
(0.524) 

840.541 
(0.734) 

270.502 
(0.255) 

522.747 
(0.361) 

800.473 
(0.202) 

277.710 
(0.672) 

589.308
(0.363) 

904.630 
(0.182) 

Nov 01 – Apr 
06 

292.787 
(0.426) 

585.957 
(0.400) 

898.170 
(0.224) 

269.122 
(0.274) 

585.687 
(0.226) 

790.612 
(0.278) 

308.006 
(0.211) 

620.570
(0.107) 

936.538 
(0.050) 

 
 
This table reports the tests of multivariate normality and serial independence of the 
residuals of the asymmetric response model when the risk free rate is specified as the 
target rate of return. Panel A reports Mardia (1970) test of multivariate normality which 

is based on the multivariate skewness and kurtosis measures ∑∑
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Table 2: Cross Section Fama MacBeth Regressions 
Panel A: Size Portfolios 

MLPM Model CAPM 
Average Risk free rate Average marker return Zero return 

Test Period 

Intercept β  2
R  Intercept −β  2

R  Intercept −β  2
R  Intercept −β  2

R  

Apr 97 – Oct 01 -0.429 
(-0.663) 

-0.503 
(-0.307)

0.165 -0.672 
(-0.923) 

0.112 
(0.080) 

0.139 -0.714 
(-1.061) 

0.195 
(0.144) 

0.141
 

-0.734 
(-1.033) 

0.231 
(0.168) 

0.137 

Nov 01 – Apr 06 2.888* 
(2.733) 

1.588 
(1.170) 

0.147 2.174* 
(2.633) 

1.768**
(1.649) 

0.101 2.314* 
(2.951) 

1.572**
(1.374) 

0.111 2.177* 
(2.699) 

1.755**
(1.620) 

0.096 

Panel B: Industry Portfolios 
MLPM Model CAPM 

Average Risk free rate Average marker return Zero return 
Test Period 

Intercept β  2
R  Intercept − 2β  R  Intercept − 2β  R  Intercept −β  2

R  

Apr 97 – Oct  01 -0.167 
(-0.307) 

-0.956 
(-0.630)

0.163 -0.517 
(-0.918) 

-0.363 
(-0.296)

0.148 -0.593 
(-1.039) 

-0.252 
(-0.206)

0.146
 

-0.623 
(-1.059) 

-0.202 
(-0.167)

0.147 

Nov01 – Apr 06 2.508* 
(3.122) 

1.341 
(0.947) 

0.161 2.568* 
(3.236) 

1.269 
(1.067) 

0.150 2.603* 
(3.069) 

1.155 
(1.032) 

0.144 2.558* 
(3.185) 

1.270 
(1.103) 

0.145 

Panel C: Beta Portfolios 
MLPM Model CAPM 

Average Risk free rate Average marker return Zero return 
Test Period 

Intercept β  2
R  Intercept −β  2

R  Intercept −β  2
R  Intercept −β  2

R  

Apr 97 – Oct  01 -0.267 
(-0.510) 

-0.595 
(-0.392)

0.199 -0.426 
(-0.756) 

-0.321 
(-0.206)

0.175 -0.513 
(-0.899) 

-0.207 
(-0.131)

0.173
 

-0.569 
(-0.984) 

-0.143 
(-0.089)

0.176 

Nov01 – Apr 06 2.040* 
(2.838) 

1.857**
(1.419) 

0.177 2.263* 
(3.538) 

1.578 
(1.289) 

0.145 2.284* 
(3.397) 

1.509**
(1.346) 

0.144 2.333* 
(3.675) 

1.482 
(1.254) 

0.141 

* Significantly different from zero at 5% level of significance 
** Significantly different from zero at 10 % level of significance 

This table presents the average coefficients from the Fama MacBeth cross section regressions. For the CAPM the risk variable beta is estimated 
from the market model using the previous 4 ½ year monthly data. In case of the Mean Lower Partial Moment model the risk variable downside 
beta is estimated from Asymmetric response model using previous 4 ½ year monthly data. The downside beta is estimated assuming that the 
target rate is average risk free rate, the average rate of return on the market portfolio and the zero return respectively. To make the analysis 
comparable with subsequent multivariate Black-CAPM tests raw returns are employed in the time series and cross section regressions. The t-
statistics are reported in the parenthesis below each coefficient. The average risk free rate is 2.722%, 0.924% and 0.411% respectively for the 
three time periods and the average raw market return is 0.908%, -0.420% and 3.859% respectively in the three time periods. The test for beta 
coefficients are one tailed right sided tests.



 
Table 3: Likelihood Ratio and Wald tests of Black-CAPM for the multivariate system 
of market model equations 

Size portfolios Industry  Portfolios Beta  Portfolios  
Likelihood 
Ratio test 

Wald 
Test 

Likelihood 
Ratio test 

Wald 
Test 

Likelihood 
Ratio test 

Wald 
Test 

Sep 92 – Mar 97 8.145 
(0.944) 

5.721 
(0.990) 

11.232 
(0.735) 

7.118 
(0.954) 

8.160 
(0.943) 

5.112 
(0.995) 

Apr 97 – Oct  01 9.105 
(0.909) 

6.994 
(0.973) 

7.736 
(0.933) 

6.908 
(0.960) 

10.066 
(0.863) 

8.816 
(0.920) 

Nov 01 – Apr 06 14.182 
(0.585) 

9.516 
(0.890) 

12.799 
(0.617) 

9.916 
(0.825) 

13.072 
(0.667) 

5.634 
(0.991) 

 
This table presents the multivariate tests of the Black-CAPM. The Black-CAPM does 
not require risk free rate specification. The test statistics are the tests of the 
restrictions )1(:0 βγα −=H  across each portfolio against the unspecified 

alternative. The Likelihood Ratio test assumes multivariate Normality of returns while 
the Wald test is robust to distributional specifications. The test statistics are 
asymptotically distributed as Chi square with N-1 degrees of freedom where N is the 
number of portfolios. The p-values appear in the parenthesis. To improve small 
sample performance of the asymptotic tests the Likelihood ratio test is adjusted by 
multiplying (T-5/2-N/2) and the Wald is adjusted by multiplying (T-N-1)/T. For 
detail, see Gibbons Ross and Shaken (1989) and Jobson and Korkie (1982)  
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Table 4: Multivariate Tests of Lower Partial Moment CAPM 
Panel A: Size Portfolios 
 

Likelihood Ratio Test Wald Test  
Average 
Risk free 

rate 

Average 
market 
return 

Zero 
return 

Average 
Risk free 

rate 

Average 
market  
return 

Zero 
return 

Sep 92 – Mar 97 7.672 
(0.958) 

12.148 
(0.733) 

16.480 
(0.419) 

1.151 
(0.999) 

2.246 
(0.999) 

2.804 
(0.999) 

Apr 97 – Oct  01 13.719 
(0.619) 

16.628 
(0.410) 

13.719 
(0.619) 

3.913 
(0.998) 

6.195 
(0.985) 

3.913 
(0.999) 

Nov 01 – Apr 06 20.009 
(0.219) 

18.105 
(0.317) 

17.393 
(0.360) 

7.503 
(0.962) 

3.989 
(0.998) 

8.605 
(0.928) 

 
Panel B: Industry Portfolios 
 

Likelihood Ratio Test Wald Test  
Average 
Risk free 

rate 

Average 
market 
return 

Zero 
return 

Average 
Risk free 

rate 

Average 
market 
return 

Zero 
return 

Sep 92 – Mar 97 7.234 
(0.950) 

5.169 
(0.990) 

6.339 
(0.973) 

1.307 
(0.999) 

2.382 
(0.999) 

3.726 
(0.998) 

Apr 97 – Oct  01 9.652 
(0.841) 

13.294 
(0.579) 

9.652 
(0.841) 

2.346 
(0.999) 

2.827 
(0.999) 

2.346 
(0.999) 

Nov 01 – Apr 06 12.465 
(0.643) 

12.247 
(0.660) 

13.309 
(0.578) 

2.482 
(0.999) 

1.372 
(0.999) 

2.534 
(0.999) 

 
Panel C: Beta Portfolios 
 

Likelihood Ratio Test Wald Test  
Average 
Risk free 

rate 

Average 
market 
return 

Zero 
return 

Average 
Risk free 

rate 

Average 
market 
return 

Zero 
return 

Sep 92 – Mar 97 5.651 
(0.991) 

10.084 
(0.862) 

11.950 
(0.747) 

2.380 
(0.999) 

5.674 
(0.991) 

6.940 
(0.974) 

Apr 97 – Oct  01 9.437 
(0.894) 

10.215 
(0.855) 

9.437 
(0.894) 

1.290 
(0.999) 

2.995 
(0.999) 

1.290 
(0.999) 

Nov 01 – Apr 06 12.133 
(0.734) 

7.959 
(0.950) 

15.601 
(0.481) 

7.503 
(0.962) 

1.207 
(0.999) 

6.229 
(0.985) 

 
This table reports the likelihood Ratio and the Wald Test for the Harlow and Rao’s 
(1989) Lower Partial Moment CAPM. The targe rates are the average risk free rate, 
the average market returns and the zero rates of returns respectively.  In the second 
time period the average risk free rate is close to zero therefore the results for this 
target rate are identical to the zero target rates for this time period. The test statistics 
are the test of the non linear hypothesis )1(:0 iH βγα −= across all portfolios against 

the unspecified alternative. With the pre-specified target rates the test statistics are 
asymptotically distributed as Chi-Square with N-1 degrees of freedom. The p-values 
appear in the parenthesis. As in table 3 the tests are adjusted by Bartlett factors. 
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Table 5: Multivariate tests of the null hypothesis of the Black CAPM against the 
alternative of the Lower Partial Moment CAPM 
 
Panel A: Size Portfolios 
 

Likelihood Ratio Test Wald Test  
Sup LR P-value Chi-

Square (2N) 
P-value 

Bootstrap 
Sup Wald P-value Chi-

Square (2N) 
P-value 

Bootstrap 
Sep 92 – Mar 97 49.600 0.041 0.465 62.636 0.001 0.798 
Apr 97 – Oct  01 45.755 0.085 0.801 53.154 0.010 0.789 
Nov 01 – Apr 06 60.826 0.003 0.298 77.359 0.000 0.466 

 
Panel B: Industry Portfolios 
 

Likelihood Ratio Test Wald Test  
Sup LR P-value Chi-

Square (2N) 
P-value 

Bootstrap 
Sup Wald P-value Chi-

Square (2N) 
P-value 

Bootstrap 
Sep 92 – Mar 97 60.663 0.002 0.296 78.866 0.000 0.559 
Apr 97 – Oct  01 41.456 0.122 0.796 45.803 0.054 0.864 
Nov 01 – Apr 06 45.256 0.060 0.766 49.363 0.025 0.914 

 
Panel C: Beta Portfolios 
 

Likelihood Ratio Test Wald Test  
Sup LR P-value Chi-

Square (2N) 
P-value 

Bootstrap 
Sup Wald P-value Chi-

Square (2N) 
P-value 

Bootstrap 
Sep 92 – Mar 97 45.128 0.096 0.838 51.305 0.028 0.882 
Apr 97 – Oct  01 40.845 0.194 0.935 47.978 0.056 0.904 
Nov 01 – Apr 06 77.461 0.000 0.036 110.099 0.000 0.130 

 
This table reports the test of the CAPM restrictions on the MLPM model. We test that 

in the asymmetric response model subject to MLPM restriction  and +− = ii ββ 03 =δ  

against the alternative this is not the case. This results in a set of 2N restrictions. Note 
that under the null hypothesis the asymmetric response model which carries the 
MLPM restrictions collapses to the usual  market model which carries Black’ CAPM 
restrictions. The Chi square p-values are reported for only a comparison purpose. The 
correct p-values are obtained through bootstrap.  
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Fig 1: Chi Square (2N) pdf and the Bootstrap Kernel Density for the Likelihood Ratio  
           Test of Null hypothesis of CAPM against the MLPM alternative for Size Portfolio  
           in first sample period. 

 36


