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Abstract

The derivation of loss distribution from insurance data is a very interesting research
topic but at the same time not an easy task. To find an analytic solution to the
loss distribution may be mislading although this approach is frequently adopted in the
actuarial literature. Moreover, it is well recognized that the loss distribution is strongly
skewed with heavy tails and present small, medium and large size claims which hardly
can be fitted by a single analytic and parametric distribution. Here we propose a
finite mixture of Skew Normal distributions that provides a better characterization of
insurance data. We adopt a Bayesian approach to estimate the model, providing the
likelihood and the priors for the all unknow parameters; we implement an adaptive
Markov Chain Monte Carlo algorithm to approximate the posterior distribution. We
apply our approach to a well known Danish fire loss data and relevant risk measures,
as Value-at-Risk and Expected Shortfall probability, are evaluated as well.

Keywords: Markov chain Monte Carlo, Bayesian analysis, mixture model, Skew-
Normal distributions, Loss distribution, Danish data.
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1 Introduction

Fitting an adequate loss distribution to real insurance data sets is a relevant problem and not
an easy task in actuarial literature, mainly due to the nature of the data, which shows several
features to be accounted for. In the last decades a great time and effort have been spent
in this branch of research with the aim of developing always more sophisticated models, to
deal with all data features. Among different approaches, the analytical method consisting in
estimating the unknown parameters of a given parametric family of probability distributions
has been the most adopted in the actuarial literature. Since it is well recognized that the
loss distribution is strongly skewed with heavy tails, different candidates for claim severity
distribution have been considered in the applications: the log-Normal, the Burr, the Weibull
the Gamma and the Generalized Pareto distribution in the context of Extreme Value Theory
see for example McNeil (1997), Embrechts et al. (1997) and Burnecki et al. (2010) and
references cited therein. Despite their extensive application, the theoretical properties of
these distributions are not always empirically matched by observed stylized facts of insurance
data. Recently Bolance et al. (2008) provides strong empirical evidence in favor of the use
of the Skew Normal, and log-Skew Normal distributions to model bivariate claims data
from the Spanish motor insurance industry, while Ahn et al. (2012) use the log Phase-type
distribution as a parametric alternative in fitting heavy tailed data. Eling (2012) shows that
the Skew Normal and the Skew-Student t distributions are reasonably competitive compared
to other models when describing insurance data. Unfortunately fitting Skew Normal or Skew
t distributions on positive data using a frequentist approach, as in Eling (2012), can lead to
unappealing estimates because of the unboundedness of the likelihood with respect to the
skewness parameter. Moreover, as pointed out by Burnecki et al. (2010), usually claims
distributions show the presence of small, medium and large size claims, characteristics that
are hardly compatible with the choice of fitting a single parametric analytical distribution.

Because of previous considerations, in this paper we propose to use a finite mixture
approach to model loss distribution data. Mixture models provide high flexibility in handling
data generating process displaying several latent regimes. In addiction they are able to
account for skewness and heavy tails frequently observed in actuarial data. Within the general
framework of mixture models, relevant contributions to model the severity distributions have
been proposed by Cooray and Amanda (2005), Scollnik (2007), who applied several composite
log-Normal-Pareto models, and by Frigessi et al. (2002) who consider a dynamic mixture
approach. More recently, in a different context, Sattayatham and Talangtam (2012) model
motor insurance claims data from Thailand using a mixture of log-Normal distributions.
Extending Eling (2012), in this paper, we propose a mixture of Skew-Normal distributions
introduced by Azzalini (1985), having the following general form:

h(y|θ, η) =
L∑

l=1

ηlfSN(y|θl) (1.1)

where L is the number of mixture components, y is the observed data, ηl are the components
weights satisfying 0 < ηl ≤ 1, ∀l = 1, 2, . . . , L and

∑L

l=1 ηl = 1, while fSN(y|·) is the following
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Skew Normal density function:

fSN
(
y|ξ, ω2, α

)
= 2φ

(
y − ξ

ω

)
Φ

(
α (y − ξ)

ω

)
I(−∞,+∞) (y) .

Here φ() and Φ() stand for the density and the distribution function of a Normal random
variable respectively, and {ξ, ω2, α} ⊂ R×R

+×R are the location, the scale and the skewness
parameter of the Skew Normal distribution. The Skew Normal distribution is a generalization
of the Gaussian law and represent a natural choice in all practical situations in which data
displays skewness and kurtosis. The additional asymmetry parameter α allows for greater
shape flexibility with respect to the Gaussian case achievable by setting α = 0. From a
theoretical point of view the Skew Normal distributions retain much of the properties of the
Gaussian distributions: in particular they are continuous unimodal random variables and
their square is distributed as a Chi-square with one degree of freedom. For a complete and
up to date overview of Skew Normal distributions and their applications, see the book edited
by Genton (2004).

The mixture of Skew Normal distributions is a versatily tool able to capture the skewness
and the kurtosis within each clustered group of claim size which is of great interest to actuaries
in order to determine the appropriate level of premiums and reserves, and the re-insurance
level. In this way it is possible to combine a parsimonious representation of the observed
distribution with an exhaustive characterization of each group. Recently mixture of Skew
Normal distribution have been proposed in different areas (see e.g. Lagona and Picone, 2012;
Sahu et al., 2003).

The inferential approach we propose to fit mixture models is the Bayesian one. This
approach allows to learn about the whole distribution of quantities of interest rather than
just a point estimation of parameters which can be very useful in actuarial science. Moreover,
when dealing with Skew Normal distributions and positive data the Bayesian paradigm
overcomes the above-mentioned unbounded likelihood problem, through prior specification.
Up to our knowledge this is the first attempt to consider mixture Skew Normal distributions
to model severity claims in a Bayesian framework. In the following, we provide the likelihood
and the priors for the all unknown parameters and we implement Markov Chain Monte
Carlo (MCMC) algorithms to approximate the posterior distribution. When dealing with
finite mixture models the large dimension of the parameter space and the multimodality of
the posterior distribution often limit the ability of the MCMC methods to approximate the
posterior distribution in a reasonable computational time. Depending on the structure of the
problem and the dimension of the target distribution, even well designed algorithms could find
difficulties in approximating posterior functionals, such as the mean or the mode. This is the
reason why, in this paper, we do not rely on standard Metropolis-Hastings type algorithms
to simulate from the posterior distribution, but we apply the new adaptive Markov chain
Monte Carlo method developed in Bernardi and Petrella (2012). The algorithm combines
the adaptive approach (see for example Andrieu and Thoms, 2008) with a new specification of
the auxiliary distribution used to draw sample in Bayesian computation. In this way we are
able to explore all the posterior modes otherwise missed by standard MCMC methods which is
particular relevant when one of the objective of the inference is model selection, as it is in this
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paper. To this purpose we exploit the characteristics of the proposed algorithm to compute
Bayes factors as strategy to choose among different mixture models. We apply our approach
to the Danish fire claim data, a well known dataset investigated in actuarial literature,
showing that a mixture of three Skewed components is able to capture the peculiarity of
the data. Furthermore, for the chosen model, we compute the Value-at-Risk (VaR) and the
Expected Shortfall probability (ES) known also as Conditional Tail Expectation; we compare
our estimates with the empirical values and with estimates provided in the literature via other
statistical methods. Those measures are given in a closed form formula as function of model
parameters and the Bayesian approach allows to calculate their credible sets. We will show
that the estimate VaR and ES perform very well at every considered confidence level.

The paper is organized as follows. Section 2 provides the basic assumption we make in
a Bayesian framework as well as all the computational details needed to obtain parameter
estimates. Model selection is briefly discussed in Section 2 as well. In Section 3 we analyze
Danish data and provide results for model selection and parameter estimates derived from
a finite mixture of Skew Normal distributions. VaR and ES are defined and estimated in
Section 3 as indexes of goodness of fit. Few remarks and possible developments are discussed
in Section 4.

2 Bayesian inference

Bayesian methods can be very useful in actuarial science since they enable us to learn about
the whole distribution of quantities rather than just obtain point and interval estimates of
each parameter. This approach assumes that all parameters in the distribution are themselves
variables and that the relevant density is the posterior distribution which is proportional to
the product of the model likelihood and the prior distributions.

Let y = (y1, y2, . . . , yn) be n independent observations drawn from the model (1.1)
where we collect all the unknown parameters in the vector θ = {θl, ηl}l=1,2,...,L =

{ξl, ω2
l , αl, ηl}l=1,2,...,L. Assuming the Skew Normal distribution for the mixture components

we can write the likelihood function as:

L(θ|y) =
n∏

i=1

L∑

l=1

ηlfSN(yi|θl). (2.1)

In Bayesian setting, prior specification represents an important ingredient in developing
inferential procedures. Specifying a prior distribution for finite mixture model of Skew Normal
distributions entails the choice of a family of distributions for each group of component-
specific parameter, location, scale and shape, (ξl, ω

2
l , αl), for the mixing proportions ηl and

the additional elicitation of the prior hyperparameters. When dealing with finite mixture
models, it is important to recognize that in order to guarantee the posterior to be a proper
distribution, priors should be proper (see for example Robert, 1996, and Frühwirth-Schnatter,
2006). In addition, to prevent problems with the likelihood unbondness with respect
to αl, l = 1, 2, . . . , L mentioned in the introduction and those related to model selection
procedure, we avoid to be fully non informative on all parameters.
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The specification of prior parameters may be particularly difficult when the parameter
set is large, as in the case we consider here. For this reason, here we extend the approach
proposed by Richardson and Green (1997) in the Gaussian mixtures contest, specifying the
following hierarchical structure of prior distributions:

ξl ∼ N
(
ζ, κ2

)
(2.2)

ω2
l ∼ IG (a, b) (2.3)

b ∼ G (g, h) (2.4)

αl ∼ T
(
0, ς2,

1

2

)
(2.5)

(η1, η2, . . . , ηL) ∼ D (δ, δ, . . . , δ) . (2.6)

The Gaussian prior for ξl is taken to be rather flat over the corresponding observed range of
the data (R) as in Jasra et al. (2005); in the application considered in the next section we take
ζ = R/2, and κ = R. The Inverse Gamma prior for the location parameter ω2

l is considered
introducing an additional hierarchical Gamma level prior on b the scale parameter of the
distribution. To calibrate the prior hyperparameters we chose a = 2, g = 0.2 and h = 100g

aR2 .
For the skewness parameters αl, as suggested by Bayes and Branco (2007), we consider a
Student t distribution with one-half degrees of freedom, location and scale parameters equal
to 0 and ς2 respectively, which represents a good approximation of the Jeffreys reference
prior (see e.g. Bernardo, 2005) proposed by Liseo and Loperfido (2006). Concerning the
mixing proportions we apply the commonly used Dirichlet prior with δ > 1, as suggested by
Frühwirth-Schnatter (2006).

2.1 Bayesian Computation

During the last decades Markov Chain Monte Carlo methods, Metropolis et al. (1953)
and Hastings (1970), have been extensively developed within the Bayesian approach to
sample from analytically intractable posterior distributions with particular emphasis to the
Gibbs Sampler and the Metropolis-Hastings algorithms. In the context of mixture models,
Markov chain Monte Carlo methods have been introduced by Diebold and Robert (1994) and
subsequently extended by Richardson and Green (1997) to deal with the related problem of
model selection. Due to the large dimension of the parameter space and the multimodality of
the posterior distributions arising in this context, standard MCMC algorithms usually fail to
explore all the support of the target posterior distribution even in the simple case of Gaussian
component densities, see e.g. Robert and Casella (2004), Celeux et al. (2000) and Marin
et al. (2005). Moreover, when dealing with non Gaussian mixtures we face the problem
of simulating from intractable full conditional densities. Recently, Frühwirth-Schnatter and
Pyne (2010) proposed an equivalent stochastic representation of skewed distributions and
provided a Gibbs sampler algorithm based on data augmentation for sampling the posterior
parameters. Here we follow a different adaptive approach developed in Bernardi and Petrella
(2012) to simulate from the posterior distribution when Skew Normal mixtures are considered.
Adaptive MCMC sampling methods are simulation tools for carrying out Bayesian inference
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Algorithm 2.1 Adaptive-MCMC for mixtures

1. Initialization: set i = 0, choose the proposal parameters Ψ0 = (µ0,Σ0,ν,w0), and simulate the starting
values of the posterior parameters θ0 from the prior structure defined in section 2.

2. At iteration (i+ 1): generate a candidate draw θ∗ from the proposal distribution qi

(
θ, Ψ̃,Ψi

)
defined in

equation 2.13 and accept the proposed value θi+1 = θ∗, with probability

r (θ∗, θ) = min

{
L (θ∗|y)
L (θ|y)

qi (θ)

qi (θ∗)

|J (θ) |
|J (θ∗) | , 1

}
(2.7)

where |J (θ) | is the determinant of the jacobian of the transformations of the parameters ω2 and η

respectively.

3. Update the proposal parameters Ψi = (µi,Σi,ν,wi), by the following recursions

µm,i+1 = µm,i + γi+1u (m, θi+1)wm,iq̄ (m, θi+1) (θi+1 − µm,i) (2.8)

Σm,i+1 = Σm,i + γi+1u (m, θi+1)wm,iq̄ (m, θi+1)

×
[
(θi+1 − µm,i) (θi+1 − µm,i)

T − Σm,i

]
(2.9)

wm,i+1 = wm,i + γi+1u (m, θi+1)wm,i [q̄ (m, θi+1)− 1] (2.10)

where γi =
1

10i0.7
, and

u (m, θ) =
νm + d

νm + (θ − µm)
T
Σ−1

m (θ − µm)
(2.11)

q̄ (m, θ) =
T (θ|µm,Σm, νm, )

∑M

m=1
wmT (θ|µm,Σm, νm)

. (2.12)

in which previous draws of the generated Markov chain are used to tailor the proposal
distribution on the features of the target distribution. The distinctive characteristic of
adaptive algorithms with respect to standard MCMC methods is the presence of a proposal
distribution whose parameters are modified during the simulation process to minimize a
distance with the target distribution.
Bernardi and Petrella (2012) propose an Independent Metropolis-Hastings sampler having
the following mixture of Student t as proposal distribution:

qi

(
θ, Ψ̃,Ψi,

)
= λTd

(
θ|Ψ̃

)
+ (1− λ)

M∑

m=1

ωm,iTd (θ|Ψm,i) (2.13)

where Td (θ|Ψ) denotes the probability density of a d−variate Student t distribution with
parameters Ψ = (µ,Σ, ν), ωm,i are the mixture weights satisfying the constraints 0 < ωm,i ≤
1, ∀ 1 ≤ m ≤ M , and

∑M

m=1 ωm,i = 1, λ ∈ (0, 1) is the weight associated to the non-adapted

distribution Td

(
θ|Ψ̃

)
, M is the number of mixture components, and the variable i controls for

iterations. The presence of the fixed component guarantees the convergence of the algorithm
even in cases where the parameter space is unbounded, see Andrieu and Moulines (2006) and
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Haario et al. (2001), and is very useful in exploring multimodal posterior distributions when
the number of modes of the proposal is misspecified. Algorithm 2.1 details the main steps
of the computational method where the proposal parameters in (2.8)-(2.10) are chosen by
minimizing the Kullback-Liebler divergence between the proposal and the target distribution
using the stochastic approximation methods of Robbins and Monro (1951).

The algorithm allows to explore all the posterior modes, remove the data augmentation
step and provide a good auxiliary distribution that can be exploited for model selection as
described in the next section.

2.2 Model Selection

When different models {ML}Lmax

L=1 are compatible with the data set available it is necessary
to solve a model selection problem. The strategy is to calculate the Bayes factors (Kass et
al., 1995 and Chipman et al., 2001), which correspond to the ratio between the marginal
likelihood associated to each model i.e.

m (y|ML) =

∫
L (θL|y) p (θL) dθL (2.14)

where L (θL|y) is the likelihood defined in equation (2.1) while p (θL) is the joint prior
defined in (2.2)-(2.6). When a closed form for the (2.14) is not available one possibility
is to approximate it by the following Importance Sampling suggested by Neal (2001):

m (y|ML) =
1

N

N∑

j=1

L
(
θjL|y

)
p
(
θ
(j)
L

)

h
(
θ
(j)
L

) =
1

N

N∑

j=1

wj (2.15)

where h
(
θ
(j)
L

)
is an importance density approximating the unnormalizing posterior

distribution for the ML, and θ(j) is the j−th draw from the importance density. The
importance density should be carefully selected to avoid the problem of instability of the
resulting estimators. We propose to use the density definined in equation (2.7) as importance
density where the paramters are those of the last iteration of the MCMC algorithm. Since the
proposal density considered in (2.13) guarantees the exploration of all the posterior modes,
we are sufficiently comfortable of the boudness of the importance weights wi.

3 Application to insurance claim data

The model and methodology proposed in previous sections are now applied to the insurance
claim dataset of Danish fire losses. The Danish dataset consists of 2167 inflation-adjusted
individual fire losses of profit (in Danish Krone, DKK) that occurred between 1980 and 1990,
which can be dowloaded from http://www.ma.hw.ac.uk/~mcneil. We can look at Table 1 to
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Figure 1: Time series plot (top panel) and histogram (bottom panel) of the log Danish fire losses
dataset.

get more information concerning these data. Such a dataset has been extensively studied by
different authors (see e.g. McNeil, 1997; Cooray and Amanda, 2005; Ahn et al., 2012). In the
top panel of Figure 1 data are plotted against time showing the presence of a large amount of
low-value payments followed by a small number of very large payments and their approximate
times of occurrence. The heterogeneous behavior of payments made by insurance companies
is one of the two main characteristics of these type of data, the other being the unpredictable
nature of large losses given the past history of the series. Except during the summer periods,
there is no evidence of some dynamics in the first or second moment of the series. The
high kurtosis is clear from the large difference between the maximum value and the average
loss (which is larger than 30 units of standard deviations), and by the fact that during the
period of observations 9 values exceed 5 units of standard deviations (dark bullet in Figure
1). This is a very large number when compared with the probability of occurrence of such
losses in a Gaussian world, which is less than one over 1000 years. The presence of extreme
events is confirmed by the high value of the empirical VaR and ES, which are equal to 26
and 58, respectively, at the 99% confidence level. The bottom panel of Figure 1 presents the
histogram of the data in logarithmic scale where it is evident the large skewness and heavy
tails of the unconditional distribution, and the wide range of the data.

All previous findings as well as the presence of low, large and extreme values of loss
payments supplement the various methods of checking that a different distribution is more
appropriate than the Gaussian one (see e.g. Eling, 2012). Here we contribute to this branch
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# of observations 2167
Mean 0.79

Standard deviation 0.72
Skewness 1.76
Kurtosis 4.18
Minimum 0.00
1st Quartile 0.28
2nd Quartile 0.56
3rd Quartile 1.09
Maximum 5.57

Table 1: Log Danish Data: Descriptive statistics

of research proposing a finite mixture models with skewed distributions as a flexible tool
allowing for heterogeneity, skewness and kurtosis, retaining a simple interpretation of the
results.

The proposed Bayesian analysis is based on the likelihood and prior specification
introduced in section 2. For each mixture model we generate 25000 MCMC draws after
a burn-in of 10000 and for the inference we use the adaptive MCMC algorithm specified in
section 3. For the logarithm of Danish dataset we fit several finite mixture of Skew Normal
(SN) distributions, and the subclass of Gaussian (N) mixtures, differing for the number of
mixture components. To select the model and the number of components L we compute the
marginal likelihood m (y|ML), for L = 2, . . . , Lmax, as described in the previous section 2.1.
Based on real-world data, the estimates of the marginal likelihood are presented in Table 2
for the Skew Normal mixtures and for the Gaussian case. In the same table we compare the
results obtained with the importance sampling estimator described in section 2.2 with two
differents model choice criteria, the Bayesian Information Criterion (BIC) and the Deviance
Information Criteria (DIC) see Spiegelhalter et al. (2002).

The main evidence is that marginal likelihood favors the model with 3 skew components
MSN

3 and penalizes models with a larger number of components. The strong evidence in
favor of the Skew Normal mixtures with respect to the Gaussian case is mainly due to the
presence of skewness and heavy tails in the data. This conjecture is supported by the posterior
estimates of the shape parameters αl, presented in Table 3, confirming the hypothesis that
the component densities are highly skewed and that Gaussian component distribution seems
to be unrealistic in this context.

It is also possible to note that the BIC and the DIC select a three-component Skew
Normal mixture, while looking at the Gaussian mixture models with four or five components
are preferred. This result is consistent with the idea that mixtures of Gaussians usually
require a large number of component densities to attain a sufficient approximation of the
shape of the observed distribution. It is also important to point out that these model
selection criteria do not provide consistent estimates when comparing models that are all
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Figure 2: Histogram of the Danish fire data (in logarithmic scale) with superimposed density
estimate of model MSN

3 (red line), and 95% HPD credible set (dotted lines).

misspecified. Parameters estimate for the selected model MSN
3 are presented in Table 3 which

summarizes the posterior mean, the posterior median and the maximum a posteriori. The
95% high posterior density credible intervals and the Geweke’s posterior convergence criteria
(Geweke, 1992; 2005) are reported in the last two columns. From the results it is evident
that the convergence of all the parameters have been reached. In figure 2 we superimpose
the predictive distribution of the selected model MSN

3 to the histogram of actual data in
logarithmic scale along with the 95% credible sets. The main evidence is that tail behaviour
of the observed data is well represented by the fitted distribution; in addiction with our
model we are able to catch the two separated modes displayed by the observed data missed
by previous approaches proposed in literature. All the point estimates denote the presence
of three well separated clusters corresponding to low, medium and large losses. It could
be argued that the position of the larger location parameter is far from the maximum loss,
and this is due to the presence of a high peak of the data unconditonal density around
zero. Posterior credible sets in the fifth column are the Bayesian analogous of the classical
confidence intervals in the sense that they are used for interval estimation. As expected, the
posterior credible sets for the skewness parameters are quite large and this is mainly due to
the mathematical formulation of the Skew Normal density which involves the product of the
Gaussian density and its cumulative density function.

Since in the actuarial practice it is important to quantify the probability of large losses, we
calculate two widely used measures of risk, the Value-at-Risk (VaR) and Expected Shortfall
probability (ES), at different confidence levels λ for the selected Skew Normal mixture model
MSN

3 . The combination of the Bayesian inferential procedure with an analytical solution for
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Model n. of par BIC/n DIC/n mIS (y|M)
MSN

2 7 1.542 1.530 -1790.0
MSN

3 11 1.549 1.523 -1749.4

MSN
4 15 1.559 1.524 -1801.5

MSN
5 19 1.573 1.518 -1824.8

Model n. of par. BIC/n DIC/n mIS (y|M)
MN

2 5 1.739 1.723 -1870.6
MN

3 8 1.659 1.635 -1786.8

MN
4 11 1.599 1.565 -1803.3

MN
5 14 1.586 1.590 -2155.8

Table 2: Model choice criteria for the Danish claims dataset. Skew Normal (SN) and Normal (N)
mixtures. Bold faces indicates the selected model.

Parameter Mean Median MaP HPD95% Geweke
ξ1 0.006 0.006 0.003 (0.004, 0.008) 0.415
ξ2 1.202 1.137 1.678 (0.650, 2.476) 0.500
ξ3 0.290 0.304 0.310 (0.127, 0.388) -0.912
ω2
1 0.084 0.089 0.236 (0.007, 0.141) 0.656

ω2
2 1.453 1.447 1.804 (1.039, 1.997) 0.392

ω2
3 0.448 0.415 0.500 (0.284, 0.867) 0.337

α1 18.215 18.139 23.092 (11.391, 25.139) 0.522
α2 6.363 6.004 8.020 (1.132, 12.313) -0.340
α3 7.109 6.831 5.444 (3.677, 11.155) -0.914
η1 0.335 0.361 0.568 (0.107, 0.462) 0.845
η2 0.138 0.144 0.356 (0.028, 0.213) -0.289
η3 0.527 0.516 0.076 (0.362, 0.736) -1.066

Table 3: Parameter estimates obtained by fitting the Skew Normal mixture model with 3
components, M3 to the Danish fire loss data. Parameters are estimated by of posterior means,
posterior median, and Maximum a Posteriori. The fifth column reports the 95% High Posterior
Density (HPD) credible sets and the last one reports the Geweke’s convergence statistics.

the risk measures as function of the Skew Normal mixture parameters allows us to provide
point estimates as well as credible intervals for the VaR and ES. In particular the VaRλ (Y) at
fixed λ confidence level is evaluated as the unique solution with respect to x of the following
equation:

F SN

Y
(x, θ) = 1− λ, (3.1)

where F SN

Y
(x, θ) is the cumulative density function of the Skew Normal mixture. We compare

our VaR estimates with those obtained by Eling (2012) under several (single-component)
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Confidence λ Historical VaRλ Std HPD
0.9 1.71469 1.740 0.046 (1.651, 1.831)
0.95 2.30461 2.272 0.066 (2.148, 2.403)
0.99 3.26461 3.323 0.108 (3.129, 3.552)
0.999 - 4.404 0.177 (4.073, 4.740)
0.9999 - 5.244 0.232 (4.810, 5.681)
0.99999 - 5.954 0.280 (5.435, 6.483)

Table 4: Value-at-Risk, VaRλ estimates based on the MCMC output for the Danish claims dataset.
Skew-Normal mixtures.

Confidence λ Historical ESλ Std HPD
0.90 2.46989 2.404 0.101 (2.154, 2.576)
0.95 2.97039 2.891 0.103 (2.691, 3.097)
0.99 3.79335 3.805 0.136 (3.547, 4.074)
0.999 - 4.775 0.201 (4.395, 5.154)
0.9999 - 5.556 0.253 (5.089, 6.030)
0.99999 - 6.228 0.298 (5.680, 6.800)

Table 5: Expected Shortfall probability ESλ estimates based on the MCMC output for the Danish
claims dataset. Skew-Normal mixtures.

models. For example, the VaR at 99% confidence interval calculated in Eling (2012) with
Skew-Student t distribution is 3.45, whilst we estimate a value of 3.323, which is much closer
to the empirical one (equal to 3.26). In general, VaR estimates perform very well. In Table
4 results are compared with historical values for the three confidence level λ = 0.9, λ = 0.95
and λ = 0.99 . VaR estimates are quite close to their empirical counterparts implying that the
Skew Normal mixture model has good performance on the tail of the observed distribution.
Due to lack of enough observations the same comparison could not be performed for lower
confidence levels.

The ES evaluated at the VaR level x is analytically tractable for mixture of Skew-Normal,
in fact it is possible to show that it is the weighted average of the Expected Shortfalls of each
mixture components (Bernardi, 2012), where

ESY (x, θ) =
L∑

l=1

πlESl (x, θl) . (3.2)

Such a result allows us to compute the ES directly, without relying on simulations (as often
pursued in the literature). The weights and the ESl (x, θl) of each component are respectively
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given by the following formulas

πl =
ηl

(
1− F

(
x−ξl
ωl

, αl

))

1− λ
, ∀l = 1, 2, . . . , L (3.3)

ESl (y, θl) = ξl +
ωlb

1− F
(
x−ξl
ωl

, αl

)
[
δl [1− Φ (z)] +

√
2πlφl

(
x− ξl

ωl

)
Φ

(
αl (x− ξl)

ωl

)]
, (3.4)

with b =
√

2
πl

, δl =
αl√
1+α2

l

and z =
√
1 + α2

l y and F (·) is the distribution function of a Skew

Normal variable. For more details see the analytical proofs presented in Bernardi (2012). In
order to evaluate VaRλ (Y) and ESλ (Y) we use a Rao-Blackwellized Monte Carlo procedure
using the MCMC output; this guarantees the efficiency of the estimated quantities. As for
the VaR results, the ES estimates (see Table 5) provide promising results. Credible sets are
increasing as the confidence level increases as expected, and in general are quite small. With
a special focus on the ES estimate at the 99% confidence level, we would like to point out
the goodness of the proposed approach in fitting the observed data.

4 Conclusion

In this paper we propose a mixture of Skew Normal densities for modeling the loss
distribution, to deal with data displaying large and positive skewness as well as a wide
right tail. Bayesian computational techniques are used to estimate parameters and for
implementing the model selection procedures. Finite mixture models represent a flexible
tool for fitting observed distributions allowing for heterogeneity in the underlying data while
taking advantage on the simple model interpretation. These findings play a relevant role when
considering extreme data with large skewness, fat tails and different latent regimes. Mixtures
of Gaussian and Student t distributions, for example, are able to capture these empirical
evidences providing robust counterparts to standard elliptical distributions. However, when
the different underlying regimes driving the generating process exhibit a pronounced skew,
more flexible component densities are required to improve the goodness of fit retaining model
parsimony at the same time. The Skew Normal distribution introduced by Azzalini (1985)
meets these requirements by simply adding an extra parameter controlling for the shape of
distribution.

We provide empirical evidence that the chosen model with three skewed components gives
a detailed description of the distribution of the modeled data. Modeling the distribution
of losses is especially fruitful to predict the probability of extreme losses. Goodness of
the tail approximation can be evaluated by computing two well known measures of risk,
the Value-at-Risk and the Expected Shortfall probability. The availability of closed form
formula for computing both measures allows us to compute efficient Rao-Blackwellized Monte
Carlo estimates, marginalizing out posterior parameters uncertainty. Both measure are close
to their empirical counterparts, revealing that the proposed model is able to capture the
abnormal behaviour of the observed data. For the provided risk measures we also get credible
regions yielding considerable insight into the uncertainty surrounding the estimates.
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A straightforward extension of our proposals may concern the introduction of independent
variables in a regression framework. Even if regression models for time series are widely
applied in the literature, most of the provided approaches assume that all the moments of a
distribution are implicitly specified through their dependence on the mean. We suggest as an
interesting topic for further research, the use of regression mixtures where all the parameters
of the distributions, i.e. location, scale and shape, are specified as a function of exogenous
variables. This analysis may provide further insights in the analysis of the loss data where
the Gaussian assumption if often violated and more complex distributions have to be taken
into account.
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