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On combinatorial link Floer homology

CIPRIAN MANOLESCU

PETER OZSVÁTH

ZOLTÁN SZABÓ

DYLAN THURSTON

Link Floer homology is an invariant for links defined using a suitable version of La-
grangian Floer homology. In an earlier paper, this invariant was given a combinatorial
description with mod 2 coefficients. In the present paper, we give a self-contained
presentation of the basic properties of link Floer homology, including an elementary
proof of its invariance. We also fix signs for the differentials, so that the theory is
defined with integer coefficients.

57R58, 57M25

1 Introduction

Heegaard Floer homology [12] is an invariant for three-manifolds, defined using
holomorphic disks and Heegaard diagrams. Ozsváth and Szabó [11] and Rasmussen [15]
extended this construction to give an invariant, knot Floer homology, for null-homolo-
gous knots in a closed, oriented three-manifold. This construction is further generalized
by Ozsváth and Szabó [9] to the case of oriented links. The definition of all these
invariants involves counts of holomorphic disks in the symmetric product of a Riemann
surface, which makes them rather challenging to calculate.

More recently, Sucharit Sarkar discovered a principle which ensures that for Heegaard
diagrams with a certain property, the counts of holomorphic disks are combinatorial.
Manolescu, Ozsváth and Sarkar [6] constructed Heegaard diagrams of the needed form
from grid presentations of knots or links in S3 . This led to an explicit, combinato-
rial description of the knot or link Floer complex, taken with coefficients in Z=2Z,
henceforth called F2 . (See also Sarkar and Wang [16] for a different application of this
principle.)

The purpose of the present paper is to develop knot (or link) Floer homology in
purely elementary terms, starting from a grid presentation, and establish its topological
invariance without appealing to the earlier theory. We also give a sign-refinement of
this description, leading to a homology theory with coefficients in Z.
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We recall the chain complex from [6]; but first, we need to review some topological
notions.

A planar grid diagram G lies on an n� n grid of squares in the plane. Each square is
decorated either with an X , an O , or nothing. Moreover, the decorations are arranged
so that:

� every row contains exactly one X and one O ; and

� every column contains exactly one X and one O .

The number n is called the grid number of G . Sometimes we find it convenient to
number the O ’s and X ’s by fOig

n
iD1

and fXig
n
iD1

. We denote the set of all O ’s and
X ’s by O and X , respectively. As a point of comparison: the Oi correspond to the
“white dots” of [6] and the wi of [9], while the Xi to the “black dots” of [6] and the zi

of [9]. We find the current notation clearer for pictures.

Given a planar grid diagram G , we can place it in a standard position on the plane
as follows: the bottom left corner is at the origin, and each cell is a square of edge
length one. We then construct an oriented, planar link projection by drawing horizontal
segments from the O ’s to the X ’s in each row, and vertical segments from the X ’s
to the O ’s in each column. At every intersection point, we let the horizontal segment
be the underpass and the vertical one the overpass. This produces a planar diagram
for an oriented link EL in S3 . We say that EL has a grid presentation given by G . See
Figure 1 for an example.

Figure 1: Grid presentation for the figure eight knot
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We transfer our grid diagrams to the torus T obtained by gluing the topmost segment
to the bottom-most one, and the leftmost segment to the rightmost one. In the torus, our
horizontal and vertical arcs become horizontal and vertical circles. The torus inherits
its orientation from the plane. We call the resulting object a toroidal grid diagram, or
simply a grid diagram, for EL. We will again denote it by G .

Given a toroidal grid diagram, we associate to it a chain complex .C�.G/; @�/ as
follows. The set of generators of C�.G/, denoted S or S.G/, consists of one-to-one
correspondences between the horizontal and vertical circles. More geometrically, we
can think of the generators as n–tuples of intersection points between the horizontal
and vertical circles, with the property that no intersection point appears on more than
one horizontal (or vertical) circle.

Before defining the differentials, we turn to a grading and a filtration on the complex,
determined by two functions M W S �! Z and AW S �! .1

2
Z/` .

The function M is defined as follows. Given two collections A, B of finitely many
points in the plane, let I.A;B/ be the number of pairs .a1; a2/ 2A and .b1; b2/ 2 B

with a1<b1 and a2<b2 . Let J .A;B/D .I.A;B/CI.B;A//=2. Take a fundamental
domain Œ0; n/� Œ0; n/ for the torus, cut along a horizontal and vertical circle, with the
left and bottom edges included. Given a generator x 2 S, we view x as a collection
of points with integer coordinates in this fundamental domain. Similarly, we view
ODfOig

n
iD1

as a collection of points in the plane with half-integer coordinates. Define

M.x/D J .x; x/� 2J .x;O/CJ .O;O/C 1:

We find it convenient to write this formula more succinctly as

(1) M.x/D J .x�O; x�O/C 1;

where we extend J bilinearly over formal sums (or differences) of subsets. Note
that the definition of M appears to depend on which circles we cut along to create a
fundamental domain. In fact, it does not (see Lemma 2.4 below). Note also that this
definition of the Maslov grading is not identical with that given in [6], but it is not
difficult to see they agree. See Lemma 2.5 below, and the remarks following it.

For an `–component link, we define an `–tuple of Alexander gradings A.x/ D
.A1.x/; : : : ;A`.x// by the formula

(2) Ai.x/D J .x� 1
2
.XCO/;Xi �Oi/�

�ni � 1

2

�
;

where here Oi � O is the subset corresponding to the i th component of the link,
Xi � X is the set of X ’s belonging to the i th component of the link, and where we
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once again use the bilinear extension of J . For links, the Ai may take half-integral
values. Again, this quantity is independent of how the torus is cut up to form a planar
rectangle (see Lemma 2.6 below).

Given a pair of generators x and y, and an embedded rectangle r in T whose edges
are arcs in the horizontal and vertical circles, we say that r connects x to y if x and
y agree along all but two horizontal circles, if all four corners of r are intersection
points in x[ y, and if, as we traverse each horizontal boundary component of r in the
direction dictated by the orientation that r inherits from T , then the arc is oriented
from a point in x to the point in y. (See Figure 2 for an example.) Let Rect.x; y/
denote the collection of rectangles connecting x to y. If x; y 2 S agree along all but
two horizontal circles, then there are exactly two rectangles in Rect.x; y/; otherwise
Rect.x; y/ D ∅. Let Int.r/ denote the interior of the subset of T determined by r .
A rectangle r 2 Rect.x; y/ is said to be empty if Int.r/ \ x D ∅, or equivalently
if Int.r/ \ y D ∅. The space of empty rectangles connecting x and y is denoted
Rectı.x; y/.
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Figure 2: Rectangles. The small dark circles describe the generator x and
the hollow ones describe y . There are two rectangles in Rect.x; y/ , shown
here shaded by two types of diagonal hatchings. The rectangle on the left is
in Rectı.x; y/ while the other one is not, because it contains a dark circle in
its interior.

Let R denote the polynomial algebra over F2 generated by variables which are in
one-to-one correspondence between the elements of O, and which we denote fUig

n
iD1

.
We think of this ring as endowed with a Maslov grading, defined so that the constant
terms are in Maslov grading zero, and Ui are in grading �2. The ring is also endowed
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with an Alexander multifiltration, defined so that constant terms are in filtration level
zero, while the variables Uj corresponding to the i th component of the link drop the
i th multifiltration level by one and preserve all others.

Let C�.G/ be the free R–module with generating set S.

We endow this module with an endomorphism @�W C�.G/ �! C�.G/ defined by

(3) @�.x/D
X
y2S

X
r2Rectı.x;y/

U
O1.r/
1

� � �U On.r/
n � y;

where Oi.r/ denotes the number of times Oi appears in the interior of r (so Oi.r/ is
either 0 or 1).

The results of [6] can be summarized by the following:

Theorem 1.1 (Manolescu–Ozsváth–Sarkar) The data .C�.G/; @�/ is a chain com-
plex for the Heegaard-Floer homology CF�.S3/, with grading induced by M , and the
filtration induced by A coincides with the link filtration of CF�.S3/.1

In particular, appealing to the earlier theorem defined using holomorphic disks [9; 11;
15], the filtered quasi-isomorphism type of this chain complex C� is a link invariant.
Other knot and link invariants can be found by routine algebraic manipulations of C�

as well (for example, by taking the homology of the associated graded object).

Our main goal here is to prove the topological invariance of the filtered quasi-iso-
morphism type of the resulting chain complex C�.G/, without resorting to any of the
holomorphic disk theory, and in particular without resorting to Theorem 1.1. We prove
the following:

Theorem 1.2 Let EL be an oriented, `–component link. Number the elements of
OD fOig

n
iD1

so that O1; : : : ;O` correspond to different components of the link. Then
the filtered quasi-isomorphism type of the complex .C�.G/; @�/ over ZŒU1; : : : ;U`�

is an invariant of the link.

We also give independent verification of the basic algebraic properties of C�.G/ which,
with F2 (ie Z=2Z) coefficients, follow from Theorem 1.1, together with properties of
the “Heegaard Floer homology package”. Note that for technical reasons, for links
with more than one component the chain complex in [9] was originally defined only
with coefficients in F2 .

1The reader should be warned: our conventions here on the Maslov grading are such that the total
homology H�.CF�.S3// is isomorphic to a copy of the polynomial algebra in U , where the constants
have grading equal to zero. In [12], the convention is that the constants have grading equal to �2 .
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There are some related constructions one could consider. In one of these, we set
U1 D � � � D U` D 0, and let yC .G/ denote the resulting chain complex, equipped with
its Alexander filtration. Taking the homology of the associated graded object, we
get a group whose multigraded Euler characteristic is the multivariable Alexander
polynomial of EL, times a suitable normalization factor (this is proved in Equation (1)
of [9]; see also Theorem 6.1 below).

We have endeavored to separate the discussion of signs from the rest of the body of
the paper, to underscore the simplicity of the F2 version which is sufficient for the
knot-theoretic applications, and also simpler to calculate. In particular, in Section 3, we
establish Theorem 1.2, working over coefficients in F2 , where it could alternately be
seen as an immediate consequence of Theorem 1.1. We hope, however, that the present
combinatorial proof of invariance has value in its own simplicity; see also Ozsváth,
Thurston and Szabó [13] for another application. The sign-refinements are dealt with
in Section 4.

This paper is organized as follows. The algebraic properties are established in Section 2
and topological invariance with coefficients in F2 is established in Section 3. In
Section 5, we describe some further properties of C� . In Section 4, we describe the
sign conventions and the modifications needed for the earlier discussion to establish
Theorem 1.2 over Z. Finally, in Section 6, we show that the Euler characteristic of the
homology is the Alexander polynomial.

Acknowledgements We would like to thank Dror Bar-Natan, Sergei Duzhin, Sergey
Fomin, John Morgan, and Sucharit Sarkar for helpful conversations.

CM was supported by a Clay Research Fellowship. PSO was supported by NSF
grant number DMS-0505811 and FRG-0244663. ZSz was supported by NSF grant
number DMS-0406155 and FRG-0244663. DPT was supported by a Sloan Research
Fellowship.

2 Properties of the chain complex C �.G /

2.1 Algebraic terminology

We recall some standard terminology from homological algebra.

For simplicity, we use coefficients in F2 D Z=2Z for this section, and also the next
two. The definitions from algebra can be made with Z coefficients with little change.
Other aspects of Z coefficients will be handled in Section 4. (And in fact, the choices
of signs in the formulas below which, of course, are immaterial over F2 , have been
chosen so as to work over Z.)
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Definition 2.1 We give Q` its usual partial ordering, .a1; : : : ; a`/ � .b1; : : : ; b`/

if for all i D 1; : : : ; `, ai � bi . Let R be the ring F2ŒU1; : : : ;Un�. A function
gW f1; : : : ; ng �! .Q�0/` specifies a Q` grading on R. Fix a grading on R. Let M

be a module over R. A Q`–filtration on a module M is a collection of R–submodules
fFs.M /gs2Q` of M satisfying the following properties:

� Fs.M /� Ft .M / if s � t .
� Multiplication by Ui sends Fs.M / into Fs�g.i/.M /.
� For all sufficiently large s (with respect to �), Fs.M /DM .

A filtered R–module map �W M �!N is an R–module map which carries Fs.M / into
Fs.N /. A filtered chain complex .C; @/ is a graded and filtered R–module, equipped
with a filtered endomorphism @ which drops grading by one. Given filtered chain
complexes A and B , a filtered chain map is a chain map �W A�!B which is a grading-
preserving, filtered R–module map. Given two filtered chain maps �i W A �!B for
i D 1; 2, a filtered chain homotopy is a filtered R–module map H W A �! B which
raises grading by one and satisfies the formula

@B ıH CH ı @A D �1��2:

If a filtered chain homotopy exists between �1 and �2 , then we say that �1 and �2

are filtered chain homotopic. Let �W A�!B be a filtered chain map. We say that � is
a filtered chain homotopy equivalence if there is a map  W B �!A with the property
that � ı  and  ı � are filtered chain homotopic to the identity maps. A filtered
quasi-isomorphism is a filtered map �W A �!B which induces an isomorphism from
the homology groups H�.Fs.A// to H�.Fs.B//. The associated graded object of a
filtered chain complex C is the Q`–graded chain complex

gr.C /D
M
s2Q`

grs.C /;

where grs.C / is the quotient of Fs.C / by the submodule generated by Ft .C / for all
t < s , endowed with the differential induced from @.

A filtered chain homotopy equivalence is a filtered quasi-isomorphism. Moreover a
map is a filtered quasi-isomorphism if and only if it induces an isomorphism on the
homology of the associated graded object.

Definition 2.2 Given a filtered chain map �W A �! B , we can form a new filtered
chain complex, the mapping cone M.�/ whose underlying module is A˚B , and
which is endowed with the differential D.a; b/D .@a; �.a/� @b/, where here @a and
@b denotes the differentials of a and b within A and B , respectively.

Geometry & Topology, Volume 11 (2007)
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The mapping cone fits into a short exact sequence of chain complexes (where the maps
are all filtered chain maps)

0 ����! B ����! M.�/ ����! A ����! 0;

and whose connecting homomorphism agrees with the map induced by � .

Definition 2.3 Two filtered chain complexes A and B are quasi-isomorphic if there
is a third filtered chain complex C and filtered quasi-isomorphisms from C to A and
to B .

If �1W A �! B and �2W A �! B are chain homotopic, then their induced mapping
cones are quasi-isomorphic.

Our chain complexes will always be finitely generated over F2ŒU1; : : : ;Un�.

2.2 The chain complex C �

We verify that C�.G/ as defined in the introduction (using coefficients in F2 ) is a
filtered chain complex in the above sense, with (Alexander) filtration induced from the
function A and (Maslov) grading induced from the function M .

Lemma 2.4 The function M is well-defined, ie it is independent of the manner in
which a given generator x 2 S is drawn on the square.

Proof Fix x 2 S, thought of as drawn in the usual fundamental domain with the
bottom and left edges included, so there is one component a with coordinates .m; 0/.
Let x0 denote the same generator in the fundamental domain with the top and left
edges included, so there is now a component b with coordinates .m; n/. For each i

with 0� i < n; i ¤m, there is one component ci in x and x0 with first coordinate i .
For m < i < n, the pair .a; ci/ contributes 1 to the count of J .x; x/, whereas the
corresponding pair .ci ; b/ does not contribute to J .x0; x0/. Symmetrically, for each i

with 0� i <m, the pair .ci ; a/ does not contribute to J .x; x/, whereas .ci ; b/ does
contribute to J .x0; x0/. It follows that J .x; x/CmD J .x0; x0/C n�m� 1. We can
similarly analyze J .x0;O/ to find

J .x0; x0/D J .x; x/C 2m� nC 1

2J .x0;O/D 2J .x;O/C 2m� n:

In particular MO.x0/DMO.x/C 1.

Geometry & Topology, Volume 11 (2007)
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To complete the rotation, we have to change O to O0 by moving the O in the bottom
row, with coordinates .l � 1

2
; 1

2
/, to .l � 1

2
; nC 1

2
/. A similar analysis yields

2J .x0;O0/D 2J .x0;O/C 2l � n

J .O0;O0/D J .O;O/C 2l � n� 1:

Thus MO0.x0/DMO.x0/� 1DMO.x/, which is the desired cyclic invariance.

The same reasoning also establishes invariance under horizontal rotation.

The Maslov grading on R and the generating set S induces a Maslov grading on the
chain complex C� . Explicitly, the summand C�

d
.G/ is generated by expressions

U
m1

1
� � �U

mn
n � x, with x 2 S, where

d DM.x/� 2

nX
iD1

mi :

Lemma 2.5 Suppose that x; y 2 S, and r 2Rect.x; y/ is a rectangle with x\ Int.r/D
∅. Then

(4) M.x/DM.y/C 1� 2

nX
iD1

Oi.r/:

Proof Draw the torus T on a square in such a manner that the lower left corner of
r coincides with the lower left corner of the square. Then it is clear that J .x; x/D
J .y; y/C 1 (since the two new coordinates y1 and y2 in y are the only pair counted
in J .x/ which are not also counted in J .x/), while J .O; x/D J .O; y/C #fO\ rg,
since each Oi 2 r gives rise to exactly one pair .x1;Oi/ counted in J .O; x/ which is
not also counted in J .O; x/. Similarly, J .x;O/D J .y;O/C #fO\ rg. Equation (4)
now follows when M is calculated with respect to a particular manner of lifting the
data on T to data on a square. But according to Lemma 2.4, the Maslov grading is
independent of this data.

The alert reader might notice that the definition of Maslov grading we give here does
not identically agree with that given in [6], which we denote by M 0 . However, by
connecting any two generators x2 S by a sequence of rectangles satisfying Lemma 2.5
(the existence of which can be deduced from the fact that the symmetric group is
generated by transpositions), we see at once that M is uniquely characterized, up to
an additive constant, by Equation (4), which is also satisfied by M 0 . It now remains
to show that M.x0/ DM 0.x0/ for some x0 2 S. To this end, we take x0 to be the
generator for which xi is on the lower left corner of the square marked with Oi .

Geometry & Topology, Volume 11 (2007)
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According to the conventions from [6], M 0.x0/ D 1 � n; it is easy to verify that
M.x0/D 1� n, as well.

For the Alexander gradings, we have the following analogue of Lemma 2.4:

Lemma 2.6 For a given link component i , the function Ai is well-defined, ie it is
independent of the manner in which a given generator x 2 S is drawn on the square.

Proof For a point p 2 Z2 , the quantities I.p;Xi �Oi/ and I.Xi �Oi ;p/ both
compute the winding number of the i th component of the knot around the point p .
This quantity is unchanged if p is moved from the very bottom to the very top of the
diagram (since in that case the winding number is 0), and if Xi and Oi are rotated
vertically once, it changes by ˙1 if p is in between the X and the O that are moved,
and is unchanged otherwise. For a point p with half-integer coordinates, the inequalities
used in the definition of I.p;Xi �Oi/ effectively shift p up and to the right by .1

2
; 1

2
/

before computing the winding number. Similarly, I.Xi�Oi ;p/ computes the winding
number around p� .1

2
; 1

2
/. Therefore Ai.x/, defined as J .x� 1

2
.XCO/;Xi �Oi/,

computes the winding number of the i th component around a weighted sum of points
which has total weight 0 in each row and column. This combination is therefore
invariant under cyclic rotation of the whole diagram.

The function AW S.G/ �! .1
2

Z/` � Q` endows C�.G/ with a Q`–filtration in the
sense of Definition 2.1, for the function gW f1; : : : ; ng �! Z` which associates to i the
j th standard basis vector in Z` if Oi belongs to the j th component of the link. The
element .U m1

1
� � �U

mn
n /x has filtration level aD .a1; : : : ; a`/, where

aDA.x/�
nX

iD1

mi �g.i/:

It is sometimes useful to consider objects more general than rectangles, called domains.
To define them, let us view the torus T as a two-dimensional cell complex, with the
toroidal grid diagram inducing the cell decomposition with n2 zero-cells, 2n2 one-cells
and n2 two-cells (the little squares). Let U˛ be the one-dimensional subcomplex of T
consisting of the union of the n horizontal circles.

Definition 2.7 Given x; y2S, a path from x to y is a 1–cycle 
 on the cell complex T ,
such that the boundary of the intersection of 
 with U˛ is y� x.

Definition 2.8 A domain p from x to y is a two-chain in T whose boundary @p is
a path from x to y. The support of p is the union of the closures of the two-cells
appearing (with nonzero multiplicity) in the two-chain p .

Geometry & Topology, Volume 11 (2007)
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Given x; y 2 S, let �.x; y/ denote the space of domains from x to y. There is a natural
composition law

�W �.a;b/��.b; c/ �! �.a; c/:
For a domain p 2 �.x; y/, we let Xi.p/ and Oi.p/ denote the multiplicity with which
Xi and Oi , respectively, appear in p .

Proposition 2.9 The differential @� drops Maslov grading by one, and respects the
Alexander filtration. Specifically, if x 2 S has M.x/D d , then @�.x/ is written as a
sum of elements in Maslov grading d � 1. Also, if A.x/D a, then @�.x/ is a sum of
elements with Alexander filtrations � a.

Proof The fact that @� drops Maslov grading by one follows at once from Equation (4),
together with the definition of @� .

The fact that @� respects the Alexander filtration follows from basic properties of
winding numbers. Specifically, given x; y 2 S and r 2 Rect.x; y/, it is easy to see that

A.x/�A.y/D
X

i

.Xi.r/�Oi.r// �g.i/:

Thus if U
m1

1
� � �U

mn
n �y appears with nonzero coefficient in @�.x/, then the Alexander

filtration level of the corresponding term is smaller than the Alexander filtration level
of x by

Pn
iD1 Xi.r/ �g.i/.

With the terminology in place, we now verify that @� is the differential of a chain
complex.

Proposition 2.10 The endomorphism @� of C�.G/ is a differential, ie @� ı @� D 0.

Proof Consider an element x 2 S, viewed as a generator of C�.G/. We can view
@� ı @�.x/ as a count

@� ı @�.x/D
X
z2S

X
p2�.x;y/

x62Intp

N.p/ �U
O1.p/
1

� � �U On.p/
n � z;

where here N.p/ denotes the number of ways of decomposing a domain as a composite
of two empty rectangles p D r1 � r2 , where r1 2 Rectı.x; y/ and r2 2 Rectı.y; z/ for
some y 2 S.

If z¤ x, and if p has a decomposition pD r1�r2 , then we claim that there is a unique
alternate decomposition p D r 0

1
� r 0

2
, where here r 0

1
2 Rect.x; y0/ and r 0

2
2 Rect.y0; z/.

In fact, if p D r1 � r2 is a domain obtained from two empty rectangles r1 and r2 , then
we claim that there are three possibilities for p :

Geometry & Topology, Volume 11 (2007)
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Figure 3: @�ı@�D0 . The four combinatorially different ways the composite
of two empty rectangles r1 � r2 can appear. The initial point is indicated by
the dark circles, the final by the hollow ones.

� two disjoint rectangles;

� two rectangles with overlapping interiors (the darker region in Figure 3); and

� two rectangles which share a corner.

These three cases are illustrated in the first three diagrams in Figure 3. In each case,
there are exactly two decompositions of the obtained domain as a juxtaposition of empty
rectangles: in the first two cases by taking the rectangles in the two possible orders,
and in third case by decomposing either along the thin or dotted lines, cf Figure 4. It
follows at once that the z component of @� ı @�.x/ vanishes for z¤ x.

When zD x, however, the only domains p 2 �.x; x/ which can be decomposed as a
union of two empty rectangles are width one annuli, as in the fourth diagram in Figure 3,
or height one annuli in the torus. There are 2n of these annuli. Each such annulus p

has a unique decomposition p D r1 � r2 with r1 2 Rect.x; y/ and r2 2 Rect.y; x/ (for
some uniquely specified y). The row or column containing Oi contributes Ui in the
formula for @� ı @�.x/. Since Oi appears in exactly one row and exactly one column,
it follows now that the x component of @� ı @�.x/ vanishes, as well.

The proof of the above proposition is elementary, depending on evident properties of
rectangles in the torus. However, it does deserve a few extra words, since it is the starting
point of this paper, and indeed a recurring theme throughout. Specifically, the alert
reader will observe that the remarks concerning juxtapositions of pairs of rectangles is
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Figure 4: The third case of Figure 3. The three black dots are permuted to
give four different generators. Each arrow represents a rectangle, which is
shown shaded. There are two ways of connecting the initial generator x to
the final generator z: by following the top arrows, or the bottom ones. Each
way gives a contribution to @� ı@� , and in the final count these contributions
cancel out.

one of the last vestiges of Gromov’s compactness theorem, the foundation upon which
Floer’s theory of Lagrangian intersections is built [4] (and knot Floer homology can be
viewed as a variant of that latter theory). The assertions about annuli can also be seen
as remnants of Gromov’s theory, as they are counting boundary degenerations.

In terms of combinatorics, we see a pattern that will be repeated throughout the paper:
in order to prove an identity with differentials (e.g., that .@�/2 D 0, or that a map is
a chain map) we consider the composites of two domains; generally the composite
domain will have exactly two decompositions. In some cases we need to add or delete
annuli of width or height one while taking care not to change the factors of Ui that
appear.

2.3 Algebraic properties of C �

We now turn to the basic algebraic properties of the chain complex.
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In the following lemma, just as Ui is a chain map which drops filtration level by one,
the filtered chain homotopy drops the filtration level by one.

Lemma 2.11 Suppose that Oi and Ok correspond to the same component of EL. Then
multiplication by Ui is filtered chain homotopic to multiplication by Uk .

Proof Since filtered chain homotopies can be composed, it suffices to show that if
Oi lies in the same row as some Xj which in turn is in the same column as Ok , then
multiplication by Ui is filtered chain homotopic to multiplication by Uk . The filtered
chain homotopy is furnished by counting rectangles which contain Xj .

Specifically, define
H W C�.G/ �! C�.G/

by the formula
H.x/D

X
y2S

X
r2Rectı.x;y/

Xj2r

U
O1.r/
1

� � �U On.r/
n � y:

We claim that
@� ıH CH ı @� D Ui �Uk :

This follows from the same argument as Proposition 2.10: Most composite domains
on the left hand side can be decomposed in exactly two ways. The exception are the
horizontal and vertical annuli, necessarily containing Xj which contribute Ui and Uk ,
respectively.

Proposition 2.12 Suppose that the oriented link EL has ` components. Choose an
ordering of OD fOig

n
iD1

so that for iD1; : : : ; `, Oi corresponds to the i th component
of EL. Then the filtered chain homotopy type of C�.G/, viewed as a chain complex
over F2ŒU1; : : : ;U`�, is independent of the ordering of O.

Proof Different numberings can be connected via the filtered chain homotopies of
Lemma 2.11.

The basic link invariant is the filtered quasi-isomorphism class of C�. EL/, thought of as
a complex of F2ŒU1; : : : ;U`� modules. But there are some other natural constructions
one can consider.

For example, we can consider the chain complex yC .G/, which is a chain complex
over F2 , once again which is freely generated by elements of S, by setting the Ui D 0

for i D 1; : : : ; `. We let cCL.G/ denote the graded object gr. yC .G// associated to the
Alexander filtration, and let bHL.G/ denote its homology.
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Lemma 2.13 The group bHL.G/ is a finitely-generated F2 –module.

Proof Clearly, cCL.G/ is a finitely generated R–module. It follows from Lemma 2.11
that once we set Ui D 0 for i D 1; : : : ; `, then multiplication by Uj is null-homotopic
for all j D 1; : : : ; n, and in particular it acts trivially on homology. It follows at once
that bHL.G/DH�.cCL.G//, which is clearly a finitely generated R–module, is in fact
a finitely generated F2 –module.

There is another construction which is quite convenient to consider for calculations [1].
This is the chain complex zC .G/, which is obtained from C�.G/ by setting all the
Ui D 0, and then taking the associated graded object. (This complex is denoted simply
C.G/ in [6], but we prefer to reserve this notation for later use.) Explicitly, this is the
free F2 –module generated by S, endowed with the differential

z@.x/D
X
y2S

#
�

r 2 Rect.x; y/
ˇ̌̌
8x 2 x;x 62 Int.r/;
8i;Oi 62 r and Xi 62 r

�
� y:

It is easy to relate the homology of fCL.G/D gr. zC .G// with the homology of cCL.G/,
by some principles in homological algebra.

Lemma 2.14 Let C be a filtered, graded chain complex of free modules over
F2ŒU1; : : : ;Un�, such that Ui decreases the homological grading by two and the filtra-
tion by one, and such that multiplication by Ui is chain homotopic to multiplication by
Uj for any i; j . Then H�.C=fUi D 0gn

iD1
/ Š H�.C=U1/˝ V n�1 , where V is the

two-dimensional bigraded vector space spanned by one generator in bigrading .�1;�1/

and another in bigrading .0; 0/.

Proof Suppose for notational simplicity that nD 2. Consider the chain map from the
mapping cone of the chain map U1W C �! C to C=U1 gotten by taking the quotient
on the second summand. It follows easily from the five-lemma that this map is a
quasi-isomorphism. Moreover, by iterating this observation, we see that C=.U1;U2/

is quasi-isomorphic to the mapping cone

C
U1
����! C

U2

??y ??yU2

C
U1
����! C;

which in turn is quasi-isomorphic to the mapping cone of

U2W C=U1 �! C=U1:
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But since U1 and U2 are chain homotopic in C , we obtain an induced null-homotopy
of the map induced by U2 on C=U1 . Thus, this latter mapping cone is isomorphic
to the mapping cone of zero, ie to the direct sum C=U1˚C=U1 , which in turn is
quasi-isomorphic to .C=U1/˝V .

We investigate now the filtrations and gradings. In order for the quasi-isomorphism
from U1W C �! C to C=U1 to be a filtered and graded map, we must shift gradings
an filtrations on the mapping cone M.U1/ appropriately. Specifically, let C Œa; b�

denote the graded and filtered chain complex with the property that Fs.Cd Œa; b�/D

FsCb.CdCa/. Then the mapping cone M.U1/ is C Œ1; 1�˚C . Following through the
above discussion, we see that the mapping cone C=.U1;U2/ is filtered and graded
quasi-isomorphic to C Œ1; 1�=U1˚C=U1 Š .C=U1/˝V .

This discussion generalizes readily to the case where n> 2.

Proposition 2.15 The homology groups bHL.G/ determine eHL.G/; specifically,

H�.fCL.G//ŠbHL.G/˝
Ò
iD1

V
˝.ni�1/

i ;

where Vi is the two-dimensional vector space spanned by two generators, one in zero
Maslov and Alexander multigradings, and the other in Maslov grading minus one and
Alexander multigrading corresponding to minus the i th basis vector.

Proof This follows easily from Lemma 2.14, applied component by component.

Notation Perhaps the reader will find it convenient if we collect our notational con-
ventions here. The chain complex C�.G/ refers to the full chain complex (and indeed,
we soon drop the minus from the notation here), CL�.G/ denotes its associated graded
object, and HL�.G/ is the homology of the associated graded object. yC .G/ denotes
the chain complex where we set one Ui D 0 for each component of the link, cCL.G/
is its associated graded object, and bHL.G/ is the homology of the associated graded
object. zC .G/ is the chain complex C�.G/ modulo the relations that every Ui D 0,fCL.G/ is the associated graded complex, and eHL.G/ is its homology. Most of
these constructions have their analogues in Heegaard Floer homology; for example,
according to [6], HL�.G/ is identified with HFL�.L/, and bHL.G/ with bHFL.L/.
We find it useful to distinguish these objects, especially when establishing properties
of the combinatorial complex which could alternatively be handled by appealing to [6],
together with known properties of Heegaard Floer homology.
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3 Invariance of combinatorial knot Floer homology

Our goal in this section is to use elementary methods to show that combinatorial
knot Floer homology is independent of the grid diagram, proving Theorem 1.2 with
coefficients in F2 .

Following Cromwell [2] (compare also Dynnikov [3]), any two grid diagrams for the
same link can be connected by a sequence of the following elementary moves:

(1) (Cyclic permutation) This corresponds to cyclically permuting the rows and
then the columns of the grid diagram.

(2) (Commutation) Consider a pair of consecutive columns in the grid diagram G

with the following property: if we think of the X and the O from one column
as separating the vertical circle into two arcs, then the X and the O from the
adjacent column occur both on one of those two arcs. Under these hypotheses,
switching the decorations of these two columns is a commutation move, cf
Figure 5. There is also a similar move where the roles of columns and rows are
interchanged.

(3) (Stabilization/destabilization) Stabilization is gotten by adding two consecutive
breaks in the link. More precisely, if G has arc index n, a stabilization H is
an arc index nC 1 grid diagram obtained by splitting a row in G in two and
introducing a new column. For convenience, label the original diagram so it has
decorations fXig

nC1
iD2

, fOig
nC1
iD2

. Let Oi and Xi denote the two decorations in
the original row. We copy Oi onto one of the two new copies of the row it used
to occupy, and copy Xi onto the other copy. We place decorations O1 and X1 in
the new column so O1 resp. X1 occupy the same row as Xi resp. Oi in the new
diagram, cf Figure 6. Destabilization is the inverse move to stabilization. Note
that stabilization can be alternatively done by reversing the roles of rows and
columns in the above description; however, such a stabilization can be reduced
to the previous case, combined with a sequence of commutation moves. In
fact, we can consider only certain restricted stabilization moves, where three
of the four squares O1 , X1 , Oi , and Xi share a common vertex; ie the new
column is introduced next to Oi or Xi . However, there are now different types
of stabilizations corresponding to the different ways of dividing the O ’s and
X ’s among the two new rows.

Of course, since our complex is associated not to the planar grid diagram, but rather to
the induced picture on the torus, the fact that it is invariant under cyclic permutation is
a tautology.
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Figure 5: Commutation. The two grid diagrams differ from each other by
interchanging the two columns, but correspond to the same link.
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ˇ2

˛

ˇ1

Figure 6: Stabilization. On the left, we have an initial grid diagram; on the
right, a new diagram obtained by inserting the pictured row and column.
Another stabilization is given by switching the roles of the new middle two
rows.

We turn to commutation invariance next, and then stabilization invariance.

Note that all the chain complexes yC .G/, zC .G/ depend on the quasi-isomorphism type
of C�.G/; thus, the latter is the most basic object. Thus, to streamline notation, we
choose here to drop the superscript “�” from the notation of this chain complex and
its differential.

3.1 Commutation invariance

Let G be a grid diagram for EL, and let H be a different grid diagram obtained by
commuting two vertical edges. It is convenient to draw both diagrams on the same
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torus, replacing a distinguished vertical circle ˇ for G with a different one 
 for H ,
as pictured in Figure 7. The circles ˇ and 
 meet each other transversally in two
points a and b , which are not on a horizontal circle.

b

a

ˇ 


Figure 7: A commutation move, viewed as replacing one vertical circle (ˇ ,
undashed) with another (
 , dashed)

We define a chain map ˆˇ
 W C.G/�!C.H / by counting pentagons. Given x2 S.G/
and y 2 S.H /, we let Pentˇ
 .x; y/ denote the space of embedded pentagons with the
following properties. This space is empty unless x and y coincide at n� 2 points. An
element of Pentˇ
 .x; y/ is an embedded disk in T , whose boundary consists of five
arcs, each contained in horizontal or vertical circles. Moreover, under the orientation
induced on the boundary of p , we start at the ˇ–component of x, traverse the arc
of a horizontal circle, meet its corresponding component of y, proceed to an arc of
a vertical circle, meet the corresponding component of x, continue through another
horizontal circle, meet the component of y contained in the distinguished circle 
 ,
proceed to an arc in 
 , meet an intersection point of ˇ with 
 , and finally, traverse
an arc in ˇ until we arrive back at the initial component of x. Finally, all the angles
here are required to be less than straight angles. These conditions imply that there is
a particular intersection point, denoted a, between ˇ and 
 which appears as one of
the corners of any pentagon in Pentˇ
 .x; y/. The other intersection point b appears in
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all of the pentagons in Pent
ˇ.y; x/. Examples are pictured in Figure 8. The space of
empty pentagons p 2 Pentˇ
 .x; y/ with x\ Int.p/D∅, is denoted Pentı

ˇ

.

Figure 8: We have indicated here two allowed pentagons in Pentˇ
 .x; y/ ,
where components of x are indicated by solid points, and those of y are
indicated by hollow ones.

Given x 2 S.G/, define

ˆˇ
 .x/D
X

y2S.H /

X
p2Pentı

ˇ

.x;y/

U
O1.p/
1

� � �U On.p/
n � y 2 C.H /:

Lemma 3.1 The map ˆˇ
 is a filtered chain map.

Proof The fact that ˆˇ
 preserves Alexander filtration and Maslov gradings is straight-
forward. Like the proof of Proposition 2.10, the proof that ˆˇ
 is a chain map proceeds
by considering domains which are obtained as a juxtaposition of a pentagon and a
rectangle, representing terms in @ ıˆˇ
 , and observing that such domains typically
have an alternate decomposition to represent a term in ˆˇ
 ı @. One example is
illustrated in Figure 9. Other terms are more straightforward, consisting either of a
disjoint rectangle and pentagon, a rectangle and pentagon with overlapping interior, or
a rectangle and a pentagon which meet along a different edge; the pictures are similar
to those in Figure 3. There is one special case, of a type of domain which has only one
decomposition: these are the domains obtained as the union of a width one pentagon p
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Figure 9: Chain map. The given domain can be decomposed either as a
pentagon followed by a rectangle, or a rectangle followed by a pentagon. The
first decomposition represents a term in @ıˆˇ
 , the second a term in ˆˇ
 ı@ .

and a width one rectangle r . In this case, if we let x2 S.G/, there is a canonical closest
generator c.x/ 2 S.H / (with the property that x and c.x/ agree at all intersection
points away from ˇ[ 
 ). It is easy to see, then, that our domain has the form r �p

or p � r (depending on the local picture of x), and it connects x to c.x/. But then,
such domains are in one-to-one correspondence with domains of the form r 0 �p0 or
p0 � r 0 , where if p is a left pentagon, then p0 is a right pentagon, and vice versa. See
Figure 10.

We can define chain homotopy operators analogously, only now counting hexagons.

More specifically, given x; y2S.G/, we let Hexˇ
ˇ.x; y/ denote the space of embedded
hexagons with the following property. This space, too, is empty unless x and y coincide
at n� 2 points. Moreover, an element of Hexˇ
ˇ.x; y/ is an embedded disk in T ,
whose boundary consists of six arcs, each contained in horizontal or vertical circles.
More specifically, under the orientation induced on the boundary of p , we start at
the ˇ–component of x, traverse the arc of a horizontal circle, meet its corresponding
component of y, proceed to an arc of a vertical circle, meet its corresponding component
of x, continue through another horizontal circle, meet its component of y, which
contained in the distinguished circle ˇ , continue along ˇ until the intersection point b

of ˇ with 
 , continue on 
 to the intersection point a of ˇ and 
 , proceed again on ˇ
to the ˇ–component of x, which was also our initial point. Moreover, all corner points
of our hexagon are again required to be less than straight angles. An example is given
in Figure 11. We define the space of empty hexagons Hexı

ˇ
ˇ
, with interior disjoint

from x, as before. There is also a corresponding notion Hex
ˇ
 . We now define the
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Figure 10: Special case of the chain map. The generators x and c.x/ are
marked by dark circles; they differ from each other only on one row. The
arrow indicates how the dark circle in x is replaced by a corresponding dark
circle in c.x/ . On the left we have a (darkly shaded) pentagon followed by a
(lightly shaded) rectangle, and on the right we have a rectangle followed by a
pentagon. The intermediate generators are marked by hollow circles.

function Hˇ
ˇW C.G/ �! C.G/ by

Hˇ
ˇ.x/D
X

y2S.G/

X
h2Hexı

ˇ
ˇ
.x;y/

U
O1.h/
1

� � �U On.h/
n � y:

Proposition 3.2 The map ˆˇ
 W C.G/ �! C.H / is a chain homotopy equivalence;
more precisely

ICˆ
ˇ ıˆˇ
 C @ ıHˇ
ˇCHˇ
ˇ ı @D 0

ICˆˇ
 ıˆ
ˇC @ ıH
ˇ
 CH
ˇ
 ı @D 0:

Proof Juxtaposing two pentagons appearing in ˆ
ˇ ıˆˇ
 , we generically obtain a
composite domain which admits a unique alternative decomposition as a hexagon and
a square, counted in @ıHˇ
ˇ or Hˇ
ˇ ı@. Typically, the remaining terms in @ıHˇ
ˇ

cancel with terms Hˇ
ˇ ı @.
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Figure 11: A hexagon in Hexˇ
ˇ

There is, however, one composite region which has a unique decomposition. Specifically,
the vertical circles ˇ1 , ˇ2 , and 
 divide up T into a collection of components, two of
which are annuli and do not contain any X . Depending on the initial point x, exactly
one of these annuli can be thought of as a juxtaposition of two pentagons, or a hexagon
and a rectangle which is counted once in ˆ
ˇ ıˆˇ
 C @ ıHˇ
ˇCHˇ
ˇ ı @; but it is
also counted in the identity map. See Figure 12.

3.2 Stabilization invariance

Let G be a grid diagram and H denote a stabilization. We discuss in detail the
case where we introduce a new column with O1 immediately above X1 (and X2 is
immediately to the left or to the right of O1 ); the case where X1 is immediately above
O1 can be treated symmetrically by a rotation of all diagrams by 180ı .

More specifically, given a horizontal arc from O2 to X2 , we introduce a vertical
segment (somewhere along the arc) consisting of a new pair O1 and X1 , where O1

is on the square right above X1 , which in turn is in the same row as the new copy of
O2 , as in Figure 6. Indeed, do this in such a manner that three of the four squares
marked O1 , O2 , X1 , and X2 share a common vertex. Furthermore, by applying
commutation, we can assume without loss of generality that these three squares are
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Figure 12: Decomposing the identity map. Consider the three configurations
in C.G/ , indicated by dark circles. The shaded region can be thought of
as decomposed into a hexagon followed by a rectangle (as on the left), a
rectangle followed by a hexagon (as in the middle), or a pair of pentagons as
on the right. The first can be thought of as counting terms in @ ıHˇ
 , the
middle terms in Hˇ
 ı @ , and the right in ˆ
ˇ ıˆˇ
 . There are three more
cases, if the ˇ–component of the configuration lies on the other arc in ˇ ; in
this case, we must decompose the annulus on the right.

O1 , X1 , and X2 . Thus, the grid of H is gotten by inserting a new column of squares,
where two consecutive squares are marked by O1 and X1 . We let ˇ1 be the vertical
circle on the left, and ˇ2 the one on the right. Let ˛ denote the new horizontal circle
in H which separates O1 from X1 .

Let B D C�.G/ and C D C�.H /. Let C 0 be the mapping cone of

U2�U1W BŒU1� �! BŒU1�;

ie C 0ŒU1�D BŒU1�˚BŒU1�, endowed with the differential @W C 0 �! C 0 given by

@0.a; b/D .@a; .U2�U1/ � a� @b/

where here @ denotes the differential within C (actually, in the sequel we drop the
prime from the differential within C 0 , as well, and hope that the differential is clear
from the context). Note that B is a chain complex over F2ŒU2; : : : ;Un�, so that BŒU1�
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denotes the induced complex over F2ŒU1; : : : ;Un� gotten by introducing a new formal
variable U1 . Let L and RŠ BŒU1� be the subgroups of C 0 of elements of the form
.c; 0/ and .0; c/ for c 2 BŒU1�, respectively. The module R inherits Alexander and
Maslov gradings from its identification with BŒU1�, while L is given the Alexander
and Maslov gradings which are one less than those it inherits from its identification
with BŒU1�. With respect to these conventions, the mapping cone is a filtered complex
of R–modules.

Lemma 3.3 The map from C 0 to B that takes .a; b/ to a=fU1 D U2g is a quasi-
isomorphism.

Proof In general, the mapping cone C 0 of a map f W C1! C2 fits into a short exact
sequence on homology from C2 to C 0 to C1 . The connecting homomorphism in the
corresponding long exact sequence on homology is the map induced by f . In this case,
f is U1�U2 , which is injective on the homology of BŒU1�, so the map from C 0 to
B is a quasi-isomorphism.

It therefore suffices to define a filtered quasi-isomorphism

(5) F W C �! C 0:

To do this, we introduce a little more notation.

Let S.G/ be the generating set of B , and S.H / be the generating set of C . Let
x0 be the intersection point of ˛ and ˇ1 (the dark dot in Figure 6). Let I � S.H /

be the set of x 2 S.H / which contain x0 . There is, of course, a natural (pointwise)
identification between S.G/ and I, which drops Alexander and Maslov grading by one.
More precisely, given x 2 S.G/, let �.x/ 2 S.H / denote the induced generator in I
which is gotten by inserting x0 . We then have

MC.G/.x/DMC.H /.�.x//C 1DMC 0.0; �.x//DMC 0.�.x/; 0/C 1(6)

AC.G/.x/DAC.H /.�.x//Cg.1/DAC 0.0; �.x//DAC 0.�.x/; 0/Cg.1/(7)

where g is the function from Section 2.2, mapping from i to the basis vector corre-
sponding to the component of the link containing Oi . With this said, we will henceforth
suppress � from the notation, thinking of L and R as generated by configurations in
I� S.H /.

As such, the differentials within L and R count rectangles which do not contain x0

on their boundary, although they may contain x0 in their interior. Note however that
the boundary operator (in L and R) for rectangles containing x0 does not involve the
variable U1 .
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Definition 3.4 For x 2 S.H / and y 2 I� S.H /, a domain p 2 �.x; y/ is said to be
of type L or R if either it is trivial, in which case p has type L, or it satisfies the
following conditions:

� p has only nonnegative local multiplicities.

� For each c 2 x[ y, other than x0 , at least three of the four adjoining squares
have vanishing local multiplicities.

� In a neighborhood of x0 the local multiplicities in three of the adjoining rect-
angles are the same number k . When p has type L, the lower left corner
has local multiplicity k � 1, while for p of type R the lower right corner has
multiplicity kC 1.

� @p is connected.

The complexity of the trivial domain is 1; the complexity of any other domain is the
number of horizontal lines in its boundary. The set of type L (or R) domains from x
to y is denoted �L.x; y/ (or �R.x; y/). We set �F .x; y/D �L.x; y/[�R.x; y/, and
call its elements domains of type F ; see Figure 13 for examples. We denote by �F

the union of the sets �F .x; y/; over all possible x and y:

The innermost height (resp. width) of a domain in �F is the vertical (resp. horizontal)
distance from the corner adjacent horizontally (resp. vertically) to x0 to the corner
after that.

We now define maps

FL
W C �! L

FR
W C �!R

where FL (resp. FR ) counts domains of type L (resp. R) without factors of U1 .
Specifically, define

FL.x/D
X
y2S

X
p2�L.x;y/

U
O2.p/
2

� � �U On.p/
n � y

FR.x/D
X
y2S

X
p2�R.x;y/

U
O2.p/
2

� � �U On.p/
n � y:

We put these together to define a map

F D

�
FL

FR

�
W C �! C 0:
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Figure 13: Types of domains. We have listed here domains in the stabilized
diagram, labeling the initial points by dark circles, and terminal points by
empty circles. The top row lists domains of type L , while the second row
lists some of type R . The marked O and X are the new ones in the stabilized
picture. Complexities from the left on the first row are 3 , 5 , and 7 respec-
tively; on the second, they are 2 , 4 , and 6 . Darker shading corresponds to
higher local multiplicities. Not shown is the trivial domain of type L , which
has complexity 1 .

Lemma 3.5 The map F W C �! C 0 preserves Maslov grading, respects Alexander
filtrations, and is a chain map.

Proof The fact that the gradings and filtrations are respected is straightforward. For
instance, the Alexander filtration shift of a region p is given by counting the number
of O ’s minus the number of X ’s contained in p . A region of type L contains O1 and
X1 an equal number of times, and every other Oi comes with a cancelling factor of
Ui , so the Alexander filtration shift is negative. The other shifts can be checked in a
similar way.

To prove that F is a chain map, we consider all the terms in the expression @ ıF or
F ı @. Most of these are counts of composite domains p � r or r �p , where r is a
rectangle and p is a type L or R domain. A rectangle r 2 �.x; y/ cannot contribute
to this count if any component x 2 x is in the interior of r , except in the special case
where x D x0 , and the rectangle is thought of as connecting two intersection points in
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L or R, in which case we say it is of Type 2. All other empty rectangles are said to be
of Type 1.

There are several cases of domains contributing to @ ıF or F ı @ , which we group
according to whether r is a Type 1 or Type 2 rectangle, and to how many corners p

and r have in common. We list the cases below; verifying that these are the only cases
is a straightforward exercise in planar geometry.

If r is of Type 1, we have the following possibilities:

I(0) A composition in either order of a domain p 2 �F and an empty rectangle r of
Type 1, with all corners distinct. This domain appears in both @ ıF and F ı @

as compositions in two different orders, p � r and r 0 �p0 , where r has the same
support as r 0 and p has the same support as p0 .

I(1) A composition in either order of a nontrivial domain p 2 �F and an empty
rectangle r , with p and r sharing one corner and r disjoint from x0 (including
the boundary). The union of these two domains has a unique concave corner not
at x0 , and we can slice this into a domain in �F and a rectangle of Type 1 in two
ways by cutting in either way from this concave corner. This gives the domain
as a composition in exactly two ways. An example is shown in Figure 14.

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

Figure 14: Case I(1). An example of a domain with two decompositions
r �p D r 0 �p0 , both accounted for in case I(1)

I(10 ) A composition r �p with r and p sharing one corner and x0 appearing on the
horizontal or vertical boundary of r . The composite looks again like a domain
in �F or the rotation by 180ı of such a domain. See Figure 15. A special case
worth mentioning is when r 2 Rectı.x; y/ with y 2 I; in this case p is trivial,
with complexity 1, as in Figure 16.
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Figure 15: Cases I(1 0 ) and II(1). There are two terms in @ ıFLCFL ı @

starting at the black dots and ending at the white dots, thought of as elements
of L . The term on the left is a juxtaposition r � p (as in I(10 )), while the
second is p0 � r 0 , where p0 is of type L and r 0 is of Type 2 (as in II(1)).

I(2) A composition in either order of p 2 �F and r 2 Rectı , where p and r share
two corners other than possibly x0 ; see Figures 20 and 21. In this case p has
complexity at least 3.

I(3) A domain that wraps around the torus with a decomposition as p � r or r �p ,
where r is an empty rectangle of Type 1 and p 2 �F has innermost height
or width equal to 1, and r and p share three corners other than possibly x0 .
This decomposition is unique. The total domain contains a unique vertical or
horizontal annulus of height or width equal to 1. When the complexity m of p

is equal to 2, the domain is just this annulus. Examples are shown in Figures 16
(mD 3, horizontal), 17 (mD 5, horizontal), 18 (mD 5, vertical), and 19 (mD 4,
horizontal).

If r is of Type 2, the composition must be of the form p� r , because Type 2 rectangles
only appear in the differential of the target complex C 0 . We only have two possibilities:

II(0) All the corners of p and r are disjoint.

II(1) A domain that wraps around the torus with a decomposition as p � r , where r

is a rectangle of Type 2 that shares one corner with p . This decomposition is
unique, and the total domain again contains a unique thin (ie width one or height
one) annulus. See Figure 15.

Apart from these, there is one other special contribution to F ı@, which does not come
from a decomposition of a domain into p � r or r 0 �p0 :
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Figure 16: Cases I(1 0 ) and I(3), where mD 1 . In both pictures, the darkly
shaded rectangle represents a map from the black generator to the white
one, followed by the natural map (induced by the trivial domain, which has
complexity 1) to the white generator thought of as an element of in L . This
is accounted for in I(10 ). Depending on the placement of the black dot in
the top row, we can cancel this either with a term in FL ı @ or @ ıFL . In
the first case (on the left), we have the domain r �p , where r is the height
one (lightly shaded) rectangle in the row through O1 , to the intermediate
generator (labelled by the shaded circle), thought of as a differential within
C.H / , followed by a complexity 3 domain p with innermost height equal
to one, which we trust the reader can spot. In the second case (on the right),
we have the decomposition p � r , where p is the complexity 3 domain with
innermost height equal to one from the black generator to the intermediate
generator, which is bounded by the dark line, followed by a rectangle to the
white generator, which again we leave to the reader to find. In both cases the
alternate term is accounted for in case I(3).
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Figure 17: Cases I(1 0 ) and I(3), horizontal annulus. There are two terms in
@ıFLCFLı@ starting at the black dots and ending at the white dots. One of
them counts the composite domain r 0 �p0 where r 0 is the hatched rectangle
containing X , and p0 is the darkly shaded complexity 3 domain (accounted
for in I(10 )); and the other is a count of r � p , where r is the height one,
lightly shaded rectangle, followed by a complexity 5 domain with innermost
height equal to one (accounted for in I(3)).
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Figure 18: Cases I(1 0 ) and I(3), vertical annulus. There are two terms in
@ıFLCFLı@ starting at the black dots and ending at the white dots. One of
them counts the composite domain r 0 �p0 where r 0 is the hatched rectangle
containing the white dot x0 in its boundary, and p0 is the darkly shaded
complexity 3 domain (accounted for in I(10 )); and the other is a count of
r � p , where r is the height one, lightly shaded rectangle, followed by a
complexity 5 domain with innermost height equal to one (accounted for in
I(3)).

(S) A domain p 2 �L followed by the differential from L to R, which multiplies
by U2�U1 .

Contributions from case I(0) cancel each other out, and the same goes for those from
case I(1). In fact, these cases are the exact analogs of the first three cases in Figure 3
for the proof of Proposition 2.10. See Figure 14 for an example.

We claim that contributions from case I(10 ) cancel with contributions from case II(1)
or I(3), together with possibly a contribution from case (S). Indeed, for each domain
of type I(10 ) made of a rectangle r1 2 Rectı.x; y/ and a domain p1 2 �

F .y; z/ of
complexity m, let p0 D r1 � p1 . We can make a new domain p0

0
by adding a thin

annulus abutting x0 on the opposite side of x0 from r1 . (For instance, if the right
side of r touches x0 , add a vertical annulus of width one whose left side touches
x0 .) In the case when mD 1, when r1 touches x0 at a corner, we attach a horizontal
annulus if r1 contains X1 and a vertical annulus otherwise, as in Figure 16. If the
innermost height or width of p1 is 1, then p0 decomposes as p2 � r2 , where p2 2 �

F

has complexity m. This corresponds to a contribution from case II(1), as in Figure 15.
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Figure 19: Cases I(1 0 ), I(3), and (S). This case is similar to those in Figures 17
and 18, except that it also involves a domain of type (S). We count terms in
@ ıF CF ı @ starting at the black dots and ending at the white dots (thought
of as representing an element of R). The darkly shaded polygon represents a
domain of type L from the black to the white generator. Postcomposing with
the differential from L to R , we get .U2 �U1/ times the white generator.
Alternatively, the region can be decomposed as a rectangle containing O1

(with a factor of U1 ), composed with the rectangle containing X1 , thought of
as a polygon of type R . Alternatively, there is a term induced by the height
one (lightly shaded) rectangle, followed by a complexity 4 domain of type R ,
which the reader can easily spot. One of these two domains contains O2 , and
hence the composite will count with a factor of U2 .

If, on the other hand, the innermost height or width (as appropriate) of p1 is not 1, the
new domain p0

0
is of type I(3) and in turn decomposes as p2�r2 or r2�p2 , depending

on the placement of the generator on the new row or column, where p2 2 �
F has

complexity mC 2. See Figures 16–19.

In these cases involving annuli, if pi 2�
R and the annulus is horizontal, the rectangle r1

contains O1 and so has a contribution which is multiplied by U1 , while the domain
p0

0
contains O2 and so has a contribution which is multiplied by U2 . Thus these two

terms contribute U1 �U2 to the composite map from x to z. On the other hand, in
this case the domain p0 is itself in �L.x; z/, and so we get a cancelling contribution
of type (S), as in Figure 19. In other cases the two domains p0 and p0

0
give the same

contribution to the boundary map.

Compositions r �p or p � r from case I(2), with p of complexity m� 3, cancel out
compositions r 0 �p0 from case II(0), with p0 of complexity m� 2, as illustrated in
Figures 20 (mD 3) and 21 (mD 5).

The only domains left to cancel are those of type I(3) with m D 2 and type (S)
with m D 1. There are two kinds of domains of type I(3) with m D 2: a vertical
and a horizontal annulus, containing O1 and O2 , respectively, and in both cases
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Figure 20: Cases I(2) and II(0), with complexity mD 3 . The simplest case
of the pairing between cases I(2) and II(0)

Figure 21: Cases I(2) and II(0). The illustrated domain can be decomposed as
a complexity 3 domain of type L followed by a Type 2 rectangle (accounted
for in II(0)), or alternatively a complexity 5 domain of type L followed by a
Type 1 rectangle (accounted for in I(2)).

containing X1 . These domains map a generator x 2 I to itself, and so cancel the
remaining contribution from the maps of type (S).

In order to see that F is a quasi-isomorphism, we will introduce an appropriate filtration.
Consider zC .H /. Let Q be a collection of .n� 1/2 dots, one placed in each square
which do not appear in the row or column through O1 . Given h 2 .1

2
Z/` , let zC .H; h/

denote the summand generated by generators x with Alexander gradings equal to h.

Note that for fixed x; y 2 Sh , for any two domains p;p0 2 �.x; y/ with Oi.p/ D

Xi.p/ D Oi.p
0/ D Xi.p

0/ for all i , we have that #.Q \ p/ D #.Q \ p0/. Thus,
we can find a function F so that for any x; y 2 S, if p 2 �.x; y/ is a domain with
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Oi.p/DXi.p/D 0 for all i , then

F.x/�F.y/D #.Q\p/:

The function F determines a filtration on zC .H; h/, whose associated graded object
counts only those rectangles which contain no Oi , Xi , or points in Q. Thus, these
rectangles must be supported in the row or column through O1 . We let zCQ denote
this associated graded object, and typically drop h from the notation.

We recall now a well-known principle from homological algebra (see for example
McCleary [7, Theorem 3.2]).

Lemma 3.6 Suppose that F W C �! C 0 is a filtered chain map which induces an
isomorphism on the homology of the associated graded object. Then F is a filtered
quasi-isomorphism.

We decompose SD I[ .NI/[ .NN/, where NI consists those configurations whose
ˇ2 component is ˛\ˇ2 and whose ˇ1 component is not in ˛ , while NN consists of
those whose ˇ2 component and ˇ1 component are not on ˛ . We have corresponding
decompositions of modules: C D C I ˚C NI˚C NN .

Lemma 3.7 H�. zCQ/ is isomorphic to the free F2 –module generated by elements of
I and NI.

Proof There are two cases, according to whether the X2 marks the square to the left
or the right of O1 .

Suppose X2 is in the square just to the right of the square marked O1 . Then we have
a direct sum splitting zCQ Š

zC NI
Q
˚B , where the differentials in zC NI

Q
are trivial, hence

its homology is the free F2 –module generated by elements of NI; and where B is a
chain complex fitting into an exact sequence

0 ����! zC I
Q
����! B ����! zC NN

Q
����! 0:

Moreover, it is easy to see that H�. zC
NN
Q
/ D 0. Finally, the differentials in zC I

Q
are

trivial, so its homology is the free F2 –module generated by elements of I.

Suppose on the other hand that X2 is just to the left of O1 . Then there is a direct sum
splitting zCQ Š

zC I
Q
˚B0 , where once again the differentials on zC I

Q
are trivial and B0

fits into an exact sequence

0 ����! zC NN
Q
����! B0 ����! zC NI

Q
����! 0;

where H�. zC
NN
Q
/D 0 and the differentials on zC NI

Q
are trivial.
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Proposition 3.8 The map F is a filtered quasi-isomorphism.

Proof We consider the map induced by F :

zFQW
zCQ �!

zC 0Q:

zC 0
Q

splits as a direct sum of chain complexes LQ˚RQ , both of which are freely
generated by elements in I.

There are two cases. First take the case where X2 is in the square just to the right of
the square marked O1 . Consider the subcomplex zC I

Q
˚ zC NI

Q
� zCQ . By Lemma 3.7,

this subcomplex carries the homology, and hence it suffices to show that the restriction
of zFQ to this subcomplex induces an isomorphism in homology.

To this end observe that zFL
Q

restricted to zC I
Q

is an isomorphism. Moreover, zFR
Q

restricted to zC NI
Q

counts rectangles supported in the row and column through O1 and
which contain X1 in their interior and end up in I (since no other domains of type R

is disjoint from Q). But for each element of NI, there is a unique such rectangle. Thus
zFQ is a quasi-isomorphism when X2 is just to the right of O1 .

In the second case, where X2 is just to the left of O1 , we proceed as follows. In
this case zC I

Q
is a direct summand of the complex zCQ (cf the proof of Lemma 3.7).

Moreover, it is easy to see that zFL
Q

restricted to zC I
Q

is an isomorphism of chain
complexes. It remains to show that the restriction of zFR

Q
is a quasi-isomorphism. This

is true because the only domains of type R which do not contain X2 are rectangles,
and those which are supported in the allowed region connect configurations of type NI
to I. Once again, the result now follows from the fact that there is a unique rectangle
of type R connecting a given element of NI to an element of I. This completes the
verification that zFQ is a quasi-isomorphism.

We now appeal to Lemma 3.6 to conclude that yF is quasi-isomorphism; and another
application of the same principle gives that F is a quasi-isomorphism, as well.

Remark 3.9 The chain complex C 0 used in this stabilization proof can be viewed
as the chain complex associated to the Heegaard diagram where the vertical circle ˇ1

is replaced by a small circle enclosing O1 and X1 . In this Heegaard diagram it is
straightforward to check that the counts of holomorphic disks are still combinatorial
and equivalent to the boundary operator in C 0 .

3.3 Completion of topological invariance, without signs

We have now all the pieces needed to establish Theorem 1.2, with coefficients in
F2 D Z=2Z.
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Proof of Theorem 1.2 This result now is an immediate consequence of Cromwell’s
theorem, our earlier remarks on cyclic permutation, and Propositions 3.8 and 3.2.

4 Signs

Definition 4.1 A true sign assignment, or simply a sign assignment, is a function

SW Rectı �! f˙1g

with the following properties:

(Sq) For any four distinct r1; r2; r
0
1
; r 0

2
2 Rectı with r1 � r2 D r 0

1
� r 0

2
, we have that

S.r1/ �S.r2/D�S.r 01/ �S.r
0
2/:

(V) If r1; r2 2 Rectı have the property that r1 � r2 is a vertical annulus, then

S.r1/ �S.r2/D�1:

(H) If r1; r2 2 Rectı have the property that r1 � r2 is a horizontal annulus, then

S.r1/ �S.r2/DC1:

Theorem 4.2 There is a sign assignment in the sense of Definition 4.1. Moreover, this
sign assignment is essentially unique: if S1 and S2 are two sign assignments, then there
is a function f W S�!f˙1g so that for all r 2Rectı.x; y/, S1.r/D f .x/ �f .y/ �S2.r/.

We turn to the proof of this theorem in Section 4.1. We can use the sign assignment
from Theorem 4.2 to construct the chain complex over Z as follows. Fix a true sign
assignment S . Define C�.G/ to be the free ZŒU1; : : : ;Un�–module generated by
x 2 S.G/, endowed with Maslov grading and Alexander filtration as before. We endow
this with the endomorphism

@�S W C
�.G/ �! C�.G/

@�S .x/D
X
y2S

X
r2Rectı.x;y/

S.r/ �U O1.r/
1

� � �U On.r/
n � y:

We will check that this endomorphism gives the sign refinement of C�.G/ needed in
Theorem 1.2. In turn, the proof of that theorem involves reexamining the invariance
proof from Section 3, and constructing sign refinements for the chain maps and homo-
topies used there. We turn to this task in Section 4.2. However, first we construct the
sign assignments, proving Theorem 4.2.
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4.1 The existence and uniqueness of sign assignments

Definition 4.3 A thin rectangle is a rectangle with width one. We denote the set of
thin rectangles tRect; given x; y 2 S, we let tRect.x; y/D tRect\Rect.x; y/. For fixed
x and y and n> 2, there can be at most one element in tRect.x; y/.

Sign assignments as in Theorem 4.2 are constructed in the following six steps.

(1) Define sign assignments in a more restricted sense, sign assignments for the
Cayley graph. These are analogues of sign assignments defined only for thin
rectangles supported in an .n� 1/� .n� 1/ subsquare of the torus, satisfying a
suitable restriction of Property (Sq) from Definition 4.1.

(2) Show that sign assignments for the Cayley graph satisfy a uniqueness property.
Establish existence by giving an explicit formula. (It is also possible to give a
more abstract existence argument, but the formula is needed in the next step.)

(3) Extend the formula to include all thin rectangles on the torus, and show that it
satisfies, once again, axioms gotten by restricting Properties (Sq) and (V) to thin
rectangles.

(4) Show that a sign assignment on thin rectangles can be extended uniquely to a
function satisfying Properties (Sq) and (V), but not necessarily Property (H).

(5) Given the sign assignment on thin rectangles chosen in Step 3, establish a formula
for the values of the function from Step 4 on empty rectangles supported in the
.n� 1/� .n� 1/ subsquare of the torus.

(6) With our choices of signs, use the explicit formulas from Step 5 to show that the
function from Step 4 satisfies Property (H), thus giving a sign assignment in the
sense of Definition 4.1.

Step 1: Define sign assignments on the Cayley graph We let †D Œ0; n�1��Œ0; n�1�

denote the .n� 1/� .n� 1/–subsquare of the torus with the lower left corner at the
origin.

Definition 4.4 Given x; y 2 S, a thin rectangle in † from x to y is a rectangle
r 2 tRect.x; y/ supported inside †. A thin rectangle in † connects x and y if it is a
thin rectangle in † from x to y or from y to x. The set of all thin rectangles in † is
denoted tRect� .

The set tRect� has an interpretation in terms of a Cayley graph of the symmetric group
in the following sense.
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Consider the graph � whose vertices are elements in the symmetric group on n letters
Sn , and whose edges are labeled by the n� 1 adjacent transpositions f�ig

n�1
iD1

in Sn ,
with an edge labelled �i connecting �1; �2 2Sn precisely when �2 D �1 � �i . When
�2 D �1 � �i , we join �1 and �2 by exactly one edge, i.e. we do not draw an additional
one for the relation �1 D �2 � �i . � is the Cayley graph of Sn with respect to the
generators �i .

There is a one-to-one correspondence between elements in Sn and generators S, which
is obtained by viewing elements of S as graphs of permutations �x . (To this end, we
think of Sn as permutations of the letters f0; : : : ; n� 1g.) This can be extended to
a one-to-one correspondence between edges in the Cayley graph � and elements of
tRect� , sending a rectangle r 2 tRect� which connects x and y to the corresponding
edge in the Cayley graph connecting �x and �y :

(8) tRect� Š Edges.�/:

Definition 4.5 A sign assignment on the Cayley graph is a function

S0W Edges.�/ �! f˙1g

with the following properties:

(Sq) If fe1; : : : ; e4g are four edges which form a square, then

S0.e1/ � � �S0.e4/D�1:

(Hex) If fe1; : : : ; e6g are six edges which form a hexagon, then

S0.e1/ � � �S0.e6/D 1:

Note that a square in the Cayley graph corresponds to two pairs of disjoint rectangles
ri 2 tRect.xi ; xiC1/ and r 0i 2 tRect.x0i ; x

0
iC1

/ for i D 1; 2, with x1 D x0
1

and x2 D x0
2

,
as pictured in Figure 22. Similarly, a hexagon in the Cayley graph corresponds to
six thin rectangles ri 2 tRect.xi ; xiC1/ and r 0i 2 tRect.x0i ; x

0
iC1

/ for i D 1; 2; 3 with
x1D x0

1
and x3D x0

3
, such that the union of the support of r1 , r2 , and r3 is a rectangle

(with width two), as pictured in Figure 23.

We can relate the above notion of a sign assignment to the earlier notion of sign
assignments (Definition 4.1):

Lemma 4.6 The restriction of a sign assignment in the sense of Definition 4.1 to
the Cayley graph of Sn is a sign assignment on the Cayley graph as defined in
Definition 4.5.
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r1 r2

r 02
r 0
1

Figure 22: The rectangles in the square rule

Proof The first property follows from the corresponding property in Definition 4.1.
For the second property, note that there is a rectangle r4 of width 2 that cuts across
a diagonal of the hexagon, cf Figure 23. Two applications of Property (Sq) (both
involving r4 ) now shows that the total number of sign changes around the hexagon
must be even.

Step 2: Signs assignments on the Cayley graph exist and are unique

Proposition 4.7 A sign assignment on the Cayley graph exists and is unique up to
equivalence given by changing the sign of the basis elements (as in Theorem 4.2).

Proof Recall that for A;B � R2 , we defined I.A;B/ to be the number of pairs
.a1; a2/ 2A and .b1; b2/ 2 B with a1 < b1 and a2 < b2 .

Given an edge of the Cayley graph, let r 2 tRect�.x; y/ denote its corresponding
rectangle. Let hD h.r/ denote the height of the top edge of r (ie the four corners of
r are .i; a/, .i; h/, .i C 1; a/ and .i C 1; h/, where .i; a/ and .i C 1; h/ belong to x
and .i; h/ and .i C 1; a/ belong to y).

We then define

(9) S.r/D .�1/I.x;f.x1;x2/2xjx2�h.r/g/:
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r2

r3

r 02

r 0
1

r1

r 0
3

r4

Figure 23: The rectangles in the hexagon rule. Two applications of the
square rule (Sq) in Definition 4.1 give S.r1/ � S.r2/ D S.r 0

1
/ � S.r4/ and

S.r4/ �S.r3/D S.r 02/ �S.r
0
3/ . These imply the hexagon rule S.r1/ �S.r2/ �

S.r3/D S.r 01/ �S.r
0
2
/ �S.r 0

3
/ .

We check that each square anticommutes. To this end, observe that a square in the
Cayley graph corresponds to four rectangles r1 2 tRect�.x; y/, r2 2 tRect�.y; z/,
r 0
1
2 tRect�.x; y0/ and r 0

2
2 tRect�.y0; z/, where r1 and r2 have distinct corners and

r1 � r2 D r 0
1
� r 0

2
as in Figure 22. Number the rectangles so that h.r1/ D h.r 0

2
/ <

h.r2/D h.r 0
1
/. It is easy to see that

S.r1/D S.r 02/; S.r2/D�S.r 01/:

We can similarly check that a hexagon commutes. Consider the six thin rectangles corre-
sponding to a hexagon in the Cayley graph ri 2 tRect.xi ; xiC1/ and r 0i 2 tRect.x0i ; x

0
iC1

/

for i D 1; 2; 3 with x1D x0
1

and x3D x0
3

, as pictured in Figure 23. One can check that

S.r1/D S.r 03/; S.r2/D S.r 02/; S.r3/D S.r 01/;

so that in particular

S.r1/S.r2/S.r3/D S.r 01/S.r
0
2/S.r

0
3/;

as needed.
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We will now prove uniqueness. Let S and S 0 be two sign assignments on Sn . Define
a new function T on the Cayley graph by

T .xI �i/D S.xI �i/S 0.xI �i/:

Then the product of T around any square or hexagon is equal to 1.

Let W be the Cayley complex of Sn : the 2–complex whose edges and vertices form the
Cayley graph of Sn , and whose 2–cells are the squares connecting fx; x�i ; x�i�j ; x�j g
for ji�j j>1 and the hexagons connecting fx; x�i ; x�i�iC1; x�i�iC1�i ; x�iC1�i ; x�iC1g.
Since these squares and hexagons (together with the relations �2

i D 1, which are sup-
pressed in the definition of � ) form a complete set of relations for Sn , the complex W

is simply connected.

Now consider T as an element of C 1.W I f˙1g/. The conditions on T are equivalent
to saying that it is a cocycle: ıT D 0. Since W is simply connected, there is therefore
a function f 2 C 0.W I f˙1g/ so that ıf D T . This function f gives the desired
choice of signs on the basis.

Remark 4.8 We could prove Proposition 4.7 without explicitly exhibiting the sign
assignment: In general, suppose we have a 2–complex W and are looking for an
assignment of ˙1 to the edges of the 2–complex so that the number of �1 signs is
odd around a prescribed set of 2–cells. Such an assignment is unique (if it exists) if
and only if H 1.W I f˙1g/ is trivial, as in the proof of the Proposition. Furthermore,
such an assignment exists if there is a 3–complex W 0 with W as its 2–skeleton so that
H 2.W 0I f˙1g/D 0 and the set of faces with an odd number of �1 signs, considered
as a 2–cocycle on W 0 , is coclosed. In the case at hand, we can take W 0 to be the
3–skeleton of the permutahedron [17], which can be defined as the convex hull of the
vectors obtained by permuting the coordinates of .1; 2; : : : ; n/. This 3–skeleton is W

with the following types of 3–cells attached:

� cubes corresponding to 3 disjoint transpositions, an S2 �S2 �S2 �Sn ;

� hexagonal prisms corresponding to S3 �S2 �Sn ; and

� truncated octahedra corresponding to S4 �Sn .

(For the last case, note that the Cayley graph of S4 is the boundary of a truncated
octahedron.) In each case the number of squares on the boundary of the 3–cell is even,
so an assignment of signs exists. The permutahedron is convex (hence contractible), so
W 0 is 2–connected.
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Step 3: Extend sign assignments to all thin rectangles in the torus

Definition 4.9 A vertical sign assignment for thin rectangles is a function

SW tRect �! f˙1g;

which satisfies the following properties:

(Sq) Given thin rectangles r1 2 tRect.x; y/ and r2 2 tRect.y; z/ with distinct corners,
if we let r 0

1
2 tRect.x; y0/ and r 0

2
2 tRect.y0; z/ be two other rectangles such that

r1 � r2 D r 0
1
� r 0

2
, we have that

S.r1/S.r2/D�S.r 01/S.r
0
2/:

(See Figure 22.)

(Hex) Given six thin rectangles ri 2 tRect.xi ; xiC1/ and r 0i 2 tRect.x0i ; x
0
iC1

/ for i D

1; 2; 3 with x1 D x0
1

and x3 D x0
3

, such that the union of the support of r1 , r2 ,
and r3 is a rectangle (with width two), we have that

S.r1/S.r2/S.r3/D S.r 01/S.r
0
2/S.r

0
3/:

(See Figure 23.)

(V) If r1 2 tRect.x; y/ and r2 2 tRect.y; x/, then S.r1/D�S.r2/.

Proposition 4.10 There is a vertical sign assignment for thin rectangles.

Proof We extend Equation (9), as follows.

Note that T is obtained from † by adding one more row of squares, which are of the
form

fŒi; i C 1�� Œn� 1; n�gn�1
iD0 ;

and one more column of squares which are of the form

fŒn� 1; n�� Œj ; j C 1�gn�1
jD0:

Consider a thin rectangle r in the torus. If r is contained in †� T , then S.r/ is as
in Equation (9). If r 2 tRect.x; y/ is a thin rectangle which is supported in the new
column, but which is disjoint from the new row, so that it is of the form Œn�1; n�� Œa; b�

with 0� a< b < n we define

(10) S.r/D .�1/I
�

x;f.x1;x2/2xjx2�ag
�
CI
�

x;f.x1;x2/2xja<x2<b and x2 eveng
�
Cb:

The thin rectangles not covered by the above two cases are those whose interiors meet
the new row of squares. It is easy to see that for each such rectangle r 2 tRect.x; y/,
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there is a unique other thin rectangle r 0 2 tRect.y; x/, whose interior does not meet
the row of squares, and hence whose sign is defined either by Equation (9) or by
Equation (10). We then define

S.r/D�S.r 0/:

This ensures that Property (V) in Definition 4.9 is satisfied. We must now verify
Properties (Sq) and (Hex).

If all the thin rectangles involved are contained in †, then the two conditions were
already checked in the proof of Proposition 4.7. Let us consider the cases when all the
rectangles involved are disjoint from the new row, but at least one of them is supported
in the new column, so that its sign is given by Equation (10).

Let us consider the square rule, with the support of r1 (which is the same as the support
of r 0

2
) being in the last column, and the support of r2 (the same as that of r 0

1
) in †.

Let h.r1/ and h.r2/ be the heights of the top edges of r1 and r2 , respectively. If
h.r1/� h.r2/, then, just as in the proof of Proposition 4.7, we have:

S.r1/D S.r 02/; S.r2/D�S.r 01/:

If h.r1/� hD h.r2/, cf Figure 24, let r1 D Œn� 1; n�� Œa; b�. If h< a, we obtain

S.r1/D�S.r 02/; S.r2/D S.r 01/:

If h 2 .a; b/ as in Figure 24 then, in comparing S.r2/ and S.r 0
1
/ using Equation (9),

::: n� 1

h

a

10

b

n� 0

r1

r2

Figure 24: Anticommutation of width one rectangles. In computing the sign
of the rectangle r2 we use the black dot on the horizontal line of height a ,
while for the rectangle r 01 , which has the same support, we use the white dot
on the leftmost vertical edge.
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there is a discrepancy coming from a pairs of points where the second point has
coordinates .n� 1; a/, and h� a pairs of points where the first point has coordinates
.0; a/. Therefore,

S.r2/D .�1/hS.r 01/:
On the other hand, in comparing S.r1/ and S.r 0

2
/ using Equation (10), there can only

be a discrepancy of one extra pair (two corners of r2 ), which appears in case h is even.
Thus,

S.r1/D .�1/hC1S.r 02/;
which implies that S.r1/S.r2/D�S.r 01/S.r

0
2
/, as desired.

::: n� 2

b

a

c

0 n� 0

Figure 25: Hexagon rule in the last two columns. We compute the signs in
terms of the generator xI some of its components are the black dots shown
here.

Let us now consider the hexagon rule, where the rectangles are supported in the last
two columns, as in Figure 25. We denote by a, b , and c (with a < b < c ) the three
possible heights at which the relevant rectangles have their horizontal edges. We use
the notation from Definition 4.9, where x is the initial generator of r1 and r 0

1
. When

applying formulas (9) and (10), we must keep in mind that the initial point of the
relevant rectangle may differ from x (at heights a, b and c ), cf Figure 25. After
finding the relevant discrepancies, we can express everything in terms of x W

S.r1/D .�1/I
�

x;f.x1;x2/2xjx2�bg
�
CI
�

x;f.x1;x2/2xjb<x2<c; x2 even/g
�
Cc

S.r 01/D .�1/I
�

x;f.x1;x2/2xjx2�bg
�

S.r2/D .�1/I
�

x;f.x1;x2/2xjx2�ag
�
CI
�

x;f.x1;x2/2xja<x2<cg
�
C1

S.r 02/D .�1/I
�

x;f.x1;x2/2xjx2�ag
�
CI
�

x;f.x1;x2/2xja<x2<c; x2 even/g
�
CbCcC1

S.r3/D .�1/I
�

x;f.x1;x2/2xjx2�ag
�
CI
�

x;f.x1;x2/2xja<x2�b; x2 even/g
�
Cb

S.r 03/D .�1/I
�

x;f.x1;x2/2xjx2�ag
�
CI
�

x;f.x1;x2/2xja<x2<cg
�
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Putting these relations together, we obtain the required identity:

S.r1/S.r2/S.r3/D S.r 01/S.r
0
2/S.r

0
3/:

There is a similar computation that needs to be done for the hexagon rule when the
rectangles are supported in the first and the last column. We leave this case as an
exercise for the reader.

Finally, we need to check the square and the hexagon rule when some of the rectangles
involved wrap vertically around the torus, ie their support has nontrivial intersection with
the horizontal line l of height n� 1

2
. We call such rectangles vertically wrapped. For the

square rule, either two or all four of the four rectangles involved are vertically wrapped.
For the hexagon rule, exactly four out of the six rectangles involved are vertically
wrapped. The square and the hexagon rules now follow from the corresponding ones
when we replace the vertically wrapped rectangles r with their counterparts r 0 such
that r � r 0 are vertical annuli. Indeed, from equations of the form S.r/D�S.r 0/ we
always pick up an even number of minus signs (either two or four), so the overall signs
are unchanged.

Step 4: Extend vertical sign assignment to all empty rectangles We weaken the
notion of sign assignments from Definition 4.1 a little.

Definition 4.11 A vertical sign assignment is a function

SW Rectı �! f˙1g

which satisfies Properties (Sq) and (V) from Definition 4.1. Sometimes, we call this a
vertical sign assignment on all empty rectangles, to distinguish it from the seemingly
weaker vertical sign assignments on thin rectangles.

Our goal in this step is to show that a vertical sign assignment for thin rectangles can
be uniquely extended to a vertical sign assignment on all empty rectangles.

Given a vertical sign assignment for thin rectangles S0 , we define an extension

SW Rectı �! f˙1g;

by extending the definition inductively on the width w of the rectangle. Explicitly, if
r 2Rectı.x; y/ is a rectangle with width 1, then S.r/D S0.r/. Suppose next that S is
defined for all rectangles of width less than w for some w > 1. Given r 2 Rectı.x; y/
of width w , there is exactly one rectangle r1 ending at x with width one whose upper
left corner coincides with the lower left corner of r , as in the first diagram in Figure 26.
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Then r1 � r has an alternate decomposition as r2 � r3 , where r2 has width w� 1, and
r3 has width one. We can then define

(11) S.r/D�S0.r1/S.r2/S0.r3/:

(The right hand side is defined, since the width of r2 is w� 1.)

We verify that S is a vertical sign assignment in the sense of Definition 4.1, which we
do in stages.

Lemma 4.12 Suppose that we have four rectangles r1; r2; r
0
1
; r 0

2
2Rectı with r1�r2D

r 0
1
� r 0

2
, where r1 and r 0

2
have width one, and r1 and r2 share exactly one corner. Then

(12) S.r1/S.r2/D�S.r 01/S.r
0
2/:

Figure 26: The four cases in Lemma 4.12. Each case is a decomposition
r1 � r2 , where r1 is shown shaded. The dotted line gives the alternate
decomposition r 0

1
� r 0

2
.

Proof There are four cases in the proof, as illustrated in Figure 26. In the first case,
when the upper-left corner of r1 is the lower-left corner of r2 , the conclusion holds
by the definition of the extension of S , Equation (11). In the second case, when the
lower-right corner of r1 is the lower-left corner of r2 , the conclusion follows from
Property (V) of the vertical sign assignment: if we relate both thin rectangles, r1 and r 0

2
,

to the other rectangle in the same vertical column, we get the same rectangles as in the
previous case.

Otherwise, we will prove the result by induction on the maximum of the widths of r2

and r 0
1

. We treat the base case first, where this maximum is equal to two. There are
two cases:

� If the upper-left corner of r1 is the upper-right corner of r2 , Equation (12)
follows from Property (Sq) of the vertical sign assignment, the hexagon rule,
and the definition of S .
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� If the lower-right corner of r1 is the upper-right corner of r2 , Equation (12)
follows from Property (V) applied to the case above.

We now treat the induction on the maximum of the widths of r2 and r 0
1

, which we
may assume is greater than two. If the upper-left corner of r1 is the upper-right corner
of r2 (the third case in the figure), we may again apply Property (V) to change to
the last case. So we may assume that the lower right corner of r1 is shared with the
upper right corner of r2 . Since the width of r2 is greater than two, we can find a thin
rectangle r0 to x, the initial point of r1 , disjoint from r1 with the property that r0

and r2 share a corner. We consider now the composite p D r0 � r1 � r2 . We organize
the various decompositions of p into the graph in Figure 27. Each edge corresponds to
some rectangle in some decomposition of p , and each vertex corresponds to one of the
various elements of S which can be connected by rectangles in some decomposition
of p . Each face corresponds to two decompositions of p which have some rectangle in
common. Thus we have organized the decompositions of p in a cube. A face is said to
anticommute if the product of the signs associated to its four edges is �1. Our goal is
to show that the face belonging to the two decompositions r0 � r 0

1
� r 0

2
and r0 � r1 � r2

anticommutes. To see this, we observe that the other five faces anticommute: two of
them do, as they correspond to rearranging two disjoint thin rectangles (Property (Sq)
of the vertical sign assignment for thin rectangles), two of the faces anticommute by the
definition of the extension, Equation (11), and the fifth face anticommutes by induction
on the width of r2 .

Lemma 4.13 Suppose that we have four distinct rectangles r1; r2; r
0
1
; r 0

2
2 Rectı with

r1 � r2 D r 0
1
� r 0

2
, where r1 and r 0

2
have width one, then

S.r1/S.r2/D�S.r 01/S.r
0
2/:

Proof We prove the result by induction on the width of r2 .

The case where r2 shares exactly one corner with r1 was handled in Lemma 4.12, so
we may assume the corners of r1 and r2 are distinct. According to Property (V), we
can assume without loss of generality that the supports of r1 and r2 are disjoint. If r2

also has width one, we are done by Property (Sq).

Otherwise, we proceed by induction in a way similar to the last case of Lemma 4.12.
Specifically, we can find another width one rectangle r0 ending at the initial point of r1

which shares one corner with r2 . Consider the polygon p D r0 � r1 � r2 . We can once
again organize the various decompositions of this polygon into a cube. In the case
where r0 and r1 are disjoint, two of the faces anticommute according to Property (Sq)
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Figure 27: The cube of decompositions in Lemma 4.12. Each vertex is a
configuration (shown by black dots); each edge is a rectangle (shown shaded).
The different decompositions are the different ways to go from the lower-left
corner to the upper-right corner following three edges. We are trying to show
that the back face anticommutes; the front face is the inductive case.

of S0 , two anticommute by Lemma 4.12, and a fifth anticommutes by induction on the
width of r2 . Thus, the sixth must anticommute, as well.

In the other case, where r0 and r1 share a corner (which we need to consider only when
the width of r2 is three), four of the squares in the cube anticommute according to
Lemma 4.12. The fifth involves a domain r 0

1
� r 0

2
where r 0

1
and r 0

2
are both rectangles

of width two, with r 0
1

containing r1 and r 0
2

contained in r2 . To show that this last face
anticommutes, we can find another rectangle r 0

0
that can be precomposed with these

two to give a domain r 0
0
� r 0

1
� r 0

2
. The various decompositions of this domain can again

be arranged into a cube, in which four of the squares anticommute by Lemma 4.12, the
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fifth anticommutes by Property (Sq), and the sixth is the face with domain r 0
1
� r 0

2
, as

desired.

Proposition 4.14 Given any four empty rectangles r1; r2; r
0
1
; r 0

2
2Rectı with r1�r2D

r 0
1
� r 0

2
, we have that

S.r1/S.r2/D�S.r 01/S.r
0
2/:

Proof Using suitably placed width one rectangles as before, we can narrow r1

and/or r2 by induction, until one or the other has width one and hence is covered
by Lemma 4.13.

In effect, the above proposition shows that a vertical sign assignment for thin rect-
angles S0 can be canonically extended to a vertical sign assignment for arbitrary
rectangles S in the sense of Definition 4.11.

Step 5: Signs for rectangles supported in † In Proposition 4.10 we constructed a
vertical sign assignment for thin rectangles. According to Step 4 above, this gives
a vertical sign assignment SW Rectı ! f˙1g on all empty rectangles. We aim to
give an explicit formula for S.r/ in the case when r is supported in the subsquare
†D Œ0; n� 1�� Œ0; n� 1�.

Proposition 4.15 Let r D Œa; b�� Œc; d � 2 Rectı.x; y/, with 0 � a < b � n� 1 and
0� c < d � n�1. Denote by D.r/ the number of points .x1;x2/2 x which lie strictly
below r , ie x1 2 .a; b/ and x2 2 Œ0; c/, cf Figure 28. Then

(13) S.r/D .�1/I
�

x;f.x1;x2/2xjx2�dg
�
CD.r/�

�
I
�

x;f.x1;x2/2xjc<x2�dg
�
C1
�
:

Proof We use induction on the width w of r . When r has width one, (13) is just the
formula (9).

Assume w > 1. We distinguish two cases, according to the position of the point
.aC 1; l/ 2 x in the vertical line x1 D aC 1. When it is below the support of r , the
inductive step follows by using the anticommutation rule for a decomposition of the
form r � r1D r2 � r 0 , where the rectangles r1 and r2 have width one and lie in the ath
column, so that their signs can be computed using (9), and r 0 has width w� 1. The
latter case is similar, but the decompositions are of the form r1 � r D r 0 � r2 . In both
cases the computations are straightforward.
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0

nD 0

n� 1

†

ba n� 1 nD 0

d

c

r

Figure 28: Signs for rectangles on the square. The subsquare † of the torus is
shown bordered by the thick lines. Inside we have a rectangle r . The quantity
D.r/ counts the number of points in x which lie in the lightly shaded region
below r .

Step 6: From vertical sign assignments to true sign assignments

Lemma 4.16 Suppose S is a vertical sign assignment. Then there is some function
�W f1; : : : ; ng! f˙1g with the property that if r1 and r2 are two height one rectangles,
with r1�r2 connecting some x2S to itself, then S.r1/S.r2/D �.i/, where the support
of r1 � r2 consists of the i th row.

Proof We claim first that when the support of r1 � r2 is a horizontal annulus Œ0; n/�
Œi; i C 1�, S.r1/S.r2/ depends only on i and the components of x in the i th and
.iC1/st rows. This follows readily from the square rule; if x and x0 are two generators
whose components on the i th and .i C 1/st agree and there is some r 2 Rectı.x; x0/,
then two applications of the square rule establish the claim. More generally, we can
always get between two generators x and x0 that agree on these two rows by a sequence
of squares whose corners are disjoint from the i th row, verifying the claim.

We next verify that if r1 2 Rectı.x; y/ are r2 2 Rectı.y; x/ are two rectangles which,
together, form the i th row, then S.r1/S.r2/ depends only on the row in which r1 and
r2 are supported. To this end, observe that there is another rectangle r3 2 Rect.x; z/
with height one supported in the row i C 1, and r4 2 Rect.z; x/. We now claim that
r1�r2�r3�r4 differs from another decomposition r 0

1
�r 0

2
�r 0

3
�r 0

4
in two steps, in such

a way that the supports of r3 and r4 agree with those of r 0
3

and r 0
4

(hence together
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they occupy the .i C 1/st row), and the supports of r 0
1

and r 0
2

also occupy the i th row,
but the support of r 0

1
and r 0

2
are different from the supports of r1 and r2 . Thus, it

follows from the square rule that S.r1/S.r2/D S.r 01/S.r
0
2
/. It is easy to see that any

two r1 2 Rectı.x; y/ and r2 2 Rectı.y; x/ which occupy the i th row can be connected
by a finite sequence of such moves.

We now specialize to the vertical sign assignment S constructed (in Step 3) from the
vertical sign assignment on thin rectangles exhibited in Proposition 4.10, which was
based on the formulas (9) and (10). We claim that the function � from Lemma 4.16 is
identically 1.

Lemma 4.17 �.i/D 1 for i D 1; : : : ; n� 1.

Proof It suffices to check that S.r1/S.r2/D 1 when r1 2 Rect.x; y/ is of the form
Œ0; n� 1�� Œi � 1; i �, and r2 2 Rect.y; x/ is the square Œn� 1; n�� Œi � 1; i � in the last
column, cf Figure 29. Proposition 4.15 gives

S.r1/D .�1/I
�

x;f.x1;x2/2xjx2�ig
�
CiC1

D .�1/I
�

x;f.x1;x2/2xjx2�i�1g
�
C1:

On the other hand, from Equation (10) we get

S.r2/D .�1/I
�

y;f.y1;y2/2yjy2�i�1g
�
Ci
D .�1/I

�
x;f.x1;x2/2xjx2�i�1g

�
C1:

n� 1 nD 00

i � 1

i
r1 r2

Figure 29: Computing �.i/ for i � n . The generator x is shown in black
dots, and y in hollow dots. When computing the sign of r2 with formula (10),
we need to use y in the place of x .
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To check that �.n/D 1, we first prove the following:

Lemma 4.18 Let k 2 1; 2; : : : ; n� 1. Denote by xk ; yk 2 S the configurations

xk D f.i; n� 1� i/j0� i < kg[ f.k; 0/g[ f.i; n� i/jk < i < ng

yk D f.0; 0/g[ f.i; n� 1� i/j1� i < kg[ f.k; n� 1/g[ f.i; n� i/jk < i < ng:

Let rk 2 Rect.xk ; yk/ be the rectangle of width k and height 1 supported in the last
row, cf Figure 30. Then, its sign is given by

S.rk/D .�1/n:

0

n� 1

k � 1 k

nD 0

r 0
k

rk

Figure 30: Computing �.n/ . The rectangles rk is darkly shaded, and r 0
k

lightly shaded. The generators xk and yk are represented by the black and
white dots, respectively. There is an alternate decomposition of rk � r 0

k
given

by cutting along the dashed line in the top row.

Proof Induction on k . When kD 1, the sign of r1 is minus the sign of a thin rectangle
of width one and height n�1 supported in the first column. The latter can be computed
using Equation (9), which gives the answer .�1/n�1 ; therefore, S.r1/D .�1/n .

For k > 1, let r 0
k
2 Rect.yk ; zk/ be the rectangle of width one supported in the k th

column, cf Figure 30. Its sign is .�1/nCk by formula (9). The domain rk � r 0
k

has an
alternate decomposition as pk � rk�1 , where the rectangle pk is again supported in the
k th column and has a counterpart p0

k
such that pk �p0

k
is a vertical annulus. Formula

(9) gives S.p0
k
/D .�1/nCk , so that S.pk/D .�1/nCkC1 . The inductive step now

follows form the anticommutation relation S.rk/S.r 0k/D�S.rk�1/S.pk/.
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Lemma 4.19 �.n/D 1.

Proof By the previous lemma, the sign of rn�1 2 Rect.xn�1; yn�1/ is .�1/n . There
is also a thin vertical rectangle r 0 2 Rect.xn�1; yn�1/ supported in the last column,
whose sign is .�1/n�1 by (10). For the little square r 00 2 Rect.yn�1; xn�1/ supported
in the top right corner we have S.r 00/D�S.r 0/. Since rn�1�r 00 is a horizontal annulus
and S.r 00/D S.rn�1/, we get �.n/D 1, as desired.

We can now complete Step 6:

Proof of Theorem 4.2 We proved existence of vertical sign assignments in Step 4.
According to Lemma 4.16, the resulting signs give a true sign assignment provided
that the function � defined there is identically one. This was checked in Lemmas 4.17
and 4.19.

To see uniqueness, let S1 and S2 be two true sign assignments. We can restrict them
to the square † and get sign assignments on the Cayley graph (cf Lemma 4.6). Using
the uniqueness part of result of Proposition 4.7, we obtain a function f W S �! f˙1g

such that the composite

BW Rectı �! f˙1g; B.r/D f .x/ �f .y/ �S1.r/ �S2.r/ for r 2 Rectı.x; y/

satisfies the following properties:

� B.r/D 1 for any rectangle of width one supported in †.

� (Commutation rule) B.r1/�B.r2/DB.r 01/�B.r
0
2
/ whenever r1; r2; r

0
1
; r 0

2
2Rectı

are distinct and satisfy r1 � r2 D r 0
1
� r 0

2
.

� B.r1/D B.r2/ if r1 � r2 is a vertical annulus.

� B.r1/D B.r2/ if r1 � r2 is a horizontal annulus.

We claim that B is identically 1. Indeed, the third property above implies that B.r/D 1

whenever r has width one and is not supported in the last column. The fourth property
implies that B.r/ D 1 when r is a square of side length one supported in the last
column; the same must be true for all width one rectangles in the last column by
induction on height, applying the commutation rule. Thus B takes the value one on all
vertical thin rectangles. The fact that B.r/D 1 for all r follows by induction on width,
again using the commutation rule. This shows that f satisfies the property required in
the statement of Theorem 4.2.
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4.2 Properties of the sign-refined chain complex and the proof of
Theorem 1.2

Proposition 4.20 Let S be a sign assignment. The ZŒU1; : : : ;Un�–module C�.G/,
endowed with the endomorphism @�S , is a chain complex. Moreover, if S1 and S2

are two different sign assignments, then there is an isomorphism of chain complexes
.C�; @�S1

/Š .C�; @�S2
/.

Proof In the expression @S ı @S.x/, terms can be paired off as in the proof of Propo-
sition 2.10. These terms cancel, according to the axioms on S .

Suppose we are given sign assignments S1 and S2 . Consider the map

ˆW .C�.G/; @S1
/ �! .C�.G/; @S2

/

defined by ˆ.x/D f .x/ � x, where f is the function from Theorem 4.2. It is straight-
forward to see that ˆ is an isomorphism of chain complexes.

Other algebraic properties from Section 2 have straightforward generalizations to this
context. For example:

Lemma 4.21 Suppose that Oi and Ok correspond to the same component of EL. Then
multiplication by Ui is filtered chain homotopic to multiplication by Uk .

Proof The chain homotopy from Lemma 4.21 works to establish the present lemma. It
is important here that for x 2 S, and r1 and r2 are the decompositions of the horizontal
annulus containing Xj , and r3 and r4 are the analogous decompositions of the vertical
annulus, then S.r1/S.r2/D�S.r3/S.r4/, but this is ensured by the axioms of the sign
assignment. This ensures that Ui is chain homotopic to Uk (rather than, say, �Uk ).

Again, we view the chain complex .C�.G/; @�/ as a module over ZŒU1; : : : ;U`� where
the fUig

`
iD1

correspond to the ` components of our link EL. As before, we have the
following:

Proposition 4.22 Suppose that the oriented link EL has ` components. Choose an
ordering of ODfOig

n
iD1

so that for iD1; : : : ; `, Oi corresponds to the i th component
of EL. Then the filtered chain homotopy type of C�.G/, viewed as a chain complex
over ZŒU1; : : : ;U`�, is independent of the ordering of O. Then bHL.G/ and eHL.G/
are finitely generated Abelian groups. Moreover,

H�.fCL.G//ŠbHL.G/˝
Ò
iD1

V
˝.ni�1/

i ;
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where Vi is the two-dimensional vector space spanned by two generators, one in zero
Maslov and Alexander multigradings, and the other in Maslov grading minus one and
Alexander multigrading corresponding to minus the i th basis vector.

Proof This is a routine adaptation of Proposition 2.12, Lemma 2.13, and Proposition
2.15 from Section 2.

We now turn to the proof of the main theorem, Theorem 1.2, with signs.

We adopt the strategy from Section 3; however, we must specify the signs used in
defining our various chain maps and chain homotopies, and verify that they are indeed
chain maps and chain homotopies with appropriate signs. As in Section 3, we begin
with the case of commutation.

We adopt notation from Section 3.1. Consider the pentagons Pentˇ
 .x; y/ used there.
Straightening out the ˇ\
 –corner of the pentagons naturally induces rectangles in G .
(We could have in fact defined the map in Section 3.1 as counts of rectangles, where
the O ’s and X ’s in the central column are moving, but then it would have been a little
confusing to write down exactly when they are counted with powers of the U ’s.)

Formally, we obtain a “straightening map”

eW Pentˇ
 .x; y/ �! Rect.x; y0/;

where y0 is the generator corresponding to y, where we slide horizontally from the 

back to the ˇ component. Clearly, the image of e consists of rectangles with a vertical
segment along ˇ . There are two possibilities: either the rectangle lies to the right of
this vertical segment (ie the segment is a left edge of the rectangle), or it lies to the left
of this vertical segment. In the first case, we say the pentagon is a right pentagon, in
the latter, we say it is a left pentagon. In Figure 8, the one pictured on the left is a left
pentagon, and the one on the right is a right pentagon.

We define

ˆˇ
 .x/D
X

y2S.H /

X
p2Pentˇ
 .x;y/
x\Int.p/D∅

�.p/ �U
O1.p/
1

� � �U On.p/
n � y;

where �.p/D

(
S.e.p// if p is a left pentagon

�S.e.p// if p is a right pentagon:

We obtain the following analogue of Lemma 3.1:

Geometry & Topology, Volume 11 (2007)



2394 Ciprian Manolescu, Peter S Ozsváth, Zoltán Szabó and Dylan P Thurston

Lemma 4.23 The map ˆˇ
 is a filtered antichain map, ie

@ ıˆˇ
 Cˆˇ
 ı @D 0:

Proof Again, the proof follows from the proof of Lemma 3.1. In fact, the fact that
the terms cancel in pairs typically follows from the same pairing which we see in
Proposition 4.20. There are two cases which look different, though. One of these
corresponds to the two decompositions pictured as in Figure 9. After projecting via e ,
both decompositions of the composite region in this case correspond to the same
decomposition of the composite region into two rectangles. However, in one case,
the rectangle corresponding to the pentagon is on the left, in the other, it is on the
right. Thus, the signs given by � are opposite. The other case, the rotation by 180ı of
Figure 9, works similarly.

It seemed more natural in the above proposition to consider antichain maps, rather than
the more traditional chain maps. Just as chain maps induce maps on homology, so do
antichain maps. One could alternatively consider the chain map �̂ defined by�̂

ˇ
 .x/D .�1/M.x/
�ˆˇ
 :

We now turn to the chain homotopies gotten by counting hexagons.

Once again, there is a straightening map

e0W Hexˇ
ˇ.x; y/ �! Rect.x; y/;

and we can define a homotopy operator Hˇ
ˇW C.G/ �! C.G/ by

Hˇ
ˇ.x/D
X

y2S.G/

X
h2Hexˇ
ˇ.x;y/

x\Int.h/D∅

�0.h/ �U
O1.h/
1

� � �U On.h/
n � y;

where �0.h/D S.e0.h//:

Similarly define H
ˇ
 .

Proposition 4.24 With respect to the sign refinements, the map ˆˇ
 induced by
commuting two columns induces an isomorphism in homology.

Proof The proof of Proposition 3.2 adapts readily to show that

ICˆ
ˇ ıˆˇ
 C @ ıHˇ
ˇCHˇ
ˇ ı @D 0

ICˆˇ
 ıˆ
ˇC @ ıH
ˇ
 CH
ˇ
 ı @D 0:
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Note that in the terms ˆ
ˇ ıˆˇ
 and ˆˇ
 ıˆ
ˇ , the two pentagons that appear are
either both right pentagons or both left pentagons, so the extra minus sign for right
pentagons has no effect. The proposition now follows.

With commutation invariance in hand, we now turn to stabilization invariance, following
the steps in Section 3.2.

As a first step, we need a sign in the definition of C 0 , the mapping cone of the chain
map

U1�U2W BŒU1� �! BŒU1�;

to ensure it is a chain complex. One way of doing this is to define

@0.a; b/D .@a; .U2�U1/ � a� @b/:

We will find the following terminology useful.

Definition 4.25 Suppose p 2�.x; y/ can be decomposed as pD r1�� � ��rm for some
n and ri 2 Rectı . Suppose moreover that for some i we have ri � riC1 D r 0i � r 0

iC1
,

for some r 0i ; r
0
iC1
2 Rectı . Then we say that the decompositions r1 � � � � � rm and

r1 � � � � � r 0i � r 0
iC1
� � � � � rm differ by an elementary move.

Recall that in Section 3.2, we identified C.G/ with a chain complex whose generators
are I� S.H /, which contain the distinguished point x0 . The differentials count either
empty rectangles which do not contain x0 as corner points, or those of “Type 2”, ie
those which include x0 (and hence also O1 and X1 ) in their interior. These rectangles
are counted, but not with a power of U1 .

Starting with a sign assignment S on rectangles in H , we can induce one on I with
the above two types of differential. To do this, we must give an explicit decomposition
of each Type 2 rectangle r 0 as a product of three empty rectangles. There are four
ways of doing this. We choose the following one: the initial rectangle is lower left (and
involves x0 ), and the third (final) one uses the upper left corner, cf Figure 31, and call
it the standard decomposition D0.r

0/ of the rectangle r 0 . For consistency, if r is a
Type 1 rectangle in G , and r 0 is the corresponding rectangle viewed as a rectangle in
H , we let D0.r

0/ denote the length 1 decomposition D0.r
0/D r 0 .

Lemma 4.26 Fix x; y 2 S.G/ and let r 2 Rectı.x; y/ correspond to the rectangle
r 0 connecting x0; y0 2 S.H / under the correspondence above between S.G/ with
I� S.H /. For any sign assignment S for H , define

S0.r/D

(
S.r 0/ if r 0 has Type 1

S.r1/S.r2/S.r3/ if r 0 has Type 2 and D0.r
0/D r1 � r2 � r3:
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1 2

3

1

1

1

2

2

2
3

3

4 4

Figure 31: Decomposing polygons. On the left, we a have a standard decom-
position of a Type 2 rectangle: more precisely, the decomposition consists of
r1�r2�r3 , and the number on a region indicates which rectangle it belongs to.
On the right, we have indicated the standard decomposition of a complexity 5

polygon of type L , r1 � � � � � r4 . Some regions (which have local multiplicity
2) are contained in the support of more than one rectangle, and hence are
labelled with more than one integer.

Then S0 induces a sign assignment in the sense of Definition 4.1 for rectangles in G .

Proof We must show that if r1� r2D r 0
1
� r 0

2
in G , then the decompositions D0.r1/�

D0.r2/ and D0.r
0
1
/�D0.r

0
2
/ can be connected by an odd number of elementary moves.

This follows from a routine case analysis of how r1 and r2 can interact. When one
rectangle is Type 1 and the other is not, it takes 3, 5, or 7 elementary moves to connect
the two decompositions. The most complicated case is the one where both are Type 2
rectangles; in that case, we can connect the two decompositions by nine moves: Write
the standard decomposition D0.r1/D s1 � s2 � s3 and D0.r2/D t1 � t2 � t3 , then we
have a decomposition D0.r1/ �D0.r2/ D s1 � s2 � s3 � t1 � t2 � t3 . In three moves,
we commute t1 to the beginning, then in three more moves we commute t2 to the
second place, and in three more moves we commute t3 to the third spot. The resulting
decomposition can be easily seen to agree with D0.r

0
1
/�D0.r

0
2
/. The other two axioms

of a sign assignment are also easily verified.

Remark 4.27 By “commuting the t1 to the beginning of s1 � s2 � s3 � t1 � t2 � t3 ”,
we mean the following string of operations: apply three elementary moves, the first of
which replaces the consecutive terms s3 � t1 by an alternative pair t 0

1
� s0

3
, then apply

another elementary move to the consecutive pair s2 � t 0
1

, to get t 00
1
� s0

2
, and finally

apply an elementary move to the pair s1 � t 00
1

to get t 000
1
� s0

1
. We will use this shorthand

in several future proofs, as well.
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We need now to introduce signs in the definition of the stabilization map F of
Equation (5) to ensure that it is, in fact, a chain map.

As a first step, we define a function

�W �F
�! f˙1g:

For this, we give a specific decomposition of p 2 �F .x; y/ as an ordered juxtaposition
of rectangles. Specifically, recall that @p can be thought of as an oriented, connected,
curve. Order now the ˇ–arcs fvig

m
iD1

so that they inherit the cyclic ordering from the
orientation of @p , and so that vm contains the stabilization point x0 (which in turn is
a component of y). We can decompose

p D r1 � � � � � rm�1;

where ri is a rectangle containing vi , compare Figure 31, and define

�.p/D S.r1/ � � �S.rm�1/:

Note that the left edge of each odd rectangle is contained in the circle ˇ1 containing
x0 , while the right edge of each even rectangle is contained in ˇ1 . We call this
decomposition the standard decomposition D.p/. For polygons with complexity m,
there are m� 1 rectangles in this decomposition; m is odd if the polygon is of type L

and even if the polygon is of type R.

We will analyze the signs according to the cases in the proof of Lemma 3.5.

Lemma 4.28 Fix a complexity m domain p 2 �F and a rectangle r as in cases I(0)
or I(1); that is, they are either disjoint or share one corner, with r disjoint from x0 . Then
we can either compose r�p or p�r , and this composite has an alternate decomposition
which is either of the form r 0 �p0 or p0 � r 0 where r 0 is an empty rectangle distinct
from r and p0 is a domain of type F distinct from p . We have the following cases:

� If p�r D r 0�p0 (or r �pDp0�r 0 ), then �.p/S0.r/C.�1/mS0.r
0/�.p0/D 0.

� If r �p D r 0 �p0 or p � r D p0 � r 0 , then S0.r/�.p/CS0.r
0/�.p0/D 0.

Proof If r�pDp0�r 0 and p has complexity m, then the decomposition r�D.p/ can
be obtained from D.p0/�r 0 by m�1 elementary moves: we successively commute the
rectangles in D.p/ past the rectangle r . The case where r 0 �p0 D p � r is symmetric.

Otherwise, r shares an edge with some rectangle ri contained in D.p/. With some
number k of elementary moves, we can change to a composition series where some
rectangle s , with the same support as r , appears next to ri . Then we can perform one
elementary move to change these two rectangles (s and ri ) to s0 and r 0i , respectively,
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where s has the same support as r 0 ; then k more elementary moves returns us to the
composition series for r 0 and D.p0/, for a total of 2kC1 elementary moves, which is
odd, as desired.

Lemma 4.29 Suppose that p 2�F .x; y0/ is a domain of complexity m, r 2Rect.y; z/
is a Type 2 rectangle, and the corners of p and r are distinct; that is, they are in case II(0).
This case matches with case I(2), so either p � r has an alternate decomposition r 0 �p0 ,
in which case

(14) �.p/S0.r/C .�1/m�.p0/S0.r
0/D 0;

or p � r has an alternate decomposition as p0 � r 0 , where r 0 is a Type 1 rectangle, in
which case

(15) �.p0/S0.r
0/C�.p/S0.r/D 0:

Proof In the first case, we find it convenient to start with the decomposition r 0 �p0 ,
and write the standard decomposition

D.p0/D r 01 � � � � � r 0mC1:

Recall that r 0 shares two corner points with p0 . There are two cases, according to
whether these two corner points are upper right or lower left corners of p0 . We consider
the upper right case. In this case, the boundary of r 0 meets the boundary of two
consecutive odd rectangles, as in Figure 32. Write the first as r 0

2i�1
. Starting from

1

1

1

2

2

2
3

3

4 4

0

Figure 32: p � r D r 0 � p0 , where r has Type 2. The rectangle labeled
by 0 is the rectangle r 0 , and p0 is a polygon with complexity 5, whose
standard decomposition is indicated by the numbers. This decomposition can
be transformed into a decomposition D.p/�D.r/ , where r has Type 2, in
an odd number of steps.
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r 0 �D.p0/, we perform 2i �1 elementary moves, to commute r 0 past r 0
2i�1

, to obtain
a new decomposition r1 � � � � � r2i�1 � r 00 � r 0

2i
� r 0

2iC1
� � � � � r 0

m�1
. The support of

the union of the three consecutive rectangles r 00 � r 0
2i
� r 0

2iC1
is a rectangle, which is

decomposed so that the upper right rectangle r 00 comes first.

We now need some terminology, and then a simple observation. Suppose that s1�s2�s3

are three rectangles, whose union is a rectangle (so that some point x in its interior is
a corner of two of the three original rectangles). Suppose also that s1 , s2 , and s3 are
ordered so that the lower left corner of the total rectangle is the lower left corner of s1 ,
while the upper left corner in the total rectangle is the upper left corner of s3 . We then
say that s1�s2�s3 is the standard decomposition of a rectangle. (This notion coincides
with the earlier standard decomposition of a Type 2 rectangle, when the central point
x D x0 .) Suppose now that r is some rectangle which can be postcomposed with
s1 � s2 � s3 , and which has two corners inside the support of s1 � s2 � s3 . Then after an
odd number of elementary moves (actually, 3 or 5), we can transform s1�s2�s3�r to
r 0 � s0

1
� s0

2
� s0

3
, so that the supports of r and r 0 coincide, and s0

1
� s0

2
� s0

3
is a standard

decomposition of the rectangle.

Starting from the composition r 00 � r 0
2i
� r 0

2iC1
, we can apply two elementary moves to

transform it into the standard decomposition s1 � s2 � s3 of a rectangle. Then, applying
the principle in the previous paragraph m� 2i times, we can commute s1 � s2 � s3 to
the end of the decomposition

D0 D r1 � � � � � r2i�1 � s1 � s2 � s3 � r 02iC1 � � � � � r 0m�1;

turning it into the desired decomposition D.p/�D0.r/, where r is a Type 2 rectangle.
In all, the number of elementary moves has the same parity as m C 1, verifying
Equation (14) in the case where r 0 is on the upper right side of the support of p0 . The
case when r 0 meets p0 in lower left corners of p0 is similar.

For Equation (15), again there are two cases, according to whether r 0 shares two
lower right or two upper left corner points of p0 . Assume they are lower right, and
write the standard decomposition of p0 , D.p0/ D r 0

1
� � � � � r 0

mC1
. Now, one edge

of r 0 is contained in r 0
2i�1

, while the other is contained in r 0
2iC1

. Consider now the
decomposition D.p0/� r 0 . In m�2i elementary moves, we commute r 0 before r 0

2i�1
,

to obtain a new decomposition

r 01 � � � � � r 02i�2 � r2i�1 � s1 � s2 � s3 � t2iC2 � � � � � tmC2;

where s1 � s2 � s3 is a decomposition of a rectangle. After two elementary moves, we
can change it to a standard decomposition of the rectangle. Applying the observation
about commuting rectangles discussed above, we can now commute this decomposition
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of the rectangle to the end of our discussion; the number of steps is congruent to
mC 1 modulo two. The new decomposition is the decomposition D.p/ � r , and it
was obtained from D.p0/� r by an odd number of elementary moves. Once again, the
case when r 0 meets p0 in upper left corners of p0 works similarly.

Lemma 4.30 Let r 2 Rectı.x; y/ and p 2 �F .y; z/ a domain with complexity m.
Suppose that r and p share one corner, and suppose that x0 appears in the interior of
the boundary of r (Case I(1 0 )). Then there is a horizontal or vertical annulus so that
the domain p0

0
obtained by adding the annulus to r �p has an alternate decomposition.

We have the following cases:

(1) If there is a y0¤ y and r 0 2 Rectı.x; y0/ and p0 2 �F .y0; z/ so that r 0 �p0D p0
0

(Case I(3)), then S0.r/�.p/CS0.r
0/�0.p/D 0.

(2) If there is a y0¤ y and p0 2 �F .x; y0/ and r 0 2 Rectı.y0; z/ so that p0 � r 0D p0
0

(Case I(3) if r 0 has Type 1, Case II(1) if r 0 has Type 2) then S0.r/�.p/C

.�1/m�.p0/S0.r
0/D 0.

Proof Note that in the alternate decomposition, in the case where r 0 is of Type 1,
the rectangles r 0 and p0 meet in three points, and the composite domain of r 0 and p0

contains an annulus.

Consider Case (1). This can be subdivided into two subcases: either the annulus is
vertical or horizontal. Suppose the annulus is horizontal. In this case, write D.p0/D

r 0
1
� � � � � r 0

mC1
. Consider the decomposition r 0 �D.p0/. After m elementary moves

(commuting r 0 so that it is next-to-last), we obtain an alternate decomposition, where
the last two rectangles compose to the row through O1 . Cancelling these last two,
and performing m� 1 more elementary moves (bringing the last term to the first), we
obtain the decomposition r �D.p/. The total change in sign is .�1/2m�1 D�1, so
S0.r/�.p/CS0.r

0/�.p0/D 0 as claimed.

Consider next the case that the annulus is vertical. Write D.p0/D r 0
1
� � � � � r 0

mC1
, and

consider the decomposition r 0 � r 0
1
� � � � � r 0

mC1
. The rectangles r 0 and r 0

1
together

form the column through O1 . Thus, cancelling the first two terms (and introducing a
minus sign by Property (V)), we obtain a decomposition r 0

2
� � � � � r 0

mC1
. Now r 0

2
D r ,

and r 0
3
� � � � � r 0

mC1
is a decomposition of p . We have changed signs only once, so

again S0.r/�.p/CS0.r
0/�.p0/D 0.

Examples of both possibilities for Case (1) are given in Figure 33.

Consider Case (2), which we divide into subcases: either r 0 has Type 1 or Type 2.
Consider first the case where r 0 has Type 1. This again can be divided into two
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No elementary moves

5 elementary moves
& one row elimination

& one column elimination

Figure 33: Case (1) of Lemma 4.30. We have illustrated examples of Case (1)
in Lemma 4.30. The domains on the right column correspond to decomposi-
tions of the form r �p , where x0 is contained in a boundary of r . On the left,
we have corresponding alternate composite domains r 0 �p0 . The domains
here are decomposed into ordered rectangles; the integers in a region give the
number of the rectangle the given region belongs to.

subcases, according to whether the annulus in the decomposition r �p is horizontal or
vertical. Suppose first that it is horizontal. Write p0D r 0

1
� � � � � r 0

mC1
, and consider the

decomposition D.p0/� r 0 . Performing an elementary move on the last two rectangles,
and then on the next-to-last two, we obtain a new decomposition r 0

1
� � � � � r 0

m�1
�

sm � smC1 � smC2 , with the property that sm and smC1 form the row through O1 .
Thus, they can be cancelled; performing m� 1 elementary moves (commuting smC2

to the beginning of the decomposition), we obtain the decomposition r �D.p/ with
total sign change .�1/mC1 , verifying the claim. In the case where the annulus is
vertical, write D.p0/ D r 0

1
� � � � � r 0

mC1
and consider the decomposition D.p0/ � r 0 .

We commute the last rectangle r 0 to the second place in m moves, then cancel the first
two rectangles (which, since they form a vertical annulus, introduces the sign �1) to
obtain the alternate decomposition r �D.p/ (with total sign change .�1/mC1 ). This
verifies the stated relation when r 0 has Type 1.
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Figure 34: Case (2) of Lemma 4.30. We have illustrated examples of Case (2)
in Lemma 4.30. The conventions are the same is an Figure 33.
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We turn to the case where r 0 has Type 2. Again, we have two cases, according to
whether the annulus is vertical or horizontal. Assume the annulus is horizontal. Write
the standard decompositions D.p0/D r 0

1
� � � �� r 0

m�1
and D0.r

0/D r 0m� r 0
mC1
� r 0

mC2
,

and consider the decomposition D.p0/ �D0.r
0/ D r 0

1
� � � � � r 0

mC2
. Performing one

elementary move, replacing r 0m � r 0
mC1

by sm � smC1 , we obtain a new decomposition
in which the rectangles r 0

m�1
and sm form a row, and hence can be cancelled. Finally,

in m� 2 elementary moves (commuting smC1 to the beginning of the decomposition),
we obtain the decomposition r �D.p/, with total sign change .�1/m�1 .

Consider the final case, where r 0 has Type 2 and the annulus is vertical. Again, write
the decomposition D.p0/D r 0

1
� � � � � r 0

m�1
, and D.r 0/D r 0m � r 0

mC1
� r 0

mC2
. Moving

r 0
mC1

to the second place in m� 1 steps, we obtain a new decomposition whose first
two terms make up a column. Cancel this, at the cost of introducing one more �1.
Next, commute the last two rectangles, and then move the pair to the first two spots in
an even number of steps. In this way, we end up with the decomposition D.r/�D.p/,
with a change in sign of .�1/mC1 , as needed.

Examples for all possibilities of Case (2) are shown in Figure 34.

We can now define the stabilization map. In the same way as in Section 3.2, define

FL.x/D
X
y2S

X
p2�L.x;y/

�.p/ �U
O2.p/
2

� � �U On.p/
n � y

FR.x/D
X
y2S

X
p2�R.x;y/

�.p/ �U
O2.p/
2

� � �U On.p/
n � y;

and put them together to give

F D

�
FL

FR

�
W C �! C 0:

We have the following sign-refinement of Lemma 3.5:

Lemma 4.31 The map F W C �! C 0 preserves Maslov grading, respects Alexander
filtrations, and is a chain map with coefficients in Z.

Proof Our goal is to show that

F ı @C � @C 0 ıF D 0:

Recall that @0
C

has three terms: rectangles in L, rectangles in R (counted with the
opposite sign) and the differential from L to R, multiplication by .U2�U1/. Again,

Geometry & Topology, Volume 11 (2007)



2404 Ciprian Manolescu, Peter S Ozsváth, Zoltán Szabó and Dylan P Thurston

we can collect the terms in F ı @C � @C 0 ıF into terms of Types I(0), I(1), I(1 0 ), I(2),
I(3), II(0), II(1), and (S). In the proof of Lemma 3.5, we have seen that these terms can
be grouped into pairs. We must show that in each pair, the associated signs cancel.

Lemma 4.28 ensures that the terms in Case I(0) and Case I(1) drop out in cancelling
pairs. The interesting case is when we have alternate decompositions p � r D r 0 �p0 ;
in this case, if p is of type L, m is odd and the differential in L corresponding to r is
taken with the usual sign S0.r/, while if p is of type R, m is even and the differential
in R is taken with sign �S0.r/. In both cases the terms cancel. Similarly, Lemma
4.29 ensures that all terms with complexity m � 3 in Case I(2) drop out with their
corresponding terms in II(0).

Lemma 4.30 ensures that all terms in I(10 ) cancel with their corresponding terms of
types I(3) or II(1), leaving possible terms of Type (S). Specifically, a term of type I(1 0 )
corresponds to a decomposition p0 D r1 � p1 , where r1 is an empty rectangle and
p1 is a term of type F and complexity m. Adding an annulus to p0 as in the proof
of Lemma 3.5, we obtain a new domain p0

0
, which in turn decomposes as r2 �p2 or

p2�r2 as in case I(3) or II(1). In cases where O1 62 r1 , these terms appear in cancelling
pairs according to Lemma 4.30.

In the cases where O1 2 r1 , the decomposition r1 �p1 contributes once counted with
a multiple of U1 (as r1 , which contains O1 , is thought of as a differential in C ), the
decomposition p2 � r2 or r2 � p2 contributes with a multiple of U2 (as it contains
the row through X1 ), but there is also a contribution coming from the composite
domain p0 , thought of as a domain of type L, times .U2�U1/, the differential from L
to R within C 0 . Cancellation of the terms involving U1 follows from the observation
that r1 � D.p1/ differs from the standard decomposition of p0 by a sequence of
m� 1 elementary moves (commuting r1 to the very end), where here m denotes the
complexity of p1 (which is necessarily even). Cancellation of the terms involving U2

follows since they have the opposite sign from the terms involving U1 .

It is straightforward to see that the remaining possible mD 2 terms in II(2) cancel the
remaining possible two mD 1 terms of type (S).

Putting everything together, we have the following:

Proof of Theorem 1.2 This result now is an immediate consequence of Cromwell’s
theorem and the sign refinements discussed above. Specifically, independence of
the choice of sign assignment is established in the uniqueness statement of Theorem
4.2. Commutation invariance follows from Proposition 4.24. Stabilization invariance
follows from Lemma 4.31, together with a straightforward adaptation of the proof of
Proposition 3.8.
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It is sometimes convenient to consider the chain complex CL�.G/ which is the graded
object associated to the Alexander filtration of C�.G/. Explicitly, it is the group with
the same underlying chain complex, endowed with a differential as in Equation (3).
It is a formal consequence of Theorem 1.2 that the homology HL�.G/ of CL�.G/,
thought of as a module over ZŒU1; : : : ;U`�, is a link invariant.

5 More properties

We next give a few of the basic properties of knot and link Floer homology. Again, most
of these properties are well-known [11; 15; 9]; but again, we can give a self-contained
derivation here. Let cHLd . EL; s/ be the part of cHL. EL/ with Alexander grading s and
Maslov grading d .

Proposition 5.1 The total homology groups of the chain complex C�.G/ are isomor-
phic to the module ZŒU �, where all the Ui act as multiplication by U . The homology
groups of yC .G/ are isomorphic to Z.

Proof The chain complex C�.G/ refers to the fXig
n
iD1

only through its Alexander
filtration; in particular, the homology of C�.G/ makes no reference to this placement,
and it is unchanged by a rearrangement of these decorations (though it does appear
to depend on the placement of the fOig

n
iD1

). Now, given any grid diagram G , we
can consider instead the alternate grid diagram H gotten by placing Xi in the square
immediately under each Oi . This new diagram clearly represents a suitably stabilized
diagram for the unknot. Indeed, after destabilizing sufficiently many times, we can
reduce to the 2� 2–grid diagram J for the unknot. A direct calculation in this case
gives that H�.C

�.J //Š ZŒU � (or F2ŒU � with coefficients modulo 2).

The analogous statement for yC .G/ follows similarly.

Proposition 5.1 allows us to define the invariant �.K/ for a knot K (see Ozsváth and-
Szabó [10] and Rasmussen [15]; compare also Rasmussen [14]): If we consider the
natural inclusion map �mW Fm. yC .G// �! yC .G/, then �.K/ is the smallest integer m

for which the map induced on homology by �m is nontrivial, as a map to H�. yC .G//ŠZ.

The Alexander polynomial of a link remains unchanged under overall orientation
reversal, it is a symmetric polynomial, and it is invariant under mirror. These three
facts are reflected in Propositions 5.2, 5.3, and 5.5, respectively.

Proposition 5.2 The filtered quasi-isomorphism type of the complex C�.G/ does not
change if we reverse the orientation of all components of the link EL.
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Proof Consider the diagram G0 obtained by switching the x and y coordinates, thus
flipping G along the diagonal from the bottom left to upper right corner. Switching
the x and y coordinates also gives a map from the original set of generators S to the
new set of generators S0 which preserves both degrees and is a chain map. The new
diagram G0 is a diagram for EL with the orientation of each component reversed.

A few more remarks are needed when working over Z, since the precomposition of a
sign assignment with reflection through the diagonal is not quite a sign assignment, in
the sense of Definition 4.1: the roles of rows and columns are reversed. However, this
is remedied by substituting �Ui in place of Ui .

Proposition 5.3 Given sD .s1; : : : ; s`/ 2 .
1
2

Z/` , we have that

bHLd . EL; s/ŠbHLd�2S . EL;�s/;

where S D
P`

iD1 si .

Proof Fix a grid diagram for EL, and let A1 and M 1 denote its total Alexander
filtration and Maslov grading. (By total Alexander filtration, we mean the sum of
the components of the Alexander multifiltration.) Switching the roles of O and X ,
we obtain a grid diagram for � EL. Differentials within zC are the same for the two
diagrams, but the Alexander and Maslov gradings are different. We let A2 and M 2

denote the Alexander and Maslov gradings of the new diagram. We find it convenient
to symmetrize Ai , defining

zAi.x/DAi.x/C
�n1� 1

2
; : : : ;

n` � 1

2

�
for i D 1; 2. It is a straightforward calculation from Equations (1) and (2) that

M 1
� 2

X̀
iD1

zA1
i DM 2

� zA1
D zA2:

The result now follows from Proposition 5.2 together with Proposition 4.22.

Indeed, we have the following more general version:

Proposition 5.4 Let EL be an oriented, `–component link, and let EL0 be the oriented
link obtained from EL by reversing the orientation of its i th component. Then, writing
sD .s1; : : : ; s`/,

bHLd . EL; .s1; : : : ; s`//ŠbHLd�2siC`i
. EL0; .s1; : : : ; si�1;�si ; si ; : : : ; s`//;
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where here `i denotes the total linking number of the i th component of EL with the
remaining components.

Proof From a grid diagram for EL we can obtain a grid diagram for EL0 by switching
the roles of Oi and Xi , ie those markings which correspond to the i th component of
the link. As in the proof of Proposition 5.3, the complexes zC agree, but the Maslov
and Alexander functions change, as follows. Let zA1

j and M 1 be the j th symmetrized
Alexander filtration and Maslov grading for EL, respectively, and let zA2

j and M 2 be
the corresponding functions for EL0 . Let �Oi DO nOi and �Xi D X nXi .

By a direct application of Equation (2),

zA2
j .x/D

(
zA1
j .x/ i ¤ j

� zA1
i .x/ i D j ;

and, using Equations (1) and (2),

M 2.x/�M 1.x/D�2J .x�O;Xi �Oi/CJ .Xi �Oi ;Xi �Oi/

D�2 zAi.x/�J .X�O;Xi �Oi/CJ .Xi �Oi ;Xi �Oi/

D�2 zA1
i .x/CJ .�Xi �

�Oi ;Xi �Oi/:

Moreover, it is straightforward to see that J .�Xi �
�Oi ;Xi �Oi/D `i .

Proposition 5.5 Let EL be a link, and let r. EL/ denote its mirror. In this case, we have
an identification

bHLd . EL; s/ŠbHL
2S�d

. yC .r. EL/; s//I
note the right-hand side denotes cohomology.

Proof Rotating the grid diagram G ninety degrees to get a new diagram G0 corre-
sponds to passing from the knot to its mirror. There is an induced map � from S.G/
to S.G0/. Letting zA, �M and zA0 , �M 0 be the Alexander and Maslov gradings of G

and G0 respectively, it is clear that zA.x/D� zA0.�.x//, �M .x/D� �M 0.�.x//. Indeed,
if we think of � as taking x to x� , the dual basis element of zC .H / which is one on
x 2 S.H / and zero on all other y 2 S.H /, then � induces an isomorphism of chain
complexes. The shift in absolute grading now follows from Proposition 5.3.

6 Relation to the Alexander polynomial

In this section we will show that the Euler characteristic of the multigraded complex cCL
with respect to the Maslov grading is the Alexander polynomial. Precisely, fix a grid
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diagram G of a link EL with ` components. Given s 2 .1
2

Z/` , let t D .t1; : : : ; t`/ be a
collection of variables, and for sD .s1; : : : ; s`/ an element of .1

2
Z/` , define

t s
D t

s1

1
� � � t

s`
`
:

For any multigraded groups Ci.s/ with Maslov grading i and Alexander grading s ,
define

�.C I t/D
X
i;s

.�1/i t s rank.Ci.s//:

Theorem 6.1 For any link EL, the Euler characteristic of bHL determines the multivari-
able Alexander polynomial up to sign. Precisely,

�.bHL. EL//D

(
˙
Q`

iD1.t
1=2
i � t

�1=2
i /�A. ELI t/ ` > 1

˙�A. ELI t/ `D 1;

where �A. ELI t/ is the multivariable Alexander polynomial, normalized so that it is
symmetric up to sign under the involution of sending all ti to their inverses.

We will prove this by taking the Euler characteristic of the alternate complex zC . EL/. The
Maslov grading of a generator x 2 S is, up to an overall sign, the sign of x considered
as a permutation. The Alexander grading is, up to an overall shift, minus the sum of
the winding numbers around the generators. Summing over all generators x, we get a
“minesweeper determinant” as illustrated below:ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ t t t t

t t t

t

t

t t

t t

t t t

1 1 1 1 1 1

11

1

1

1 1

1 1 1

1 1

1t−1

t2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

This turns out to give the Alexander polynomial, up to a sign, powers of the variables ti ,
and factors of .1� ti/.

More formally, given a grid diagram G of size n, define an n� n matrix M.G/ by

M.G/ij D ta.i;j/
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where a.i; j / 2 .1
2

Z/` is the vector whose k th component is the minus the winding
number of the k th component of the link around the point .i; j /. (Here we use the
convention that the links runs between the O ’s and the X ’s, which have half-integer
coordinates, so this winding number is well-defined.) Then we have:

Proposition 6.2 For any grid diagram G of a link EL with ` components, let ni be
the number of vertical segments corresponding to component i . Then

det M.g/D

8<:˙tk.1� t/n�1�. ELI t/ `D 1

˙

�Q`
iD1 t

ki

i .1� ti/
ni

�
�. ELI t/ ` > 1

for some integers ki . In the case `D 1, we write t; n; k for t1; n1; k1 for convenience.

This proposition implies Theorem 6.1:

Proof of Theorem 6.1 It follows from Proposition 4.22 that�Y
i

.1� ti/
ni�1

�
�.bHL. EL//D �.eHL.G//D �. zC .G//:

The theorem follows by Proposition 6.2 up to an overall sign and powers of the ti . The
powers of ti are determined by Proposition 5.3 and the chosen normalization of the
Alexander polynomial.

Proof of Proposition 6.2 We will use Fox’s free differential calculus [5] with respect
to a presentation associated to a grid diagram for a link. This presentation was described
by Neuwirth [8], who also proved that it is actually a presentation of the knot group.

The presentation, as shown in Figure 35, has one generator for each vertical segment of
the link, starting from the basepoint (outside of the page at the position of the reader),
coming down to the left of a vertical segment, going under the segment, and coming
back out of the page. There are n generators, one for each vertical segment. There are
n� 1 relations, one for each position between horizontal segments. The path of the
relation comes down to the left of the diagram, runs across the diagram at a constant
horizontal level, and comes back up out of the page. On the one hand this loop is
contractible (pull it beneath the diagram); on the other hand it is equal to the product
of the generators corresponding to the vertical segments that we cross.

In the example in Figure 35, there are six generators, x0 through x5 , and five relations:

r1 D x2x5 r2 D x1x2x3x5

r3 D x0x1x3x5 r4 D x0x3x4x5

r5 D x0x4:
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x0 x1 x2 x3 x4 x5

r1 = x2x5

r2 = x1x2x3x5

r3 = x0x1x3x5

r4 = x0x3x4x5

r5 = x0x4

Figure 35: Generators and relations from a gridlink presentation

The Fox derivative matrix is particularly easy to compute in this case, since the gen-
erators appear only positively in the relations and at most once in each relation. The
entries are the initial portions of the relations, and they appear in the positions given by
the vertical strands. In our running example, we get

� @ri

@xj

�
ij
D

0BBBB@
0 0 1 0 0 x2

0 1 x1 x1x2 0 x1x2x3

1 x0 0 x0x1 0 x0x1x3

1 0 0 x0 x0x3 x0x3x4

1 0 0 0 x0 0

1CCCCA :
To find the Alexander polynomial, map this matrix to the abelianization of the knot
group, mapping each xj to t˙1

i , depending on which component the vertical segment
belongs to and whether the corresponding vertical strand is oriented upwards or down-
wards. For knots, the Alexander polynomial is the determinant of a maximal minor
of the resulting n by n� 1 matrix, up to a factor of ˙tk . For links, the multivariable
Alexander polynomial is, up to the same factor, the determinant of a maximal minor
divided by .1� ti/ for each component i that is not the component of the deleted
column.

In the example, we get

�.t/D˙tk

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
0 0 1 0 0

0 1 t�1 1 0

1 t 0 1 0

1 0 0 t t2

1 0 0 0 t

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ :
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Now let us turn to computing det.M / where M is the minesweeper matrix defined
earlier. Subtract each column from the next one. The winding numbers change by at
most one when we move from one square to a neighbor. Therefore in every column but
the first we have zero entries where the vertical segment does not intervene, and where
a vertical segment of component i does intervene every entry is divisible by t˙1

i � 1.
Thus, for each column but the first, we can factor out ti � 1 if the column is oriented
upwards or t�1

i � 1 if it is oriented downwards. Furthermore, after this operation the
last row contains only a single nonzero entry, 1 in the first column, so we can delete
the first column and last row without changing the determinant (up to sign).

In the example, we getˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

1 1 1 t t t

1 1 t�1 1 t t

1 t 1 1 t t

1 t t t t2 t

1 t t t t 1

1 1 1 1 1 1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

1 0 0 t � 1 0 0

1 0 t�1� 1 1� t�1 t � 1 0

1 t � 1 1� t 0 t � 1 0

1 t � 1 0 0 t2� t t � t2

1 t � 1 0 0 0 1� t

1 0 0 0 0 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

D˙.t � 1/3.t�1
� 1/2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
0 0 1 0 0

0 1 t�1 1 0

1 t 0 1 0

1 0 0 t t2

1 0 0 0 t

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ :

Up to the expected factors of 1� ti and ˙tk , this is the same determinant we got from
the Fox derivative calculations.
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