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SECOND ORDER COMPLEX DIFFERENTIAL EQUATIONS

WITH A REAL INDEPENDENT VARIABLE

JOHN H. BARRETT

Introduction. This paper is concerned with the oscillation and
boundedness properties of solutions of the complex differential equation

( 1 ) (Φ)vY+f(x)y=0 , a^x<™y

where p(x)^pΊ(x)+ip2(x)φ0, f(x)—f1(x)+if2(x) and each of the functions

Pi(χ)> P z(χ)>fι(χ) a n d Ά(χ) is a continuous real function on the half-line

Such differential equations have many interpretations and applica-
tions. For example, if p(x) = l and the real and imaginary parts of
equation ( 1 ) are separated the resulting system of two real equations
can be interpreted as equations of motion in the ^ - p l a n e , where y =
Vι+W-2, as in [4, 9]. If in ( 1 ) x is replaced by the complex variable
z, and the coefficients are required to be analytic functions of z the
resulting completely complex equation can be reduced to one of the type

( 1 ) by considering certain analytic paths in the £-plane. This proce-
dure has been used effectively by Taam [9] and others to find zero-free
regions for the completely complex equation. Also, Hille [5] has made
an extensive study of the behavior of solutions of a special case of (1),
where p(x) = l and f(x) = λF(x), F(x) real and positive and λ a complex
parameter, and has used these results in his study of Cauchy's problem
for a generalized heat equation.

The present study of equation (1) begins with consideration of the
special case

( 2 ) (ylq(x))'+Φ)y = 0 , a^x<™,

where Q(x) = Qι(x)+ίq2(x)^0f q±(x) and qt{x) are real and continuous on

ίz<Lτ<oo and q is the complex conjugate of q. For q(x) real a funda-

mental set of solutions consists of sin 1 q and cos \ q. This suggests

an investigation of the corresponding complex solutions, s[α, x q] and
c[a, x g], of (2) when q is complex. These " trigonometric " functionals
satisfy identities and inequalities analogous to those of the real sines
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188 SECOND ORDER COMPLEX DIFFERENTIAL EQUATIONS

and cosines. For example, the sum of the squares of the magnitudes
is identically one and, hence, all solutions of equation (2) are bounded
on α^#<oo. This boundedness property is the main point of departure
from the analytic definition of trigonometric functions of a complex

5 x Γx

q is unbounded if I q2 is unbounded. The bound-
edness property is useful in the applications of the last section.

An additional advantage in considering the special case is that for
a rather large class of coefficient functions, q(x), equation (2) can be
solved explicitly, thus providing a new set of much needed examples to
give insight into the oscillatory behavior of solutions of (1). Further-
more, for a still larger class of coefficient functions the oscillatory be-
havior of solutions of (2) is determined. An interesting result is that
the zero separation properties, true for the real case, are often violated
for the complex equation (2). For example, a class of functions, q(x),
is found for which the " s i n e " s\a,x q\ oscillates (has infinitely many
zeros on at^x< oo) and the " cosine " c[α, x q~] has no zero on α<Ξ#< oo.

The final section shows that although equation (2) is a special case
of (1), all oscillatory behavior patterns of equations of the type (1) are
present in those of type (2). In particular, for each non-trivial solution
y(x) of (1), for which y(a)=0, and each non-zero function w(x) of class
C there exist a continuous complex coefficient function q{x) and a non-
zero "amplitude" function p(x) of class C" such that
( 3 ) y(x)=p(x)s[a, x q], p(x)y(x) = w(x)p(x)c[a, x\q\.

For w(x)f p(x) and f(x) real q(x) and p(x) are real and (3) reduces to
the modified Prϋfer transformation [1, 6]

5 X

Q >
a

which has been useful in establishing real oscillation and boundedness
theorems. The author [3] has developed a Prϋfer transformation for
equations of the form of (2) with both coefficients being square symmet-
ric matrices and a similar, but less useful, transformation of type (3)
(that is y—ps,py~pc) can be obtained as a corollary of the matrix
theorems.

Since the "amplitude" p(x) is non-zero and the " s i n e " s[α, x q]
is bounded, the Prϋfer-type transformation (3) separates boundedness
considerations from those of oscillation, as does (4) for the real case.
Applications of (3) yield bounds on solutions of (1) of the Liapounoff-
Birkhoff-Levinson type. For the special case, p(x) — l and w(x) a positive
real constant, these exponential bounds reduce to those of Taam [7]. It
it noted that Taam failed to achieve a "symmetric" form because he
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specialized p(x) to be real and, in particular, p(x) — l.
Further study of the relation of q(x) to the original coefficients, p(x)

and f(x), and of the oscillatory properties of the functionals of the first
section should lead to new oscillation theorems for (1).

1. Complex trigonometry. Let q(x) = qι(x)+iq2(x), qλ and q2 be con-
tinuous functions on αrga?<co and define c—c(x)—c\ay x; q], s=s(x) —
s[a, x; q] to be a solution (pair) of the complex first order system

( 5 ) k = qc , s(α) = 0 ,

c= —qs , c(a) = l .

If, in addition, q{x)φθ it is easily seen that s and c are solutions of the
second order equation

( 2 ) (ϋlqY + qy = 0,

with initial conditions

( 6 ) β(α) = 0 , c(α) = l ,

s(a)=q(a) , c(α) = 0 .

ί x Γx

q and c=cos\ q, if q(x) is real and, furthermore, if
a Ja

qφθ both solutions oscillate (have infinitely many zeros on a^x<co)

ί oo

a

Boundedness is retained for complex q(x), as is seen by :

LEMMA 1.1. | β | a + | c | a = l .

Proof. Differentiate ss+cc and note its value at x = a.

There is also an extension of the properties that the real sine func-
tion is odd and the cosine is even. This result is useful in carrying
out the details of the proof of Theorem 1.2.

LEMMA 1.2. If k is a complex number such that \k\ — l then

s[a, x kq] = ks[a, x q~\ and c\a, x kq] = c[a, x q~\ on a^

Proof. Let m(x) — s[a, x kq~] — ks[a, x q] and n(x) — c[α, x kq] —

c[a,x g].

Then m(a) — Of n(a)—0 and m=kqn, ή=—kqm, whose only solution is
m=n=0 on a<^x<&>, thus completing the proof.

Consider now the polar form of solutions of (5) and (2) in terms of
the polar components of the coefficients i.e., suppose

(7 ) q{x)—r{x) exp (i
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where r(x) is real, continuous and positive and θ(x) is real and of class
C These conditions ensure a polar form for the complex trigonometric
functionals as is seen by the following.

LEMMA 1.3. Under the above hypotheses on q{x), there exist on

real functions h(x) and <x(x) such that h, h/r, a and hair are of
class C" and, furthermore

( 8) s[a, x q]=h(x) exp (ia(x)).

Proof. Let s(x)=s[a, x q]. Using a technique similar to that em-
ployed by Taam [9], define the real function

(9) ^ ) = { » s ) > i f «*)*0
{θ/2r , if β(a>) = 0.

Note that g(x) is continuous on af^x<co, since computation by means
of LΉopitals rule shows

lim 3(s[rs)=θ(xo)l2r(xύ), if φ » ) = 0 .
x-»x0

Let

(10) a(x)=β(a)+ [Xr(t)g(t)dt ,
Ja

then a(x) is of class C on α^ίc<oo. Let

(11) h(x)—s(x) exp (—ia(x)) ,

then h(x) is of class C", Λ(α) = 0 and

^ ( — i d ) .

Thus, h(ά)=s(a) exp (—iα(α)) = r(α)>0.
The next step is to prove that h=h1(x)+ih2(x) is real, that is, Aa(α?)=0.
Suppose /2,2(ίc)^0, then there exist numbers tQ<tλ such that h2(t0) = 0,
h2(x)Φθ on to<x<t1 and φ ? ) ^ 0 on ί o < ^ < ί x . Then on tQ<x<tι

h _ exp (̂ α)fe _ 8
A s s

Also,

or
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Therefore there exists a real constant k such that h1(x)=kfφή on to<
x<tx. Hence h1(tΰ) — h1(t() + )=^kh.χtύ+)~O and s(to) = O. Suppose to=a,
then, since h(a) is real, h2(t0) = 0 and h1(t0)=h1(tQ+)=kh2(t0). But this
requires that £(£<,) = 0, which contradicts the fact that s(x) is non-trivial.
In a similar manner and by use of an induction argument it is easily
seen that tQ cannot be any zero of s(x). Thus, h2(x)=0 and h(x) as de-
fined by (11) is real.

Recall that έ = gc and c~—qs where s=s[a, x q] and c—c[a, x q\
and s=h(x)eχip (ia(x)), where q — r(x) exp (iθ(x)). By differentiating this
polar form of s and simplifying it follows that

and, since the right hand side is of class C, that the real components,

h\r and ha\r are likewise of class C. Furthermore, by transposing the

exponential factor to the left hand side and differentiating we obtain

y ( y ( ) {
r / V r / r r

Separation into real and imaginary parts yields the system

(12)

and

(13)

thus completing the proof of Lemma 1.3.

Integration of equation (13) gives

^2(α;)ά(^)_fa;M^
^ ) J.T^ ) T

Finally, integration by parts establishes the following.

LEMMA 1.4. If, in addition to the hypotheses of Lemma 1.3, the

quotient θ\τ is of class C, then on a^
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2 /

Furthermore, air is of class C, whenever

The preceding discussion suggests special consideration of the quo-

tient θ\r. The following theorem is a compilation of the results thus

far.

THEOREM 1.1. If on a^x<^, q=r(x)exp(iθ(x)), r(x) is real, posi-

tive and continuous, θ{x) is real and of class C/,b(x)~θ(x)!2r(x), then

there exist real functions h(x) and a(x) both of class C, as well as the

quotient h\r, such that

( 8 ) s[α, x q] —h{x) exp (ia(x)) ,

r(x)

Furthermore, if b(x) is of class C then

(14) h\x){°^\ -b(x)) = - [h\t)b(t)dt.
V r(x) 1 U

and air is of class C, whenever

Application of the Sturmian comparison theorem to (12') gives the
following.

COROLLARY 1.1.1. (Non-oscillation theorem) If the real second-order
equation

is non-oscillatory (i.e., non-trivial solution has infinitely many zeros on
α<Ξ#<oo) then s[a, x q] is non-oscillatory.

Equation (14) shows the following.

COROLLARY 1.1.2. (Non-oscillation theorem) If, in addition to the
hypotheses of Theorem 1.1, b(x) is of class C and b\x)Φθ on a<x<co
then s[a, x q] has no zeros of α < # < o o .

EXAMPLE 1.1. Let q(x) = l+ix, then r(x) =
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δ(α)=-(α 2+l)- 3 / a and b(x)>0. Corollary 1.1.2 then establishes that
s[a,x; q] has no zeros on a<x<^.

This example shows that the latter non-oscillation theorem is not a
special case of the following.

THEOREM T (Taam [8]). If p(x)=p1(x)+ip%(x)φ0J(x) = f1(x)+ifι(x)9

where plf p^f and f2 are real continuous functions on a^x^b and there
exist constants j and k and a real function m{x) of class C on a^x^b
such that jp1(x)+kp.1(x)>0
and

m+m2/0'Pi+^p2)^— (jA+kfz) on a<^x<Lb

then the complex equation (p(x)yY+f(^)y—0 is disconjugate (i.e. no so-
lution has two zeros on

For q(x) — l+ix, as in Example 1.1, consider the equation (y/q) + qy=
0. Then

_ 1 _ Q _ 1—i#
p q \qΫ l+x%

a n d f(x)=q=l — ix. T h e r e e x i s t c o n s t a n t s j , k w i t h k<0 s u c h t h a t

for x>j/k . Consider the real second order equation

(15) fltE^y) + (j+\k\x}y=0 ,

Now, (j+\k\xf^(k2+f)(l+x2) and, hence,

With the use of this inequality to increase the leading coefficient,
equation (15) is altered to

(15')
\x

whose fundamental solutions are

sinΓ MBLdt and cos [J+^
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and all solutions of (15') oscillate on j/k<a^x<^>. By the Sturmian
comparison theorem equation (15) is also oscillatory and hence for some
b>a there exists no function m(x) required by the Riccati inequality of
Theorem T. But by Corollary 1.1.2, s[a, x q\ has no zeros on a<x<oo
and hence the complex equation (ylq)' + qy=0 is disconjugate on a^x>oo.
Therefore Example 1.1 is non-oscillatory but does not satisfy the hypo-
theses of Theorem T.

REMARK. A similar polar form for the "cosine" functional

c[a, x q]—k{x) exp (iβ(x))

can be obtained for which k and β replace h and α, respectively, in
equations (12') and (13'). However, since &(α) = l, equation (14) must be
replaced by

k\x)(ψϊ -b(x) )= - b(a) - \Xk\t)b{t)dt .

Of course, c[a, x q] can be calculated from a known s[α, x q\ by the
derivative formula, s—qcy which is the process actually used in the suc-
ceeding discussion.

THEOREM 1.2. //, in addition to the hypotheses of Theorem 1.1,

b — θ{x)l2r{x) is constant then explicit solutions of the system (5) are

(16) s[a, x;q\ = —L^ exp (i ^ > ± ^ ) ) s i n φ(x) ,

(17) c[a, x;q\= exp (i ^ ^ ^ ) ) j C o S φ(x)~^~= sin φ (x)

r(t)dt. Furthermore, s[α, x , g] oscillates (i. e., Λαs

infinitely many zeros on a^x<co) if and only if \ \r(t)\dt — co. Final-

^, i/ 6^0, c[α, x g] tes ^o zeros on a^x<co.
Note that this means that there exists a second order complex equ-

ation (ylq)' + qy = 0 such that the zeros of one solution do not separate
those of a linearly independent solution and the zeros of a solution are
not separated by zeros of its derivative. Before this theorem is proved
consider the following special cases.

EXAMPLE 1.2. Let q(x) be real and positive, then q(x)=r(x), θ(x)—0f

δ=0 and
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S x Γx

q(t)dt, c[a, x g]=:cos \ q(t)dt.
a Jα

EXAMPLE 1.3. Let q{x)=-qι{x)Jriq^(x), gφθ=kqι(x), &=constant, and

gΊ(α?)>0 then φ) = λ/l + tf qι(x), θ(x) = Ίoxί'1k9 0 = 0, 6 = 0 and

s[a, x g]=
Vl+kλ

/ Γx \

c[a, x gr]= cos Vl'+k? Qi(t)dt .
\ Jα /

EXAMPLE 1.4. Let g(#) = exp(iα?), then r(») = l, 0{x)-x, 6=1/2 and

, a; g ] = - / . ^ exp ^-
"1 Δ

c\_a,x\ q]~ exp—(a; —α)ίcos^_r_(a?—α)——^= sinJ—J-L^c—α) J .

Note that there do not exist constants j,k such that JQι~kq2>0, and
hence the hypotheses of Theorem T are not satisfied for b—a>π. Of
course, in this case (ylqϊ + qy—0 is oscillatory on a<^

PROOF OF THEOREM 1.2. In order to simplify computations let
θ(a) = 0. There is no loss of substance decause of this assumption since
Lemma 1.2 assures that if q(x) is multiplied by the constant exp (—iθ(a))
then the resulting " sine " functional must be multiplied by that num-
ber and the " c o s i n e " is unchanged. Therefore equation (14) gives

(18)

and equation (12r) becomes

(19)

Since λ(α)=0 and Λ,(α)=r(α) we have

(20) fc(a?)= * sin ( V ϊ + F
V62 + l V

By combination of (8), (18) and (20) and the use of Lemma 1.2 and s —
qc the explicit solutions (16) and (17) are obtained. Finally, if 6^0, (17)
gives
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and the theorem is proved.
Note that in Theorem 1.2, if 6=0 then c[α, x q\ oscillates if and

only if s[a, x q] oscillates and the zeros of one functional separate those
of the other. But if 6^0 then s[α, x q\ may oscillate but c[α, x q] has
no zeros on a^x<co, thus violating a "Rolle's Theorem" for complex
functions.

In the next section it will be shown that every complex equation
of the form (py)'+fy = 0 can be transformed into the " special" form
(ylQ)'+Qy=0.

2. A complex Prύfer transformation* Consider the complex gene-

ral linear second-order equation

(1) (py)'+fy=0, a^x<co,

where p=pL(x)+ipAx)=t0,f=f1(x)+if2(x) and p19p.z,flff2 are all real con-
tinuous functions on αga?<oo. Suppose y(x) is a non-trivial solution of
(1) such that y(a) = 0 and there exist complex functions p{x)ΦQ,w{x)φO
of class C" and q(x) continuous, such that

(21) y(x)=p(x)s\a,x;q\ ,

p(x)y(x)=w(x)p(x)c[a, x q].

Then by differentiating both equations of (21) and combining with (1)
we obtain

p ,
V

pc — pqs———ps——pc .
w w

Hence, solving for p and q and recalling that |<?|2 + | s | 2 = l we have

(22) p=p*(«-I)-*\e\>p, p(a)
\p wJ w w(

(23) q = ( ή
p \ p w J w

Cx Cx

For p,f, y, p, q real s = sin \ qyc —cos \ q and (21), (22), (23) reduce to

the modified real Prufer transformation of [1]. The transformation of
(1) given by y—ps and py—pc results in the differential-integral system
p—p(llp)cs — fsc) and q = (llp)c2+fs2 and can be obtained as a direct ap-
plication of the matrix Prufer transformation in [3] for (matrix) order
2. However, the form (21) seems to be more useful, e.g., see Corol-
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lary 2.1.

Consider next the question of existence of p(x) and q{x), that is the
solution pair of the system (22), (23). The method is that of successive
approximations and the following lemmas establish a Lipschitz condition
for the system.

LEMMA 2.1. // q(x) and q*{x) are continuous complex functions on
a<.x< co and s*=-s[a, x #*], c*=c[a, x #*] then

(24) | S s

\c-c

Proof. By subtracting the differential equations (5) obtain the sys-
tem

which can be expressed in the vector-matrix form

(25) ά=Q(φ+β(x), « = ( ^ ) , Q = (° -( fh β =
V c c V V — q(x) 0/

Let Y(#) be the matrix solution of the homogeneous equation :

Y=QY, Y(a)=E

Then

Y(x) = (c s) , and

By elementary methods the solution of (21) is

(26) a(x) = [XY(x)Y-1(t)β(t)dt .
Jα

Hence, by taking norms (square root of sum of square of absolute va-
lues), we have

\\Φ)\\^2\"\\β(t)\\dt<ί\X\q--q*\,

from which the conclusion of the lemma follows.

LEMMA 2.2. Assume the hypotheses of Lemma 2.1 and let
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ί = l

where kt(x) (i = l, 2, « ,^) are complex continuous function on a^x^b
and aif βif γif dt are non-negative integers. Then there exists a positive
constant KQ (independent of q and q*) such that

The proof based on Lemma 2.1 is simple and is omitted.

LEMMA 2.3. If u(x) and v(x) are complex continuous functions on
, the complex differential equation (see equation (22))

(27) p=u(x)p+v(x)p

has exactly one solution for a prescribed value of p(a).
The proof parallels that for real linear equations and, consequently,

is not given here.

LEMMA 2.4. Let p(x) be a solution of (27), where u and v are the

corresponding coefficients of (22), andm(x)—plp. Then: ( i ) | m | = i , (ii)

m satisfies the complex Riccati equation

(28) m—ΰ—(v — v)m—urn?

and (iii) if m* is the corresponding function when q is replaced by g*,
u by u* and v by v* then there exists a real constant Kλ (independent of q
and g*) such that

(29) \m-m

Proof. (m—m*y+ {(v — v)+u(m+m*)}{m—m*)

or

(m—m*)'+n(x)(m—m^)—r{x),

and hence,

m{x)-m*{x)=e-\> \*e\ln r{t)dt.

Therefore, there exists a real constant Kλ such that

rx
m*(x)\^KA \q—q*\,

J
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LEMMA 2.5. There exists a unique solution pair p(x), q{x) of the
system (22, 23).

Proof, It follows easily from Lemmas 2.2 and 2.4 that the system
((22), (23)) satisfies a Lipschitz condition. Let qo(x) and po(x) be complex
continuous functions on a^x^b and for each non-negative integer n

\
pn I V

)
p W' W

I\8n\*\+™8ncn ,
W > W

where sn—s[a, x gw] and cn = [a, x qn~].

By the usual successive approximation arguments it follows that the
sequences {pn{%)} and {qn(x)} converge uniformly on a^x^b to continu-
ous limit functions, p(x) and q{x), respectively, which form a solution
pair of (22) and (23).

THEOREM 2.1. If y(x) is a non-trivial solution of (1), such that
y(a)=0, and w(x) is an arbitrary non-zero function of class C then there
exist a non-zero function p(x) of Class C and a continuous function q(x)
such that (21) is satisfied. Furthermore, (22) and (23) are satisfied.

Proof. From Lemma 2.5, there exists a unique solution pair p(x)
and q{x). Let u(x)=p(x)s[ay s q], then u(a) = 0=y(a) ,

Finally,

therefore

y(x)ΞΞ=su(x) = p(x)3[a, x q] .

Equation (22) yields the following bounds on solutions

=&c, and ύ(a) = M ^
V p(a)

C O R O L L A R Y 2 . 1 . ( i ) \p\=J\y\2+

(30) (ii) \y(x)\^ \P(x)\ £ \p(a)\exΛX\l - - - + -

vy
w

Όl \
\

2

1

2
w 1
p w

w
w
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(iii) if w=k, a real positive constant, then

(31) IP
2 J «

k
V

Ί

f
k

kPi

\v\z

<r
/ l

A;fe b!2 k If

Proof. ( i ) is obvious and (ii) follows directly from (22). (iii) re-
sults from an application of (ii) and a simple inequality about complex
numbers. Note that if p is real then £>2=0 and (31) becomes

(31')
p k

which is the " non-symmetric " bound given by Taam [10].
Finally, other choices of w(x) give other bounds on solutions as was

found for real second-order differential equations in [1].
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REMARKS ON THE MAXIMUM PRINCIPLE FOR

PARABOLIC EQUATIONS AND ITS

APPLICATIONS

AVNER FRIEDMAN

Introduction. In [3] Nirenberg has proved maximum principles,
both weak and strong, for parabolic equations. In § 1 of this paper we
give a generalization of his strong maximum principle (Theorem 1).
Hopf [2] and Olainik [4] have proved that if Lu^O and I is a linear
elliptic operator of the second order, if the coefficient of u in L is non-
positive, and if u (^ const.) assumes its positive maximum at a point P J

(which necessarily belongs to the boundary) then duldis<0, where v is the
inwardly directed normal. In § 2 we extend this result to parabolic
operators (Theorem 2). A further discussion of the assumptions made
in Theorem 2 is given in § 3. Application of Theorem 2 to the Neu-
mann problem is given in § 4. In § 5 we apply the weak maximum
principle to prove a uniqueness theorem for certain nonlinear parabolic
equations with nonlinear boundary conditions, and thus extend the spe-
cial case considered by Ficken [1]. An even more special case arises in
the theory of diffusion (for references, see [1]).

1. Consider the operator

n c\2Ί, n p\Ί, fa.

(1) Lu^ Σ atJ(x, t)—°^- + Σ a%{x91)™^ +a(x, t)u-ύ^
«j=i oxiaxj ί-i dxt at

with a(x, t)^0. Here, (x, t) = (x19 , xn91) varies in the closure ϋ of a

given (w+l)-dimensional domain D. Assume that L is parabolic in D,

that is, for every real vector λΦO and for every (x, t) eD we have

All the coefficients of L are assumed to be continuous in D and u is as-
sumed to be continuous in Ύ) and to have a continuous ^-derivative and
continuous second ^-derivatives in D. From [3 Th. 5] it follows that,
under the above assumptions, if Lu^O and if u assumes its positive
maximum at an interior point P°, then u — const. in S(P°). Here, S(P°)
denotes the set of all points Q in D which can be connected to P° by
a simple continuous curve in D along which the coordinate t is non-de-
creasing from Q to P\ In the following theorem we consider the case

Received October 29, 1957. Prepared under ONR Contract Nonr-908 (09), NR 041 037
with Indiana University.
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in which P° is a boundary point of D. We may assume that P° is the
origin. Let t = φ(x) be the equation of the boundary of D near P°.
Assume that £=0 is the tangent hyperplane to the boundary of D at P°.
Therefore dφldXi\Po~0. Let D be on the side t<φ(x).

THEOREM 1. If Lu^O in D, if u assumes its positive maximum M
at P°, if

(2) lim υUf\Γ> — Q ; = lim V r/ (P) κ } <Q P e D
y £4 ^ 11111 — V/, Λ 11111 / j LλJijiJL I • ̂  \J JL ^ JL-'

and if

(3) 1 + Σ««- >0 φeC"

ίAe^ u~M in S(P°).

REMARK 1. Without making any use of (3) one can deduce the
following :

Put μΞΞlim sup u^ r ( P e ΰ ) , then μ^O since μ<0 will contradict

u(P°)^u(P). Letting P->P° in Lιι(P)^0 and using (2), we obtain λ +
a(P°)M-μ>0, from which it follows that Λ^O. Since, by (2), ^ 0 , we
conclude that Λ = 0. Hence a(Pd)M— /;Ξ>0, from which it follows that
μ^O and, therefore, (since μ^O) μ~0. We also get α(P3) = 0.

REMARK 2. The assumptions (2) and (3) can be verified if we assume
that φ(x)=o(\x\2) and that u belongs to C" in the closure of the domain
Fn {£<0}, where V is some neighborhood of P°. Indeed, by making an
appropriate orthogonal transformation we can assume that aij(P°)=δij.
By the mean value theorem we have

* u(x, t)-u(09 0)= Σ Xi—u(x, t) + t—u(x, t) .
dxi dt

Taking (x, t) e Dn Fπ {t<0} such that 11 \ =o(\x\) and noting that u(x, ί ) ^
w(0, 0), one can show that du(P°)ldXi=:Q. Noting that φ(x)—o(\x\2) and
expanding [u(x, t)—u(0, 0)] in terms of the first and second derivatives
of u, one can show that dhί(P0)ldxt

2<Ξ,09 and (2) is thereby proved. The
proof of (3) is immediate.

PROOF OF THEOREM 1. For simplicity we shall prove the theorem
only in case n — 1 the proof of the general case is analogous. Lu takes
the form

(4) Lu^A-^+a^+cu-^ c^0, A>0 .
dxι dx dt
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From the strong maximum principle [3 Th. 5] it follows that all we
need to prove is that u(P)=M if P e V'nS(P°) where V is some neigh-
borhood of P°.

There are two possibilities : Either there exists a sequence {Pk}
such that P* e S(P°), Pfc -> P°,u(Pk)=M, or there exists a neighborhood
F={# 2 +f<# 2 } of P° such that u(P)<M for all P e VnS(P°), PφP\
In the first case we can use [3 Th. 5] to conclude that u(P)=M if
Pe V'nS(P°) where V is some neighborhood of P° (since u(P)=M for
all PeS(P*)).

It remains therefore to consider the case in which u(P)<M for all
Pe VnS(P°), PΦP°. We shall prove that this case cannot occur by
deriving a contradiction. Writing

we define a domain Dδ (<5>0) as the intersection of S(P°) with the set of
points (x, t) in V for which

If K<0 then, because of (3), we can choose δ sufficiently small such
that

(5) 1 + A^O*OU>0 .
dx2

If K^O, we can obviously take δ such that K— δ<0 and such that (5)
holds.
We now can take R sufficiently small such that ^(#)<min(0, ψ(x)) for
all (x,t) in DB, xΦO. Consequently, u(x,t)<M if t = φ(%), x=£θ. The
function h(xyt)—~t + φ(x) vanishes on t — φ(x) and is positive in D8.
Therefore, if ε>0 is sufficiently small, then v~u + eh is smaller than M
at all points on the boundary of Dδ with the exception of P°, where
v(PQ)—M. Noting that ^'(0) = 0 and using (5), we conclude that

if R has been chosen sufficiently small. Hence, Lv=Lu+εLh>0. It
follows that v cannot assume its positive maximum at interior points of
D8 and, therefore, it assumes its maximum M at P°. We thus obtain
dvjdt>0 at P° and, consequently,

θt dt dt

(Here

liminf
dt f-o — t
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On the other hand, letting in (4) P -> P° in an appropriate way and
using (2) and the inequality Lu(P)^0, we get

lim a(P) dvJ^- +C(PQ)M - l i m s u p — ( - Ώ ^
dx dt

+ lim a(P) +(P)M lim sup
dx2 dx dt

dt

We have thus obtained

lim sup du{P)jdt ^ 0 < ε £ dujdt.

This is however a contradiction (since

du
dt ~ p^pO dt

for an appropriate sequence {£&}), and the proof is completed.

REMARK (a) Consider the following example: n = l, P° = (0, 0) and
D defined by

x2 + t2<R, £<7Ί#, t<γ2x

The function u(x, ί) = (ί —Γi^K^^—0 satisfies the following proper-
ties: w<0 in DjU = Q at P°, and

9ί

provided R is sufficiently small. Consequently, (3) and the second assump-
tion in (2) are not satisfied and also the assertion of Theorem 1 is false.

REMARK (b). Consider now the case in which the tangent hyper-
plane at P° is not of the form t — const.. We shall prove that in this
case Theorem 1 is false. Take n — \ and consider first the case in which
D is defined by

If Lu^^d2uldx2—duldtf then the function u(x,t)=—x takes its maximum

in D at P°=(0, 0), Lu = 0, but uφO in S(P°).

Consider next the case in which D is defined by

x>at,

and take Lu — θ2uldx2~aduldx—duldt.
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The transformation tr — t,x''—x—at carries the present case into the
previous one.

Note that if the tangent hyperplane H at P° is not the plane t — 0
and the axes are rotated so as to give H the equation £' = 0 (in new x\
t! coordinate), then Lu loses the form (1), for ux,t, and uvt, will appear
in it.

REMARK (C). If in Theorem 1 the domain D is on the side t>φ(x),
then the theorem is false. Indeed, as a counter-example take u=—t,
and D bounded from below by t — 0.

2. Consider the linear operator

L'u^ Σ aυ(x, t)-^- + Σ bi}(x, t) -?>-- + Σ <x, t) du-

(6)

+ Σ &.O> ί) ~+a(x, t)u a(x, ί)^0,
* 9ί

where x = (^:,
 # ,^w) and t — (tu •••,£,„) vary in the closure of a given

(?z+m)-dimensional domain D. We assume that Lr is elliptic in the
variables x and parabolic in the variables t, that is, for every real
vector λΦθ,

(7) Σ ^ M X), ΣMA^o.

All the coefficients appearing in (6) are assumed to be continuous in D

and u is assumed to be continuous in D and to have a continuous t-
derivative and continuous second ^-derivatives in D. Under these as-
sumptions, Nirenberg [3 Th. 2] has proved a weak maximum principle
from which it follows that, if Πu^.0 in D then u must assume its posi-
tive maximum on the boundary.

Let P° = (α°, t°) be a point on the boundary of D such that u(P°) =

ikf>0 is the maximum of u in D. Assume that there exists a neighbor-
hood V: \x-x°\2+\t~-t°\2<R2o of P° such that u(x,t)<M in VdD. We
then can prove the following theorem.

THEOREM 2. If there exists a sphere S: \ x—xf |2 +11 — t' |2 < R2 passing
through P° and contained in D, and if x°φx; then, under the assump-
tions made above {in particular, L'w^O, 6̂(̂ , ̂ )<Λί in Vc\D), every non-
tangential derivative dujdτ at (x°, t°)y understood as the limit inferior
of Δu Δτ along a non-tangential direction τ, is negative.

By a non-tangential direction we mean a direction from P° into the
interior of the sphere S



206 AVNER FRIEDMAN

REMARK (a). If a(x, t)=Q then the assumption M>0 is superflous.

REMARK (b). In § 3 we shall show that the assumption x°Φxr is es-
sential. We shall also discuss the case in which u(x, t) is not smaller
than M at all the points of VriD.

Proof. For simplicity we give the proof in the case m — n — 1, so
that

(8) Lfu=A^+B^+a^ + b^- + σu A>0, B>0, c<0;
dx2 dtf dx dt ~

the proof of the general case is quite similar. Without loss of genera-
lity we can take (x'f t') — (0, 0) and #°>0. Furthermore, we may assume
that, with the exception of P°, S lies in FnZ), so that u(x,t)<M in
S—P°. Denote by C the intersection of S with the plane x>δ, where
0<δ<x\ The function

k(x, ί)= exp(—a(#2+f))—exp( —aR2)

satisfies the following properties : ft=0 on the boundary of S, k^>0 in
C; if a is large enough, then

Uh=exv(~a(x2+t2))[4:a2(Ax2+Bf)-2a(A+B+ax+bt)+c]

-cexp(-αβ2)>0.

(Here we used x>δ>0,
If ε is sufficiently small, then the function v—u + eh is smaller than

M at all points of the boundary of C with the exception of P°, where
v(P°) = M. Since Uv—Uu + εUhyQ, v cannot assume its positive maxi-
mum in C at the interior of C (since, otherwise, at such interior points
L'v would be non-positive). Hence, v assumes its maximum at P° and,
consequently, 9v/9r=lim inf (ΔvjΔτ)<L§. Since along the normal v (i.e.,
along the radius through P°) dh/dv>0 and since along the tangential
direction σ dhldσ — §, it follows that dhldτ>0. Using the definition of v,
we conclude that dujdτ=:dvldτ—εdhldτ<Of and the proof is completed.

Added in proof. Theorem 2 was recently and independently proved
also by R. Viborni, On properties of solutions of some boundary value
problems for equations of parabolic type, Doklody Akad. Nauk SSSR,
117 (1957), 563-565.

3. From now on we shall consider only parabolic operators of the
form (1). Suppose the assumption u<M in 7 n β , made in Theorem 2,
is replaced by u^M. If there exists a sequence of points {P*} such
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that Pk-+P\ PkeD, Pk = {xk, tk) and tk^t\ u{Pk)=M, then, by [3 Th. 5],
u=M in S(Pk). Hence, if the boundary of D near P° is sufficiently
smooth, u=M in some set V'n D where V is some neighborhood of P°.
Consequently dujdτ — 0 for every τ.

If u(P)^M for all PeVnD, if u(P) is not strictly smaller than M
for all Pe VnD, PΦP0, and if the previous situation does not arise, then
one and only one of the following cases must occur:

( i ) u<M at all points (x, t) in VnD with t^t°. Using [3; Th. 5]
one can easily conclude that there exists a neighborhood V of P such
that u<M in 7 ' n β , and Theorem 2 remains true.

(ii) u<M at all points (a?, £) in VnD with £>£0 and w=M at all
points (x,t) in VnD with /,Ξ>£0. We then consider only those directions
r along which u<M. We claim that Theorem 2 is not true for the pre-
sent situation. To prove this, consider the following simple counter-
example :

po — (o m M—() T —®2u_®u ( /Λ__f~£2 if £>0
θx* dt ' ' 1 0 if £<0 .

w satisfies Lu^O and assumes its maximum 0 for ί^O. But, the
derivative du\dτ at P° = (0, 0), along any direction τ, is zero.

As another counter-example (with Lu — 0) one can take a fundamen-
tal solution of the heat equation.

Note that the preceding counter-examples are valid without any
assumptions on the behavior of the boundary of D near P°.

We shall now consider the case x ^ x 0 which was excluded by the
assumptions of Theorem 2. We shall assume that at P° = (0, 0) there
passes a tangent hyperplane t — 0. If D is above this hyperplane, then
the preceding counter-examples show that Theorem 2 is not true. It
remains to consider the case in which D is "essentially" below t = 0,
that is, if we denote by t = φ(x) the equation of the boundary of D near
P°, then D is on the side t<φ(x). In this case, however, Theorem 1
tells us that in general we cannot assume both ^(P0)=max u(P)>0

(PeD) and u<u(P°) in VnD.
The example in § 1 Remark (a) can also serve as a counter-example

to Theorem 2 in case P° is a vertex-point. Indeed, along the ^-direction

du
dt dt

= 0

By a small modification of this counter-example one can get a
counter-example to the analogue of Theorem 2 for elliptic operators [2]
[4] in case P° is a vertex. Indeed, define D by

y<γλx,
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and take Lu—d^uldx^+Ad^uldy2, where A>\γλγ2\. The function u(x,y) =
(y—Tιx)(y—ϊ^x) satisfies : u<0 in D,u = Q at the origin, Lu=2rj2+2A>0.
But along any direction τ within D, duldτ\x=Q)y=0 = 0.

4. Let D be a domain bounded by the two hyperplanes t — 0f t —
T>0 and a surface B between them. Assume that the intersection

{t — T} nD is the closure of an open set on t — Tf and denote by A the
boundary of ΰ on ί = 0. The Neumann problem for the parabolic equa-
tion Lu=0 consists in finding a solution to the equation Lu — 0 which
satisfies the following initial and boundary conditions :

u—f on A, ——g on B
dv

(/, g are given functions).

From Theorem 2 and from the strong maximum principle [3 Th. 5] we

conclude: If for every point P° = (#°, t°) of B ( i ) there exists α sphere with

center {x\t')y x'Φx*, passing through P° and contained in D, and (ii)

S(P°) contains interior points of A, then the Neumann problem has at
most one solution. Clearly, this uniqueness property holds also for the
more general problem where du\dv is replaced by du\dτ and τ is a non-
tangential direction which varies on B.

As another application to Theorem 2, one can deduce the positivity
of dGldv, where G is the Green's function of Lu = 0.

5. Let flbea domain bounded by ί = 0, t = T(0<T£^) and sur-
faces ΓjoO^k^m, Γo being the outer boundary. Suppose further that
the intersection of each Γk with t — t0 (O^to<T) is a simple closed curve
γk(td) which belongs to C(3) and does not reduce to a single point. Write
uXt=dulθxt,ut = duldt. We shall consider the following problem P:

n

( 9 ) Σ 0u(#, t)ux.x—ut=c(x, t, u, pu)

(where ψu denotes the vector

fill n m

(10) °^~ = Σ oLt(x, t)ux.+a(x, t)ut = φ(x, t, u) (a?, t) e Γ = Σ Γ*

(11) u(z, 0) = ψ(x) on A A=DΓ\ {t = Q}

We make the following assumptions :

( a ) atJ(x, t) is continuous in D c(x, t, u, yu) and it first derivatives

with respect to u, pu are continuous for (x, t)e D and for all values
of u, ψu.
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( b ) φ and dφjdu are continuous for all (x, t)e Γ and for all u.
( c ) at{x, t), a(x, t) are continuous for (x, t)e Γ ψ{χ) is continuous in A.

( d ) (9) is parabolic in D, t h a t is, there exists a positive constant d
such that

holds for all real ξ and for all (a?, t) e D.
(e ) On each surface Γk (k — 0f 1, , m) either all the directions τ=(aif

a) are exterior or all are interior, and in the exterior case αΞ>0 and
the directions (aίf 0) are exterior while in the interior case <x<.0

and the directions (at9 0) are interior.

Denote by Σ the class of functions u(x, t) defined and continuous

in D and satisfying the following conditions :

(a) dujdt, dujdxl9 d'u/dxβxj are continuous in D

(β) For every R>09du/dxt is bounded in Dn {\x[z + t2<R2}.

THEOREM 3. Under the assumptions (a) —(e) the problem P cannot
have two different solutions in the class Σ

We shall need the following lemma.

LEMMA. There exists a function ζ(x) defined in A and having the
following properties : ( i ) ζ has continuous first derivatives in A and con-
tinuous second derivatives in the interior of A (ii) dζjdv— —1 and dζjdμ — ύ
on 7Ό(0), , rTO(0), where d\dv and d\dμ denote the derivatives with respect
to the interior normal and to any tangential direction, respectively.

PROOF OF THE LEMMA. It will be enough to construct a function
Xo(x) which is C" in A, which vanishes in a neighborhood of ^(0) (i = l,
• , m) and for which 0χo/9y=—1, dχJdμ = Q along ro(O) constructing
7Ί(#) in a similar manher, we can then take C(a?) = ΣZi(^) Since 7Ό(0)
belongs to C(3\ the normals issuing from γo(O) and inwardly directed
cover in a one-to-one manner a small inner neighborhood of TΌ(O), call it
AQ. To each point x in AQ there corresponds a unique point xl] on the
boundary of TΌ(O), such that x lies on the normal through x\ Denote
by σ(x) the distance |α?—a?°|. It is elementary to show that σ(x) has
continuous second derivatives in AQ. Denote by A1 the domain 0^σ^ε 0 ,
where εo>O is small enough so that Aλ(zA^ The function

0 if xeA-Aι

belongs to C" in A and satisfies: dχoldv = dχQldσ=-l and dχoldv = O on
7Ό(O), and χQ vanishes near rfc(0), (l^fc^m) the proof is completed.
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PROOF OF THEOREM 3. We first consider the case n>l. We may
suppose that the vectors (au a) are exterior directions on ΓQ, , Γq and
that {at9 a) are interior directions on Γa+lf * , Γ m . Suppose now that
u and v are two solutions in Σ of the problem P, and define w—v—u.
Writing

51 Q
—c(x, t, u + λWy \7u+λpw)dλ

odu

SI Q
c(x, t, u + λw,

odux.

S i Q
φ(χ9 t,

odu

and using (9), (10) and (11), we obtain for w the following system :

(13) ΣflijWvfj—Wt

(14) — == Σ<xiwX{+awt = Φw
dτ i

(15) w(α,0) = 0 .

Substituting ιυ(xft)=z(xft)exj)(Kt+Mζ(x)), where ζ(x) is the function
constructed in the lemma and K, M are constant to be determined later,
we get for z the following system :

(13') Σ<MVj-S '=

(14) —
dτ

(15')

If O^&gg, a>0 and Y^a^x, 0)ζ<ct(x)>0 on ^(0), since the angle between
the vectors (at) and grad ζ is <7r/2. By continuity we get Σai(χi £)C*t(a0^
^>>0 on rfc(t), provided O^t^T and T ; is sufficiently small. Hence, we
can choose M sufficiently large such that

(16)

holds on γk(t), provided K^O and

If g + l ^ f c ^ m , α ^ 0 and Σai(%,fyζχ.{%)<Q> since the angle between
(oct) and —grad ζ is <7r/2. Again, if K^>0 and Λf is sufficiently large,
then

(17)
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on r*(£), O^t^T'.
Having fixed M, we now choose K sufficiently large so that the

coefficient of z on the right side of (13') becomes positive in the domain
Dτ,^Du {0<t<T'}. We claim that z=0 in Dτ,. Indeed, if this is not
the case then, using (15') and the weak maximum principle [3 Th. 2]
we conclude that z assumes either its positive maximum or its

negative minimum on the boundary Σ7*(ί)> O^ί^T", of Dτ,. It will be

enough to consider the case in which z assumes its positive maximum
at a point P° on γk(t). If 0<^k^q, then dz/dr^O since τ is outwardly
directed. On the other hand, using (14') and (16) we get dzldτ<0,
which is a contradiction. If g + l g ά ^ m , then dz/dr^O since τ is in-
wardly directed. On the other hand, using (14') and (17) we get
dzldτ>0 which is a contradiction. We have thus proved that z=w~Q
in DTr. We can now apply a classical procedure of continuation and
thus complete the proof of the theorem for the case n>l.

In the case n=l, Γ~Γ0 is composed of two curves ΓQ1 aud Γ02.
Suppose ΓQk intersects £ = 0 at akf aL<a.z. The function

£(X)- (x-a>ι)(x-<h)

can be used in the preceding proof. Note that it is not necessary to
make any assumptions on the smoothness of the curves FOk.
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AN INVERSION OF THE STIELTJES TRANSFORM

RICHARD R. GOLDBERG

A generalized Lambert transform, or L-transform, is an integral of
the form

In this paper we shall invert the integral transform

(1) G{x)

by reducing it by means of a certain summation to an L-transf orm and
then applying an inversion theorem for L-transforms.

From this we deduce an inversion formula for the Stieltjes transform.
This is given in Theorem 3.

1. The inversion of the transform (1). We shall need the follow-
ing theorem on L-transf orms which is the case r — 1 of Theorem 7.7
in [l].

THEOREM 1. Let {ak}k=1 be a bounded sequence of non-negative
numbers with α^X). Let {bn}n=ι be the (unique) sequence such that

jl, m—1

dim d w/d (0, m = 2, 3, ,

the summation running over all divisors d of m. If the bn are also
bounded and if

Σake-kt (0<t<oo)
k=i

2. H(x)— \ K(xt)φ(t)dt converges for some x>0

3.

then

) — Φ(t) almost everywhere (0<£<CXD) .

Received March,21 1958.
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214 RICHARD R. GOLDBERG

Now let

ψ{t)tdt
Jo χλ

where we assume

oo .
o t Jo t

To reduce G(x) to an L-transform we define

Then

( 2 ) HN(x) = [ °° φ(t)Γ—- + Σ - ^ :

For JV=1, 2, ••• we have

(This is because the terms of the sum alternate in sign and decrease
in absolute value so that the modulus of the sum is less than that of
its first term.) Hence for any x > 0

Lufλjv ft. — x I * K / I " p l Π//i I —J J AJCΛ/ • / υ ί/

This, by dominated convergence, allows us to let N become infinite
under the integral sign in (2) and we obtain

But for 2>0

(-l)fcg = cosech

(see [3 113]). Thus

( 3 ) H(x)= [~Σe-C3*-1>xtΨ(t)dt= [~K(xt)<p(f)dt
Jo fc = i Jo

where K(t) = ̂ ake-kt and
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( Λ\ n 1 π n h 1 9 . . .

It was shown in [2 556] that the sequence {6w}"=i defined in Theorem
1 corresponding to the ah in (4) is

Here the μn are the Moebius numbers defined as μι — \, μn = ( — l)s if n
is the product of s distinct primes and μn = 0 if n is divisible by a square
factor. The bn are bounded, so that we may apply Theorem 1 (with
the αfc and bn as in (4) and (5)) to invert the L-transform (3) and obtain
φ{t) for almost all έ>0. These results are summarized in Theorem 2.

THEOREM 2. Let

^ _ r ψ(t)tdt

where

Coo]'f''^l-dt<oo

and

I _ oo
t

Then

H(x)=\im --\ ^

exists for all positive x and

Moreover

x

almost everywhere (0<£<oo).

2. The inversion of the Stieltjes transform. Let

(6) F{x)ΛC°(^t^dt
J° x+t
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where

< , and
o ί Jo

Let G(x)= -F(x2), φ(t)=ψ(f). Then
Li

Jo a ^ + ί 3 Jo a;2 + ίa

2 2 Jo x1-

also

similarly

The assumptions of Theorem 2 thus hold. We can therefore use Theorem
2 to obtain ψ(t) = φ(tf) for almost all £>0. This gives us φ(t) for almost
all t>0 and thus effects an inversion of the Stieltjes transform (6).

THEOREM 3. Let

where

Jo t

and

Jo t

Let

and

x
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(the sum converging by Theorem 2). Then

p t / n-i L V t J

almost everywhere (0<£<cx>).

Of course, the Stieltjes transform has been inverted under less
restrictive conditions on φ(t). We believe the interest of this note lies
in the use of the μn as an inverting device.
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ON THE PERIODICITY OF THE SOLUTION OF

A CERTAIN NONLINEAR INTEGRAL EQUATION

OLAvi HELLMAN

In the following paper we will study the nonlinear integral equation

( 1 ) E(t)=F(t)-^G(t-τ)N{E(τ)} dτ

where F{t) is a known periodic real function and G{t) and N(x) are
known real functions. In particular we will investigate the behaviour
of the solution E{i) of the equation (1) for large values of t.

We assume that GeL[0, oo] and that N(x) is bounded almost
everywhere and Borel-measurable in [—00, 00]. Furthermore N(x) is
assumed expressible in the form

(2) N(x)~N(O)+\+~S(t)'
J - o o

λ χ -J

—±
iλ

S +oo

|S(/l)|cZΛ<co and with finite N(0). This representation is to be

valid almost everywhere in [ — 00, 00 ]
Because N(x) is Borel-measurable in [—00, 00] and |iV(0)|<oo, the

measurability of x implies the measurability of N(x). The following
four classes of iV(#)-functions are distinguished :

( 3 )

The space of measurable and bounded functions defined on the
finite interval [0, A] will be denoted by M[0, A]. The norm of
xeM[0, A] is defined, as usual, by

NeKn

NeK^

NeKml

NeK^

if
if

if

if

xe
xe

xe

xe

L[0,
L[0,

L[0,

L[0,

1]

1]
CO

oo

]

1

implies
implies

implies

implies

N(x)
N(x)

N(x)

N(x)

ε
6

6

e

L[0,
L[0,

L[0,

L[0,

1]
CO]

1]
CO]

\\x\\=inf] sup \x\
E \te{β,A1-E

where E ranges over the sets of measure zero in [0, A], and the
distance of xeM[0, A] and yeM[0, A] by \\x—y\\. The space M[0, 1]
is complete.

The proofs in this paper will be based on the following theorem by
Tihonov (see for instance [1]) which is valid in M[0, A]: Let the operator
B map M[0, A] into itself and let \\B(x)-B(y)\\^β\\x~y\\ for all x and

Received March 5, 1957. The preparation of this paper was sponsored by the Office of
Naval Research and the Office of Ordnance Research, U.S. Army. Reproduction in whole
or in part is permitted for any purpose of the U.S. Government.

219



220 OLAVI HELLMAN

y in Λf[O, A], where β<l. Then the equation y=B(y) has a unique

solution y in Af[O, A], The function ?/ may be obtained by iteration :

2/=lim 2/n

where y«=B(2/»-i) and where #0 may be taken arbitrarily from Λf[O, A].
We will prove the following theorem.

THEOREM. Suppose that F(t) is a periodic function in [0, oo] with

period T, and that FeM[0, T], Furthermore suppose that GeL[0, oo],

NeKl0O and

// E(t) is the solution of

G(u)du - 1 G{t - τ)\ S{λ)e- - Ldλdτ

o Jo J-oo iΛ

then lim E(nT+u)=v(u) exists, as n->co through integer values. The
convergence is uniform. Moreover, v(u) has the period T, and satisfies

( 5 ) v(u)=F(u)-N(0)[°G(u)du--[OG(τ)[+S(λ) ^^I^
JO JO J-oo %X

This equation can be solved by iteration stating with any element of
M\β, T]. The solution of (5) is unique.

In order to prove the theorem, we will first prove two lemmas.
Put

ft,, f+oo JλJΓmΓ + M-T) 1

H{Δ{u+mT)\ = G(τ)dτ S(λ)eίλE^τ+u-^-e X dλ
Jθ J-oo H

where Λ(u+mT)=E(u + nT)-E(u+mT) and 0£u^T. Here T is a finite
positive real number, t0 a positive real number which may be finite or
infinite and m and n positive integers. E(u+nT)eM[0, T] and E(u+
mT)eΛί[0, Γ] implies Δ(^+mΓ)eΛί[0, T}. The operator if will play
an important role in the following considerations. For this reason we
will first establish some of its properties. We will write more briefly

LEMMA 1. Suppose that GeL[0, oo], and suppose that the function

N(x) belongs to one of the classes Kn and Kl0O. Then Δ e M[0, T] implies

H{Δ) e Λf[O, T] and

where
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Now

•τ)}-N{E&-τ)}Wτ

where

N(E)=[+°° S^^—dλ
J -°° iλ

and

_ j l if t^U

lθ if ίo<ί

GeL[0, oo] implies G(r)I(ίo-r)eL[O, oo]. Furthermore, from
xeM[0, T] and the properties of N(x) follows that N(x)eM\0, T\.
Consequently N(x)eL[0,T]. From known properties of the convolution
follows now that

\tG(τ)I(tύ-τ)[N{E1(t-τ)}-N{E2(t-τ)}]dτeL[Oy T] .
Jo

Hence H(Λ)eL[0, T\. Now, as is easily seen,

*\S(λ)\ι

which implies the boundedness of H(Δ). The function H{A) is thus
measurable and bounded in [0, Γ], H(A)eM[Q, T], Furthermore

r

J - 2

which completes the proof.

We will now consider the norm

5/0)
G

0

-N{E(u+mT-τ)}]dτ\\ = Q

where m and n are positive integers, /(ire) an arbitrary function of m,
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T a finite positive number and EeM[0, T], Furthermore it will be

assumed that G e L[0, oo] and Ne KlΰO and that they satisfy the condition

The following lemma holds.

LEMMA 2. For every ε>0 there exists an integer md such that
m^m0 and n^md imply Q<ε, if and only if, with v(u) from M[Q, T],
\\E(u+pT)—v(u)\\->0 as p->co through positive integral values.

Suppose first that \\E(u+pT)—v(u)\\-+0, as p->co, where E and v
are in M[0, T]. Now

\\[Km)G(τ)[N{E(u+nT-τ)}-N{E(u+mT-τ)}]dτ

Jo

G(τ)\ S(λ)e^ r f dλdr\\

= {\^G(u^du){\+O° ls(^)l^ y\E{u+nT-τ)-E{u+mT~τ)\\

and consequently

\\E(u+nT)-E(u+mT)+[A^G(τ)[N{E(u+nT-τ)}-N{E(u+mT-τ)}]dτ\\
Jo

where (( |G(%)|dMVf+oβ|S(;)|d^<l. Because

p-»oo, there exists for every ε>0 an integer mλ such that m^
implies

as

from which the first part of the lemma follows.
Suppose now that (6) is valid for m and n greater than a given

integer m2. The inequality (6) may be written

\\J(u+mT)

+ (/ ( m >G(r)Γ'
Jθ J - c iλ

where Δ(u+mT)=E(u + nT)-E(u+mT)
Now let h be a function in M[0, T]nS(e, 0) where S(e, 0) is the

sphere with radius e and center at h — Q. Put
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Δ(u+mT)
Γ/(w) f+o

+1 G(τ)\
JO J-o

The functions Δ obtained by solving (8) for all heM[0, T]nS(ε, 0) are
those which satisfy (7). E(u + mT) is a known function.

The equation

Δ(u+mT)=h(u)-\ G(τ)\
Jo J-o

where H is the operator defined on page 3, may be solved by iteration.
Indeed, by Lemma 1 the operator H is defined in ϋf [0, Γ], Δ e M[0, T]

implies H(Δ) e Λf[0, T] and

where ^ =

The conditions of the Tihonov's theorem are thus satisfied. We
begin the iteration process with an h from M[0, T]nS(ε, 0):

E( u+nT-^ e Ldλdτ5/(m) f+

G(τ)\
o J-

and generally

f

)=A(%)-1
J

θ

The unique solution of (9) is then lim Δk(u + nT) = Δ(u + nT) where
fc->oo

Δ(u+mT) is in M[0, T].

Now

l l ^ / ^ ^ ^ H ^ ll-^II -h- II
J

From this inequality one obtains now, remembering that 114,1
and that β<l,

' ~l-β

This inequality holds true for all p. Consequently
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\\J(u+nT)\\r £

ι-β

or, in view of the definition of Δ(u + nT),

for m and n greater than m2. But such ra2 exists for every ε>0. From
this and from the completeness of the space ikf[O, T] follows that
there exists a ^ e M[0, T] such that

WEiu+p^-vi^W—>0

as p->co through integral values.
We now proceed to prove the Theorem.
Because of the periodicity of F(t) one obtains from (1)

Jo

G(τ)N{E(u+mT-τ)}dτ
o

where O^u^T and where m and n are positive integers.
Suppose that m<n and td<LmT. Then

ί
u + mT Γu+nT

G(τ)N{E(u+mT-τ)}dτ- G(τ)N{E(u + nT-τ)}dτ
ί0 Jί0and

\\E(u+nT)~E(u+mT)+ [°G(τ)[N{E(u + nT-τ)} -N{E(u+mT-τ)}]dτ

Jo

^\\[U+ΛG(τ)\\N{E(u + nT-τ)}\dτ+[U+mT\G(τ^^

/ Cu+nT Γu + mT \ foe

g([ |\ |G(τ)[ίίr(l + [[ [ί?(r)|ίίr[[ [[iV[[^2[[Λ^[ \G(τ)\dτ
\ Jί0 Jί0 / Jί

Because GeL[0, oo], there exists a positive integer m3 for every
e>0 such that for td=m3T

- 2\\N\\

But m3^m<n. Consequently, for every ε>0 there exists a positive
integer ra3 such that m^πι<,n implies
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\\E(u+nT)-E(u+mT)

+ [m2TG(τ)[N{E(u+nT-τ)}-N{E(u+mT-τ)}]dτ\\^ε
Jo

By Lemma 2 it follows now that there exists a v e M[0, T] such
that \\E(u+pT)—v(u)\\->0 as p->oo through positive integral values.
Consequently E(u+pT) converges uniformly to v(u) in [0, T\. That
v(u) is periodic with period T is immediate.

We substitute now

E(u+nT)=v(u)+Hn(u)

where HneM[0, T] and ||iϊJ|->0, as n-+™ and where O ^ ^ T , into (1)
and obtain

v(u)+Hn(u)=F(u)-N(0)\U+nTG(τ)dτ

Jo

G(T) S(λ) _ β _ i _ ^ β _ ^ 1 d λ d τ

0 J - - ^^

As is seen at once, this may be rewritten as follows :

iλ Jo

S oo r + oo i\H n(U-T) 1

G(r) S(λ)eίλυίu-7> -e^~ —L-dλdτ+Hn(u) +
0 J-oo iλ

G(τ) S(λ) β- 1-± Uλdτ - N(0) G(τ)dτ = 0
nT+u J-oo %λ jnτ+u

which yields the inequality

G(τ)\ S(λ)- : -didτ\\

But , f+>Oβ|S(Λ)|^, |K^) | | and N(0) are finite, ||i/"M||->0 as n->oo and
J -oo

\ \G(u)\du->0 as ^~>CXD. Consequently
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o iλ J

as n-+co through integral values, from which the equation (5) follows
for v(u).

The right side of (5) satisfies the conditions of Tihonov's theorem.
This follows by Lemma 1 where we substitute t0=co, E(mT+u—τ) — 0
and J(mT+u — τ)—v(u—τ). If the right side of (5) is denoted by c(v),
then, by Lemma 1, veM[0, T] implies c(v)eM[0, T] and | | φ i ) — φ 2 ) | |
^β\\vi—V'ΛW for Vι and v2 from M[0, T], By Tihonov's theorem it follows
then that the equation (5) has a unique solution v e M[0, T] which may
be obtained by iteration, beginning with an arbitrary function from
M[O],T.
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A THEOREM ON EQUIDISTRIBUTION IN

COMPACT GROUPS

GILBERT HELMBERG

1. Preliminaries. Throughout the discussions in the following sec-
tions, we shall assume that G is a compact topological group whose
space is I\ with an identity element e and with Haar-measure μ normal-
ized in such a way that μ(G) = l. G has a complete system of inequivalent
irreducible unitary representations1 R(λ)(λeA) where β ( 1 ) is the identity-
representation and r λ is the degree of iϋ ( λ ). i?Cλ)(β) will then denote
the identity matrix of degree rλ.

The concept of equidistribution of a sequence of points was introduced
first by H. Weyl [6] for the direct product of circle groups. It has
been transferred to compact groups by B. Eckmann [1] and highly
generalized by E. Hlawka [4]\ We shall use it in the following from :

DEFINITION 1. Let1 {xv:veω} be a sequence of elements in G and
let, for any closed subset M of G, N(M) be the number of elements in
the set {xv: xv e M9 v^N}.

The sequence {a?v: v e ω] is said to be equidίstributed in G if

(1)

for all closed subsets M of G, whose boundaries have measured 0.
It is easy to see that a sequence which is equidistributed in G is

also dense in G. As Eckmann has shown for compact groups with
a countable base, and E. Hlawka for compact groups in general, the
equidistribution of a sequence in G can be stated by means of the
system {R^ΆeΛ} of representations of G.

LEMMA 1. The sequence {xv:uβω} is equidistributed in G if and

only if

( V) lim - ! Σ # ( λ )(O = 0 f o r a l l λ φ l .
N-^CO j y v=i

Using this lemma, Eckmann arrives at the following theorem.

Received May 27, 1957. Presented at the 535th meeting of the Amer. Math. Soc. in
Berkeley, Calif., April 20, 1957.

1 In the following A and A' always denote any index-set, finite, countable, or un-
countable, and ω denotes the set of positive integers 1, 2, .

2 Professor Hlawka has also noted in a letter to me that in order to secure the validity
of Theorem 7 in [1] the lemma and footnote preceding it, it is necessary to change the
definition of equidistribution into the form given below.
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THEOREM 1. Let g be an element of G such that

\R<»(g) - R^(e)\ Φθ for all λ Φ 1 .

Then the sequence {g*: v e ω] is equidίstributed in G.

It follows immediately that a group containing an element g with
the above property is abelian and generated by a single element in the
sense that the powers of g are dense in G. A group with the last property
is called monothetic.

It is possible to extend this concept of generation of a group by
one element to generation by a finite number of elements, that is, to
ask for the smallest closed subgroup of G which contains a given finite
set of elements of G (i. e., in which the set of all finite products of
finite powers of these elements is dense).

DEFINITION 2. The finite set {gk: k=l, 2, , n] of elements of G
is said to generate the subgroup H of G, if H is the smallest closed
subgroup of G containing all gk (fc = l, 2, ,ri).

Our subject in the following discussion will be a generalization of
Eckmann's results in two directions indicated by that definition. First
we shall try to find equidistributed sequences produced by finite set of
elements in not necessarily commutative groups. In fact, the corre-
sponding Theorem 2 will turn out to contain Theorem 1 as a special
case. Furthermore we shall extend the definition of equidistribution in
G to equidistribution in a subgroup of G.

DEFINITION 3. The sequence {xv: v e ω} of elements of a subgroup
H is said to be equidistributed in H if it is equidistributed in the topo-
logical group H with respect to the relativized topology and with respect
to the Haar-measure on the topological group H.

This definition is legitimate since H in the relativized topology is
again a compact and Tλ. Theorem 3 permits us to find sequences equi-
distributed in a subgroup of G and contains Theorem 2 as a special case.

In § 4 we compare our results with the results already known
for finite groups which can be considered as compact groups in the
discrete topology. Finally, we apply our results to abelian groups.

Before taking up this program, we state two rather obvious lemmas
which will be helpful for deriving new equidistributed sequence from
given ones. Clearly changing a finite number of elements of an equi-
distributed sequence has no influence on the property of being equi-
distributed.

LEMMA 2. If the sequence {a^weω} is equidistributed in G, then
the sequence {a~l: v e ω] is also equidistributed in G.
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Proof. If M is an arbitrary closed subset of G whose boundary has
measure 0, then M'1 is also closed its boundary has measure 0 and μ(M)
=μ(M~τ) because of the fundamental properties of the Haar-measure μ.
Let N'{M) be the number of elements in the set {av: αve M, r^N} and
correspondingly N"{M) the number of elements in {a~ι: a^1 eM, vrg
Then N"(M)=Nr(M~1) and

which holds because of our assumption for {av \ veω) is equivalent with

Therefore {α;1: v e ω} is equidistributed in G.

LEMMA 3. If the sequences {αv: v e ω] and {δv: v e ω) are equidistri-
buted in G, then the sequence {cv : c2v-i=ttv, c 2 v=6 v, v 6 ω} is also equi-
distributed in G.

Proof. Define N\M), N'\M) and N(M) respectively for the se-
quences {av: v e ω], {bv: v e ω] and {cv: v e ω] as above. For any posi-
tive integer Nf let Nx be the greatest integer in (iV+l)/2 and let iV2=
N—Nλ (Nτ and N.z are just the numbers of α's and δ's among the first
JV c's). Then

M) iv;(M)+iv;/(M) iv (ikf)
iV M+iV 2 N N

Starting from our assumption about {av:ve ω] and {6V: v e ω) it is easy
to show t h a t

lim lim
ΛΓ-*~ N N-+~ N 2

for any closed subset M of G whose boundary has measure 0. But
this implies (1) and the equidistribution of {cv: p e ω).

2. Non-commutative groups. A first generalization of Eckmann's
Theorem 1 is given by the following.

THEOREM 2. Let gk (k = l, 2, ••• , n) be n elements of G such that
for each λφl there is at least one g% for which

- R<λ\e)\ Φ 0 .



230 GILBERT HELMBERG

Then the set of elements*

G' = W-g' = glΦ - g>, 0 ^ 4 < co, & = l, 2, . . . , n]

can be arranged in a sequence which is equidistributed in G.

Proof. We shall use Lemma 1. In order to simplify the notation
of the proof, let us agree on the following. If A is the matrix {a Λ)
then || A | | shall stand for the matrix ( |α^|), and if B is a matrix {b,})
of the same degree r λ as A then we shall write || A | | ί£ | |7? | | for the
simultaneous inequalities \atJ | ^ | δ t j | for all i, j with l<:i,j<,rλ. The
symbol Fw shall stand for the matrix of degree r λ with the entries
fij — 1 for all i, j with l^ίi, j^rλ. We can regard | |A | | as matrix-norm
for A for which the following relations hold (all matrices are of same
degree r λ ).

|| kA || = I k I || A \\ (ke In f ie ld of complex numbers)

( 2 )
if | | A | | ^ | | C | | and

|| A || ^ aFW i f a ^ m a x {\atJ \ : l

Furthermore we shall write Π?=1 hτ for the ordered product hJh," ,hm

and Σ for

h 2 Λ
Σ Σ , ••• > Σ

J J J j j

if it is clear that I goes from 1 to m.
In order to prove the theorem we first arrange the countable set

Gr in a sequence {g[: v e ω] as follows, let g[ be e (ik — 0 for k=l, 2, «« , n);
as the next 2n—1 elements we take the products Π£ = 1 #^ with 0 ^ i f c ^ l
(fc=l, 2, , n) and max {ik : fe = l, 2, , w} = 1 in any order. Then we
take the Sn-2n products Uϊ^gl* with 0^i f c ^2 (ft = l, 2, , w) and
max {ίfc: &=1, 2, , n} —2 in any order and so on.

The sequence so constructed {g'v : ve ω] contains all elements of G'
and has the property that the first (i + l)n elements g\ (v = l, ••• (i + l)n)
are precisely all elements Γ d ^ * with 0^ik^if (k=l, 2, , n). In
order to show the equidistribution of this sequence in G we have to
show that

3 We allow any element of G to occur an arbitrary number of times in the set Gf and
similar sets formed below.
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(3) lim i- Σ Rw(g'.)=0 for all λΦ 1

Let us assume that for a fixed λΦl the element gk satisfies the
condition

(4) \R^(g~k)-R^(e)\Φθ

which means exactly that the matrix Rw(gk) does not have the eigen-
value 1. For a given N let i be the greatest integer in N1/n — 1, such
that

(5)

Then

1 Γ(i + l ) n

;) = i Σ
iV L v=i

Σ

where the second term in the square brackets vanishes if N = (i+l)n

with the same qualification we have

( β ) - N l '
Σ

Σ

Let us now consider separately the terms in the square brackets,
(a) Because of well-known properties of matrices and group-repre-

sentations we can write

= Π j-.-f Γ Σ
( 7 )

ffj -.fΓ Σ

π f —ί--Σ

Again the first or last of the three factors vanishes if k — 1 or k = n
Since R^λ)(e) is the identity matrix, the following identity holds.

Because of our assumption (4), we can solve this equation to obtain.
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Since iϋ(λ) is a unitary representation of G, we have for any
and any integral exponent j

(8)

According to our rules (2), the following inequalities then hold

where mλ is a positive constant independent of i. This gives an upper
bound for the matrix norm of the middle factor in (7)

Furthermore by (8)

II—— Σ
|| * + l * o

Replacing each factor in (7) by the stated bound for its matrix-
norm, we get

I I T ^ () Γ ft
|| ( z + l ) n o^^i \fc-i y\\ *-i ^ + i

( 9 )

(b) Using (5) we get an upper bound for matrix norm of the
second term in (6)

( b Γ

(10) < i ί±-2)!=ίί±l)>» (by (5»
(•+1)*



A THEOREM ON EQUIDISTRIBUTION IN COMPACT GROUPS 233

(c) Let now ε>0. Because of (9) we can find a number lx such
that for all i^Iλ

(ID Σ a™(ΠΛ'O < -ά^i V*-i ) \ 2

Let
l/W

then for iΞ>/2 we have

I ^ ε
( 1 2 ) v- i + i y - 2

Now let 7=max(/I(/2) and take M=(I+2f. Then from (6), (10)
and the last two relations (11) and (12) it follows that

ψ^[N L2"

for all N ^ M .

This shows the validity of (3) and the application of Lemma 1 com-
pletes the proof.

E. Hlawka, [4, §6] has shown that any sequence which is dense in
G can be rearranged so as to be a sequence which is equidistributed in
G. In view of that fact it should be emphasized that Theorem 2 (as
well as any of the following ones) does not merely state that the set
Gf is dense in G it states also the existence of a generally valid
formula, as shown in the proof, for actually arranging the elements of
G' in a sequence which is equidistributed in G.

Theorem 2 implies two more facts which are worth noting. First
if we have n elements of G which satisfy the required condition, then
we can, before actually producing the set G', arrange them in an entirely
arbitrary order without affecting the equidistribution of the corresponding
sequence in G. In the non-commutative case we shall therefore in
general get different sequences containg different elements of G which
are equidistributed in G. Second, we can add an arbitrary finite number
of arbitrary elements gn+1, ••• , gm to our set of n elements {gk : k —
1, 2, , n} of G. The new set of m{>n) elements of G still satisfies
the condition of the theorem and, taken in any order, produces a set
which can be arranged so as to be an equidistributed sequence in G.

The first remark together with Lemma 2 and Lemma 3 leads to the
following.
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C O R O L L A R Y 2 . 1 . // the elements gk (k = l,2, ••• , n ) satisfy the con-
dition of Theorem 2, then the sets

G" = {g" : g" = flfjiφ, ••• , g * n , - o o < i f c ^ 0 , & = 1 , 2 , . . . , ra}

/// = ^ / / z . ^ ' " = g i , gi2h . . . g i n 9 _ _ T O < ί f c < + ^ k = l f 2 , . . . , ^ }

δe arranged in sequences which are equidistributed in G.

Proof Let

G= {g:~g = g'* gfc, , g\\ 0 ^ ifc< + oo, k = 1, 2, , n} .

Then G can be arranged in a sequence equidistributed in G and Grf — G~ι.
According to Lemma 2, G77 can also be arranged in a sequence which
is equidistributed in G.

Gtπ is the union3 of G' and G"—e and according to Lemma 3 can
be arranged in a sequence equidistributed in G.

COROLLARY 2.2. // the elements gk (k = l, 2, ,ri) satisfy the con-
dition of Theorem 2, then G is generated by {gk : k = l, 2, , n).

Proof. We notice that G' is not an abstract subgroup of G. How-
ever, the subgroup H generated by {gk : k=l, 2, , n] must contain
any finite product of finite powers of the gk

9a. Therefore, it must con-
tain all elements of the set Gf. Since G' is dense in G, we have Ή. — G.

3. Subgroups. If H is a subgroup of G, then any R^(λeA) re-
stricted to the elements of H, gives a representation i2*cχ) of H. Each
jg*O) c a n j ) e completely reduced into a direct sum of irreducible unitary
representations of H which, as remarked before, is again a compact
group. Let1 R/(-τ)(τe A') be the system of inequivalent irreducible unitary
representations of H, so obtained. RfQ) again denotes the identity re-
presentation of H, obtained e. g. by restricting Rω to H.

It can be shown without difficulty that {iϋ/(τ) : r e / } is a complete
system of inequivalent irreducible representations of H. In order to do
that we have by the Stone-Weinstrass-theorem to show that the entries
of the system {R'^ : τ e A'} span a linear space which is an algebra
closed under pointwise multiplication and under conjugation and which
separates points in H. But all these properties hold for the system
{R(λ):λeA}, and from this we have obtained {iϋ/(τ) : τe A'} only by
changing the base in each i?(λ), restricting it to H and selecting a
system of linearly independent entries.



A THEOREM ON EQUIDISTRIBUTION IN COMPACT GROUPS 235

We can apply Theorem 2 to a subgroup H in the following form.

THEOREM 3. Let H be a subgroup of G and let hk{k — l,2y , n) be
elements of H with the property that for each λ e A there is at least one
element hk such that the multiplicity of the eigenvalue 1 in Rw{hk) is
exactly the multiplicity with which the identity-representation i2/(1) of H
is contained in i ί* ( λ ) .

Then the set

Hr = {h' : h! = h\i h\h , &*», 0 ^ ik < + oo , k = 1, 2, . . , n)

can be arranged in a sequence which is equidistributed in H.

Proof. From the above remarks we can conclude that any irredu-
cible representation of H is contained in some i2*<λ). Suppose that for
a certain ΨΦl and for each fc=l, 2, , w w e have

\R'&(hk) - 2 ^ ( 6 ) 1 = 0 .

This implies that R^r){hk) has the eigenvalue 1 for each fc = l, 2, , n.

The representation R/(-T) is contained in some i?* ( λ ) which may contain
also i2/(1) with multiplicity m. But then each R^λ)(hk) (fc=l, 2, , w)
would have the eigenvalue 1 at least with multiplicity m + 1 which con-
tradicts our assumption.

Therefore for each τΦl there has to be at least one h% such that

\Rf(T\h*) -R^{e)\ Φ 0

and the conclusion of Theorem 2 applies to the topological group H.
Again we notice that the order, in which the elements hk are used

to produce the set Hf is insignificant. By exactly the same reasoning
as in §2, we obtain the following.

COROLLARY 3.1. / / the elements hk (k — ly 2, , n) satisfy the con-

dition of Theorem 3, then the sets

H" = {h" : hft = h[ι h\h , K», ~°° < % ^ 0, k = 1, 2, . . . , n]

and

Hm = {h!" : htn - A}i hi*, . . . ,hin, -™<ik< + oo, k = 1,2, ••• ,n]

can be arranged in sequences which are equidistributed in H.

COROLLARY 3.2. / / the elements hk (k=l, 2, --• , n) satisfy the con-

dition of Theorem 3, then H is generated by {hk : k — lf 2, ,n}.

4. Finite groups. Let now G be a not necessarily commutative
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finite group of order o, considered as a finite compact group with the
discrete topology. The Haar-measure of G is then defined by μ{g) — \Jo
for any element geG.

The theorems stated so far are valid in general and therefore also
for finite groups, since G was nowhere required in the definitions,
lemmas and proofs to have infinitely many different group elements or
inequivalent, irreducible representations. However, it is of not much
use to talk about infinite sequences in a finite group. Therefore it seems
justified to modity the concept of equidistribution of a sequence to the
situation in finite groups in the following way :

DEFINITION 4. Let {xv: v=l, 2, ••• , N} be a finite sequence of
elements of G and let N(M) be the number of elements in the set
{xv: xv e M, u^N} for any subset M of G.

The sequence {xv: v = l, 2, , N} is said to be equidistrίbuted in
G if

(13) N Ά = μ{M)

for all subsets M of G.

The formal translation of Definition 1 to finite groups, however,
admits a much less complicated statement of equidistribution of finite
sequence in a finite group which in turn reflects the intuitive meaning
of equidistribution in infinte groups. In contrast to the infinite case the
order of the element in the finite sequence {xv: y = l, 2, , N] is com-
pletely irrelevant. Instead of talking about a finite sequence of elements
of G, we might therefore just as well talk about a finite set of elements
of G (which may contain any element of G arbitrarily often). If M
contains m elements, then μ(M)~m\o. Especially if M = {g} (a single
element of G) (13) gives N(g) = Nlo for any element geG which means
that {xv: v = l , 2, , N} contains each element of G equally often.
Conversely, if the latter is true, then N(M)=mNjo and (13) holds for
any subset M of G. So we can give the following better definition.

DEFINITION 4'. The finite set {xv: v=l, 2, — , AT} of elements of G is
said to be equidistributed in G if it contains every element of G equally
often.

In the same way we modify Definition 3.

DEFINITION 5. The finite set {xv: v = l , 2 , * ,N} of elements of a
subgroup H is said to be equidistributed in H if it contains every element
of H equally often.

The theorems obtained so far are then completely transferable to
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the finite case [3 Theorems 8 and 9]. Let now {i2(A) : Λ = l , 2, ••• ,1}
be a complete system of inequivalent irreducible unitary representations
of G and let Rω again be the identity-representation of G. Further-
more let o(g) be the order of any element g e G. The results are as
follows.

THEOREM 4. Let gk {k—1, 2, , n) be n elements of the finite group
G such that for each λΦl there is at least one gk for which

Then the set

Gf = W g' = βl1 g\h , gi»9 0 ^ ik < o(gk), k = 1, 2, , n]

is equidistributed in G and contains each element ge G exactly

— Π o(gk)
O fc = i

times.

COROLLARY 4.1. If the elements gk (k—1, 2, , n) satisfy the con-
dition of Theorem 4, then G is generated by {gk: fc=l, 2, ,ri}.

THEOREM 5. Let H be a subgroup of order o(H) of the finite group
G and let hk (k=l,2, , n) be elements of H with the property that for
each λ = l, 2, ••• , I there is at least one element hk such that the multi-
plicity of the eigenvalue 1 in Rw{hk) is exactly the multiplicity with
which the identity representation iϋ/(1) of H is contained in i2* ( λ ).

Then the set

Hf = {hf: h! = h\ι ffa, , h*n, 0 ^ ik < o{hk), k = 1, 2, , n}

is equidistributed in H and contains each element he H exactly

o(H)-1 ΠS-i °(K) times.

COROLLARY 5.1. If the elements hk (k = l, 2, ,n) satisfy the con-
dition of Theorem 5, then H is generated by {hk: k = l, 2, , n}.

The Corollaries 2.1 and 3.1, transferred to the finite case, coincide
with Theorems 4 and 5. There is a last case which might be of in-
terest, where H is a finite discrete subgroup of the infinite compact
group G. Take the notation as defined in the corresponding cases. We
get the following.

THEOREM 6. Let H be a finite discrete subgroup of order o(H) of
the infinite compact group G and let hk {k—1, 2, ••• , n) be elements of
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H with the property that for each λ e A there is at least one element
hk such that the multiplicity of the eigenvalue 1 in R^(hk) is exactly
the multiplicity with which the identity-representation # / ( 1 ) of H is con-
tained in jβ*<λ>.

Then the set

Hf = {h! : h! = h[ι hfe, , &*», 0 ^ ik < o(hk), k = 1, 2, , n)

is equidistributed in H and contains each element h e H exactly

IK-i o(hk) times.

Proof. By the same reasoning as in the proof of Theorem 3 we
assert that each irreducible representation of H is contained in some
i2 ( λ ), restricted to H. Then as there was done with Theorem 2 we apply
Theorem 4 to the finite group H.

COROLLARY 6.1. If the elements hk (&=1, 2, , n) satisfy the con-

ditions of Theorem 6, then H is generated by {hk : k = l, 2, , n).

It may be remarked that Theorems 4 to 6 can be deduced also from
Theorems 2 and 3 without going back to the corresponding condition
imposed on the generating elements, by means of the following lemma.

LEMMA 4. Let gk (k=l, 2, ••• 9n) be elements of finite order o(gk)
(fc=l, 2, ,n) of an arbitrary compact group G.

Then (i) the finite set

G= {9-9 = Qi1 g>, > g£»f 0 ^ ik < o{gk), k = 1, 2, , n]

is equidistributed in G if and only if (ίi) the set

Gf = {g': g' = g{i gU, ••• , gi», 0^ik< + c o , h = l,2, ••• ,n}

can be arranged as in the proof of Theorem 2 in a sequence which is
equidistributed in G.

Proof, (i) -> (ii). From (i) it follows immediately t h a t G is finite.
Let m be the least common multiple of the numbers o(gk) (k — lf2J ••• ,
n). If we arrange the elements of Gr in a sequence {g[: v e ω] as in
the proof of Theorem 2, then we observe t h a t

{#;: v £ {pmf} = [gr : g' = g\ι gfr, , g%

nn, 0 £ ik < pm, k = 1, 2, , n}

(p=positive integer) is just composed of (pm)w/ΠLi o(gk) times3 the set

G. So for N=(pm)n in (V) we get

(14) 7 - 1 — Σ β ( λ ) ω = V Σ
(pmf v-
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If (i) holds it can be shown that the right-side sum in (14) is the
0-matrix for λΦl. If N is an integer between (pm)n and [(p+l)m]n

then the left-side term in (Γ) can be split up into (pm)n/N times the
left-side term of (14) and 1/N times a sum of N—(pm)n unitary matrices.
But

N-{pm)n < \{p±l)mT-{pmY = Λ LY - 1
N ~ (prnf V pJ

can be made arbitrarily small as in the proof of Theorem 2 and by the
method used there we arrive at (Γ).
(ii) -> (i). We first observe that Gf contains only finitely many different

elements, namely those contained in G, and G is finite. Again (14)
holds. Since (14) gives just the value of the left-side term of (Γ) for
N—(pm)n(pβω)f we can conclude from the validity of (Γ) that

Σ ή gjή = Σ Rw(g)

has to be the 0-matrix for λΦl. But from this follows (i) by the well-
known properties of irreducible representations of a finite group.

5. Abelian. groups. Let now G be a (finite or infinite) compact
abelian group. The irreducible representations are of degree 1 and in-
stead of talking about a complete system of inequivalent irreducible
unitary representations iϋ(λ) (λ e A) we may talk about a complete system
of inequivalent characters χ(λ) (λeA), where χ^ denotes the identity-
character. As can be seen easily, the conditions of Theorem 2 and 3
take the specially simple form " χw(stk)φl for λΦl " and "for each λ
for which χ^(h)φl for some element heH there is at least one element
hϊ such that χCλ)(h]c)φl" respectively. However, here we can make a
stronger statement than in the preceding theorems.

THEOREM 7. Let gk (k=l, 2, , n) be elements of the abelian group
G. Furthermore, let

G! = W \g' = glιgl*, ••• , gfr, 0 ^ iu < + oo, k = 1, 2, . •• , n]

and let {g'v: v e ω) be the sequence in which the elements of G' have been
arranged as in the proof of Theorem 2.

A necessary and sufficient condition for (i) {gk: k=l, 2, , n} to
generate G and (ii) {gv: v e ω] to be equidistributed in G is that for each

there is at least one g^ such that

z<λ)Gτ*) Φ i .

Proof, The statement about sufficiency is exactly Theorem 2
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together with Corollary 2.2. Let us now assume that {g'v: v e ω} is equi-
distributed in G. Then {gk:k = l,2, 9ή} generates G. Suppose that
for a given ^ l w e have χw(gk) = l for all fc=l, 2, , w. Take a fixed
element geG with χ ^ t e ) ^ ! a n d a n arbitrary small positive number
ε<|χ ( λ )((/) — 11. Since finite products of finite powers of the elements
gk (fc=l, 2, , w) are dense in G and since χ ( λ ) is a continuous charac-
ter on G there has to be an element g'—g^gi* ••• ^ such that

Since # ( λ )(#') — 1 this implies |# ( λ ) (#) — 1 |<ε . But this contradicts our
assumption about ε.

THEOREM 8. Let hk (k — lf 2, , n) be elements of a subgroup H of
the abelίan group G. Furthermore let

Hf = {hf: h' = h[ι ffa, , hfr, 0 ^ ik < + "oo, k = 1, 2, . , ̂ }

α?zd Zeί {̂ 7

V: v e ω) be the sequence in which the elements of W have been
arranged as in the proof of Theorem 3.

A necessary and sufficient condition for (i) {hk: k=l, 2, , n) to
generate H and (ii) {h'vweω} to be equidistributed in H is that for each
λ for which χ^(h)φl for some element heH there is at least on element
hk such that

Proof. Again the sufficiency of the above condition is stated in
Theorem 3 and Corollary 3.2. On the other had, if {h'vweω} is equi-
distributed in H, then {hk: k = l, 2, ••• ,n} generates H and we can
prove our claim exactly as in the proof of the preceding theorem.

Naturally there hold similar statements as Corollaries 2.1 and 3.1.
For finite abelian groups we can, by obvious modifications, arrive at con-
clusions about equidistribution of finite sets as in §4, see [3, Theorems
10 and 11].

If we take as our abelian group G the direct product of p circle
groups, the p-dimensional toroidal group, then Theorems 7 and 8 give
us well-known theorems of Kronecker [5, p. 83 Theorem 4] and Weyl
[6, Theorem 4]. It has been shown by Halmos and Samelson and again by
Eckmann (see [1, Theorems 2 and 5] and [2, Theorem II* and Corollary])
that the p-dimensional toroidal group as well as any separable connected
compact abelian group is monothetic.

In contrast to the situation in abelian groups the condition of
Theorem 2 is not necessary for the existence of an equidistributed
sequence of the form {gv: v e ω} (as constructed there) in a non-com-
mutative group. A simple counter example is given by the tetrahedral
group A± (the alternating group of 4 variables). Let gx and g>2 be two
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different elements of order 2 and g3 an arbitrary element of order 3.
If we denote by JB(4) the irreducible representation of A± of degree 3 it
can be easily checked4 that \RV\gh)-R&{e) 1 = 0 for k = l, 2, 3. However,
the set of 12 element G={g :g=gligbg&, 0^i1<2f 0^i 2 <2, 0^i<3}
is equidistributed in G. By Lemma 4 it follows that the set

Gf = W : g' = gbgbgbf 0 ^ i < co, fc = 1, 2, 3}

can be arranged in a sequence which is equidistributed in G. A counter-
example disproving the necessity of the condition of Theorem 3 is given
by any group containing A± as a subgroup, for example A± itself or
the symmetric group of 4 variables.

REFERENCES

1. B. Eckmann, Ueber monothetische Gruppen, Comm. Math. Helv. 16 (1943/44), 249-263.
2. P. R. Halmos and H. Samelson, On monothetίc groups, Proc. Nat. Acad. Sci. USA,
28 (1942), 254-258.
3. G. Helmberg, Strukturbeziehungen ziυίschen endlicher Gruppe, Gruppenring und ir-
reduziblen Darstellungen, Monatsh. Math., 58 (1954), 241-257.
4. E. Hlawka, Zur formalen Theorie der Gleichverteilung in kompakten Gruppen, Rend.
Circ. Mat. Palermo Ser. II. IV (1955), 33-47.
5. J. Koksma, Diophantische Approximationen, (Berlin 1936).
6. H. Weyl, Ueber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 7 7 (1916)'
313-352.

UNIVERSITY OF WASHINGTON

4 The characters of gι, g2 and #3 in RW are - 1 , - 1 and 0 respectively.





SUBFUNCTIONS AND THE DIRICHLET PROBLEM

LLOYD K. JACKSON

1. Introduction. In previous papers [1 6] the notion of sub-
harmonic functions was generalized by replacing the dominating family
of harmonic functions by a more general family of functions. The object
was to require of the dominating functions the minimum properties
necessary to study the boundary value problem by subfunction tech-
niques. In a natural way these properties were separated into two
parts : first, those properties sufficient to obtain functions which are
solutions in the interior of a domain and, second, those properties suf-
ficient to obtain agreement of the solution with the prescribed boundary
values on the boundary of the domain. In particular the aim was to
choose properties which would be sufficient to insure that a solution
would take on prescribed boundary values at any boundary point p at
which an exterior circle could be drawn intersecting the closed domain
only in the point p. In a recent paper Inoue [5] points out an error
in this second aspect of [1]. Inoue then lists properties of the dominating
functions which are sufficient to insure the regularity of boundary points
at which exterior triangles can be drawn. In his paper these properties
are embodied in six postulates the first four of which are essentially
the same as the first four postulates of [1]. Postulates 5 and 6 given
by Inoue are used in studying the behavior at the boundary and are
naturally more restrictive but they are such that the theory can be
applied to elliptic partial differential equations which have the property
that the difference between two solutions is subharmonic when positive.

In the present paper we use only the portion of the theory of sub-
functions which is based on the first four postulates of [1] to obtain
some results concerning the Dirichlet problem for certain types of
elliptic equations. We shall give some results concerning the linear
equation

( 1 ) Λz+a(x, y)zx+b{xy y)zy+c(x, y)z=f(x, y) ,

where Δz ——+—, and the quasi-linear equation
dx2 dψ

( 2 ) a(p, q)r+2b(p, q)s+c(p, q)t = O ,

where p =—, g = — , r = — , s = - ^ _ , and t=—. In particular we
dx dy dx1 dxdy dx2
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shall give a theorem concerning the Dirichlet problem for the minimal
surface equation

for non-convex regions. The result is quite weak but is perhaps of
some interest since results ef this type are very meagre indeed.

2. {F} -functions and sub-{F} functions. In this section we shall
list for convenience the postulates satisfied by the {F} -functions and
some theorems given in [1]. For simplicity our language will be in
terms of the plane, however, our statements in this section could be
phrased in terms of Euclidean space of any number of dimensions.

Let D be a given plane domain and let {/c} be the family of all

circles with radii less than some fixed number and such that K—K-\-κ c D
where K is the open circle bounded by K and K its closure. Throughout
the paper we shall use Ω to indicate an arbitrary bounded domain such
that ΩdD and the boundary of Ω will be represented by ω. We shall
use single small italic letters in this section to represent points in the
plane.

Let there be given a family of functions {F(x)}f which we shall
call {F} -functions, satisfying the postulates that follow.

POSTULATE 1. For any ice {/c} and any continuous boundary value
function h(x) defined on /c, there is a unique F(x h /c) e [Fix)} such that

(a) F(x h κ)=h(x) on /c,

and (b) F(x h; fc) is continuous on K.

POSTULATE 2. If h^x) and h2(x) are continuous on κe{/c} and if
h^x)^fh(x)^M on K, M^O, then

F(x hx κ)-F{x h2 κ)^M

in K; further, if the strict inequality holds at a point of /c, then the
strict inequality holds throughout K.

POSTULATE 3. For any &e {κ\ and any collection {hv(x)} of func-
tions h,(x) which are continuous and uniformly bounded on /c, the
functions F(x hv K) are equicontinuous in K.

DEFINITION 1. The function s(x) is defined to be a sub-{.F} func-
tion, or simply a subfunction, in D provided

(a) s(x) is bounded on every closed subset of D,
(b) s(x) is upper semicontinuous in Df
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and (c) s(x)^F(x)e {F(x)} on /c e {/c} implies s(x)^F(x) in K.

DEFINITION 2. The function S(x) is defined to be a super- {F}
function or a superfunction in D provided—S(x) is a sub-{—.F} function
in D.

Let g(x) be a bounded function defined on ω, the boundary of Ω,
and define

g*(xQ)=\immfg(x) ,
x ω—>a?Q

and

DEFINITION 3. The function φ(x) is an under-function (relative to

g(x)) in Ω if φ(x) is continuous in Z?, is sub-ji*7} in 42, and φ(x)^g(x)

on α>.

DEFINITION 4. The function φ(x) is an over-function (relative to

g(x)) in Ω if (̂a?) is continuous in Ω, is a super- {F} function in β, and
on ω.

POSTULATE 4. If Ω is any bounded domain comprised together with
its boundary ω in D and if g{x) is any bounded function defined on ω>
then the associated families of over-functions and under-functions are
both non-null.

DEFINITION 5. By a solution of the Dirichlet Problem for Ω relative
to {F(x)} and relative to a given bounded boundary value function g(x)
on ω, we shall mean a function H(x) which is continuous in Ω, satisfies

()

at each xoβω, and is such that for each κe{/c} with KcΩ we have

( 5 ) H(x)^F(x;H;κ) in ΪT .

DEFINITION 6. We shall say that a function H(x) which is continuous

in Ω, and which satisfies (5) for each /ce{/c} with KaΩ, is an {F}-

function in Ω.

DEFINITION 7. Given a bounded domain Ω such that ΩaD and a
bounded function g(x) defined on ω. We denote by H*(x) and #*(#) the
functions defined by
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H*(x) = sup φ(x) ,
φe{Φ]

and

H*(x)=inf ψ(x) ,
<pe{ψ]

where {φ} and {ψ} are the associated families of under-functions and
over-functions respectively.

THEOREM 1. Given any bounded domain Ω with ΩaD and any
bounded function g(x) defined on ω, then the associated functions H*(x)
and H*(x) are {F}-functions in Ω [1 p. 303].

DEFINITION 8. The point xoβω is a regular boundary point of Ω
relative to {F(x)} provided that for every bounded function g(x) defined
on ω the associated functions H^(oc) and H*(x) satisfy (4) at xQ.

THEOREM 2. // all points of ω are regular boundary points of Ω,
and g(x) is continuous on ω, then the Dirichlet problem for Ω, relative
to {F(x)} and g(x), has a unique solution [1 p. 304].

The next theorem shows that regularity of a boundary point ' ' in
the small" implies regularity " i n the large".

DEFINITION 9. For a point xQeω, a circle K with center at xQ and

with KaD, and constants ε>0, M, and N, a function

S(X)=ΞS(X K ε, M, N)

is a barrier subfunction provided :

(a) s(x) is continuous in ΩΠK,
(b) s(x) is a sub-{F} function in ΩΓiK,

(c) s(xo)^N— ε,

(d) s(x)^N+2e on ωΓ\K,

and (e) s(x)^M on fin«.

DEFINITION 10. With the notation of Definition 9, a function S(x)=
S(x K, ε, ikf, N) is a barrier superfunction provided :

(a) S(x) is continuous in Kf)Ω,
(b) S(x) is a super- {F} function in KΠΩ,

(c) S(xo)^N+ef

(d) S(x)^N-2e on

and (e) S(x)^M on

THEOREM 3. // /or xQeω and for each set of constants ε>0, M,
and N, there exists a sequence of circles ι^n — κn{xύ) with centers at xQ and
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radii rn(x0) -> 0 for which barrier subfunctions s(x κn ε, M, N) and bar-
rier superfunctions S(x κn e, M, N) exist, then xQ is a regular boundary
point of Ω relative to {F(x)} [1 p. 305].

3. Equicontinuity at the boundary. In this section, before turning
our attention to differential equations, we shall show that a property of
{F} -functions given as Postulate 8 in [1] is a consequence of Postulates
1 and 2.

THEOREM 4. For any circle & e {/c}, if the functions {hXx)}, uni-
formly bounded and continuous on K, are equicontinuous at xQeκ, then the

functions F(x hv fc), defined in K, are equicontinuous at xQ.

Proof. Assume that \hv(x)\<M on K for all hv{x)e {h^x)}. Since
the functions {K(x)} are equicontinuous at x0, it follows that given e>0
there exists an arc o of K with midpoint at x0 such that

\hv(x)—hv(xQ)\<e on σ

for all hv{x)e {K(x)}. Now let the function g(x) be continuous on /c,
g(x)>M on κ—σ, g(x)^>—M+ε on <r, and g(xQ)^—M+2e. For any
hy{x) e {K{x)} set

then

F(x hv κ)—cv<F(x g to)

on /c. Therefore, by Postulate 2

I φ ; hv «)—c v<F(^ g /c) in

for each /&v(α?) e {K{x)}. Since jP(α; g /c) is continuous in K, there exists

a circle κλ with center at x0 such that

F(α;;^;/c)- ί 7 (^ 0 ;^;/c)<e in

Then

J?Xa? hv Λ ) - C V < F ( O J ^ κ)<e+F(xQ ^

in JSΓΠ JSΓi, hence, for any hy{x)e {hv(x)}

F(x hv Λ)—F(a?0 v̂ /c)<3e in

By a similar argument there exists a circle Λ2 with center x0 such that

F(x fev ^)-,P(ίc0 hv /c)> -3e in KΓΪ K2 .

Hence, if % is the smaller of κλ and «2, then
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\F(x K κ)-F(x0 hv «)|<3e in Kf]K3

and the functions F(x hv; tc) are equicontinuous at x0.
Theorem 4 obviously remains valid under weaker conditions. For

example, the theorem remains valid if Postulate 1 is weakened by
assuming that the boundary value problem is solvable for some class of
continuous boundary value functions defined on K which under the uni-
form topology is dense in the set of all continuous functions defined on
K. Also, Theorem 4 remains valid if instead of dealing with a circle
/c6{/ί} we state the theorem in terms of a bounded demain Ω with
ΩcD and assume x0 is a regular boundary point of Ω. However, in
this case the proof draws on Postulates 3 and 4 as well as Postulates 1
and 2.

4. Applications to elliptic partial differential equations. In this
section we shall show that the solutions of certain types of elliptic
partial differential equations satisfy Postulates 1 to 4. We shall also
consider some regularity criteria for boundary points with respect to
these equations. It will be more convenient in this section to return to
the customary (x, y) representation of points in the plane.

First we shall consider Postulate 2 since it states a characteristic
property of the solutions of a wide class of elliptic differential equations.
We consider the function E(x, y, zy p, q, r, s, t) and make the following
assumptions :

(1) E is continuous in all 8 variables in the region T defined by

τ ((x,y)eD

where D is a domain in the ^-plane.
(2) The first partial derivatives E2, Ep, EqJ Er, E8, and Et are con-

tinuous in T, E2

s-4:ErEo<0, Er>0, and Ez<>0 in T.

THEOREM 5. The solutions of the elliptic partial differential equation

( 6 ) E(x,y,z,p,q,r,s, £) = 0

where p=—*L q — ~^f r——-, s=—-—, and t—~~-- satisfy Postulate 2.
dx dy dxι dxdy df

THEOREM 6. The functions s(x, y) and S(x, y) of class C(2) in the
subdomain ΩaD, are respectively a subfunction and a superfunction in
Ω with respect to solutions of (6) if and only if

( 7 ) E(x, y> s, 8X, sy, sxx, sxy, syy)^

and
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( 8 ) E(x, y, S, Sx, Sy, Sxx, Sxy, Syy)^0

in Ω.
The proofs of Theorems 5 and 6 follow immediately from the maxi-

mum principle for solutions of elliptic partial differential equations which
has been discussed by Hopf [4].

We consider now the linear elliptic equation

( 1 ) L(z)=Λz+a(x, y)zx+b(x, y)zti+c{x, y)z=j\x, y) .

We assume that D is a bounded plane domain such that a{x, y)> b(x, y),

c(x, y) and f(x, y) are Holder continuous in D and c(x, y)^0 in D.

THEOREM 7. The solutions of (1) satisfy Postulates 1, 2, 3, and 4.

Proof It follows from Theorem 5 that the condition c(x, y)^0 in

D insures that Postulate 2 is satisfied.

It is known [9] that there is an ro>O, depending on max[ |α | , |6 |,

\c\, I/ |] in D, such that Postulate 1 is satisfied for the family {K} of

circles with radii less than or equal to r0 and with K^K+KCZD. The
uniqueness part of Postulate 1 follows since Postulate 2 is satisfied.

If K 6 {/c}, if (α?0, y0) is an interior point of K, and if z(x, y) is con-

tinuous in K, is of class C(2) in K, and is a solution of (1) in K, then

\zx(x0,yQ)\^:M and \zy(xo,yo)\^M9 where M depends on max[ |α | , | δ | , | c | ,

I/|] in K, max | z(xf y) \ on /c, the radius of κf and the distance from

(#o> 2/o) to K [9]. This implies that Postulate 3 is satisfied.

Let Ω be any domain such that ΩcD and let g(x, y) be any bounded
function defined on ω. Then, if u(x, y)=γ[a—eβx] where α, β, and γ are
constants,

x, y)
a—eβx

Choose β so that β>ma.x\a(x,y)\ in D, then choose a so that a—eβx>l

in Ω. It is then clear that γτ>0 can be chosen large enough that the

function ψ(x, y)—γι[a—eβx'\ will simultaneously satisfy the conditions:

L[ψ]<:f(x,y) in Ω and ψ(x, y)>g(x, y) on ω.

Hence, it follows from Definition 4 and Theorem 6 that ψ(x9 y) is an
over-function. Similarly, if γ2>0 is taken large enough,

Φ(α, 2/)=—r2[<z—

will be an under-function. Postulate 4 is satisfied.



250 LLOYD K. JACKSON

Since Postulates 1 to 4 are satisfied it follows from Theorem 1 that,

given any domain Ω with ΩaD and any bounded function g(x, y) defined

on ω, the associated functions H*{x, y) and H*(x, y) exists and are

solutions of (1) in Ω.

THEOREM 8. Let Ω be a domain with ΩaD and let (xo,yo)eω be

such that a circle /c0 can be drawn with KoczD and Kof]Ω — (xQyyo). Then
(%o> Vo) is a regular boundary point of Ω relative to solutions of (1)

Proof Making use of Theorem 3 we see that to establish the
regularity of (xQ, yQ) it is sufficient to show that barrier subfunctions and
barrier superf unctions can be constructed for all sufficiently small circles
with centers at (x0, y0). We shall consider only the barrier superf unctions
since the barrier subfunctions can be dealt with in an exactly parallel
way.

By the method used in Theorem 7 we can select a functions S0(x, y)

which is continuous in Ω, is of class C(2) in Ω, and satisfies

( 9 ) L[S0Uf(x,y) i n β .

Now assume that constants ε>0, M, and N are given. Let (xlfy1) be
the center of «0 and r0 its radius. Let κx be a circle with center at
fo)> 2/o) and radius rλ<r0 taken small enough that

(10) S0(x, y)^S0(x0,yo)—e on ωΠK, .

Let

and

One can easily verify that, if n is chosen large enough, then

(11) L[w]^0 in Ω ,

furthermore, w(x,y) is continuous in Ω, w(xQ,yQ) — 0, and w(x,y)>0

elsewhere in Ω.

Now we consider two cases : N—SQ(xQ9 yQ)>0 and N—S0(xQ,y0)<Q.

First we assume N—S0(xQ,y0)>0, then we can choose h±>0 such that

(12) hxw{xy y)^M+ max \SQ(x, y)\ on κτ[\Ω .
(ί,y)6Q

The function

S(x, 2/ Λj ε, Λί, N) = h1w(%> v)+S0(x, y) + N-S0(xQ, y0)
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is then a barrier superfunction at (α?0, yύ) for the circle /cL. This follows
immediately from (9), (10), (11), (12) and the definition of a barrier
superfunction.

Now assume N—S0(xQfyΰ)<0. Again it is easily verified that, for
<5>0 chosen sufficiently large, the function

(13) v(x, y) = [N-S0(x0,

satisfies

(14) L|>]^0 in Ω .

Let the circle κ2 with center at (xQ, y0) and radius r 2 < n be chosen small
enough that

(15) v(x, y)^N—SQ(xOf y0)— on ωΠK2.

Then let hz>0 be taken large enough that

(16) h.βjo(x, y)^M+ max [|SQ(x, y)\ + \v(x, y)|] on κ2Π Ω .
Ca3,y)6Ω

It follows from (13), (14), (15), and (16) that

S(x, y ica ε, Λf, N)=h%w{x9 y)+v(x, y)+S0(x, y)

is a barrier superfunction at (#0,2/0) with respect to the circle /c2.

THEOREM 9. Let D be a domain in which the coefficient functions

in (1) are Holder continuous. Then, if Ω is any bounded domain with

ΩdD and is such that corresponding to each (xQ,y0)eω there is a circle

K with ΩΓ\K=(xQ9y0) and if g(x,y) is any continuous function defined

on ω, there is a unique function z(x, y) which is continuous in β, is of

class C(2) and satisfies (1) in Ω, and is equal to g(x, y) on ω.

Proof. This is an immediate consequence of Theorems 2 and 8.
In our consideration of the quasi-linear equation

( 2 ) φ, q)r+2b(p, q)s + c(p, q)t = O

we are going to employ two sets of conditions on the coefficient func-
tions, first, conditions (A): a(p, q), b(p, q), and c(p, q) have Holder
continuous first partial derivatives, ac—62 = 1, and α > 0 for all (p, q).

Bers [2] has proved that, if α, 6, and c satisfy conditions (A), then
there exist functions k(p,q), θ(p, q), and Λ(p, q) with k(p,q)>0, 0(0,0)
= A(0, 0) = 0, and which are such that

dp dp dq dq



252 LLOYD K. JACKSON

We now state conditions (B) on the coefficients of (2): There exists an
ε>0 such that

(17) a( ±±£) + β ( i ± £ ) + 2b( ML) ̂  2ε

for all (p,q) where w = l/Γ+p2 + g2, further θ and J can be chosen so
that

(18)
pθ+qΛ

for all (p, q). Conditions (A) and (B) are satisfied by the minimal surface
equation (3) if it is normalized so that αc—62 = 1. For this reason Finn
[3] calls equations (2) which satisfy conditions (A) and (B) equations of
" minimal surface type " .

In our application of the theory of §2 to equation (2), we let D be
the ίπ/-plane and {/c} the family of all circles in the plane.

THEOREM 10. If equation (2) satisfies conditions (A) and (B), then
its solutions satisfy Postulates 1 to 4.

Proof Nirenberg [7 p. 138] has proved that if Γ is any convex
domain in the plane with boundary γ which is of finite length, which
can be represented parametrically by

:=x(s)
γ: '

in terms of arc length s where x(s) and y(s) are of class C(3), and
which has positive curvature everywhere, and if g(s) has a Holder con-
tinuous second derivative on γ, then there is a function z(x, y) continuous
in Γ, of class C& and a solution of (2) in Γ, and such that z(x(s), y(s))
=zg(s) on γ.

Finn [3] has shown that if (2) satisfies conditions (A) and (B) and

if z(x, y) is continuous in K, is of class C(2) in K, and is a solution of
(2) in K, then at any point (xQ,yQ)eK \zx(xΰ, yo)\^M and \zXxQ9y0)\^M
where M depends on max | z(x, y) \ on K, the radius of K, the distance
from (x0, y0) to /c, and other quantities which are fixed for any particular
equation (2). Using standard arguments [3 p. 411], one can then use
Nirenberg's result to prove that Postulate 1 is satisfied. The bounds on
the first partial derivatives of solutions imply that Postulate 3 is satisfied.
That Postulate 2 is satisfied follows from Theorem 5 and since planes
are solutions of (2) Postulate 4 is obviously satisfied.

Thus, we can conclude that, if Q is any bounded domain and g(x, y)
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is any bounded function defined on ω, the functions H*(x, y) and HJjc, y)
of Theorem 1 exist and are solutions of (2) in Ω. In particular this is
true of the minimal surface equation.

THEOREM 11. Let equation (2) satisfy conditions (A) and (B) and let

Ω be any bounded, plane domain with boundary ω. If (Xo,yo)eω is suck

that there is a circle K with center at (xQ, yQ) and a straight line π such

that πΓ\(KΓϊΩ) = (xQ,yQ), then (xo,yo) is a regular boundary point of Ω

relative to solutions of (2).

Proof Since planes are solutions of (2), barrier subfunctions and
superfunctions can obviously be constructed at (x0, y0) for all sufficiently
small circles with centers at (x0, yQ).

It follows that if equation (2) satisfies conditions (A) and (B), then
in order that the Dirichlet problem have a solution for any convex
domain whose boundary contains no straight line segments, it is sufficient
that the Dirichlet problem have a solution for circles. Of course it is
well known that the Dirichlet problem for the minimal surface equation
always has a solution for convex domains whether or not their boundaries
contain straight line segments. It is known that the Dirichlet problem
for equation (2) is not always solvable for non-convex domains. In
particular an example of a boundary value problem for a non-convex
region which is not solvable for the minimal surface equation was given
by H. A. Schwarz [8 p. 42]. For a given domain Ω with boundary ω,
those points of ω which satisfy the criterion of Theorem 11 are regular
with respect to equation (2), those points which are interior points of
straight line segments of ω are possibly regular, but it seems likely
that all other points of ω are not regular relative to solutions of (2).
The possibility remains that the Dirichlet problem for (2) for certain
types of non-convex domains may be solvable if the boundary values
are suitably restricted. Our last theorem contains a weak result in
this direction.

Let ωc be the set of points of ω which satisfy the regularity criterion
of Theorem 11. Let ωn—ω—ωc and for δ>0 let ω8 be the set of points
of ω which belong to ωn or are within a distance δ of points of ωn.

THEOREM 12. Let Ω be a bounded plane domain with boundary ω for
which there is an i?>0 such that for every (x, y)e ω a circle & of radius

R may be drawn with ΩΓ\K=(x,y). If for a given <5>0 the boundary
value function g(x, y) is continuous on ω, is constant on each component
of ωδf and is such that
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(19) Vg= max g(x, y)— min g(x, y)<^

then the Dirichlet problem for Ω with boundary values g(x, y) has a unique
solution for the minimal surface equation (3).

Proof. As we have already observed the functions H^(x, y) and
H*(x, y) both exist and are solutions of (3) in Ω. Since the function
g(x, y) is continuous on ω, it is sufficient to show that inequality (4) is
satisfied at each point of ω. This implies that the functions H^(x, y)

and H*(x, y) are both continuous in Ω, agree on ω, and consequently

coincide in Ω to give the unique solution of the Dirichlet problem.
Since by Theorem 11 the points of ωc are regular, it will be sufficient
to show that at each point of ωn we can construct an over-function and
an under-function which take on the given boundary value at the point.

Let (xQ, y0) e ωn and let /c0 be a circle of radius R such that K0[]Ω
= (%o,yo)- Translate the origin to the center of /c0 and rotate the axes
so that (α?0, y0) becomes the point (R, 0). Draw the circle /cx with center
at (R, 0) and radius d. Then the function

(20) S i x ^

is of class C(2) on compiζ), S1(x,y)^0 on compif0, and S^R, 0)=0.
Furthermore, by substituting SL(xf y) in the left-hand member of equation
(3) one can verify that inequality (8) is satisfied in Ω. It follows from
Theorem 6 that SL(x, y) is a superfunction in Ω with respect to solutions
of (3). Finally, we also have that on ^ΠcompίΓo

4= if 8<R
(21) minSjix, y) =

1 " if d>R.
d+R

We define the function S2(x, y) by

(22) SJix9y)=S1(x9y)+g{R90).

The function S λ(x, y) is clearly also a superfunction in Ω because of the
form of equation (3). Now let M=ma,xg(x, y) on ω, then the function

(M in fin comply
(23) φ(x, y) = I m . n ^ s ^ ^ i n β n ^
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is the desired over-function. To see this we first observe that ψ(x, y)

is continuous in Ω since by (19), (21), and (22) S2(x,y)>M on βfΊfci.
The argument that ψ(x, y) is a superfunction is the same as that given
in [1 p. 306]. From the definitions of S^x, y) and ω8 it follows that
ψ{R, 0)=g(R, 0) and ψ(x, y)^g(x, y) on ω.

Similarly

and

s-A%, y)=s1(x, y)+g(R, 0)

are subfunctions in Ω. The function φ(x, y) defined by

(m in Ω Π comp Kλ

Φ(x,y) = ] . - -
I max [m, s2(x, y)] in fl Π iζ.

where m = min g(x, y) on ω is an under-function with φ(R, 0) = g(R, 0).
Thus inequality (4) holds at every point of ω and

H*(x, y)=H4x9 y) in Ω

constituting the unique solution of the Dirichlet problem.
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THE STRUCTURE OF IDEMPOTENT SEMIGROUPS (1)

NAOKI KIMURA

1. Introduction. The first step in the study of idempotent semi-
groups has been made by David McLean [3] and is stated as follows.

THEOREM 1. Let S be an idempotent semigroup. Then there exist
a semilattice Γ and a disjoint family of rectangular subsemigroups of S
indexed by Γ, {Sy: γ e Γ}, such that

( i ) S = u{Sy: r eT}

and

(i i) SyS8 c Sy8 for γ, δ e Γ.

However, the structure of S is not determined, in general, by
knowing only the structures of Γ and of all Sy.

In this paper and the subsequent papers we shall study some special
idempotent semigroups which are defined by some identities, where the
decomposition theorem above plays an important role. This paper will
be chiefly concerned with the study of regular idempotent semigroups
(for the definition see below), which can be considered as a quite general
class of idempotent semigroups. Also characterizations of identities for
some special idempotent semigroups are obtained.

2. Rectangular bands. An idempotent semigroup or band [1] is a
semigroup which satisfies the identity a?—a.

A semigroup satisfying the identity

aba = a (ab = a, ba = a)

is called rectangular (left singular, right singular). These semigroups
are all idempotent. And a left (right) singular semigroup is rectangular.
Conversely we have the following

LEMMA 1. A rectangular semigroup is the direct product of a left
singular semigroup and a right singular semigroup. Moreover this
factorization is unique up to isomorphism.

Proof. Let S be a rectangular semigroup. Then since

Received December 20, 1957, and in revised form February 26, 1958. This work was
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xS D x(yS) = (xy)S z> (xy)(xS) = (xyx)S = xS ,

we have

/ ̂  x ,xyS — xS. Dually ,

\Sxy = Sy.

Therefore we have also

ί (xS)(yS) = (xS)(yxS) = (xSyx)S = xS. Dually ,

(Sx)(Sy) = Sy.

Let A (5) be the set of all subsets of S of the form xS (Sx). Then
A (B) forms a left (right) singular semigroup, with respect to the usual
multiplication induced by that of S, on account of (2).

Let p : S -> A (q : S -+B) be the mapping defined by

Then by (1) and (2), p and q are onto homomorphisms.
Let r : S - > A x ΰ be the mapping defined by

r(α?) = (p(aθ, q{x)) .

Then r is a homomorphism. Take any element of A x B , say (xS,Sy).
Then r(xy) = (xyS, Sxy) = (xS, Sy), by (1). Thus r is onto. On the other
hand, if r(z) = (xS, Sy), then zS=xS and Sz^Sy. Therefore by rectan-
gularity we have

xy = (xSx)(ySy) = (zSx)(ySz) = z(SxyS)z = s .

Thus r is an isomorphism between S and i x ΰ , where A (B) is left
(right) singular.

Let r r : S - ^ i ' x ΰ ' be an isomorphism, where A ; (S ;) is left (right)
singular. Define p': S -> Ar and g': S-^S 7 by r'(x) = (p'(x),q'(x)), then
they are onto homomorphisms.

If p(x) — p{y)y that is xS=yS, then

p'(tfS) = p'(x)p'(S) = p\x) and p'{yS) = p'(y) .

Therefore p\x)—p\y). Thus we have an onto homomorphism j : A ->A'
fa: B->B') such that p ' = / p {qf = gq).

Now/(flr) must be one-to-one. For, let xSΦyS, f(xS)=f(yS). Then
xyS—xSΦySy therefore xyφy. But

- fp(y) = p'd/) ,

= g(Sy) = 00(2/) = gr(?/) .

Therefore r\xy)—r\y), which contradicts the assumption that τf is an
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isomorphism. Thus / and g must be isomorphisms.
This ends the proof of Lemma 1.

REMARK 1. The above defined A (B) is the set of all minimal right
(left) ideals of S.

LEMMA 2. A band is rectangular if and only if it satisfies the iden-
tity abc—ac.

Proof. (1) Sufficiency. If a band S satisfies the above identity,
then simply put c=a, which proves that S is rectangular.

(2) Necessity. Assume that S is a rectangular band, then a(bc)a —
a. Therefore abc—ab(cac) = (abca)c—ac, which proves the above identity.

REMARK 2. Now we have established the equivalence between two
identities, aba —a and abc—ac, on idempotent semigroups. Thus either
one of them can define rectangularity.

Also each one of the following identities on bands is equivalent to
rectangularity :

( 1 ) axλx2 xna — a (n ^ 1),

( 2 ) axx- x% .jβXi xJ-.1axJ -xna = a

( 3 ) axxx2 xnb — ab (n J> 1),

( 4 ) axx- xι^1c1xi - -Xj-^Xj xnb = ab ,

where ch is either a or 6 for each k (l<i<j<- <ri),

( 5 ) axφz xnb — ax% xL x{ b

(1 <g iτ < ia < < ir ^ n, r < n).

These facts raise the problem of determining the conditions for iden-
tities to be equivalent to rectangularity. It will be discussed in § 5
below, and there we will find that the equivalence of the above identi-
ties with rectangularity is merely a special case of Theorem 6.

REMARK 3. If we consider the two identities, aba—a and abc—ac,
for general semigroups, then they are not equivalent. The former de-
fines a rectangular band, but the latter defines a little wider class of
semigroups which contains rectangular bands.

However we have the following Lemma 3.
A semigroup S is called total if every element of S can be written

as the product of two elements of S, that is S2 = S.
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LEMMA 3. A total semigroup is rectangular if and only if it satis-
fies the identity abc—ac.

Proof. ( 1 ) Sufficiency Let S be total. Assume the identity abc=
ac. Pick a e S, then a—xy for some elements x, y. Then

a2 = (xy)2 = (xy)(xy) = x(yx)y = xy = a .

Thus S is a band. Therefore by Lemma 2, S must be rectangular.
( 2 ) Necessity. Obvious, because any rectangular semigroup satisfies

the given identity by Lemma 2. This ends the proof of Lemma 3.
Let S be a semigroup which satisfies the identity abc—ac. Consider

the mapping/ : S —> S defined by f{x)—x2. T h e n / is a homomorphism
of £ into S, because

f{xy) = (xyf = x(yx)y = â / = a?(#2/)2/ = Λ;22/2 = f(x)f(y) .

Let 72 be the image of £ under / :

E=f(s)= {x2: x e S} .

Then obviously R2 a R a S2. Conversely, every element of S2 is idem-
potent, because {xy)2—x{yx)y—xy. Therefore we have R*=R = S'Z. Now
since R is total, R is rectangular by Lemma 3.

Hence, defining Sr by Sr={x : x e S, x2—r], S is decomposed in the
following way :

^ U { S r : r e i } , where S,St= {rt} .

For, if x e Sr>y e Stt then χ2 = r,y2 = t and so xy—x2y2=rt. Thus we
have the following

THEOREM 2. Lei S be a semigroup satisfying the identity ahc—ac.
Then there exists a rectangular subsemigroup R of S and a partition of
S with R as its index set, such that

S = u {Sr: r e R} ,

where

SrnSt = Π, the null set, if r Φ t,

r e Sr

and

SrSt = {rt} .

Thus the " if " part of Lemma 3 is a special case of this Theorem.
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3. The structure of one-sided regular bands. A band is called (1)
left regular, (2) right regular or (3) regular if it satisfies the identity :

(1) aha — άb ,

( 2 ) aha = ha

or

( 3 ) abaca = abca ,

respectively.

Then the following lemmas are obvious by these definitions.

LEMMA 4. A left (right) regular band is regular.

LEMMA 5. The direct product of (left, right) regular bands is also
(left, right) regular.

LEMMA 6. Any subsemigroup of a (left, right) regular band is also
(left, right) regular.

LEMMA 7. A left (right) singular band is left (right) regular.

LEMMA 8. A rectangular band is regular.

LEMMA 9. A band is left (right) singular if and only if it is both
left (right) regular and rectangular.

LEMMA 10. A band is commutative if and only if it is both left and
right regular.

For a total semigroup we have the following.

LEMMA 11. A total semigroup is a left (right) regular band if and
only if it satisfies the identity aba=ab (aba=ba).

Proof. The necessity is trivial. So it is sufficient to prove the
idempotence from the above identity

Let S be a total semigroup, that is S2—S. Then any element
xeS can be written as the product of two elements of S, say, χ — ab
for some a, be S. Therefore

x* = (ab)2 = a(bab) = a(ba) = aba = ab = x .

Thus we have x2=x, or S is idempotent.



262 NAOKI KIMURA

Let S be a band. Then by Theorem 1 there exist a semilattice Γ
and a disjoint family of rectangular subsemigroups of S indexed by Γ,
{Sy: r e Γ } , such that

( i ) S = U { S γ : r e Γ }

and

( i i ) S γ S δ cS 7 δ for r,δeΓ

(See McLean [3, p. I l l ] , also see A. H. Clifford [1, p. 501]).
Furthermore Γ is determined uniquely up to isomorphism, and ac-

cordingly so is Sy.
We call Γ the structure semilattice, and Sy the (γ-)kernel. A

homomorphism p: S - > Γ defined by p(Sy)=γ is called natural. Also in
this case we write S^^j{Sy: reΓ}, and call it the structure decompo-

sition of S.

Then we have the following corollaries to Theorem 1.

COROLLARY 1. Each kernel Sy is a maximal rectangular subsemi-
group of S. Moreover any rectangular subsemigroup of S is contained in
one and only one kernel.

Proof. Let S ~ Σ {Sy: r e Γ } be the structure decomposition of S
and let p: S—>Γ be natural. If R is a rectangular subsemigroup of S,
then p(R) is also a rectangular subsemigroup of Γ. Since Γ is a semi-
lattice, p(R) is reduced to a single element, say γ = p(R), and according
Rczp~\r) — Sy. Namely R is contained in one and only one Sy since the
S/s are disjoint. On the other hand Sy is rectangular for each γ e Γ.
Therefore each kernel Sy is a maximal rectangular subsemigroup of S.

COROLLARY 2. For any (onto) homomorphism q: S—>Δ, where A is
a semilattice, there exists a unique (onto) homomorphism f: Γ-> Δ, such
that q — fp, where p: S -> Γ is natural.

Proof. Since q(Sy) is rectangular, it must be a single element in Δ.
Now we have a mapping / : Γ-> Δ defined by f(ϊ)=zq(Sy). Then it is
easy to see that q=fp.

COROLLARY 3. Let q : S -> Δ be an onto homomorphism, where Δ is
a semilattice. If q~J(δ) is rectangular for all δe A, then the mapping f
defined above is an isomorphism. More precisely, we can consider Δ as
the structure semilattice of S, q-1(δ) as the δ-kernel and q as the natural
homomorphism, that is S^Σ{Q~\δ): δeA}.

Proof. Since q~1(δ) is rectangular, it is contained in Sy for some γ
by Corollary 1 above. Now we have
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γ = p(Sy) =) pq-\δ) = p(fpyV) = Pp-'f-V) = f'V)

Therefore / must be one-to-one.

THEOREM 3. A band is left (right) regular, if and only if its ker-
nels are all left (right) singular (Naoki Kimura [2, p. 117]).

Proof. Let S^^^{Sy: ϊ £ Γ} be the structure decomposition of a
band S.

(1) Let S be left regular. Then each ^-kernel Sy of S is rectan-
gular. Also it is left regular by Lemma 6.

Therefore Sy must be left singular by Lemma 9.
(2) Let every kernel of S be left singular. Let ae Sa,beSp.

Then άb, baeSΛβ=SβΛ. Thus, by the left singularity of SΛβ, we have
aba—cύfa — (ab)(ba) — aby which proves that S is left regular.

4. The structure of regular bands. Let Γ be a semilattice. Let A
and B be bands having Γ as their structure semilattice. Let A^^^{Ay\
reΓ}, B~Σ{By- r e Γ } be their structure decompositions.

Form the direct product D^AxB. Then Cy—AyxBy can be con-
sidered as a rectangular subsemigroup of D. Also C— U {Cy : γ e Γ} is
a subsemigroup of D. Moreover the structure decomposition of C is C~
Σ{C γ: r eΓ} .

Let p : A ~> Γ, q : B -> Γ be the natural homomorphisms. Then

C = {(x, y): xeA,yeB, p(x) = q(y)} ,

and r : C -• Γ defined by r(x, y) — p(x) — q(y) is the natural homomorphism.
We call C the spined product of A and 5 with respect to Γ. Note that
this product depends not only on A, B and Γ but also on the natural
homomorphism p and q [2, p. 28].

LEMMA 12. The spined product of a left regular band and a right
regular band is regular.

Proof. Since the spined product of A and B is a subsemigroup of
the direct product of A and B, we have the lemma by Lemmas 4, 5 and
6.

Now we shall prove the converse of this lemma which plays an es-
sential part in the structure theorem of regular bands.

LEMMA 13. Let S^^{Sy: re^} be a regular band. Then there
exist a left regular band A^-Ύ^{Ay\ ]-eΓ} and a right regular band B~

: γeΓ}, both of which have the same structure semilattice Γ, such
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that S is isomorphic to the spίned product of A and B with respect to
Γ.

Proof. Let S^^{Sy: γeT} be a regular band. Since each r-
nel Sy is rectangular we can assume that Sγ — A/xByf where Aγ is left
singular and By is right singular. Let

A= U{Ay: r e Γ } , 5 = [j{By: γeY},T = Ax B .

Then S can be identified as a subset of T. We shall prove that A and
B can be considered as idempotent semigroups. Let

a e Aa, c 6 Aβ, 6, br e Bay d, dr e Bβ .

Then (α, δ), (α, 60 6 Sβ, (c, d), (c, dr) e £β. Put (e,/) = (α, 6)(c, d), (er, / ) =
(α, δ')(c, d'). Then both (e,/) and (e',f) belong to SΛβ.

Since AΛβ is left singular and Baβ is right singular, we have

On the other hand we have

(β,/)(β/,//) = (α,6)(c,(Z)(α,δ/)(c,d')
= (α, δ/6)(c, dfd)(a, bb')(c, d) (by right singularity of .B^ and Sβ)

= (α, b')(a, b)(c, d')(c, d)(a, b)(a, b')(c, df)

= (α, &')(«» b)(a9 b')(c, df){a, b){c, d)(a, b)(a, b')(c, dr)

(by repeated use of regularity)

- (α, b'W)(c, d')(a, b)(c, d)(a, bb')(c, df)

= (α, δOίc, d7)(α, b)(c, d)(a, V){c, df)

= (e7, /')(«, /)(«', /0 (by definition)
= (e',/') (by rectangularity of SΛβ)

Hence

(e,f') = (e',f) or e = e'.

Thus e is determined by a and c only, and does not depend on b or
d. Similarly, / is also determined by b and d only.

Now we can define m: Ax A-^ A, n : BxB -^ B by

(m(a, c), n(b, d)) = (α, δ)(c, d) = (e, /) .

Thus A and B become multiplicative systems where m and n are
multiplications on them, and Ay and S 7 are subsystems which are a left
singular band and a right singular band, respectively. Also T=AxB
is a multiplicative system.
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Consider the projections p : T —• A defined by p(a, b) = a and q : T ->
.S defined by q(a,b) = b. They are homomorphisms. Therefore the map-
pings p and q with their domain restricted to S c Γ are also homomor-
phisms, and their images are A — p(S) and B=q(S). Since homomorphisms
preserve any relation defined by identities, as a result, associativity and
idempotency hold in both A and B, because S is a band. Thus both A
and B are bands.

Since AΊ is left singular, and By is right singular, they are rectan-
gular, and since Γ is a semilattice,

r e Γ} , B~Σ{By: r e Γ}

become the structure decompositions of 4̂ and Z?, by Corollary 3 to
Theorem 1.

Thus there exist a left regular band A and a right regular band B
such that S is the spined product of A and S with respect to Γ.

Lemmas 12 and 13 prove the following

THEOREM 4. A band is regular if and only if it is the spined pro-
duct of a left regular band and a right regular band.1

COROLLARY 1. Any regular band is imbedded into the direct product
of a left regular band and a right regular band.

Proof. Immediately from Theorem 4.

COROLLARY 2. Let S be the spined product of A and B with respect
to Γ and let T be the spined product of C and D with respect to Δ, where
A^ΣilA' r e Γ } and C~Σ{C 8 : δeΔ} are left regular, and B~Σ{By:
γeT} and D^^{D8: deΔ} are right regular.

Let k: S —• T be a homomorphism, then there exist a homomorphism
h: Γ -> Δ and homomorphisms f: A^C and g : B -> D satisfying (1)
k(a,b) = (f(a),g(b)) and (2) hp~rf and hq—sg, that is the diagram

p q
A^T ^B

Vr *. I"
C > Δ < D

is analytic, where p, q, r and s are the natural homomorphisms.

Proof. Let u: S -+Γ, v: T->Δ be the natural homomorphisms.
Then since vk: S -> A is a homomorphism, by Corollary 2 to Theorem 1,
there exists a unique homomorphism h: Γ —• Δ such that vk=hu.

Therefore v(k(Sy))=hu(Sy) = h(r), and so k(Sy)c.v-\d) = T8, where δ =
h{γ). Now the homomorphism ky: Sy -* T8 defines uniquely homomor-
phisms fy: Ay -> Cδ and gy : By -> Dδ such t h a t ky(af b) — {fy{a)f gy{b)),

1 Miyuki Yamada has obtained this theorem also, according to a recent communication
from him to the author.
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where ky is the homomorphism k with its domain restricted to Sy.
Since A and B are the union of Ay and By for γ e Γ, fy and #7 de-

termined uniquely mappings f:A-+C and # : B -+D, such that

/(α)=/ γ (α) if α e i 7 ,

and

gy(b) if δ e £ 7 .

Then it is obvious that k(a,b) — (f(a), g(b)) . Therefore if (a,b)eS,
(af, br) e S, then we have

(f{aa'),g{W)) = fc(αα', 66') = k((a, b){af, δ')) = fc(a, δ)fc(a', δ')

= (/(a), 9(b))(Aa'), g{V)) = (f(a)f(a'), g{b)g{bf)) ,

which proves that / and g are homomorphisms.
Since (a, 6) 6 Sγ implies (/(α), g{b)) — k{a, b) e T8, where d—h{γ), we

have rf(a) — d — h(r)=hp(a)y namely, rf=hp. Similarly, sg—hq.

COROLLARY 3. In Corollary 2, k is (1) one-to-one into, (2) onto or
(3) one-to-one onto, respectively, if and only if there exists h, f and g, all
of which are (1) one-to-one into, (2) onto or (3) one-to-one onto, satisfying
all the conditions in Corollary 2.

Proof. Sufficiency. It is easily proved by considering the mapping k
defined by k(a,b) — (f(a), g(b)), in each case.

Necessity (1) Let k be one-to-one into. Then k'\Th) is rectangular
if it is not empty, and so it is contained in only one Sδ by Corollary 1
to Theorem 1. Therefore h is one-to-one into. Now it is easy to see
that / and g are one-to-one.

( 2 ) Let & be onto. Then

h(T) = h(u(S)) = vk(S) = v(T) - Δ ,

which shows that h is onto. Now it is obvious that / and g are onto.
( 3) Obvious by (1) and (2).
The case (3) of this corollary can be restated as follows.

COROLLARY 4. The decomposition of a regular band into the spined
product of a left regular band and a right regular band is unique up to
idomorphism.

5. Characterizations by identities. Let X— {x, y, } be a set whose
elements we will call variables. A word is an element of the free semi-
group F=F(X). A pair of words (P, Q) is called an identity and is
written P~Q,
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Let S be a band. Then we say S satisfies an identity P=Q, if
f(P)=f(Q) for every homomorphism f: F-*S.

An identity P=Q is said to imply an identity P '=Q' if any band
satisfying P—Q also satisfies P' — Q!. Thus any identity implies the iden-
tity sx?=x, that is idempotence. If P=Q implies P' = Q' and P' = Q'
implies P=Q, then the identities are equivalent.

Let X' also be a set of variables. Let ί0: X-+X' be any trans-
formation, then it induces a homomorphism £: F(X) -> F{X') which
coincides with tQ on X.

It is easy to see that P—Q implies t(P) = t(Q).

LEMMA 14. P=Q implies t(P)=t(Q) for any transformation of vari-
ables tQ.

Q.

The following lemmas are also straightforward.

LEMMA 15. If P=Q implies P=P', Q=Q', then P=^Q implies P' =

LEMMA 16. // P=Q implies P' = Q', then P=Q implies both PP' =

QQ and FP=Q'Q.

REMARK 4. We can take the free idempotent semigroup generated
by X instead of the free semigroup generated by X. It makes no es-
sential difference in the argument.

An identity P—Q is said to be homotypical if both P and Q contain
the same variables explicitly, otherwise it is said to be heterotypical.
Thus an identity xy—x is heterotypical, but an identity xy—yx is homo-
typical.

If P is a word x&^ Xn, then we call xλ the head of P and xn the
tail of P.

THEOREM 5. An identity P=Q is equivalent to left (right) singu-
larity if and only if2

(1) P=Q is heterotypical,
(2) P and Q have the same (different) heads,
( 3 ) P and Q have different (the same) tails.

Proof. Sufficiency. Let P=Q satisfy (1), (2) and (3) above. Then
the words P and Q are expressed by a? α?i and x x2f respectively,
where x1 is different from x%9 and either xτ or x2, but not both, may be
the same as x. By assumption (1) either P or Q contains a variable y,
which the other does not. Assume that P contains y.

A transformation X -> X defined by y -+y, all other variables -> x
sends the words P,Q to P',Qf where P' is x y x or x y (•••

2 The "only if" part will be proved right after the proof of Lemma 17 below.
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stands for x'a, y's or nothing) and Qr is xn for some positive integer n.
Now any band satisfies the identities P'=xyx or P'—xy, according as
P' is X' -y- x or x y, and Q' = x. Thus by using Lemmas 14 and 15
we have that P=Q implies either ( i ) xyx—x or (ii) xy=x.

Since ( i ) is rectangularity, and rectangularity implies both P—xxτ

and Q=xx2 by Lemma 2, the identity P=Q implies xxλ=xx z by Lemma
15. It is now easy to see that the identity xxλ—xxt implies left singu-
larity, by a suitable transformation. (ii) itself shows left singularity.

Thus P=Q implies left singularity.
Conversely, the identity xy—x implies any identity of the form

x y = χ ».χ o r x ' y = x z ,

where x, y, z are all different and* -stand for any sequence of variables.
Thus xy—x implies any identity satisfying the conditions in the theorem.

THEOREM 6. An identity P—Q is equivalent to rectangularity if and
only if2

(1) P=Q is heterotypical,
(2 ) P and Q have the same heads,
(3) P and Q have the same tails.

Proof. Let P=Q be an identity satisfying (1), (2) and (3) above.
Then we can assume that the word P i s x y z and Q is x z,
where Q does not contain the variable y, while z can be the same as x.
Now the transformation y -+yf all other variables -> x, implies the iden-
tity xyx=xf which is equivalent to rectangularity.

Conversely, rectangularity xyx—x implies any identity of the form
x z=x z by Lemma 2. Thus it implies any identity satisfying the
above conditions.

REMARK 5. It is easily verified that all identities mentioned in Re-
mark 2 satisfy the above three conditions.

THEOREM 7. An identity P=Q is equivalent to triviality, that is
χ—y, if and only if2

(1) P=Q is heterotypical,
( 2) P and Q have different heads,
( 3 ) P and Q have different tails.

Proof. Let P=Q be an identity satisfying the above condition.
Then it implies both identities zP—zQ and Pz=Qz, where z is a variable
which is not contained in both P and Q, by Lemma 16. The former is
equivalent to left singularity, while the latter is equivalent to right
singularity by Theorem 5. Thus P—Q implies both left and right singu-



THE STRUCTURE OF IDEMPOTENT SEMIGROUPS ( I ) 269

larity. Hence it implies triviality.
Conversely, triviality implies any identity.

LEMMA 17. Any semilattice satisfies any homotypical identity.

Proof. Let P—Q be any homotypical identity whose variables are
a?i, ,a?n Let S be any semilattice. Then it is clear that S satisfies
the both identities, P=x1x2 xn and #1a?2 #Λ = Q. Thus S satisfies the
identity P=Q.

Proof of the necessity in Theorem 5, 6 and 7.
Let P=Q be an identity which is equivalent to triviality, left (right)

singularity or rectangularity. Let S be the two-element semilattice. If
P=Q is homotypical, then S satisfies this identity by the preceding
lemma. But S is not rectangular nor left (right) singular nor trivial.
So this identity can not be homotypical. Thus it must be heterotypical.
This takes care of the part (1) of the theorems.

Let A(B) be the two-element left (right) singular band. Then A(B)
is neither right (left) singular nor trivial. Also A(B) satisfies any identity
P=Q if the heads (tails) of P and Q are the same.

(i) Assume that P—Q is equivalent to triviality. Then the heads
(tails) of P and Q must be different. For, if not, A(B) which is not
trivial satisfies this identity. This proves the necessity of (2) and (3)
in Theorem 7.

(ii) Assume that P=Q is equivalent to left (right) singularity.
Then the tails (heads) of P and Q must be different. For, if not, then
B{A)t which is not left (right) singular, satisfies this identity. This
takes care of (3) of Theorem 5.

Now the heads (tails) of P and Q must be the same. For, if not,
this identity is equivalent to triviality by Theorem 7, which has already
been proved completely. But there exists a left (right) singular band
which is not trivial, for example, A(B).

This takes care of (2) of Theorem 5.
(iii) Assume that P—Q is equivalent to rectangularity.
Then the heads of P and Q are the same and so are their tails.

For, if not, the identity is equivalent to triviality or left singularity or
right singularity by the preceding argument. Also there exists a band
which is rectangular but neither left nor right singular nor trivial, for
example, AxB. This ends the proof of (2) and (3) in Theorem 6.

Thus the classification of all heterotypical identities into four dis-
tinct cases is now completed.

THEOREM 8. An identity P—Q is equivalent to commutativity if it
satisfies the following conditions :
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(1) P— Q is homotypical,
( 2 ) P and Q have different heads,
(3) P and Q have different tails.

Proof. Let P=Q be an identity satisfying the above conditions (1),
(2) and (3). Then we can assume the word P is #•••, and Q is ?/•••,
xΦy. Thus P=Q implies Pxy—Qxy. Now the transformation: y~>y,
all other variables -> x on the latter identity implies the identity xy=
yxy, which is equivalent to right regularity. Similarly, P=Q implies left
regularity. Thus by Lemma 10 the identity P=Q implies commutativity.

Conversely, commutativity implies any homotypical identity.
Before stating the conditions for an identity to be equivalent to

left or right regularity, we shall introduce the concept of initial and
final parts, by which we can reduce both members of an identity to
simpler forms.

If the word P', say a?ί]La?< • #<3b, is the word which is obtained by
writing down all the distinct variables of the word P, say XιX2 xn,
from the left, we call Pr the initial part of P and denote it by q{P).
Similarly, we can define the final part of P, r(P), dually with respect
to left and right. Thus if the word P is xyxzx, then the initial part
and the final part of P are xyz and yzx, respectively, that is q(P) is xyz
and r(P) is yzx.

When P and Q have the same initial (final) parts, we say that the
identity P—Q is coinitial (cofinal). Note that if an identity is coinitial
or cofinal then it must be homotypical.

THEOREM 9. An identity P=Q is equivalent to left (right) regularity,
if it satisfies the following two conditions :

(1) P—Q is coinitial (cofinal),
(2 ) P and Q have different tails (heads).

Proof. Let P=Q satisfy the above two conditions. Then by (1) P
and Q must have the same head, say x, By (2) one of P or Q has a
tail which is different from x, say P is x y, where yφx.

Let tQ be the transformation defined by y -+yf all other variables-*
x. Then we have two identities tύ(P)—xy and tQ(Q)~xyx. Thus we
have left regularity, xy—xyx.

Conversely it is obvious that left regularity implies P—Pf for any
word P, where Pr is the initial part of P. Thus left regularity implies
any coinitial identity. Hence it implies any identity satisfying the above
conditions.

The problem of finding the characteristic conditions for an identity



THE STRUCTURE OF Ϊ D E M P O T E N T SEMIGROUPS ( ϊ ) 271

on bands to be equivalent to regularity still remains open.

6. Free regular bands. By the free {left, right) regular band gene-
rated by a non-empty set X, we mean a band £ such that

(1) there exists a mapping i: X-+S, which is called the imbedd-
ing mapping,

( 2) i(X) generates S,
(3 ) S is (left, right) regular,
(4) for any (left, right) regular band T and for any mapping j :

X-> T, there exists a homomorphism h : S -» T such that j=hi.

REMARK 6. In this definition, the imbedding mapping is not as-
sumed to be one-to-one, but this property is proved easily in this case.
Also it is easy to see that if there are two such free regular bands for
a given set X, then they are isomorphic fixing every point of X point-
wise under the imbedding mappings. So if there exists a free (left,
right) regular band, it is unique up to isomorphism. The homomorphism
h in (4) is also unique.

The free commutative band, i.e., the free semilattice generated by
X is defined similarly.

In this section we shall construct the free (left, right) regular band
from a given set X.

Let X be a non-empty set. Let S be the set of all non-empty sub-
sets of X consisting of a finite number of points. Then we have the
following

LEMMA 18. The above defined S is the free semilattice generated by
X under the multiplication defined by yz=y{Jz, where U denotes the
union operation.

Proof. It is obvious that S forms a semilattice generated by {{x} :
xeX}. Let i: X-+S be defined by i(x)={x}. Let T be a semilattice
and j : X->T any mapping. Then the mapping h: S-+T defined by
h(y)=j{xι)j{x^- -j(xn) where y={xιtxif •••,#„}, is a homomorphism by
commutativity and by idempotence, satisfying j(x)=h({x})=h(i(x))f that
is j=hi. Thus S is the free semilattice generated by X.

Let X be a non-empty set. Let F—F(X) be a free semigroup
generated by X Then F is the set of all finite sequences of points of
X with juxtaposition multiplication. We imbed X in F in the natural
way under k: X -> F.

Consider the two mappings, the initial part q : F -> F and the final
part r: F->F, defined in the preceding section. Let Aϋ = q(F)cF, Bϋ—
r{F)aF be the images of F under q, r. Note that not only are q and
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r not homomorphisms but also AQ and BQ can never be subsemigroups
of F. To make them form bands we define other multiplications in AQ

and in Bo as follows :

m{a, af) = q(aar), for a, a' e Ao,

n(b, V) = r(δ&'), for 6, 6' e £ 0 .

Let α, α' α" e AQ. Then

m(m(a, a'), a") = m{q{aar), a") — q(q(aar)a") = q{aafa") .

Similarly m(α, m{a',a")) =q{aa'a"). Therefore m is an associative multi-
plication on AQ.

Moreover m(a9 a) = #(αα) = g(α) = α and

m(m(a, a'), a) = q{aafa) = (j(αα') = m(α, α') .

Therefore Ao forms a left regular band under the multiplication m.
Similarly, Bo is a right regular band under the multiplication n. We
shall denote these bands by A and B instead of AQ and Bo, because of
the difference of multiplications.

It is now simple to see that q : F -> A and r : F -> B are both onto
homomorphisms. Since F is generated by k(X), A and £ are generated
by i(X) and j(X), respectively, where i — qk and j = rk.

Let Ar be any left regular band and ir: X-* A! any mapping.
Since F is the free semigroup generated by X, there exists a homo-
morphism / : F-+A' such that if—fk. For any weF we have f(w) =
f(q(w)), because A is left regular. Thus there exists a homomorphism
h : A -> A! such that f=hq. Therefore

i' = fk = (hq)k = /&(g&) = fei .

Hence A is the free left regular band generated by X Similarly
B is the free right regular band generated by X.

Consider the free semilattice Γ generated by X with its imbedding
c: X->T (Lemma 18). Then since Γ is both left and right regular,
there exist homomorphisms s: Λ - > Γ and t: B -> Γ such that si—c—tj.
It is obvious that

s(a) = {xlf x2, , xn} , if a = i(a?i)ί(a?a) i(#n)

Let A v=s" 1(r) and BΊ — t~\γ) for r e Γ . Then it is easy to see that
Ay(By) is left (right) singular. Thus by Corollary 3 to Theorem 1, A~
Σ {Ay : γ e Γ} and Z ? ^ Σ {S7 : r e Γ} are the structure decomposition of
A and Z?. Thus we have the following

THEOREM 10. Let X be a non-empty set. Let Γ be the free semilat-
tice obtained in Lemma 18. Let A (B) be the set of all linearly ordered
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non-empty finite subsets of X together with the multiplication defined by
juxtaposition deleting all second letters which appear in the expression of
the juxtaposition product reading from the left {right). Let s : A -> Γ (t:
B -> Γ) be the mapping defined by s(a) (t(]b))~the set of all distinct points
contained in a (b). Let AΊ=s~\γ) and BΊ=t-\γ) for γeT. Then A (B) is
the free left (right) regular band generated by X and A~Σ {Ay : T e Γ}
( Σ { B - ΓeΓ}) is its structure decomposition.

COROLLARY. The free left (right) regular band generated by n ele-

ments consists of Σ?-i(?)ϋ = n ! Σn*-o 1/ϋ elements.

Proof. Each AΊ consists of i ! elements when γ contains i elements,
since Ay consists of all permutations of points of γ.

Let A (B) and Γ be the free left (right) regular band and the free
semilattice generated by X with the imbedding mappings %: X -> A (j:
X-^B) and c : X -> Γ, respectively. Since Γ is both left and right re-
gular, there exist homomorphisms s : A -> Γ and t: B —> Γ such that
si = c = tj.

Let C be the spined product of A and B with respect to Γ with s
and t as spine homomorphisms. Then C is the subset of AxB consist-
ing of elements (α, b) such that s(a) = t(b). Now since s(i(χ))=:(si)(x) =
c(x) = (tj)(x) = t(j(x)) the element (i(x),j(x)) is in C. Define k: X-+C by

Now we shall prove that k(X) generates C.
Pick any element (α, b) e C. Then s(α)=ί(6) e Γ. Since A and B are

generated by X, we have

a = ΐ'(a?!)ί(α?2) -i(xm) , b = j(yλ)j(yύ- i(2/»)

Thus

Φ i ) φ 2 ) φ T O ) = s(a) = £(δ) = c(yλ)c(y%y c(2/n)

Therefore the subset consisting of the points x19 xt, , xm coincides with
that consisting of the points y19 yif , yn.

Since A is left regular we have

( 2 ) φw>G/iM2/2) %n) ( i ) f e ) φ « ) = a .

Similarly,

J(Vn) = j(Vi)J(vύ*

Thus we have (α, δ)=λ;(a?1)fe(»2) &0&TO)fc(2/i)£(2/2)' %w)» which proves
that Λ(X) generates C.

Next, we shall prove that C is the free regular band generated by
X.
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Let C" be any regular band and kf: X-+C any mapping. Since
C" is regular, it is the spined product of a left regular band A and a
right regular band Br with respect to a semilattice Γ', where sf: A' ->
Γ' and £': B' -> Γ' are the spine homomorphisms. Now the freeness of
A, B and Γ implies the existence of homomorphisms / : A-+ A', g : Z? ->
B' and A: Γ -> Γ such that

(1) /i = u'k', gj = v'fc', &c = d'fc' ,

where %': C -> A', v': C" ->£' are natural and <f : C" -> Γ are such
that

(2) SV = d' = ίV .

Let u: C -+ A, v : C -> B be natural and d : C -> Γ be such that
su=d = tv. Take (α, i) e C. Then s(a) = t(b) by definition. Since C is
generated by k(X), there exist a?x, xtJ , xn e X. such that

a = iixdifa)- ^*fe), b = jfaWx*)- i(α«) .

Put αr=/(α) and b'=g(b). Then by (1) and (2) we have

β'(α') - sr/(α) = Π v=i β^(α?v) - Π v=i β V % ) = Π ?=i ̂ r ( ^ ) ,

ί'ίδ') = tfg{b) = Π -iί'α/ί^) = Π?-iίV^(a?y) - Π ί - i W s v ) .

Thus 8'(a')=t'(V). Therefore (αr, δ7) e Cr, that is (/(α), (̂6)) e Cr. Hence
there exists a mapping p: C-+C defined by p{a, b) = (f(a), g(b)).

It is now easy to see that p is a homomorphism. Moreover for x e
X we have by (1)

k\x) = (^'(aθ, vT(a?)) = (/i(αj), «/(a?)) = pk(x) ,

because k(x) = (i(x),j(x)), and accordingly k' — pk. This completes the
proof that C is the free regular band generated by X. Thus we have
the following

THEOREM 11. Let X be a non-empty set. Let A, B and Γ be the
free left regular, the free right regular and the free commutative band
generated by X, respectively, so that Γ is regarded as the structure semi-
lattice of both A and B. Then the free regular band generated by X is
the spined product of A and B with respect to Γ.

COROLLARY. The regular band generated by n distinct elements con-

sists of
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elements.

Proof. Each AyxBy consists of (i I)2 elements when contains i
elements.
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A METHOD OF APPROXIMATING THE COMPLEX

ROOTS OF EQUATIONS

STEPHEN KULIK

1. The method described in this paper presents an algorithm by
which at least two roots of an equation can be approximated starting
with the same first approximation. This is achieved by introducing
a parameter and choosing its numerical value appropriately. In particular,
in case of real roots, two adjacent or the largest and the smallest roots
are approximated by the use of two different values of the parameter.
This is discussed in §3. In case of conjugate imaginary roots the real
and imaginary parts of the approximations are easily separated. This
is discussed in §4.

2. Let f(z) be an analytic function within and upon a circle C,
and let the roots of the equation J\z) = 0 within and upon the circle be
denoted by aj9 j—1, 2, , and their multiplicities by m5 respectively.

We consider the expansion into the partial fractions of (u—zYf'(z)lf(z),
where k is a positive integer and nψa5 or z but otherwise arbitrary,

where ψx(z) is analytic within and upon the circle, and the sum is taken
over all the roots a3 starting with j=l.

By differentiating (1) n—\ times and dividing by ( — \)n~\n—1)! we
derive

where ψn(z) is analytic within and upon C. The function QΛtk=Qntk(z, u)
can be evaluated by the formula

with Dn evaluated recursively

n Σ

A=l, A =/'(*)

The function Qn>k can also be evaluated recursively, and both Qn>k and
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Dn can be expressed in the form of determinants [1, 2].
We rewrite (2) as follows

where the summation starts with j—2. Now, if we assume that u and
z are given such values that

(6) l(M-α1)/(«-α1)|>l(%-αJ)/(2-α,)| , i=2, 3,

and

for any ζ on C, the following result follows :

( 7 ) (^-<r δ /(z-αi) α = lim Qn.n-M*)TQn-a.n-c ,

where α, 6, and c are constants satisfying the conditions imposed on the
subscripts of Qn^ in (2). An approximation to aλ is obtained with a
finite n.

Of particular practical value are the cases when the left hand side
of the equation has only u—alf or z—alf or both of the first or second
degree.

3. The reason for introducing the parameter u into the problem
is that more than one root can be approximated with the same D19 D2,
• •• Dn by using different appropriately chosen values of u. This will be
illustrated when the left hand side of (7) is either u—alf (u — a^i{z—a^),
or 1/(2—αx), namely :

( 8 ) («

(10) %-α^l ίm Qn>nlQn,n-l

(11) (z-aJKu - a,)=lim f(z)Qn-1,n-^Qn,n-1

Let us assume that z—x is real and that the two roots closest to
x are also real, a1<x<a2, x—aλ<a%—x. Then, as it can easily be
verified, an approximation to aλ can be obtained with any uλ>x, and
°°<u1<[(a1+a2)x—2aLa2'}l(2x—a1—a2); an approximation to α2 can be
obtained with any [(ai+az)x—2a1a2]l(2x—aι—a2)<u2<x (Diagram 1). The
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above inequalities defining uλ and u2 should also be used when aλ<x is
the largest real root of an equation and α2 the smallest (Diagram 2).

Before applying any of (8)—(11), an approximation to aι can be
obtained by using a more particular case of (7) [1, 2] :

(12)

This gives an idea as to the location of the root closest to x.

Diagram 1 Diagram 2

4. Let now z—x be real equidistant from two conjugate imaginary
roots a+bi and a—bi. Then u can be taken in the form x+ti and the
real and imaginary parts in the equations (8)—(11) can easily be separated.
In this case, if x is closer to a+bi and a—bi than to any other root of
the equation, and if the equation has no more imaginary roots, any
positive t can be taken to approximate a —bi (Diagram 3). If the
equation has another imaginary root not much more distant from x than
a—bi, and with real part closer to x than a, a large value of t would
be required (Diagram 4). The imaginary root a—bi can be approximated
with some positive t (Diagram 5) even if there is a real root which is
closer to x than to a—bi, but not very close, and if the real part, α,
is close to x.

tί

a + bi

a-bi

aΓb,L

Diagram 3 Diagram 4 Diagram 5

We shall now give the explicit formulas for the real and imaginary
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parts of a root a, in the four cases given by (8)-(11).
We designate z—x+ti, as before, where x and t are real,

a^a-bi, Qn,n=Anίn+iBn,n, Qn^^A^^+iBn^, where

4.,» Σ

**..=*:§ (-

(14)
s«,»-i - Σ

The sums being taken over all j , for which the binomial coefficients do
not vanish, starting with j=l.

Now by using (8)-(ll) we get respectively

f
(15)

-Λ.-il»-i(/ϊ

6= -lim tf(x)[An.1^1(f(x)An.1^1-An>n)
(150

where

(16)

(160

(17)

(18)

6=lim
(18,)

-

where

5. Results analogous to those presented above can be obtained by
considering other expansions similar to those given by (2), We mention
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here one such result assuming that f(z) has only simple zeros. We
consider then (u—zflf(z) instead of {n—zYf\z)lf{z) and derive the
equation

(19) Q)

where A3 are constants.

(20) Qi.* = Σ(!?)(M-ί

(21) Pn ^

It would suffice now to replace QWifc by Qift in all the previous formulas.

6. If f(z) is a polynomial of degree N and k — n, then the last
member on the right hand side of (2) equals —N. If taken to the left
hand side, it would contribute the term N[f(z)]n to Qn>n, consequently,
N[f(z)]n and Nlfiz)]71"1 will be contributed to An>n and An-hn-λ respectively
in (8), (9), and (10). In case of equation (19), however, the last member
would be reduced to —Aι—A2— ••• — AN.
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A NOTE ON A PAPER OF L. GUTTMAN

A. C. MEWBORN

In a recent paper L. Guttman [2] obtained, using a result of von
Neumann on the theory of games, lower bounds for the largest charac-
teristic root of the matrix AA! where A is a real matrix of order mxn.
As Guttman points out his bounds are non-trivial only if some row or
column of A has only positive or only negative elements. I wish to
show that Guttman's results, and even a better result, are an immediate
corollary of a well known theorem on Hermitian matrices : that each
diagonal element lies between the smallest and largest characteristic
roots (see e.g. [1]). Moreover, if AAf be replaced by AA* then A can
be real or complex and a non-trivial result is always obtained.

THEOREM 1. Let A — {ai3) be an mxn matrix with real or complex
elements. Let λ be the largest characteristic root of the mxm non-
negative definite Hermitian matrix B=AA* — (bij). Then

(1) ^maxΣlα^Γ2

( 2 ) Λ
j ί = l

Proof. Let brr be the largest diagonal element of B. Then

.7 = 1 i
Σ M = max

1

and (1) is proved. Now the non-zero characteristic roots of AA* are
the same as those of A*A. Then (2) follows as above if we consider
A*A instead of AA*.

The bounds in (1) and (2) can be replaced by the weaker bounds

(3) λ^n max (min \aiλ
2)

% \ j J

(4 ) λ^m - max (min |α έ J |
2 j

respectively, and even these bounds are obviously better than Guttman's.
Theorem 1 can be improved further.

THEOREM 2. Under the hypotheses of Theorem 1 we have
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( 5 )

t m (Γ m "12

Σ(l«vίl
2+kvJl

2)+ Σ O ^ P - I ^ I 2 ) +4
v-i ILv-i J

m _

v=i

Proof. It was shown in [1] that the largest root of an Hermitian
matrix is greater than or equal to the larger of the two roots of any
principal minor of order two of the matrix. Suppose the principal minor
or order two of B having the largest root lies in the r, s rows and
columns of B. Then

r-bssy + ± I brs |T
/ 2

n __ \2\ 1/2n (Γ n "12

= Σ(l«rvl2+l«Svl2)+ Σ( |cU 2 - |cU 2 ) + 4

v-i (Lv=i J
v = i

and (3) follows. (4) is proved similarly by considering A*A instead of
B.
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ON THE PRINCIPAL FREQUENCY OF A MEMBRANE

ZEEV NEHARI

1. Let D denote a simply-connected region in the ^-plane whose
boundary consists of a finite number of piece wise smooth arcs. If λ is
the principal frequency of a homogeneous membrane which covers D
and is kept fixed at its boundary C, then, according to a well-known
theorem of Rayleigh [3], λ is not smaller than the principal frequency
of a circular membrane of equal area and density. This may also be
expressed by saying that the homogeneous circular membrane has the
lowest principal frequency among all homogeneous membranes of the
same mass.

In this paper we shall be concerned with the possible generalizations
of Rayleigh's theorem to the case of non-homogeneous membranes. It
is clear that no general result of this type is to be expected unless
certain restrictions are imposed on the density distribution of the
membrane. Indeed, it is easily shown that the principal frequency of
a membrane of given mass can be made arbitrarily small if enough of
the mass is concentrated in a small area interior to D. It is therefore
necessary to add conditions which prevent the excessive accumulation
of mass at interior points of the membrane. As the following theorem
shows, a sufficient condition of this type is the requirement that the
density distribution p(x, y) be such that \ogp(x, y) is subharmonic, i.e.,
that the mean value of \ogp(x, y) on any circular circumference inside
D is not smaller than the value of log p(x, y) at the center.

THEOREM I. Ifλ is the principal frequency of a membrane of given
mass whose density distribution p(x, y) is such that logp(x, y) is subhar-
monic, then

(1) λ ^ λQ ,

where λ0 is the principal frequency of a homogeneous circular membrane
of the same mass.

The conclusion of Theorem I will in general not hold if the
restriction on p(x, y) is replaced by the somewhat weaker condition
that p(x, y) be subharmonic. The following theorem shows, moreover,
that — at least in the case of a circular membrane — inequality (1) is
reversed if p{x, y) is assumed to be super harmonic.

THEOREM II. If λ is the principal frequency of a circular membrane
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of given mass whose density distribution p(x, y) is super harmonic, then

where λ0 is the principal frequency of a homogeneous circular membrane
of the same mass.

Theorems I and II will be proved in §§2 and 3, respectively.
In § 4, Theorem I will be applied to the proof of the following result
on homogeneous membranes.

THEOREM III. Let a be an analytic subarc of C which is concave
with respect to D. If A denotes the principal frequency of a homogeneous
membrane whose boundary is free along a and fixed along C—oc, then

where AQ is the principal frequency of a homogeneous semi-circular
membrane of equal mass whose boundary is free along the diameter and
fixed along the semi-circle.

2. The principal frequency of the membrane with the continuous
density distribution p(x, y) is the lowest eigenvalue λ of the differential
equation

( 3 ) uxx + uw + λp(x, y)u = 0

with the boundary condition u — Q.λ may also be defined as t h e minimum
of t h e Rayleigh quot ient

( {Ul+Ul)dxdy
( 4 ) J(U U»

l\ pU'dxdy

if U(xf y) ranges over the class of functions which vanish on C and
for which U, Ux, Uv are continuous in D+C. To prove Theorem I, we
have to show that, under the assumptions concerning p(x, y) the integral

Λ\\ pdxdy attains its minimum in case D is a circular disk and p(x, y)

is constant, i.e., we have to demonstrate the inequality

( 5 ) λ I \ p(χf V) d% dy ^ πf0 ,

where j0 is the smallest zero of the Bessel function J0(r).
We denote by u the first eigenfunction of (3). The function u is

not zero in D, and may be normalized in such a way that O ^ ^ l in
D. We use the symbol Cp for the level curve, or curves, n—p and we
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set (̂ẑ ) = \ \ pdxdy, where Dp is the subset of D at which u^p. If

Cp consists of n closed Jordan curves (sections of which may coincide),
these will be denoted by CPtl, Cp>2, , Cp>n. The proof of (5) will use
a symmetrization procedure [3] in which the curve, or curves, Cp is
replaced by a circle about the origin of radius r, where πr*=A(p). If
v is the function which takes the value p at all points of this circle,

and R is defined by πR2=A(0)=\ 1 pdxdy, we shall show that

( 6 ) \\ pu2 dxdy — \ \ v2r drdθ
JJD JO JO

and

( 7 ) if {ul+ul) dx dy ^ P \*(vl+vl) rdrdθ .
JJz> Jo Jo

If J(u) and J(v) denote the Rayleigh quotients (3) of u and v for their
respective domains of definition, it will follow from (6) and (7) that

λ [ [p dx dy = πR2J(u) ^ πR*J(v) .

Since v(R, θ) = 0, J(v) is not smaller than the principal frequency f0R~2

of a homogeneous circular membrane of radius R and density 1. Theorem I
will therefore be proved if (6) and (7) are established.

We denote by C* the level curve u—p—dp, where dp = ε>0 and e
is small. If dn is the length of the piece of the normal to C between
Cp and C*, the area between Cp and C* will be, except for a correction
term of order e2,

( 8 ) dA = 1 p dn ds = Σ \ pdnds .
JCp v-1 J ( 7 p v

where s is the length parameter on Cp. Since A(p)=πr2, we thus have

( 9 ) 2π r dr = I p dn ds .
J C P

By the Schwarz inequality, we have

(dpf( \ V p ds J = M -P-V p dn ds) ^ \ p dn ds l (-)dnds.

It follows therefore that

γi /P N 2 ί* C /J \ 2

(dp)2 Σ f 1 l/ pds) ^ I p c?τz ds\ \-^)dnds.
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Since, up to an ε'2-correction, \ ( ^Λdnds is the contribution Dξ(u) of

the area between Cp and C* to the Dirichlet integral on the left-hand
side of (7), we thus have, in view of (9).

(dp)2 Σ ([ V~pds\ ^ 2πr Ddp(u) .
v-i \JCP;V /

On the other hand, the contridution Ddr(v) of the circular ring between
r and r+dr to the dirichlet integral D(v) is (again with an ε'2-correction)

2πr(~^)dr. Hence,

Ddr(v) Σ (( l/ P ώY ^ 4τr2 r2

J
dr(v) Σ ((

v-i \Jcpv

Since 7rr2=\l pdxdy, this may also be written
J JX>P

(10) Zλ*rO>)Σ(( ^ /7^Y^4τrZ), p(^)(f pdxdy.

We shall prove presently that, under our assumptions regarding
the function p(x,. y), the inequality

(11) 4τrfί pdxdy ^ ([VpdsJ

holds for any rectifiable Jordan curve Γ and the region G bounded by
it. If the simply-connected region enclosed by CP;V is denoted by DPtVί

(11) implies that

4τr(( pdxdy £
JJDp

Combining this with (10), we obtain

Ddr(v) ^ Ddp(u)

and this entails (7). (6) follows from the fact that, by (9),

(f p u2dx dy = p2[ pdnds + O(ε2) = 2π r v2dr + O(ε2) .
JJD*-D JCp

To complete the proof of Theorem I, we have to show that (11)
holds for a function p(x, y) which is positive and continuons in a simply-
connected region G and on its boundary Γ, and which is such that
log p(x, y) is subharmonic. Because of the latter property, we have
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\ogp(x, y)^σ{x, y) in G if σ(x, y) is the harmonic function in G whose
boundary values on Γ coincide with those of \ogp{x, y). Hence, (11)
will be proved if we can show that

4τr( [ e2σ dx dy ̂  ([ eσ dsj ,

where σ(x, y) is any harmonic function in G which is continuous in
G+Γ. Now eσ=\g(z)\, where g(z) is a regular analytic function in G
which is continuous and does not vanish in G+Γ. If ŵ e set g{z) — f\z),
we thus have to show that

(12) 4τr f f \f\z) I2 dx dy rg (f \f'{z) \ dsj ,
J JG VjΓ /

where f(z) is regular in G, and f\z) is continuous and does not vanish
in G+Γ.

If f(z) is univalent in G, (12) reduces to the isoperimetric inequality

47r\ I dξdη^lχ \dw\] (w^ξ+iw)
JJG* VjΓ* /

for the region G* (bounded by Γ*) onto which G is mapped by the
transformation w—f(z). In the general case we have, by Green's
formula,

( ί \f'(z) I2 dx dy = 1 \ f f'dz =λ\ (ξdη-η dξ) ,
JJG 2% Jr 2 Jr*

and (12) is seen to be equivalent to the general isoperimetric inequality

proved by Hurwitz [1, p. 97] for arbitrary piecewise smooth closed
curves Γ* which may be self-intersecting. This completes the proof of
Theorem I.

3. We now turn to the proof of Theorem II. Since p(x, y) is
superharmonic in the circle x2+y2^R2, it follows from a well-known
result [2] that

(13) 52τε

p(x, y)dθ (x+iy=reίθ)

o

is a non-increasing function of r in the interval [0, R\. The same is
evidently true of its mean value
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If we set τ(r)=\ tq(t)dt, we may therefore conclude that
Jo

(14) τ(r) ̂  gτ

If λ denotes the lowest eigenvalue of the problem Av + λpv — Q with
the boundary condition v=0 on the circumference r—R, we bave

pu2 r dr dθ
0 J 0

λ [*[E(ul+ul)rdrdθ
Jo Jo

where u is any function which satisfies the boundary and admissibility
conditions. In particular, we may take for u the lowest eigenfunction
of the problem

(15) [r u'{r)~\ + λ0 r u(r) = 0, u(R) = u'(0) = 0 .

This yields

S R

r q(r) u2dr

2π\ rntιdr
Jo

In view of the definition of τ(r), we have

(16) I r q(r)u2dr ==• \ τ'{r)v?dr = — 2\ τ(r)nn'dr .
Jo Jo Jo

Since u(r)^0 in [0, E], it follows from (15) that ru\r) is a non-increas-
ing function of r. Because of ^(0)^0, we must therefore have u\r) rg 0
throughout the interval. We thus conclude from (14) and (16) that

^ Γ r uudr = 2 ̂  [*\*rq(r) u2 dr ^ - 2 ^ Γ r 2 uu'dr = 2 ̂  [*r u2 dr .

Hence,

S R

_ _ o r U * d r

 = τ(R) = τ{β)
λ " πR" \Rru'2dr πR2λ« «fi '

Jo

where jQ is the first zero of the Bessel function JQ(x). Since



ON THE PRINCIPAL FREQUENCY OF A MEMBRANE 291

J R ΓZitfR

r q(r)dr = \ \ prdrdθ ,
o Jo Jo

we finally obtain

λ\\ pdxdy ^ πjl ,

and this is equivalent to the assertion of Theorem II.

4. In Theorem III, we are concerned with a boundary value
problem of different type. If a is an analytic subarc of C, we are
considering the problem

(17) Δu + Au = 0, M = 0on C - a, — = 0 on a .

We shall show that, under the assumption that a is concave with
respect to the interior of the membrane, the smallest eigenvalue A of (17)
takes its smallest possible value in the case of a semicircular membrane
of the same area, where a coincides with the diameter bounding the
membrane. It may be noted that for non-concave arcs a the assertion
of Theorem III will in general not be true as suitable examples show,
A may in this case be made arbitrarily small.

We introduce the analytic function f(z) which maps the semicircle
\z\<R, ${z}>0 conformally onto the region D covered by the
membrane, and transforms the segment —R<z<R into the open arc α.
The value of R may be chosen in such a war that the semicircle has
the same area as D. Since a is analytic, f(z) will be regular and the
mapping will be conformal on the segment —R<z<R. Accordingly,
the function v(z) defined by v(z)—u[f(z)\ will satisfy the boundary
condition dvldn — Q on this linear segment, and (17) is transformed into
the problem

(18) Δv + Λ|/'(z)|2 v = 0, v = 0 for z = Reiφ, 0 ^ φ ^ π,

^ - 0 for -R < z < R .
dn

We now define a function p(z) by φ) = \f'(z)\2 for \z\^R, 3{z}^0,
and p(z) = \f/(z)\I for \z\<*R, ${z}<0. This function is continuous in
\z\tStR, and we may consider the eigenvalue problem

(19) Δw + A*pw = 0, w = 0 for \z\ = R .

It is easy to see that

(20) Λ* ^ A ,



292 2EEV NEHARI

where A and J* are the lowest eigenvalues of (18) and (19), respectively.
Indeed, we have

(21) A* ^ _JJ£

11 prf dx dy
JJDR

where DR denotes the disk \z\<R and η satisfies the boundary and
admissibility conditions. If η is identified with v(z) in the upper half
of DR1 and with v(z) in the lower half, these conditions are satisfied
and the right-hand side of (21) reduces to A.

The next step is to show that log $(2) is a subharmonic function
in \z\<R. This is certainly true in both the upper and the lower open
halves of \z\<R indeed, in both these regions logp(z) is even harmonic.
To show that \ogp{z) is subharmonic throughout \z\<R it is therefore
only necessary to derive the inequality

(22) log p(x) ^ — P*log p(x+εeiθ)dθ ,
2π Jo

where x is any value such that —R<x<R and e is a sufficiently small
positive number. Since p{z) is symmetric with respect to the horizontal
axis, this is equivalent to

log p(x) ^ — ί* log p(x+εeίθ)dθ ,
π Jo

or, in view of the definition of p(z) in the upper half of the disk

\z\<R,

(23) log \f\x)\ S — Γ l o £ If'
7Γ JO

Since f(z) is regular for —R<z<R, we have

Γ log \f\x+eeίθ)\dθ - SRJ— (* log f\x+eeiθ)dθ
I Joπ Jo

= 3ft j ! f [ log f\x) + ε eiθ - g M + O(eη~\
ί π Jo L f'(x) J

g + O(eη\dθ

= log \f\x)\ - -9ί 1 4 g ^
π ( % f\x)

A comparison with (23) shows therefore that (22) will be satisfied for
sufficiently small ε if, and only if, 3{f"(x)IΓ(x)} <0. If φ(x) is the
angle between the tangent to the curve w=f(x) and the positive
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^-direction, this is equivalent to φ'(x)<0. This condition will therefore
be satisfied if, and only if, the curve w=f(x) —that is the arc a— is
concave with respect to the interior of D. We add that the points at
wτhich ${/"//'}—0 are either isolated, or else this expression vanishes
identically for —R<x<R and a is a linear segment. Evidently, the
subharmonicity of p(z) in not destroyed by isolated points of this nature.
If a is a linear segment, the assertion of Theorem III follows from
Rayleigh's theorem and an elementary symmetry argument.

In accordance with the hypotheses of Theorem III, log p(z) will
thus be subharmonic in \z\<R and we may apply Theorem I, i.e.,
inequality (5). In view of the definition of p(z), we have

\f'(z)\*dxdy - A*\\ p(z)dxdy ^ πj; .

Taking account of (20) and the fact that II \f\z)\λ dxdy is the area A

of D, we obtain

and this is equivalent to the assertion of Theorem III since jlR~2 is
the principal frequency of the membrane of density 1 which covers DR

and has the indicated boundary conditions.
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REMARKS ON DE LA VALLEE POUSSIN MEANS

AND CONVEX CONFORMAL MAPS

OF THE CIRCLE

G. POLYA AND I . J . SCHOENBERG

Introduction. The aims of the present remarks are similar to those
pursued by L. Fejer in several papers in the early nineteen thirties and well
described by the title of one of his paper: Gestaltlίckes ύber die Partial-
summen und ihre Mittelwerte bei der Fourierreihe und der Potenzreihe.
However, the means which we use to realize these aims are different.
Fejer discovered the remarkable behavior of certain Cesaro means, es-
pecially that of the third Cesaro means for even or odd functions of
certain simple basic shapes. In what follows we show that the de la
Vallee Poussin means possess such shape-preserving properties to a much
higher degree thanks to their variation diminishing character.

Before stating our results, we have to explain a few concepts.

Variation diminishing Transformations on the Circle. If a19 a2, , an

s a finite sequence of real numbers we shall denote by v{a) or v(av) the
number of variations of sign in the terms of this sequence. By the
number vc(a) of cyclic variations of sign of our sequence we mean the
following: If all av—0 we set vc(a) = 0. If α^O we set

vo(a) = v(ai9 aι+19 , an9 a19 α2, , α f_i, α4) .

If we think of the αv as arranged clockwise in cyclic order, it becomes
obvious that vc(a) does not depend on the particular non-vanishing term
at we start with. Notice that vc(a) is always an even number. Let
now f(t) be a real-valued function of period 2π. Let tl9119 , tn be such
that

(1) ίi<*a< ••• <tn<t1+2π .

We may now define the number vc(f) of cyclic variations of sign of f(t)
by

(2) vc(/)=supi;β(/l(ίv)),

the supremum being taken for all finite sequences {£v} subject to (1).

Received October 21, 1957. This paper was prepared partly under the sponsorship of
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Also vc(f), if finite, is even. Thus vc(sin £) = 2, vc(sin2£) = 4, vc(|sin t\) = 0.
We now describe what is meant by a variation diminishing trans-

formation on the circle (See [4]). Such a transformation is characterized
by a non-negative weight-function, or kernel, Ω(t), of period 2π, of
bounded variation and normalized by the conditions

(3) . — [*Ω(t)dt = l,
2π Jo

Let f(t) be an arbitrary periodic function, with period 2ττ, real-valued
and integrable (cf. §1.2) let us form its convolution transform

(4) g(t) M
2π Jo

We say that this transformation is variation diminishing provided that
the inequality

(5) vc(g)^vc(f)

holds for each /. We mean the same thing if we say that Ω(t) is
a variation diminishing kernel.

V-means. One of our aims is to show that the de la Vallee Poussin
kernels

( 6 ) »•<«)= ^

the Fourier expansion of which has the simple form

^ vt ,
ί2n\ -n
\n)

7

(n — v)\

possess the property of being variation diminishing for % = 1,2, 3,
For Ω(t) — ωn{t) the transformation (4) becomes

() 2

and defines the de la Vallee Poussin means, or simply F-means, of the
function f(t). It is easily verified (See [14] and [5, p. 15]) that Vn{t)
is a trigonometric polynomial of an order not exceeding n, which is
readily expressed in terms of the Fourier coefficients of f(t). Indeed, if

( 8 )
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we obtain by convoluting (6') and (8)

\n)

In terms of the real Fourier series (2cv = αv—ibv)

(10) j\t)~ 1 ao+ Σ
2 i

we find

1 1 n

(11) Vn(t) = ±ad+ -n*••-- - Σ
2 /2?z\ i

U/
or

(12) y n ( i ) = ^ + £ _ ? L ! T - ^ - Γ ^ . cosvί + &v sinvί) .
2 i (n—v) ! (w—v) !

Main Results. Our principal result is the following

THEOREM 1. The inequalities

(13) vc(Vn)^Zc(VnUvc(f)

hold for an arbitrary integrable function f{t). (We let Zc(Vn) denote the
number of real zeros of Vn(t) within a period including multiplicities.)

The first inequality vc(Vn)^Zc(Vn)f which is obvious, shows that
Theorem 1 states considerably more than the variation diminishing pro-
perty of the kernel ωn(t) which amounts to vc(Vn)^vc(f). In Part I we
give two proofs of Theorem 1, both based on a theorem due to Sylvester
[12]. The first proof uses the result of Sylvester's theorem, the second
uses the method of one of its proofs.

In Part II we discuss applications of the variation diminishing pro-
perty of V-means. Theorem 1 gives a useful lower bound for vc(f) if
a certain number of Fourier coefficients of f(t) are known. It is shown
how this implies easily some results by Sturm, A. Hurwitz, Pόlya and
Wiener. In §5 we study the simplest classes of discontinuous periodic
functions the behavior of their F-means is described by Theorems 3
and 4. Fejer's Theorem III [1, p. 86] has an analogue for F-means
which is our Theorem 5 below. All this refers to real periodic func-
tions. However, the shape-preserving properties of T-means appear to
best advantage if applied to complex-valued periodic functions.
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Let us state here the main result of §6 concerning convex maps of
the circle. Let K denote the class of those "schlicht" power series
ΣΓ&,2V which map \z\<1 onto some convex domain. Let

(14)

n )

be the de la Vallee Poussin mean, or F-mean, of the power series (14).
It is known that the partial sums of the series (14) need not belong to
K. G. Szegδ has shown [13] that if F(z)eK then all partial sums of
(14) are "schlicht" in the circle |s |<l/4 and map it onto convex do-
mains, and that 1/4 is here the largest constant. That the F-means
belong to K is one part of the following

THEOREM 2. For

(16) f(z)eK

it is necessary and sufficient that

(17) Vn{z)eK for w=l, 2,

The sufficiency part does not even assume the regularity of (14) in
the unit circle, as for any formal power series (14) the assumption (17)
imply that (14) converges and defines an element of K.

Additional Results. Parts I and II are followed by two appendices
which contain related materials, but are almost independent of the main
text.

Appendix I brings out a certain analogy between approximations to
two kinds of functions: periodic functions and functions defined in
a finite interval. It will be shown that the shape-preserving properties
of the F-means, which approximate functions of period 2ττ, are analogous
to the shape-preserving properties of the so called Bernstein polynomials
which approximate functions defined in [0,1]. For the definition of these
polynomials see §7 where also their variation diminishing property
(Theorem 6) is stated and proved.

Appendix II is devoted to a conjecture on power series which re-
present a conformal one to one mapping of the unit circle onto a convex
domain. The conjecture is that the Hadamard composition, or convolu-
tion, of two such power series is again a power series of the same kind
(see §9). We do not know whether this conjecture is true or not (it
seems to us more likely that it is true) but at any rate, in view of the
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partial results which we have obtained (§§10 and 11), the problem to
prove or to disprove the conjecture seems to us worth while.

PART I. THE DE LA VALLEE POUSSIN SUMMATION
METHOD IS VARIATION DIMINISHING

1.1 A theorem of Sylvester. In the course of his work on Newton's
rule of signs J. J. Sylvester discovered a remarkable theorem concerning
the real zeros of polynomials of the form

(see [12, p. 408], [7] and also [9, vol. 2, Problem 79, p. 50]). In Sylvester's
theorem q may assume any positive integral value, a fact which is im-
portant for its proof which proceeds by induction in q. We need
Sylvester's result only for q=2n and state it as follows.

LEMMA 1. Let ξλ<ξ2< ••• <fm, (m^2), be given reals and consider
the polynomial

(with real cyψ0 for all v), which we assume not to vanish identically.
Then

Z(P; -co<:χ<Cco)^v(clf c2, •• ,c w , cx) ,

where the left side denotes the number of real zeros of P(x) while the
right side is the number of variations of sign in the sequence displayed.

The significance for us of Sylvester's results is that it easily yields
the following

LEMMA 2. Let

(1.1) - τ r < r 1 < ^ < ••• <τm<π,

be given reals and consider the trigonometric polynomial

(1.2)

(for real c^ΦO for all v), which we assume not to vanish identically. Then

Z(T;-π<t<π)^v(clf c2, ---,cm, cλ) .

Proof. We introduce the new variable
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(1.3) α=tan~ -π<t<π

whose range is •—oo<o?<co. The images of the rv we denote by

and these give rise to the identities

nY
2 / (1+α χi+S)

Thus (1.2) may be expressed in terms of # by

where the γv are positive and so Lemma 2 immediately follows from
Sylvester's Lemma 1.

We now recast our result in the following more useful form;

LEMMA 3. Let τlfτ.if

 β ,~m (m^2) be m points in counter-clockwise
order on the circle such that τm should not overtake or even reach τx.
We may express these requirements by assuming that

(1.4) TX<T2< .-. <τm<τ1+2π .

Let

(1.5) Γ»(ί) = Σcvωn(e-rv) ,
V = l

where at least two among the cv do not vanish. Then

(1.6)

Proof, By omitting vanishing terms in (1.5) we may assume that
cvΦθ for all v. Moreover, a change of variable by t~tf—π will evi-
dently not alter the left hand side of (1.6). This implies that in our
statement (1.6) we may replace Tn(t) by the polynomial T(t) defined by
(1.2). By a second appropriate transformation t — f+c we may replace
the conditions (1.4) by the more restrictive inequalities (1.1), at the
same time making sure that T(π)Φθ. But then

and Lemma 3 is established,
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1.2. On the number of variations of a function. The reader may
interpret the term " integrable " either according to the definition of
Riemann or to that of Lebesgue, or to any other definition that involves
the familiar standard properties of the integral. We emphasize the
following property: If f(t) and g(t) are integrable and/(£)Ξ>0 in the
interval J, then

[fdt=0

implies

[fgdt = 0 .

We consider now a real-valued periodic function f(t) with the period
2π, we assume that it is integrable in the interval (0,2ττ) and that ve(f)f

as defined in the Introduction, is finite. We consider t (mod 2π), that
is, we consider t as attached to a point on the periphery of the unit
circle. If vc(f)=2k9 we can, as easily seen, divide the circumference
of the unit circle into 2k consecutive arcs

(1.7) Il9Ii9 •••,/»

such that

(1.8) (-lΓ-VW^Oin/v

for v=l, 2, , 2k the arcs (1.7) may be open, or closed, or open from
one side and closed from the other, some of them may even reduce to
a single point. Now, we normalize f(t), that is, we change f(t) (if
necessary) as follows: we set/(£)=0 in all points of any interval (1.7)
on which \fdt vanishes especially, if an interval listed under (1.7) con-
sists of just one point, we set/(£) = 0 in that point. This normalization
cannot increase (but may decrease) vc(f) and leaves unchanged the V-
means of / (cf. the initial remark of this section). Therefore, it will
be sufficient to prove Theorem 1 for normalized functions. If, however,
vc(f) = 2k for a normalized f{t), the intervals (1.7), constructed as above,
have the property

(1.8') (-iy-ι[ f(t)dt>0 for * = 1, 2, •-., 2k .

The foregoing remarks will be useful in the following proof of
Theorem 1. Yet we do not need them in establishing the weaker ine-
quality

(1.9)
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for a Riemann-integrable function /.
Indeed, let us consider the integral

2π Jo

and its approximating sums

n, m{t)= Σ ^ 4 t ~ )/( —)Σ 4 ) (

Lemma 3 and definition (2) imply

m

or

Since Vn,Jt)-±Vn{t) for all t, as m->^y the last inequality evidently
implies (1.9). An " approximation argument" extending (1.9) to a more
comprehensive class of functions is easy, but hardly deserves to be
presented here.

1.3. A first proof of Theorem 1. The first inequality (13) is im-
mediate and so the essential assertion of Theorem 1 consists in the
inequality

(1.10) Zc(Vn)£vc(f) .

If vG(f)^2n there is nothing to prove; also if vc(f) = 0 for then
Vn(t) clearly can not vanish. Let us assume, then, that fit) is "nor-
malized" according to §1.2, and that 0θ c(/)=2/b<2^, and let us divide
the unit circumference into the 2k consecutive arcs (1.7) which satisfy
the conditions (1.8) and (1.8') We may then write the Fourier coef-
ficients of f(t) in the form

αa=if*ίΛί)dί=Σlf |/(ί)lώ-Σ-( \f(t)\dt
π Jo s-iπjr^^ >-iπji2s

(1.11) α v=—ίΛ/(ί)cosj/ίdί=Σ—f \f(t)\ cosutdt
π Jo i π J-τ2s-i

- Σ —
1 7Γ

()
7Γ JO 1 7Γ
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- Σ — [ \f(t)\8inutdt.
i τrJ/2s

v = l, ••, n;

Consider in the 2^-dimensional space Em the closed curve Γ defined in
parametric form by cos^ί, ύnvt (Wl, , n; 0^t^2π). To the division
(1.7) of the circumference into the arcs Iμ, corresponds a division of Γ
into arcs

(1.12) Λ,Γ 2 , . . . , Γ a ,

where we think of the arc Γμ as carrying the positive mass

(1.13) - ( \f(t)\dt.

This mass has a centroid the coordinates of which, multiplied by (1.13),
are

(1.14) —f |/(£)|cos vtdt, JL( \f(t) sin vbdt (v=l, , w) .

By a well known theorem of Caratheodory the mass (1.13) of Γμ may
be concentrated in a finite number of points along Γμ so as to produce
the same centroid (1.14). This we do for each of the arcs (1.12).
Arranging all these points in cyclic order along Γ we obtain points τly τ2,
•• ,rm and corresponding coefficients c2, c2, , cm where ( —l)μ"1c j>0
when r, belongs to Iμ. In view of the relations (1.11) we obtain

(1.15) αu — 5>j> ^ . ^ Σ ^ j cosvτj, 6v = Σcj sin

j = l j = \ j = l

(1.16) ve(cj)=2k=ve(f) .

We consider now the trigonometric polynomial

(1.17) i ΣcJβ>,(ί

and claim that

(1.18) B\t)=VΛ{t).

Indeed, by (6')

ι-v)\
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= Έfis\ 7Γ + Σ - : '~rr -r-^-r—- (COSvί COSvr, + Sinvί sfrlvrλ \ ,
J (2 *=i(n~v)\ (n+v)\ )

and interchanging the order of summations, we obtain by (1.15)

F(t) = \aQ + ± nl ™L (av cosvέ+6v sinvέ)

which is identical with Vn(t) by (12). Finally, by (1.17), (1.18), (1.16)
and Lemma 3

which proves the inequality (1.10).

2. A second proof of Theorem 1. The foregoing proof is based on
Sylvester's result which we stated as Lemma 1. We shall now prove
Theorem 1 without assuming the knowledge of this result.

We transform (7) by changing the variables. Setting

#=tan— , £=—cot— ,
Δ Δ

we obtain from (7) (by steps similar to those exhibited following (1.3))
that

(M)

This relation is contained in the more general

(2.2) P(x)=\~ (x-ξ)mA(ξ)dξ

S oo

ξmA{ξ)dξ is absolutely

convergent; P{x) is by the structure of the formula (2.2) a polynomial
of degree not higher than m.

We consider the following quantities connected with (2.2):
N the number of real zeros of P(x), counted with multiplicity
v the number of variations of sign of A(ξ) in the open interval

) is the constant sign, different from 0, that A{ξ) possesses
whenever it is different from 0 in a suitably chosen interval ω<f<oo

waessume here that A(ξ) is normalized in the sense of §1.2



ON DE LA VALLEE POUSSIN MEANS AND CONVEX MAPS 305

sgnA( — oo) is similarly defined

7 = 1 |sgnA(oo)-sgn(-l)mA(-oo)|

so that V is either 0 or 1

In fitting (2.1) into the more general pattern (2.2), we can assume
without loss of generality (by rotating the circle through an appropriate
angle) that Vn(π)Φθ, that/(ί) is normalized in the sense of §1.2, and
that 0 is an interior point of one of the intervals of constant sign con-
sidered there, so located that, for some positive £, f(t) takes some non-
vanishing values in both intervals — 6<t<0 and 0<t<£. Under these
circumstances, in the particular case (2.1),

7 = 0 ,

V=v = vc(f) ,
N=Zc(Vn),

and so Theorem I is an immediate consequence of the following.

LEMMA 4. N<,V.

We need several steps to prove Lemma 4.
(a) There are some particular cases in which Lemma 4 is obvious.
If P(x) vanishes identically there is nothing to prove since in this

case, by definition, JV = O.
If V^m there is nothing to prove since, of course, N^m.
If v = 0 and m is even (so that V=V — 0) then P(x) will have for all

real x the constant sign of A(ξ) and so iV=0 as it should be according
to Lemma 4.

If t7 = 0 and m is odd (so that V—rj—Y) then m —1 is even and so

= (° β

has a constant sign for all x, by what we have just said. Therefore,
P(x) is monotone and JV=1 which agrees with Lemma 4.

And so we may and shall assume in the sequel that

(2.3)
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(b) Let c be a point of change of sign for A(ξ) that is, c is the
common endpoint of two contiguous intervals in each of which A(ξ)
keeps a constant sign, yet the two signs (cf. §1.2) considered are op-
posite. The number of such points is v and we have assumed (2.3).

We assert that at least one of the m —1 quantities Pf(c),P"(c), ••-,
is different from 0. If this assertion were wrong, the integral

5 (6—cY
- c o

would vanish for μ=m — l, , 2,1 and, as a linear combination of these
integrals,

(2.4) [~ (ξ-c)Q(ξ)A(ξ)dζ
J-oo

would vanish for any polynomial Q(ξ) of degree not exceeding m—2.
Yet this is certainly false if

(2.5) Q(f) = (a?-Ci)(«-c?) (x-c^)

where c, clf c2, , co_ι are all the points of change of sign of A(ξ); ob-
serve (2.3) in computing the degree of Q(ξ). In fact, with (2.5) the
integrand in (2.4) has a constant sign and so the integral (2.4) cannot
vanish.

We have seen by the way, that under the condition (2.3) P(x) cannot
vanish identically.

(c) Set

(2.6) G(x)=P(x)(x-c)-m

(2.7) P*(x) = {x-c)m+1G\x)
= (x-c)F(x)-mP(x)

where

(2.8) A*(ξ) = m{ξ

and let N*, m*, v*, ψ, V* be just so connected with P*(x) and A*(ξ) as
N, ΎΠj v, V and V are with P(x) and A(ξ). Obviously

(2.9)

and so Ψ — rj. Combining this with (2.9), we obtain
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(2.10) V * = F - 1 .

We intend to prove Lemma 4 by mathematical induction with re-
spect to V. In fact, we have already proved Lemma 4 in the particular
case V=0 under (a). We therefore assume V>1, cf. (2.3), and that
Lemma 4 has been proved for the preceding value (2.10), and so we
take for granted that

(2.11) N*^V* .

(d) Let k denote the number of those zeros of P(x) that coincide
with the point c; obviously &^0, and, by (b),

(2.12) fc^m-1 .

Let &* denote the number of those zeros of P*(a?) that coincide with c.
We set

(2.13) N=k+l, N*=k* + l* .

The quantities / and Z*, defined by (2.13), enumerate those zeros of
P(x) and P*(x), respectively, that fall into one or the other of the two
open intervals — oo<#<c and c<x<&>.

We note the critical term of the expansion of P(x) around the point

By (2.6) and (2.12), G(x) has a pole at the point c and (2.7) yields

k\

We infer that P*(x) has just as many zeros at the point c as P(x):

(2.14) k* = k .

By the way, we have seen that P*(x) does not vanish identically.
(e) It remains to consider the real zeros different from c P(x) or,

which is the same, G(x) has I such zeros, and P*(a?) or, which is the
same, G\x) has Z* such zeros. These zeros are distributed somehow in
the two open intervals, — cχ><x<c and c<x<oo.

By the theorem of Rolle, in each of these intervals at most one
zero can be lost in the passage from G(x) to G'(x), so that
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(2.15) Z * ^ Z - 2 ;

this information is correct, but insufficient for our purpose. We shall
obtain, however, additional information by using the following remark
(cf. [9, vol. 2, p. 39, problem 14]).

No zero can be lost in the passage from G(x) to G\x) in the interval

(~oo,c) if

(2.16) sgnG(-oo)=SgnG/(-oo)

and no zero can be lost in this passage in the interval (e, oo) if

(2.17) sgnG(oo)=-sgnG/(oo) .

The signs mentioned in (2.16) and (2.17) refer to a certain neigh-
borhood of -co or oo and, as G(x) has only a finite number of zeros,
they are certainly different from 0.

(f) We know, cf. (b), that the polynomial P(x) does not vanish
identically. We set

(2.18) P(x)=bΰx
m+b1x

m'1 + - +bm

and distinguish two cases.
Case I. If bo—O, there is an s such t h a t b^—bλ— ••• = 6 s _ 1 = 0, 6s

and so we easily find the initial terms in the expansions around

G ( x ) + , ^ + .
xs G{x) x

In this case, both conditions (2.16) and (2.17) are satisfied, and, by the
final remark under (e), we can improve (2.15) to

(2.19) 1*^1.

Case II. Now

(2.20) δ o =(~ A(ξ)dζΦθ ,

and the expansions around oo begin

(2.21) G(x)=bo+
 mώ* + h±.+ . . .

x

(2.22) G\x)= ^

where
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(2.23) mc&0+&i=mf A(ξ)(c-ξ)dξ .

We again distinguish two cases.
Subcase II, 1. If v — 1, c is the only point of change of sign of A(ξ),

the integrand in (2.23) is of constant sign, and so the integral is dif-
ferent from 0.

Subcase II, 2. If v>2, the integral (2.23) could vanish. Yet in
this case A(ξ) has at least another point of change of sign, clf and we
say that (2.23) and

A{ξ){cι-ξ)dξ

cannot vanish simultaneously: in fact, their difference is

by our present assumption (2.20). Therefore, assuming that the point
of change was properly selected from the start (which boils down to
a proper choice of notation) we may assume that (2.23) is different
from 0, also in the present subcase.

Finally, in both subcases, we conclude from (2.21) and (2.22)

lim _ ^ G M = _mcbo+bι

*->±oo G(x) b0

and we see that just one of the two conditions (2.16) and (2.17) is ful-
filled. Therefore, by the final remark under (e), we can improve (2.15)
to

(2.24) 1*^1-1 .

Thus, even in the less favorable of the two cases I and II, we
have (2.24). Combining this with (2.13) and (2.14), we obtain

and hence and from (2.10) and (2.11) we obtain

or V^N, which is the desired conclusion of Lemma 4.
The foregoing somewhat involved proof becomes more understanda-

ble if it is compared with the proof for Lemma 1 given in [7] or in
[9, vol. 2, p. 50, problem 79].
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PART II. SOME APPLICATIONS OF THE
VARIATION DIMINISHING PROPERTY OF F-MEANS

3. A theorem of Ch. Sturm and A Hurwitz. Let f(t) be a real-
valued, integrable, periodic function of period 2π. Let

(3.1) f(t) = — aύ+ Σ (αy cos vt+bv sin vt)
2 >=i

be its Fourier expansion. Suppose that the partial sum

(3.2) Sn(t) = ̂  a0+ Σ (αv cos vt+bv sin vt)

is known. What can we say about the number vc(f) of changes of
sign of f(t) in a period ? An answer is immediate : Knowing (3.2), we
can compute (11), the n\λι F-mean of f(t), and we must have

(3.3) vc(f)^Zc(Vn)

by Theorem 1.
The information provided by this inequality is strongest when the

right hand side attains its largest value 2n. There is a simple sufficient
condition for this eventuality which we record as follows.

COROLLARY 1. / /

K+δJ)1/a>(2^)(αU

then every function f(t) having (3.2) as the nth partial sum of its Fourier
series, must change sign within a period at least 2n times.

Indeed, it is clear by (3.4) that the last term of the expression (11)
for Vn(t) so predominates that Vn(t) has 2n simple zeros, hence Zc(Vn)=2n.
The statement now follows from (3.3).

We obtain a classical result [2, pp. 572-574] as a very special case.

COROLLARY 2. // aΰ — aι—hι— ••• =αw_1=:6w_1~0, a2

n+b2

n>0, then
vc(f)^2n.

The following is an equivalent formulation. If al+bl>0 then

(3.5) vc{f{t)-Sn^{t))^n .

This second formulation is especially interesting and intuitive because
it shows that the graph of the partial sum S^t) must cross the graph
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of f{t) at least 2n times. Hurwitz's proof of Corollary 2 is direct and
elementary. However, his classical argument is no longer available to
establish other special cases such as the following.

If
-t n oo

f{t)=~~ + Σ cos vt + Σ («v cos vt+bv sin vt)
2 v=i v=n+i

then

For in this case Vn(t)=—ωn(t), hence Ze(Vn)=2n so that (3.3) implies

the result. Such particular examples are easily constructed and we see
no other way of proving them except by the fundamental inequality
(3.3).

4. The simplest Polya-Wiener result concerning high order derivatives
of periodic functions. Let f(t) be a real function of period 2π which
is infinitely often differentiate. Let us consider its zeros and also the
zeros of its successive derivatives. Counting multiplicities as usual we
set

and assume all these numbers to be finite. A familiar application of
Rolle's theorem shows that

(4.1) N<v<^N<v^ ••• ̂ iV( fc)^iV( fc+1)^ . . . .

Can this sequence remain bounded ? This is surely the case if f(t) is a
trigonometric polynomial. The truth of the converse is stated by the
following proposition due to Pόlya and Wiener [8.]

COROLLARY 3. // the sequence (4.1) is bounded and

(4.2) limiVW=2m,

then f(t) is a trigonometric polynomial of exact order m.
Indeed, let (3.1) be the Fourier series of f{t). It is known to

converge under our assumptions and the expansion of /(/b)(ί) is obtained
by formal differentiations of the expansion of f(t). Let us assume that
for a certain n

(4.3) al+bl>0 .

It is clear then from the form of the Fourier series for βk)(t) that this
series will satisfy the inequality (3.4) of Corollary 1, provided only that
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k is sufficiently large, k>K say. But then by Corollary 1

ve(βk>)^2n, (if k>K) .

Thus (4.2) and (4.3) imply that n^m, and fit) must reduce to a
trigonometric polynomial of order ggm. On the other hand, if fit) is
such a polynomial, NC7c)<^2q which implies 2m^2q or m<q, hence q — m
and the theorem is established.

5. The graphic behavior of F-means. We now wish to discuss the
shape-preserving properties of the F-means which are implicitly contained
in the fundamental inequality

(5.1) Zc(Vn)^vc(f) .

It shows that Vn(t) can't oscillate about zero more frequently than f(t)
does. But there is nothing peculiar about the level zero. Indeed, if γ
is any real, then f(t) = γ implies Vn(t) = γ. Thus we may replace in (5.1)
/ and Vn by f—γ and Vn — γ, respectively, obtaining the inequality

(5.2) Zc{Vn-γ)^vc{f-γ) .

A second remark is based on the obvious known fact (see [5, p. 191])
that if fit) is absolutely continuous then VJt) is the F-mean of /'(£).
But then (5.1) immediately gives

(5.3)

This operation may naturally be repeated giving

(5.4)

which is valid depending on how many derivatives f(t) possesses. For
instance, if

/(ί)eC"

inflexion than the corresponding numbers for the graph of /(£).
It is desirable, however, to discuss this phenomenon for functions

of a lower degree of smoothness and the following developments aim
to do that. We consider the class Do of real periodic functions f(t), of
bounded variation, normalized by 2f(t)=f(t + 0)+f(t — 0). A subclass of
DQ is the class Dx of functions satisfying the classical Dίrίchlet condit-
ions. By fit) € D1 we mean that the circle can be dissected into a finite
number of consecutive open arcs in each of which fit) is monotone in
the wide sense.

With each f(t) e Dx we associate an even non-negative integer £(/),
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called the number of sense-reversals of f(t) and defined as follows.
Consider, for a given natural number k, the periodic sequence of ordinates

(5.5) /V=/(J^W^) , h=2πlk,

of period k, and the likewise periodic sequence of differences

v=0, 1, 2, ••• , n—1. We now define S(f) by

(5.6)

The reader is urged to supply proof for the statements implied in this
definition it depends on an analysis of the finitely many points which
have no neighborhood in which f(t) is monotone. If in addition to
f(t)eD1 we assume that f(t)eC then evidently S(f)=vc(f).

Our substitute for (5.3) for the class A is given by the following.

THEOREM 3. If f{t)eDι then

(5.7) vG(V'n)=S(Vn)<^S(f) .

The proof is very simple. Besides the F-mean

we consider the approximating sums

k v

Replacing t by t+h we obtain

k

and therefore

(5.8) ^

By Lemma 3, in view of (5.6), we obtain vc(JVnιJh)<>vc(Jf)^S(f) or
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Because the difference quotient (5.8) converges to V'n(t), as &->oo, for
all t, the last inequality implies (5.7).

There is a similar significant substitute for (5.4) if k=2. In order
to formulate it we define a class of functions f(t) which we denote by
A - By f(t) e A we mean that the circle can be dissected into a finite
number of consecutive open arcs in each of which f(t) is continuous and
convex, or concave, or linear. It is clear that D 2 c A .

With each f(t) e D2 we associate an even non-negative integer T{f),
called the number of turn-reversals of f(t) and defined as follows:
Besides the Δfv we consider the periodic sequence of second differences

and define T(f) by

(5.9)
fc-oo ΊC

Again a proof of the equality of the last two expressions requires the
consideration of the points (finite in number) which have no neighbor-
hood in which f(t) is convex, or concave. If in addition to f(t) e D2 we
assume that f(t) e C" then evidently

T(f)=vc(f").

A substitute of (5.4) for k—2 is given by

THEOREM 4. Iff(t)eD2 then

(5.10)

The proof is so very similar to the proof of Theorem 3 that it
suffices to indicate the main points. In place of (5.8) we now start
from the second order difference quotient

Ί^ΓΣiojn(t
2πh v

and observe that on the one hand it converges to V'ή(t), on the other
hand by Lemma 3 and (5.9)

This last inequality implies (5.10) on letting k->co.
The following remarks concerning the simplest elements of D1 and

D2 are called for: 1. If /(ί)=const, then clearly S(/)=0 and Γ(/)=0.
Conversely, either of these relations is easily seen to imply that/(ί) =
const. 2. The first non-trivial case is
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(5.11)

Functions j{t) satisfying (5.11) are in a way the simplest non-constant
periodic functions and may aptly be called periodically monotone. Likewise
functions with

(5.12) Γ(/)=2

may be called periodically convex.
It is easily shown that (5.12) implies (5.11). That these new terms

are appropriate is also shown by the following two statements.
1. If the periodic function f(t) is monotone (non-constant) in

—π<t<π then S(f)=2, that is, f(t) is periodically monotone.
2. If the periodic function f(t) is convex or concave (non-constant)

in —π<t<π then T(f)—2, that is f(t) is periodically convex.
Observe that the distinction between "increasing" and ' "decreasing"

as well as between "convex" and "concave", drops out for periodic
functions.

We conclude our short excursus into "descriptive function theory"
with a few examples :

S(sin ί) =

Sflsin ί|) = Γ(|sin ί|)=4 .

If /ft) = sin ί + 1 in (-π , 0) and/ft) = sin t in (0, π) then

If/ft) = sin t + t in 0<t<2π, then

S(/)=2, Γ(/)=4 .

From these examples we see that

(5.13)

and this inequality is generally true. We see this if we observe that
for a periodic sequence (5.5) we always have

In view of (5.6), (5.9) and the corresponding relations

ve(f) = ϊim vc(/v)=

we conclude that

(5.14) vc(f)
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It is of some interest to show that the remarkable properties of the
third Cesaro means established by L. Fejer in his Theorems 1, 2 and
3 [1, p. 82 and p. 86] are also enjoyed by the de la Vallee Poussin
means Vn(t). Thus Fejέr's work suggests the following

THEOREM 5. // f(t) is an odd periodic function which is positive
and concave in the range 0<£<π, then

(5.15) 0<Vn(t)^f(t) if 0<t<π (n^

Moreover, the function Vn(t) is also concave in 0<t<π.
The last statement and the first inequality (5.15) are easily proved.

Indeed, it is clear that

(5.16) Ve(f)=S(f) = T(f) = 2 .

Observe also that Vn(t)mθ if ra^l, for Vn(t)=0 would imply Sn(ί) = O,
hence also vc(f)^2n+2^4: (by Corollary 2) which contradicts (5.16).
By Theorem 1 and (5.16) surely

(5.17) SC(F«) = 2 .

Since Vn(t) is a sine polynomial it vanishes at 0 and π. By (5.17)
these zeros are simple and the only zeros of Vn(t). Also by (5.16) and
Theorems 3 and 4 we conclude that

These remarks show that Vn(t) or perhaps — Vn(t) enjoy the properties
to be established. That Vn(t), rather than —Vn(t), has these properties
is shown by observing that

(^Jn~\in^f(τ)dτ , c>0,

(obtained from (7) by differentiation) has a positive integrand and is
therefore positive.

To establish the second inequality (5.15) or

(5.18) Vn(t)Sf(t) 0<t<π,

is a little more troublesome and we resort to Fejer's own method. We
consider the "roof-function"

(I* if
(5-19) /(<)=', "

^π—^ if a^tSπ Q<a<π, b>0,
π—a



ON DE LA VALLEE POUSSIN MEANS AND CONVEX MAPS 317

and denote again by f(t) its odd periodic extension. We now observe that
indeed

(5.20) Vn(t)<f(t) , 0<t<π,

for these special functions. Since we already know from our previous

discussion that Vn(t) is positive and concave in (0, π), the inequality
(5.20) is perfectly clear as soon as we can prove that

(5.21) y;(0)</'(0) , V\π)>f'{π) ,

These inequalities, however, follow immediately from previous remarks.

Since f(t) is continuous, V'Jt) is the F-mean of /'(£). Since /'(0) =

sup f\t), f'(π)=mif'(t), we conclude, for instance from (5.2), that

f'(π)<V'n(t)<f'(0) for all t.

The proof of the general inequality (5.18) now follows from the
observation that the function f(t) of Theorem 5 may be approximated
by appropriate linear combinations of roof-functions with positive
coefficients.

6. Convex, and star-shaped, conformal maps of the circle. The
following introductory remark (previously made by one of us see [10,
pp. 226-227]) applies to any variation diminishing kernel Ω,(t) as defined
by the relations (3), (4) and (5) of our Introduction.

Let

(6.1) f{t)-fι{t)+ifm (Λ, / 2 real-valued)

be a complex-valued continuous function of period 2π and let

(6.2)

be its transform g(t) is evidently also complex-valued periodic and we

may write

(6.3) g(t)=g1(t)+ig2(t) , (g19 g2 real-valued).

Since 12 is real and (3) holds it follows that the transforms of fλ{t)9

fit) and 1 are gλ{t), g.£t) and 1, respectively. If A, B, C are arbitrary
real constants it follows that Ag^+Bg^ + C is the transform of
AΛ(£)+-β/2(£) + C Since Ω(t) is assumed to be a variation diminishing
kernel, we conclude by (5) that the inequality

(6.4)
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always holds.
The inequality (6.4) admits a remarkable geometric interpretation.

Indeed, let us denote by {/} the closed curve traced out by f(t) in
the complex plane of the variable z~x+iy as t varies in the range
[0, 2τr], and let {g} be the corresponding curve described by g(t). Let
the following statement, too simple to be called a theorem, be referred
to as a

PRINCIPLE. The curve {g} never crosses a straight line more often
than the curve {/} does.

For if Ax+By+C~0 is the equation of a line L then the two
members of the inequality (6.4) are identical with the total numbers of
crossings of L by {g} and {/}, respectively. In particular we have the

COROLLARY 4. // the curve {/} is convex then {g} is interior to {/}
and {g} is also convex.

Indeed, {/} being convex, it crosses any L at most twice, hence
also {g} crosses any L at most twice and is therefore convex. That
{g\ has no points outside of {/} follows already from the properties

(6.5) Ω(t)^O9M

and in no way requires the sophisticated condition that Ω(t) be variation
diminishing. On the other hand the conditions (6.5) are by themselves
insufficient to enforce the convexity of {g}. It is also true, however,
that the variation diminishing property of Ω(t) is sufficient but far from
necessary for {g} to be convex. As an example we mention the perio-
dic kernel

( π\h if -h^t^h
(6.6) fl(ί)= j Q . f π ^ t ^ h o r h^t^π (0<h<π) ,

which is readily shown to have the ' 'convexity preserving" property
of Corollary 4. However, (6.6) is not variation diminishing because it
is not periodic totally positive (see [4]).

We now turn to an application of these remarks to conformal maps
of the circle, in particular to a proof of Theorem 2 of the Introduction.

Let

(6.7) F{z)=z+c.zz
2+c,z* +

be regular in the unit circle. For a fixed value of r we consider the
complex-valued periodic function

(6.8) f{t; r)^F(reu) = reu+c,f2em+ ••• ,
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By (6.8) and (9) its F-means are

2π Jo

or

(6.9) Vn(t; r) = Vn(reP) ,

where Vn(z) are the de la Vallee Poussin means of the power series as
defined by (15), with d = l. We also record the more explicit expression

(6.10) ^ **"%^s+ 7%r
n+1 (n+ΐ)(n+2)

φ-l)"Ί

Our Theorem 2 seems now almost self-evident. Indeed, if F(z)eK
then the curve {Vn(reu)} is convex by (6.8), (6.9) and Corollary 4. This
being true for every r < l , we conclude that Vn(z)eK. Conversely, if
Vn(z)eK for every n, then {Vn(reu)} is a convex curve for all n and
all r < l . From the relation

Km Vn(reu)=F(reu)
n-*oo

we conclude that also {F(reu)} is convex. Hence F(z)eK.

REMARK 1. In order to conclude from (17) that F(z)eK it is not
necessary to assume that the power series (6.7) converges in the unit
circle or that it converges at all. Rather the converse part of Theorem
2 holds for a formal power series (6.7). For it is known (see e.g. [9,
vol. II, p. 29]) that the assumptions (17) imply that all coefficients of
the polynomial (6.10) are bounded in absolute value by nl(n + l). Lett-
ing n-+oo we obtain \cv\^l (y = l, 2, •••) which clearly imply the
convergence of (6.7) within the unit circle.

REMARK 2. Let F(z) e K and hence Vn(z) e K. Let D and Dn denote
the convex domains into which the unit circle is mapped by F(z) and
Vn(z), respectively. We know by Corollary 4 that

(6.11)

At this point it is natural to suspect that more is true, namely



320 G. POLYΛ AND I. J. SCHOENBERG

that all the inclusions

(6.12) Ac Ac - c Ac Az+ic .

are valid, but we are unable to prove or disprove this.

REMARK 3. Since numerous elements of the class K are explicitly
known, Theorem 2 is a ready source of polynomials belonging to K.
Thus

(6.13) F(z)=-?--=z+zi + •••
1—z

is in K because it maps the unit circle onto the half-plane ςJfe>— .

The corresponding F-means

(6.14) Vn(z) = - -- H 2n )z + ( 2n V + ••• +zn\

( 2 Λ ι n+1 n+2

are a remarkable sequence of polynomials some extremal properties of
which might be discussed on another occasion. Of course (6.11) holds.

Here the convex boundary of Dn touches the line %lz= to an order

of contact which increases with n. Also the inclusions (6.12) can be
verified in this special case.

REMARK 4. Observe that the image A of the unit circle by

Vi(2;)= z is the circle
Δi

(6.15) A:N<}

By (6.11) we have D1aD for every F(z)eK. This proves the following
proposition : The circle (6.15) is covered by every convex map D and (6.15)
is the largest circle with this property. That A is the largest circle is
shown by the special function (6.13). This theorem is due to Study,
[11, p. 116], and our proof is really identical with Nehari's proof in
[6, pp. 223-224].

REMARK 5. A comparison of Theorem 2 with Fejer's Theorem IV
[1, p. 87] again shows the extent to which the de la Vallee Poussin
means of a power series are superior to its third Cesaro means as far
as shape-preserving properties are concerned.
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REMARK 6. In § 3 we have seen that from a knowledge of the
section (3.2) of the Fourier series (3.1) of f{t) we can infer the infor-
mation (3.3) concerning the zeros of f{t). Is there a similar result for
power series? Specifically, let

0

converge for |^]<1 and let, for a certain value of n,

n )

be given and known to have a certain number of zeros within the unit
circle. Can we then draw any positive conclusion concerning the
existence of zeros of f(z) in the unit circle ?

That the answer is negative is very simply shown as follows. With
the given c o=l, clf ••• , cn derive the expansion

l o g ( 1 + 0 x 3 + ••• + CnZ
n) = b1Z + ••• + b n Z n +

But then

n •• + c n z n + •••

is a zero-free entire function whose nth F-mean is precisely the given
Vn(z).

In concluding this section we wish to point out similar applications

concerning the class Σ of power series Σ M v which map the unit circle
1

onto a univalent domain which is star-shaped with respect to the origin.
It is well known that the two classes K and Σ are related as follows :

LEMMA 5. Σ a%zv eΣ if and only if
1

Σ-^V e K .
1 V

But then Theorem 2 easily implies the following.

COROLLARY 5. For F{z) e Σ it is necessary and sufficient that
Vn(z)eΣ for n = l, 2, •••.

APPENDIX I. THE BERNSTEIN POLYNOMIALS

7. The Bernstein construction is variation diminishing. The purpose
of the present appendix is to furnish for functions f(x) defined in a
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finite interval a theory analogous to that given in Parts I and II for
periodic functions. It is remarkable that such a theory is provided by
the classical Bernstein polynomials. Indeed, let fix) be defined in [0, 1]
and let

(7.1) Bn(x) = ± f (-

be the corresponding Bernstein polynomial (see [5]). Let Z(Bn) denote
the number of zeros of Bn(x) in the open range (0, 1). We now state
the following

THEOREM 6. Denoting by v(f) the number of changes of sign of fix)
in [0, 1] we have the inequalities

(7.2) v(Bn)^Z(BnUv(f) .

This result, an analogue of Theorem 1, can be derived as a special
case from a general theorem of S. Karlin [3]. It admits, however, a
very simple direct proof. Indeed, with z—xl(l~x) for 0 < # < l , we
have

hence by Descartes' rule of signs

= Z

8. The graphic behavior of the Bernstein polynomials. If we
write Bn(x)=Bn(x; f) to indicate the dependence on f(x), it is known
that

(8.1) Bn(x Ax+B)=Ax+B .

But then (7.1) implies that Bn{x) — Ax—B is the Bernstein polynomial of
f(x)~Ax~B. Now (7.2) implies the

COROLLARY 6. / / Ax+B is an arbitrary linear function then

(8.2) ZiBn{x)~Ax-B)^v{fix)-Ax-B) .

Intersecting the graphs of fix) and Bn(x) by appropriate straight
lines y=Ax+B, the inequality (8.2) furnishes a good deal of information
concerning the shape of the graph of Bn(x). Notice in particular the
following
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COROLLARY 7. If f(χ) is convex in [0, 1], possibly discontinuous at
the endpoints, but not linear in [0, 1], then

1. Bn(x) is convex,
2. Bn{x)>f{x) if 0<a?<l,
3. Bn(0)=/(0), 5 n ( l)=/(l) .
We may omit the simple proof based an Corollary 6.
Observe that the relation B'n{x ;f)=Bn(x /') is not valid. However

a simple calculation shows that (7.1) implies

and

where we have set

(See Natanson [5], p. 179, fifth line from the bottom). The Theorems
3, 4 and 5 have precise analogues as will now be shown with a minimum
of details. The function classes Dλ and D2 have analogues in the present
situation and the numbers of sense-reversals and turn-reversals may
again be defined by the relations

f e Dlf

respectively.

As in the periodic case we obtain the following.

THEOREM 7. If f(x) e A then

If f(x) e A then

If f(x) is odd about the point x—~, then Bn{x) is found to share

this property. As an analogue of Theorem 5 we have the following
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THEOREM 8. If f{x) is odd about x = —~, concave and non-negative

in ^x^l, positive in - <x<l, then also Bn(x) is concave in —, 1
L\ & L_ Li _l

and

(8.3) 0<Bn(x)<f(x) if ~<x<l .
Li

Indeed, let us first observe the following. Because of the invariance
of linear functions expressed by (8.1), we may subtract from f(x) the
linear function whose graph is the chord joining the extreme points
(0, /(0)) and (1, /(I)), without altering the assumptions on f(x). Thus
without loss of generality we may assume that /(0)=/(l) = 0. From
this point the proof is entirely similar to the proof of Theorem 5 in all
details, including the use of the roof-functions. Finally notice that the
equality is excluded in the second inequality (8.3). This is so because
of the inequality (8.2) of Corollary 6 in the periodic case we only had
the weaker analogue (5.2).

APPENDIX II. A CONJECTURE ON POWER SERIES
MAPPING A CIRCLE ONTO A CONVEX DOMAIN

9. Sources and forms of the conjecture. As stated in the Introd-
uction, a power series

(9.1) aLz+a β2+a3z
3+ •«• +anz

n+ «• —f{z)

is said to belong to the class K, if it converges in the circle |^ |<1 and
maps this circle onto a convex domain. We say that the infinite sequence
of complex numbers λu Λ2, Λ3, λn, « is a convexity-preserving factor
sequence if the series λ1a1z+λ2a.β2+λ3aiz

3+ «•- necessarily belongs to K
whenever (9.1) belongs to K. Let us apply such a factor sequence to
the simplest power series belonging to K, to the geometric series

(9.2)

We obtain

(9.3)

if λ19 λ2, λ3y i s a convexity-preserving factor sequence, the power
series (9.3) must necessarily belong to K. We state the conjecture
that this obvious necessary condition is also sufficient that is, we
formulate
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CONJECTURE I. If both power series

belong to K, also

a1b1z+aφ2z
z+aφiz

3+

belongs to K.2

In view of Lemma 5, the conjecture can be restated in other forms,
equivalent to the first.

CONJECTURE II. // the power series

aιz+aiz
L+ad>z

Zjr

belongs to K and

belongs to Σ, then

belongs to Σ.

CONJECTURE III. If both power series

belong to Σ, also

belongs to Σ.
These three Conjectures I, II and III are completely equivalent,

they stand and fall together. The third form brings out most clearly
the relation to a conjecture that has been found, years ago and inde-
pendently of each other, by two of our friends, Professor S. Mandelbrojt
and Professor M. Schiffer, and which is published here with their
permission :

2 One of the "intuitive sources" of the conjecture is the feeling that (9.2) plays a
"leading role" in K, that it "sets the fashion." Which one of the two authors of this
paper is the author of the conjecture will be disclosed if and when the conjecture is
proved.
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CONJECTURE M. S. // both power series

are "schlicht" in the unit circle, also

is "schlicht" in the unit circle.

Whereas III is equivalent to I or II, it appears logically independent
of MS. As far as obvious conclusions from the statements go, III could
be true but MS false, or MS true yet III false, or both could be true
or both false. Still, the conjectures are obviously related and their
joint consideration may lead to various suggestions.

The Conjectures I, II and III are more ''elementary" than MS and
they are certainly more accessible we succeeded in treating several of
their particular cases and consequences.

10. Verification of the conjecture in some particular cases. We
shall exhibit several particular series Σ bnz

n belonging to K which,
convoluted with an arbitrary series (9.1) belonging to K, generate a
series Σ <*>nf>nZn belonging to K.

(a) The polynomial (6.14) belongs to K. That its convolution with
an arbitrary series belonging to K necessarily belongs to K is precisely
what Theorem 2 asserts.

(b) If the series (9.1) belongs to K, it belongs, a fortiori, to Σ.
Therefore, by Lemma 5, the series

belongs to K. This is another special case of Conjecture I that the
series

Ϊ+M+ — ' - ! -

maps the unit circle onto a convex domain follows from its relation to
(9.2) and from Lemma 5 but this fact can also be established directly
(see [9, vol. 1, p. 106, problem 114]).

(c) The result mentioned under (a) (Theorem 2) is due to the fact
that the F-means are variation diminishing cf. §6. Any variation
diminishing transformation on the circle leads to an analogous result,
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and so we obtain especially the following (cf. [4]). Let g(z) be the
product of e~yz\ where r^O, with an entire function of genus 1, all
coefficients and all zeros of which are reat then

Σ Z

i g(in)

belongs to K, and, provided that (9.1) belongs to K, also

i g(in)

belongs to K. The term "entire function of genus 1" is used here in
the comprehensive sense, that is, it is supposed to include also entire
functions of genus 0 and polynomials (but, obviously, not the identically
vanishing polynomial) the case in which g(z) reduces to z was mentioned
under (b).

(d) Let p and q denote two different given points on the unit
circle (|p| = M = l, PΦq)- Assume that (9.1) belongs to K and let z
describe a circle concentric with, and interior to, the unit circle. Then
f(z) describes a convex curve of which f(pz) —f(qz) represents a moving
chord as it is easy to see geometrically this chord turns all the time
in the same sense. The argument of the complex number f(pz)—f(qz)
increases steadily. That is, the power series

p-q i n p—q

belongs to Σ (maps the unit circle onto a star-shaped domain) and so,
by Lemma 5, the power series

(lo.i) Σ — v ~q *n

p—q

belongs to K (cf. [6]). The series (10.1) is the convolution of (9.1) and
of that particular case of (10.1) in which αn = l this particular series
maps | s |<l onto an infinite strip bounded by two parallels.

11. Verification of some consequences. In the foregoing, we have
dealt mainly with form I of the conjecture, but now we shall consider
its form III. We assume, therefore, that the function (9.1) belongs to
the class Σ, that is, it maps the circle |z |<l onto a star-shaped domain.
We shall say that (9.1) is normalized if

(11,1) a1=l ,
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(a) We are given an integer n, n^2. Let us consider the normal-
ized functions of the class Σ and let us seek one for which \an\ is a
maximum. We leave aside the (easy) discussion of the existence and
assume that (9.1) is such a function with maximum \an\. Now we apply
Conjecture III with bm=am for m — 1, 2, 3, the resulting series is
again normalized and so its nth coefficient cannot have an absolute

value exceeding the maximum that is, ~n~^\an\, from which it follows
n

that

\an\<,n .

For series of the class 2 this inequality is well known and easily estab-
lished independently of the Conjecture III. And so our previous reason-
ing served only to enhance somewhat the plausibility of Conjecture III.
Yet the same reasoning is also applicable to the Conjecture MS and
reveals one of the essential sources of this Conjecture.

(b) The function f(z) belongs to the class 2 if, and only if,

(11.2)

is regular in the circle | z | < l and has there a positive real part. This
will be the case if, and only if, the Hermitian form of the variables

(11.3)

(a_v~av, by definition) is positive (definite or semidefinite) for n — \, 2,
3, . This well known important necessary and sufficient condition
is due to Caratheodory and Toeplitz. It can also be expressed in terms
of the determinants

(11.4)

Oil

1

an

<*n-2

a _ n a - n + ι a _ n + 2 -•• 1

Now (see (9.1)) the relation (11.2) can be written in the form

or in the form
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(11.6)

and so we can express both aJaL as a polynomial in the a and an as
a polynomial in the ajaL:

(11.7)

(11.8)

α4 _

•

2 α 3 =

(2α 1) 2+2α: 3

2 !

ai

al_2aiCb3

al

χs)+3(2α iX2α1)
3 !

1 Q 2

It would be easy to write down (11.7) or (11.8) for general n, but we
shall not enter into details. Using (11.8) we could express the Her-
mitian form (11.3) and the determinant (11.4) in terms of the coefficients
of the series (9.1) and doing so we wonld render more explicit the
necessary and sufficient condition for the class S. Yet we postpone
this consideration.

(c) Now consider, besides (9.1), two other power series with coef-
ficients bn and cn respectively, and let βn and Bn be so linked to the δ,
and γn and Cn so linked to the c, as an and An are to the α. Thus we
have besides (11.5) (in all summations n = l,2,3, •••)

(11.9) Σ M w i p ( Σ ) Σ ^ ^ p f e

Set

(11.10) - ^ - = c Λ .
n

Now express an\ax in terms of the a from (11 7), and express analogously
δjδx in terms of the β, then cn\cλ in terms of the a and β from (11.10)
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and finally from relations analogous to (11.8), express γn in terms of
the c\cλ and so in terms of the a and β. This leads to

(11.11) +2a\β2-2a\β\

Not all details of the general formula for γn are obvious a few features
will be discussed under (e). The determinant Cn (expressed in terms of
the γ as An is in terms of the α, cf. (11.4)) becomes by virtue of (11.11)

a polynomial in the a, a, β and β. By the theory of Caratheodory and
Toeplitz, Conjecture III is equivalent to the following.

CONJECTURE IV. The 2n inequalities

Λ > 0 , A 2 > 0 , ••-, An>0 ,

imply the n inequalities

), C 2 > 0 , .• , C n > 0

and this holds for n — ly 2, 3, .
This formulation excludes the case of equality in all the Sn inequalities

considered. This is due to the fact that, without loss of generality, we
may suppose l<anz

n and Ί<bnz
n regular in | z | ^ l .

(d) The case n = l of Conjecture IV is trivial. In fact, if we as-
sume that the series are normalized, see (11.1), and introduce the coef-
ficients of the mapping functions, see (11.8), the statement that we
have to prove reduces to this :

The inequalities \a2\ <2, |62 | < 2

imply ! ^ 1 < 2

which is obvious.
(e) The case n — 2 of Conjecture IV was first established by Dr. G.

A. Hummel and can be proved as follows.
We take the series as normalized, see (11.1), and set
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we suppose, without loss of generality, that α^O, 6^0. We have to

show:

The two inequalities

(11.12)

imply

(11.13)

A 3α2

4
^ 1 -

AB
3

α2

- 4 - "

3α2δ2

16

R 3δ2

4

< i α 2 & 2

16

4

(The first inequality (11.12) results from the condition A%>0, see (11.4),

by virtue of (11.8); it implies α<2, and so the condition ^
Let

(11.14) A=**-+u, B=
4 4

By t h e hypothesis (11.12) of t h e theorem t h a t we are about to prove

(11.15) | w | < l — — , \v\<l—^-.

We derive from (11.14) and (11.15)

(11.16) AB-
16

We assert that

(11.17)
α2 , δ2

, _
4^

in fact, this follows from α<2, δ<2, since it is equivalent to

The right hand side of (11.16) is equal to the left hand side of (11.17),
and so the combination of these two inequalities immediately yields the
desired conclusion (11.13).

(e) We consider now the expression of γn in terms of the a and
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β for general n; for the cases w = l, 2, 3, see (11.11). The procedure
that led us to (11.11) shows that γn is a polynomial in alf a2, , an,
βu β^9 '"jβn with rational coefficients. Obviously, by virtue of (11.10),
γn is symmetric in the a and β. If we substitute pz for z in (11.5) or,
which is the same, we change an into pnan and an into pnan, there re-
sults a change, see again (11.10), of cn into pncn and of γn into pnγn

therefore, γn must be an isobaric polynomial in the a of weight n.
Finally, γn must be of the form

where
p=zp(n) is the number of partitions of the integer rc,
A19 A2, , Ap are the products of powers of weight n of au a2,

αn, ordered lexicographically so that

(11.19) Aτ=an, Az=an^a19 Ap = a? .

Generally Afc is of the form

(11.20) Ak = φa}i. . o^n;

its weight l&1

Bu B2, ,j?p are analogously expressed in terms of /5T, /92, , /9W, and
$$ are rational numbers, jffi=j%p.

For example p(4) = 5 and, for π — 4:

the 5 are analogously defined and the matrix of the j[f results from

9 24 9 36 12
24 24 24 - 2 4 - 4 8

9 24 - 1 - 4 - 2 8
36 - 2 4 - 4 -136 128
12 - 4 8 - 2 8 128 - 6 4

if each of the 25 numbers displayed is divided by 90.
We cannot exhibit the law of the dependence of jffi on n in some

obviously useful manner, but we note here one property. If βn = l it is
easily seen from (11.9) that hn\hx — n and, therefore, by (11.10) ejc1 =
aja,! and so finally

for any choice of the an this must be compatible with (11.18) and so,
since Bχ=B2= ••• =BP = 1, by our choice of the β.
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0 for fc=2,3, . . . , p .

(f) The system of n complex numbers (alf α2, , Λ«), for which we
shall also use the more concise notation (α), determines a point in
2^-dimensional Euclidean space. A point (a) belongs to the coefficient-
domain if, and only if, it corresponds by virtue of (11.5) to the initial
terms of a power series of the class Σ. The most remarkable boundary
point of the coefficient domain is the ' ' Koebe-point'' which corresponds
to the function

Our aim is to show that, for any given n, Conjecture IV is true for two
interior points of the coefficient domain which are sufficiently close to
the Koebe-point.

Let us choose two arbitrary points (u) and (v) in the interior or the
coefficient domain. That is, (cf. under (6)) both Hermitian forms

(11.22) Σ Σ ^ - M , ΣΣ**-,s*5i

are positive definite. Let a, β and e denote positive numbers a and
β are arbitrary and ε so small that αε<l, βε<l. The coefficient domain
is convex. Therefore, if we set

(11.23) αv=(l—eα) + εαHv , βv=(l-εβ)+εβvv

for y = 0, ±1, ±2, ••-, ±n, the points (a) and (β) are in the interior of
the coefficient domain. If Ak is given by (11.20)

Ak = l+εaύk+O(ε2)

where

•• +kn(un — ΐ)

and O(ε2) denotes a quantity of order not exceeding ε2 when ε tends to
0. There is a similar expression for Bt and finally, by (11.21),

(11.24) rn
* - l Z - l

ϊ i l + 0 ( ε 2 )

By virtue of (11.24)
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+zn\*

and this Hermitian form is definite positive for sufficiently small ε, since
the forms (11.22) are definite positive. With this, we have proved ano-
ther infinitesimal part of Conjecture IV.
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ASYMMETRY OF A PLANE CONVEX SET WITH

RESPECT TO ITS CENTROID

B. M. STEWART

A. S. Besicovitch [1] proved that every bounded plane convex set
K has a central subset of area at least 2m(i£)/3 where m{K) denotes
the area of K. His method is to construct a semi-regular hexagon of
center N whose vertices belong to the boundary of K.

Ellen F. Buck and R. C. Buck [2] showed that for every K there
exists at least one point X, called a six-partite point, such that there
are three straight lines through X dividing K into six subsets each of
area m(K)j6. H. G. Eggleston [3] showed that any six-partite point of
K is the center of a semi-regular hexagon of area 2m(iΓ)/3 contained
in K.

I. Fary and L. Redei [4] and S. Stein [5] defined for each point P
the subset S(P) of K determined by the intersection of K with its radial
reflection in P and considered the function f(P)—m(S(P))lm(K). By use
of the Brunn-Minkowski theorem these authors showed that if a is a
real number, then the set of points at which f(P)^a is convex; and
the maximum /* of f{P) is attained at a single point. (Moreover, these
results apply to an ^-dimensional bounded convex set in n-dimensional
Euclidean space.) Note that these conclusions may be false if the set
K is not convex : for example, consider an L-shaped region formed by
deleting one quarter of a square.

The results of Besicovitch and Eggleston imply /(iV)^2/3 and f(X)
^2/3, hence/* ̂ 2/3.

We obtain the following theorem.

THEOREM. // G is the centroid of K, then /((?):>2/3.

To see that this result is not included in the theorems previously
mentioned, consider the isosceles trapezoid with vertices (—4,0), (4,0),
(2,2), ( — 2,2). For this example there is only one point N: (0,1) and
only one point X: (0, 4—4l/.6 ) and the closure of these points does not
include G : (0, 8/9).

Proof of the theorem. If K has central symmetry, then f(G) = l. In
any case S(G) has central symmetry about G hence if K does not have
central symmetry, the part M of K outside S(G) has G at its centroid.
Then as in Figure 1 let T be any maximal connected subset of M with
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A and B as terminal points of the boundary curve common to K and
T. Let Pf denote the reflection of a point P i n G. Note that the con-
gruent triangles AGB and AGB' are contained in S{G).

If for every T the area m(T)
is less than or equal to the area
Δ of the corresponding triangle
AGB, then m(S(G))^2m(M). Since

m(K)=m(M)+m(S(G))

Fig. 1.

it follows that/(G)^2/3.
In the contrary case, if we

assume for any T that m(T)>J,
we can arrive at a contradiction
of the fact that G is the centroid
of M.

Let line L through G parallel to AB cut the boundary of K in
points C and D. To fix ideas suppose in length CG>GD. Let lines BD
and AC meet at H and intersect line AB' in P and Q, respectively.
Let .4(7 and 577 meet at i2 then BD and A'C" meet at R' and 22 is
on the side of L toward T,

Considerations of convexity imply that on the side of L away from
T the maximum possible moment of M with respect to L is u+w2 where
u is the moment of triangle RAP and w.z is the moment of trapezoid
CQB'Π. On the other side the minimum possible moment of M with
respect to L is wY + v where wλ is the moment of triangle RCD' and v
is the moment of a trapezoid of area m{T) inscribed in triangle ABH
and having AB as one base.

We will show that if m{T)>Δ, then wi + v>u + w29 in contradiction
to G being the centroid of ikf. It will suffice to show v>u + w where

w — w.,—wι is the moment of triangle RQB\
Let a=AB, let d be the distance from G to AB and let h be the

distance from H to AS. Let α,=,4/P and α2=Qδ ;. From similar triangles
(a1+a2+a)ila = (2d+h)lh, so that ai + a.z^2adlh. The combined moments
of triangles P'A'P and RQBr are equivalent to those of a single triangle
of base αx+α2 and altitude d with centroid at a distance 2eZ/3 from L,
hence u + w — 2addjSh.

Let c be the altitude of a trapezoid Z of area Δ inscribed in triangle
ABH and having AB as one base. A direct computation shows the
moment v' of Z with respect to L to be

v U +
2 V 3(2/i-c)

Since m{T)>Δ implies v>v' the inequality v>u+w will hold if
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v'>u+w. Since m(Γ)>zί also implies h>d>c, the inequality v'>u+w
reduces to

(6hd-3cd+3ch-2c2)h>4:d2(2h-c) .

Comparison of the areas of Z and triangle ABG shows c2=2ch—hd.
Then the previous inequality may be rearranged and factored to obtain
the equivalent inequality

8hd(h-d)>c(h+Ad)(h-d)

whose truth follows readily from h>d>c.
The case that length CG — GD may be treated in the same manner

(even if BD and AC are parallel). This completes the proof of the
theorem.

We do not see how to extend the theorem about f(G) to higher
dimensions. Possibly the lower limit for f(G) for the general bounded
convex set is the same as f(G) for a simplex of corresponding dimension.
The value of the latter is given in [4] (but incorrectly given in Theorem
6 of [5], an error for which Professor Stein wishes this note to serve
in lieu of a formal corrigendum).

Note that for as simple an example as a trapezoid / * > / ( £ ) . Some
necessary conditions for determining P such t h a t / ( P ) = / * have been
given in [6].

REFERENCES

1. A. S. Besicovitch, Measure of asymmetry of convex curves, J. London Math. Soc. 2 3
(1948), 237-240.
2. Ellen F. Buck and R. C Buck, Equipartition of convex sets, Math. Mag. 22 (1949),
195-198.
3. H. G. Eggleston, Some properties of triangles as extremal curves, J. London Math
Soc. 2 8 (1953). 32-36.
4. I. Fary and L. Redei, Der zentralsymmetrische Kern und die zentralsymmetrische
Hύlle von konvexen Kδrpern, Math. Ann. 122 (1950), 205-220.
5. S. Stein, The symmetry function in a convex body, Pacific J. Math. 6 (1956), 145-147.
6. B. M. Stewart, The two-area covering problem, Amer. Math. Monthly 50 (1951), 394-
403.

MICHIGAN STATE UNIVERSITY





LOWER BOUNDS FOR HIGHER EIGENVALUES

BY FINITE DIFFERENCE METHODS

H. F. WEINBERGER

1. Introduction. This paper gives lower bounds for all the eigen-
values of an arbitrary second order self-adjoint elliptic differential
operator on a bounded domain R with zero boundary conditions in terms
of the eigenvalues of an associated finite difference problem. When R
is sufficiently smooth, the lower bounds converge to the eigenvalues
themselves as the mesh size approaches zero. A certain class of self-
abjoint systems of elliptic differential equations containing no mixed
derivatives is also treated.

Upper bounds for the eigenvalues of a differential operator can
always be found by the Rayleigh-Ritz method. That is, one puts piece-
wise differentiable functions vanishing on the boundary into the Poincare
inequality [14]. It was pointed out by Courant [2] that in the case of
second order operators one can reduce the problem of upper bounds to
a finite difference eigenvalue problem by using piecewise linear functions
(see § 6).

Lower bounds are more difficult to find. The only known method
giving arbitrarily close lower bounds for the eigenvalues is that of A.
Weinstein [20], which is usually quite difficult to apply. It was shown
by G. E. Forsythe [5, 6, 7] that if the eigenvalues λλ^λ%<, ••• of the
two-dimensional problem

(1.1) Δu+λu=Q in R

with u=0 on the boundary are approximated by the eigenvalues
λ^ ^λf^<L of a certain finite difference problem on a mesh of size
h, then there exist constants r?VΓ2) * such that

(1.2) XjP£Xk-rmh*+o(h*) .

The r(/i0 cannot be computed, but are positive for convex R. However,
the o(h2) term is completely unknown, so that this asymptotic formula
cannot be used to bound λk below.

It was shown independently by J. Hersch [8] and the author [18,
19] that if λL is the lowest eigenvalue of (1.1) and if λψ* is the lowest
eigenvalue of a finite difference problem on a mesh that is slightly
arger than R, then ΛJft) and, in fact, a quantity slightly larger than #Λ>

are lower bounds for λτ.

Received September 17, 1957. Sponsored by the United States Army under Contract
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This result is here extended to higher eigenvalues, higher dimensions,
and variable coefficients by a modification of the method previously used
by the author. The basic idea is to define a mesh function by an
average over mesh squares of a linear combination of the first k
eigenfunctions of (1.1). One then defines the finite difference eigenvalue
problem in such a way that its Rayleigh quotient evaluated for this
mesh function can be estimated in terms of the unknown eigenvalue
4. By the Poincare inequality this leads to an upper bound for the
eigenvalue 470 in terms of λky which serves as a lower bound for λk in
terms of 470.1

For the sake of clarity, the method is first presented for the prob-
lem (1.1) in § 2. It must be noted that while the lower bound (2.25)
holds for all λk, it is not as good for λ1 as the bound previously given
either by Hersch [8] or the author [19]. It is smaller, rather than
larger, than /f° by a term of order h'\

The method extends easily to an equation in N dimensions with
variable coefficients when the operator contains no mixed derivatives.
This extension is made in § 3. Again the lower bound is smaller than
4Λ) by a term of order K\

In § 4 the general second order self-ad joint operator is considered.
The presence of mixed derivatives introduces complications. The lower
bound becomes 4/?) reduced by a term of order hυ\ Furthermore, it
becomes necssary to assume that R has no re-entrant cusps, corners,
or edges, and that it does not have infinite oscillations.

Section 5 presents an extension of the lower bound to a self-adjoint
system of second order equations with no mixed derivatives. The
extension to a system with mixed derivatives appears to be very
difficult, and is not done.

In § 6 the difference between upper and lower bound is discussed.
It is estimated explicitly for convex R. At the same time this discussion
serves to show when the lower bounds converge to the eigenvalues.

In § 7 we take account of the fact that the solution vanishing on
the boundary of a non-homogeneous differential equation can be character-
ized by a minimum principle (Dirichlet's principle). Using the methods
developed for eigenvalues, we give a method for finding a lower bound
for this minimum. It is, of course, true that in this case one can
get a get a lower bound by Thomson's principle. However, this principle
involves solutions of the differential equation which may be difficult to
find as well as difficult to compute with. Finite difference methods are
more amenable to high speed computation. The upper and lower bounds
so obtained, together with the function that gives the upper bound,
can be used to find upper and lower bounds for the solution at an

1 A similar idea was used by L. Collatz [1] to establish the order of magnitude of
\λ/c ~λk\.
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interior point by the method of Diaz and Greenberg [3, 4].
Section 8 indicates the extension of our method to an important

class of higher order operators. This extension is applied to the problem
of the vibrating clamped plate.

2. The basic bound. Let the eigenvalues of

(2.1) Δu + λu = 0 in R,

u = 0 on the boundary R

be denoted by

(2.2) λx S λ* ̂  .

Let the corresponding eigenfunctions, normalized so that

(2.3) [ u*dxdy=l

be denoted by ulf u%9

Consider the x-y plane divided into squares by lines x—mh, y—nh,
m, n — 0, ± 1 , ±2 . Let Rh be a region consisting of a union of entire
squares of this grid and having the property of containing not only R,
but also all its left and downward translates of distances up to h :2

(2.4) Rk z> {(x, y)\(x+a, y+β)eR for some Q ̂  a ^ h, 0 ^ β ^ h} .

We consider the class Mh of functions v(mh, nh) defined at mesh
points (mh, nh) in Rh and vanishing at boundary points of Rh. The
eigenvalues (2.2) are to be approximated by the eigenvalues

(2.5) λψ> ^ λ ψ > ^ •••

of the finite difference problem

(2.6) Δhv + λwv = 0

where v is a mesh function of the class Mh, and

(2.7) Δhv—h~2[v(mh+h, nh)+v{mh—h, nh)+v{mh, nh+h)

+v(mh, nh—h)—&.v{mh, nh)] .

The eigenvalues (2.5) are bounded above by the Poincare (Rayleigh-
Ritz) inequality [14], which states that for v19 v2, ••• , vk of class Mh

and linearly independent
2 Equivalently, if the intersection of R and the square mh<C%<.(m + l)h, nh<jJ<S,n+l)h

is non-empty, then (mh, nh) is an interior point of Rh,
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(2.8) ft* < max D ^
" i f A 1 Σ

where

(2.9) Z)Λ(v) == Σ {[v(mh+h,nh) - v(mh,nk)J + [v(mk,nk+h) -v(mk,nh)f} .
(hh)€R

Let %(a?, ?/) be a continuous piecewise continuously differentiable
function in the whole x-y plane which vanishes outside R. We define
the mesh function

1 u(mh+a, nk+β)dadβ.
o Jo

Because of (2.4) this function belongs to Mh. We note that

(2.11) [ [u2dx dy-h?Σu v{mh,nhf

Σ \\[u(mh+a, nh+β) - v{mh, nh)Jdadβ .Σ

By definition (2.10)

(2.12) Γ [h[u(mh + a, nh + β) - φ A , wλ)]dα dβ = 0 .
Jo Jo

Consequently, each integral on the right of (2.11) is bounded by the
integral of the gradient of u times the reciprocal of the second free
membrane eigenvalue for the square of side h:

(2.13) Γ [h[u(mh+a, nh+β) - v(τnh, nh)J da dβ
Jo Jo

^ — [h[h\gradu(mh+a, nh+β)\2dadβ .
7Γ2JθJθ

Replacing this in (2.11) and summing over all the squares, we have

(2.14) (ί u*dxdy -h2Σ>v*^~\\ \grndu\2dxdy .
JJβ Rh 7Γ2JJi2

Now let

(2.15) u = ξ1u1+ ••• +ξkukf

where the ut are the normalized eigenfunctions of (2.1), and the & are
any real numbers. Then we have

(2.16) υ = ξιVl +
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where the Vt are defined in terms of the ut just as v is defined in terms
of u by (2.10). Inequality (2.14) can be written in the form

(2.17) A1 Σ (6iVi + + M* ^ Σ Ά - ~ Σ *& .
Λ Λ i-i Π2ί=i

This gives a lower bound for the denominator of the ratio in (2.8). In
order to be certain that the mesh functions v.t are linearly independent,
we assume that h is chosen so small that this lower bound is always
positive. That is, we take

(2.18) h2 < τr2/4 .

We now turn to the numerator in (2.8). We note that if u and v
are again related by (2.10), we have

(2.19) v(mh+k, nh) — v{mh, nh)

da\ dβψ(a) — (mh+a, nh+β),
o Jo dx

with a similar formula for v(mh, nh+h)—v{mh9 nh). Here we have put

/ a 0 <: a^k

(2.20) ψ(a)=l2h-a h ^ a ^ 2h .

^ 0 elsewhere

so that

ψ{a) da = h2 .

o

Consequently, we can write

(2.22) 5 L l g r a d u^dxdy~DM

= h'1 Σ [hda[h dβ φ(μ)\\ — (mh + a, nh+β)
BK Jo Jo Li dx

} 2

+ I ψ {mh+β, nh+a) - h'1 <y(mh, nh+h) ~ v(mh, nh)} Π ^ 0.

Again making the substitutions (2.15) and (2.16), we have

(2.23) Dh(ξlVl + + ξkvk) ^ Σ m
ί = l

Inserting (2,17) and (2.23) in the bound (2.8) yields
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(2.24)

Solving

(2.25)

for λk we find

max

the lower

4 >

k

Σ î£i

bound

_ 4

This bound was derived under the assumption that (2.18) holds.
However, if (2.18) is violated, (2.25) is trivially true. Thus, the lower
bound (2.25) holds for all k such that Λg° is defined (k at most equal
to the number of interior mesh points of Rh). The same type of
consideration will apply in all the derivations to follow. That is, one
derives the lower bound by assuming an inequality like (2.18) to hold,
and then finds that the lower bound also holds when the inequality is
violated. We shall suppress this argument in what follows.

3. Variable coefficients, no mixed derivatives. We now extend the
results of the preceding section to an eigenvalue problem in N dimensions.
We consider the problem

(3.1) - Σ - / τ (V ~ ) + gu = λrw in R,
«-i dx% V dx% /

u = 0 on the boundary R .

Here R is a bounded iV-dimensional domain. The functions p\ q, and
r are assumed to be piecewise continuously differentiable. We assume
pι and r to be positive and q non-negative in the closure of R. The
eigenvalues are arranged in increasing order

(3.2) λτ ^ I, ^ -

and the corresponding eigenfunctions, normalized by

(3.3) [[ ru2 dv = 1

are called u19 u2, .
The space is divided into iV-cubes by the planes xi^mihy mί = 0,

± 1 , ±2, . . . .
We again denote by Rh a region consisting of the union of mesh

cubes, and containing not only R but all its translates in negative
^-directions of distances up to h. We denote by Mh the class of functions
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v{mιh, , mNh) defined at mesh points and vanishing at all such points
on the bounday of or exterior to Rh.

Let u(x\ • •• , xN) be a continuous piecewise differentiate function
vanishing outside R. Then by definition of Rh the mesh function

(3.4) v{m}h, , mNh) = h'Λ . u{mιh+aι)da} . da*

is in Mh. We define the mesh function3

(3.5) φn'h) =

Analogous to (2.11) we have the identity

(3.6)

. [rίmΛ+αMmλ+α) r ( m A M Λ ) ? τ ^

#β 0 6 Λ * ^ Λ r(mιh+ai)

Also, by (3.4) and (3.5)

(3.7)

Thus, we are again led to a free membrane problem, and we find

(3.8) ( [ru-^rvY do^llloί^^ JlΛ j g r a d ruim'h+aψda1... dα

where we have put

(3.9) rm = min r(x\ , ^ ) .

By the triangle inequality

W/2 f f ) 1/2

i | \ 2 | d | Z F j« ) 1/2 ( Γ

|gradm| 2cm ^ J r2|grad
Hence we have

3 The definition of r(x) outside R is rather arbitrary. We choose it in such a way
that the term in the bracket is the mean value of r over the intersection of the domain

of integration with R. Since λk decreases with increasing Rh, we can assume without
loss of generality that Rh is minimal with respect to the analogue of (2.4\ so that for
squares corresponding to interior points of R^ this intersection is not empty. Similar
considerations will apply to the mesh functions formed from the other coefficients.
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(3.11) K« Σ rv2 ^ f ru2dV - J*-[κ[ \ pι

dx1

where

(3.12) K = max (£) ,

L = m a x ( lgrad

We also find

(3.13) [ qυ?dV - hN ^ ?v2 - Σ ( . [ g « - ^ ? ^ ^ ^ ^ 0
JR Rh Rh JO^cPgh q

where we have put4

(3.14) ΊΪWh)

Using the function ψ(a) defined by (2.20), we find that

(3.15) [ p'f-^ΐdV-h^-'Σ, ~v\mlh) [v(mιh+h, m2h, ••• , mNh)
JR V dxι / R

- v{τn}h)-\\ φwη?-—™- ^ 0 ,
) pι(mιh+aι)pι(mιh+aι)

where we have put3

(3.i6) -fan=[A-*- \

In this way we find that if we define the quadratic form

(3.17) Q(w) = hN Σ U" 2 Σ p3Mmιh+dl}h) - wim'k)]2 +
Rh I ί-1

for mesh functions w in Mh, where3

(3.18) p -\h j o s ^ s 2 f e - p ί ( m % + α i ) J

4 See footnote 3. We make the convention that q—Q if the integral diverges or if
q=0 in an open set.
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and q is defined by (3.14), then

(3.19) Q(v) <;

We now define the numbers λγ° <Z λψ> ^ as the successive minima
of a ratio of quadratic forms :

(3.20) λ^ = min — 5 £ ^ L

The 47 i ) are eigenvalues of the finite difference problem

(3.21) L^h)w + qw = λ^rw ,

where

(3.22) L^w{mιh) = - / r 2 Σ {v\mιh) [wirrth+d^h) - w(m%)]

— p^mϊh—dijh) [w(m%) — w{wuh—δi<?/&)]} .

The equation (3.21) is clearly a finite difference analogue of (3.1).
We now proceed exactly as in § 2 to let

(3.23) u = ξλuλ + + ΪJCUJC

where the ut are the normalized eigenfunctions of (3.1). Then

(3.24) v = £&! + + ξ^Vj,

where the vt are related to the ut by (3.4). We apply the Poincare
inequality

(3.25) 4Λ ) t

together with the inequalities (3.19) and (3.11) to find

(3.26) 4Λ ) ^
Π2

7rVmL J

Solving for λk we obtain the lower bound
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(3.27) λk ^

πrn

Clearly this lower bound differs from 470 only by a term of order
h2. It should be noted that it is independent of N and, except for 4Λ)

itself, of k. For the case of the Laplace operator treated in section
2, K=rm=l and L=0. Then (3.27) reduces to (2.25).

We note that (3.27) simplifles considerably when the function r is
constant so that L—0 .

4. The general self-ad joint case. In the preceding section we
restricted ourselves to the differential equation (3.1), where no mixed
derivatives occur. In this section we shall treat the general case

(4.1)
J-I dx1

u = 0

dxj
in R ,

on R .

Here a ί j is assumed to be a uniformly positive definite symmetric matrix
in R, r is assumed positive, and q non-negative. All coefficients are
taken as piece wise differentiate.

We keep the notation of § 3. In particular, we consider the
continuous function u vanishing outside R, and the mesh function v in
Mh defined by (3.4).

The inequalities (3.11) and (3.13) can be used almost without change.
The problem is to find a quadratic form in v which can be bounded from
above in terms of the quadratic form

(4.2) f \±<t>toJBu
J B L U - 1 dx% dx3

and which approximates this form for small h.
We begin with the identity

(4.3) ( Σ ^
Jϋ ij-i dx1

= Σ t Σ - ~aikwΛ \
J L

a31-— (mph+a*>)
dx1

a3lwι Ida1

Here atJ is the inverse matrix of aίj, and we have defined the mesh
matrix3
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(4.4) ~aυ(mιh) = [h'N[ Ί ai3(mιh+aι)da} daN~\ * ,

i.e.,

(4.5) Σ h~N\ τ (iip{nιιh+aι)da} daN apj{mιh) = (5έj ,

and the mesh vector

(4.6) Φ'^tH , -^
L jogtfgh dxκ

While wk is clearly an approximation to du/dx*, it cannot be obtained
from v or any other mesh function. Therefore, (4.3) does not give a
quadratic form in v. However, since the finite difference

(4.7) dMim'h) = h'^vimfh+dji) - v(m%)~\

also approximates duldxk, it must approximate wk. We estimate the
error introduced by using dk\v\ instead of wk. It follows from the
triangle inequality that

(4.8) I/^Σ Γ Σ a^dJLvidjivi + qv*]\1'* ^ \h* Σ Γ Σ cFwiWj +

+ \h» Σ Σ a'KWi-dJLv]) (Wj-djl
{

qv

1/2

It can be seen from the definition (4.4) that largest and smallest eigen-
values of aίj lie between the maximum of the largest eigenvalue and
minimum of the smallest eigenvalue of aίJ in the cube of definition.
Hence, ~aij is still positive definite so that the triangle inequality applies.
The first term on the right of (4.8) is bounded by means of (4.3). The
second term is the error due to replacing wk by dk\y\. We shall bound
it.

Let the constant a be a uniform upper bound for the eigenvalues
of aij; that is,

(4.9) a = max - < ^

Then the same bound holds if aίj is replaced by aiJ. Hence,

( 4 . 1 0 ) F Σ Σ a ' K W i - d l v ] ) ( w j - j F Σ ( * )

We use the identity
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(4.11) wt(mιh) - dlv\{mιh) = ( . φ(aι) ̂ L (mιh+aι)daτ - da*

where

(4.12) φ(a)=

— h-N-ιa{2h-a) 0 ^ a ^ h ,

— h~N-\2h-af h ^ a ^ 2h .

The volume integral is actually over the intersection of the
rectangular parallelepiped with R. On the boundaries of the parallelepiped
the integrand of the surface integral vanishes by the construction of

φ. Thus, the last integal is only over the part of R cut by the paral-
lelepiped.

We apply Schwarz's inequality and the triangle inequality to (4.11),
and note that R is covered twice by each set of parallelepipeds. Using
the fact that u—Q on R we have

hN
JV Γ

Σ
l / 2

Here F is an arbitrary positive function defined on R. To estimate the

last term on the right, we note that Φ | da%\dn \ dSa represents the pro-

jection perpendicular to the α?*-axis of the total surface. We call vh the

maximum number of intersections of R with any line segment of length
2fa parallel to one of the coordinate axes. Clearly, vh is a monotone

increasing function of h. If R is at all regular, vh is bounded, and

equals 2 for sufficiently small h. Noting that <p2^—h2~%

Ny {da'ldnl^l,
4

and that the projection of any one layer of area within the parallelepiped
in the ^-direction is at most hM~λ we have

where

(4.15) Fm = min F,
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Again taking account of the fact that R is covered twice by each
set of parallelepipeds, we have

{ N

* ξ£<«.-<
l/2 ( I 1 JV f / fi2Ί. \2 )l/2

f F(
2Fm Jή \dn

It thus becomes necessary to bound the integral of the sum of
squares of the second derivatives of u, and a boundary integral of the
square of the normal derivative of u. We begin with the latter.

We utilize an identity which was found for the Laplace operator
by F. Rellich [16], for hyperbolic operators by L. Hδrmander [9], and
which was extensively used for purposes similar to the present one by
L. E. Payne and the author [11, 12, 13]. Let fι{x), ••• , fN{x) be an
arbitrary piecewise differentiate vector field in R. The identity is

(4.17)

\
J B

dx1 dx

where we have written

(4.18)

and nk is the outward unit normal on R.
We now assume that the vector field /* has the property that its

outward normal component on R is positive :

Σ Pnk > 0

Then we can put

(4.19) F = Σ Pnk Σ

in (4.16). For example, if R is star-shaped with respect to the origin,

we may take fk=xk. More generally, if R is represented by an equation
R(x) — 0 where R(x) is a twice differentiable function in R whose outward

normal derivative on R is positive, we may take p — dRldx7". It still
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remains to bound the right hand side of (4.17). For this purpose, we
restrict ourselves to the function

(4.20) u = £%! + + ξku
k

where ulf , u* are the first k eigenfunctions of (4.1) normalized by
(3.3). Then

(4.21) J^(u) = Σ ξn(Q-^r)u .

The integrand of the first integral on the right of (4.17) is a quad-
ratic form in the gradient of u. Since the lowest eigenvalue of aiJ is
assumed to be positive and bounded away from zero, there exists a
constant c defined by

Σ ( > 2
u^Adxk dxk

(4.22) c = max ^

Thus, the first integral on the right of (4.17) is bounded by

(4.23) c[ Σ ^ ^ ^ d F

Substituting (4.21) in the second integral and using Schwarz's
inequality, we find the bound

(4.24) Mλ{κΆ + + Λ.eϊ}1'1 {m + + 4fi}1/2

where

rΣ<W4

Thus we find

(4.26) j \ i ^ ) 2 ^ ̂  Φifϊ + +

1/2 ( n1 N ) 1/2

f i , j = l

1 { ^ + + 4fj1/2 {^ + +

We now estimate the first integral on the right of (4.16). For
this purpose we extend an argument used in the case of the two-
dimensional Laplace operator by L. E, Payne [10].
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We let

(4.27) ai} = V~ξgi3

where

(4.28) g = det \gt}) ,

In three or more dimensions one can solve (4.27):

g= {det [α"]}-<*'*-*> ,
(4.29)

g*1 = {άet[aίj]}1/N-2au .

In two dimensions (4.27) implies άet[atf\ = l. If this is satisfied,
one takes gij—aίJ. If not, one must make a change of dependent and
independent variables to arrive at det[aiJ] = l. We assume this to have
been done.

We consider giό as the metric tensor of a Riemannian space. We
derive the tensor identity (using summation convention)

(4.30) VT9*ι(9i%iV>\,)m = 2VJ gMgij\nVΊcuxjl+uuumι-\

= 2V~g g^g^ίu^u^+UuU^+^MjiU^

= 2VY gkιgi3uHkuιjl+2v/Ίj~gijuι(g1clulJcl)lj

— 2V~g Ri3uXiuX3 .

Here we have used symbol u for covariant differentiation. R%n is the
Riemann curvature tensor, and Rij is the contravariant Ricci tensor (see,
for example, [17]):

(4.31) Rij ΞΞ 0 V » Γ— d* Ing

where

(4.32) j p u i
lίml 2

+2 " L dxm ' dxι Θa

is the Christoffel symbol of the second kind. We have

(4.33) uu = ~Γ>

du
- - \ v \ dχp

and consequently
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(4.34) gklum = ^(u)lVJ

where S^(u) is the operator (4.18). The left-hand side of (4.30) is a
perfect divergence. Integrating (4.30) over R, applying the divergence
theorem, and transposing terms gives, after use of (4.34),

(4.35) \ VJWuXilμX5ldV = \ I ^-iv^—^j)^ dS
JR 2 JR dar \ dxι dxj J

Ox1 dxj\ V g J J« dxι dx3

Here we have used Euclidean elements of volume and area.
We now restrict ourselves to functions u of the form (4.20), so that
) = 0 on the boundary. Then by the divergence theorem and (4.27)

(4.36) -\ «« * » (_^£0 W = ί I
JR dxι dxj\ V g J )RV g

But when u is given by (4.20), S/'(μ) is given by (4.21). By the triangle
inequality we find the bound

(4.37) {Ĵ  ̂  j^iuγ dvψ s {«s + + a)}1/2 + {urn + + m)y/2

with

(4.38) h = max (—?LΛ
\ry g 1

and

(4.39) h = max (-£•=) .
W g /

For the last term on the right of (4.35) we put

(4.40) d - max (ΫI*!MΔ .
xβR

Then

(4.41) f τ/7-B 1 ^—— dV ̂  d \ aij^-™~ dV ^ d(̂ €? + +

We come now to the surface integral in (4.35). We suppose that

in some neighborhood of the surface R there is defined a differentiate

function R(x) vanishing on R and such that the outward normal deriva-

tive is positive. Since R(x) vanishes on R we may put
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(4.42) u(x) = R(x)ψ(x)

in the neighborhood of ίi. Then we see that on R

« ι\ \Aφ<f & + ωW (>
dn J L θxk dxι dxι dxj dxι dxj \ dx« dxι

Also on R

(4.44)
to* to >

Since u is taken of the form (4.20) and the ut satisfy (4.1),

vanishes on R. Hence, we may eliminate the derivaties of ψ occurring
in (4.43) by setting (4.44) equal to zero. Finally, to identify ψ in terms
of u we take the normal derivative of (4.42) to find

(4.45) *L °K
φ

dn On

Thus, we arrive at

(4.46) anJ-
V ; dxk

U P q* 9aΛr dx*θ&) dx})\dn)

The coefficient of (du/dn)2 is clearly independent of the particular func-

tion R(x) used to represent R. It is a local geometric property of R.

In fact, if gij is the unit matrix, the coefficient is just —2(iV—1) times

the mean curvature of R, as can be seen by taking for R(x) the distance

from R. If gi3 is the metric of a flat space, the divergence term is

still proportional to the mean curvature of R in this space. The first

part of the coefficient arises from the fact that we are mixing a

Euclidean and a non-Euclidean metric.

Setting

(4.47) β - max { -

where F is defined by (4.19) in terms of the arbitrary vector field

pointing outward on R, we have by (4.26)
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(4.48) 1 f α« - 9 f ^ A ^ M ntdS < e £ dS
dn

^ ce(λ& + + λ&) + Af^Rtf + - + 4ί2,}1/2 {m + +

We note that in order to have a finite e it is necessary to assume
that the coefficient of (dujdn)2 in (4.46) is bounded above. Since this
coefficient, at least in a flat space, is proportional to the negative of the

mean curvature, one sees that this implies that R has no re-entrant
corners, edges, or cusps. On the other hand, non-re-entrant corners,
edges, and cusps cause no difficulty. It is easily ascertained from the
asymptotic form of a solution of (4.1) that the integrals of the squares
of the second derivatives, which we are seeking to bound, actually
diverge at re-entrant corners, edges, and cusps.

Having bounded the right-hand side of (4.35), we turn to the left-
hand side. The positive definite symmetric matrix gίJ may be expanded
in terms of its eigenvalues 0<μ^μz^ • ^LμN and orthonormal eigenvec-
tors in the form

(4.49) 0w = Σ
p=ί

Then

frjίfc

(4.50) Qkl9ιjuuk^\ji — Σ /Vg((

JV / JV

S/^Σ^Σ^
JV

,.2 V 9/2

— r^l ./ i ™ \lk y
ί,k=i

the last equality being due to the orthonormality of the eigenvectors.
Now by virtue of (4.33) and the triangle inequality

1/2

(4.51) ]f Σ ( J ^ L Y d 7 p ^ { ( Σ u\«dV
\ j R ί = i \ (JQ(J J ) v J R &, fc — 1

f f TV r jv c m ) ft

+ Σ Γ Σ
 p.k°

Thus, letting

(4.52) b ΞΞ max ( — ί = - ) = max
\μ\V g / V—"J Σα*

and
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(4.53) m

and applying Schwarz's inequality we have

ϊ 1/2 ( f ϊ 1/2

\ i b l v i)dv\
(Γ N / Qβo, \2 ϊ 1/2 ( f(4 54) 1L § (-f^) dv\ = i b l v a

\
J

We return now to the original problem. We define the quadratic func-
tional Q(w) of mesh function w by

(4.55) Q(w) E= hN Σ ί Σ ^ i j ^ M d,M + gu
Rh U,j=ί

where dt is the first difference operator in the xι direction defined by
(4.7), and αίJ and q are the average functions defined by (4.9) and (3.14).

We let λ[h^λ(

2

h^ ••• be the successive minima of the ratio

(4.56) - # * >

Jc

with respect to mesh functions w in Mh. Here r is defined by (3.5).
The minimizing functions and the minima satisfy the finite difference
equation

(4.57) - Σ dlά^djlw^im'h-duk) + q(mιh)w(mιh) = λwr{mιh)w(mιh) .

This is, of course, a finite difference analogue of (4.1).
The Poincare inequality (3.25) still holds. Taking for v the mesh

function defined by (3.4) and for u the linear combination ξ1u1+ +ξku-
of the first k eigenfunctions of (4.1), we get v in the form ξ1v1+ + ? Λ

We now put together the inequalities (4.8), (3.13), (4.3), (4.10),
(4.16), (4.54), (4.35), (4.48), (4.37), (4.41), and (4.26) to find

(4.58) {Q(fΛ + + £Λ)} 1 / 2 S J Σ lid1'*
U=i )

[(npΛ-fJ\ V ) £2 4- M^ΓV 2 P1 V 2 £2W2

Σ £2~|l/2 _j_ Γ/7 "SΓ1 £2\l/2 _ι_ (Ί 'V1 }2Λ2V\1/2"|2'| 1/2

x {c Σ m + Λfx[Σ m Σ W* + MlΣ m Σ «]1/2}1/2
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The denominator is bounded by the generalization of (3.11), namely

(4.59) ft'ΣίV^l--^ ίΣWi + £Σ3

where

(4.60) K = max

L — m a x ( | g r a d r2/v)

Insert ing these bounds in the Poincare inequality (3.25) yields

(4 61) ΛCΛ) < Λ1/2 + h1/2 {M<?λι/2 + cλ + Λί/I 1/2}1/2 J-zy^^i _i_ /^π _[_ i^f^/(1/2

_ (_ » * i * t 2 F m ί

1/2

1/2Ί2 Γ ^2

J L πλrm

^ a m λ Λ W l ^
30 ) J L πλrm

This is an implicit lower bound for λk. We note that the lower
bound differs from λ^ by a term of order hλ/2, rather than Kι as in the
absence of mixed derivatives. The inequality (4.61) does not reduce to
(3.27) when aij is diagonal.

5. Systems with no mixed derivatives. The process used in § 3 is
easily extended to a self-adjoint system of elliptic equations. We must
only consider the unknown function in (3.1) as a vector and the coef-
ficients as symmetric matrices. Thus we have

(5.1) ΣI - Σ ^j tef?) + Q^Λ = I Σ W, a = l,'..,n
β = U i = i dxι \ dxι/ ) β-i

We assume the matrices p^ p(jp and raβ to be positive definite and
qΛβ semi-definite, and all their components piecewise differentiable. We
put

(5.2) vβ(mιh) = h'N[ . u\m% + aι)daι . . . daN

and, writing r*β for the inverse of rΛβ,
3

(5.3) ~r«β(mιh)

Then we have, analogous to (3.6)
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(5.4) [ Σ rtpU-uPdV - h" Σ Σ J ̂  wV
JR cύ,β = l Rh α,β = l

Γ n Γ Ί Γ

— VI V r U* 7/Y — /*• Ή? r ?7δ —
— ^Ll \ ^Lί ' αfβ ' ΛY^ — ' <#γU ' ^ δ ^

Thus, putting

daN .

(5.5) rm --

L-

= min

xeR

= max

n

WΫ+

~ n

Σ p ( i

Γ A
= max Σ r*

XSR Loύ,β,y=i

where we have written p^a

the analogue of (3.1Ll)

8 gradr. γ

β for the

= min

'x€R

y

grad r β

î~f~ ~h£"2

inverse matrix of p^l we have

(5.6) Σ
R etf,β =

1/2

Similarly, defining3

(5.7) 'qΛβ{mih

where qΛβ is the inverse matrix of qaβ and3

(5.8) p

we find the analogues of (3.13) and (3.15). Thus, if we define the finite
difference eigenvalues λΫ0^.ffi<^ ••• as the successive minima of the
ratio

(5.9)

among sets of mesh functions (w1, , wn) in class Mh, we find again
the lower bound (3.27) for the eigenvalues of (5.1) in terms of those
of (5.9).
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(5.10) 4 ^

The considerations of § 4 do not appear capable of extension to
systems of elliptic differential equations containing mixed derivatives.

6. Error estimation. As has already been mentioned in the in-
troduction, it is rather easy to get upper bounds for the eigenvalues
λk by means of another finite difference problem. Thus in order to
determine the error, one must first calculate the eigenvalues of two
finite difference problems. If the error turns out to be too large, one
must reduce the mesh size and recalculate the eigenvalues. It is a
great saving of labor to have an a priori estimate of the error in terms
of the mesh size. For then one can pick a mesh size to give at most
a given error and do only one eigenvalue computation.

We proceed to estimate the error by considering the scheme for
obtaining upper bounds. For the sake of clarity we begin with the two-
dimensional Laplace operator case treated in § 2.

Following a method suggested by R. Courant [2] (and already im-
plicitly contained in a paper of L. Collatz [1]), we divide each square
of the finite difference mesh into two triangles by means of a diagonal
in a fixed direction. Then, given any mesh function v of class Mh, we
can associate with it a piecewise differentiable function u by specifying
that it coincides with v at the mesh points, and is linear in each tri-
angle. This function vanishes on the boundary of the domain Rh. Fur-
thermore, if vlf 9vk are linearly independent mesh functions, the
corresponding functions ulf •• ,uk are linearly independent; and to the
linear combination £&+••• +ξkvk corresponds the linear combination
?i%i+ ••• +ξkuk. Letting μjc{Rh) be the kth eigenvalue of the fixed
membrane problem

(6.1) Δu + μu = 0 in Rh

with w=0 on the boundary of Rh, we have the Poincare inequality

I Igrad (ξ1u1+ + ξkuk)\2dxdy
(6.2) μk(Rh) ^ max J * * -

Since n depends linearly on its mesh values v, both the numerator
and denominator in (6.2) are quadratic forms in the mesh function v.
They have been explicitly determined by G. Polya [15], who finds that
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(6.3) \gmdu\2dxdy=Dh(v)

defined by (2.9), while

(6.4) f u2dxdy = I(v) ^h2Σ \v(zm, ynf - ~[v(a?»+A, V»)-v(xm, yn)Ύ
jRh Rh I 1 2

-v(xm 9y ny\ —~lv{xm+h,yn+h)-v(xm,yn)ΐ

We now let μfiί

(6.5)

ik •••be the successive minima of the ratio

Dh(v)

Letting vlf , v,c be the first k minimizing functions, we see from
(6.2) that

(6.6) μk{Rh) ^

Thus, we have upper bounds for the μτc{Rh) in terms of the minimum
problem (6.5), which can again be formulated as a finite difference pro-
blem. However, noting that

(6.7) I(v) ^ h? Σ v(xm, ynY - ~h?Dh{v) ,

we can bound the μ)P in terms of the eigenvalues 4Λ) by

(6.8)

assuming, of course, that h is so small that
the upper bound

. Thus, we have

(6.9) μ,{Rh) £

This process is easily extended to N dimensions. Here each mesh
cube is divided in an arbitrary but fixed manner into simplices with
vertices at the corners. Then the values of the mesh function v deter-
mine a function u coinciding with v at the mesh points and linear in
each simplex. We again find the bound (6.9) with the factor 1/4 replaced
by a constant cN depending on the dimensionality.

In the case of variable coefficients an extra error occurs because
the coefficients appearing in the quadratic forms for the upper bound
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are different averages of the coefficients of the differential problem
from those used in finding upper bounds. However, both are averages
over cubes of size at most 2h. Thus the differences will be at most h
times a constant depending on the maximum gradients of the coef-
ficients. This constant can be calculated. Thus we find in general

(6.10) μk{Rh) ^ λ™ + kf(h, λ<»)

where f(h, λίh:>) is an explicitly known bounded non-decreasing function
of h and λ<*\

Now since R is contained in Rh, μk{Rh)<h* However, if Rh is close
to R, we expect the μk{Rh) to be close to λk. The estimation of this
closeness depends on the geometry of R. For example, if R contains a
cut, the domains Rh will never have this cut, and so the μk(Rh) will
not approach the λk. However, if R is so smooth that the boundary of
Rh approaches that of R as λ-*0, then it fe easy to show that μk(Rh)-+h
and the inequality (6.10) together with the lower bound for λk proves
that XP +λ*.

If R is convex and contains a circle of radius "r, then one can see

that the image of R under a dilatation of the ratio (1+Shr'1): 1 about

the center of this circle contains a region Rh. The eigenvalues of this

image are (l+Shr'1)"2^ and they now lie below the μk(Rh). Thus, us-
ing (6.10) we have

(6.11) λk ^ (1 + 3&7-1)2 (#> + hf(h, 470))

In other words, we have an upper bound for λk differing from λk

h) by
a term of order h. The difference between this and the lower bound
thus approaches zero with h. In order to make this difference explicit,
we need only bound λf^ in terms of λk by the inequality (3.26), (4.61),
or (5.10) and use some upper bound for λk.

For another error estimate when R is not convex the reader is re-
ferred to § 5 of our previous paper [19]. While the argument is given
there only for the lowest eigenvalue, it applies equally well to higher
eigenvalues.

7. The non-homogeneous problem. We consider the elliptic dif-
ferential equation

(7.1) - Σ A. (avΆ + qu = G in R,
«J-I dxι \ dxj/

(7.2) u = 0 on R .

Here the coefficients aiJ and q satisfy the hypotheses of § 4, and G is a
given continuous function.
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By the well-known Dirichlet principle, u minimizes the ratio

( 7 3 )

(\/GdV)

among functions φ vanishing on the boundary. Let the value of the
minimum be (1/Λ) It is easily seen from the equation (7.1) that

(7.4) λ = ( uGdV = ( (Σ &— — + 'φ
}R }s\t,i=>i dxι dxj

An upper bound for (1/Λ) is easily found from the minimum principle.

We proceed to find a lower bound. We define the mesh domain Rh as

before, the mesh function v in terms of u by (3.4), the mesh coeffici-

ents ~aίJ and g by (4.4) and (3.14), and the mesh function3

(7.5) G{nίh) = hr*\ , G(m% + aι)dax

Then, by Schwarz's inequality, the free membrane problem for the
cube, and (7.4)

LJ
uGdV -

= ΓΣ ( {u{m% + a1) - φΐhfiGim'h + a')dal . . . dc/\
L.Rh J0^<*l^h J

^ ΓΣ t Mm'h + a') - v{mlh)}2 da1 - daN~]
L RhJ0ύat£h J

x Γ Σ ( G{m% + a1)2 da1 . -daN~\

7Γ2 J S

where

(7.6)

G2dV^ — [ G2dV
7Γ2A JR

Σ α1

The inequality (7.5) gives the lower bound

We derive an upper bound for the form Q{v) defined by (4.55) in
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the same way as we derived (4.58). We must, however, use the dif-
ferential equation (7.1) instead of (4.1) and the single function u instead
of the linear combination (4.20). Thus, we find that the bound for the
first integral on the right of (4.17) is, by inequality (4.23), just cλ with
c defined by (4.22). However, the bound for the second integral on the
right of (4.17) becomes (we again introduce the summation convention)

(7.8) Pλ + 2

instead of (4.24). Here we have defined

(7.9)

Thus, (4.26) is replaced by

\l/2

(7.10)

Since sf(u) does not necessarily vanish on the boundary, (4.36) be-

comes

(7.11) Λ α« **
Vg

- ί gίj ^
J R dxι

Using the differential equation and the triangle inequality we bound

the first term on the right.

(7.12) * j ^ ) W (̂M)
\)RV g )

where

(7.13) Z3

If we eliminate the derivatives of ψ between (4.43) and (4.44),
without assuming S>f(u) to vanish on the boundary, we find

(7.14) α ( α
v ; 2 teH dx{ dx}

9 a ! . U^ 9a* 9a?1 ί V f i r f l r dx?)\dn

The integral of the second term just cancels the boundary terms of
(7.11) when we substitute in (4.35). The first terms on the right of

(7.14) is bounded as before by e Φ F(duldnf dS where e is defined by (4.47).
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Inequality (4.41) remains unchanged. Thus we derive in the same
way as (4.58) that

(7.15) {Q(v)Y12^ Λ1/2 + /*{ l ί c

U/2

1/2 ) 1/2

We now define

(7.16)

This quantity may be computed by a finite difference analogue of (7.1).
By the minimum property,

L < 9MJL < 9M
= /

But the right-hand side is bounded by an explicit function of λ and h
of the form (llλ)+o(hlι%) by means of (7.7) and (7.15). This gives a
lower bound for Ijλ in terms of ljλ(h).

The absence of mixed derivatives results in a great simplification.
Inequality (3.19) is valid, and we find

(7.18) - L ^ A

A

π I A

The upper bound for 1/λ can again be obtained by means of a finite
difference method using piece wise linear functions. Once this piece wise
linear function and the error (difference between upper and lower
bounds) is known, one can find a pointwise approximation to u at any
interior point by the method of Diaz and Greenberg [3, 4].

8. Higher order operators. The methods of § 3 are easily extended
to the eigenvalue problem

(8.1) Lu = λru in R

where L is an elliptic operator of order 2m, and all derivatives of orders
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up to m-1 of u vanish on R, provided the numerator of the correspond-
ing Rayleigh quotient is the integral of a linear combination of squares
of derivatives of u.

We illustrate the extension by applying it to the problem of the
vibrating clamped plate

ΔΔu = λu in R ,
(8.2)

u = du/dn = 0 on R

in two dimensions. The Rayleigh quotient may be written as

fQ ox J Ĵ LV dx*) V dxdy I V dt

\P o)
\ I u2dxdy

The domain Rh is defined as before. Mh is the set of mesh functions
vanishing everywhere except at the interior mesh points of Rh. The
finite difference eigenvalues λψ> & r e defined as the successive minima of
the ratio

(8.4)

with weMh and

(8.5) KλQ{w) = Σ {[^(m^ + &, ̂ ) — 2w(mh, nh) + w{mh—h, nh)f

+ 2[w(mk+h, nh+h) — w(mh+hy nh)

— w(mh, nh+h) + w(mh, nh)]2

+ \w(mh, nh+h) — 2w(mh, nh) + w(mh, nh — h)f] .

The mesh function v ig related by means of (2.10) to the function u
having continuous first derivatives and piecewise continuous second
derivatives and vanishing outside R.

We now find

(8.6) (( (d2u\ dxdy - h~* Σ b>(mh + h, nh) - 2v(mh, nh) + v(mh - h, nh)J
}}R\ dx2 / Rn

= h-2 Σ da\ dβψ{a)\ °1L(mh+a, nh+β) - h-2{v(mh+h, nh)
Rh J-Λ Jo L dx2

- 2v(mh, nh) + v(mh-h, nh)}~}* ^ 0 .

We have put
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((a+h)2

(8.7) 2ψ(a)= \h2+2ha-2d1

{(2h-ay h^a^2h.

A similar inequality holds for dιn\dyι. For the mixed derivative we

have

(8.8) JJ
iΛ dxdy

x [v(mh+h, nh + h) — v(mh+h, nh) — v(mh, nh+h) + v(mh, nh)J

S 2hΓ2h
φ{a)φ{β)

0 J 0

x (mh+a, nh+β) — h~2{v(mh+h, nh+h) — v{mh+h, nh)
L dxdy

"la

— v(mh, nh+h) + v(mh, nh)} dadβ

^ 0

with ψ(a) defined by (2.20).
Thus Q(v) is bounded by the numerator of (8.3). For the denomi-

nator of (8.4) we use the inequality (2.14) together with Green's theorem
and Schwarz's inequality to give

(8.9) (f u2dxdy -h2Σv2^ — I [ [ u2dxdy [ [ uAAudxdy ̂  .
MR Rh π2 I J J Λ J J Λ

The substitution (2.15) and Poincare's inequality then give

(8.10) X£» ^ j

which is a lower bound for λh.
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LOCALLY COMPACT DIVISION RINGS

EDWIN WEISS AND NEAL ZIERLER

Let K be a division ring with a non-discrete topology T with respect
to which both the additive group K+ and the multiplicative group K*
of K are locally compact topological groups.1 If m is Haar measure for
K+ and a e K, the function mr{E) = m(aE) is clearly an invariant Borel
measure for K+. Hence there exists a real number φ(a) such that
mf{E)—φ(a)m(E) for all Borel subsets E of i£+. The real-valued function
φ on K (which is essentially the Radon-Nikodym derivative of m with
respect to left-invariant Haar measure on J5Γ*) evidently has the first
two of the following three properties.

(1) φ(a)^0 ; φ(a) = 0 if and only if α=0.
(2) φ(ab)=φ(a)φ(b).
(3) There exists M>0 such that φ(α)^l implies φ(l+α)g;Λf.
We shall show that φ satisfies (3) also, i. e., is a valuation for K,

and that the topology Tφ for K defined by φ coincides with Γ.2 The
classification of JBΓ then follows from known results.

LEMMA 1. φ is continuous.

Proof, Let ε be a positive number and let E be a compact set of
positive measure. By the regularity of Haar measure we may choose
an open set U containing E such that m(U)—m(E)<em(E). Choose a
neighborhood F of 1 with V= V'1 and V E c U. Then for x in F,
φ(a?) = m(xE)lm(E) g m(U)lm(E)<l + e since or1 6 F, φ(α) = (φ^"1))"1 >
(1+ε)"1. Hence 1—e<φ(x)<l + ε and the continuity of φ on JKΓ* follows,2*
Now choose an open set U with m(U)<em(E) and a neighborhood F of
0 with V-Ec: U. Then for a in F, φ(a)=rφE)l<mJ(E)^m(U)l7n{E)<ε
and φ is continuous at 0.

LEMMA 2. &={α e JKΓ: φ(α)^l} is compact.

Received February 13, 1958 and in revised form April 1, 1958,
The research in this paper was supported jointly by the Army, Navy and Air Force

under contract with the Massachusetts Institute of Technology. The first author is a consul-
tant, Lincoln Laboratory, M. I. T. The second author is a staff member, Lincoln Laboratory,
M. I. T.

1 Continuity of the inverse multiplicative operation need not be assumed; cf. the con-
cluding remark. The continuity of multiplication implies that α-» —α=(—1). a is conti-
nuous.

2 This idea was suggested by some work of Tate, [12].
2*Cf. Halmos [3, £60.6, p. 265].
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Proof. Let C be a compact neighborhood of 0 and choose a neigh-
borhood V of 0 such that F C c C Let c& e FπCsuch that 0<φ(α)<
1. If anS cz C holds for no n — 1, 2, , we select for each n an sn e S
such that ansn $ C. Since φ(αfc) -> 0 and all the a70 lie in the compact
set C, α* -> 0 and hence aksn e C for sufficiently large k. We may there-
fore choose kn^n such that aknsn 0 C but akn+1sn e C. Then the sequ-
ence {a*n8n} of elements of the compact set a~ιC has a cluster point c
in α"^. Hence φ(aknsn)—φ(aYnφ(sn)^φ(a)kn has φ(c) as a cluster point
by the continuity of φ; thus φ(c) = 0 and c=0, which contradicts αfcwsTO 0
C. It follows that S is a subset of the compact set a~nC for some n
and so, being closed by virtue of the continuity of φ, is compact.

COROLLARY, φ is a valuation.

Proof. φ(l+S), the continuous image of the compact set 1+S, is
bounded.

LEMMA 3. TΦ=T.

Proof. Let V e T-{φ}, a e Fand Bn={b e K: φ(b-a)<2~n}. Sup-
pose we can choose bn e Bn with bnφ V for each w = l, 2, . But then
the points 6W—α, all of which lie in the compact set S, have a cluster
point c in £ which must be 0 since φ(c) — 0. Hence bn->a contrary to
our assumption and it follows that T a Tφ. Since the opposite inclusion
is an immediate consequence of the continuity of φ, the proof is comp-
lete.

If K is connected3, it is the real, complex or quaternion field
(Pontrjagin [10]) in particular, φ is archimedean. Conversely, if φ is
archimedean, the theorem of Ostrowski [8, p. 278] asserts that the cen-
ter of K is either the real or complex field and so K, not being totally
disconnected, is connected.5

If K is totally disconnected, φ is non-archimedean (and conversely,
according to the above) and results due to van Dantzig [2], Hasse [4],
Hasse and Schmidt [5], Jacobson and Taussky [6] and Jacobson [7] as-
sert that K is of one of the following three types 4

( i ) the completion of an algebraic number field at a finite prime,
(iί) the completion of an algebraic function field in one variable

3 K is either connected or totally disconnected: if the component C of 0 contains ag
0 then ba-iC is a connected set containing 0 and b 6 K.

4 Otobe [9] shows that a-^a,-1 need not be assumed to be continuous; cf. our final
remark in this connection.

5 Alternatively, if K is connected, it is not difficult to show that φ is archemedian;
then K is a vector space over the reals (Ostrowski) with φ as a norm, hence is the
real, complex or quaternion field (Arens [1] Tornheim [13]), proving Pontrjagin's theorem.
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over a finite field H,
(iii) a division ring D obtained from a field F of type (ii) by rede-

fining x. α —ασ. x, a e ίf, σ a fixed non-trivial automorphism of
i?, the elements of D and F being regarded as power series
Σΐ-n a>iχi m a n indeterminate x over H with coefficients in H.

REMARK. Continuity of a -+ a'1 need not be assumed, for it appears
in the connected case only in the proof that K is not compact in the
proof of the Pontrjagin theorem [11, p. 173, Theorem 45.]. If K were
compact, φ(a)=m(aK)lm(K)<^l for all a e K. But, as in the proof of
the continuity of Φ at 0 in Lemma 1, we can find a e K such that 0<
φ(α)<l then φ(a~ι)>l and it follows that K is not compact. If K is
totally disconnected we have only to apply to T, K* the following un-
published theorem of A. M. Gleason : Let G be a group with a totally
disconneted topology T under which the group operation is continuous
from GxG to G. Then T, G is a topological group.

REFERENCES

1. R. Arens, Linear topological division algebras, Bull. Amer. Math. Soc, 5 3 (1949),
623-630.
2. D. van Dantzig, Studien over topologίsche Algebra, Dissertation, Amsterdam, 1931.
3. P. Halmos, Measure theory, van Nostrand, New York, 1950.
4. H. Hasse, Uber p-adische Schiefkόrper und hyperkomplexe Zahlysysteme, Math.
Ann. 104 (1931), 495-534.
5. H. Hasse and F R. Schmidt, Die StrvMur disk/ret bewerteter Korper, J. reine ang.
Math. 170 (1934), 4-63.
6. N. Jacobson and O. Taussky, Locally compact rings, Proc. Not. Acad. Sci, 2O(1935),
106-108.
7. N. Jacobson, Totally disconnected locally compact rings, Amer. J. Math., 58 (1936),
433-449.
8. A. Ostrowski, Uber einige Lδsugen der Funktionalgleichung φ{x)Φ{y)=φ{xy), Acta
Math., 4 1 (1917), 271-284.
9. Y. Otobe, On locally compact fields, Jap. J. Math. 19 (1945), 189-202.
10. L. Pontrjagin, Uber stetige algebraische Korper, Ann. Math. 3 3 (1932), 163-174.
11. L. Pontrjagin, Topological groups, Princeton, 1939.
12. J. T. Tate, Thesis, Princeton, 1950.
13. L. Tornheim, Normed fields over the reed and complex fields, Michigan Math. J. 1
(1952), 61-68.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY





HOMOMORPHISMS ON NORMED ALGEBRAS

BERTRAM YOOD

1. Introduction Let Bλ and B be real normed Q-algebras (not
necessarily complete) and T be a homomorphism of Bx into B. Our
main object is to show that, for certain algebras B, T will always be
either continuous or closed if the range T(B^) contains " enough" of
B. If B is the algebra of all bounded linear operators on a Banach
space H and T{Bτ) contains all finite-dimensional operators then T is
continuous. If B is primitive with minimal one-sided ideals, T(Bj) is
dense in B and intersects at least one minimal ideal of B then T is
closed. Other examples are given. In these results we can obtain the
conclusion for ring homomorphism as well as algebra homomorphism if
we assume that p(T(x))^p(x), xeBlf where p{x) is the spectral radius
of x. Note that this is a necessary condition for real-homogeneity.
For the application of these results it is desirable to have examples of
algebras which are Q-algebras in all possible normed algebra norms.
Examples are given in § 2. For previous work on the continuity of
homomorphisms and the homogeneity of isomorphisms on Banach alge-
bras see [8], [9], [11], [12] and [14].

2. Normed Q-algebras and continuity of homomorphisms. For
the algebraic notions used see [6]. Let B be a normed algebra over
the real field (completeness is not assumed). As in [8], [11] a complex
number λΦθ is in the spectrum of xeB if it is in the usual complex
algebra spectrum of (x, 0) in the complexification of B. If B is already
a complex algebra then the spectrum of x in this sense is the smallest
set in the complex plane symmetric with respect to the real axis which
contains the spectrum of x in the complex algebra sense. Let ρ(x) be
the spectral radius of x, p(x) = suip \λ\ for λ in the spectrum of x. B

is called a Q-algebra At the set of quasi-regular elements of B is open.
Every regular maximal one-sided or two-sided ideal in a Q-algebra is
closed. Hence the radical of a Q-algebra is closed and so also is any
primitive ideal. See [10 77].

2.1. LEMMA. For a normed algebra B the following statements are
equivalent.

(a) B is a Q-algebra.
(b) p(x) = Km \\xn\\1/n, xeB.
(c) p(x)^\\x\\,xeB.

Received January 14, 1958. This research was supported in part by the National
Science Foundation, research grant NSF-G 2573.
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Suppose (a). Then there exists a number c > 0 such that x is quasi-
regular for all x, \\x\\<c. Set k = [(l+c)1/2~-l~]-\ L e t ^ e f i a n d λ=a+bi
be any complex number ^ 0 where U|>fc|l#ll. Then

1*11 + \\χ\\2)< 2k-1 + £r2 < c

This shows that p(x)^k\\x\\. Thus

P(x) = p(xn)1/n ^k1/n\\xn\\1/n

for every positive integer n. Letting w—>oo we see that ^
| | # w | | ΐ / w . But lira \\xn\\1/n = p{x\Bc), the spectral radius of x in the com-
pletion Bc of B. Hence p(x)^p(x\Bc). Since p(x\Be)^p(a), (b) follows.
Clearly (b) implies (c). Suppose that (a) is false. Then there exists a
sequence {xn}y xn—>0 where xn is not quasi-regular. Then p(xn)^l for
each n and (c) is false.

Let X be a Banach space and let @(3c) be the Banach algebra of
all bounded linear operators on ϊ in the uniform topology. Let
be the ideal of all elements of @(ϊ) with finite dimensional range.

2.2. LEMMA. Let j be an idempotent in a normed algebra B. Then
the non-zero spectrum of an element in jBj is the same whether computed
in jBj or B.

This is given in [9 375] in the complex case. The real case of-
fers no new difficulty.

2.3. THEOREM. Let U be a ring hcmomorphism or anti-homomor-
phism of a normed Q-algebra Bx into (£(X) where Ό(B^)~D%{^) and
p[U(V)]^ρ(V), VeBlt Then U is continuous.

Suppose that U is not continuous. By the additivity of U (see [2;
54]) there exists a sequence {Tn} in Bλ such that HTJIr+O and ||Σ7(Γn)||
->oo where | |Γ|li is the norm in Bλ and | | Ϊ Ί | is the usual norm in Qf(3E).
Consider any idempotent J of ©(36) such that JQf(X) is a minimal right
ideal of @(ϊ). By the work of Arnold [1] these elements J are the
linear operators on 3£ of the form J(x)=x*(x)y where af^eϊ*, yeJL and
x*(y) = l. Let U(W) = J and U(Tn)=Vn. Since || WTnW\\^0 we have,
by Lemma 2.1, p{WTnW)^Q and therefore io(JVr

wJ)->0. By Lemma 2.2
and the Gelfand-Mazur theorem, || JVnJ\\-*0. Note that JVnJ(x)=x*(x)
x*lVn(y)}y. Hence α?*[FB(2/)]^0. Fix yφO in 3c. Then x*[Vn(y)]^>0 for
all x* e K= {x* e%*\x*(y)φθ}. Let z * e £ * , z*(y) = 0. Since z* can be
written as the sum of two elements of K, x*[Vn(y)]->0 for all α;* e F .
Hence sup H V»(2/)ll<«> for each yel. By the uniform boundedness
theorem, sup | | F J | < o o . This is a contradiction.

2.4. THEOREM. Let T be a ring homomorphism or anti-homomor-
phism of a normed Q-algebra onto a dense subring of a semi-simple
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finitedimensional normed algebra B where p[T(x)~\^p(x), xeBτ. Then T
is continuous.

By [7 698] B is strongly semi-simple and so, by Theorem
proved below, T is real-homogenous and closed. Let H#||i (\\x\\) denote
the norm in BL(B). Suppose that T is not continuous. Then there ex
ists a sequence {xn} in B1 such that ||a?«||i-»0 and ||Γ(a?n)|| = l, w = l , 2,
There exists a subsequence {yn} of {xn} such that \\T(yn)—w\\~^0 for
some weB. Since | |w| | = l we contradict the fact that T is a closed
mapping.

A normed algebra B is called a permanent Q-algebra if it is a Q-
algebra in all normed algebra norms. We say that the normed algebra
B has the spectral extension property if the spectral radius of xeB is
the same as the spectral radius of x considered as an element of any
Banach algebra Bλ in which B may be algebraically imbedded. Ex-
amples of algebras with this property are £*-algebras [13] and annihila-
tor Banach algebras [3]. To test if a normed algebra B has this pro-
perty it is sufficient to consider the completions of B in all possible
normed algebra norms.

2.5. LEMMA. A normed algebra B is a permanent Q-algebra if and
only if B has the spectral extension property.

Let B be a permanent Q-algebra, xeB. Then lim ||α?n||1/w has the
same value p(x), by Lemma 2.1, for any normed algebra norm for B.
Thus B has the spectral extension property. If B has the latter pro-
perty then for any norm | | # | | , (̂2?) = lim | | ^ | | 1 / w and B is a permanent
Q-algebra by Lemma 2.1.

2.6. THEOREM. Any two sided ideal I of @(ϊ) where /Dg(X) and
any closed subalgebra B of Gf(36), Bz^%(H) have the spectral extension
property.

Let R be any such ideal / or closed subalgebra B. Let | |Γ | | i be a
normed algebra norm for R and | | Γ | | the usual norm. For TeR let
p(T) be its spectral radius as an element of R, pτ{T) as an element of
the completion of R in the norm | |Γ | | i and p2(T) as an element @(ϊ).
In the ideal case if UeR has a quasi-inverse V in G?(X) then VeR. In
every case p(T)—p.z(T).

It is enough to show the identity imbedding of R (with norm | |T| | i)
into G?(X) (with norm | |T | | ) is continuous. For then there exists c>0,

, TeR, whence

for all positive integers n. Consequently p(T)£pL(T). Since p1(T)^p(T)
we would have ( T ) ( Γ )
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Theorem 2.3 cannot be applied since it is not known a priori that
R is a Q-algebra in the norm \\T\\λ. If, however, the imbedding is
discontinuous there exists a sequence {Tn} in R such that IITJIχ-^0 and
||5PJ|->oo. By the arguments of [1], the minimal ideals of R are the
same as the minimal ideals of @(£). For each idempotent generator J
of a minimal right ideal of R, JRJ is a normed division algebra and
hence has a unique norm topology by the Gelfand-Mazur theorem.
Since WJTJW^O we have l(J2V||->0. The remainder of the proof
may be handled as in Theorem 2.3.

For a ring B and a subset AaB we denote the left (right) an-
nihilator of A by L(A) (R(A)). Bonsall and Goldie [4] have considered
topological rings called annihilator rings in which for each proper right
(left) closed ideal /, L(I)Φ(0) (R(I)Φ(ϋ)). We consider the related pure-
ly algebraic concept of a modular annihilator ring which is defined to
be a ring in which L(M)Φ(O) (R(M)Φ(O)) for every regular maximal
right (left) ideal. From the standpoint of algebra these rings appear
to be a natural class containing H*-algebras, etc. In view of what
follows it is natural to ask if the two concepts agree for semi-simple
normed Q-algebras or semi-simple Banach algebras. A affirmative ans-
wer would settle an unsolved problem in the theory of annihilator al-
gebras.

2.7. LEMMA. Let B be a semi-simple normed annihilator Q-algebra
and I be a closed two-sided ideal in B. Then I is a modular annihilator
Q-algebra.

Thus if we had affirmative answer to the above question, any closed
two-sided ideal of a semi-simple annihilator Banach algebra would also
be one. The analogous result is known for dual algebras [7; 690].

Let M be a regular maximal right ideal of I. Since I is a Q-al-
gebra (as an ideal in B), M is closed in B. Since L(I)—R(I)f ([4 159]),
L(I+R(Γ)) = (0) so that I+R(I) is dense. The arguments of [7 Theorem
2] show that M is a right ideal in B. We must show L(M) Γ\IΦ(0). Suppose
the contrary. Then / L(M)=(0) and L{M)aR(I)=L(I). As Me/,
L(Λf)3L(I). Therefore L(M) = L(I). R{M)M=(0) since it is a nilpotent
ideal in B. Thus R(M)czL(M)=R(I). Then since R(M)z>R(I) we see
that R(M)=L(M). lΐxe L(M+R(M)) then x s L{M) = R(M) and x e LR{M).
Thus x2=0 and, by semi-simplicity and the annihilator property, M+
R(M) is dense in B. Then (M+R(M)) I=(M+L(I))I(zM and BIczM.
Let j be a left identity for / modulo M. Then jx—xeM, xel and
jxeM, xel. Hence IaM which is a contradiction.

2.8. LEMMA. In a semi-simple modular annihilator ring, every
proper right (left) ideal contains a minimal right (left) ideal, A normed
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modular annihilator algebra B has the spectral extension property.
Since the first statement is shown by stripping the arguments of

Bonsall and Goldie [4] of all topological connotations, a sketch of the
argument is sufficient. As in [4, Lemma 2], if j is not right (left)
quasi-regular there exists x^O in B where qj=x(jx=x). The arguments
of [4, Theorem 1] show that if M is a regular maximal right (left) ideal
of B then L(M) (R(M)) is a minimal left (right) ideal generated by an
idempotent. Also the left (right) annihilator of a minimal right (left)
ideal is a regular maximal left (right) ideal. Consider the socle K of
B. By the reasoning of [4, Theorem 4], L{K)=R(K) = (0). Let / be a
proper right ideal of B. If / contained no minimal right ideals of B
then, as in the proof of [4, Lemma 4], IaL(K), which is impossible.

Let xeB and let Br be the completion of B in the normed algebra
n o r m | |ατ|li. C o n s i d e r λ^a+biΦO in sp(x\B). T h e n u = \λ\~2 (2ax—xλ)
has no quasi-inverse in B. As in [3 p 159] there exists yφO such
that uy=y and u has no quasi-inverse in B'. Then p{x\Br)—p{x\B).

3. Closure of homomorphisms and anti-homomorphisms. Through-
out this section the following notation is assumed. Let B^B) be a real
normed algebra with norm | |# | | i ( | |# | | ) . T is a ring homomorphism or
anti-homomorphism of Bτ onto a dense subset of B. T is called closed
if Wxn-xW^O, \\T{xn)~y\\^0 imply that yeT{Bτ) and y=T(x). By
the separating set S of T we mean the set of all yeB such that
there exists a sequence {xn} in Bι where H^JI^O and \\y—T(xn)\\-^0.
We assume that p[T(x)]<,p(x), xeBλ. Note that this condition is auto-
matic if T is real-linear.

The next lemma is an adaptation of results of Rickart [11].

3.1. LEMMA. T is closed and real-homogeneous if and only if S=(0).
S is a closed two-sided ideal in B and T~\S) a closed two-sided ideal
in Bx. If Bλ is a normed Q-algebra then every element of S is a topological
divisor of zero in B.

Clearly T is rational-homogeneous. Let xeBλ and rn-+r where each
rn is rational and r is real. Then \\rnx—rx\\l-^0 and 11rT(x) — T(rx) —
T(rnx-rx)\\->0. Hence rT(x) — T(rx) e S. The first statement follows by
a straightforward argument.

Let yneS, \\w—yn\\-+0. There exists, for each n, an element
zneB1 such that I I ^ - Γ ^ J I K ^ " 1 and \\zn\\τ<n-\ Then \\w-T(zn)\\-+0
so that weS. Hence S is closed in B. Since x e S and r rational im-
ply rx e S it follows that S i s a real linear manifold. To show that S
is an ideal in B it is enough to show that xy and yxe S for x e S and
y=T(z)eT(B1). This, however, is a simple matter. Suppose next that
\\%n—Λ?1IT—>0 where each ^ e Γ ' ^ S ) . For each n there exists ^ e ^ s u c h
that WTixJ-TtyJWKnr1 and \\yJKn~1. Then |k-(^-^)ld->0 while
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\\T(x)-T[x-(xn-yn)]\\-+0 whence T(x)eS. Hence T~\S) is closed. It
is readily seen to be a two-sided ideal in Bλ.

Let Bc be the completion of B where we use \\x\\ to denote the
norm in Bc and p(x) the spectral radius there. To show that s e S is a
topological divisor of zero in B it is sufficient to show that it is one in Bc.
Choose a sequence {xn} in Bx such that \\s — T(xn)\\-+0 and |la?»||i->0. If Bx

is a normed Q-algebra s is the limit of quasi-regular elements of Bc by
Lemma 2.1. Hence so also is As for any real λ. By the arguments of
[11 621] it suffices to rule out the possibility that both Bc has an
identity 1 and that s has a two-sided inverse in Bc.

Suppose this is the case. Let So be the separating set for T con-
sidered as a mapping of Bι into B°. Clearly S(zSQ. Then as So is an
ideal in B% SO=BC and leS0. There exists a sequence {un} in Bλ such
that | | l -T(O | | ->0 and IKIk^O. Since 1 - Γ « ) a n d T(un) permute we
have by Lemma 2.1,

1 = P(l) £ P(l-T(un)) + p(T(un)) ^ \\l~T(un)\\ + piUnlB^O

This contradication completes the argument.
If Bλ and B are Banach algebras, by the closed graph theorem [2

41] S=(0) will imply that T is continuous. In every case S=(0) will
imply real-homogeneity for T and the closure of T~\ϋ).

3.2. LEMMA. Let B1 be a normed Q-algebra and B be semi-simple
with minimal one-sided ideals. Suppose that there exists a minimal one-
sided ideal I of Bτ such that T{Bλ)^IφQ. Then SfU=(0).

We consider the case where / is a right ideal and T is a homomor-
phism. The other cases follow by the reasoning employed. Set Iλ =
T~ι{I). Iγ is a right (ring) ideal of Bx. Let I=jB, f=j and consider
Xoβ^ where T(xo)=jvΦθ. By the semi-simplicity of B, jvBΦ(0) and, as
jB is minimal, jvB—jB. Then jvT(Bλ) is dense in /. It follows that

for otherwise b'vTiBJj^φ) and P = (0). Select xellf T(x) =
and T(x2)Φθ. Let R be the set of elements y in B for which

As observed, jR is dense in jB. Hence jRj is dense in jBj.
But jBj is a normed division algebra and therefore, by the Gelfand-
Mazur theorem, finite-dimensional in B. Thus jRj=jBj. There exists
zeR such that jzjwj=jwjzj=j. For some x1el1, ^{x^j—jzj. Then
T(x1x)—jzjw = T((x1xf). Set jzjw—h and xLx—u. Then h is a non-zero
idempotent in I{ΛT{Bλ). Clearly hB—I so that hBh is a division algebra
hence isomorphic to the reals, complexes or quaternions.

We show that hφS. For suppose otherwise. Then there exists a
sequence {yn} in B1 such that ||/& —Γ(2/n)||->0 and ||2/J|r-*0. Thus
11̂2/nWlli—•O and \\h—T(uynu)\\-+0. By Lemma 2.2 and the fact that
hBh is the reals, complexes or quaternions, 11 AJP(2/Λ)Λ 11 —>0, This is a
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contradiction as hΦO. Now Sni is a right ideal of B, SΓϊIφJ. Since
/ is minimal, Sn/=(0).

3.3. THEOREM. Let B1 be a normed Q-algebra and B be primitive
with minimal one-sided ideals. If T(Bλ) Π Iφ (0) for a minimal one-sided
ideal I of B then T is closed and real-homogeneous.

Let K be the socle of B. If SΦ(0) then KaS by [6 75]. Then
IdS which is impossible by Lemma 3.2.

3.4. COROLLARY. Let B be any subalgebra of G?(X) closed in the
uniform norm \\T\\ where Bz^%(H). Let \\T\\λ be any normed algebra
norm for B such that the completion Bc of B in this norm is primitive.
Then the two norms are equivalent.

By Theorem 2.6 and Lemma 2.5, B is a Q-algebra in the norm
||TU. By Theorem 2.3, there exists c>0 such that HΓH^cHTU, TeB.
Consider the embedding mapping I oί B (with norm | |Γ| |) into Bc. B
is a primitive algebra with a minimal right ideal JB, J2—J. Then
I(J)I(B)I(J) a normed division algebra and, by the Gelfand-Mazur theorm,
closed in Bc. Since I(J) is an idempotent, its closure in Bc is I(J)BCI(J).
Therefore I(J)BC is a minimal right ideal of Bc. From Theorem 3.3, /
is closed. The closed graph theorem [2 41] shows that / is continuous.
Hence there exists cx>0 such that UTH^cJIΓU, TeB.

3.5. THEOREM. Let B1 and B be normed Q-algebras. Then S is
contained in the Brown-McCoy radical of B. If B is strongly semi-
simple then T is closed and real-homogeneous.

The Brown-McCoy radical [5] coincides with the intersection of the
regular maximal two-sided ideals of B. Let M be such an ideal of B.
Since B is a normed Q-algebra, M is closed. Let π be the natural
homomorphism of B onto B\M. Since T(B1) is dense in B, then π T^)
is dense in B\M. Also p\πT{x)~\<zp\T(x)~\<Lp{x), xeBj. Hence our theory
applies to the mapping πT.

Let So be the separating set for πT. Since B\M is simple with an
identity, S0=(0) by Lemma 3.1. Let yeS, ||α?fl||1->0, \\y-T(xn)\\-+0.
Then \\π(y)-πT(xn)\\->0 or π(y)eSQ. Therefore SczM. B is called
strongly semi-simple if its Brown-McCoy radical is (0).

3.6. THEOREM. Let Bλ and B be semi-simple normed Q-algebras
where B1 has a dense socle K and B has an identity Let T be real-linear.
Then Tis closed.

Let P be a primitive ideal of B and π be the natural homomorphism
of B onto B\P. Since B is a Q-algebra then P is closed, π is contin-
uous and πTiBJ is dense in B/P. Let So be the separating set for πT
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as a mapping of Bλ into BjP. We show first that T(K)aP is impos-
sible. Suppose T(K)aP. Since i f c ^ T ) " 1 ^ ) , by Lemma 3.1 we have

JB1=(π 2τ)-1(Sr

0) and S0=BIP. Since B\P has an identity this is contrary
to Lemma 3.1. Hence there exists a minimal right ideal jBλ of B19 f=j
such that T(j)φP. Set πT(j)=u, πT(B1)=B2. πT is an isomorphism or
anti-isomorphism of the division algebra jBJ onto uB%u. Hence uB2u is
a normed division algebra and thus, by the Gelfand-Mazur theorem
closed in B\P. Since u is an idempotent, u(B/P) is a minimal right
ideal of B\P. By Theorem 3.3, πT is closed from which we obtain
SczP. Since B is semi-simple, S=(0).

3.7. THEOREM. Let B1 be a normed Q-algebra and B semi-simple
where either B is a modular annihilator algebra or has dense socle. If
T{B^) contains the socle of B then T is closed and real-homogeneous.

By Lemma 3.2, Sn/=(0) for every minimal one-sided ideal of B.
Let 7 be a minimal right ideal. Then &/—(0). Thus S annihilates the
socle. It follows (see the proof of Lemma 2.8) that S=(0) in the first
case. In the second case we have S'2 = (0) and S~(0) by semi-simplicity.

Consider further a semi-simple normed modular annihilator algebra
B. B is a permanent Q-algebra by Lemma 2.5 and 2.8. From Theorem
3.7 we see that any algebraic homomorphism or anti-homomorphism of
B onto B is closed no matter which two norms are used for B.

Let B be a real normed algebra. By an involution on B we mean
a mapping x~^x* of B onto B which is a real-linear automorphism or
anti-automorphism of period two. Let H{K) be the set of self-adjoint
(skew) elements of B with respect to the involution x-+x*. B is the
direct sum H@Koί the linear manifolds H and K.

The mapping x-+x* of B onto B is subject to the above analysis.
Here S is the set of all xe B for which there exists a sequence {xn} in
B with ||a?J|->0 and | |α?-α?ί ||->0.

3.8. LEMMA. S=Ήf]K. S=(0) if and only if H and K are closed.
Let w 6 S. Then there exist sequences {hn} and {kn} in H and K

respectively such that \\w—(hn—&n)||-*0 and \\hn+kn\\->0. Therefore
\\w—2/y|->0 and \\w+2Jcn\\-+0 so weHf)K. Conversely suppose that
\\z-hn\\->0, \\z-kn\\->0 where each hneH, kneK. Then \\z-(hn+kn)l2\\
~>0 and \\(hn-kn)l2\\->0 and zeS.

If H and K are closed, clearly S=(0). Suppose S=(0). Let /^->

u+v where hne H, ue H and ve K. Then hn—u-+v and v e iϊni£". Then
^=0 and H is closed. Similarly K is closed.

Let B be a semi-simple normed annihilator algebra, for example an
iϊ*-algebra. Then it follows from the above that H and K are closed
in B for any involution on B and any normed algebra norm on B, For
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.B*-algebras we have been able to show only the following weaker re-
sult.

3.9. THEOREM. Let B be a B*-algebra with H(K) as the set of self-
adjoint (skew) elements in the defining involution for B. Then H and K
are closed in any norrned algebra norm topology for B.

B has the spectral extension property [13] and is therefore a per-
manent Q-algebra by Lemma 2.5. The arguments of [14; §3] can be
adapted to show that H and K are closed in any given normed algebra
norm \\x\h.
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