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ON SYMMETRY IN CERTAIN GROUP ALGEBRAS

D U A N E W. BAILEY

A complex Banach algebra A with involution x -»x* is
symmetric if Sp (x*x) c [0, <χ>) for each x e A. It is shown
that (i) if A is symmetric, the algebra of all n X n matrices
with elements from A is symmetric, and (ii) the group algebra
of any semi-direct product of a finite group with a locally
compact group having a symmetric group algebra is again
symmetric.

An involution x —*#* in A is said to be hermίtian if Sp
(x)a( — oo, oo) for every self-ad joint xeA. In [1] R. Bonic studied
the natural involution in the group algebra of certain discrete groups
and raised the question: Is the group algebra of a semi-direct product
of a finite group with a discrete Abelian group necessarily symmetric'!
The present work is devoted to proving the more general result that
the group algebra of any semi-direct product of a finite group with
a locally compact group whose group algebra is symmetric, is again
symmetric. The proof in part depends upon showing that the algebra
of n x n matrices with elements from a symmetric Banach algebra
has a naturally defined symmetric involution. (We restrict our atten-
tion to continuous involutions.)

I am indebted to the referee for pointing out that if G is discrete,
our Theorem 2 follows from a result of A. Hulanicki (Corollary 2,
page 286 of [4]). Also, while it is easy to show that every symmetric
involution is necessarily hermitian and that the notions are equivalent
for commutative algebras, the equivalence for noncommutative algebras
was an open question until quite recently. Mr. S. Shirali has announced
a positive solution to this question which will be contained in his
Doctoral Dissertation at Harvard University.

l Algebras of matrices* Let A be a Banach algebra with a
continuous involution α; —̂  a;*. A linear functional / on A is positive
if f(x*x) ^ 0 for all x e A. If A contains an identity e, such a func-
tional satisfies f(y*x) = f(%*y) for all x9yeA, and if A is symmetric,
then

(1.1) Sp(#) c {f(x) I / a positive functional, f(e) = 1}

whenever x e A and x*x = xx*. (For a proof of these and other facts
about symmetric Banach algebras, see [5].) In the following, v(x)
denotes the spectral radius of x.

413



414 DUANE W. BAILEY

LEMMA 1. Let A be a Banach algebra with identity and
continuous involution, and let f be a positive linear functional on
A. Then

( i ) I f(x*hx) I <; f(x*x)v(h) whenever x,heA andh* = h .

xfXi)whenever xif y{eA.(ΣVi
\ΐ=l

iii) /((Σ yfXi)* ( g vΐXi)) ^ / ( g ^*^) y(g yfVi)whenever

Proof. For (ί), see [5, Th. 4.5.2], Part (ii) is a generalized
Cauchy inequality and is easy to prove using the properties of /
mentioned above. If the left side of (iii) is 0, there is nothing to
prove. Otherwise, we use (i) and (ii) to write

We obtain (iii) by cancelling a common factor from both sides.
The set An of all n x n matrices with elements from A can be

made into an algebra by defining the operations exactly as for matrices
of scalars. Furthermore, if Xe Anj X = [αjίy], the mapping X* = [yid]9

where yi5 — x% is easily seen to be an involution in An. (We use
the same symbol for the involution in the two algebras since confusion
seems unlikely.) Finally,

- max Σ l l ^ ll, n9
i=l, ,» j-1

is a Banach algebra norm for An.

THEOREM 1. If A is symmetric then An is symmetric for any
positive integer n.

We note that it is sufficient to prove the theorem for the case
in which A has an identity e. For otherwise, let Ae denote the
algebra obtained by adjoining an identity to A. It is known [2 or 5]
that Ae is symmetric if and only if A is symmetric. So, to show
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that An is symmetric we simply observe that (An)e is *-isomorphic to
a closed *-subalgebra of (Ae)n. The isomorphism here is

[x^ + XE*-* [xu + Xδuβ].

Any closed *-subalgebra of a symmetric Banach algebra is again
symmetric, so it is enough to know that (Ae)n is symmetric.

LEMMA 2. The theorem is true for n = 2.

Proof. Let XeA2,X = [x{j]. Then X*X - [yij] where

yi3 = x&xu + a?a* a?2i , and yi3 = y% , ί,j = 1,2 .

To prove that A2 is symmetric, it is enough to show that — 1 g Sp(X*X).
That is, if £7 is the identity matrix in An, E = [δ4i e], then E + X*X
possesses an inverse. We will exhibit this inverse.

It is first necessary to establish the invertibility of two elements
of A. As in [5], if xeA satisfies Sp(#) c [0, oo) we write x ^ 0.
The symmetry of A implies [5, Lemma 4.7.10]

Thus e + yn has an inverse, say d1% Next we consider y22 — 2/2A2/12.
If / is a positive linear functional on A, f(e) — 1, then

from Lemma 1 (iii) and known properties of v. It then follows that
f{y22 — 2/21̂ 12/12) ^ 0 and, as a consequence of (1.1),

2/22 - 2/21^2/12 ^ 0 .

We now know that e + y22 — y2ld{yl2 has an inverse, say d2. It is
then an easy matter to verify that the matrix

~d2y2A d2 J

is an inverse for E 4- X*X Hence A2 is symmetric.

LEMMA 3. The theorem holds for n = 2fc, where k is any posi-
tive integer.

Proof. The proof is by induction, the case k — 1 being covered
by Lemma 2. If we assume the result for k — m, then it follows
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for k = m + 1 from the fact that A2m+ι is *-isomorphie to (A2m)2

by partitioning. In fact, every matrix in A2™+i corresponds to a
2 x 2 matrix of matrices from A2m, and this correspondence is easily
proved to be a ^-isomorphism.

Proof of Theorem 1. If n is a positive integer, choose k a posi-
tive integer so large that m = 2k > n. Then Am is symmetric, by
Lemma 3, and the closed *-subalgebra of Am consisting of all matrices
with 0 in the last (m — n) rows and columns is obviously *-isomorphic
to An. It follows that An is itself symmetric, and the proof is
complete.

2* Group algebras and semi-direct products* If F is a locally
compact group, let IF denote a left invariant Haar integral on F and
let ΔF be the corresponding modular function. Thus JF(x) — IF(xΛ/ΔF)
is a right invariant Haar integral on F. The group algebra of F is
the Banach space L\F) of all complex-valued functions on F which
are absolutely integrable with respect to the corresponding left Haar
measure, μF. This algebra has an involution defined by %*(f) =
x{f-ι)ΔF{f~ι),feF. (Here again we use *, in different positions, to
denote both convolution and the involution.)

Let F and G be locally compact groups, and let f-+Φf be a
homomorphism of F into the group of automorphisms of G such that
(/> 9) -* Φλΰ) is a continuous mapping of F x G into G. In particular,
each φf is continuous (and hence a homeomorphism). Let S = F x G
and define a multiplication in S by

(/i, 9i)(A, 9i) = (/1/2, QiΦfS^)), (A, 9i) e S, ΐ = 1,2 .

Then S becomes a locally compact group which we denote by F XΦG.
We note in passing that the inverse of (/, g) is (/~\ ^/-^gr"1)).

We now observe that the automorphisms φf induce a group of
bounded linear transformations Φf of L\G) defined by

Φf(x) = x o φf^ for feF,xe U(G) ,

and the mapping f-+Φf is a homomorphism of ί7 onto this group.
To see that the range of Φf is contained in I/(G), it is sufficient to
note that each φf maps the measurable subsets of G onto measurable
subsets, and that for some <?(/) > 0

(2.1) μG(ΦΛE)) - δ(f)μβ(E)

is satisfied by every measurable set EczG. Because φf is a homeo-
morphism, it maps Borel sets of G onto Borel sets, and because it is
also an automorphism, the measure
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μfa(B) = μG(Φf{B)) , B a Borel set ,

is left-invariant. This measure clearly satisfies conditions (iv)-(vii)
of [3, p. 194] and consequently, by the uniqueness of left Haar
measure, (2.1) is satisfied for some δ(f) > 0 and all Borel sets. Fur-
thermore, the outer measure

μ*{E) = inf {μG(A) | A is open, Ed A}

induced by μG also satisfies

μ*(φf(E)) = δ(f)μ*(E)

for every subset EaG. It is then easy to verify (using [3, Th.
11.32] for example) that (2.1) holds for every measurable set E. In
particular, if G is compact, any topological automorphism of G is
measure preserving.

Clearly the mapping δ is a homomorphism of F into the multipli-
cative group of positive real numbers and

Io(Φf(x)) = Io(x * Φf-ύ = 8(f)Iβ(x) , x e L\G) .

In these terms, the modular function for S can be expressed as

The principal concern of this paper is the case in which F is finite.
In this case the functions ΔF and δ are obviously identically 1.

THEOREM 2. Let F be a finite group, and let G be a locally
compact group whose group algebra is symmetric. Then any semi-
direct product S = F xφG has a symmetric group algebra.

Proof. Let xe&iS), x = x(f, g). For each feF the function
xf(g) = x(f, g) is, by Fubini's theorem, in L\G). Conversely, if
γfeU(G) for each feF and y is defined by y(f,g) = yf(g), then
ye&iS). In this manner 1/(3) is identified with the space of all
L1(G)-valued functions defined on F. Now,

**(/, o) = α(/-\ Φf-άg-WoiΦf-iig-1)) = Φf{(χf-,

and

x*x(f, g) - I8(x*[r, s]x[(ry 8)-ι(f, g)])

= IF{IG{ΦA{Xr-r){s)Φr{Xr-.f)S-1 9)))

= Σ Φr((Xr-l)*)*Φr(Xr-lf)(g) -

feF
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To see that L\S) is symmetric we must show that ( — x*x) is both
right and left quasi-regular. For example, we must exhibit functions
yf e L\G) such that y as defined above satisfies y + x*xy — x*x = 0.
We compute x*xy.

x*xy{f, g) = Is{x*x{v, q]y[(p, q)~ι(f, g)])

= Σ Σ

Let the group F be written F — {fx — e, f2, •,/*}. Then the equa-
tions which must be satisfied are

- Σ ΦTj{{XrΐY)*Φrό{Xrγfi) = 0. i = 1, 2, , Π .

These are equivalent to

- Σ / r / ί ^ 1 ) * ) * ^ / ^ 1 / , ) = 0 ΐ = 1, 2, , n .

Transforming both sides by Φfτ^ we obtain the equations

φfΐKv/t) + Σ Σ//rSX(^*)*^/rv/^7V^*^^

- Σ Φ/ΐKjdXrj1)*) * Φ/T^iXrj1/,) = 0, i = 1, 2, . . . , n .

Finally,

Φ/TKVfi) + Σ Σ Φ . 4 ( ( » . Γ V Γ 0 * ) * ^ ( * . Λ J * * . > =0
(2.2) *-1^-1

- Σ ΦSk((xs^fτψ)*Φ8k(x8l;i) = 0 , ΐ = 1, 2, . . , n .

It is evidently enough to determine the functions Φf^iV/^s f° r

them the yf. can be obtained on transforming by Φf.. Consider the
matrix A = [αίy] of elements from &{G) defined by

aid = Φu(x.ϊ1fj1) , h 3 = 1, 2, , n .

Since L\G) is symmetric we know, by Theorem 1, that —A* A has a quasi-
inverse, say C^lCij] with ciy e L^G). It follows from C+A*AC- A*A = 0
that

<?ίi + Σ Σ dkiakicml - Σ %*%i = 0 , i = 1, 2, , n .
Λ l l A
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Thus Φq^qz1) = cml, m — 1, 2, , n is a solution of the equations (2.2).
A left quasi-inverse for ( — x*x) can be computed in a similar manner.
Hence L^S) is symmetric.
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PRIME RINGS WITH A ONE-SIDED IDEAL SATISFYING
A POLYNOMIAL IDENTITY

L. P. BELLUCE AND S. K. JAIN

It is known that the existence of a nonzero commutative
one-sided ideal in a prime ring implies that the whole ring
is commutative. Since rings satisfying a polynomial identity
are natural generalizations of commutative rings the question
arises as to what extent the above mentioned result can be
extended to include these generalizations. That is, if R is a
prime ring and I a nonzero one-sided ideal which satisfies a
polynomial identity does R satisfy a polynomial identity?

This paper initiates an investigation of this problem. A
counter example, given later, will show that the answer to
the above question may be negative, even when R is a simple
primitive ring with nonzero socle. The main theorem of this
paper is Theorem 3 which states:

Let R be a prime ring having a nonzero right ideal
which satisfies a polynomial identity. Then, a necessary
and sufficient condition that R satisfy a polynomial identity
is that R have zero right singular ideal and R, the right
quotient ring of R, have at most finitely many orthogonal
idempotents.

2. In the following given a ring R, RΔ(ΔR) denotes the right (left)
singular ideal of R. Thus Rά = {x \ x e R, xr e LΔ(R)} where LΔ(R)
denotes the set of right ideals of R that meet, in a nonzero fashion,
all right ideals of R. Similarly for ΔR and JL(R).

If Q is a ring such that R is a subring of Q and qR f] R Φ 0
for each q e Q then Q is called a right quotient ring for R. Moreover
if Q = {ab"1 \a,beR,b regular} then Q is called a classical right
quotient ring. Following [2] we say that a ring R is right quotient
simple if and only if it has a classical right quotient ring Q with
Q = Dn1 Dn a ring of n x n matrices over a division ring D.

From [4] we know that if R is a prime ring with RΔ = 0 then
R has a unique maximal right quotient ring R where R is a prime
regular ring. Moreover, letting L(R) denote the lattice of right
ideals of R, there is a mapping s: A —* A8 of L(R) which is a closure
operation satisfying 08 = 0, (A Π B)8 = A8 n B8 and (or1 A)8 = ar1 A8.
The set L8(R) of closed ideals of R can be made into a lattice in a
natural way and it is shown in [4] that L8(R) = L8(R) under the
mapping A—> A Π R, AeL8(R). We shall have occasion to use the
following realization of R. Let E = {JΛeL*(R) HomΛ(A, R). On E

421



422 L. P. BELLUCE AND S. K. JAIN

define the relation, a = β if for some A e LΔ(R), A gΞ Dom a n Dom β
and a(x) = β(x) for each xeA. It is shown in [5] that = is an equiva-
lence relation and that E/= is a ring and in fact is R.

The above remarks apply similarly to a prime ring R for which
ΔR = 0.

3* In this section occur the basic results of this paper. We
will have occasion to use the result of Posner [8] stating that if R
is a prime ring with polynomial identity then R is a classical two-
sided quotient ring having the same multilinear identities as R. That
part of Posners argument that shows if R has a polynomal identity
then so does R is a very complicated argument and we take this
opportunity to present a simple alternative argument.

LEMMA 1. Let R be a prime ring with polynomial identity.
Then R has a polynomial identity.

Proof. From Posner [8] we know that R has left and right
quotient conditions and hence R is right quotient simple, with R ~Dn.
By a theorem of Faith and Utumi [2] R contains an integral domain
K with right quotient ring K = D. Since K satisfies a polynomial
identity we have by Amitsur [1] that K also has a polynomial identity.
Thus D, and hence Dn, is finite dimensional over its center; thus Dn,
so JB, has a standard identity.

LEMMA 2. Let R be a prime ring with RΔ = 0, let A e LΔ{R)
and let a e Hom^CB, R)} R considered as a right R-module. If a(A) = 0
then a = 0.

Proof. Let xeR; then we have that ar1 AeLΔ{R). lί rex~ιA
then xreA and thus a(xr) =:0. Since a is a right i?-endomorphism,
a(xr) = a(x) r: It follows that cφ^ aΓ1 A = 0, hence x"1 AQa(x)r.
Thus a(x)r e L\R) and so a(x) e RΔ. Hence a(x) = 0.

The following lemma is trivial in the case R contains a central
element. Without a central element the proof is more involved.

LEMMA 3. Let R be a prime ring with a polynomial identity.
Then HomΛ(i2, R) has a polynomial identity, if RΔ— 0.

Proof. From Lemma 1 we know that R has a polynomial identity.
Consider R realized as U A^um Ή.omB(A9R)/=. For a e RomB(R, R)
let a denote the equivalence class in R determined by a. The mapping
a —> a is a homomorphism of Hom^ϋ!, R) into R. If a = β then for
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some A e LΔ{R) a(x) = β(x), xeA. Thus (a — β)(A) = 0. By Lemma
2 we see that a = β. Thus a —> α is an injection onto a subring of
R and so HomΛ(i2, R) has a polynomial identity.

The following theorem provides a sufficient condition on the right
ideal I having a polynomial identity to ensure the whole ring has a
polynomial identity.

THEOREM 1. Let R be a prime ring having a right ideal I Φ 0,
/ satisfying a polynomial identity and Ix — 0. Then R satisfies a
polynomial identity.

Proof. By assumption Ih the left annihilator of I, is 0. Hence
/ is a prime ring itself. Considering / as a left /-module we have
by the obvious dual of Lemma 3 that Homj(I, I), (the left I-endo-
morphisms), has a polynomial identity. For xeR the mapping x —> rβ,
right multiplication by x, is an anti-isomorphism of R into Hom^I, I).
Thus R itself satisfies a polynomial identity.

THEOREM 2. Let R be a right quotient simple ring, IΦ 0 a
right ideal of R satisfying a polynomial identity. Then R satisfies
a polynomial identity.

Proof. From Goldie [3] we have that I contains a uniform right
ideal, thus we may assume I is uniform. Since RΔ = 0 it follows that
{x I x e I, xr e LΔ(R)} = 0, hence from [6] we have that K = ΈlomR(I, I)
is an integral domain. Moreover it is known ([3]) that K = D, D a
division ring, where R — Dn. To complete the proof it suffices to
show that D has a polynomial identity; the latter will hold provided
K has a polynomial identity. To this end consider the homomorphism
a —> la, left multiplication by α, of / into K. Let J denote the image
of this map. J = 0 implies P = 0 which is impossible; hence J is a
nonzero subring of K satisfying a polynomial identity. Let a e K and
let laeJ. Let xel. Then ala(x) = a(ax) = tf(α) x = ϊα(β)(ίc). Thus
tf£α = ί«(β) € J Hence / is a left ideal of K. Since K is an integral
domain we have by an obvious dual to Theorem 1 that K has a poly-
nomial identity.

We now obtain, easily, the following.

THEOREM 3. Let R be a prime ring having a nonzero right
ideal which satisfies a polynomial identity. Then, a necessary and
sufficient condition that R satisfy a polynomial identity is that
RΔ = 0 and R have at most a finite number of orthogonal
idempotents.
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Proof. Necessity is clear. Conversely, then, since R is regular
with at most finitely many orthogonal idempotents it follows from
[7] that R has the descending chain condition (d.c.c.) on right ideals.
R is prime, thus R = Dn for some division ring D. Since L*(R) = L*(R)
we see that L8(R) has d.c.c. Thus from [4] we see that JS is a
classical right quotient ring, hence Theorem 2 applies.

The following example (communicated orally to S. K. Jain by
A. S. Amitsur) shows that the extension of an identity from a right
ideal to the entire ring is not always possible. Let F be a field and
let Foo be the ring of all infinite matrices of finite rank. Let a = {Aiά)
be a matrix such that αn Φ 0 and aiά = 0 for ί,jΦl. Let I = aF^.
Then / satisfies the identity (xy — yxf = 0 but F^ satisfies no
identity at all.

4* REMARKS. In the case that R is primitive with a right
ideal I Φ 0 having a polynomial identity then it is sufficient to assume
that R has at most a finite number of orthogonal idempotents to
ensure that R also have a polynomial identity.

There are other conditions one may impose upon R and I besides
those given here, e.g. if R has at most finitely many orthogonal
idempotents and / is a maximal right ideal or if i2J = 0 and IeLJ(R).
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A NOTE ON CERTAIN BIORTHOGONAL

POLYNOMIALS

L. CARLITZ

Konhauser has introduced two polynomial sets {Y£(aj; fc)},
{Zn(x; k)} that are biorthogonal with respect to the weight
function e~xxc over the interval (0, oo). An explicit expression
was obtained for Zc

n{x\ k) but not for Y£(x; k). An explicit
polynomial expression for YZ(x; k) is given in the present paper.

1* Konhauser [2] has discussed two sets of polynomials Yi(x; k),
Zc

n(x; k),n = 0,1, , k = 1, 2, 3, - , c > - 1 ; Yc

n(x; k) is a polynomial
in x while Zc

n(x; k) is a polynomial in xk. Moreover

pco (0 (0 < i < n)
( 1 ) β-αj Yi(a?; Λ)α?Mίfa = ""

J
and

foo f

( 2 ) 1 e~*xeZe

n(x; k)xιdx =
(0 ^ i <

(i = n) .

F o r k = 1, conditions (1) and (2) reduce to t h e orthogonal i ty conditions
satisfied by t h e L a g u e r r e polynomials Lc

n(x).
I t follows from (1) and (2) t h a t

Γ- fθ (ί Φ j)
( 3 ) e-*xc Y°(x; k)Z^(x; k)dx = . .

Jo ( φ O ( ι = 3 ) .
The polynomial sets {Ye

n(x; k)}, {Zc

n(x; k)} are accordingly said to be
biorthogonal with respect to the weight function erxxc over the interval
(0, oo).

Konhauser showed that

( 4 ) Z°%(x; k) =

As for Y&x; k), he showed that

YHx-lcS- k

w! 3ί* l[(ί +

In the integral in (5), C may be taken as a small circle about the

origin in the ί-plane.
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In the present note we give a generating function and an explicit
polynomial expression for the polynomial YZ(x; k). Moreover we show
that Y»(x; k) can be identified with a polynomial studied recently by
S. K. Chatterjea [1].

2* We apply the Lagrange expansion in the form [4, p. 125]

< 6 } i /(*lm = Σ -̂ T

1 — wφ(t) «=o n\

where

w = -^— , Φ(t) = α0 + αxί + (α0 =£ 0) .

Take

(ί +• 1)* - 1 f

Then we have

kt
- Wφ'(t) =

(ί + l)(ί + 1)* - 1 '

so that

1 - tιtf'(ί)

Thus, by (5) and (6), we have

( 7 ) β-*(t + i ) c + 1 =

If we put

1

(ί + 1)*

then

ί = (1 - w)-1'* - 1

and (7) becomes

8 ) (1 - w)-<"+1"4 exp {- x[(l - w)~llh - 1]} =

In the next place, we have

n=0
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1 - w)-(β+1"*exp{-a>[(l - w)~llk - 1]}

= (l - w)-(c+i)/* £ — [(i - w)-1/4 - i ] r

r=0 T\

where

(α)n = α(α + 1) (α + ^ - 1), (α)0 = 1 .

It therefore follows from (8) that

3* Chatterjea [1] has defined the polynomial

(10) Γ^ίa?) - — χ-«eχkDn(e«+ne-χk)
nl

with k = 1, 2, 3, . The case a = 0 had been discussed by Palas
[3]. Chatterjea showed that (10) implies

He also obtained operational formulas and a generating function for
Tjί%(x)m The assumption that & is a positive integer is not used in
deriving (11).

If we replace k by k~ι and a by k~xa, (10) becomes

On the other hand, since

1 (s + c + l\ =(k-\s + c + l) + n-
n\ \ k λ V w

(9) gives

ΓΪ»-<*\ *) = Σ 4 Σ (-D< I )Γ{S \ e ) + n) •

r=0 γ\ β=0 \ o / \ ΊΊ/ I

It follows at once that

(12) Y^-\xk-f k) = ΓίTi!ϊ(aί) ,
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or, if we prefer,

(13) YZ«+k-\xk; k) = TjfrM

4* It may be of interest to point out that a formula equivalent
to (9) can be obtained without the use of the Lagrange expansion.
In the integral representation (5), put

ί = (1 + uyi* - 1 .

Then (5) becomes

y ί s . AΛ = J L [ exp{-flr(l - uy* - !]}(! + uΓ\c + 1) + n - 1 ,

where C denotes a small circle about the origin in the %-plane. The
numerator of the integral is equal to

\ S

± 4 iiircx*"^+ s + 1 } + n "±
=0 r=0

Taking m = n, we therefore get

Since

l\_ (c)nJn ) nl '

it is evident that (14) is identical with (9).

5* Making use of the explicit formulas (4) and (9), we can give
a rather brief proof of (3). Indeed we have

Λ = [°e-χxcZc

n(x; k)Yc

m(x; k)dx
Jo

_ Γ(kn + c + 1) Λ (_,
nl

1 m
1

5 +

r

β = 0

X - J

Γ(kj + c + 1)

k

il ml i=o
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If f(x) is a polynomial of degree m, it is familiar that

where

In particular, for

we have

For x = — kj — c — 1 this reduces to

Thus

+ c + 1) ^ ,. i w/w\ (-j)
nl i-o \ J / m!

Since

it is evident that

nl

in agreement with (3). In particular

Ί _ Γ(kn + c

°nm

nl

as proved in [2],
A little more generally, we have
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-χxcZ°n(x; k)Y°;(x; k)dx

where a — (c — c')/k. It follows that

0 (n > m) ,

Clearly (16) includes (15).
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POINTLIKE SUBSETS OF A MANIFOLD

C. 0. CHRISTENSON AND R. P. OSBORNE

Morton Brown introduced the concept of a cellular subset
of Sn. As a consequence of the generalized Schoenflies Theorem
it is easy to show that a subset of Sn is pointlike if and only
if it is cellular. In this paper the obvious generalization of
the definitions of pointlike and cellular sets are made and
thier relationship in a manifold is considered. It is easy to
show that a cellular subset of a manifold is pointlike. While
it is not true that a pointlike subset of a manifold is cellular,
it is shown that a pointlike subset of a compact ti-manifold
lies in a contractible w-manifold with (n — l)-sphere boundary.
As a consequence of this it is shown that K is a pointlike
subset of a compact w-manif old {n Φ 4) if and only if K is
cellular. The case n = 4 is still unsolved.

DEFINITIONS. An n-manifold is a connected separable locally Eu-
clidean metric space. A connected separable metric space in which every-
point has a neighborhood whose closure is an w-cell is an n-manifold
with boundary. Note that a manifold is a manifold with boundary
boundary but not conversely. A compact connected subset K of an
w-manif old M is pointlike if M ~ K is homeomorphic with M ~ {p}
where peM. A subset K of an ^-manifold M is cellular if there
is a sequence of w-cells CΊ, C2, such that Ci+ί a Int d and K = Π C*.
An (n — l)-sphere S7*"1 that separates an ̂ -manifold M into components
A and B is collared on the side containing A if there is an embedding
h: S'-'XiO, 1] -> A such that h(x, 0) = x. An (n - l)-sphere Sn~γ in an
n-manifold M is bicollared if there is an embedding h: S^XfO, 1] —• M
such that h(x, 1/2) = x. A pseudo-sphere is a compact manifold that is
a homotopy sphere. A compact contractible n-manifold with boundary
is called a pseudo-cell. The Poincare Conjecture—known to be true
for n Φ 3, 4 [7]—says that a pseudo-sphere is a sphere.

PRELIMINARY THEOREMS. The following theorem follows from the
corresponding theorem for En which is proved by the same methods
as used in [4],

THEOREM 1. A cellular subset of a manifold is pointlike.

One might think that a pointlike subset of a manifold is cellular.
That this is not the case is shown by the following example.

EXAMPLE 1. Let M be E* minus the integers on the positive
#-axis, and minus 1-spheres of radius 1/4 centered at the negative
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432 C. 0. CHRISTENSON AND R. P. OSBORNE

integers on the £-axis. The 1-sphere of radius 1/4 and center at
0 is pointlike but not cellular. A similar construction using linked
1-spheres gives an example of a pointlike subset of a manifold con-
taining a loop that is homotopically nontrivial in the manifold. A
cellular subset of a manifold is not necessarily contractible, for
example the crumpled cube bounded by the Alexander Horned sphere
is not simply connected even though it is cellular.

LEMMA 2. Let K be a pointlike subset of a compact manifold
M with boundary. Let hf: M ~ K—+M ~ {p} be a homeomorphism.
Then hf can be extended to a continuous map h:M—*M such that
h~\p) = K.

Proof. Define h by

ih'(x) for xeM~K,
[p for xeK.

Let U be an open neighborhood of p. Then ~ U is compact; hence,
h~\~ U) is compact so M ~ h~\~ U) is open. Clearly this set contains
K. Thus h is continuous.

LEMMA 3. If K is a pointlike subset of a compact n-manifold
M with boundary and K lies in an open n-cell, then K is cellular.

Proof. We shall show that if U is a neighborhood of K then
there is an w-eell C such that K c Int C aU. Using this a simple
inductive argument completes the proof. Let h:M—*M be the con-
tinuous map given by the previous lemma. Then h(U) is a neighbor-
hood of p. Let C" be an w-cell with bicollared boundary in h(U)
containing p in its interior. Then hr\C) = C is a cell by the Gener-
alized Schoenflies theorem.

By obvious modifications of the proof in [8], the Jordan-Brouwer
Theorem can be shown to hold in a pseudo-w-sphere. Let K be the
closure of one of the complementary domains of Sn~~\ If an %-cell
is sewn to K the result is another pseudo-sphere. Applications of
the Van Kampen Theorem, the Mayer-Vietoris Sequence and the
Hurewicz Isomorphism show that K is (n - 2)-connected. Theorem
6.6.5 and Theorem 6.2.20 of [8] show that K is contractible.

LEMMA 4 (Pseudo Schoenflies Lemma). A bicollared (n — 1)-
sphere S""1 in a pseudo-sphere Mn is the common boundary of two
psudo-cells.

MAIN RESULT.



POINTLIKE SUBSETS OF A MANIFOLD 433

THEOREM 5. If K is a poίntlike subset of a compact manifold
Mn and K is an (n — l)-sphere collared on the side containing if,
then K is a pseudo-cell.

Proof. Assume n ^ 3. Denote by L the set {(Mn ~ if) U collar
of if). Then L and K are closed and their union is Mn while their
intersection is simply connected. By the Van Kampen Theorem πλ(Mn) —
πι{L)*πι{K), where * denotes the free product. Borsuk [2] has shown
that every compact manifold is dominated by a polyhedron, that is
there is a finite polyhedron P and continuous maps /: P—+Mn and
g;Mn—*P such that fog is a homotopic to lMn. It follows that
TΓ̂ ikf̂ ) is a finitely presented group. Since if is pointlike, πι(Mn ~ K) =
τrL(L) = πι{Mn ~ {p}) = πt(Mn). We have ^(Λf ) = ̂ (if) * TΓ^L) =
τr1(iί)*7Γ1(ilf

w). By Grusko's theorem [6], πi(if) is trivial.
To show that πq(K) is trivial for q ^ n we show that Hq(K) is

trivial for q <ί n — 2, then we use duality to get Hg{K) = 0 for
q ^ n. Since if and L form an excisive couple we may apply the
Mayer-Vietoris Sequence to get

Hq(K n L) - #9(iO 0 #,(£) - #«(# U L ) - #,_,(# Π L) ,
1 ^ g ^ ^ - 2

Since if Π L is an t^-annulus this sequence becomes

0 ->

which implies that Hq(K) φ HP(L) ^ Hq(K U L). Since if is pointlike,
Hq(K U L ) ^ Hq(L). Since there is a dominating polyhedron for Mn,
Hq(Mn) is a finitely generated group. It follows that Hq{K) is trivial.
By the Hurewicz Isomorphism Theorem, πq(K) = 0 for I <. q <^ n — 2.
Let S be the compact manifold obtained by sewing a cell to the
boundary of K. Then by duality, S is a homotopy sphere. By
Lemma 4, if is contractible.

If n — 2 then if can be shown to shown to be a 2-cell by the
classification theorem for compact 2-manifolds with contours for boundary.

COROLLARY 6. Let K be a pointlike subset of a compact manifold
M, then K lies in a pseudo-cell with sphere boundary.

Proof: Let h: M —>ikfbe the continuous map given by Lemma 2.
Let C be a cell containing p and having a bicollared boundary. Then C"
is pointlike so h~ι{Cr) = C is a pointlike subset of M with bicollared
sphere boundary. The previous theorem shows that C is a pseudo-cell.

COROLLARY 7. In a compact manifold in which every pseudo-
cell with sphere boundary is a cell, a pointlike subset is cellular.
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LEMMA 8. If K is a pointlike subset of a compact manifold M,
then there are infinitely many disjoint homeomorphic copies of K in M.

Proof. Let pe M ~ K and let h: M ~ K—> M ~ {p} be a home-
omorphism. Let h~\K) = K^CLM ~ K. Let gι be a homeomorphism
of M onto itself such that gt(p) = pι $ K U Kx and gt = 1 on K. Let
K = 9ι°h. Then hτι{K^) = K2 is homeomorphic with fc and

hτ\κx) n (ίΓx n JSΓ) = 0 .

Continuing in this fashion we get K, Klf K2,
The complement of two disjoint pointlike subsets of a manifold

Λf need not be homeomorphic with the complement of two points in
M; for example two linked 1-spheres in the 3-manifold of Example 1.

THEOREM 9. A pointlike subset of a compact n-manifold (n Φ 4)
is cellular.

Proof. By Corollary 6, the pointlike set lies in a pseudo-cell P
with sphere boundary. Sew a cell to P along their boundaries to get
a homotopy sphere Sn. Since the Poincare Conjecture has been proved
[7] for n ;> 5, Sn must be a sphere. The generalized Schoenflies
Theorem [3] shows that P is a cell. An application of Lemma 3
completes the proof when n ^ 5. If K is a pointlike subset of a
compact manifold M, then there are countably many disjoint home-
omorphic copies of K in M. Thus if K is a pointlike subset of M
that is not cellular, then M must contain countably many disjoint
pseudo-cells that are not cells. If n — 3, M is triangulable so an
application of Bing's Side Approximation Theorem [1] allows us to
assume that each pseudo-cell has a polyhedral sphere boundary. Kneser
[5] has shown that such a decomposition can contain only finitely many
such sets that are not cells.

We note that we have a generalization of the Generalized
Schoenflies theorem: If Sn~ι is a bicollared (n — l)-sphere that separates
a compact n-manifold M and one of the components of M — S71'1 is
pointlike, then that component is a pseudo-cell.

One should observe that the proof the Theorem 5 shows: If K
is a pointlike subset of an n-manifold M, πm(M) is finitely generated
for 1 <; m ^ n, and K is an (n — l)-sphere collared on the side con-
taining if, then if is a pseudo-cell.

Using arguments like those used in the proof of Theorem 5, one
can show that a compact n-manifold (n Φ 4) can be written as the
connected sum of at most finitely many nontrivial summands.

The authors wish to thank K. W. Kwun for his helpful suggestions.
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Question. If we drill countably many disjoint cells out of S4 and
sew in pseudo-cells, is the resulting space ever a manifold?
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PRODUCTS AND QUOTIENTS OF PROBABILISTIC
METRIC SPACES

RUSSELL J. EGBERT

In this paper some results concerning the products and
quotients of probabilistic metric spaces are presented.

Probabilistic metric spaces were first introduced by K. Menger in
1942 and reconsidered by him in the early 1950's [3, 4, 5]. Since
1958, B. Schweizer and A. Sklar have been studying these spaces,
and have developed their theory in depth [9, 10, 11, 12, 13]. These
spaces have also been considered by several other authors [e. g., 2, 14,
15, 16]. An extensive, detailed up-to-date presentation may be found
in [7].

In the sequel, we shall adopt the usual terminology, notation and
conventions of the theory of probabilistic metric spaces, with but one
exception: In all previous work, the distribution functions which
determine the distances between points were required to have supremum
one. Our investigations have led us to drop this requirement and
the results which we present here show that doing so is natural.
It is easy but tedious to check that the restriction to distribution
functions with supremum one is not required in any of the previously
established results which will be needed in the sequel.

In concluding this introduction we remark that products of pro-
babilistic metric spaces have previously been considered by V. Istratescu
and I. Vaduva [2]. However, their definition of Cartesian product
employs associative functions which are stronger than Min, the
strongest possible triangular norm. Because of this, and in view of
the discussion given in [10], their results appear somewhat restrictive.
Also, a number of the results concerning finite products, which are
presented in § 1 and which were announced in [1], have recently been
obtained independently by A. Xavier [17].

1* Product spaces*

DEFINITION 1. Let (Si, %d and (S2, $2) be PM spaces and let T
be a left-continuous ί-norm. The T-product (Si, &) x (S2, %2) of (Sx, gi)
and (S2, %2) is the space (S1 x S2, T(j§19 %2)), where Sλ x S2 is the
Cartesian product of the sets Sx and S2 and T(gi, f$2) *s the mapping
from (Si x S2) x (St x S2) into the set of distribution functions Δ
given by

437
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, β) =

for any p = (pu p2) and q = (&, g2) in Si x Sa.
We shall often denote S, x S2 by S αwd T(%u g8) by gΓ, and when

there can be no doubt, omit the reference to T and write %τ(p, q) — Fpg.
As immediate consequences of Definition 1 we have:

THEOREM 1. The T-product (S, %τ) of two PM spaces (Sly gx) and

(S2, f$2) is a PM space.

THEOREM 2. // (S l f gi, T) and (S2, g2, ϊ1) are Menger spaces
under the same left-continuous t-norm Γ, £/ιew their T-product is a
Menger space under T.

COROLLARY 1. // (Slf %19 ϊ\) and (S29 g2, T2) are Menger spaces
and if there exists a left-continuous t-norm T which is weaker than
Tλ and T29 then their T-product is a Menger space under T.

We now determine conditions under which the product of equilateral,
simple, or α-simple PM spaces is again a PM space of the same type.
We begin with,

THEOREM 3. If (S19 gi) and (S2, g2) are equilateral spaces generated
by the same distribution function G, then their Min product (S1 x S2, %Mi%)
is an equilateral space generated by G.

Proof. Let p — (p19 p2) and q = (qu q2) be distinct points in Si x S2

and consider

Fvq(x) = Min (F9ιqι(x), FP2q2(x)) .

In all three cases, (1) p, Φ q19 p2 Φ q2; (2) p, = q19 p2 Φ q2; (3) p, Φ qu

Ί>2 — Q2, we have Fpq(x) = G(x) from which the result follows.
It should be noted that the choice of Min in the above theorem

is necessary, since we must have

T(H(x), G(x)) = T(G(x)9 G(x)) - G(x) ,

where H is the distribution function defined by

IO, x < 0

In general, this is true only for T = Min. Similarly, it is necessary
that (Si, gi) and (S2, g2) be generated by the same distribution function.
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THEOREM 4. If (S19 gi) and (S2, %2) are simple spaces generated
by the metric spaces (S19 dj and (S29 d2), respectively, and the same
distribution function G, then their Min-product (Sx x S2, SMin) is a
simple space generated by the metric space (S1 x S29 Max (d19 d2)) and G.

Proof. Let p = (pu p2) and q = (qlf q2) belong to St x S2. It
follows from Theorem 1 that Fpq = H if and only if p — q. Thus
we have only to show that whenever p Φ q Fpq(x) = G(x/d(p, q)), where
d(p, q) = Max {dt(pl9 qj, d2(p2, q2)). There are again three cases to
consider:

( 1 ) If pL Φ qι and p2 Φ q2, then

Fpq(x) = Min {Gix/d^, qd), G(x/d2(p2, q2))}

= G(α;/Max (dfa, q,\ d2{p21 q2))) - G(x/d(p, q)) .

( 2 ) If pL = qx and pz Φ q2, then dx{pu qx) = 0 and

Fpq(x) = Min (H(x), G(x/d2(p2, q2)) = G(x/d2(p2, q2))

- G(xfd(p, q)) .

( 3 ) If Pi ^ gx and p2 = g2, we proceed as in (2) above.

DEFINITION 2. A distance distribution function G is strict if it
is continuous and strictly increasing on [0, oo) and with Supx G(x) = 1.

The restriction of G to [0, oo) has an inverse which we will denote
by G* and refer to as the inverse of G.

THEOREM 5. Let (Sl9 %ι) and (S29 %2) be a-simple spaces, a ^ 1,
generated by the metric spaces (Slf dy) and (S29 d2), respectively, and
the same strict distribution function G. Let T be the strict t-norm
whose additive generator is (G*)-mla, where m >̂ 1 [12]. Then the
T-product (St x S29 %τ) is <^n a-simple space generated by the metric
space (S1 x S2, (d? + d?)ιlm) and G.

Proof. Let d = {d? + d2

m)1/m and let p = (pu p2) and q = (ql9 q2)
be distinct points of Sx x S2. We have to show that

Fpq(x) = G(x/d«(p, q)) .

We again split cases:

( 1 ) If pι Φ qx and p2 Φ q2, then

Fpq(x) = T(G(xld%pu qd), G(x/d«(p2, q2)))

d%pu Ql)) + fG(x/da

2(p2, q2))} ,
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where / = (G*)~m/α and / * = G(j-a!m) and j denotes the identity func-
tion. It follows that fG = i~m/*, whence

Fpq(x) = f*{x-mla(d?(pu ? 1) + d?(p2, q2))}

= G{x(d?(Pl1 ? 1) + df(p2, g2))-α/m} - G(xld*(p, q)) .

( 2 ) If Pi = (h and p2 Φ q2, then for a; > 0

Fpq(x) = T(H(x), G(x/d«2(p2, q2))) = G(x/d*(p, q)) .

( 3 ) If px Φ q1 and p2 = g2, we proceed as in (2).
As a result of Theorem 2 in [12] it follows that for a > 1 the

α-simple spaces above are all Menger spaces under the £-norm T'
whose additive generator is (G*)1/(1~α). Moreover as B. Schweizer
has observed, if we want to have T — T", then a and m must satisfy
the equation 1/(1 — a) = —m/a, from which it follows that

1/α + 1/m = 1 .

We now turn to the question of topologies on the T-product
spaces and state as our final result of this section.

THEOREM 6. Let (Su %ι T) and (S2, %2 T) be Menger spaces under
the same left-continuous t-norm. Let S3' denote the e — λ neighborhood
system in (Si x S2, $τ> T) and let 33 denote the neighborhood system
in (Si x S21 $τ, T) consisting of the Cartesian products NPl x NPz,
where NPl and NP2 are e — λ neighborhoods in the respective component
spaces (Su %l9 T) and (S2, $2, T). Then S3 and S3' induce equivalent
topologies on (Sx x S2y %τ, T).

Proof. We first note that since T is assumed to be left-continuous,
the neighborhood systems S3 and 33' are in fact bases for their respec-
tive topologies [10]. Consequently, it suffices to show that for each
B in S3 there exists a Bf in S3' such that Br g δ , and conversely. Let
Ax x A2 be an element of S3. Then there exist neighborhoods NPl(ε19 λ j
and NP2ι(s2, λ2) contained in Aλ and A2, respectively. Let

ε = Min (εly ε2), λ = Min (Xu λ2)

and p = (pu p2). We will show that Np(e, X)SA1 xA2. To this end,
let q = (qu q2) belong to Np(e, λ). Then we have

ι ι ^fa ^εJ, FPzH(ε2))
^ T(FPiqi(ε)y FP2H(ε)) - Fpq(ε) > 1 - λ ^ 1 - \ .

Similarly, FPlH(e2) > 1 - λ2. Thus qx e NPl(εu λ j and q2εNP2(ε2i λ2), from
which the result follows.
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Conversely, suppose that Np(e, λ) is an element of 83'. Since T
is left-continuous, Supβ < 1 T(x, x) = 1, so that there exists an η such
that

Let q = (qu q2) belong to NPl(ε, η) x NP2(ε, η). Then

Fpq(ε) = T(FPiqι(ε), FP^(ε)) *> Γ(l - V, 1 - 77) > 1 - λ

so that g e iVp(ε, λ) and NPl(ε, η) x iVP2(ε, 97) S?Np(s, λ). This completes
the proof.

Note that the proof of the first half of Theorem 6, i.e., of the
fact that for any B in S3 there exists a Bf in S3' such that Bf ϋ 5, is
independent of any hypothesis on the ί-norm Γ, while the proof of
the second half requires only that $xx$x<1T(x, x) = 1.

We conclude this section by remarking that all the above results
may be extended in an obvious way to include products of any finite
number of PM spaces.

2* Diameter of and distance between sets. Throughout this
section (S, ^~, T) will denote a Menger space with a continuous ί-norm.

DEFINITION 3. Let A be a nonempty subset of S. The function
DAf defined by

DA(x) = Sup Inf Fpq(
t<x Lp,qeA

will be called the probabilistic diameter of A.
We now establish the properties of the probabilistic diameter.

Proofs requiring only routine calculations will be omitted.

THEOREM 7. The function DA is a distribution function.

DEFINITION 4. A nonempty subset A of S is bounded if
Sup,, DA(x) = 1, semi-bounded if 0 < Sup DA(x) < 1, and unbounded if

THEOREM 8. If A is a nonempty subset of S, then DΛ = H if
and only if A consists of a single point.

THEOREM 9. If A and B are nonempty subsets of S and AξΞ=B,
then DA ^ DB.

THEOREM 10. If A and B are two nonempty subsets of S such
that Af]B= 0 , then
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(2.1) DAΌB(x Λ - y ) ^ T(DA(x), DB{y)) .

Proof. Let x and y be given. To establish (2.1) we first show
that

(2.2) I n f Fpq(x + y)^ τ(lnί Fpq(x), In f Fpq(y)) .
p,qeAlJB \p,qeA ptqeB /

There are two distinct cases to consider:

Case (1).

(2.3) Inf FM(x + y) = Inf FM(x + y) .
p,qeA\JB peA

qeB

Now for any triple of points p, q and r in S, we have

FM{x + y)ϊ> T(Fpr{x), Frq(y)).

Taking the infinum of both sides of this inequality as p ranges over
A, q ranges over B and r ranges over AΓ)B, and using (2.3) we have,

Inf FJX + y)^ Inf T(Fpr(x), Frq(y)) .
p,qeA{JB \ peA /qeB

reAOB

However, since T is continuous and nondecreasing we obtain

I n f Fpq(x + y)^ τ(lnΐ F9r(x)9 I n f Frq(y)) .
p,qeA{JB \p,reA r,qeB /

Case (2).

I n f Fpq{x + y)< I n f Fpg(x + y) .
p,qeA\JB peA

qeB

In this case one of the equalities,

or

Inf Fpq(x + y) = Inf Fpq(x + y)
p,qeA{JB p,qeA

Inf FM(x + y) = Inf Fpg(x + y)
ρ,qeA\JB P,qεB

must hold. If the first equality holds, we have

Inf Fpq(x + y)^ i f l n f FM(x), H(y))
p,qeA[)B \p,qeA /

2: Γ(lnf Fvq{x), Inf FM{y)) .
\p,qeA P,qeB /
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The same argument works for the second equality. This establishes
(2.2).

Finally, using the fact that the rectangle

{(s, t): 0 ̂  s ^ x, 0 ̂  t ^ y)

is contained in the triangle {(s, t): s, t ^ 0, s + t < x + y}, the inequality
(2.2) and the continuity of T we have

D A U B ( x + y ) = S u p I I n f F p q ( s + t ) \
s + t<x + y\_p,qeA{JB J

Inf
s<x Lp,qe AIJB
t<y

^ τ(Sup Γ Inf FM(s)Ί, Sup Γ Inf
\ s<a; [_P,qeA J ί<y Lί?,?e^

= T(DA{x), DB{y))

THEOREM 11. If A is a nonempty subset of S, then DA = Dj,
where A denotes the closure of A in the ε — λ topology on S [10].

Proof. Since ASA, it follows from Theorem 7 that Z^ ^ D2.
Let 77 > 0 be given. In view of the uniform continuity of g with

respect to the Levy metric L on J [8] there exists an ε > 0 and a
λ > 0 such that for any four points pu p2y p3 and pk in S,

L(FW FP5H) < η

whenever FPιPs(e) > 1 - λ and FP2PJβ) > 1 - λ.
Next, with each point p in A associate a point p{p) in A such

that Fp(~)-(e) > 1 - λ. Then, in view of the above for any pair of
points p and q in A,

Fp-q-) < Ύj .

In particular, for all t we have,

FpiϊuΦ ~V)-η^ Fp~q(t) .

Let Aη = {p(p): peΆ). Then since Aη S A,

Jnf_ FTq{t) ^ Inf p{-]qΓq)(t -V) -V

= Inf Fpq(t -rj)-r/^Inί FJjt - η) - η .
p,qeAη P,qεA

Now, taking the supremum for t < x of the above inequality yields
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D-Ax) = Sup Γ Inf F^(ί)l ^ Sup Γ Inf FPί(t -η)~\-η
t<x Lp,qe~A J t>x Lp,qeA J

= SupΓInf FPq(t)~] -η = DA{x - V) - V
t<x-η Lp,qeA J

Since the above inequality is valid for all η and since DA is left-
continuous it follows that

D2(x) ^ DA(x) .

Whence DA(x) = DA{x) and the proof is complete.

DEFINITION 5. Let A and B be nonempty subsets of S. The
probabilistic distance between A and B is the function FAB defined by

(2.4) FAB(x) = Sup T (inf Γsup Fvq{t)\ Inf ΓsupFpq(t)]) .
t<% V p e i L ? 6 ΰ J qeB L peA J/

In establishing the properties of FAB we again omit the routine
proofs.

THEOREM 12. FAB is a distribution function.

THEOREM 13. If A and B are nonempty subsets of S, then
TP ΊP

*AB — *BA

THEOREM 14. If A is a nonempty subset of S, then FAA = H.

THEOREM 15. If A and B are nonempty subsets of S, then
FAB =

Proof. It is sufficient to show that FAB = FAB since this result
together with Theorem 13 yields

ΊP ΊP ΊP ΊP ΊP
•f AB — * AB = - Γ l i = - Γ Ϊ I — -Γ AB •

With this in mind we first show that FA-% fS FAB. Since BQB for
all t,

(2.5) Inf [Sup Fpg(t)] ^ Inf Γsup FP,(t)] .
qeBLpeA J ~eBLpeA J

Let ΎJ > 0 be given. The argument given in the proof of Theorem
11, establishes that for each point qeB, there exists a point q{q) in
B such that for all t,

Let Bv = {q(q): qeB}. Since BVSB we have,
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S u p F φ -η)-η^ SupFM ( 5 )(ί) = SupFvq(t)
B

^ Sup Fpg(t) .
qeB

Consequently,

Inf Γsup Fpl(t - v)\ - V ^ Inf [Sup Fpg(t)] .
peALae~B J peALqeB J

(
t<x \qeB L P e A

Moreover, taking the supremum on t < x of the above inequality,
yields for any η,

f(x) = Sup (Inf [Sup Fpq(t)]) 2> Sup (inf Γsup Ffq(t - V)Ί) - η
t<x \peALqeB J / t<χ \ p e A L q e B Λ'

= Sup (inf [Sup Fp-q{t)\) - rj = g(x - η) - η .
ί > z - J ? \ qeA L g e~B -1'

Now since both / and g are left-continuous and ΎJ is arbitrary, it
follows that fix) ^ gix). This together with (2.5), and the continuity
of T yields

FAB(x) = φup( lnf
I t < z \ peA

^ ΓJSup (inf [Sup FPϊ(t)\), Sup (inf Γsup
I t<χ \peA L q e B J / t<x \ q e β LpeA

= Sup ϊ f Inf [Sup Fpq(t)\ Inf Γsup Fpq(t)\) = F^^(x) .
ί < a ; V p e ^ L g e β J g e l LpeA J/

A similar argument shows that FAB ^ ^ ΰ . Combining these
inequalities yields the desired result.

THEOREM 16. If A and B are nonempty subsets of S, then
FAB — H if and only if A — B.

Proof. Suppose FAB — H and let ε > 0 be given. Then

1 = FAB(e) - T (Sup (inf Γsup Fpq(t)]\ Sup (inf Γsup Fpq(t)\)}
l ί < £ \ peALqeB J / t<ε \ qeB L peA J/)

= Sup (inf [Sup Fpq(t)]) = Inf Γsup Fpq(ε)] .
t<ε \ qeB L peA J/ qeB L peA J

So that for any qeB and every λ > 0 there exists a point p in A
for which Fpq(e) > 1 — λ. Consequently, q is an accumulation point
of A and we have ΰ g l . A similar argument shows that AQB.

Conversely, suppose A = B. Then in view of Theorems 14 and
15, FAB = FAB = F-AA = H.

THEOREM 17, // A, B and C are nonempty subsets of S, then



446 R. J. EGBERT

for any x and y

FAB(x + y)^ T(FΛC(x), FBC(y)) .

Proof. Let u and v be given. Then for any triple of points
p, q and r in S we have

Fpq(u + v)^ T(Fpr(u), Fqr(v)) .

Making use of the continuity and monotonicity of T we have the
following inequality:

geB \ rεC reC L geB 1/

Consequently,

Inf Γsup Fpq(u + v)~\ ^ T (Inf Γsup Fpr{u)\ Inf Γsup Fqr(v)\) .
peALgeB J \peALreC J reC L geB J/

Similarly,

Inf [Sup Fpq(u + v)] ^ T (inf Γsup Fpr(u)\ Inf Γsup Fqr(v)]) .
qeBLpeA J \ reC L peA J geB L reC J/

Therefore, since T is associative, we have

i f Inf [Sup Fp g(^ + v)l, Inf Γsup Fpq(u + v)T)
V peA L ?e5 J geB L pei J/

^ τ\τ (inf [Sup ̂ (w)], Inf Γsup ί1,,^)!) ,

ϊflnf [Sup F,r(v)\ Inf Γsup Fqr(v)~\)\ .
\ geB L reC J reC L geB J / J

Now arguing as in the last step of the proof of Theorem 10, we have

FAB(x + y)= Sup ϊflnf Γsup FJμ + v)λ ,
u+v<x+y \ peA L. geB J

Inf Γsup FJμ + v)l)
geB L peA J/

^ Sup T (inf Γsup FJμ + v)\ Inf Γsup Fpq(u + v) T)
u<% \peA L geJ5 J geB L pei _!/
υ<y

= T {Sup Γ (inf [Sup Fvr{u)\ Inf Γsup Fpr{u)Ύ) ,
K u<x \peALreC J reC LpeA J/

Sup T (inf [Sup Fqr(v)\, Inf Γsup F?r(v)~hl
v<y \ geB [_ reC J reC L. geB J/J

- T(FAϋ(x), FBC{y)).

Let (S, g, T) be a Menger space under a continuous ί-norm, ϊ7,
and let 8 be a nonempty collection of nonempty subsets of S. Then
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ABjthe function g @ defined for any A and B in @ by %&(A, B) =
where FAB is given by (2.4), is a mapping from @ x @ into z/.
Furthermore, as a direct consequence of Theorems 12-17 we have,

THEOREM 18. If each set in @ is closed, then (@, %& T) is a
Menger space.

3* Quotient spaces. Let (S, g) be a PM space. In [4] K.
Menger introduced three types of distinguishability for pairs of points
p, q in S depending upon the behavior of the distance distribution
function Fpq near zero. These notions may be summarized in the
following:

DEFINITION 5. Let (S, g) be a PM space, let p and q be points
in S and let tpq = Inf {x : FM(α0 > 0}. Then the distance between p
and q is:

(A) certainly positive if tpq > 0;
(B) barely positive if tpq — 0 and i^g(0+) — 0;
(C) perhaps zero if Fpq(Q+) > 0.

In Menger's paper a somewhat different terminology was used.
Namely, he said that p and q are: (A) certainly distinguishable if the
distance between them is certainly positive; (B) barely distinguishable
if the distance between them is barely positive; (C) perhaps indis-
tinguishable if the distance between them is perhaps zero. The
reasons for the slight change in the terminology introduced here will
become apparent latter (see Definition β, ff.).

The above mentioned types of distinguishability were recently
reconsidered by B. Schweizer [6] who defined two relations C and D
on S as follows:

(c) pCq if and only if the distance between p and q is perhaps
zero, i.e., if and only if (C) holds.

(d) pDq if and only if the distance between p and q is not certainly
positive, i.e., if and only if either (B) or (C) holds.

Concerning these relations, he obtained the following results:

THEOREM 19. If (S, %, T) is a Menger space and T a t-norm
such that T(a, b) > 0 whenever a > 0 and b > 0, then the relation C
is an equivalence relation.

THEOREM 20. Under the hypotheses of Theorem 19, (S, t) is
always a pseudo metric space. Moreoverf (S, t) is a metric space if
and only if the distance between every pair of distinct points of S
is certainly positive.
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THEOREM 21. If the hypotheses of Theorem 19 are satisfied, then
the relation D on S is an equivalence relation.

THEOREM 22. If (S, fj, T) is a Menger space such that

Sup T(a, a) = 1

and T(a, b) > 0 whenever a > 0 αwd! 6 > 0, ί&ew £Aβ equivalence classes
in S determined by the equivalence relation D are closed subsets of
S in the e — λ topology.

In view of the fact that we no longer require that all the distance
distribution functions have supremum one, various types of behavior
at infinity are possible and can be distinguished. Indeed, the entire
preceding discussion concerning behavior at zero can be dualized.

DEFINITION 6. Let (S, g) be a PM space, let p and q be points
in S, let spq = Sup {x : Fpq(x) < 1} and let Fpq(^) = l i m ^ Fpq(x). Then
the distance between p and q is:

(A') perhaps infinite if Fpq(oo) < 1;
(B') barely finite if spq = <χ> and i ^ 0 0 ) = 1;
(C) certainly finite if sM < °o.
We define two relations C" and Df on S which are dual to C and

D, respectively, as follows:
(c') pC'q if and only if the distance between p and q is certainly

finite, i.e., if and only if (C) holds.
(d') pD'q if and only if the distance between p and q is not

perhaps infinite, i.e., if and only if Fpq(oo) = ly or equivalently if and
only if (B') or (C) hold.

THEOREM 23. If (S, %, T) is a Menger space, then C is an
equivalence relation on S.

Proof. The fact that C" is reflexive and symmetric is an immediate
consequence of the definition of C. To show that C is transitive
suppose pC'q and qCr, so that spq < °o and sqr < oo. Then for any
ε > 0 ,

Fpr(spq + sqr + ε) ^ T(Fpq(spq + ε/2), Fqr(sqr + e/2))

= Γ(l , 1) = 1 .

Consequently, spr ^ sp g + sqr < oo and ^CV.

THEOREM 24. //(S, fj, Γ) is a Menger space in which the distance
between every pair of points is certainly finite, then (S, s) is a metric
space.



PRODUCTS AND QUOTIENTS OF PROBABILISTIC 449

Proof. In view of the proof of the previous theorem, we need
only show that spq = 0 implies p = q. To this end let spq — 0, then
Sup {x : Fpq(x) < 1} = 0. Whence, Fpg(0+) = 1 and consequently Fpq = H
so that p = q.

THEOREM 25. If (S, $, T) is a Menger space under a continuous
t-norm T, then the relation D' on S is an equivalence relation.

Proof. From Fpp(^) = H(oo) = 1 and Fpq = Fqp it follows that
Dr is reflexive and symmetric. To show that D' is transitive suppose
pD'q and qD'r. Then for any x,

Fpr(x) ^ T(Fpq(x/2), Fqr(xβ)) .

Since T is continuous the above inequality yields

and thus pD'r.

THEOREM 26. Let (S, f$, T) be a Menger space under a continuous
t-norm T. Then the equivalence classes in S determined by the
equivalence relation D' are closed subsets of S in the ε — λ topology.

Proof. We first note that since T is continuous on the unit
square it is uniformly continuous. Now let pe S and let D'{p) be the
equivalence class determined by p. To show that D'{p) is closed we
show that S — D'(p), the complement of D'{p), is open. Let r be any
point in S — D\p). Then there is a λ > 0 such that Fpr(^) = 1 — λ.
Since T is uniformly continuous and since T(a, 1) = α, there exists an
ε > 0 such that T(α, 1 — ε) > a - λ/2 for all a in [0, 1]. Let q e Nr(ε, ε).
Then for any x > ε we have

Fpr(2x) ^ T(Fpq(x), Fqr(x)) ^ T(Fpq(x), 1 - ε)

> Fpq(x) - λ/2 .

Taking the limit as x —> oo yields

1 - λ = F,r(oo) ^ ^ ( o o ) _ λ/2 ,

whence Fpq(oo) ̂  1 - λ/2. Thus qίD\p) and it follows that

iV r (ε,ε)SS-£'(p),

hence S — D'(p) is open.

THEOREM 27. // (fi , S> ϊ7) ^s a Menger space such that T is
continuous and T(α, 6) > 0 whenever a > 0 and b > 0, ί/ieti £/ιe equiva-
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lence classes in S determined by p and the equivalence relation C are
closed in the ε — λ topology.

Proof. Let peS and let C(p) be the equivalence class determined
by p. We show that S — C(p) is open. Let reS- C(p). Then
Fpr(0+) = 0 so that Fpr is continuous at 0. Hence for every ε > 0
there exists a δ > 0 such that Fpr(δ) > ε/2 and a λ > 0 such that for
all a e [0,1] T(a, 1 - λ) > a - ε/2. Let q e Nr(δ/2, λ), then

ε/2 > Fpr(δ) ^ T(Fpq(δ/2), Fqr(δ/2))

^ T(Fpg(δ/2), 1 - λ) > FpQ(δ/2) - ε/2.

Hence for every ε > 0 there exists a δ > 0 such that Fpq(δ/2) < ε.
Consequently, Fpq(0+) = 0. Thus qeS - C(p), whence Nr(δ/2, λ ) S
S — C(p) and S — C(p) is open.

THEOREM 28. Let (S, f$, T) be a Menger space under a continuous
t-norm T. Let peS and let C'(p) be the equivalence class in S
determined by p and the equivalence relation C. Suppose further
that there exists a number M such that for any u and v in C'(p)
we have Fuυ(x) = 1 whenever x ^ M. Then C\p) is closed in the
ε — λ topology.

Proof. Suppose q belongs to G'(p), the closure of C'(p), but not
to C'(p). Then Fpq(x) < 1 for all finite x, so that for any t > 0 there
is an ε > 0 such that Fpq(t + M) > 1 — ε; and since q e C'(p), there
exists a u e C'{p) such that Fqu(t) > 1 — ε/2. Whence,

1 - ε > Fpq(t + M) ̂  T(Fpu(M), Fqu(t))

= Γ(l, Fqu(t)) = Fq%(t) > 1 - ε/2 ,

which is a contradition. Thus C'(p) = G'(p).
The next four theorems show that, under suitable conditions, each

of the equivalence relations, C, C", D, D', can be "divided out".

THEOREM 29. Let (S, g, T) be a Menger space under a t-norm
T which is continuous and such that T(a, b) > 0 whenever a > 0 and
b > 0. For each peS, let D(p) be the equivalence class in S deter-
mined by p and the equivalence relation D and let S/D be the collec-
tion of all such equivalence classes. Then (S/D, g5/Z), T) is a Menger
space in which the distance between distinct elememts is certainly
positive.

Proof. The fact that (S/D, %SID, T) is a Menger space follows
directly from Theorems 18 and 22.
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Let D(p) and D(q) be distinct equivalence classes, and suppose
that

/o o\ / — f)

Since peD(p) and qeD(q), there is an xQ > 0 such that Fpq(x0) = 0.
In view of (3.2), we thus have

^ Γ ( Inf ΓsupF.,(a;.)"|, Inf Γ Sup F

Hence,

0 < Inf Γ Sup F β .
ueD(p) L.veD{q)

whence for each ueD(p)

Sup FM(α?o) > 0 .
veD(q)

Consequently there exists a qoeD(q) such that FpqQ(x0) > 0. Thus
since F ^ is left-continuous, there is an ε, 0 < ε < x0, such that
FPQQ(X0 - ε) > 0. Hence

0 = FPQo(xQ) ^ T(^ g o(x o - e), ^ ( ε ) ) > 0 ,

since both FpqQ(xQ — ε) and Fqqo(e) are positive. However, this is a
contradiction and hence tDίp)D{q) > 0.

THEOREM 30. Let (S, S, T) be a Menger space under a continuous
t-norm T. For each p e S let D'(p) be the equivalence class in S
determined by p and the equivalence relation D'', and let S/D' be the
collection of all such equivalence classes. Then (S/Df, %SID>, T) is a
Menger space in which the distance between distinct elements is
perhaps infinite.

Proof. In view of Theorems 18 and 26 (S/D'f %SID>, T) is a Menger
space.
Let Dr(p) and D'(q) be distinct equivalence classes and suppose that
FD,{p)D>(q)(d) = 1. Since p e D\p) and q e Df{q), there is an ε > 0 such
that Fpq(oo) < 1 — ε. Since T is continuous

1 = FD,{p)D,{q)(oo)

= lim Sup T ( Inf Γ Sup ^ . ( ί ) ] , Inf Γ Sup Fuv(t)])
Z-+00 t<x \ueDf(p) LveD'(q) J veD'(q) LueD'(p) J/

= Sup τ( Inf Γ SupF.,(ί)l, Inf Γ Sup F.,(ί)l)
t KueD'ίp) LveD'iq) J veD'iq) LueD'(p) J/

= ΓJSup ( Inf Γ Sup Fuv(t)]\ Sup( Inf Γ Sup ^ (
L t \ueD'{p) LveD'(q) J / t \veD'{q) [_ueD>{p)
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But T(a, b) = 1 if and only if a = b = 1. Consequently,

Sup( Inf Γsup ίUt)T) - 1 .
t \ D ' ( ) L D ' ( ) J /t \ueD'(p) L_veD'(g)

Thus, there exists an x0 such that

Inf Γ Sup Fuv(x0)] > 1 - ε/2 .

Hence,

^Sup Fpv(xQ) > 1 - ε/2 .

Since Fpv is nondecreasing

Sup Fpυ(oo) ^ Sup i ^ ( O > 1 - ε/2 .
veD'(q) veD'(q)

Consequently, there exists a g £ G D r { q ) such t h a t

^ (°°) < Sup i ^ ( o o ) - ε/4 > 1 - 3ε/4 .

e veD'(q)

and we have

1 - e > Fpq(oo) s> T(Fp, ε(oo), F M /oo)) = ̂ ( o o ) > 1 - 3ε/4 .
which is a contradiction. Hence FDt{p)D,{q)(oo) < 1 and the distance
between distinct equivalence classes is perpaps infinite.

THEOREM 31. Let (S, g, T) be a Menger space under a t-norm
T which is continuous and such that Γ(α, b) > 0 whenever a > 0 and
b > 0. For each pe S, let C(p) be the equivalence class in S deter-
mined by p and the equivalence relation C, and let S/C be the collection
of all such equivalence classes. Then (S/C, %sιc, T) is a Menger
space. Moreover, if each C(p) in S/C is such that Inίu>veC{p)Fuυ(0+) > 0,
then the distance between distinct elements is not perhaps zero.

Proof. The first part of this theorem is a direct consequence of
Theorems 18 and 27.

To establish the second part, let C(p) and C(q) be distinct equiva-
lence classes, and suppose that Fc{p)c(q)(0+) > 0. Since p e C(p) and
qeC(q), we note first that

(3.3) Fpq(0+) = 0 .

Next we have
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0 < Fcwom(0+)

= lim Sup τ( Inf Γ Sup Fuv{t)\ Inf Γ Sup FM(ί)Ί)
h~*Q+t<h \ueC(p) LυeCiq) J vec(q) LueC(p) J/

S lim T ( Inf Γ Sup F%v{h)\ Inf Γ Sup F.,(Λ)"h

= Γ f lim Inf Γ Sup Fuv(h)\ lim Inf Γ Sup Fuv(h)~\) ,

whence

lim ( Inf Γ Sup F.,(^)l>) = λ > 0 .

Thus, in particular,

lim ( Sup Fpv(h)) ^ λ > λ/2 > 0 .

Since Sup^e^^^ is increasing, for any h > 0 we have,
(3.4) Sup Fpv(h) > λ/2 .

veC(g)

From (3.4) it follows that for each h > 0 there exists a, qhe C(q) such
that

(3.5) F,qh(h) > λ/2 .

Now let lnίUtVeC{q)Fuυ(0+) = 37. By hypothesis, 77 > 0, whence

Γ(λ/2,17) > 0 .

Moreover, since gΛ € C(q)

(3.6) i^A(/0 ^ ^ ,

for all h > 0. Next, in view of (3.3), there exists an h0 > 0 such
that

(3.7) Fpq(2h0) < Γ(λ/2,77) .

Combining the inequalities (3.5), (3.6) and (3.7) we have

Γ(λ/2, η) > Fpί(2Λ0) ^ T(pqhQ(hQ), FqqhQ(hQ)) ^ Γ(λ/2, 27) ,

which is a contradiction. Hence Fc{p)c{q)(0+) = 0 and the proof is
complete.

THEOREM 32. Let (S, §> ϊ1) ê α Menger space under a continuous
t-norm T. For each peS let C'{p) be the equivalence class in S
determined by p and the equivalence relation C", and let S/C be the
collection of all such equivalence classes. If each C'{p) in S/C is
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such that for some Mp, suv < Mp for all u and v in C'(p), then
(S/C, %s!c>i T) is a Menger space in which the distance between
distinct elements is not certainly finite.

Proof. In view of Theorems 18 and 28 (S/C, %slc,, T) is a Menger
space.

Let C'{p) and C\q) be distinct equivalence classes and suppose that

(3.8) Scww < °°

Since p e C'(p) and q e C'{q) for each λ > 0 there is an ε > 0 such that

(3.9) Fpq(sc,{p)c,{q) + Mq + λ) < 1 - ε ,

where suv < Mq for all u and v in C'(q). In view of (3.8),

1 — -Γ c(p)Cf(q)\sc'(p)C'(q) ~

= Sup τ( Inf Γ SupFUΨ(t)\ ,

Inf
veC'(q) L.ueC'(p)

= τ( Inf Γ Sup Fm(80.lf)0H9) + λ/2)Ί ,
\ueCf{p) L veC'(q) J

Inf Γ Sup Fnv(scnp)cnq) + λ/2)Ί) .
veC'iq) LueC'ip) J/

Since T(a, 6) = 1 if and only if a = b = 1, it follows that

Inf Γ S\xpFuv(sc,{p)C,{q) + λ/2)Ί = 1 ,

whence, in particular,

jSup FJpa.Mc.rn + V2) = 1

Thus, there exists a qε e CXg) such that

(3.10) F^iβowm + V2) > 1 - e/2 .

Combining (3.9) and (3.10), we have

1 - ε > Fpq(s0,{p)C,m + Mq + λ)

^ Γ(F, ί ε(S ( 7, ( ί > ) C, ( g ) + λ/2), FO T ε(M, + λ/2))

= T(FH.(80.Wc'W + λ/2), 1)

= F«.(*o>ww + λ/2) > 1 - 6/2 .

This is a contradiction, whence sc,(p)c,m = <χ> and the proof is complete.
In conclusion we note that under the hypotheses of Theorem 31
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the equivalence classes in S/C are either bounded or semi-bounded
and under the hypotheses of Theorem 32 the equivalence classes in
S/C" are bounded.
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BISECTION INTO SMALL ANNULI

MOSES GLASNER, RICHARD KATZ, AND MITSURU NAKAI

In a Riemannian manifold the modulus of a relatively
compact set with border consisting of two sets of components
is introduced to measure its magnitude from the viewpoint of
harmonic functions. The existence of a subdivision into two
sets each having modulus arbitrarily close to one is established.

I* Let M be a Riemannian manifold, i.e. a connected orientable C°°
n-manifold that carries a metric tensor gi3 . Consider a bordered compact
region EczM whose border is the union of two nonempty disjoint sets
a and β of components. We shall call the configuration (E, a, β) an
annulus.

Let h be the harmonic function on E with continuous boundary
values 0 on a and log μ > 0 on β such that

( 1 ) I * dh = 2π .

The number μ > 1 is called the modulus of the annulus (E, a, β) and
we set

μ — mod(£7, a, β) .

Let w be the harmonic measure of β with respect to JE7, i.e. the
harmonic function on E with continuous boundary values 0 on a and
1 on βm By using Green's formula we obtain

(2) log//- 2π

DE{w) '

where DE(w) denotes the Dirichlet integral I dw A * dw of w over E.
JE

An illustration of these concepts is obtained by taking the annulus
E = {x I r <* I x I <Ξ; R) in ^-dimensional (n ;> 3) Euclidean space. The
harmonic measure of | x \ — R with respect to E is

w = R2-n _ r 2-»

and the modulus oi (E, \ x \ = r, \ x \ = R) is given by-

log μ = π1-"!/2»(2 - n)r(—)(i22-" - r2-") .

Note that μ > 1, in a sense, measures the relative thickness of E and
that μ—*l as iϋ — r —>0.

457



458 MOSES GLASNER, RICHARD KATZ, AND MITSURU NAKAI

Our result gains interest if we generalize the notion of annulus
slightly. Let (Ej9 aj9 /?,•) (j = 1, , m) be annuli such that Et Π Eό = 0
for i Φ j . Set E = U?UEj, <* = UΓ=i<*;> & = U5U£; τ h e n w e s h a 1 1

also call the configuration {E, a, β) an annulus. The modulus
μ = mod (i?, α, β) and the harmonic measure of E with respect to β
are defined exactly as for a connected annulus. Moreover, formula
(2) is valid and consequently we have

( 3 ) = v.
log μ 3=ι log μά

where μά = mod {Eό1 ah β/).

2* Let M be a noncompact Riemannian manifold throughout this
number. A function which is positive and harmonic on M except for
a fundamental singularity is called a Green's function if it majorizes
no nonconstant positive harmonic functions on M. If a Green's func-
tions exists, then M is called hyperbolic, otherwise it is called
parabolic.

An increasing sequence (Ωn) of bordered compact regions is called
an exhaustion of M if U Ωn = M. Note that the configuration
(Ωn+1 — Ωn, dΩn, dΩn+1) is an annulus and denote its modulus by μn.

The parabolicity of a noncompact Riemannian manifold M is
characterized by the following

MODULAR CRITERION. There exists an exhaustion (Ωn) of M with
Π μn — °° if and only if M is parabolic.

In the 2-dimensional case this criterion has been established by
Sario [5] and Noshiro [4] and their work can easily be generalized
to arbitrary Riemannian manifolds (cf. Smith [7], Glasner [2]).

One naturally asks whether a convergent modular product has any
bearing on the hyperbolicity of a manifold. The main result of this
paper is that any annulus can be separated into two annuli each
having modulus less than 1 + ε. This clearly answers the question in
the negative and also settles Problem 3 in Sario [6].

3* Suppose the annulus (E, a, β) has components (Eί9 aό, βά)
(j = lf . . . , m). Let τ, be a hyper surf ace in Es such that E5 — Ίό —
E}UE}', EϊnE? = 0 , and (E^ajf7j) and (Ey,ys,βd) are annuli.
Set 7 = \JT=ιΎj. We shall call 7 a bisecting surface of (E, a, β). Also
set Ef = XJt^E] and E" = U?=i^7 We are now able to state the

THEOREM. Given an annulus (E, a, β) and e > 0 there exists a
bisecting surface 7 of (E, a, β) such that
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( 4 ) mod (Ef, a, Ί)< 1 + e, mod (E", 7, β)< 1 + s .

This was established by Sario [5] for doubly connected plane regions
using Koebe's distortion theorem. All proofs for the 2-dimensional
case known to the authors use either a distortion theorem, in essence,
or an estimate (cf. Akaza-Kuroda [1]) obtained by means of Mobius
transformations (Nakai-Sario [3]) which cannot be generalized to higher
dimensions. Therefore, one is led to estimate the Dirichlet integral
of the harmonic measure directly and the proof presented here seems
to even give a more elementary proof for the 2-dimensional case.

4* Denote by C(a, b) = CXQ(a, b) the Euclidean cylinder

where α, b > 0 and x0 = (xl, •••,£?) is a fixed point. Let g(α, b) be
the class of C1 functions / on C(a, b) with continuous boundary values
0 on C(a, b) Π {xn = x%} and 1 on C(a, b) f] {xn = xl + b}. Also denote
by De the Dirichlet integral with respect to the Euclidean metric.
We set s equal to the surface area of Σ K 1 ^ ) 2 = ~L, xn = 0 and state
the

LEMMA. For every f e g(α, 6),

( 6 ) DS,ath)(f) ^ ^P-

and equality holds for fo(x) = b~1(xn — x%).

Clearly (6) is valid with equality for /0. To prove (6) for an
arbitrary / we may assume f eC1 in a neighborhood of C(a, b). By
Green's formula we have

De

CM){f ~ /o, /o) = ( (/ - fo)^ds - 0 ,
JdC(a,b) 07b

since / — f0 = 0 on the upper and lower boundary of the cylinder and
(dfo/dn) = 0 on the side of the cylinder. Consequently Schwarz's in-
equality yields

which completes the proof.

5 . We are ready to prove the main result. Take a point xoea
and a point y0 e β. Let x1, , xn be a local coordinate system a t
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xQ — (%\, . . . 9 χi) valid in a neighborhood U of x0 such that U Π oc is
given by xn = αj and #n increases as a; moves from a to i?. Similarly,
let y\ , yn be a local coordinate system at #0 = (j/J, , 2/*) valid in
a neighborhood F of #0 such that V Π /3 is given by #* = y* and #TO

increases as y moves from β to E. Choose a constant c > 0 so small
that

( 7 ) V

and also

( 8 ) (9ij\U
i = l

for every vector (ξu , £n). Now choose α > 0 sufficiently small to
insure that Σ £ ί ( ^ - 4) < ^ with xn = »? and Σ f ί t f ~ ?/o)2 < ^2

with 2/π = i/j are contained in U Π α and F Π /5, respectively. Finally
choose 6 > 0 so that

( 9 ) 0 < 6 < β***- 1 log (1 + 6)
27Γ

Cβ0(α, 6) - {»• - a??} cJS7, CyQ(a, b) - {τ/w -

and

C.0(α, 6) Π CyQ(a, 6) = 0 .

Now take a bisecting surface 7 of (E, a, β) subject to the requirements

7 n (C,0(a, b) U Cyo(a, b)) - 0

and

7 => [C*0(α, b) n K - ^ + 6}] U CyQ(a, b) n {l/% = y? + 6}] .

Let wf (resp. w") be the harmonic measure of 7 (resp. β) with
respect to E' (resp. £"'). Since J5" z> CXo(a, 6), by using (7) and (8) we
obtain

(10) DAW) > DCχQ{a,b)(w') ^ cDίχQ{a,b)(w') .
χQ{

Hence by using (6) and (9) we have

— < log (1 + 6)
')DE.(w')

and in view of (2) we conclude that

mod (E\ a, y) < 1 + ε .

A similar consideration for E" establishes (4).
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A NOTE ON LEFT MULTIPLICATION OF
SEMIGROUP GENERATORS

KARL GUSTAFSON

It is shown in this note that if A is the infinitesimal
generator of a strongly continuous semigroup of contraction
operators in any Banach space X, then so is BA for a broad
class of bounded operators B; the only requirement on B is
that it transforms "in the right direction".

In the recent paper [1] the following interesting result was
obtained.

THEOREM 1 (Dorroh). Let X be the Banach space of bounded
functions on a set S under the supremum norm, let A be the infini-
tesimal generator of a contraction semigroup in X, and let B be the
operator given by multiplication by p, pX £ X, where p is a positive
function defined on S, bounded above, and bounded below above zero.
Then BA is also the infinitesimal generator of a contraction semi-
group in X.

This leads naturally to the general question of preservation of
the generator property under left multiplication; the purpose of this
note is to present Theorem 2 below, which shows that for any Banach
space, a large class of operators B are acceptable. In the following,
the word "generator" will always mean generator of contraction
semigroup.

In this note we will consider only left multiplication by every-
where defined bounded operators B. It is easily seen (e.g., [2, Corollary 3])
that A generates a contraction semigroup if and only if cA does, c > 0.
Also by [4, Th. 2.1], if A is bounded, BA is a generator if and only if
BA is dissipative; in this case clearly right multiplication also yields
a generator. See [4, 5] for dissipativeness; we use dissipativeness in
the sense [4], and recall that if BA is a generator, then BA is dis-
sipative in all semi-inner products on X.

THEOREM 2. Let X be any Banach space, A the infinitesimal
generator of a contraction semigroup in X, and B a bounded operator
in X such that \\εB — I\\ < 1 for some ε > 0. Then BA generates
a contraction semigroup in X if and only if BA is dissipative,
(i.e., Re [BAx, x] ^ 0, all xeD(A), [u, v] a semi-inner product (see
[4])).
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Proof. W e n o t e t h a t R(B) = X w h e n \\εB - I\\ <1 for some
ε > 0; to show that BA is a generator it suffices to show that εBA
is a generator for some positive ε. From the relation ||εJ5 — I\\ <
1 g | | ( I - εBA)-1]]-1 we have by [2, Lemma 1] that:

β(I - εBA) = β((I - εBA) + (εB - I)) = β(εB{I - A)) = β(εB) = 0 ,

where β(T) = dimX/Cl (R(T)) is the deficiency index of an operator
T. A closed implies εBA closed (and therefore / — εBA closed), since
εBA = A + (εB - J)A and || εB - I\\ < 1; BA dissipative implies that
I — εBA possesses a continuous inverse, so that we therefore have
R(I — εBA) closed, and thus BA the generator of a contraction
semigroup. This result also follows quickly from [2, Theorem 2],

In the above we made use of basic index theory as may be found
in [3] and the well-known characterizations of generators as may be
found in [3, 4, 5], for example. The index theory notation here is
a convenience only; the arguement can be presented without it.

COROLLARY 3. Theorem 1 stated above.

Proof. As shown in [1], pA is dissipative with respect to the
semi-inner product used there, and clearly 0 < m ^ p(s) <̂  M implies
that I εp — 11 < 1 — εm for small enough ε.

COROLLARY 4. Let B be of the form cl + C,\\C\\ < c,CA dis-
sipative. Then BA is a generator if A is.

Proof. Clearly c~ιB satisfies the conditions of Theorem 2; note
I1 εB — 111 < 1 for some ε > 0 if and only if B is of the form cl + C,
\\C\\<c.

Remarks. The condition BA dissipative in Theorem 2, necessary
for BA to be a generator, requires (in general) that B be in a
"positive" rather than a dissipative direction. For example, if A, B,
and BA are self-adjoint operators on a Hubert space, then A is a
generator if and only if A is negative, and then BA is a generator
if B is positive.

The condition || εB — I\\ < 1 in Theorem 2 is easily seen to be
equivalent to the condition: B strongly accretive, i.e., 3m = m(B)
such that Re [Bx, x] ;> m > 0 for \\x\\ — 1, where [u, v] is the semi-
inner product being used (see [4]). It is a sharp condition since
equality ||εl? — 7| | = 1 cannot be permitted in general, as seen from
the example B = 0, A unbounded, for then BA is not closed.

The effect of Theorem 2 is that, after the application of index
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theory therein, one sees that the essential question concerning when
BA is a generator is the question of when BA is dissipative. Three
situations which can then occur are: (i) as in [1], for special operators
B, one can find a semi-inner product for which BA is dissipative; (ii)
A commutes with B (see [3]), for which one can easily obtain results
such as A self-adjoint, dissipative, and B accretive imply BA dissi-
pative; (iii) general (noncommuting) A and B. For case (iii) one can
obtain the following interesting result (proof given in forthcoming
paper by the author, Math. Zeitschrift). Let —A and B be strongly
accretive operators on a Banach space. If

m i n | | e £ - / | | ^ m(-A)-\\ A K"1 ,
ε

then BA is dissipative. In particular, let A and B be self-adjoint
operator: then ( | |JB| | - m(B)) (\\ B || + m(B))~ι ^ m(-A) || A \\~ι is suffi-
cient. Moreover these conditions can be sharpened by introducing the
concept of the cosine of an operator. For certain operators the
condition for BA to be dissipative can then be written as sin B <g cos A.

The author appreciates useful expository suggestions from the
referee. Extensions of these results to unbounded right and left
multiplication will appear in a forthcoming paper by the author and
G. Lumer.
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A CHARACTERIZATION OF GROUPS IN TERMS
OF THE DEGREES OF THEIR CHARACTERS II

I. M. ISAACS AND D. S. PASSMAN

In this paper we continue our study of the relationship
between the structure of a finite group G and the set of degrees
of its irreducible complex characters. The following hypo-
theses on the degrees are considered: (A) G has r.x. e for some
prime p, i.e. all the degrees divide pe, (B) the degrees are
linearly ordered by divisibility and all except 1 are divisible
by exactly the same set of primes, (C) G has a.c. m, i.e., all
the degrees except 1 are equal to some fixed m, (D) all the
degrees except 1 are prime (not necessarily the same prime)
and (E) all the degrees except 1 are divisible by pe > p but
none is divisible by pe+1. In each of these situations, group
theoretic information is deduced from the character theoretic
hypothesis and in several cases complete characterizations are
obtained.

In situation (A), the greater complexity which can occur when
e ^ p is explored and a conjecture concerning p-groups with e < p is
studied and certain cases of it are proved. Detailed statements are
made about groups G satisfying (B) for which the common set of
prime divisors of the degrees does not consist of a single prime for
which G has a nonabelian @p subgroup. These results are applied to
situation (C), groups with a.c. m, and such groups are completely
characterized when m is not a prime power corresponding to a non-
abelian Sylow subgroup. If m = pe and an @p of G is nonabelian
then it is shown that G must be nilpotent unless e = 1 (in which case
G has r.x. 1 and has been completely characterized in [2]). This
reduces the study of groups with a.c. m to p-groups and it is shown
that a p-group G with a. c. pe must have an abelian normal subgroup
of index pe unless G has class 2 or 3. Further information is obtained
about these "special" class 2 and 3 groups. It is also shown that if
e > 1 then G must have class ^ p.

Groups satisfying hypothesis (D) are completely characterized and
it is shown that in this case there are at most two degrees different
from 1. Finally it is shown that if G satisfies hypothesis (E) and has
a nonabelian @p subgroup then G is nilpotent and has a.c. p\ In all
the situations considered in this paper, the group in question is shown
to be solvable.

We use here the notation and terminology of [2].

1* Groups with r*x* (p — 1)* In [4] we classified all groups with
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r.x.2. As it turned out, in that study the prime p — 2 played a
special role. It now appears that in the general classification of groups
with r.x. e those primes p with p ^ e will again play a special role.
In the other direction, this means that groups G with r.x. e and p > e
are somehow better behaved than the others. In this section we will
attempt to justify this last statement.

Let G have r. x. e but not r.x. (e — 1). Then we say that e = e(G)
is the character exponent of G. If G has a normal subgroup N of
index p with e(N) = e(G) — 1, then in terms of the characterization
problem, G is trivial. We say that such groups are imprimitive. Other-
wise G is primitive. We note that since all groups with r.x. e are
M-groups this terminology causes no confusion.

The following result handles the nonnilpotent case. It shows
moreover that the nonnilpotent exceptional group of [4](Theorem A (ii))
belongs in some sense to a series of such groups.

THEOREM 1.1. Let e(G) = e and let @P,(G) be noncentral. If
pφ2 and p is not a Mersenne prime or if p > e, then G is imprimi-
tive. If p — e, then G is imprimitive unless G/Q(G) = Go where
Go — (V xσ C) ~ C, I CI = p, V is elementary abelian and either p —
2, I VI = 3 or p = 2a — 1 is a Mersenne prime and \V\ = 2a.

Conversely if e(G) = e and G/&(G) = Go given above, then p = β
and G is primitive.

The lemma below is well known.

LEMMA 1.2. Let π be a set of primes and let arbitrary group G
have a normal abelian @ff subgroup A. Then A = Z x B where Z
and B are characteristic in G and Z = 3(G) Π A.

Proof. Clearly A is characteristic in G and G/A acts on A. Let
θ be the endomorphism of A which is given by θ(a) — ILe^M αβ.
Clearly K = ker θ and I — image θ are characteristic subgroups of G
and I K\ 11\ = \ A\. If Z = Q(G) f] A, then we see easily than Z^I
and Z Π K — <Ί>. The latter uses the fact that A is an ©. subgroup
of G. Hence Z = / and A = Z x K.

Proof of Theorem 1.1. Let H=®P,(G) and P = G/&(H). Let
H be the group of linear characters of H and let Gj. = H xσ P where
P acts faithfully in the natural manner on H. If there exists λeff
with <εP(λ) = <1> then choose N with N 2 (£(#) and [ (? :#] = p. By
[5](§ 3, in particular the proofs of Theorems 3.1 and 3.2), e(N) =
e(G) — 1. Now this occurs by Corollary 2.4 (i) of [5] if p Φ 2 and p
is not a Mersenne prime or if p > e(G). It also occurs for p — e(G)
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unless G1 has Go as a homomorphic image. This follows by Theorem
2.1 of [5] and a slight modification of Lemma 1.2 of [5] since we do
not have to look at subgroups here. We consider this last possibility.
Assume G is primitive.

Now P has as a homomorphic imape Po, a Sylow p-subgroup of
Go. Since [Po - Po] — V2 we see that Po has a nonabelian group of order
p* as a homomorphic image. Thus there exists KΔG with K 3 (£(iϊ)
and G/K nonabelian of order p\ By [2](p. 885, equation * with m = 1)
G has a normal subgroup JV with K < N < G, [G : N] = p2 and
e(JV) ^ e(G) — 1. Since p = β > e(iV) we conclude by [5] that
[#:<£(#)] ^ pe{N). Hence [G: <£(#)] ^ p2 pe( iV) ^ p*+ 1. Since | P 0 | = pfH-\
it follows that [G : (£(#)] = ^ + 1 and P ~ Po.

Let TF be the kernel of the homomorphism Gx —» Go. By the above
W £ i ϊ . We show that W is central in Glβ Let w eW and suppose
that ©^(w) < G1# It is easy to see in Go that there exists <x, b eH/W
such that I <£Po(ά) | = | <£Po(6) | = j> and Po - <©po(α), <£Po(&)>. Thus since
Gi acts on fl/ W and KGl(tc;) < G: we cannot have both &Gl{w) 3 &Gι{a)
and KGl(&). Say &Gl(w)ib(£ffl(a). Since | EPo(a) | = ^ we have SGl(w) Π
&Gi(a) = fl". Now p-group &Gl(a)/H permutes the elements of the coset
aW = α and |αTF| is prime to p. Hence we can choose an element
aeaW which is centralized by KGl(a). Consider v = aweH. If
x e &Gl(v) then x e Qίβι(v) = SGl(ά). Thus a; centralizes α and hence
x 6 Kffl(α) Π Kβjίw) = H". Therefore KGl(ι;) = J ϊ and this is a contradic-
tion since G is primitive. Thus TΓ is central in G± and since GJW =
Go, TΓ = BίGJ. By Lemma 1.2, H=WxR where β Δ G, and RP = Go.

Since H — W x R we have H = Q x Z. All linear characters of
Z are fixed by P and hence Z is central in G. Also QP = Go and
from the nature of Go we see easily that QP = Go Moreover &G(H) —
Q x Z x S where S = ^(©(Jϊ)) . We show now that S is central in G.

Choose X,μeQ with | TP(λ) | = | TP{μ) \ = p and P - <TP(λ), TP(//)>.
Let φ be an irreducible character of S. View X,μ and ^ as characters
of &(H). Let χ be a constituent of (λ<p)* so that χ | (£(iϊ) = a Σ5(λ<P)i
Clearly T(λcp) = Γ(λ) Π Γ(^) so ί ^ ^ and ^ p ^ deg χ = at deg φ ^ pp

deg <p. Thus deg ^ = 1 and t ~ pp. This shows that S is abelian and
that T(φ) 2 T(X). Similary T(φ) 2 Γ(μ) and hence Γ(^) = G. There-
fore S is central in G and 3(G) = Z x S. Hence G/3(G) ~ QP = GQ

and the result follows.

We show conversely that all the exceptional groups discussed have
β(G) = p and are primitive. Let A — (£(if). Since G/Q(G) ~ Go we see
that A = H8(G) is abelian since i ί is abelian. Also [G: A] = pp+1.
Let χ be an irreducible character of G and χ | A = a Σ ί λ»*. Then
deg χ = αί and α2ί ^ [G : A] = p p + 1 by Lemma 1.2 of [2]. Thus deg χ ^
p p + 1 and if deg χ = p 2^ 1 then α = 1 and t = p p + 1 . The latter implies
that for λ = λx we have T(X) = A. We [show that this is not the
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case. Let λ | 3(G) = μ. Then λ is a constituent of μ (induction to
A) and G/A permutes the linear constituents of μ since Q(G) is central.
Now G/A is a p-group and deg μ is prime to p so there exists a con-
stituent η of μ which is fixed by G/A. Since λ | 3(G) = η \ 3(G) it
follows that λ = ηξ where ζ is a character with ξ \ 3(G) = 1. By
properties of Go, T(ξ) > ^ and since Tty) = G, it follows that T{ηξ) > A.
Thus e(G) ̂  p. Since e(G0) = p we have β(G) = p.

Suppose G is imprimitive. Let NAG with [G: N] = p and
e(jV) = p — l. Let χ be a character of G of degree pp. Since e(iV) =
p — 1 we have χ = 99* for some irreducible character >̂ of iV. This
shows that N 2 ,3(G). Clearly iV 2 @P, (G) = if and therefore N 2
iί3(G) - A. Since p > e(iV) and &N(H) is abelian, it follows from § 3
of [5] that [N: A] = pe(iNΓ). Hence [G : A] - p 6 ^ 3 - ^p, a contradic-
tion. This completes the proof.

We now study ^-groups with r.x. e and p > e. Here our results
are not conclusive.

Let p-group G have e(G) = e. We set Ω(G), the character kernel
of G equal to i2(G) = n ker Θ where θ runs over all irreducible charac-
ters of G of G of degree p\ If Ω(G) = <1>, we say G is character regular.
In [6](Corollary 2 with n = pe~ι) we showed that | Ω(G) \ ̂  i(2^e-1)!
We conjecture that if p > e(G) than G is character regular. Reasons
for studying this property can be seen in the following result.

PROPOSITION 1.3. Let G be a p-group with e(G) = e.
(i) Let NAG with e(N) = e. If N is character regular then

&(N) S S(G).
(ii) Suppose G is primitive and every maximal subgroup is charac-

ter regular. If ζeG - 3(G), then [G: K(ζ)] ^ p2. Thus if J is a
central subgroup of G of order p, then 8(G/J) - 3(G)/J.

Proof. In (i) suppose 3(JV) g 3(G). Then we can choose
® e (G, S( W)) with x Φ 1. Since N AG, xeN. Now JV is character
regular so there exists irreducible character φ of N with deg φ = pe

and #£ker<£>. Let χ be and irreducible constituent of φ*. Since
degχ^ pe we have clearly χ\N = φ. Thus 3(iV) is central in the
representation associated with χ and (G,,S(JV)) C kerχ Π N = kerφ, a
contradiction.

We consider (ii). Since ζ ί 8(G) we have [G: (£(ζ)] ̂  p. If
[G : <£(ζ)] = p, let N = (£(ζ). Then N A G,N is character regular and
β(iSΓ) - e(G) since G is primitive. By (i), S(N) S 3(G) and hence
ζ G 3(G), a contradiction. Thus [G: £(ζ)] ̂  p2. Clearly 3(G/^) 2 8(G)/J.
Let ζ G G be the inverse image of an element of $(G/J). Then (G, Q g J
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and I J j = p so [G : &(ζ)] ^ p. By the above ζ e $(G) and the result
follows.

We say p-group G has property (*) if e(G) — β and given any
p — e nonidentity elements of G there exists an irreducible character
χ of G of degree pe which does not contain any of these elements in
its kernel. Note that if p > e(G) and G has property (*), than G is
character regular. In [5] we conjectured that every p-group satisfies
(*). If this is so the following shows that p — e is best possible.

PROPOSITION 1.4. Given p and e. If p ^ β, there exists a p-group
G with β(G) = e and i2(G) > <1)>. If #> > e, then there exists a p-group
G with β(G) = β having p — e + 1 nonidentity elements with the pro-
perty that every irreducible character of G of degree pe contains at
least one of these elements in its kernel. Moreover in both cases we
can take G to have class 2.

Proof. Let G be generated by x19 •••,#«, 2/1, m ,yβ,u,v all of
order p, such that u and v are central, (#*, ̂ ) = uvi for ΐ = 1, , e,
and all other commutators are trivial. Set J = <v)>. Clearly G/J is
a faithful irreducible linear group of degree p\ Since [G : 3((?)] ^ p2e

we see that e(G) = e.
Let p S e. We show that i; e β(G). Let χ be an irreducible

character of G with vgkβΐχ. Then for some i = 1, « , p we have
nvι G ker χ. Since p ^ e we see that â , 2/{ exist and that x{ and ^ are
central in Gjζuv^. Hence G/{uv{y has r.x. (e — 1) and degχ ^ j)e - 1.
Thus v e Ω(G).

Now let p > e. Consider the p — e + 1 elements v, 6̂̂ ?β+1, , uvp.
Let χ be an irreducible character of G containing none of these elements
in its kernel. Then for some i = 1, « ,e we have ^ ^ e k e r χ . As
above for such i ^ e, G/^uv{y has r.x. (β — 1) and hence the result
follows.

We show now that at least in certain cases (*) holds. For possible
later applications we use the following general setup.

Let £f be a class of p-groups closed under taking subgroups and
quotient groups. Let G be a member of £f of minimal order which
does not satisfy (*) if such exists. We consider properties of this
minimal counterexample.

Let e(G) — e and let xu , xr be r = p — e nonidentity elements
of G such that each irreducible character of G of degree pe contains
at least one of the x{ in its kernel. We of course have r > 0 and thus
p > e. Clearly e > 0 by Proposition 4.6 of [2]. Hence r <̂  p — 1.

We can assume that the x{ are central and have order p as
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follows. If x is one of the cc/s, then we can find elements yu , 2/fc

such that h — (x, yu , yk) is a nonidentity central element. If
h ί ker χ for some character χ then clearly x g ker χ. Also we can
take a suitable power of h to have order p.

We show now that all the x{ are contained in Φ(G), the Frattini
subgroup of G. If not say xι g iV for some maximal subgroup JV of
G. Since â  is central of order p we have G = N x <#!> and clearly
e(JV) = e(G) = e. Let ζ be an element of order p in 3(N). Then
<ζ, #!> is central of type (p, p) and has p + 1 subgroups of order p. Since
T <ί p — 1, we can find one such subgroup J with α̂ , , xr, ζ g J .
Then G — N x J and 5̂ , , » r are nonidentity elements of G/J = JV,
a group with e(G/J) = e. Since G is a minimal counterexample, we
can find a character φ of G/J of degree p e with xi £ ker 9?. Viewing
φ as a character of G yields a contradiction.

Let JV be a maximal subgroup of G. Clearly e(N) ^ e — 1. If
β(JV) = e, then since &lf , α?r e JV there exists an irreducible character
φ of AT of degree p e with αj4 ί ker φ for all ί. If X is a constituent of
φ* then since degX ^ pe we have degX = pe and X\ N = φ. Thus
&f g ker % for all i, a contradiction. Therefore e(JV) = e — 1.

If χ is a character of G of degree p e, then χ = <p* for some
irreducible character φ of N since e(iV) = β — 1. Thus T(φ) = N and
hence S(G) a N. Therefore S(G) a S(JV). We show that S(G) - &(N).
If not, choose a;r+1 e (G, 3(-^)) with α?r+1 Φ 1. Since e(iV) = e — 1 and
r + 1 = p — (β — 1), we can choose an irreducible character θ of JV
of degree p 6 " 1 with c^gkertf for all i. Let χ be a constituent of θ*.
If deg χ = p e, then x19 , xr $ ker % yields a contradiction. On the
other hand, if degχ — pe~\ then χ\N = θ and so ,8(^0 is central in
the representation associated with χ. Hence (G, ,8(N)) £ ker χf]N =
ker # and this contradicts the fact that xr+1 g ker #. Thus .Sί̂ V) = 8(G).

We show now that Q(G) has two generators and is not cyclic.
Let G have as a homomorphic image G = G/iί, a faithful irreducible
linear group of degree pe. Suppose 3(G) Π K has a subgroup of type
(p,p). Then we can find a central subgroup J of order p with XiίJ
for all i and J Q K. Then e(G/J) = β and we clearly have a contra-
diction. Thus 3(G?) n if is cyclic. Since 3(G) is cyclic we see that
8(G) has two generators. Let ζ e &(G) - 3(G) with ζp e 3(G). Then
the map g —* (g, ζ) is a homomorphism of G into the elements of order
p in 3(G). The kernel is <£(ζ) and by the above [G : <£(ζ)] ^ p2. Hence
[G: ©(ζ)] = p2 and (G, ζ) is abelian of type (p, p). Thus S(G) is not
cyclic.

THEOREM 1.5. If G has class at most 2, then G satisfies (*).

Proof. Let £f be the family of all ^-groups of class at most 2
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and let G be a minimal counterexample. Then all of the above applies.
Let J be a central subgroup of G with x{ g J for all i. Let X be an
irreducible character of G/J viewed as one of G and with xxJ£kerX.
Let K be the kernel of X. If U is the subgroup of 3(G) of type (p, p)
then clearly J = KnU and thus Kn 3(G) is cyclic. Let G = G/ϋΓ.
We show that Q(G/K) = Q(G)/K. Let 5 be the complete inverse image
of &(G) in G. Clearly 5 3 3(G). If B > 3(G), choose ζeB - 3(G)
with ζ^eBΐG). Since ζe8(G) we have (G, ζ) ^Kf] U = J. Hence
[G : C£(ζ)] = ί>, a contradiction. Since x{ $ ker X, it follows that deg X ^
pe-1 and so [G : 3(G)] g p2e~2 by Lemma 2.3 of [2]. Hence [G : 3(G)] ^
p2e~2 and G has r.x. (0 — 1), a contradiction. Thus the theorem is
proved.

We now return to our discussion of the general minimal counter-
example. Again let ζ e 32(G) - 3(G) with ζp e 3(G). Thus if X = S(ζ),
then we have [G \ K] — p2 and in fact G/K = (G, ζ) is abelian of type
(p, p). Let N be any subgroup of G with G > N > K. Since 3C*OS
^(iV) and K is character regular we see by Proposition 1.3 (i) that
e(K) < e(N). But e(K) ^ e(N) - 1 so β(iΓ) = e(N) - 1 = e - 2. In
particular e ^ 2.

We show now that [&(K): 3(G)] - P so that 3(K(O) - <3(G), ζ>.
Let <9 be an irreducible character of K of degree pe~2 (note that e(K) =
β — 2) with #!, , xr not in its kernel and let J S ker ^ where J is
central in G of order p. Clearly J — (T, ζ) for some subgroup T with
G > T > K. Consider G = G/J. Since ^, ^ 1 in G we see that
β(G) ^ e - 1. But e(£") = e - 2, where of course if = iΓ//. Also
ζ e 3 ( f ) - 3(G). Hence β(G) > e(f) ^ e(JP). This yields e(G) = β - 1
and e(f) = β(j^) = β - 2. By Proposition 1.3 (i) we have 3(ΪΓ) £
3(10 £ 3(Γ) and thus (Γ, 3(ίΓ)) = J . Now T - <JBΓ, α> and the map
b —* (6, α) is a homomorphism of 3(K) onto / with kernel ®(α) n 3 ( ^ ) —
3(Γ) . Hence [Q(K): 3(T)] = P But 3(T) = 3(G) so [ 3 ( Z ) : 3(G)] =p.

lie = 2, then JSΓ is abelian and so Q(K) = K. Hence [G:3(G)] - p\
a contradiction and hence e ^ 3. If we let S? be the set of p-groups
with r.x.2, then the above yields:

PROPOSITION 1.6. If G is a p-group with r. x. 2, then G has pro-
perty (*).

We now discuss an application of the above. Let ^~ denote a
family of character regular p-groups closed under taking subgroups
and quotient groups.

PROPOSITION 1.7. Let G e ^ with e(G) = e. Let X be an irre-
ducible character of G of degree pe and let Zχ denote the set of
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elements of G central in the representation associated with X. Then
Zχ is abelian.

Proof. If Zχ is central the result is clear. So assume Zχ §
and hence Zχ > 3(G). Choose ζ e Zχ - 3(G) with ζ e &(G) and ζp e 3(G).
Then (ζ, G) is central, elementary abelian and (ζ, G) £ ker X. Clearly
(ζ, G) ̂  <1>. If I (ζ, G) I ̂  p2, choose J, and J 2 subgroups of (ζ, G) of order
p with Jι[\Jι — <T>. Since J^ £ ker X, we have e(G/Ji) = e and hence
by induction Zχ/ /* is abelian. Thus Z'x £ Jλ Π / 2 = <1> and ^ χ is abelian.

Thus we can assume that (ζ,G) = p and hence if H =(£ (ζ), then
[G: £Γ] = p. Since i ϊ is character regular and Q(H) g£ 3(G), Proposi-
tion 1.3 (i) yields e(H) = e — 1. Thus X\H = Σ f ^ and X vanishes
off £Γ. This latter fact implies that Zχ £ iJ. Now if φ — φγ, then
deg <p = p""1 and e(H) — e — 1. Thus in iϊ, Z^ is abelian. Since clearly
^ χ £ ί^, the result follows.

COROLLARY 1.8. Let G have class 2. Ifp> e(G) = β, £/ιew G
α normal abelian subgroup of index p2e.

Proof. Let ̂ " b e the family of ^-groups of class ^ 2 with p > β(G).
By Theorem 1.5 all members of j?~ are character regular. Let X be
an irreducible character of G of degree p\ Then by the above Zx is
a normal abelian subgroup of G. Since G has class 2, [G: Zχ] — p2e

and the result follows.

2* 7Γ-Character groups. In this section we study groups whose
irreducible characters have degrees which are powers of a fixed integer
m. In fact we consider the more general class of groups defined below.
Here π(n) denotes the set of prime factors of integer n.

DEFINITION 2.1. Let π be a set of primes. We say group G is a
7Γ-character group if the following hold.

( i ) The distinct degrees of the irreducible characters of G are
d0, du ' , dk with k ^ 1.

(ii) For all i ^ 1, cZί—x | d< and π(di) = π.

(iii) If π = {p}, then @P(G) is abelian.

Condition (iii) above is included for convenience in order to avoid
overlap with our previous study of r. x. e groups. If H is a homo-
morphic image of G, then the degrees of the irreducible characters of
H forms subset of those of G. Hence if G is a τr-character group,
then either H is a π-eharaeter group or H is abelian. The main result
here is as follows.
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THEOREM 2.2. Let G be a π-character group. Suppose the distinct
degrees of its irreducible characters are d0, du •• ,d;k with di_1\di.
Then G has the following structure.

( i ) G has a normal abelian ©ff, subgroup H Φ <T> with G/H =
@π(G) abelian.

(ii) A — &(ίf) is a normal abelian subgroup of G of index dk.
(iii) There exists a subset {α0, α lf , ar} of {0,1, , k} with

0 — α0 < aγ < < ar = k such that GjA is abelian of type (dajdao,
djdaί, . . , djd^j and (da.Jda.) \ (dajdai__) for all i.

COROLLARY 2.3. Suppose the degrees of the irreducible characters
of G are all powers of a fixed integer m, with ms the largest such
degree. Let π = π(m) and assume that | π | > 1. Then G has a normal
abelian subgroup A with G/A abelian of order ms and type (ms°, mSl,
• • , m 5 r ) for suitable integers s{. Moreover &π(G) is abelian.

The corollary is of course an immediate consequence of the theorem.
The proof of the latter will be in two parts. We first show that G
satisfies (i). Then we study groups with that property and show that
they satisfy the remaining conditions (ii) and (iii).

We start with a lemma. If λ is a linear character of G, then the
order of λ, written o(λ), is its order as an element of the dual group

G/G'. If X is any irreducible character of G we set o(X) equal to o(λ)
where λ = det X, the determinant of the representation associated
with X.

LEMMA 2.4. Let p be a prime and let U — QP(G) be the minimal
normal subgroup of G having a p-quotient group. Then

\U\ = Σ^o(*> X(l)2 mod p.

Proof. By induction on \G\. Suppose first that G has no normal
subgroup of index p. Then G = VLP(G) and GjGf is a p'-group. Hence

for all λ e G/G' we have p)(o(X). Therefore the above congruence
follows from the equation | G \ = Σ%(1)2

Now let G have a normal subgroup H of index p. Clearly VLP(G) —
VLP(H) and thus by induction

\u\ = Σ P , O < * ) W modi?

where the sum runs over the irreducible characters θ of H. We show
now that

Σ>p*oix) Z ( l ) 2 Ξ Σ P * O ( * ) #(1) 2 mod p .

In both sums we can of course discard those χ and θ with p \ χ(l) and
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p I 0(1). Also if T(θ) = H, then 0 has p conjugates θu 02, , θζ.
Clearly 0 (̂1) = 0(1) and o(0J = o(β). Thus the contribution of these
conjugates to the right hand sum is a multiple of p. Hence we need
only consider those 0 with T(θ) — G.

Let SΊ = {X I X is an irreducible character of G, p | Z ( l ) , and
p Jf o(X)} and <5 2̂ = {0 | 0 is an irreducible character of H,p\ 0(1),
p \ o(0), and T(0) = G}. As we have shown above it suffices to prove
that

mod p .

We will in fact show that the map χ —• χ | H is a one-to-one map
of ^ Ί onto S^z and this will yield the result since X and X | i ϊ have
the same degree.

Let X G S?x. Since [G : £Γ] = p we have that either X \ H is
irreducible or X | if is the sum of p conjugates. Since p \ χ(l), the
latter cannot occur so X \ H — 0 is irreducible. Clearly 0(1) = Z(l),
o{θ) I o(χ) and T(θ) = G and hence 0 € ^ 2 . Thus the restriction map
sends £fx into </Ί.

Now let ^ e y 2 and let μ = det 0. Since Γ(0) = G we have
T(μ) = G and thus K = ker μ is normal in G. If X is such that X | H = 0,
then X is a constituent of 0*. Thus to show that the restriction map
is one-to-one and onto we must find a unique constituent X of 0* with
% e S^Ί and X\H — 0. Let r be a nonprincipal linear character of G/H
and let X be an irreducible constituent of 0*. Since [G: H] = p and
T(θ) = G we see that X\H = θ and that all the constituents of 0* are
of the form X{ = τ̂ Z for i = 0,1, , p — 1. Let λ = det X so that
λ I H = μ. We have clearly

det Xi = det τ*Z = τ ί κ ( 1 )λ .

Since χ(l) = 0(1) is prime to p we see that det X{ Φ det X5 for i Φ j and
hence we obtain p distinct linear characters of G which extend μ.

Since T{μ) — G we see that fZ/if is central in GjK and since G/H
is cyclic, G/if is abelian. Also H/K is a p'-group since p | o ( μ ) and
hence G/K ~ (fί/iΓ) x (G/H). It follows easily from this that there
are precisely p distinct linear characters of G which extend μ and that
precisely one of these has order prime to p. Hence there is a unique
% with o(χio) prime to p. Then p \ o(XiQ) and p \ Xio(l) since Xio(l) =
0(1). Thus X,o e £fγ and XiQ\H = 0. This completes the proof.

The first two parts of the following theorem are due to John
Thompson. They generalize our original result, proved under more
restrictive assumptions.

THEOREM 2.5. Let p be a prime and π a set of primes.
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( i ) Suppose for every nonlinear irreducible character χ of G
we have p | X(l). Then G has a normal p-complement.

(ii) If the degrees of the irreducible characters of G are linearly
ordered by divisibility, then G has a Sylow tower.

(iii) Suppose for every nonlinear irreducible charactor X of G
we have π(X(l)) = π. Then G has a normal abelian @ff, subgroup H.
Moreover if \ π | > 1, then G/H is abelian.

Proof. ( i ) Let U be as in the preceeding lemma. Since p | χ(l)
if χ(l) Φ 1 we see by Lemma 2.4 that

v\ = Σ P W J ) λ(i)2

where the sum runs over linear characters λ. Clearly p \ o(λ) is equiv-

alent to λ belonging to &P,(G/G'). Hence

I moάp

and so p\ \ U\. Thus U is a normal p-complement of G.
(ii) By induction on | G \. If G is abelian the result is clear so

assume that G is nonabelian. Let d0 = l,d19 ,dk be the distinct
degrees of the irreducible characters of G with d{ \ di+ί. Since k ;> 1,
choose prime p with p\ d19 Then for all i ^ 1, p \ d{. By (i), G has a
normal p-complement H. Let X be a character of G of degree d{

and say

X I H = a Σ ί θ< .

If θ = #i, then αί deg # = deg % = d{. As is well known at | [G : if] and
of course deg # 11 H\. Hence clearly at = | rff |p and deg # = | ̂  |p /. Thus
the degrees of the irreducible characters of H are \dQ\p,, \dx\pt\, •••,
|ώfc|p/ and these are linearly ordered by divisibility. By induction H has
a Sylow tower and thus the result follows here.

(iii) By (i), G has a normal p-complement for all peπ. Hence
G has a normal @ff, subgroup i ϊ with G/iJ nilpotent. Let θ be an
irreducible character of H and let % be a constituent of θ*. Then
deg θ I deg X and deg 5 | | H \ and so deg 0 = 1. Thus if is abelian. Now
let 7Γ = {ply p2, , pr} and suppose r > 1. Let G/iϊ = P1 x P2x x P r

where P4 = &P.(G/H). If P4 is nonabelian then G/ίί has a character
Z with π(X(l)) = {pj ^ π, a contradiction. Hence for all i, P^ is abelian
and thus G/H is abelian. This completes the proof.

Part (iii) of the above result yields (i) of Theorem 2.2. We now
study groups satisfying this latter condition.

THEOREM 2.6. Let π be a set of primes. Let G be a group with
a normal abelian &κ, subgroup H and with G/H =; @ff(G) abelian.
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Suppose the distinct degrees of the irreducible characters of G are
d09 dιy , dk with di_γ \ d{. Then

( i ) A = (£(iJ) is a normal abelian subgroup of G.
(ii) There exists a subset {α0, alf , ar} of {0,1, •••,&} with

0 == α0 < ax < < ar = k such that G/A is abelian of type (daJdaQ,
dajdaι, , djd^) so [G: A] = dk and (da.+Jda.) \ (dajda.^) for all i.

Let K be a normal subgroup of G, maximal subject to G/K being
nonabelian. If G/K ~ E is solvable, then in the terminology of § 2
of [2], E is extra-special. By Proposition 2.2 of [2], E is either a
Case P or Case Q group. We will refer to these as Case P and Case
Q quotients of G.

Let G satisfy the hypotheses of the above theorem. Set q{ =
di/di_lm These degree quotients will come into play in some later
results.

LEMMA 2.7. Let G satisfy the hypothesis of Theorem 2.6. Let
KΛG so that G/K is an extra-special group. Then G/K is a Case Q
quotient. Let Q/K be the normal Sylow q-subgroup of G/K with G/Q
cyclic of order d. Then \ d \π = d and \ q \κ, = q. Also there exists a
subset {b0, bu , bs} of {0,1, , k} with bo<bί< < bs = k such
that the distinct degrees of the irreducible characters of Q are dbjd,
dbjd, ---,dbjd.

Suppose further that qi\ d for all i > 1. Then d — dγ and the
distinct degrees of the irreducible characters of Q are djdί9 d2/du ,
dk/dx. Moreover if θ is an irreducible character of Q, then θ* is either
irreducible or it has all linear constituents.

Proof. Let G/K be an extra-special quotient of G. If G/K is
Case P, then G/K is a nonabelian p-group for some prime p. Since all
Sylow subgroups of G are abelian, this cannot occur. Thus G/K is
Case Q. By Ito's theorem we have d{ \ [G: H] for all i and hence
1 d{ \π = di. Since d is the degree of an irreducible character of G we
have \d\π — d. Moreover since G/K is nonabelian and &X(G) is abelian,
we see that G/K is not a π-group. Hence \q\π> = q.

Let θ be an irreducible character of Q and let μ be a nonprincipal
linear character of Q/K viewed as one of Q. Suppose θ — θμ. If L
is the kernel of μ then Q > L =2 K and θ vanishes off L. Say θ \ L =
a Σ ί Φi Then [θ IL, θ \ L]L = aH. On the other hand since θ vanishes
off L,[Θ\L,Θ\ L]L = [Q : L][θ, θ] = [Q : L]. Hence aH is a proper power

of q. Since deg θ — at deg φγ we have q \ deg θ. If % is a constituent
of θ*, then deg θ | deg X and so q \ deg X. This is a contradiction since
I deg X \π — deg X and g g TΓ. Hence θ Φ θμ.

Now let λ, μ be two distinct characters of Q/K. We show that
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T(ΘX) Π T(θμ) = Q. If not we can find x e (T{ΘX) Γ) T(θμ)) - Q. Then

ΘX = {ΘX)X = ΘXXX θμ = {θμ)x = 0 s μ*

and hence

θ* = ΘXXX =

Now λλ* ^ μμx since cc acts fixed point free on Q/K and X Φ μ. Thus
θ = θp where p = (μμx)(XXx) Φ 1 and this contradicts the above. Let
u be the number of minimal subgroups of G/Q. Then this says that
there are at most n characters X of QjK with T{ΘX) > Q. Clearly
u <ί d — 1 since each minimal subgroup is cyclic and has a nonidentity
generator. On the other hand G/Q acts fixed point free on Q/K so
there are at least d + 1 > u linear characters of Q/K. Hence there
exists λ with T(ΘX) = Q.

Since T(0λ) = Q, it follows easily that (ΘX)* is irreducible. Hence
for some i

di - deg {ΘX)* = d deg (0\) - d deg 0 .

This implies that there exists a subset {b0, b19 , 6β} of {0,1, , Λ}
with 60 < &i < < b8 ^ k such that the distinct degrees of the irre-
ducible characters of Q are db0/d, dhjd, , dbjd. We show now that
bs = k. Let % be a character of G of degree dk and let θ be an irre-
ducible constituent of X \ Q. Then certainly deg θ ^ dk/d. On the other
hand by the above deg θ = dy/d for some j . Hence dό/d ^ d̂ /d so
j = k and deg θ — dk/d. This completes the first half of the proof.

Now assume that qt \ d for all i > 1. Since q{ \ di and d > 1, it
follows that d = dlβ Let Z be an irreducible character of G of degree
di for i > 0 and let θ = 0X be an irreducible constituent of X | Q. We
have Z | Q = a Σ ί ^ and thus if 6 = at then 6 ^ d and 6 deg 0 = deg X —
d{. On the other hand we know that deg θ = djd for some i . Hence
di/b = dy/d. Since d^b, it follows that dy ^ d£. If d̂  > d4, then
di+1\ dj and we have

d = dx = b{dj/di) = bqi+1{dά/di+ι)

and gί+11 d, a contradiction for i > 0. Hence i = i and deg 61 = d̂ /d.
Moreover b — at ~ d and since α2ί g d, in general, we have a = 1,
ί = d and X = 0*. Thus the distinct degrees of the irreducible characters
of Q are djdly djd19 , dfc/dlβ

Finally let ^ be a character of Q and suppose that #* has a non-
linear irreducible constituent X. Since 0 is a constituent of % | Q, the
above yields X = θ* is irreducible. This completes the proof of the
lemma.
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Proof of Theorem 2.6. First A = &r(A)H, @π(A) is abelian and
H is central in A. Hence A is abelian and (i) follows. Note that
G is solvable. If G is abelian, then (ii) is obvious. So assume G
is nonabelian.

Let K A G with G/K an extra-special group. By the preceeding
lemma, G/K is a Case Q quotient. Using the notation of that lemma
we have [G : Q] = di for some i. Moreover assume that K is so chosen
that i is maximal with this occuring.

In G/K we have &Glκ{Q/K) = Q/K. This shows that A = &β(H) g Q
and hence &G(H) — &Q(H) — A. Let x e G/A be such that it generates
the cyclic quotient G/Q. We show that | ζx} | = di = djdo. Clearly
di I I <V> |. If dt Φ I <V> I, then for some prime p e π we have | <V> \p >
I di \p. For this prime let J be the subgroup of <V> of order p. Now
@π(A) centralizes H and some @ff(G) and hence @ff(A) is central in G.
Thus by Lemma 1.2 we can write A = D x C where D — &A(J) and
D, C AG and J acts fixed point free on C. Clearly C Φ <1)>. Let λ
be a nonprincipal linear character of C viewed as one of A. Then
(T(X)/A) n J = <1> and hence [G : Γ(λ)]p ^ |<a?>|p > | d< |p. Since C ^ 1
this implies that the distinct degrees of the irreducible characters of
G/D are 1, djy with j > i. Hence G/D has a Case Q quotient with
[G : Q] = d$ > diy a contradiction. Thus |<x)>| = ώi# Setting aγ — i,
we have by induction applied to Q, that G/A is abelian of type (daJdaQ,
d a β a i , , d j d ^ j w i t h α r - ft. A l s o ( d a . J d a . ) \ ( d a j / d a j j f o r j > l
by induction. To obtain (dajdai) \ (daJdaQ) we merely note that | <(x) \ = di
for all such choices of x. This implies that the period of Q/A divides
^ = dajdao. This completes the proof.

The proof of Theorem 2.2 is now immediate. Part (i) follows from
Theorem 2.5 (iii) and from the assumption that if π = {p}, then @P(G)
is abelian. Then Theorem 2.6 yields parts (ii) and (iii).

In the remainder of this section we assume that G satisfies the
hypothesis of Theorem 2.6 and we will use the notation of the conclu-
sion of that theorem. We first note a few simple facts about the
characters of G.

LEMMA 2.8. Let X be an irreducible character of G. Then we
have

( i ) X I H = Σ ί ^i> thut is ^here is no ramification.
(ii) There exists a subgroup L 3 A and a linear character λ of

L with X = λ*.
(iii) If X is faithful, then L = A and deg X = dk.

Proof. Let X\H = α Σ ί λ ^ and set L = TOw). Clearly L 2 (£(#) =
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A. As is well known there exists a character θ of L with χ — θ* and
Θ\H = αλx. Let ϋΓ be the kernel of θ. Then clearly H is central
modulo if. Since @Γ(L) is abelian this shows that L/JK" is abelian and
hence deg θ = 1. Thus α = 1 and (i) and (ii) are proved.

If X is faithful then since L /\G we have that L is abelian.
Hence L S W ) = A. This yields deg X = [G:A] = dk and (iii) follows.

It is interesting to consider which subgroups L can occur in (ii) of
the above lemma. Define a Galois connectivity between groups L with
G Ξ2 L Ξ2 A and groups 5 with H 3 I? as follows.

L-^+(L,H) B-^{geG\ (g, H) S 5}

We say L is closed if Ldtt = L

PROPOSITION 2.9. Using the above notation, group L has a linear
character λ with λ* irreducible if and only if L is closed.

Proof. We note first that (L, if) = L\ This follows since L/(L, H)
has a central ©^ subgroup and an abelian @.τ subgroup and hence is
abelian.

Now let L have a linear character λ with λ* = X irreducible.
Set M = Ld% so that M 2 L. Suppose that M > L. Clearly L 3 ker Z.
Since G/A is abelian, L A G and hence L/ker Z is abelian. Thus ΊJ —
(L,H) ^ ker X. Since degX = [G:L] and M > L it follows that
M' = (M, H) g ker X. Thus Afd = (M, H) Φ (L, ί ί) - ZΛ a contradic-
tion. Hence M = L and L is closed.

Now assume L is closed. We consider G = G/(L, H) in which
L — L/(L, H) is abelian. Since L is closed we see that G/L acts faith-
fully o n S = &π>(L). Thus G/L acts faithfully on 15, the dual group of
5. Since these groups are abelian and have relatively prime orders,
it follows by a trivial modification of Lemma 2.2 of [5] that there exists

λ e S with Sjs/i(λ) = <1>. View λ as a character of L and then as
one of L. We see that T(\) = L and hence that λ* is irreducible.
The result follows.

If G/A is cyclic we can obtain additional information.

THEOREM 2.10. Suppose G/A is cyclic. Let Li he the unique sub-
group of G with [G: LJ = d{ and Li Ξ2 A. Then we can write A =
BQ x BL x x Bk where each Bt is characteristic in G, Li centralizes
Bi and G/L{ acts fixed point free on B{. Here B{ Φ <(Γ> for i Φ 0.
Conversely a group with this structure has characters of degrees
dOJ dιy - , dk only.

Proof. Note that A = &(H) and each Li is characteristic in G.
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Note also that @*(A) is central in G. We have

a s <M£*)
and each of these groups is characteristic in G. By Lemma 1.2 we
can write for i = 1, 2, , k

where each I?; is characteristic in G. Setting Bo = K (̂L0) = 3(G) we
have

A = Bo x jBi x x 2?Λ

where each I?; is characteristic in G and is centralized by L{.
Let i ;> 1 and let λ be a nonprincipal linear character of Bi viewed

as one of A. Since L{ centralizes B{ we have T(λ) 3 ^ . If T(λ) > Li9

then by Lemma 2.8 (i) we have T(k) ΞΞ2 L ^ . This implies that L^
centralizes an element of BI which is not the case by definition of Bi%

Hence T(λ) = L{ and G/Li acts fixed point free on B{ and hence on Bi%

We show now that Bi Φ ζiy for i Φ 0. Let X be an irreducible
character of G of degree d{ and let λ be an constituent of X\A.
Since there is no ramification, [G : T(X)] — d{ and hence Γ(λ) = L^
Write λ = λoλi Xk where λy is a character of Bά viewed as one of
A. As we showed above, Lέ fixes no nonprincipal character of Bό for
j > i. Hence λ = X ^ λ<. If λ< = 1, then clearly T(λ) 3 L, _! which
is not the case. Hence λ* ^ 1 and Bi Φl. The completes the forward
half of the proof.

Conversely let G have the structure described above. Since A is
abelian and G/A is cyclic we know that there is no ramification. Let
X be an irreducible character of G with λ = λoλ! Xk a constituent
of X I A. Then deg X = [G : Γ(λ)]. If λ = 1, then deg X = 1 = d0. If
λ ^ l choose j maximal with λ, Φ 1. Clearly Γ(λ) = Lό and deg X = dά.
This completes the proof.

We now seek sufficient conditions to guarantee that G/A is cyclic.

THEOREM 2.11. Each of the following will guarantee that G/A
is cyclic.

( i ) dk)(dkj
(ii) For all i <j, q^qi.
(iii) For all i, qi+ί > qim

(iv) There exists a prime peπ such that \ qi+1 \p > | ĝ  \p for all i.

Proof. We consider (i) first. This is a simple corollary of Theorem
2.6. If G/A is not cyclic, then there exists 6 < a < k with (dk/da) \ (djdb).
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Thus dk I d\ and since da \ dk_x this yields dk \ d\_u a contradiction.
Now assume G satisfies condition (ii). We prove the result by

induction on \G\. If k = 1, the result follows by (i) above so we
assume k > 1. Let % be a character of G of degree dγ. By Lemma
2.8 (iii), G/kerX has characters of degrees 1 and d1 only. Choose
K ΛG, K 3 kerZ with G/K a Case Q quotient. Using the notation
of Lemma 2.7, it is clear that [G: Q] — dγ = qlm Since qj\dι for all
j > 1, it follows by Lemma 2.7 that the distinct degrees of the
characters of Q are djd19 d2/du , djd^ Hence Q has degree quotients
#2> ̂ 3, , Qk and we can apply induction to Q. Thus Q/A is cyclic.

Theorem 2.10 applies to Q and thus A contains a characteristic
subgroup B on which Q/A acts fixed point free. Then B /\G and also
B Φ <Ί>. Let λ be a nonprincipal linear character of B viewed as one
of A. Then λ (induction to Q) is an irreducible nonlinear character
of Q since k > 1. By Lemma 2.7, λ* = λ* is irreducible. This shows
that G/A acts fixed point free on B and hence G/A is cyclic.

Parts (iii) and (iv) follow immediately from (ii).

3* Groups with a* c* m. In this section we study nonabelian
groups G having the property that every nonlinear irreducible character
has degree m for some fixed integer m. We say these groups have
a.c. m (all characters m). As an immediate consequence of Theorems
2.2 and 2.10 we have the following.

THEOREM 3.1. Let G have a.c. m with π = π(m). Suppose that
either \ π \ > 1 or π = {p} and an @p subgroup of G is abelian. Then
G has the following structure.

( i ) G has a normal abelian ©*, subgroup H Φ <Γ> with G/H ~
©*((?) abelian.

(ii) A — &(H) is a normal abelian subgroup of G with G/A
cyclic of order m.

(iii) A = 3(G) x B where B A G, B Φ <1> and G/A acts fixed
point free on B.

Conversely any group G having this structure has a. c. m.

Therefore we need only consider the case in which m — pe for
some prime p with @P(G) nonabelian. Actually the e — 1 case has
already been studied in [2]. However there is little additional work
involved in handling it so we will consider it again here. As we will
see, the structure of those groups with e > 1 is much more restrictive
than the structure with e = 1. We start with several lemmas.

LEMMA 3.2. Let G have a.c. m with m —pe and @P(G) nonabelian,
Then we have the following.



484 I. M. ISAACS AND D. S. PASSMAN

( i ) G has a normal abelian &p, subgroup H.
(ii) G has a Case P quotient E.
(iii) // E is any Case P quotient of G, then E is a p-group with

E/Q(E) elementary abelian of order m2. Also any abelian subgroup
B of E satisfies [E\E\^ m.

Proof Since G has r.x. e, Proposition 3.4 of [2] yields (i). Now
G/H ~ @P(G) is nonabelian. Thus we can choose K Δ G , K 3 H and
maximal with G/K nonabelian. Clearly G/K is a Case P quotient and
(ii) follows. Now let E be any Case P quotient of G. Then E has
a.c. m and hence E is a p-group and E/$(E) is abelian of order m2

by Proposition 2.2 of [2]. Since E has an irreducible character of
degree m, it follows that E has no abelian subgroup of index less than m.
We need only show that E/Q(E) is elementary abelian. Given x,yeE.
Since E has class 2 and Er has period p we have (xp,y) = (x,y)p = 1.
Thus a* e 3(J5) and E/3(E) has period p.

LEMMA 3.3. Let G have a.c. m. Tλβn we Λαi e ίΛβ following.
( i ) Lei & be a permutation representation ofG with deg & <. m.

Tλera G' S k e r ^ .
(ii) // IG' I ̂  m, ίΛβn, G' s S(G).
(iii) Let L be a subgroup of G with [G: L] ^ m. T&ew Gf ξίL

and hence LAG. Moreover if [G : K] = m απώ K < L SG, then
(JBΓ, L) = L' = G'.

Proof. Let ^ be the character corresponding to ^ . Then deg θ <*m.
We have 0 = Σ α<̂ < where each Ẑ  is an irreducible character of G.
Now if Zx = 1, then ax ^ 1 and hence for all i, deg Ẑ  < m. Since G
has a.c. m, degZ; = 1 and G' £ kerZ^ and hence G' £ ker ^ . This
yields (i).

Suppose I G'| ^ m. Let xeG. Clearly | Clx | S I G'| ^ m, where
Clx denotes the class of x. Now G permutes the elements of Clx
by conjugation and this representation has degree ^ m. Hence by (i)
G' is in the kernel of the representation and thus G' centralizes x.
Since x was arbitrary, G' £ ,8(G) and (ii) follows.

Now let L £ G with [G: L] ^ m. We see that G permutes the
right cosets of L by right multiplication and this representation has
degree ^ m. Thus by (i), G' is in the kernel and hence G' £ L. Now
let [G: K] = m and L > K. Since both if and L are normal in G so
is H = (if, L). Ii H < G', then G/iί is nonabelian and thus has a.c. m.
Since if' £ if, K/H is abelian and is centralized by a properly larger
subgroup. Thus G/H has an abelian subgroup of index <[G : K] — m.
This contradicts the existence of an irreducible character of G/H of
degree m. Hence H = G\ Since G' 2 1/ ΞJ (if, L), the result follows.
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LEMMA 3.4. Let G have a.c.m where m = pe and @P(G) is non-
abelian. Let A^H= @P/(G) be a normal self-centralizing subgroup
of G. If G has a faithful irreducible character X then GjA is ele-
mentary abelian of order m.

Proof. Since 4 3ff, G/A is a p-group and hence there exists
subgroup L and linear character λ of L with G 3 L 2 A and X = λ*.
Since deg X = m, [G : L] — m and hence by Lemma 3.3 (iii), L A G .
Thus X I L has only linear constituents. Since X is faithful L is abelian
and since A is self-centralizing L = A. Thus G/A has order m.

By Lemma 3.2(ii), G has a Case P quotient E = G/JBL. Let Z/JSΓ =
£(#). Then (AZ)/K is an abelian subgroup of E so [G : AZ] ^ m by
Lemma 3.2 (iii). Since [G : A] = m, we have A 2 Z and hence G/A is
elementary abelian.

We now reduce the study of these groups to a study of p-groups.

THEOREM 3.5. Let G have a.c. pe with P = @P(G) nonabelian.
Let H be the normal abelian &p, subgroup.

( i ) If e > 1, then H is central and hence G = H x P.
(ii) 7/ β = 1, then either H is central or G has a normal abelian

subgroup of index p.

Proof. We start with the case e > 1. Suppose first that G has
a faithful irreducible character. By the preceeding lemma, G has
a normal abelian subgroup A with G/A elementary abelian of order p\
Then A = B x H where B = Θ^A) A G. We consider G/B and show
it is abelian. If not, then G/B has a.c. p\ Now &P(G/B) ~ G/A is
abelian and thus Theorem 3.1 applies. Hence since A/B = &P,(G/B) we
see that (G/B)/&(A/B) is cyclic of order pe. This implies that K(A/ΰ) =
A/B and therefore that G/A is cyclic of order pe. Since G/A is ele-
mentary abelian this is a contradiction for e > 1. Thus G/5 is abelian.
Since if A G this yields ( G , f f ) S ΰ Π f f = <1> and i ί is central.

Now let G be arbitrary with e > 1. We show that £Γ is central.
If not choose xeP', y e (G, i ϊ) with a?, 2/ 9̂  1. By Proposition 4.6 of
[2] there exists an irreducible character X of G with &, 7/ g ker Z. Hence
G/ker % has a. c. pe, a nonabelian Sylow ^-subgroup and a noncentral
@p/ subgroup. Since G/ker % has a faithful character this contradicts
the above and (i) is proved.

Now let β = 1 and suppose that H is not central. Since p > 1 = e,
G is imprimitive by Theorem 1.1. Thus there exists A A G with [G:A\ —
p such that e(A) = e(G) — 1 = 0. Hence A is abelian and (ii) follows.

It is easy to construct examples to show that H need not be central
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in G if e — 1. For example, let Q be an abelian g-group (q Φ p) which
has an automorphism of order p. Let G = Q xσ P where P has order
p3 and P acts on Q in such a way that Po a subgroup of index p
centralizes Q and P/Po corresponds to the automorphism of order p.
Since A — QPQ is an abelian subgroup of G of index p, G has a.c. p.
Finally Q = ®P,(G) is not central and P = @P(G) can be chosen to be
nonabelian.

In the remainder of this section and in the next two sections we
will consider only ^-groups.

LEMMA 3.6. Let G have a. c. m. Then we have the following.
(i ) Φ(G), the Frattini subgroup of G, is abelian.
(ii) If G has two distinct abelian subgroups A and B of index

m, then \ G' | ^ m and hence G has class 2. Moreover if\Gf\ — m, then
S(G) = Af]B and [G: 3(G)] = m\

(iii) If G' is not central, then (ϊ(G') is abelian.

Proof. We consider (ii) first. Choose xeB — A wi th xp e A and

set L = <A, x}. Then [G : L] — pe~ι where m = pe. Thus by Lemma

3.3 (iii), U = G'. Clearly U = (A, x) and \G'\ = \L'\ = [A: ( £ ^ ) ] .

Since &Λ(x) 3 i n 5 and [A:Af)B]^m, we have \G'\^m. By
Lemma 3.3(ii), G has class 2. If | G'\ = m, then [A : A Π B] — m and
so [AJB : J5] = m. Thus G = A5 and since A and J5 are abelian
3(G) 3 A Π B. On the other hand A and I? must be maximal abelian
subgroups so A, B 3 3(G). Thus 3(G) = i Π 5 and (ii) follows.

If Φ(G) is not abelian, then there exists an irreducible character
1 of G with Φ' S ker Z. Hence Φ(G/ker X) is nonabelian. Now G = G/ker %
has a normal abelian subgroup A with G/A elementary abelian by
Lemma 3.4. Hence Φ(G) g A, a contradiction and (i) follows.

Now assume G' is not central. If K(G') is not abelian we can
choose x,ye (£(G') with (x, y) Φ 1. Choose z e (G, G') with z Φ 1. Then
there exists an irreducible character X of G with (α?, y), z & ker X. There-
fore it suffices to assume that G has a faithful irreducible character.
Since G' is abelian, we can extend normal abelian subgroups <(x, G')>
and ζy, G')> to normal self-centralizing subgroups A and B. By Lemma
3.4, [G: A] = [G:B] = m. Since xeA,yeB and (a?, #) ^ 1, we see that
A Φ B. By (ii) above G has class 2, a contradiction. This completes
the proof of the lemma.

THEOREM 3.7. Let G be a p-group with a.c.m. Then either G
has a normal abelian subgroup A with G/A elementary abelian of order
m or G has class at most 3.

Proof. By induction on | G | . If Q(G) is cyclic, then G has a
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faithful irreducible character and the result follows by Lemma 3.4.
Hence we can assume that $(G) is not cyclic and thus 3(G) has at least
three distinct subgroups Jx, J2, Js of order p. We can clearly assume
that G has class > 3. Since the subgroups J{ are disjoint it follows
that at most one quotient G/J{ has class ^ 3. Hence say G/Jx and
G/J2 have class > 3. By induction, for i = 1, 2, G/Jt has a normal
abelian subgroup AJJi with G/A< elementary abelian of order m. Set
U = JJ2 so that U £ 3(G). If Aι Φ A2, then AJU and A2/?7 are two
distinct abelian subgroups of G/U of index m. By Lemma 3.6 (ii), G/U
has class ^ 2 and thus G has class ^ 3, a contradiction. Therefore
A1= A2 — A. Since A</J< is abelian, A' £ Jx Π J? = <1> and A is abelian.
This completes the proof.

Let TG denote the ith term of the lower central series of G. Thus
7°G = G, Ύi+1G = (YG, G) and the class of G is the minimal c with
7CG =

LEMMA 3.8. ( i ) Let G be an arbitrary p-group having a normal
abelian subgroup A with G/A abelian of order m. Suppose for all
subgroups H with G Ξ> H > A and [H: A] = p we have Hr — Gf Φ <(Γ>.
Then G has a.c.m.

(ii) Let G have a. c. m. and a normal abelian subgroup A with
G/A abelian of order m. If Gf is not central, then K = G' xσ (G/A)
has a.c.m. Moreover let x e G/A have order p. Then for all i > 0,
YG = A ( 1-<

Proof. We consider (i). Let X be an irreducible character of G.
Since [G : A] = m we have deg 1 ^ m. We assume deg X < m. Since
A is normal and abelian, X is induced from a linear character of some
subgroup L 3 A. Clearly L> A and we can choose H with L 3 H> A
and [H: A] = p. Since G/A is abelian, L A G. Thus ker X 3 L' 3 ί Γ
and since # ' = G\ ker % 3 G\ Thus deg X = 1. Since | G'| ^ 1, G has
a.c.m.

Now let G have a.c.m and a normal abelian subgroup A of index
m. Set K — Gr xσ (G/A). Then if has a normal abelian subgroup G'
with iί/G' = G/A abelian of order m. Let x have order p in G/A and
set H — (A, yy where y is an inverse image of x in G. Then H Δ G
and (α, G') = (iί, G') Δ G. Now G = G/(», G') is nonabelian since
(», G') < G' and thus _G has a.c.m. Clearly (S(G') 3 fl/(«, <?') so
[G : (£(G')] < m. Now G cannot have an abelian subgroup of index < m
and hence by Lemma 3.6 (iii), G' £ £(G). Therefore (a?, Gr) = (G, G') =
(G/A, G'). Thus we see that K satisfies the hypothesis of (i) above,
since (G, Gf) Φ <1> by assumption. Thus K has a.c.m.

Let K be as above. We know that for i > 1
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= (A,G/A,G/A, . . .

and YK = (G', G/A, G/A, , G/A)

where G/A occurs i times in each of the above. This follows using
Lemma 3.3 (iii) for i = 1. Since Gf — {A, G/A) we have for i ^ 2,
YG = Y^K.

Let x € G/A have order p . We show that for i ;> 1, 7*G = A(1~x)*
by induction on i. If i — 1, the result follows from Lemma 3.3 (iii).
Let ί ^ 2 so that 7*G = Y~XK. By induction, since i — 1 ^ 1, we have
T*-1^ - (G'y1-**""1. Since G' - A{1~x) the result follows.

EXAMPLE 3.9. Let D be an additive elementary abelian group of
order m — pe and let Au A2, , Ap be p distinct groups isomorphic to
D. Say (Xi: D—> A{ is an isomorphism.

Let F be a field of endomorphisms of D with | F | — m. In fact
i*7 corresponds to the regular representation of GF(pe) on its additive
group. For σ e F define σi: A* —> A i + 1 by o ̂ α^) = αi+^α^^αί) for i =
1,2, , p — 1 and σp: Ap —* <0>. Let A = AL + A2 + + Ap and
define σ on A by α = α1! + σ2 + + σp. Clearly σp = 0.

Let σ, τ e F. We show that στ = τσ. Let a^A^ If i = p — 1 or
p then ^(α^) = 0 — τ(7(αέ). Now let i < p — 1. Then

Since στ = τσ we have clearly στ = τσ.
Now for σ G F set xσ = 1 + σ. Since σp = 0 and A is elementary

abelian we have xp

σ — 1. Also for σ,τeF we have xσxτ — xτxσ.
Let σly σ2, , σe be a basis of F over GF(p) and set &< = ^σ ί for

convenience. Let B be the elementary abelian group of automorphisms
of A generated by the xi9 Clearly | B \ <: pe. Set S = {#*}. Since

it follows that when restricted to

At - (A, + A,+1 + • + Ap)/(Aί+2 + + Ap)

S is a group of order pe. Here i = 1, , p — 1 and if i = ί> — 1
then the denominator of the quotient is the group <Ό)>. Clearly B and
S restricted to this quotient are isomorphic and hence \B\ — p\

Now let xeB with x Φ 1. Then there exists σ eF, σ Φ 0 such
that x and $σ act the same way on A< above for all i. Since σ is an
onto map we see that

[(1 - x)(At + Ai+1 + + Ap)](Ai+2 + + Ap)

= (Ai+1 + + Ap)

for i = 1, 2, , p — 1. This clearly yields

(1 - x)A = (A2 + A3 + + A,) .
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Thus by Lemma 3.8(i), G = A xpB has a.c.m. Moreover as is easily
seen, G has class p.

The following result exhibits another difference between the e = 1
and e > 1 cases.

THEOREM 3.10. Let G have a.c.p6 with e > 1. Then G has class
at most p and Gf is elementary abelian.

Proof. By induction on | G | . If 3(G) is not cyclic choose Ju J2

subgroups of g(G) with JLf]J2 = <T>. By induction G/Ji has class ^ p
so ΎPG S «7i (Ί /2 = <1>. Also (£//;)' has period p so clearly G' is ele-
mentary abelian.

Now assume 3(G) is cyclic. By Lemma 3.4, G has a normal
abelian subgroup A with G/A elementary abelian of order pe. Let
if = G/A so that /(if), the group ring of H over the rational integers
/, acts on A. If S is a subset of if we let S denote the sum of the
elements of S in I(H). Let if be a nonidentity subgroup of H.
Choose xeK with x Φ 1. By Lemma 3.8 (ii), G' = A{1~x\ Hence

since (1 - x)K = 0 in I( i ί ) . Thus J? annihilates G'.
Since e ^ 2 we can choose if to be a subgroup of if of order p2.

Let iΓ0, JBLΊ, , Kp be the subgroups of K of order p. Note that K is
elementary abelian. Now in I(H)

and hence p annihilates G'. Thus G' has period p.
Now let J be a subgroup of H of order p with J = <(#>. Then

as is well known

J = 1 + x + . . . + x*-1 = (1 - .τ)*-1 mod pl( i ϊ) .

By Lemma 3.8 (ii),

Since Gf has period ^ we can take (1 — x)v~ι modulo pI(H) in the above.

Therefore 7PG = (G'Y = <1> and G has class <Ξ ̂ ?. This completes the

proof.

EXAMPLE 3.11. If e = 1, the above result is false. For example,
let A = <(αt̂ > x <(α:2> x x <( p̂> where each a{ has order pα . Let
J = ζxy be cyclic of order p and let / act on A by a* = ai+1 for
i = 1, 2, , p — 1 and aξ = α l β If G = A x σ /, then G has a.c.p.
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Now a2a^ e G' and hence if a > 1 we see that Gf is not elementary
abelian. Moreover as we see below G has class a(p — 1) + 1. First
in I(J)

(1 - xY~ι - J = 0 mod pl(j)

and hence

[(1 - x)p~ι - J]a = 0 mod paI(J) .

Since (1 — x) J = J(l — x) — 0 and (J) 2 — p/, the above yields

(1 - xyi'-v = {-p)a-ιJ mod paI(J) .

Now A has period pa and hence (1 — x)aip~1] and (—pY^J act the same
way on A. Since J(l — x) — 0 we see from the nature of the action
of x on A that

and rγatp-v+iQ = i l(-p) -i7(i-.)

Hence G has class a(p — 1) + 1 and this can be arbitrarily large.

4* Special class 3 groups* Let G be a p-group with a.c.p*.
We say that G is special if it does not have a normal abelian subgroup
of index p\ By Theorem 3.7 if G is special, then G has class 2 or 3.
As is expected the structure of the special class 3 groups is quite
restrictive. We study these latter groups in this section.

THEOREM 4.1. Let G be a special class 3 group with a.cm. Then
we have the following.

( i ) [G': 72G] - m and 72G = G' Π 3(G).
(ii) [G : ®(G')] = m2 emd K(G') is α normal self-centralizing sub-

group.
(iii) [G;3(G)] = m\
(iv) If H — G/$(G), then Hr — 2(H) is elementary abelian of

order m and H has two normal abelian subgroups of index m whose
intersection is equal to Hr.

We start with a lemma.

LEMMA 4.2. Let G have a.c.m and class 3.
(i ) // 72G is cyclic or if [Gr: 72G] > m, then G has an abelian

subgroup A of index m.
(ii) [G': G' Π S(G)] ^ m αwd [G : 3(G)] ^ m3.

Proof. By induction on | G | . Suppose that 72G is cyclic. Then
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there exists an irreducible character X of G with 72G (Ί ker X = <(Γ>.
By Lemma 3.4, G/kerX has an abelian subgroup A/kerl of index m
with A 3 G'. Then (A, G') £ 72G n kerZ - <1> s o A g £(G'). Since
G has class larger than 2, (S(G') is abelian by Lemma 3.6 (iii) and hence
A is abelian.

Now suppose [Gf: 72G] > m. If 72G is cyclic, then the result
follows by the above. Thus we can assume that 72G contains distinct
subgroups Ji and J2 of order p. Since 72G £ B(G), Jx and J2 are
normal in G. By induction G/Ji has an abelian subgroup AJJi of index
m. Set U = J 1 J 2 g 7 2 G . If Λ ^ A2, then At/C7 and A2/U are two
distinct abelian subgroups of G/U of index m. Hence | (G/U)f | ^ m by
Lemma 3.6 (ii). Since UQΎ2G this yields [G': 72G] ̂  m, a contradiction.
Thus Aί = A2 — A and hence A' § Jx n Jz — <1>. Therefore A is abelian
and (i) follows.

We consider (ii). The result is obvious if m — p and hence we
assume m = pe with e > 1. By Theorem 3.10 Gf is elementary abelian.
If Gf Π 8(G) is not cyclic, there exists subgroup J of G' Π 3(G) with
J g 72G. Hence G = G/J has class 3. By induction [G': G' Π S(G)] ^ m.
Now G' = Gf\J and G' n 3(G) 2 (G' Π 3(G))/J. Thus the result follows
in this case. Now let G' Π 3(G) be cyclic. Since G' is elementary
abelian | G' Π 3(^) I = P Now G has class > 2 and thus by Lemma
3.3 (ii), I G'| ^ jpm. Hence [G': Gr Π 3(G)] ^ m.

Let W/y2G be the center of G/72G. Since G/72G has a .cm we see
that [G:W]^ m2. Clearly 3(G) £ W and Gr E W. Hence

[TΓ: 3(G)] ^ [W n G': 3(G) Π G'] - [G': &(G) n G'] ^ m .

Therefore [G : 3(G)] - [G : T7][ W: 3(G)] ^ m3 and the lemma is proved.

Proof of Theorem 4.1. We assume throughout that G is a special
class 3 group with a.c.m. Since 72G g G ' n 3(G) we have [G': 72G] ^ m
by Lemma 4.2 (ii). Moreover since G is special [Gf: 72G] ^ m by Lemma
4.2 (i). Hence [G': 72G] = m and (i) follows.

Let Ku K2, , iΓs be all the proper subgroups of 72G with 72G/iT^
cyclic. Clearly Π ^ = <1>. By the preceeding lemma, G/i^ has a
normal abelian group ^/iΓ^ of index m. By Lemma 3.3 (iii) B{ 2 G'. Since
G/ϋΓί has class 3, Lemma 3.6 (iii) yields BJK, = ^G'/K,). Thus for all
i, 5, 3 A = &(G'). SetB=Π B, so that B ^ A. Since (B, Gr) E ϋΓ*
we have (β, G') g f l i - <1>. Thus B = A.

Choose LAG with G/L a Case P quotient. Let Z/L be the center
of G/L so that [G: Z] = m\ Clearly L 2 72G. Since ΰ,Z/L is an
abelian subgroup of G/L of index ^ m we must have J5̂  =2 Z by Lemma
3.2 (iii). Thus B 2 £ and [G : A] rg m2. Now if J5 = J?lf then clearly
B is an abelian subgroup of G of index m and this does not occur.
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Thus say B1 Φ B2. Then G/72G has two distinct abelian subgroups
BJy2G and B2/72G of index ra. Since | G'/72G | = m we see that
[G : Bx n B2] = m2 by Lemma 3.6 (ii). Hence [G : A] = m2. This proves
(ii) and the part of (iv) concerning the existence of two abelian sub-
groups of H of index m.

We prove (iii) by induction on | G |. Say 172G | = pr. By the pre-
ceeding lemma τ2G is not cyclic and hence r ^ 2. Let J be a subgroup
of 72G of order p. Suppose that G/J has an abelian subgroup B/J of
index m. Then B is nonabelian so B' = J and 5 has class 2. Clearly
B 2 K(G') and K(G') is a maximal normal abelian subgroup of B. Since
[B: <£(G')j = m, it follows that B has a.c.m and [B: S(B)] = m2 by
Lemma 2.3 of [2]. Let α e B with x Φ 1. Then there exists an
irreducible character X of B with α?, # g ker X where J = <j/>. Hence
X is nonlinear and deg X = m. This says that B is character regular.
Since e(B) = e(G) = e where m = p% it follows by Proposition 1.3 (i)
that 3(B) S 3(G). Since clearly £(G) S <E(G') S B we have 3(G) =
3(B) and thus [G : 3(G)] - [G: B][JB: 3(G)] = m3. Thus the result follows
in this case. Note that if r = 2 the J2(G/J) is cyclic so the result
follows here.

We assume that r ^ 3 and that for all subgroups J of 72G of
order p the quotient G/J is a special class 3 group. Since 72G is not
cyclic, let Jx and J2 be two such subgroups of order p and set U = J ^ .
Thus I £71 = p2<pr = I τ2G I and U < 72G. By induction G/Ji has center
Zi/Ji of index m3 If Z1 Φ Z2 then we see that {ZγZ2)\Ό is central in
G/U and has index < m3. Since 17 < 72G, G/Z7 has class 3 and a.c.m
and this violates Lemma 4.2 (ii). Thus Zx = Z2 = Z. Since (Ziy G) S J<
it follows that (Z, G)S-JiΓiJ2 = <X> and hence Z = 3(G). This yields
(iii).

Finally we know that | H\ = m\ [H:&(H)] ^ m2, 3(£Γ) 3 i ϊ ' and
I i fΊ ^ m. The latter follows since [G': G' Π S(G)] ̂  m. Hence we
must have equality throughout. Now H has a.c.m with m = pe. If
e > 1, then H' is elementary abelian by Theorem 3.10. If e — 1,
then I H'\ = p and the result is clear here. Thus the theorem is
proved.

We used simple facts about GF(pe) to obtain Example 3.9. In
order to construct special class 3 groups we will need the following
interesting fact about these fields. The authors would like to thank
Walter Feit for his help with the proof of this result.

PROPOSITION 4.3. Let E be a finite field of characteristic p > 2
and let F be a subfield. Then there exists a basis of E over F with
respect to which every matrix of the regular representation of E over
F is symmetric.
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Proof. Let w = {wl9 w2, , wn} be a basis of E over i*7 and let
Rw be the matrix form of the regular representation with respect to
this basis. Let θ e E be a primitive element so that E — F(θ). Then
the characteristic polynomial of Rw(θ) is irreducible over F. Note that
all matrices below are over F.

By Theorem 1 of [8] there exists a matrix S with S~1RW(Θ)S =
Rw(θ)r. Here ' denotes the transpose operation. As is well known the
norm map from E to F is onto and hence there exists a e E with
det S = NElF{a) = det Rw(a). If Γ = ΛΛer-1)^, then T~ιRw{θ)T =
jβw(0)' since i2w(α) and 22W(0) commute. Moreover det Γ = 1. By Theorem
2 of [8], T is symmetric.

Now T is symmetric and det T = 1, a square in ί7. Since F is a
finite field of characteristic p > 2, there exists a matrix Z7 with T =
UU'. Let A = U-'R^U. Then

A' = U'RU(Θ)'(U')-1 = U'T-
= U-ιRw{θ)U - A .

Hence if we let C7 be a change of basis matrix, U: w —+v, then A =
β*(0) is symmetric. Since i? = .F(0), the result follows.

THEOREM 4.4. Special class 3 groups with a.c.p' e#is£ /or αZZ
> 2 α^d e. No suck groups exist for p = 2.

Proof. Let p = 2. If e > 1, then by Theorem 3.10 groups G with
a.c.p6 have class <; p = 2. Hence no special class 3 groups exist. If
e = 1 and G is a special class 3 group, then [G: 3(6?)] = 8 by Theorem
4.1. Therefore H — G/$(G) is nonabelian of order 8. Such groups all
have cyclic subgroups of order 4. Thus if A < G with A/Q(G) cyclic
of order 4, then A is an abelian subgroup of G of index 2 and hence
G is not special, a contradiction.

Now let p > 2 and let e be arbitrary. By the previous proposi-
tion there exists a basis wlf , wβ of GF(pe) over GF(p) such that for
all /3 G GF(pe), Rw{β) is symmetric. Let a{ = [α^] be the matrix 0̂  =
Rw(Wi). These β matrices of size β x e over GF(p) have the following
properties.

(1) α«> = α«}.
( 2) a?} = α # and α#> = αJV.
( 3 ) If Σ / Λ is singular for /4 e GF(p)f then we must have /x =

/. = = Λ = 0.
Condition (1) follows since Rw(Wi) is symmetric and (3) follows since

Wi, W2, •- , we are a basis of field GF(pe) over GF(p). Finally a^Wj) =
Rw(Wi) Wj = w ^ and hence ^(wy) = o^Wi). This yields α^ = a{

r{
].

The remaining equality in (2) follows from this and symmetry.
Let
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A = gp<%» x2, , %e, Vu Vz, , Ve, u, v I

%l = yf = up = Vp = 1 ,

w and v are central

(»», »i) = (Vif Vά) = 1

where 3^ = 0 for i ψ j and δi3- = 1 for i = j . Clearly | A \
where m = pe and A' = <u)>. Let r< act on A by

^6Γi = % vτi — v

where

Here division in the exponent is performed modulo p.
We show first that τ< defines an automorphism of A. To do this

it suffices to show the following.

(xγγ = (yγγ = (^^)^ = (v^)p = l

i6Tί and vTi are central in A

(yγ, yV) = 1

Now A has class 2 and p > 2 so A is regular. Since it is generated
by elements of order p, it has period p. Hence the first equation
holds. Since A has class 2, the next three equations are obvious. We
consider the last one now. We have

α ( i ) \ / α(t)

SO

by (1). Thus τ{ is an automorphism of A.

We show now that as an automorphism r< has order p. Clearly
•n.

τi Φ 1. Now r< fixes u and v and y/ = y&****. Thus τf fixes yi#

Finally



THE DEGREES OF GROUP CHARACTERS II 495

So for p > 2, τ\ fixes α?,- and hence τt has order p.
We know that r i f τά e Aut A. We show that τ{τά = τάτi9 Clearly

u = ΉΛΓJ = uτsvi, v = vΓ*Γi = vΓiΓ* and 2/ί<Γi = ykv
Sik+^k = 2/P"Γ<. Finally

and

These two expressions are equal since a^ = αj$ by (2).
Let E — gp ζzu z2, , ze \ z\ — (zif zά) = 1)> and set G = A x r E,

the semidirect product of A by E, where τ : E —> Aut A is the map
induced by z{ —> τ{. We note some elementary properties of G. Clearly
I G I = m y , G' = <j/i, 2/2, ,2/β, w, v} and 72G = <u, v) so that G has class 3.
We show that (£(G') = G' so that [G: £(G')] = m2. Since G' is abelian
we have (£(G') 2 G'. On the other hand if

h =

with g 6 G', then for all j , 1 = (yj9 h) = wβit;δi and hence α̂  = 6y = 0.
Thus E(G') - G'.

Since [G : A] = m, we see easily by (3) and Lemma 3.8 (i) that
G/τ2G has a.c.ra. Set B = <j/x, y2, , yβ, zu z2, , ^e, u, v>. We see
that 3(A) = 3(J5) - <>, v>, A' = < » and 5 ' = <^>. Since [A : &(A)] =
[ 5 : 3(1?)] = m2 we conclude by Lemma 2.3 of [2] that both A and B
have a.c.m. Let Z be an irreducible character of G with 72G gϋ ker Z.
Then either w ί ker Z or v g ker Z or both. If say w ί ker Z, then Z | A
is faithful on A' and hence deg χ >̂ m. Similarly if 1; g ker Z. Thus
in either case deg X ^> m.

For each integer ί set Et = (zfil, z2xl, , zexiy and J f = <vtt'^ so
that EQ = E. We show that E[ £ J t . Now

where
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= (Π
Hence

= WΓ/(Πl/rJr) ^ " ^ ' •{ I

Since α£! = α ĵ* by (2) and since all terms in the last line above
commute, it follows that the yr terms drop out. Thus

Now a\γ = a1/} and oφ = a\? by (2) and so

aU)

where ί/2 is viewed as division in GF(p). Finally using w\j =(u~1v) "
we obtain

Thus E7/ S eT"t.
Set Bt = <G', £?,>. Then [G : Bt] = m and JB; - J t . The latter

follows since G' is abelian, J?/ s J t and (]/<, ̂ a J) = (vu1)^. We show
now that (? is a special class 3 group with a.c.m. Let χ be an irre-
ducible nonlinear character of G. If ker X 2 τ2G, then 5ί is a character
of GJΊ2G and hence has degree m. Assume ker χ =£ 72G. As we
showed above deg X ;> m. Let / = ker X Π 72ί? so that G is a character
of G/J. If J = <X>, then G/J has an abelian subgroup A/J of index
m and if J = ^MG*)- — Je then G/J has an abelian subgroup J5β/J of
index m. Thus deg X ^ m and hence deg X — m. This shows that G
has a.c.m. Since G has class 3 and [G : K(G')] = m2, we see that G is
a special class 3 group. This completes the proof of the theorem.

5* Special class 2 groups* In this section we study special class
2 groups with a.c.m (m = pe). As is to be expected, the structure of
these groups is less restrictive than in the class 3 case. Let G have
a.c.p' We say G is imprimitive if it has a normal subgroup H of index
p with a.c.p " 1. Otherwise G is primitive. We first note the following,
Let G have a.c.p* and let HAG with [G:H] = p. If H has a.c.p-1.
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then certainly e(H) = e(G) — 1. Suppose now that e(H) = e(G) — 1.
If φ is a nonlinear irreducible character of H and if X is a constituent
of φ*, then degX = pe so deg<p = pe~ι. Hence H has a.c.p*"1. Thus
the concepts of imprimitivity as an r.x.β group and as an a.e.p6 group
are entirely equivalent. We now relate this idea to a certain chara-
cteristic subgroup of G.

PROPOSITION 5.1. Let G have a.c.m and class 2. Set

S = S(G) = <geG\(g,G)<

Then we have the following.
( i ) If [G: S(G)} < m, then G is a special class 2 group,
(ii) G is primitive if and only if G = S(G).

Proof. ( i ) Suppose that G has a normal abelian subgroup A of
index m. If x 6 G — A, then by Lemma 3.3 (iii), (x, A) = Gf and hence
(x, G) = G'. Thus S(G) £ A and [G: S(G)] ^ m, a contradiction.

(ii) We show that G > S(G) if and only if G is imprimitive.
Suppose first that G > S(G). Choose subgroup H with G> H^ S(G)
and [G: H] = p. Let φ be a nonlinear irreducible character of H and
let X be constituent of φ*. If x e G — H, then (α?, (?) = G' g= ker X and
thus x is not in the center of the representation associated with X.
Since x e &2(G), this yields X(x) = 0. Thus X vanishes off H and so
X = φ*. This yields pdegφ = deg<£>* = άegX = pe and thus H has
a.c.pe-1 and G is imprimitive.

Now let G be imprimitive so that G has a normal subgroup if of
index p with a.c.p'"1. We show that S(G) £ iί. If not, there exists
xeG - H with T7 = (&, G) < G'. Note that a; is central modulo W
and we have G/W = (H/W)&(G/W). Since W< G' we see that G/T7
has a.c.p6 and that H/W is either abelian or has a.c.p6"1. Let X be a
nonlinear irreducible character of G/W. The above implies that X =. φ*
for some irreducible character φ of if/ΐ^. Thus

H/W = T(φ) a (H/W)S(G/W) = G/W,

a contradiction. Therefore G> H^ S(G).

We now consider an example.

EXAMPLE 5.2. Let Z be an elementary abelian group of order
ps+ι with s > 0. Set fc = (ps+1 - l)/(p - 1) and suppose that E19 E2, ,
Ek are k nonabelian groups of order pz. Let Zt — <^> be the center
of 2?;. We define a homomorphism

r : = Zγ x ^ 2 x x Zk > Z



498 I. M. ISAACS AND D. S. PASSMAN

by sending each zi onto a generator of the k distinct subgroups of Z
of order p. Let N be the kernel of τ. Then N is central and hence
normal in E = Eι x E2 x x Ek. Set G - E/N.

It is clear that Z — Q(G) = G'. Let % be a nonlinear irreducible
character of G so that X \ Z = (degX)λ with λ =£ 1. By way of the
homomorphism E-~+G,X can be viewed as a character of E and as
such X = #^2 0fc where 0, is a character of E{ and hence has degree
1 or p. Moreover deg θi — p if and only if ZiN/N §£ ker λ. Thus
there are precisely (p8+1 — ps)/(p — 1) = ps such θ{ with deg ^ = p and
hence deg X — pp\ Thus G has a.c.p2'8.

Now since | Z \ > p we have clearly JŜJV/JSΓ £ S(G) for all i. Thus
£(G) = G and by Proposition 5.1, G is primitive and therefore special.
Note finally that if e = p , then G has a.c.pe and [G: 3(G)] = p2fc

with k > e.

The above example shows that special class 2 groups with arbi-
trarily large commutator subgroups and central quotients do in fact
exist. However the above construction required that we let m get
arbitrarily large. We will show in Theorem 5.5 that this is typical of
the general situation. We first obtain a generalization of Theorem B
of [2].

THEOREM 5.3. Let G be a p-group with e(G) — e. Then either G
has a normal abelian subgroup of index pe or G has a subgroup H
of index p*-1 with [H:&(H)] ^ p« < +8>.

Proof. By Theorom B of [2], there exists subgroups N and A of
G with [G : N] = p% A = Q(N) and [N A] ^ p5e{e+2}. If ©(A) > N,

then we can choose subgroup H with ©(A) 3 H > N and [H: N] = p.
With this H the result follows. So assume (£(A) = iV.

Suppose now that N is not normal in G. Let Nx Φ N. If J5 =
A n A , then (£(B) 3 <JV, iV*> > iV. Since [iV: B] ^ p^*+v+% the re-
sult follows also in this case.

Thus we can assume that NAG and hence that AAG. If N =
A, then G has a normal abelian subgroup of index p\ Hence we can
assume that N is nonabelian. Since N is a p-group and A — ,8(^0
we can choose subgroup J with / S ΛΓ Π A and | J | = p. Set w =
min {[A : S4(x)] | x $ N}. We compute as in Lemma 4.4 of [2].

Clearly

r ( A ) ^ |ΛΓ| + (|G| - \N\)/n .

Now let λ be a character of A. If λ has pe conjugates, then since
Γ(λ) 2 N we have Γ(λ) = ΛΓ. Thus if X is a constituent of λ*, then
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there exists character η of N with X — ψ and λ a constituent of
Ύ) I A. Since deg 1 S P\ w e see that deg rj = 1. Hence λ = rj \ A and
ker λ 3 iV' Π 4 i X Thus we see that

s(A) ^ [A : J]/p* + (I A \ - [A :

By Lemma 4.3 of [2], r(A) = [G : A]s(A). Thus

p~e + (1 - ί9~e)M ^ P" 6" 1 + (1 - V

Hence

Choose xeG - N with [A : QZA(x)] = n and set K = <iV, .τ> > N.
Then 3(if) = e^(a ) so

[N:&(K)] = [N: A][A : &A(x)] ^ p 3 ^ ^ 2 ^ ^ 1 < p^+^-^ .

If ί ί is chosen with K^H> N and [ i ϊ : N] = p, then the result
follows.

We now return to our study of class 2 p-groups with a .cm.

LEMMA 5.4. Let G have a .cm and class 2. Tλ<m Gf and G/S(G)
are both elementary abelian.

Proof. We show that G' is elementary abelian by induction on
G\. Of course G' is abelian since Gr S 3(G). If ^(G) is not cyclic,

let Jx and J2 be two distinct subgroups of S(G) order p. By induction
G'Ji/Ji has period p and hence so does G'. Now let 3(G) be cyclic
By Lemma 3.4, G has a normal abelian subgroup A with G/A elementary
abelian of order m. lί xeG — A, then Gf = (a?, A) by Lemma 3.3 (iii).
Let ?/ e A. Since x p e A and G has class 2, we have (x, y)p — (xp, y) = 1
and thus G' is elementary abelian.

We show now that G/g>(G) is elementary abelian. The quotient is
of course abelian. Let x9 y e G. Since G has class 2 and G' has period
p, we have (xp, y) - (a?, i/)p - 1. Thus x* e Q(G) and G/Q(G) has period
p. This completes the proof.

We will use the following notation throughout this section. Let
W be a subgroup of G'. Set

Zw = lgeG\(g,G)£ W}

so that Zw/W = 3(G/W0. We let T denote a hyperplane in G' and J
denote a line (that is, [G': T] - p and | J\ - p). We have [G : ZΓ] - m2

by Lemma 2.3 of [2] and S(G) = <ZT \ all Γ>.



500 I. M. ISAACS AND D. S. PASSMAN

THEOREM 5.5. Let G have a.c.p6 and class 2. Suppose that \G'\ =
p8 and [G : 3(G)] = p\ Then

( i ) z ^ e(s + 1) and s <; J«(« — 1)
(ii) if G is special, then z ^ 18e3(e + 3)2 and s < 18e2(e + 3)2.

Proof. ( i ) Let T^ and T2 be two hyperplanes in G'. We show
first that \ZTχ: ZTχ Π ^ 2 1 ^ 2>e. Let X* be a nonlinear irreducible
character of G/Tt for i = 1, 2. Since %, vanishes off Zτ., we see that
XΛ vanishes off N = Z Γ l Π ̂ 2 . Also deg Ẑ  = p e so that ZΛ | N = p2βλ
where λ is a linear character of iV. Now let θ be an irreducible
constituent of XJ2 so that θ \ N = (deg #)λ. Then

1 ^ [ZΛ, ff] = (1/[G : iSΓ])[ZΛ I iV, ^ I JVk = p2e(deg <?)/[(? : N] .

Since deg θ <, pe we have [G: AT] ^ p3 e and hence \ZTχ: Z Γ l n ZTz] ^ p e .
Let ϊ\, T2, , Γw be hyperplanes. We show that [G: Γ l Γ ^ J ^

pβ{«+D ^y in(ju ction on %. For u = 1, 2 we have result by the above
so let M ^ 3. Set U = p|Γ~1 ^z- so that by induction [G: C7] ^ p e \
Hence since ?7 £ Z Γ l we have

[G :UnZTu] = [G : i7][Z7:C7n Zτ%\ £ [G : C7][ZΓi: ZTχ ΓΊ Z Γ J

and this follows.
Since | G ' | — p% we can find s hyperplanes Tlf T2, •••, Ts with

Π Γ* = <1>. Clearly Πi ^ Γ i - 3(G). By the above

8 + 1)

and hence 2 g β(s + 1). Now let x19 x2, , x2eG generate the quo-
tient G/$(G). We see easily that the commutators (xi9 xά) with i < j
generate G'. Since G' is abelian and has period p, this yields s ^ 4«(« — 1)
and (i) follows.

(ii) We apply Theorem 5.3. Since G is special we see that G has
a subgroup H of index pe~ι with [H: $(H)] ^ p6e{e+Z). By Lemma
3.3 (iii), H' = G\ If [H:S(H)] = p* and | i P | = I G' | = P", then as
above we have

s ^ it(t - 1 ) < Jί2 ^ 18e2(β + 3)2 .

Finally by (i) we obtain

z ^ e(β + 1) ^ 18β3(β + 3)2

and the theorem is proved.

The above result is of course qualitative in nature. The bounds
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are no where near best possible. If G has an abelian subgroup of
index m, the following example shows that | G' | and [G: 3(G)] can be
arbitrarily large for fixed m.

EXAMPLE 5.6. Let group G have a .cm and a normal abelian
subgroup A of index m. Given integer k, set B = A1 + A2 + + Ak,
the direct sum of k copies of A. Set H = B x σ(G/A) where G/A acts
on B in the natural way. If x e G/A with x Φ 1, then (#, A) = G'.
Hence clearly (&, JB) — JET. By Lemma 3.8 (i) we see that H has a.c.m.
Moreover | H'\ = | G'\k and [B : 3(fΓ)] - [A : 3(G)]\

If we now take G to be an extra-special Case P group with
[G : 3(G)] — m2, then G has a.c.m and \G'\ = p. Also G is nonspecial
so the above construction yields nonspecial groups H with | H' | and
[H: 3(iJ)] arbitrarily large.

LEMMA 5.7. Leί G and H have class 2 with \ Gr \ = | H'\. Suppose
that G has a.c.m and H has a.c.n. Let K be the product of G and
H with G' and Hf identified. Then K has class 2 and a.e.mn. Also
with G and H naturally embedded in K we have Q(K) — $(G)$(H)
and S(K) 3 S(G)S(H).

Proof. By Lemma 5.4, G' = Hr and so K clearly exists. Let X
be a nonlinear irreducible character of K. By way of the map E =
G x H—>K we can view X as a character of E. As such X = Θφ where
Θ is a character of G and φ is one of H. In K, ker XΊQ Kr and thus
in £7, ker Z | G ' and ker χ =g fΓ. Hence both # and 9? are nonlinear.
Thus deg 0 = m, deg φ = n and deg X — mw. Therefore if has a.c.mw.
The remaining results are obvious.

The following proposition considers minimal special groups.

PROPOSITION 5.8. Let G be a primitive group with a.c.p6 and
class 2. Suppose that for all J S G ' with \J\=p the quotient G/J
has an abelian subgroup of index pe. Then either | G ' | = p2 and p \ e
or IG' | = p 3. Moreover for all p, e (with p \ e in the first case) such
groups exist.

Proof. We show first that | G; | ^ p3. Suppose by way of contra-
diction that I G' | ̂  2>\ Let Tx and T2 be two not necessarily distinct
hyperplanes in G;. Since | G' | ̂  p 4 we have | Γx Π Γ21 ̂  P2. Let J x

and J 2 be two distinct subgroups of T1 n Γ2 of order p. By assump-
tion G//i has an abelian subgroup AJJi of index m = p e . This implies
that S(G/Ji) £ Ai/Jί and so ^ / ^ = ZτJJi and ^Γ a / t Γ ί = ^ 2 / / i are both
contained in Ai/Ji9 This yields (ZTχ9 ZT2) £ JΊ Π Λ = <1>. Now G is



502 I. M. ISAACS AND D. S. PASSMAN

primitive so G = S(G) = <ZT>. Since (ZTί, Zτ) = <1> for all T, and T2

we see that G is abelian, a contradiction. Thus | G' | ^ p3.

By Lemma 3.4, we must have | G' | = p2 or p 3. We consider the
case \G'\= p2 now. Let To, Tx, , Tp be the subgroups of G' of
order p and set Z, = Zτ.. Since G is primitive, G = S(G) = Z0Zλ Zv.
Consider

Note that for i Φ j , (Zi9 Z3) g ^ n Ts = <1> so ^ and Z, commute
elementwise. Since W £ Z< we see that (£( W) 3 JẐ Zί ^ -i^i+i *
Z p and since W £ ZOZX Zi^Zi+1 --• Zp we see that K( TF) 2 ^ .
Thus (E(TΓ) - G. Since clearly TΓ 2 8(G) we have TΓ = 3(G). This
says that

Now [G: Zt] = p2e so that \Zi\^\Zi\. If [^ : 3(G)] = p 7 then the
above direct product yields

- [G : 3(G)] - [G : Zo][^o: 8(G)] = P2ePf

2

and hence 2e — pf. If p Φ 2, then clearly p | β. If p = 2, then / =
e ^ l . Clearly 3(Z0) = Q(G) and ^ = Γo. Hence by Lemma 2.3 of
[2], [#o: 3(^o)] = Pf is a square. Thus 2 | /, / = e and the result
follows.

We show now that all such groups exist. Consider first | G'\ = p
and e/p = /, Example 5.2 with s = 1 yields a group JET with a.e.pp,
S(H) = if and | H'\ = p2. Let G be the product of / copies of H with
their commutator subgroups indentified. By Lemma 5.7 and induction,
G has a.c.p^ = a.c.p*, S(G) = G and | G' | = p2. If J £ G' with | J | = p,
then G/ J has a cyclic commutator subgroup and hence an abelian sub-
group of index p\ Thus G is the required example.

Now we consider \G'\ — p\ Let F be the group of Example 3.7
of [2]. Then | F'\ = p\ \ F \ = p6 and S(F) - F . Also it is easy to
see that if J is a subgroup of Ff of order p, then F/J has an abelian
subgroup of index p. Let G be the product of e copies of F with
their commutator subgroups identified. Since F has a.c.p, Lemma 5.7
and induction show that G has a.c.p% | G'\ — pz and S(G) — G. Let J
be a subgroup of G' of order p. Then each factor in G/J has an
abelian subgroup of index p so G/J has an abelian subgroup of index
p\ This completes the proof.

We now apply the above results to improve the bounds in Theorem
5.5 in case p > e.
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THEOREM 5.9. Let G be a special class 2 group with &.c.pe. Sup-
pose that I Gf I = ps and [G : 3(G)] = p\ If p > e, then z ^ 4e2 and
s <: 4e - 1.

Proof. Let T be a hyperplane in Gf. We show first that p > e
implies that Zτ is abelian. This of course a consequence of Theorem
1.5 and Proposition 1.7. However we can give an alternate inductive
proof as follows. Suppose first that | T | ^ p2. Then we can choose
distinct subgroups Jt and J2 of T of order p. By induction ZτlJ. =
ZT\J{ is abelian and hence Z'τ g Jx Π J2 = <1>. Thus we need only
consider | T\ = 1, p. If | Γ | = 1, then certainly Z Γ - Q(G) is abelian.
Now let \T\ = p so that | G' | — p2. Note that groups G with a.c.p6

and | G' | = p2 have the property that if J is any subgroup of G' of
order p, then G/J is nonspecial. Hence since p > e, Proposition 5.8
and induction easily imply that G is nonspecial. Therefore Zτ is
contained in an abelian subgroup of G of index pe and thus Zτ is abelian.

We show now that s ^ 4β — 1. Suppose first that G is imprimi-
tive. Choose H /\G with [G: if] = p and such that H has a.c.p6"1.
Since G is special, H is special and hence β > 1. By Lemma 3.3 (iii),
\H'\ = | G ' | . By induction | I Γ | ^ p4*-1*-1 and so the result follows
here. Now let G be primitive so that G = S(G) = ^ r ^ . We assume
that I G' | ^ p4 e and derive a contradiction. Let 2\ and T2 be two not
necessarily distinct hyperplanes and let x e ZTl and y e ZT2. We show
that x and y commute. Since each Zτ. is abelian of index p2e we see
that I (x, G) I £ p2e and | (y, G) | ^ p2 e. * If (x, G) n (y, G) - <1>, then
certainly (», y) — 1. Thus we can suppose that (a?, G) Π (y, G) > <1>.
This yields | (x, G)(yf G) \ ̂  pu~ι <\G'\ and thus we can choose hyper-
plane T with T 2 (a;, G)(τ/, G). Clearly x, y £ Zτ and so x and ?/ com-
mute. Since G = <^>, the above shows that G is abelian, a contradic-
tion. Hence | G' \ < p4e. Finally by Theorem 5.5 (i) z ^ e(s + 1) ^ 4β2

and the result follows.

6. Additional results. We generalize our r.x.l results in another
direction now.

THEOREM 6.1. Let G be a group with the property that every
nonlinear irreducible character has prime degree. Suppose further
that at least two distinct primes occur. Then there exists primes
p Φ q such that G has one of the following two normal series.

( i ) G>Q>8(G)

with G/$(G) and Q both nonabelian.

(ii) G>Q> A = S(G) x R
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with both G/A and Q nonabelian. Here R is elementary abelian of
order rm for some prime r and Q/A acts irreducibly on it. Also
(rm - l)/(rmlP - 1) = q.

Conversely if group G has either of the above structures and if
X is an irreducible character of G, then άegX = 1, j> or q and all
three degrees occur.

We start with two lemmas.

LEMMA 6.2. Let G be a group with the property that every
nonlinear irreducible character has prime degree. Then every normal
subgroup and quotient group of G has this property.

Proof. The result is clear for quotient groups. Let NAG and
let φ be a nonlinear irreducible character of N. If X is a constituent
of φ*, then X \ N — a Σ ί Ψi and hence deg X — at deg φ. Since deg X
is a prime, at — 1 and deg φ = deg X is a prime.

LEMMA 6.3. Let G satisfy the hypothesis of Lemma 6.2. Then
G is solvable.

Proof. Since this property is inherited by normal subgroups and
quotient groups, it suffices to show that G cannot be a nonabelian
simple group. Thus suppose G is nonabelian and simple. Let X be a
nonlinear irreducible character of minimal degree p. Since G is simple,
X is faithful. If p = 2 and if x e G is a nonidentity involution, then
since det X = 1 we see that the eigenvalues of x in this representation
are both —1. Hence &(G) Φ <Ί)>, a contradiction. Thus p > 2.

Let π = {deg φ \ φ is irreducible and deg φ > p}. Then π is a set
of primes and qeπ implies that q > p + 1. If π is empty, then G has
r.x.l for prime p and is therefore solvable. Hence we have \π\ Ξ> 1.
Since X is faithful, a result of Blichfeldt ([7] Satz 196) shows that G
has an abelian @r subgroup H Φ <(1>.

Let x e H*. Then | Cϊ x \ is prime to the degree of every irre-
ducible character φ of degree different from p. By Burnside's Lemma
([7] Satz 168) since G is simple we have φ(x) = 0. If ô is the regular
character of G, then we have 0 = ρ(x) = Σ Z«(l)Z*(ί») = 1 + pec where
a is an algebraic integer. This is impossible and the result follows.

We now proceed to prove the theorem.

Proof of Theorem 6.1. We know that G is solvable. Choose
AAG with G/A extra-special. We show first that A is abelian. If
not let φ be a nonlinear irreducible character of A and let % be a
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constituent of φ*. Then X | A = a Σί Ψ% a n d deg X — at deg φ. Since
degZ is a prime we must have a — t = 1. Let 0 be a nonlinear irre-
ducible character of G/A viewed as one of G. Then Xθ is irreducible
(see Lemma 5.5 of [2]) and deg Xθ = (deg %)(deg θ) is not a prime, a
contradiction.

If G/A is a Case P quotient for prime p, then by Ito's Theorem
the degrees of the irreducible characters of G are powers of p which
is not the case. Thus G/A is Case Q. Let Q/A be the normal Sylow
g-subgroup of G/A. Since G/A has an irreducible character of degree
[G: Q] we see that G/Q is cyclic of prime order p Φ q.

Note that Q is nonabelian. Otherwise G would have r.x.l for
prime p. Now G/A has trivial center so $(G) Q A Q Q. We show
that 3(Q) = 3«?). Clearly 3 ( 6 ) S 3 ( 0 ) . If & e 3(Q) - 3(G), then
there exists yeG with (x, y) Φ 1. Now Q is nonabelian and 2 = (x, y) Φ1
so there exists a nonlinear irreducible character φ of Q with z g ker <£>.
As above, there exists an irreducible character X of G with % | G = φ.
Since as is in the center of the representation associated with φ and
since X \ Q = φ we see that (x, y) e ker X n Q = ker φ, a contradiction.
Hence £(G) - 3(Q).

Case 1. I Q/A | ^ q\ Let λ € A. Then clearly [G : Γ(λ)] is 1 or a
prime. If | Q/A | ^ g2, then the only subgroup of G/A having prime
index is Q/A. Hence T(λ) 3 ζ). This implies that (^(A) Ξ2 Q and hence
ζ) is nilpotent of class 2. Let φ be a nonlinear irreducible character
of Q and let W — W(φ) denote the subgroup of Q mapping into the
center of the representation. Since clearly deg φ — q we have [Q: W] =
q2 by Lemma 2.3 of [2] and also W 2 A. Now Γ(φ) = G so W/ AΔ G/A.
Hence TΓ(9>) = A and [Q : A] = g2. We saw above that A £ 3(Q)
This clearly implies that A = 3(Q) = £(G) and G satisfies (i).

We assume now that | Q/A \ = g. Since Q is nonabelian, KG(A) =2 Q
and hence εG(A) = A. Suppose A = M x JV with MAG and NAG
and N, M Φ <1>. We show that either Λf or JV is central in G. Say
i\Γ g 3(G) = 8(Q). Choose λ e N so that Γ(λ) n Q = A. If peM,
then Γ(λj«) = Γ(λ) n Γ(j") and [G: T(λμ)] is a prime. Hence Γ(^) "̂  T(λ)
and so (Eβ(Λf) a Γ(λ). Since (EG(ΛΓ) Δ G, this implies that <£Gtflf) = G
and M S 3(^) I n particular we see that precisely one Sylow sub-
group of A is noncentral. Hence A/Q(G) in an r-group for some
prime r.

Case 2. q Φ r. Since Q/A is cyclic of prime order, we can write
A = 3(Q) x R where Q/A acts fixed point free on R by Lemma 1.2.
Also 3(Q) — 8(G) a n d -K Δ G since Q Δ G. Let λ be a nonprincipal
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linear character of R. Then T(\) piQ = A and [G: T(λ)] is a prime.
Hence | T(X)/A | = p. Thus G/A acts half̂  transitively but non fixed
point free on R. By Theorem I of [3], R is elementary abelian and
G/A acts irreducibly on it. Let G - G/A, Q = Q/A and let P = &P(G).
Let W be an nonidentity irreducible Q-submodule of R. If λ 6 TF*,
then G = Q(T(λ)/A) and thus FF is a G-module. Hence Q acts irre-
ducibly on R.

We view R as a vector space over GF(r) of dimension m and we
find dim &£(P). This dimension is clearly invariant under field exten-
sion so we can extend to the algebraic closure F of GF(r). If Q = <V>,
then since R is an irreducible Q-module, all eigenvalues of x are
distinct and not equal to 1. Let S be an irreducible G-submodule of
F(g)R. By Clifford's theorem, this representation restricted to Q
breaks up into either p distinct conjugates or all equivalent represen-
tations. If the latter occured then since all eigenvalues of x are dis-
tinct, dim S — 1 and hence Q = G' is in the kernel. This contradicts the
fact that x has no eigenvalue equal to 1. Thus the former case must
always occur. From this we see easily that p \ m and dim E^(P) = m/p.

Now G contains q conjugate subgroups Plf , Pq of order p.

We have S^JPί) Π &*(-P;) = <1> for i ^ i and R = \J (E&(P). Since
I (^(P;)! = rm/p we obtain from this disjoint union (rm — 1) = q(rmlP — 1).
Finally since R is elementary abelian and Q acts irreducibly, we see
that the same is true for R. Thus G satisfies (ii).

Case 3. q = r. Here <J is clearly nilpotent. Let R — @r(A). As
above we have

£ - e*(Q) u ύ &*&).
1

Let W = K (̂G) and set

[jβ: PΓ] = rw, [(Ei(Q): W] = rβ and [^(PJ : ΪΓ] = rδ .

Note since all the P< are conjugate this is well defined. Now

(R - w) = (<EA(Q) - TF) u ύ

is a disjoint union so

rm - 1 = rα - 1

and since r = q, rm — rα = rδ + 1 — r. Again since the union is disjoint,
we have a + b <£ m and 26 ^ m. Finally m> a since KG(A) = A and
hence the above equation yields m = & + l , α = l . Since 26 ^ m we
have m — 2 and 6 = 1.

Since m = 2, α = 1 we have [£ : <££(<?)] = ?. Thus | (Q, 22) | = q



THE DEGREES OF GROUP CHARACTERS II 507

and Q' is cyclic of order g. This shows that [Q : Q(Q)] — q2 by Lemma
2.3 of [2]. Thus G satisfies (i). (Note, the difference between Cases
1 and 3 is that in the former G/Q acts irreducibly on Q/S(G) and in
the latter it does not.)

We show now that groups with structure (i) or (ii) have characters
of degree 1, p and q only. Let G satisfy (i) and let X be an irreducible
character of G. By Ito's Theorem deg X | pq2 and also (deg Xf ^
\G:3(G)] = pq2. Since G/3(G) is nonabelian we see easily that p <Ξ* q + 1.
This yields deg X = 1, p or q. Since G/g(G) is nonabelian, it has a
character of degree p and since Q is nonabelian it has a character of
degree q. Thus G does not have a.c.p or a.c.g and hence G has
characters of degree 1, p and q.

Now let G satisfy (ii) and let X be an irreducible character of G.
By Ito's theorem, deg X \ pq and hence deg X = 1, p, q or pq. We show
that the latter cannot occur. If deg X — pq and X \ A — a Σ i \ then
αί = pq and also α2£ ^ £>g. Thus α = 1 and t = pq. Let X = XΣ and
write X = ηe where η e Q(G) and εeR. This implies that A — T(X) =
T(ε). As in our Case 2 computation above, we see that (J? ®Λ( P<) is
a disjoint union and | e^(Pi) | = rw / p . Hence | U? KΛ(Pί) | = g(rw/p) + 1 =
r w . Thus for every εeR we have T(ε) > A, a contradiction and
deg X Φ pq. Now G/A being nonabelian has a character of degree p
and Q has a character of degree q. Thus G has characters of degree
1, p and g. This completes the proof of the theorem.

The following are essentially canonical examples of the above.

EXAMPLE 6.4. First let Q be a nonabelian group of order g3. If
q = 2, let Q be the quaternion group and if q > 2, let Q have period
q. As is well known, the group of automorphisms of Q, fixing 3(Q),
is isomorphic to SP(2, q) = SL(2, g) and hence has order q(q — l)(g + 1).
If we choose prime p with p \ (q — l)(g + 1) then we can find an
appropriate automorphism group Pof Q of order p. Clearly G = Q xσP
satisfies (i).

Now suppose we are given primes p, q, r with pφq and
(rm - l)/(rmlP - 1) = q. Let R be the additive group of GF(rm).
Since q | (τm — 1) we see that the multiplicative group of GF(rm) has
an element ζ of order q. Since p \ m we see that GF(rm) has a field
automorphism σ of order p. Let G be the set of automorphisms of
R given by x-^ζ^σ^x). We see easily that G is a group of order
pq with a normal subgroup of order q. It is nonabelian since the
fixed field of σ has size rmlP and clearly g > rmlP. Thus G = R xPG
satisfies (ii).
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An interesting corollary to Theorem 6.1 is the following.

COROLLARY 6.5. Let G have r.b.3, that is every irreducible
character of G has degree at most 3. Then either G has a normal
abelian subgroup of index ^ 3 or G/Q(G) is isomorphic to one of the
following groups.

( i ) the elementary abelian group of order 8
(ii) the two groups of order 27 and period 3
(iii) the symmetric and alternating groups on 4 letters
(iv) the dihedral group of order 18 having an elementary

abelian Sylow 3-subgroup.

Proof. If G is abelian, the result is clear. If G has a.c.2 or a.c.3,
then by Theorem C of [2] either G has a normal abelian subgroup of
index ^ 3 or G/Q(G) has order 8 or 27. Since we can assume that
G/$(G) has no cyclic subgroup of index ^ 3 , we obtain (i) and (ii).

We assume now that G has characters of degree 2 and 3 and thus
Theorem 6.1 applies. If p — 3, q = 2, then case (ii) of that theorem
cannot occur since G/A is nonabelian. Since Q is nonabelian in case
(i) we see that Q/3(G) is type (2, 2) and hence G/3(G) is isomorphic to
the alternating group A4.

Now let p = 2, q = 3. If G is case (i), then as above Q/8(G) is
type (3,3). Let x,yeQ generate Q/S(G). Then (x,y)eg(G) and
(x, y) Φ 1. Since the action of G/Q on G/S(G) is nontrivial and pre-
serves this commutator, we see easily that the action must be dihedral
and we obtain (iv). If G is case (ii), then (rm - l)/(rw/2 - 1) = 3 and
so rmβ = 2. Thus G!S(G) is the extension of a (2, 2) group by the
nonabelian group of order 6 acting faithfully. Since this group has
no normal 3-complement, Burnside's transfer theorem implies that the
normalizer of a Sylow 3-subgroup contains an element of order 2.
Hence the extension is split and G/S(G) = S4, the symmetric group on
4 letters.

We close with a result which generalizes Theorem 3.5(i).

THEOREM 6.6. Let pe be a fixed power of p with e > 1 and let
G be a group with a nonabelian Sylow psubgroup. Suppose further
that if X is a nonlinear irreducible character of G, then pe | deg X
and pe+1 JfάegX. Then G is the direct product of @P(G) with an
abelian pf-group.

Proof. By induction on | G |. By Theorem 2,5 (i), G has a normal
p-complement K. Let P be a Sylow ^-subgroup of G. If PAG,
then G = P x K and clearly K must be abelian. Suppose G has a
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proper normal subgroup H with p\[G:H], Let φ be a nonlinear
irreducible character of H and let X be a constituent of φ*. Then
X\ H = a^Σjlψi and degX = atdeg(p. Since at\[G: H] we have
I deg φ\p = \ deg X \p = p\ By induction, PAH and since P is charac-
teristic in H, PAG and the result follows.

We assume now that K Φ <(Γ> and that G has no proper normal
subgroups of pf index and we obtain a contradiction. Let λ be a non-
principal linear character of K which has a linear extension μ on G.
Then G/ker μ is abelian and not a p-group and thus some H as above
exists. Since this cannot happen, we see that if φ Φ 1 is any irre-
ducible character of K, then φ* has no linear constituents. We show
now that T(φ) A G and that G/T(φ) is elementary abelian of order pe.

Note that G/K ~ P is nonabelian and has a.c.p6. Let I be a
constituent of φ*. Then X \ K = a Σ ί <pt and so t\pe. This yields
[G/K: T(φ)/K] ^ pe and % ) Δ G by Lemma 3.3 (iii). Now let ζ be
an irreducible character of T(φ) with ξ\K= b(ζ)-φ. Clearly T(ξ) =
Γ(̂ >) and hence f* is irreducible. Since ξ* is a constituent of cp*, it
is nonlinear and thus tb(~) = pe. In particular, for all such choices of
ξ, h(ξ) is the same. Now by Theorem 6 of [1], there exists ξQ with
b(ζQ) = 1. Thus t = pe and for all such ξ, b(ζ) = 1. Let β be an
irreducible character of T(φ)/K viewed as one of T(φ). Then ξ = fo/9
is irreducible and ξ\K = β(l) <p. Therefore β(l) = 1 and r(^)/i i is
abelian. As in the latter part of the proof of Lemma 3.4, we see
that G/T(φ) is elementary abelian of order p\

Now let x e K with x Φ 1 and suppose that [P: &P(x)] ^ pe. We
show that ©p(cc) Δ P and P/QZP(x) is elementary abelian of order p e .
Let τ be a nonprincipal linear character of <X>. Clearly (£P(cc) fixes τ
and hence ©P(a?) fixes f (induction to K). Since the degree of τ is
prime to p we see that (£P(a?) fixes some irreducible constituent 9? of
τ. Clearly 9 Φ 1 so Γ(^) 3 K<S,P(x) and [G : T(φ)] = pe. Hence Γ(cp) =
K&P(x) and G/T(φ) = P/QZP(x) is elementary abelian of order p e .

Let if have ά nonprincipal irreducible characters and hence k
nonidentity classes. We have shown that in the action of P on the
characters of K we have 1 + k/pe orbits. Hence by Brauer's Lemma,
the same is true for the action of P on the classes of K. In particular
there must exist a class, say Cly, belonging to an orbit of size ^pe

with y Φ 1. Let S be the subgroup of P fixing this class so that
[P S] ^ p\ Since \Cly\ is prime to p, there exists xeCly with
S S M&). Thus [ P : <£P(α)] ^ Pe and by the above P/&P(x) is elemen-
tary abelian of order p\ Clearly S = QίP(x). Since S Δ - P w e see that
P/S acts on ^ ( S ) ^ <1>. As above, if ze&κ(S) with ^ ^ 1 , then
&P(z) — S. Hence P/S acts fixed point free on &K(S), a contradiction since
P/S is elementary abelian of order pe ^ p\ This completes the proof.
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POINT-LIKE 0-DIMENSIONAL DECOMPOSITIONS OF S3

H. W. LAMBERT AND R. B. SHER

This paper is concerned with upper semicontinuous decom-
positions of the 3-sphere which have the property that the
closure of the sum of the nondegenerate elements projects
onto a set which is O-dimensional in the decomposition space.
It is shown that such a decomposition is definable by cubes
with handles if it is point-like. This fact is then used to
obtain some properties of point-like decompositions of the 3-
sphere which imply that the decomposition space is a topological
3-sphere. It is also shown that decompositions of the 3-sphere
which are definable by cubes with one hole must be point-
like if the decomposition space is a 3-sphere.

In this paper we consider upper semicontinuous decompositions
of S3, the Euclidean 3-sphere. In particular, we shall restrict ourselves
to those decompositions G of S3 which have the property that the
union of the nondegenerate elements of G projects onto a set whose
closure is O-dimensional in the decomposition space of G. We shall
refer to such decompositions as O-dimensional decompositions of S3.
Numerous examples of such decompositions appear in the literature.
(One should note that some of the examples and results to which we
refer are in E3, Euclidean 3-space, but the corresponding examples and
results for S3 will be obvious in each case.)

In § 3, a technique of McMillan [10] is used to show that point-
like O-dimensional decompositions of S3 are definable by cubes with
handles. Armentrout [2] has shown this in the case where the
decomposition space is homeomorphic with S3. The proof of this
theorem shows that compact proper subsets of S3 with point-like
components are definable by cubes with handles.

In §4 we give some properties of point-like O-dimensional decom-
positions of S3 which imply that the decomposition space is home-
omorphic with S3. These properties were suggested by Bing in § 7
of [6].

It is not known whether monotone O-dimensional decompositions
of S3 which yield S3 must have point-like elements. Partial results
in this direction have been obtained by Armentrout [2], Bean [5], and
Martin [9]. Bing, in §4 of [6], has presented an example of a
decomposition of S3 which yields S3 even though it is not a point-like
decomposition, but this example is not O-dimensional. In § 5 we show
that a O-dimensional decomposition of S3 that yields S3 must have
point-like elements if it is definable by cubes with one hole.

511
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2* Definitions and notation* Let G be an upper semicontinuous
decomposition of S3, the 3-sphere. We denote the decomposition space
of G by S3/G, the union of the nondegenerate elements of G by HGJ

and the projection map from S3 onto S3/G by P.
The decomposition G is said to be monotone if each element of

G is a continuum. If cl P{HG) is O-dimensional in S3/Gf then G is a
O-dimensional decomposition of S3. If each element of G has a
complement in S3 which is homeomorphic with E3, Euclidean 3-space,
then G is a point-like decomposition of S3.

The sequence Mu M2, M"3, is a defining sequence for G if and
only if Mu M2, Mz, is a sequence of compact 3-manifolds with
boundary in S3 such that (1) for each positive integer i, Mi+1 a
Int Mi9 and (2) g is a nondegenerate element of G if and only if g is
a nondegenerate component of ΠΓ=i^ Here, as in the remainder
of the paper, subsets of S3 which are manifolds will be assumed to
be polyhedral subsets of S3. It is well known that if G is a
O-dimensional decomposition of S3, a defining sequence exists for G.
If a defining sequence Ml9 M2, Λf8, exists for G such that for each
positive integer i, each component of Af< is a cube with handles, G
is said to be definable by cubes with handles. If a defining sequence
Mu M2, M3, exists for G such that for each positive integer i,
each component of Mt is a cube with one hole, G is said to be defina-
ble by cubes with one hole.

3* Some consequences of a result of McMillan* The following
lemma is a special case of Lemma 1 of [11]. Its proof follows from
the very useful technique used by McMillan to prove Theorem 1 of
[10].

LEMMA 1. (McMillan). In S3, let M' be a compact polyhedral
2>-manifold with boundary such that BdM' is connected, and let M
be a compact polyhedral %-manifold with boundary such that
Ma Int M', and each loop in M can be shrunk to a point in IntM\
Then there is a cube with handles C such that Ma IntC aC a Int Mr.

LEMMA 2. If G is a point-like O-dimensional decomposition of S3,
then there is a defining sequence Mίf M2, Mz, for G such that for
each positive integer i, each component of M{ has a connected
boundary.

Proof. Let Jkf/,Λfa', Af3', be a defining sequence for G, let n be
a positive integer, and let K be a component of M'n. Let g be a
component of ΠΓ=i Ml which lies in K and let U be an open subset
of K containing g such that cl U Π BdK — 0 . Since g is point-like,
there is a 3-cell C such that g a Int C aC a U. There is an integer
j such that L, the component of M] containing g, lies in Int C. Since
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C separates no points of BdK in K, L separates no points of BdK in K.
Using compactness of f)f=ίMl, one obtains a finite collection

Ll9 , Lk of mutually exclusive defining elements whose interiors
cover (ΠΓ=i Ml) Π K and so that no Li separates points of BdK in K.
It follows easily that ( J t i •£• separates no points of BdK in K. By
suitable relabeling, we suppose then, that if i is a positive integer and
K is a component of Ml, K n Λf/+i does not separate points of BdK
in if. We construct disjoint arcs in K-Ml+1 connecting the boundary
components of K and "drill-out" these arcs to replace K by a compact
3-manifold with connected boundary. Doing this for each component
of each Ml, we obtain a defining sequence Ml9 M2, MB, as required
by the conclusion of the lemma.

THEOREM 1. If G is a point-like ^-dimensional decomposition of
S3, then G is definable by cubes with handles.

Proof. Using Lemma 2, there is a defining sequence Ml, Mi, Mi,
for G such that each component of each Ml has a connected boundary.
Let n be a positive integer and N a component of Mi. Since G is
point-like, there is no loss of generality in supposing that each loop
in Mi+1 Π N can be shrunk to a point in Int N. From Lemma 1,
there is a cube with handles, C, such that (ilί»+1 Π N) c Int C c C c
Int JV. Hence, there is a sequence ikf̂  M2, M3, of compact 3-
manifolds with boundary such that (1) for each positive integer i9

Λf/+1 c Int Mi c Mi c Int Λf/, and (2) each component of Mi is a cube
with handles. The sequence Mu M29 Md1 is a defining sequence
for G and so G is definable by cubes with handles.

The proof of the next theorem follows from the proof of Theorem 1.

THEOREM 2. If M is a closed subset of S3 such that each com-
ponent of M is point-like, then there exists a sequence M19 M2, Mz,
of compact ^-manifolds with boundary such that (1) for each positive
integer i, Mi+1 c Int Mi9 (2) each component of Mi is a cube with
handles, and (3) M = flΓ=i M^

The concept of equivalent decompositions of S3 was introduced
in [4] and the following theorem follows immediately from Theorem
1 of this paper and Theorem 8 of [4].

THEOREM 3. If G is a point-like ^-dimensional decomposition of
S3, then G is equivalent to a point-like ^-dimensional decomposition
of S3 each of whose nondegenerate elements is a 1-dimensional
continuum.
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In the remaining two sections, we shall utilize some of the above
results to investigate certain properties of O-dimensional decompositions
of S\

4* Properties of point-like O-dimensional decompositions of S3.
In this section we give two properties, each of which is both necessary
and sufficient to imply S3/G is homeomorphic to S3.

A space X will be said to have the Dehn's Lemma property if
and only if the following condition holds: If D is a disk and / is a
mapping of D into X such that on some neighborhood of f(BdD), f~~ι

is a function, and U is neighborhood of the set of singular points of
/(£>), then there is a disk Df in f(D) U U such that BdD' = f(BdD).

A space X will be said to have the map separation property if
and only if the following condition holds: If D is a disk and flf , fn

are maps of D into X such that (1) for each i, on some neighborhood
of fi(BdD),fτ1 is a function, (2) if i Φ j , fi(BdD)f]f3(D) = 0, and
(3) U is a neighborhood of /i(D) U U fn(D), then there exist maps
//, , fή of D into X such that (1) for each i, f{ \ BdD = /41 BdD, (2)
fί{D) U U fl(D) c U, and (3) if i Φ j , f&D) Π f!(D) = 0 .

It is a well known (and useful) fact that S3 has the Dehn's
Lemma property and the map separation property.

THEOREM 4. If G is a point-like ^-dimensional decomposition of
S3, then S3/G is homeomorphic with S3 if and only if S3/G has the
Dehn's Lemma property.

Proof. The "if" portion of the theorem is the only part that
requires proof. Let U be an open set containing cl HG and ε > 0.
We shall construct a homeomorphism hε:S

3—>S3 such that if
x G S3 — U, hε(x) = x and if g eG, diam hε(g) < e. It will follow
from Theorem 3 of [2] that S3/G is homeomorphic with S3.

By Theorem 1, G is definable by cubes with handles. Hence,
there exist disjoint cubes with handles d, * ,CΛ such that cl
HG c U?=i Int C; c ULi C* <= Ϊ7. Let T^, , Wn be pairwise disjoint
neighborhoods of d, , Cn respectively such that (J£=i ^ c ί̂  Since
d is a cube with (possibly 0) handles, there is a homeomorphism h0

of S3 onto S3 such that ho(x) — x for a; e S3 — Wx and /^(d) can be
written as the union of a finite number of cubes such that (1) each
cube has diameter less than ε/2, (2) no three cubes have a point in
common, and (3) the intersection of any two cubes is empty or a disk
on the boundary of each. The homeomorphism h0 can be thought of
as pulling d towards a 1-dimensional spine of d Let Du D21 , Dk

be the inverse images under h0 of the disks obtained by intersecting
the various cubes making up /ιo(d). We note that if a continuum in
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d intersects at most one A , then its image under h0 has diameter
less than ε. For each i = 1, , k, let D be a subdisk of A such
that A ' c Int A and A n cl HG = Int A ' Π cl iϊG . Let D be a disk in
S 3 such that Bd D Π (U?=i Q - 0 and \JU A = I> Π (U?«i d ) = # Π d
Denote the punctured disk cl (D - (JίU A') by Z>\ NOW P X = P | Z>
is a map of D into ιS3/Cr and Pf1 is a homeomorphism on a neighbor-
hood of Pi(Bd D). The singular set of Pt(D) is contained in PΛUίU
Int A') Let V be an open set in S3/G containing the singular set of
P^D) and such that P~\V) c (Int d ) - D' . By hypothesis there exists
a disk E in P^D) (J F bounded by P^BdD). Let JBi, •••,£* be the
subdisks of S bounded by P^Bd A'), , Pi(Bd D'k) respectively, and
let Ulf , Uk be open sets whose closures lie in P(Int d ) such that
for each i = 1, , k, Ei c Ui9 and if i Φ j , cl Ui n cl Z7, = 0 . By the
proof of Theorem 2.1 of [12], each BdA' can be shrunk to a point
in P-\Ui). Each map can be "glued" to the annulus cl (A — A') to
obtain a map from A into A U P " ^ ^ ) with no singularities on
A — P-^cl Ui). We now apply Dehn's Lemma in S 3 to these maps
to obtain disjoint disks Fl9 •••, Fk such that (1) for each i, B d A =
Bd i^, (2) Int Fi c Int d , and (3) if geG, g intersects no more than
one of the disks Fu •••, Fk. Let h[ be a homeomorphism of S 3 onto
itself fixed on £3-Int d such that for each i, h[(Fi) = Di. Let hx =hoh[.
Note that if geG and gc d , diam Λx(^) < ε. Let h2, ---,K be
homeomorphisms such as hλ for the sets C29 * ,C». We define /ιe:
S 3 — S 3 by λ.(α?) = ΛxΛf hn{x).

REMARK. If G is the upper semicontinuous decomposition of Sz

whose only nondegenerate element is a polyhedral 2-sphere, then S*/G
has the Dehn's Lemma property but Sz/G is not homeomorphic with S 3 .

The essential ideas of the proof of the following theorem are so
like those of the proof of Theorem 4 that we shall not include the
proof here.

THEOREM 5. If G is a point-like ^-dimensional decomposition of
S3, then S3/G is homeomorphic with S3 if and only if S3/G has the
map separation property.

5* Decompositions of S3 which yield S3. Let S, T be poly-
hedral solid tori such that S c Int T and let J be a polygonal center
curve of S. Following a definition of Schubert [13] which was used
in [7], we let N(S, T) be the min^A/yn D): where D is a polyhedral
meridional disk of T and N(J f] D) is the number of points in J Π D).

THEOREM 6. If G is definable by cubes with one hole and S3/G
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is homeomorphic to S3, then G is point-like.

Proof. Let Ml9 M2, , be the defining sequence for G and let
To be a component of some Mn. By hypothesis, To is a cube with
one hole. Let g be a component of ΠΓ=i M{ contained in TQ. We
first show that there is a defining stage Mn+m such that each loop
in the component of Mn+m containing g can be shrunk to a point in To.

For i — 1, 2, 3, , let Γ; be the component of Mn+i that contains
g. Then each Tt is a cube with one hole, Ti+1 c Int I1;, and ΠΓ=i Γ* = 0.
Suppose that there is a positive integer s such that each Tj9 j ^ s,
is a solid torus. If the center curve of each Tί+1 cannot be shrunk
to a point in Tjf then g has nontrivial Cech cohomology, and it follows
from Corollary 2 of [8] that Sz/G is not homeomorphic to Sd, con-
tradicting our hypothesis. Hence there is an m such that the center
curve of Tm can be shrunk to a point in To and hence each loop in
Tm can be shrunk to a point in TQm

Suppose then that infinitely many of the 2\ are not solid tori.
We may suppose for convenience that each T̂  is not a solid torus.
By [1], each T — S5 — Int T{ is a solid torus. We now have three
cases.

Case I. Suppose there is an m such that N(T'm_u T'm) = 0. This
implies that there is a meridional disk D of Tm such that D Π T'm_λ = 0 .
Then there is a cube K in T'm such that T ^ c Int K. It then
follows that each loop in Tm( = S3 - Int 21) can be shrunk to a point
in To.

We now show that the remaining two cases cannot occur.

Case II. Suppose that there is a positive integer s such that
N(T'jf ΓJ+1) = 1 for j ^ s. Since P(f|Γ=i^) is 0-dimensional there is
a positive integer t and a cube K such that P(Ts+t) c Int if c if aP
(Int T8). Let A'+t be a meridional disk of Ts+t. Using Dehn's Lemma
we may adjust P(Df

8+t) in P(Int T'B+t) so that it is polyhedral, and it
follows that P{T's+t) is a solid torus with the adjusted P(D'8+t) as a
meridional disk. Let J b e a longitudinal simple closed curve of Ts+t

such that / c B d T'8+t and J intersects Bd Ds'+t at just one point. Let
A be an annulus with boundary components Aι and A2. By [13],
N(T8, T8+t) = 1. Hence there is a mapping / of A into Γ«+ί such that
/ | Ax is a homeomorphism, /(AJ = J, and /(A2) c T .̂ Now P(f(A2))
can be shrunk to a point missing if since it is contained in Sz — K;
hence P(f(A2)) can be shrunk to a point in P(T'8+t). But this implies
that the longitudinal simple closed curve P(J) of P(T8+t) can be shrunk
to a point in P(Γ/+ί). Hence Case II cannot occur.
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Case III. Now assume there is a positive integer s such that
N(T'jf T'j+1) > 1 for j ^ s. Since each T's is knotted in S3, we may
use an argument similar to that used in [7] to conclude that Case
III cannot occur.

These three cases now imply that there is a defining stage Mn+m

such that each loop in the component of Mn+m containing g can be
shrunk to a point in To. Since TQ Π (ΠΓ=i Mt) is compact, there is a
defining stage Mp(p ̂ > n+m) such that each loop in TQ Π Mp can be
shrunk to a point in TQ. By Lemma 1 there is a cube with handles
C such that TQ n Λfp c Int C c C c Int Γo. It then follows that G is
definable by cubes with handles. By Bean's result [5], G is a point-
like decomposition, and the proof of Theorem 6 is complete.

COROLLARY. Let f be a mapping of S3 onto S3 and let H= cl
({x : x e S3 and f~\x) is nondegenerate}). If H is a O-dimensional
set which is definable by cubes with one hole, then for each x e S3,
S3 — f~ι{x) is homeomorphic to E3.

Proof. Let G = {f~\x): x e S3}. It is not hard to show that G
is an upper semicontinuous decomposition of S3 and that S3/G is
homeomorphic to S3. Since H is definable by cubes with one hole, it
follows that G is definable by cubes with one hole. By Theorem 6,
G is a point-like decomposition of S3; hence if x e S3, then S3 — f~\x)
is homeomorphic to E3.

REFERENCES

1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad.
Sci. U.S.A. 1O (1924), 6-8.
2. S. Armentrout, Decompositions of Ez with a compact ^-dimensional set of non-
degenerate elements, Trans. Amer. Math. Soc. 123 (1966), 165-177.
3. , "Monotone decompositions of Ez" Topology Seminar Wisconsin, 1965,
Princeton University Press, 1966.
4. S. Armentrout, L. L. Lininger and D. V. Meyer, "Equivalent decompositions of
E*", Topology Seminar Wisconsin, 1965, Princeton University Press, 1966.
5. R. J. Bean, Decompositions of E* which yield Ez, Pacific J. Math. 20 (1967), 411-
413.
6. R. H. Bing, "Decompositions of E3," Topology of S-manifolds and related topics,
Prentice-Hall, 1962.
7. J. M. Kister and D.R. McMillan, Jr., Locally Euclidean factors of E* which cannot
be imbedded in E*, Ann. of Math. 76 (1962), 541-546.
8. K. W. Kwun and F. Raymond, Almost acyclic maps of manifolds, Amer. J. Math.
86 (1964), 638-650.
9. J. Martin, "Sewings of crumpled cubes which do not yield S*," Topology Seminar
Wisconsin, 1965, Princeton University Press, 1966.
10. D. R. McMillan, Jr., Cartesian products of contractible open manifolds, Bull. Amer.
Math. Soc. 67 (1961), 510-514.



518 H. W. LAMBERT AND R. B. SHER

11. , A criterion for cellularity in a manifold, Ann. of Math. 7 9 (1964),
327-337.
12. T. M. Price, A necessary condition that a cellular upper semicontinuous decom-
position of En yield En, Trans. Amer. Math. Soc. 122 (1966), 427-435.
13. H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286.

Received July 25, 1966.

THE UNIVERSITY OF IOWA

THE UNIVERSITY OF GEORGIA



PACIFIC JOURNAL OF MATHEMATICS
Vol. 24, No. 3, 1968

SUBDIRECT DECOMPOSITIONS OF LATTICES
OF WIDTH TWO

OSCAR TIVIS NELSON, JR.

The class of nontrivial distributive lattices is the class
of subdirect products of two-element chains. Lattices of width
one are distributive and hence are subdirect products of two
element chains. Below it is shown that lattices of width two
are subdirect products of two element chains and nonmodular
lattices of order five (jV5). (width = greatest number of pair-
wise incomparable elements.)

The statement follows from several lemmas. Throughout we
shall assume that α, b are arbitrary noncomparable elements of a
lattice L of width two.

LEMMA 1. x (α + 6) + y (α + b) = (x + y) {a + b) and

(x + α 6) (y + a-b) = x - y + a-b

for any x , y e L .

Proof. In any lattice

(1) x (α + b) + y (α + b) ^ (x + y) - {a + b) .

Trivially, if x and y are related, the identity holds. Thus, assume
that x and y are unrelated. There are three possibilities:

(i) Suppose x ^ a and y ^b. Then

x (α + b) + y (α + 6) = x + y = (x + y) (α + 6) .

(ii) In case a ^ x and b ^ y, a + b <. x + y. If a + b <L x OY y,
i t is easy to verify t h a t the identity holds. If a + b g£ & or y, then

a? or ?/ <; a + 6. Suppose x <: α + 6. Then

(& + 1/) (α + 6) = α + δ ^ # + V' ( α + &) = x * ( α + δ ) + 1/ * ( α + b)

This relation and (1) yield the equality.

(iii) Now suppose a ^ x and y ^ b. b ^ x implies t h a t x and y

are comparable while x ^ 6 implies t h a t α and 6 are comparable.

Thus, x and b are unrelated. Since L is of width two, a + y is

related to either x or 6, α + # ^ x and α + y fS & imply t h a t y ^ x

and α <* δ respectively. Thus, either x^a + y or b^a + y. In

case x ^ α + ί/, x ^ α + ^ / ^ α + & and y ^ b ^ a + b. Hence

x-(a + b) + y-(a + b) = x + y = (x + y)(a + b) .

519
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In case b ^ a -\- y, y<.b^a + y<^a + b. Thus,

(x + y) (α + δ) <, a + δ ^ α + y £ x (a + b) + y

= x-(a + b) + y-(a + b)

and the identity holds in all cases. A dual argument yields the other
identity.

By Lemma 1, if s and t are unrelated elements of a lattice of
width two, the mappings x —*x (s + t) and x —> x + s t determine
congruence relations Θs+t and ψ8.t.

LEMMA 2. #α + δ n fa.b = 0.

Proo/. If x ΞΞ 2/(#α+δ n φa.b), x (a + b) = y - (a + b) and αj + a δ =
2/ + a 6. x and ?/ are each related to either α or 6. Thus x <̂  a + 6
o r a>b ^ x . S i m i l a r l y , y<^a + b or a b^y. I f

#, 1/ ̂  α + δ, a? = α? (a + b) = # (α + 6) = y .

I f a b ^ x , y x — x + a b — y + a b = y . F i n a l l y , if x ^ a + b a n d
α b ^ 2/, α b ^ ί/ (α + 6) = α? (a + 6) — x, i.e., α δ <£ α?, 2/ again. Thus

a? = ?/ in every case, and # α + 6 Π ̂ α-& = 0.

LEMMA 3. If θa+b = 0, α + δ = 1; α?ιcί i / ψa.b = 0, α δ = 0.

Proof. By definition a? (α + δ) = ^(^α + δ). Thus ^α + 6 = 0 implies
that

x (α+ δ) = a?

for all a?, and consequently that a 4- δ = 1. Similarly, ψvδ = 0 implies
that a δ = 0.

LEMMA 4. // L is subdirectly irreducible, θa+b — 0, and a δ Φ 0,
£/ιew ί^ere exists pe L such that p and a δ are noncomparable.

Proof. If θa+b = 0, a δ =£ 0, and there exists no p as above, than
it is easy to verify that θa.b f] ψa.b — 0. (Note that x = y (θa.b) if and
only if x — y or a δ <* x, y, and that x = y{ψa.b) if and only if x — y
or x,y ^ α δ). Since α δ ̂  0, neither #α.5 nor ^α. δ = 0. Thus L is
reducible. This contradiction implies that p must exist.

If L and p are as in Lemma 4, p must be related to a or δ, but
α <̂  p or δ <Ξ p implies that p and α δ are comparable. Thus we can
assume that p is less than one of α, δ; assume p < a.

LEMMA 5. // L and p are as in Lemma 4, p + a δ αraί δ are
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noncomparable.

Proof. C l e a r l y a b ^ b (p + a b). S i n c e p < a, p + a-b tί a,
and hence b (p + a b) ̂  a 6. Thus 6 (j> + α 6) = α 6. Since α
and δ are noncomparable,a 6 ̂  b; and since α δ, p are noncompar-
able, p + a b Φ a b. Thus 6 and p + α δ are noncomparable.

LEMMA 6. If L and p are as in Lemma 4,

L = {x\x ^p + a-b}U{x\a b ^x} .

Proof. Trivially, if z is related to a b, z is in one of the sets.
Thus suppose that z, a b are unrelated. Since α δ, p are noncom-
parable and L is of width two, z must be related to p. If z ^ p,
£ ^ JP + α b. If 2 is also related to p + α δ, z is in one of the sets.
Thus, suppose that p ^ z and that z and p• + α δ are unrelated. By
Lemma 5, p + α b and & are unrelated. Thus, z must be related to
6. If 6 <: 2, α 6 ̂  ^ and if z ^ &, j> ̂  z < b(p + α 6 ̂  6). But both
conclusions are impossible. Thus L is the union of the two sets.

LEMMA 7. // L and p are as in Lemma 4, θp+a.b Π ψa-b — 0.

Proof. If x ΞΞΞ y(θv+a.h Π ̂ α δ), & (p + α δ) = # (p + α δ) and
cc + α δ = τ/ + α δ. If

α, 2/ ̂  P + α δ, a? = a? (p + α δ) = y (p + a δ) = y;

a n d i f a b ^ % , y , % = z % + a ' b = y + a - b = y . T h u s s u p p o s e

# ^ p + a δ

and a b ^ y (By Lemma 6, we can assume that this is the only re-
maining possibility.) Then x = x (p + a δ) = y (p + α δ) ̂  T/, i.e.,
x ^y. Also, # + α δ = τ/ + α δ = τ/. Since

Thus, #<^τ/<^p + α δ, and a? = x (p + a δ) = ί/ (p + α δ) = y.

LEMMA 8. If L is a subdirectly irreducible lattice of width two
and α, δ are noncomparable elements of L, a + b = 1 and a δ = 0.

Proof. By Lemma 2, #α + δ Γ) Ψv& = 0. Since L is irreducible,
0α+6 = 0 or ψa.b = 0. Suppose θa+b = 0. Then α + δ = 1 by Lemma
3. If a δ ̂  0, ψ*β.δ ^ 0 by Lemma 3. Also, by Lemma 4, there is
an element p of L which is noncomparable to α δ. For this p,
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θp+a b Π t α δ - 0

by Lemma 7. Hence θp+a.b — 0. But this is impossible since it implies
that 1 = p + α 6 ^ a or b. Hence a b == 0. If ^α.& = 0, a dual
argument completes the proof.

(Note that Lemma 8 implies that a subdirectly irreducible lattice
of width two has a zero and a one.)

Let L be a subdirectly irreducible lattice of width two. If there
were an element z of L — {0,1} which was comparable to each element
of L, ΘZΠ ψz — 0 with θz Φ 0 and ψ s ^ 0. Thus, since L is irreducible,
it must be the union of the pairwise disjoint sets {0,1}, CΊ, C2 where
d , C2 are chains such that the sum of elements from different chains
is 1 and the product, 0. If each chain has at least two elements,
then one can define two congruence relations Rl9 R2 as follows:

x ΞΞ y(Ri) if and only if x = y or x, y e d (i = 1, 2). Clearly,
R1f\R2 = 0, but Ru R2 Φ 0 since each chain contains at least two
elements. Thus, one chain must contain exactly one element. If both
chains consist of a single element, L is a direct product of two-
element chains, and hence is reducible. Thus, L consists of {0,1},
C19 C2 where d contains only one element and C2 contains at least
two elements. Suppose C2 contains at least three elements p < q < r.
Define relations Sl9 S2 on L by

x = y (SJ if and only if x — y or 0 < x, y ^ q,

x ΞΞ y (S2) if and only if x = y or q <̂  x, y < 1 .

It is easy to show that these are congruence relations. Clearly
S1 Π S2 = 0. Thus S1 = 0 or S2 = 0. But p = q(S1) and q ΞΞ r(S2), a
contradiction. Thus C2 consists of exactly two elements, and L ~ NΛ.
Hence

THEOREM. Every lattice of width two is a subdirect product of
two-element chains and Nδ.

COROLLARY. The only subdirectly irreducible lattice of width
two is N5.

For each n >̂ 3, one can exhibit a lattice to show that it is false
that all lattices of width n are subdirect products of lattices from
some class of finite lattices. For a fixed n, it would be of interest
to find a lattice property P such that if L were of width n and had
property P, that L would be a subdirect product of finite lattices.
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INTEGRALS WHICH ARE CONVEX FUNCTIONALS

R. T. ROCKAFELLAR

This paper examines numerical functionals defined on func-
tion spaces by means of integrals having certain convexity
properties. The functionals are themselves convex, so they
can be analysed in the light of the theory of conjugate convex
functions, which has recently undergone extensive develop-
ment. The results obtained are applicable to Orlicz space
theory and in the study of various extremum problems in
control theory and the calculus of variations.

In everything that follows, let T denote a measure space with a
(7-finite measure dt. Let L be a particular real vector space of measur-
able functions u from T to Rn (for a fixed n). For instance, one could
take L to be the space L*{T) consisting of all Rn-valued measurable
functions u on T such that Φp(u) < + oo, where

Φp(u) = ^φp(u(t))dt a n d φp(x) = (1/p) \x\p, 1 ^ p < + °o

with I I denoting the Euclidean norm on Rn. No matter which L is
chosen, one can regard Φp as a functional from L to (—<̂ °, + <*>].
Then Φp is convex, in consequence of the fact that the function φp is
convex on Rn. (A function F from a real vector space to (-oo, + oo]
is said to be convex if

F(\x + (1 - X)y) ^ XF(x) + (1

always holds when 0 < λ < 1.) Notice that, if φ^ is the convex func-
tion defined by

0 if I x I ^ 1 ,
= lim φp(x) = .

' + oo if I x I > 1 ,
the corresponding integral Φco(u) is finite if and only if u belongs to
the unit ball of the space L~(T) of essentially bounded measurable
functions.

Here we propose to study a much broader class functionals than
the Φp, 1 ^ p ^ oo. These functionals are of the form

If(u) = \ f(t, u(t))dt for ueL ,
JT

where / is a function from T x Rn to (— oo, + oo], such that f(t, x)
is a convex function of x e Rn for each ί e T . Such a function / we
call a convex integrand for convenience.

As a preliminary task, we must come up with conditions on /
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ensuring that various functions such as /(£, u(t)) be measurable in t.
The well-known condition of Caratheodory is no help, because we do
not want to assume that f(t, x) is continuous in x. That would prevent
us from considering most of the cases were / can be infinity-valued.
We have already encountered one such case, namely / = φ^. Generally
speaking, the device of allowing / to have the value + oo has the
effect of constraining u(t) to lie in a certain convex subset of Rn,
depending perhaps on t. Indeed, a necessary condition for If(u) to
be finite is that

u(t)edomft for almost all t ,

where ft denotes the convex function ft(x) — f(t, x). (For any convex
function F, the set of points where F does not have the value + oo
is a convex set, which we call the effective domain of F and denote
by dom.F.)

In order that If(u) be an unambiguous number in (—00, +oo], a
further condition besides measurability, is usually needed, since f(t, x)
is not required to be nonnegative. The important thing, however, is
that If turns out to be a convex function on L when it is well-defined.

The Φp have already been cited as examples of convex functionals
of type If which have received close attention from functional analysts.
If the integrands φp are generalized to those of the form f(t, x) =
N(\x\) where N is a finite nonnegative convex function on the real
line such that N(X) > 0 for λ > 0,

lim N(X)/X = 0 and lim N(X)/X = 00 ,

one gets convex functionals If defining generalized Lp spaces, called
Orlicz spaces. These spaces are very useful in dealing with integral
equations. We refer the reader to [5] for an excellent account.

Possible applications along the lines suggested by the theory of
Orlicz spaces are one motivation for looking at the convex functionals
If in the general case. Another motivation is that such functionals
arise naturally in the calculus of variations. For example, suppose that
T — [0,1], with dt as the ordinary Lebesgue measure. Regarding Rn

as Rk φ Rk, write each vector a; as a pair (y, z), where y and z have k
components. Then If may be interpreted as a functional defined for
pairs of measurable functions from [0,1] to Rk. Now let

J(Q) = If(Q, Q) = \ fit, q(t), q(t))dt ,

where q is a differentiate function from [0,1] to Rk (a curve) and
q = dq/dt. Inasmuch as differentiation is a linear operation, J will be
a convex function on the space of curves q. Problems which involve
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minimizing J can hopefully be tackled therefore by convexity methods,
such as the existence and duality theory in [11], Note that infinite
values of / correspond to constraints on the values of q(t) and q(t)
for the curves q such that J(q) < + °°. Nonclassical convex constrained
minimization problems of this sort abound in control theory. We plan
elsewhere to take up applications of our results to such areas.

The main question treated in this paper is whether the conjugate
of a convex functional If is another such functional Ig. The question
is significant, because the present theory of convex functions is so
extensively concerned with conjugates. The notion of conjugacy, due
to Fenchel [2], may be formulated in a general way as follows. Let
E and J?* be real vector spaces, and let ζx, x*y be a (real) bilinear
function of x e E and x*eE*. Let F be a proper convex function
on E (i.e. a convex function with values in (—<*>, +°o] which is not
identically +<*>). The function F * on # * defined by

F*(£*) = -inf {F(x) - <x, x*> ] x e E}

is called the conjugate of F (with respect to the given pairing of E
and E* by < , •». It is a convex function on E* with values in
(—oo, +oo]. Furthermore, F* is always lower semi-continuous with
respect to the weak topology induced on E* by E. (Lower semi-
continuity means that the set {x* \ F*{x*) <£ μ}, which incidentally is
always convex, is closed for every real μ.) The conjugate of F* is
in turn the function F* on E defined by

F**(x) = - inf {î *(α;*) - <», x*> \ x* e E*} .

In order that F* be proper and F** = F, it is necessary and sufficient
that F itself be lower semi-continuous with respect to the weak
topology induced on £ by £ * . General proofs of these result are
given in [1] and [6].

Two conjugacy contexts will mostly concern us here. In the first
case, E = E* = Rn with ζx, x*y as the ordinary inner product. The
weak topologies are then the ordinary topologies on Rn. In the second
case we take E = L and E* = L*, where L* is any space of Rn-valued
measurable functions, such that the inner product <tt(ί), u*(t)y is sum-
mable as a function of t for every ueL and u*eL*. The pairing is
given by

= \

Any topologies compatible with the duality between E and 2?* could
be invoked in place of the weak topologies, for instance the norm
topologies if E = E* = L\(T).
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Suppose that f(t, x) is a convex integrand which is proper and
lower semi-continuous in x for each t. Define f*(t,x*) by taking con-
jugates in x, i.e. ft* = (ft)* for each t. Then, according to the results
described above, /* is another convex integrand, proper and lower
semi-continuous in its convex argument. We call it the integrand
conjugate to f. The conjugate of the conjugate is the original integrand
/. The principal fact brought out in this paper (Theorem 2) is that
conjugate integrands / and /* usually furnish conjugate functionate
of L and L*. This generalizes the fact that φp is conjugate to φg, and
Φp on Li(T) is conjugate to Φq on Ll(T) (with (1/p) + 1/q) = 1). The
resulting class of "best inequalities" of the type

O, ^*> ̂  If(u) + //.(%*)

is likewise a generalization of certain classical inequalities.

2* Normal integrands and measurability* Before we can pro-
ceed, we must established that various technical constructions result
in functions which are measurable. To this end, some regularity con-
ditions must be imposed. We shall call a convex integrand / normal
if f(t, x) is proper and lower semi-continuous in x for each t, and if
further there exists a countable collection U of measurable functions
u from T to Rn having the following properties:

(a) for each ue U, f(t, u(t)) is measurable in t;
(b) for each t, Ut f] άomft is dense in dom/t> where

Ut = {u(t) \ueU} .

The latter conditions, which seem offhand to be rather complicated,
are automatically satisfied in some notable cases, as we shall now
indicate.

LEMMA 1. Suppose f(t, x) = F(x) for all t9 where F is a lower
semi-continuous proper convex function on Rn. Then f is a normal
convex integrand.

Proof. Let D be a countable dense subset of the effective domain
of F (= dom/ί for all ί). (Such a D exists, of course, because dom F
is a nonempty convex set in Rn.) Let U consist of the constant func-
tions on T with values in D. Then conditions (a) and (b) are satisfied
in a trivial way.

LEMMA 2. Suppose f is a convex integrand such that f(t, x) is
measurable in t for each fixed x, and such that, for each t, f(t, x)
is lower semi-continuous in x and has interior points in its effective
domain {x\f(t, x) < +°°}. Then f is a normal convex integrand.
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Proof. Let D be a countable dense subset of Rn, and let U be
the constant functions with values in D. The measurability condition
for normality is satisfied in virtue of the present measurability hypo-
thesis. The density condition is satisfied, because D has a dense inter-
section with the interior of dom/e, and domft is the closure of its
interior by convexity.

COROLLARY. Suppose f is a convex integrand having only finite
values, such that f(t, x) is measurable in t for each x. Then f is a
normal convex integrand.

Proof. Here domft = Rn for every t. The lower semi-continuity
of ft is then automatic, since a finite convex function on an open
convex set in Rn is always continuous.

An intermediate fact about the consequences of normality will
now be deduced.

LEMMA 3. Let fbe a normal convex integrand with conjugate /*.
Then, for every measurable function u* from T to Rn, the function
/*(ί, u*(t)) is measurable in t.

Proof. By definition,

-Pit, u*(t)) = inf {f(t, x) - <x, u*(φ I x e Rn} .

We shall show that, for each t, the infimum can actually be taken
over x e Ut instead, where Ut is the set in the definition of normality.
Since f{t,x) — + ̂  for ίK^dom/f, the question is whether any value
of f(t, x) — ζx, u*{t)y with x e domft can be approximated by one with
xe Ut Π dom/t. Now Utf] dom ft is dense in dom/t by hypothesis.
Furthermore domft, being a nonempty convex set, is the closure of its
relative interior (its interior relative to the affine manifold it generates).
The intersection of Ut with this relative interior must be dense in domft.
According to familiar results about lower semi-continuous convex func-
tions (e.g. in [3], [13]), ft is continuous with respect to the relative
interior of άomft and its values at relative boundary points can be
obtained as limits of the relative interior values. Therefore the values
of f(t,x) for xeάom ft are limits of those for Z7ίΠdom/f, as we
wanted to show. The upshot is that

-/*(ί, u*(t)) = inf {f(t, u(t)) - <u{t), u*(t)>\ueU} .

This formula expresses /* (t, u*(t)) as the pointwise infimum of a collec-
tion of functions on T. Each of the functions in the collection is
measurable, in view of the hypotheses, and the collection is countable.



530 R. T. ROCKAFELLAR

The pointwise infimum is consequently another measurable function
on T.

Moreau's proximation mappings, whose properties are elucidated
in [9], will be very useful to us. Here is how they are defined. Let
F be any lower semi-continuous closed proper convex function on Rn.
It can be proved that, for each zeRn, there exist unique vectors x
and x* such that

z = x + x* and F(x) + F*(x*) = <cc, £*> .

We write

x = prox (z I F) and x* — prox (z | JF*) .

The mapping prox ( | F) from Rn into itself is called the proximation
associated with F. It is continuous (a metric contraction as a matter
of fact), and its range is dense in dom F. If F is the indicator func-
tion of a closed convex set K (in other words F(x) = 0 when x e K
and F(x) = +oo when x g K), then prox (s | F) is the point of K near-
est to 2. In general, prox (z \ F) is the unique x for which

achieves its minimum.

LEMMA 4. Let f be a normal convex integrand. Let z be a
measurable function from T to Rn. Then the functions prox (z(t) \ ft)
and prox (z(t) \f*) are measurable in t.

Proof. Set

g(t, x) = f(t, x) + -ί I x - z(t)
Δ

It is easily verified that g is another normal convex integrand. We
shall be concerned with the conjugate integrand g*(t, a?*). By Moreau's
theory, gf is differentiate at 0 for each t, and V#*(0) = prox (z(t) \ft).
Now, for an arbitrary aeRn,

O, V^*(0)> - lim [g*(t, λα) - g*(t, 0)]/λ .
no

The difference quotient is a measurable function of t for each λ by
Lemma 3 and the normality of g. The limit can be taken over a count-
able sequence in λ, so <α, V#?(0)> is measurable in t. It follows that
prox (z(t) I /ί) is measurable in £, and likewise prox (z(t) \ft*) because

prox (z(t) \f*) = z(t) - prox (z(t)\ft)
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for every t.
We can now prove that normality is preserved when one passes

to the conjugate.

LEMMA 5. If f is a normal convex integrand, then f* is a
normal convex integrand, too.

Proof. We already know from the theory of conjugates that
/*(£, x*) is a lower semi-continuous proper convex function of x* for
each t. The problem is to produce a collection U satisfying condition
(b) of normality (with /* in place of / ) . Condition (a) will then hold
by virtue of Lemma 3. Let D be any countable dense subset of Rn.
Let U consist of the functions of the form u(t) — iprox(z\ft*) with z
ranging over D. Each u e U is measurable by Lemma 4. The set Ut

is the image of D under prox( \f*). Since the proximation is con-
tinuous and its range is dense in άomft*, Ut is dense in dom/t*.

COROLLARY. If f is a normal convex integrand, then f(t, u(t)) is
measurable in t for every measurable function u from T to Rn.

Proof. This is immediate from Lemma 3, since ft — /***.

Our final lemma guarantees the existence of enough measurable
functions for one to minimize a normal convex integrand pointwise in
a measurable fashion.

LEMMA 6. Let f be a normal convex integrand. Let a be a
measurable real-valued function on T such that

inίx f(t, x) < a(t) for every t .

Then there exists a measurable function u from T to Rn such that

f{t, u{t)) ^ a(t) for every t .

Proof. Set Kt = {x\f(t, x) <L a(t)} for each t. According to the
general theory of convex functions on Rn, each Kt is a nonempty
closed convex subset of dom/4 having the same dimension as dom/t,
inasmuch as ft(x) < a(t) for at least one x. Therefore Ut Π Kt is
dense in Kt, where Ut is the set in the definition of the normality of
/. Let g(t, x) = 0 when x e Kt and g(t, x) — + oo when x & Kt. Evi-
dently g is another convex integrand satisfying the normality conditions
with the same collection U as invoked for /. Let u(t) be the point
of Kt nearest to the origin, i.e.

u(t) = prox (0 I gt) for each t .
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This u is a measurable function by Lemma 4 (applied to g), and
/(£, u(t)) ^ a(t) by definition of iΓt.

3* Conjugate convex integrals* The stage is now set for prov-
ing our chief results. We assume throughout that L* is a space of
measurable functions paired with L in the manner described in the in-
troduction. (When L is a Banach space, L* does not have to be its
dual.)

THEOREM 1. Let fbe a normal convex integrand. Suppose there
exists at least one u* e L* such that f*(t, u*(t)) is a summable func-
tion of t. Then

= \ f(t, u{t))dt, ueL ,

is a well-defined convex function on L with values in (-co, +<*>].

Proof. The measurability prerequisite to considering If is ensured
by the corollary to Lemma 5. Let u* be one of the functions in L*
whose existence is provided for in the hypothesis. Since ft and ft*
are conjugate to each other

f(t, u(t)) 2: <u(t), u*(t)> - /*(ί, u*(t))

for every t. The right side is a summable function of t by the
hypothesis. Thus there can be no question of If{u) being — oo: either
f(t, u{t)) is summable or its integral is unambiguously -f- °°. As for
the convexity of //, that is immediate from the inequality

/(ί, Xu(t) + (1 - X)v(t)) £ λ/(ί, u(t)) + (1 - λ)/(ί, v(t)) ,

which holds for every t when 0 < λ < 1 by the convexity of ft.
We shall say that L is decomposable when it satisfies the follow-

ing conditions:
(a) L contains every bounded measurable function from T to Rn

which vanishes outside a set of finite measure;
(b) if u e L and E is a set of finite measure in T, then L contains

χE'U, where χE is the characteristic function of E.
These conditions guarantee that one can alter functions in L arbi-

trarily in a bounded manner on sets of finite measure. (Subtract χE'U
from u, and then add any bounded measurable function vanishing
outside E.) The first condition also implies that the functions in L*
are summable on sets of finite measure. The Lζ(T) are examples of
of spaces decomposable in this sense.

THEOREM 2. Suppose L and L* are decomposable. Let f be a
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normal convex integrand such that f(t, u(t)) is summable in t for at
least one ueL, and f*(t, u*(t)) is summable in t for at least one
%*eL*. Then If on L and If* on L* are proper convex functions
conjugate to each other.

Proof. If and If* are well-defined and convex by Theorem 1 and
Lemma 5, and they are proper by the hypothesis. For any x* in Rn

we have

f(t, x) + /*(ί, x*) ^ <x, £*>

by conjugacy. Hence, for any ueL and u*eL*,

If(u) + I^(u*) = \ fit, u(t))dt + ( /*(ί, u*(t))dt
JT JT

^ ( <u{t), u*(t)>dt = <u, u*> .
JT

It follows that

If*(u*) ^ sup {(u, u*y — If(u) I u e L}

= -inf {If(u) - <u, u*}\ueL} = (If)*(u*) .

Verification of the opposite inequality will establish that //* is the
conjugate of //. Fix any w* e L* and any β < If*(u*). Select any
real summable function μ on T such that

μ(t) < f*(t, u*{t)) for all ί, and ί μ(t)dt > β .
JT

Since by conjugacy

/*(ί, x*) = - inf {/(ί, x) - <a>, x*> I x e Λ } ,

we have

-/i(ί) > inf {/(ί, a?) - <a?, w*(ί)> | a; e Rn)

for all ί. We now apply Lemma 6 to a(t) = — /i(ί) and g, where

g(t, x) = f{t, x) - <x, u*(t)> .

(The normality of / carries over to g.) The function u we obtain
from Lemma 6 satisfies

-μ(t) ^ f(t, u(t)) - <uit), u*it)> .

Since T is o -finite by our underlying assumption, we can choose an
increasing sequence of measurable sets Ek of finite measure with
union T, such that the u(t) we have constructed is bounded in teEk

for each k. Let ΰ be any particular function in L for which the in-
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tegrand in If is summable. (Such a function exists by hypothesis.)
For each k let

u(t) if t e Ek ,

ΰ(t) if teEί,

where E£ denotes the complement of Ek in T. These functions uk

belong to L by the decomposability hypothesis. For each k we have

( μ(t)dt ^ ί [<u(t), u*(t)> - f(t, u(t))]dt

[ -
)εk

The boundedness assumption on Ek is used here to ensure that
<(uk(t), u*(t)y be summable, so that

= <uk, u*y - if(uk)

unambiguously. The integral over Ek in the calculation above can
be made arbitrarily small by choosing k sufficiently large. On the
other hand

lim ( μ(t)dt = \ μ(t)dt > β
k-*oo jEk JT

by our assumptions. Thus

- If{uk) > β

when k is large, implying that (If)*(u*) > β. Inasmuch as β was any
number less than //*, we may now conclude that If*(u*) — (J/)*(^*).
The fact that If = {If*)* follows dually.

COROLLARY. Suppose that L and L* are decomposable, and that
T is of finite measure. Let f be of the form f(t, x) — F{x), where
F is a lower semi-continuous proper convex function on Rn. Then If

on L and If* on L* are conjugate to each other.

Proof. Such an / is normal by Lemma 1. The existence of
summable function for If and //* is elementary in this case. Namely,
take any x for which F(x) is finite, and let u be the constant
function whose sole value is x. Since T is of finite measure, u is
summable. By decomposability (b), ueL. Similary for If*. The
hypothesis of Theorem 2 is therefore satisfied.

The next theorem furnishes a different way of establishing the



INTEGRALS WHICH ARE CONVEX FUNCTIONALS 535

conjugacy of If* and If in certain situations. It also yields a continuity
property.

THEOREM 3. Let T be of finite measure. Suppose that L* is
decomposable, and that L is actually Lζ(T). Let fbe a normal convex
integrand satisfying the following condition: there exists some ae L
and ε > 0 such that, for each xeRn with \ x | < ε, the function
f(t, a(t) + x) is finite and bounded in t. Then If on L and If* on L*
are convex functions conjugate to each other. Moreover, If is con-
tinuous at a in the norm topology of L — LZ(T).

Proof. Replacing / by g if necessary, where

g(t, x) = f(t, a(t) + α?) - f(t, a(t))

(evidently another normal convex integrand), we can reduce everything
to the case where a(t) = 0 and f(t, 0) = 0. Then If(0) = 0. We must
show that // is norm-continuous at 0, and that f*(t, u*(t)) is summable
in t for some u*eL*. The conjugacy of //• and If* will then follow
from the last theorem. Define

F(x) = sup {f(t, x) 11 e T} .

As a pointwise supremum of lower semi-continuous convex functions
on Rn, F is itself lower semi-continuous and convex. By hypothesis,
F(x) is finite on the open convex set {x | | x | < ε}. As is well-known
a finite convex function on a finite-dimensional open convex set is
automatically continuous. Hence F is continuous when | x | < ε. Fix
a positive δ less than ε, and let

k = max {F(x) | | x | ^ δ} < + oo .

Now F(0) = 0, so that we have F(x) ^ (k/δ) | x | when | x | <̂  δ by
convexity. (Consider the values of F along the line segment from 0
to ax, where a = δ/\x\.) Hence for every t

f(t, x) ^ (k/δ) I x I when | x | ^ δ .

This inequality also implies that f(t, x) Ξ> — (k/δ) \ x | for every x.
(To verify this, one expresses 0 as a convex combination of x and μx,
where μ — —δ/\x\, namely 0 = Xx + (1 — X)μx with X — —μ/(l — μ).
Then by the convexity of /

0 = f(t, 0) ^ Xf(t, x) + (1 - λ)/(ί, μx)

^ Xf(t, x) + (1 - X)(k/δ) I μx I

= -(μ/(l - μ))[f(t,x) + (k/δ)\x\] .

The first inequality has been applied here to μx, which is permissible
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because | μx \ = δ by the choice of μ. One concludes that f(t, x) +
(k/δ) I x I is always non-negative.) In particular, therefore

I f(t, α) I ̂  (Λ /δ) I a; | when | x | ^ δ .

It ueL satisfies \\u\\ ̂  δ, where || || is the LZ(T) norm, then

\f(t, u(t)) \dt ^ (k/δ) \\u || meas T < + oo .

Thus //(%) is well-defined when \\u\\ <£ δ, and it approaches 0 = 1/(0)
as ||% || approaches 0. This establishes the continuity. We must still
construct a w*eL* for which f*(t, u*(t)) is summable. It suffices to
find such a u* in L~(Γ), for L* contains L™(T) in consequence of the
hypothesis that L* is decomposable and T is of finite measure. Let

ΰ(t) = prox(0|/ t) .

The measurability of ΰ is asserted by Lemma 4. For each t, u(t) is
the point which minimizes f(t, x) + 1/2 | x |2 on Rn. Since the minimand
vanishes at x = 0,

0 ^ /(ί, w(ί)) + i-1 w(ί) |2 ^

It follows that \ΰ(t)\ ^ 2Λ/5 for all t, so ΰeL~(T). It now follows
further that

0 ^ /(ί, %(ί)) ^ -(fc/δ)

so /(ί, w(ί)) is bounded in ί (and hence summable). Now take

u*(t) - -w(ί) = 0 - prox (0 \ft) = prox (01/,*) .

Again u*eL~(T). According to the basic property of proximations,

/(*, ΰ(t)) + /*(ί, w*(ί)) = <ti(t), u*(t)>

for every ί. The first and last terms in this equation yield summable
functions, so we can conclude that f*(t, u*(t)) is summable, too.

THEOREM 4. Let T be of finite measure. Let f(t, x) be a finite
convex function of x for each t and a bounded measurable function
of t for each x. Then If is a well-defined finite convex function on
L™(T) which is everywhere continuous with respect to the uniform
norm. Moreover, the conjugate (If)* of If on Lζ(T)*, the space of
all linear function as on L~(T) continuous with respect to the uniform
norm, is given by //sK in the following sense: if v e Lζ(T)* is of the
form
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dt, U*e Un{T) ,V(u) = \

one has (If)*(v) — //*(%), whereas otherwise one has (If)*(v) = + oo.
Proof. We note that / is a normal convex integrand by the

corollary to Lemma 2. The finiteness and continuity of // are as-
serted by Theorem 3. Fix any veLζ(T)* such that (If)*(v) < + oo.
We shall show that v corresponds to some u* e Ln(T) as above,
whence it will follow from Theorem 3 that

(If)*(v) = sup,{φ) - If{v)} = If*(u*) .

For each measurable £ c T , let μ(E) denote the unique vector in Rn

such that

ζx, μ(E)y = v(x-χE) for every x e Rn ,

where x χE is the function which has the value x on E but the
value 0 elsewhere on T. Then μ is a finitely additive set function.
We have

= \ f{t, x)dt + [ /(ί, O)dt + (If)*(v)

^ F(x) meas E + a ,

where

F(x) = sup {/(ί, a?) I ί e T} < + oo ,

a = max {0, F(0) meas T} + (7/)*(v) < + oo .

The function F is convex, and hence continuous, so that the quantity

k(r) = sup {F(x) I | x \ g r}

is finite for every r > 0. For every measurable Ecz T and every
r > 0, we have

r I μ(E) I = sup{< x, μ(E) > \ \ x \ ̂  r}

^ k(r) meas E + α < + oo .

It follows that, given any e > 0, there exists a δ > 0 such that meas
E < d implies | μ(E) \ < ε. Thus μ is absolutely continuous with
respect to dt, and μ must be countably additive. By the Radon-
Nikodym Theorem, there exists some w*eLJ,(Γ) such that

for every xeRn and every measurable E. The formula
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= [ <u(t),u*(t)>dt
T

then holds for every u which is a linear combination of functions of
the form x χE, and since such linear combinations are dense in L~(T)
the formula must actually hold for every ueLζ(T) by continuity.

COROLLARY 1. Under the hypothesis of Theorem 4, the convex set

{u* e Li(T) I (If*)(u*) + <a, u*> + a £ 0}

is weakly compact (with respect to the pairing between Un{T) and
Ln(T)) for any aeL~(T) and any real number a.

Proof. Since If norm-continuous, the set

{v e L~{T)* I (If)*(v) + v(a) + a ^ 0}

is weak* compact in L~(T)* for any a and a, according to a theorem
proved independently by Moreau [7] and the author [12, Theorem 7A],

COROLLARY 2. Let D be a subspace of Lζ(T) supplied with a
locally convex topology at least as strong os the uniform norm
topology, and let D* be the space of continuous linear functionals
on D. Suppose that no nonzero linear functional on Lζ(T) of the
form

\ <u(t),u*(t)ydt , u*eLx

n(T) ,
r

vanishes throughout D. Then, under the hypothesis of Theorem 4,
// is a continuous finite convex function on D, and the conjugate
(//)* of If on D* is given by If*, in the sense that if v e D* corresponds
to some u* eLi(T) as above one has (If)*(v) — If*(u*), whereas other-
wise (If)*(v) = + oo.

Proof. Let / be the convex functional on ΰ * such that J{v) =
If*^*) ifv corresponds to a u* e Li(T), whereas otherwise J(v) = + oo.
This J is well-defined, in view of the hypothesis about linear func-
tionals which vanish on D, and the conjugate of J on D with respect
to the natural pairing of D and D*, is just the restriction of If to
D. By Corollary 1, the convex sets

{veD* \J(v) ^ μ} , μeR ,

are compact in the weak topology on β* induced by D, so that J is
lower semi-continuous in this topology. It follows that J= J** = (7/)*.

REMARK. Corollary 2 is applicable, of course, to various situations
where T has topological or differentiate structure, and D is a space
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of continuous or differentiable functions on T (with D* a correspond-
ing space of measures of distributions).
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REFLECTION LAWS OF SYSTEMS OF SECOND ORDER
ELLIPTIC DIFFERENTIAL EQUATIONS IN TWO

INDEPENDENT VARIABLES WITH
CONSTANT COEFFICIENTS

JAMES M. SLOSS

In this paper we shall consider the reflection of solutions
of systems of equations

(l 1) uxx + uyy + Aux + Buy + Cu = 0 ,

where u = (uu u2, ••-,un)
τ, A, B, C are constant, pairwise com-

mutative n X n matrices, across an analytic arc K on which
the solutions satisfy n analytic linear differential boundary
conditions. If the boundary conditions have coefficients which
are analyiic in a specific preassigned geometrical region can-
taining ιc, then we shall show that the solution of (1.1) satis-
fying such boundary conditions can be extended across tc,
provided certain inequalities are satisfied. Moreover, the region
into which u can be extended will depend only on the analytic
arc K, the original region, and the coefficients of the boundary
conditions; i.e., we shall have reflection "in the large" and
the region will not be restricted by the equation.

There are two basically different situations considered, the results
of which are stated in Theorem 1, Theorem 2, and Theorem 3.

Theorem 1 treats the reflection of solutions of a system (1.1)
initially given on an open set Ω for which the boundary conditions
on an arc fc adjacent to Ω are

Σ Paβ(D)uβ = fa(z) , a = 1, 2,
β=ι

where

with Paβ(z) and fa(z) analytic in Ω\JκϋΩ, where Ω is an open set
determined by fc adjacent to /c and disjoint from Ω. In the event
that two inequalities involving the p?β(z)(r + s = k) are satisfied, then
we can reflect the solution of the system across fc into κ{jΩ, so that
the original solution is extended into all of ΩiJfcUΩ.

In Theorems 2 and 3 the reflection of solutions given in Ω, of the
special system (1.1)

Δu + En = 0 , E = n x n constant matrix ,

541
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is treated. In these cases boundary conditions of the form

fa = fu(z) , v = 1, 2, . , n

are assumed prescribed on Λ:, in which pl'(z) and f»(z) are analytic in
Ω\JιcUΩ. For Theorem 2, k ^ n, and for Theorem 3, k = n - 1.
There are five conditions which must be satisfied in Theorem 2 to
insure reflection. Aside from two inequalities involving the plt(z) that
must be satisfied as in Theorem 1, there is an additional determinental
inequality on the arc (z — G(z))

( 1 . 2 ) I D " [ G ( c ) - G(z)Y \ Φ O , l ^ v ^ n - 1 , 1 ^ i ^ n - 1 ,

which must be satisfied as well as two additional inequalities which
depend on the constants of the differential equations.*

In Theorem 3 it is unnecessary to assume (1) one of the dif-
ferential equation conditions, and (2) condition (1.2). Moreover, in
Theorem 3 the reflection is reduced in quadratures whereas in Theorem
2, for the general case, we have only an existential proof.

Finally, we shall give equations and boundary conditions to which
the theorems apply. Theorem 1 is applicable when the boundary con-
ditions are u = (φ^z), φ2(z), , φn(z)).

Theorem 2 and Theorem 3 are suitable for systems of differential
equations of the form

Σ ^ ( Φ i = 0, ί = 1,2, . . . , m

where the Pί3 are polynomials with constant coefficients and Δ is the
Laplacian. Two inequalities involving the coefficients of the Pu must
be satisfied. A special example is the metaharmonic equation

Δ*u + axΔ
n~xu + . . . + anu = 0 , ao = constant .

In this case it is only necessary to check one inequality for the
differential equation in the case of Theorem 2. A special example of
the metaharmonic equation is the polyharmonic equation

Anu = 0 .

In this case there are no inequalities for the differential equation
that must be checked for Theorem 2 or 3. Also in this case there
is a particularly simple representation of the solution in terms of
analytic functions in Ω and analytic functions in Ω which is a gener-
alization of the representation in [8].

In the special case of equations

* J. Leray kindly pointed out to me that (62) and one of the d.e. inequalities
are always satisfied and that the 3 holds for k<2n.
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Auβ = α i2ux + aj2u2 j = 1, 2 , aSi = constants ,

a special case of which is the metaharmonic equation

A2u + a An + bu = 0 , α, 6 constant ,

the condition on the arc fc is automatically satisfied. Moreover, the
conditions of Theorem 2, for the biharmonic equation, reduce to the
conditions given in [8] with the exception that Theorem 2 requires
ueC2+k(Ω[jfc)f]C4(Ω) whereas [8] requires only that

u € C\Ω u fc) n c\Ω) n C2(β u o .

Finally, it is noted that in the case when the analytic arc is a
portion of the x axis then the condition (1.2) is automatically satisfied.

Restricting ourselves to equations of the type (1.1) we get explicit
representations for the solutions in terms of the zero order matrix
Bessel function. For purposes of brevity we shall consider homogeneous
equations (1.1) since the treatment of nonhomogeneous equations in-
volves only obvious changes.

In his beautiful paper [6], Lewy thoroughly considered the question
of a single elliptic equation in two independent variables for which
the coefficients are analytic functions in a neighborhood of fc. Brown
[1] considered the reflection laws for a general fourth order elliptic
equation, with constant coefficients, in two independent variables across
a straight line segment on which he assumes the solution satisfies two
boundary conditions of the form

Σ PlsDlDs

yu(x, 0) = fu(x) , v = 1, 2 ,

where the line of reflection is y = 0 and pi8 are constants. Assuming
the original domain is convex then he achieves reflection in the large,
i.e., the domain of reflection is determined initially by the differ-
ential equation. Filipenko [2] investigated reflection for the harmonic
equation in more than two independent variables across the plane xλ = 0
and has shown that reflection in the large for certain initial domains
is possible provided boundary conditions of the form

are prescribed on the plane, where P is a polynomial. Lewy [7] has
given an example to show that the modification of P from a polynomial
to an analytic function is not possible. Garabedian [3], [4] has also
investigated certain reflection laws in the small for a nonlinear elliptic
equation and for quasilinear equations with special boundary conditions.
J. Leray [5] has, in a very interesting paper, used reflection for the
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explicit determination of the Greens function for an M-harmonic
equation in a band, when differential boundary conditions are given
on the boundary of the band.

2* Geometric reflection across an analytic arc* Let to be an
open analytic arc defined by the real analytic function F(x, y) = 0
with Fl + Fy^O. As shown in [8], this defines a function ζ = G(z),
of the complex variable z = x + iy which is analytic in a neighborhood
of fc and for which tc is described by z = G(«). 2 — G(z) is called the
reflection of z across fc. z = z on /c. Let Ω be a semi-neighborhood
of Λ:, with G(s) analytic and univalent on Ω and thus G'{z) Φ 0 on Ω.
Let 42 = G(Ω) and assume β n f i = 0 . Then it can be shown that
for z in Ω{Jfcl)Ω, G(z) is univalent, f = z and G'(z) ^ 0. Moreover

G'(z) = [G'

and

G"(s) = -G"(z)G'(z)-3 .

3* Representation of the solutions* In this section we shall
derive a representation for the solutions of (1.1) which are in C'(Ωlifc).
This will be done by a slight variant of the very elegant method
developed by Lewy [6]. The solutions are expressed by means of a
complex Riemann function, which can be found explicitly in our case.

First we consider the transformation

(3.1) u = e-{ll2)iΛx+By)w(x, y)

where the exponential matrix is defined as usual by its McLaurin
expansion. Due to the pairwise commutativity of A, B and C we get
(1.1) becomes

(3.2) e-M*)u*+Bv) ίWχχ + Wyy + JL[4C - A2 - B2]w\ = 0 ,

1 4 )

which is equivalent to:

(3.3) wxz + wyy + Dw = 0

where

(3.3.1) D = — [4C - A2 - B2] .

4

Note that (3.3) can be written for z in Ω as

(3.4) 4G7(Js)wβs + Dw = 0

where
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(3.5) _ _ = _ _ _ _ t _ _ I _ . = _ G (z) —- + t — .
3z 2 L 3x 3i/ J 3a; 2 L J L dx dy Λ

Let

(3.6) w(x, v) = «{«±i, 1^1] = 4 ^ ± ^ , ̂ f ^ ] = W(z, z)

for z = x + ίyeΩ\jκ and 2 = G(s) e i2Ufc.
With the idea of finding a representation of the solution of (3.3),

we seek the complex Riemann function; viz. the solution of

(3.7) L[v] = vzζ + ±-DG'(Qv = 0
4

which is a function iϋ[2°, ζ°,«, ζ] of four complex arguments each
ranging independently over Ω{Jfc\jΩ with

(3.8) LZfζ[R] = 0

and

R[z°, ζ°; «°, ζ°] - /

(3.9) Rz[z\ ζ°; z, ζ°] = 0 .

, ζ°; °̂, ζ] = 0

We claim that such a matrix function is given by

(3.10) R[z\ ζ°; z, ζ] - JO[I/JD((« - z°)(G(ζ) - G(ζ°))J

where if Q is an w x n matrix, we define

With any norm for Q we get

where Jo, on the right, is the zero order Bessel function and thus
the matrix series converges for all Q. Thus R[z\ ζ°; z, ζ], as defined,
is analytic in z\ ζ°, z and ζ for z\ ζ°, z and ζ in Ω U A; U Ω. Moreover
it is easy to see that (3.9) are satisfied and by direct computation,
we see that (3.8) is satisfied.

Our next aim is to find a representation of W(z, z) as defined by
(3.6). This will be done by finding a function W*(z, ζ) which is
analytic for z in Ω and analytic for ζ in Ω and for which

W*(z, z) = W(z, z) .
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We consider now the Cartesian product

S x S = {{z,ζ):zeΩ{Jιc,ζeΩljfc} .

Let zι and z2 be arbitrary points of Ω{jιc and let p be a path joining
zx to #2 which lies in Ω\jκ. Then let p be the reflection of p joining
z1 to z2 in fiU^. Let

S2(2i, zif p) = {(z, ζ)eS x S:zep and ζ e £} .

Note that

(3.11) - RW*t + — G'(ζ)RDW* - RzζW* - —G'(ζ)DRW
4 4

since, as is clear from (3.10), RD — DR. We define

W*(z, z) = W(z, z) = w(x, v), W.*(z, ζ) \ζ=i = Wz{z, $),

i.e. the solution to equation (3.3), and let this be the "initial condition"
for the extension of TF* as an analytic function in (z, ζ). Let W*
be assumed to be a solution of L[W*] = 0 for (z, ζ) e S2(zly z2, p). We
shall want to integrate (3.11), when W* is such a solution and R is
a Riemann function, over "triangles" Δι of S2(zu z2, p) with vertices
(ζ°, ζ°), (z°, ζ°) and (β0, g°), over "triangles" Δ2 with vertices (ζ°, ζ°), (ζ°, 2°)
and (z°, z°) and over "squares" with vertices (c, c), («, c), («, 2), (c, ί),
c being a point of /c. Over such "regions" as these, we have:

(3.12) 0 = - £(RW*)tdt + &RtW*dt - §RσW*dσ .

Consider i2[̂ °, ζ°, ί, σ] and TΓ*(ί, σ) in the above, where the region is
the "triangle" c S f e ^ p ) with vertices (ζ°, ζ°), (z\ ζ°), (a;0, g°). We
get, due to the nature of .β[z0, ζ°; ί, σ],

W*{z\ C) = W*(ζ°, ζ°)

(3#18) + \22mA ζ0; tf ΐ ΐ

Next we consider R[ζ°, z°; t, σ] and W*(t,σ) in (3.12) and integrate
over the triangle c S*(z19 z2, p) with vertices (ζ°, ζ°), {z\ z°), (ζ°, 2°) and
get, making use of the special character of the Riemann function
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W*(ζ\ z°) = W*(z", z")

(o.l4j j(ζQζ°)

°, z°;σ, σ]W*(σ, σ)dσ .

Finally we shall integrate (3.12) with R[z, z; t, σ] over the rectangle
aS2(zly z2, p) with vertices (c, c), (z, c), (z, z), (c, z) where c is assumed
to be a point of tc, and thus, (c = c):

W*(z, z) = TF*(c, z) + PΓ*(^, c) - R[z, z; c, c]W*(c, c)

%[z, z\ t,c]W*(t,c)dt

"(c,z)

Rσ[z, z; c, σ]W*(c, σ)dσ .

This gives the representation of the solution of (3.3) for which we
were looking. The integrals entering (3.13), (3.14) and (3.15) are
independent of the path p since in (3.13) and (3.14)

[(RW*)t - (RtW*)]σ - [ROW% - RaW? + RWt* - RσtW* - RσWt*

= RLtσ[W*]-Lσt[R]W* = 0

by (3.11).
Next we show that W*(z, ζ) as defined by (3.13) is an analytic

function of z and ζ for z in Ω and ζ e Ω. This is done by showing
dW*(z, ζ)/dz = 0 and dW*(z, ζ)/5ζ = 0; i.e. the Cauchy Riemann
equations are satisfied. Since R is an analytic function of its
arguments, z = z, z — G{z), dz/dz = G'(z),

G'(z)W*(z, z)Rσ(z, ζ; σ, σ) | ί β,,σ a = ί = 0

by the nature of R. Next we check analyticity in ζ.

(ζ, 0 - G'(ζ)[CB(s, ζ; ί, t)W*(t, t))t - RtW*(t, t)]t=ξi=ζ

= U%)[Wξ*(ζ, Q - R(z, ζ; t, t)Wt*(t, t) \t^u] = 0

by the nature of R = Jo. Note that (3.14) can be got from (3.13)
simply by substitution. The representation of the solutions of (1.1),
which we shall use, is given with the aid of (3.1) and (3.15) by:

U*(z, z) - exp \A*Z + £*G(£)UlF*(2, c) + TΓ*(c, z)

- R[z, z; c, c\W*(c, c)
(3.16) f z

- Rt[z, z; t,c]W*(t, c)dt
Jc

- \^Rσ[z, z c, σ]W*(c, σ)d
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where

A* = —i(A - iB) , E* - -i-(A + iB) .
4 4

4* Reflection of solutions of (1*1) across analytic boundary
conditions* Before proving the reflection theorems we shall need to
prove two lemmas.

LEMMA 1. Let μ — μx + μ29 μλ and μ2 nonnegative integers,

(4.1) A = ±{D9 - iDy) , Dt =±-G\z)(Dx + iDy)
Δ Δ

then for functions

M{x, v) = M[

are analytic in x and y, the following operator relation holds:

(4.2) + terms of order <^ μ — 1 in Dz and Ό% all

of which contain terms of order at least

one and not greater than μ — 2 in D%; i.e.

all of order ^ μ — 2 in DΛ ,

where a^, af1"2, a£ i μ 2, , a£ i μ 2 are the coefficients of aμ, a"-^, , bμ

in (a + b)K(a - δ)μ2 (Note a 0

W 2 = 1, ^ 1 Λ 2 = (-1K2)

δ(v, μ) = 0 if v > μ ,

= 1 if v ^ ^ .

Proof. By induction on &. For μ = 0 clearly true. For μ = 1
we have from (4.1) for μx = 1, /̂ 2 = 0

J5β = D# + (G'(ί))-rjDί which is (4.2) for μx = 1, μ2 = 0

and for μx = 0, //2 = 1

Dt which is (4.2) for μx = 0, μ2 = l .

Assume (4.2) true for μ, we must show it is ture for μ + 1. i.e.,
assume (4.2) and then consider
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(A) + terms of order ^μ in Dz and Zλ all containing

terms of order at least one and not greater than

μ - 1 in Dή. i.e.,

Σ
i=i

But

(a + b)(a

= (α

+ + (apj? + aμ/μήabμ

and thus we see

{ μ+i

3=0

where α^+^s are the coefficients of aμ+ί,a,i'b, •',bμ+i in
Now consider

Σ

(B) + <"KG'(£))-<fI+2)G"(ψ + (^ ίί. 2 )]A" +

Σ aHn+W

- α^ 1

2 + 1 ( G ' (2))"" ' + 2 ) G"(2)(^ ί 1
where since

(α - 6)(α + 6)^(α - 6)^2 = aμ+1 + (α:fi« - ΐ)aμb

the α ^ 2 are the coefficients of aμ+1, aμb, bμ+1 in (α + b)μi(a — b)μ*+L.
Thus the lemma is proved.
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LEMMA 2. Given the operators

Pil(D) + pi2(D) + + PiΛD) i = 1, 2, , n

where

τ> (Ώ\ — V Ύ\r$(v\ΏrΓ)s /n (TV\ — X1 Ύ\rs('y\TlrDs . . .
Pil\-L') — 2-i Pil \*/-L'z J-Sy i Pi2\1J) — 2LJL Pi2 \&)*-'x -^y J

then for

Dz = \{DX - iDy), DΛ - i-G'(2)(D. + iDy)
LA LA

= M = MU)i
+ M0,k(z)(G'(z))-kDΪ

where Tk_2(z) is a matrix of terms in Dz and D* and of order
^k — 2 in Dz and of order ^k — 2 in DΛ.

IPIΪ Λ . PSV

MUz) = Σ (i)Ί = Σ (iYiPlβ)
r+s=k \ I r+s=k

\PZ - v"J
M i /y\ — \ ' (ό\ssvrs( Φhrs \ Ά/f (/y\ — X' (ό\s( rϊirs \^ \,\\*') — / l \ v) t^i \J/aβ/i ^VJ-k l>0\/ί'/ — ' J \ *) \J/aβ/

jyj.Qi]c\Z') —— x i \ %) \Paβ)i L' *-lik 1\^/ — / i \v) (Xjc—l\Paβ)
r+s=k r+s=k

"*"' Oik—1\ / ' ι \ / f̂f

where a\s are the same as in Lemma 1.

Proof. By Lemma 1

= Σ P«I{W S [Σ ocγ{G^

- δ(2,

+ Σ (iYPrADΪ-1+ Σ /

+ qn(Dβ9 DA) where g<x is a polynomial in D z and DΛ

of degree ^ fc — 1 with coefficients analytic in Ω U ιc U Ω and which
contains terms of order ^k — 2 in β 2 and of order <Lk — 2 in DΛ.
Similar results hold for paβ(D), β = 2, , n. Combining these results
with the fact that ar

k

s — ( — 1)% we get the conclusion of the lemma.
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We are now in a position to prove

THEOREM 1. Let u — (uu u2, , un) e C2(Ω) and satisfy in Ω

(4.3) uxx + uyy + Aux + Buy + Cu = 0

where A, B, C are pairwise commutative constant n x n matrices.
Moreover let ueCk(Ω{Jfc)Γ\C'(Ω{Jκ) and satisfy on K the boundary
conditions:

n

Σ paβ(z, Dx, Dy)uβ = fa(z) , a = l,2,- -,n,
β=l

where

paβ(z, ί, y) = Σ

with pr

a'β(z) and fa(z) analytic in Ω\Jιc\jΩ. Moreover, if Paβ(z,ξ,7])
is the principal part of paβ(z, ξ,η), we assume in Ω{Jfcl)Ω

(4.4) 0 =* I ΛΓtf0(s) I - \Paβ(z,l, - ί ) ! 1

and

OΦ\MOtk(z)\ = \P«β(*,l, - i ) l ι .

Then we can reflect u across tc into Ω; i.e., there exists a unique
function u which is a solution of (1.1) in Ω U ιc U Ω and which
agrees with the given solutions u of (1.1) in Ω \J ic.

Proof. We apply M of Lemma 2 to the representation (3.16)
and evaluate on K. For simplicity let

g(z) = W*(C, Z) , h(z) - W*(Z, C) .

Then we get on K, remembering that z — z there:

(4.5) eA*z+B*G^{MU*Wk){z) + M0,k(z)(G'(z))-kg^(z) + Tk^[gf h, z]} = f(z),

where f(z) = (f^z), •• ,/Λ(«))Γ and Tk^[g9 h, z] is an expression of the
form:

^[gf h, z] = a^izW^iz) + ak^2(zWk^(z) + . . . + ao(z)h(z)

( 4 # 6 ) + \o

a-&> WΨW + **-&)9{ι\*) + + bo(z)g(z)

1 As Professor Jean Leray has kindly pointed out to me, these statements concern
the behavior of the boundary conditions in the characteristic directions.
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where E and the α's and 6's are matrices, analytic in Ω\Jκ\jΩ. Note
that for j >̂ 1,

(4.7) h(z) =
1)!

and similarly for g(z) where h{σ)(c) and g{σ)(c) are known via (3.13)
and (3.14). Moreover if K(z, t) is a matrix function known and
analytic in Ω U £ U i2 then for & ;> 1

\'K(Z, t)h(t)dt = * [dt&z, ί j Γ U - t2)
k-Wk>(t2)dt2 + #>(*)

Jc (A; — 1 ) ! Jc Jc

where Kx(z) is a known matrix function analytic in Ω\}κ\}Ω and thus

(4.8) [*K(z, t)h(t)dt = \*Kz(z, t)h{k)(t)dt + Kfc)

where

K2(z, t) = X Γ d ί , ^ , «(«! - ί)*-1 .
(k — 1)1 Jh=t

Thus (4.5) becomes on fc with the aid of (4.7) and (4.8) and the
significance of (4.6).

(4.9)
z, t)¥k\t)dt + \ K**(z, t)g*\t)dt + H(z)\ = f(z)

where H{z) is a known vector function of z, analytic in Ω U it U β,
and JBL* and JΓ** are known matrix functions of z, t analytic in
Ω U fc U Ω. Thus, since | AfA,o(«) | Ψ 0 and | MOtk(z) \ Φ 0 and G\z) Φ 0
in i2 U % U β, we can solve for h{k)(z) and g{k)(z) and get:

(4.10) /̂ (&)(2;) = \R(z, t)h{k)(t)dt + H(^) on
J

and

(4.11) g{k)(z) - [ & , t)g{k\t)dt + jff(s) on Λ:

where ^ ( ^ , t) and iί(^, ί) are known matrix functions analytic for z
and t in Ω [j fc D Ω and ίf(2) is analytic in Ω and continuous in Ω U /c

!?(#) is analytic in β and continuous in Ω U tc.
Treating (4.10) as a system of Volterra integral equations in

Ω \J ic and treating (4.11) as a system of Volterra integral equations
in Ω U /c, we get the analytic extension of h{k)(z) into Ω\J κ[j Ω and
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g{k)(z) into Ω (J tc U Ω. By integration, since h and g and their deriva-
tives of order <Lk are known and continuous on /c and specifically at
c at the outset, we get the unique extension of h(z) and g(z). By
means of (3.15) we get the unique analytic extension of W*(z, z) into
β U ^ U f l and thus the extension of u(x, y) into Ω U fc U Ω.

We shall next concern ourselves with a system which is particularly
useful when certain higher order equations are reduced to a system
of equations. With this in mind, we shall consider a more restricted
class of equations, since the inequality becomes very unwieldy.

Notation. Let

fe\\
el

,e\,

,E> =

(e\\

e\

•

βί* \

^eif

where e3

m = (e3

mU <4>, , e'mn) is the m t h row of E1.
Before stating the theorem, we shall prove

LEMMA 3.

, (t - z)[G(σ) - G(ζ)]}

(t - z)[G(σ) -

R[z, ζ; t, σ] =

where pn^ι(x, s) is the polynomial of degree ^n — 1 in x that interpo-
lates J0[Λ/XS] at the eigenvalues of E (s held fixed); a3(s) are entire
functions of s and E° = I. In the event that some or all of the
eigenvalues Xl9 λ2, , λy of E are multiple, i.e.,

IE - λ/ | = (λ - (λ -

\. φ χk if i φ k, n^ + n2 + + n5 = n, then we use Hermite "in-

terpolation to determine pn_x(x) such that if J(Xs) = JQ[Vxs\

J>n-i(λy, 8) = J(XjS)y —pn^(Xjf S) =
OX

>-'s)

Proof. The unique Hermite interpolation polynomial 2>M_i(λ, s) is
of the form:
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where the ZiA(λ) are polynomials in λ of degree <^n — 1.
Consider for Q(λ) the characteristic polynomial of 1?:

- Pn-άX, 8)

J(Xs) and 2>w_i(λ, s) are entire functions of λ and s, moreover the
polynomial Q(λ) has the same zeros in λ (multiplicity included) as
J(λs) — pn_i(λ, s). Thus /(λ, s) is an entire function of λ and s.
Rearranging, we get

J(\s) = Q(λ)/(λ, 8) + j v ^ λ , s)

But Q(λ) is the characteristic polynomial of £7. Thus by the Cayley-
Hamilton theorem Q(E) = 0 and

which gives the result since

J{E(t - z)[G(σ) - G(ζ)]} = J0{VE(t - z)[G(σ) - G(ζ)]} - R{z, ζ; ί, ^} .

Now we are in a position to state the theorem.

THEOREM 2. (HI) Let ft be an analytic arc of the type described
in § 2 for which the determinant of the (n — 1) x (n — 1) matrix

(4.12) ASz) - || D;[G(c) -

for z on Ω U % U Ω {arc condition).

I 0

(H2) det

where aό are those of Lemma 3 {differential equation condition).

(H3) Let u - {u,,u2, , ̂ f e C'(i3 U ic) n C2(β), (w ^ Λ ^ 2^ - 1, ^ ^ 2)
satisfy in Ω

(4.13) M M + uyy

where E is a constant n x n matrix for which
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.• ,o

(4.14)

1, 0,

(E)n, (E)u, (differential

equation

condition)

where (Ek)ij is the ij component of the kth power of E.
(H4) Let u satisfy on the analytic arc tz the boundary conditions

(4.15)

where

pal(z,
x = fa(z) ,

Pai(z, ί, V) = Σ
^k<

Vr£{z)ξrVs ,

with prA(z) and fa(z) analytic in Ω U fc (J Ω. Moreover if Pal(z, ξ, η)
is the principal part of paι(z, ξ, ΎJ) (as polynomial in ξ and rj)y we
assume for

> S> V) =

that for

(4.16)

and

(4.17)

DΓιPu(z, ξ, V), DΓ2DvPn,

), DΓ2DvPnl,

z, ξ,

- Δ%(z, ξ, 0 2 .

Then u = (uuu2, •- ,un)
τ can be reflected across the boundary con-

ditions (4.15) into Ω (J ιc U Ω.

Before proceeding to the proof of Theorem 2, we shall state
Theorem 3, which deals with the case k = n — 1, since the proof of
Theorem 3 follows the same lines as the proof of Theorem 2. Only
in the proof of Theorem 3, Lemmas 4, 5, 4A and 5A are unnecessary.

THEOREM 3. Let K be an analytic arc of the type described in §2.
(HI*) Let u = (u19u2,---, un)

τ e Cn~\ΩU/c)n C\Ω) and satisfy in Ω

2 These, as Professor Jean Leray has kindly pointed out to me, are conditions on
the behavior of the boundary conditions in the characteristic direction. He has also
proved that Conditions (HI) and (H2) are always satisfied, i.e. they are unnecessary
restrictions.
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U*x + Uyy + Eu = 0

where E is a constant n x n matrix for which

(4.14*) A, Φ 0 (see Th. 2) .

(H2*) Lβ£ u satisfy on the analytic arc it the boundary conditions

(4.15*)

where pli(z) and fv(z) are analytic in Ω U ιc U Ω. Also assume in

Ωϋ fCl)Ω

(4.16)* 42(z, £, V)^uη=i Φ 0 (see Th. 2 with k = n - 1) .

(4.17)* z/2(z, ί, Ύ])ξ=uη=-i Φ 0 (see Th. 2 with Λ = n - 1) .

= (uuu2, " ,un)
τ can be reflected across the boundary con-

ditions (4.15*) into Ω U fc U Ω. Moreover the reflection can be reduced
to quadratures.

Proof of Theorem 2. We first consider (3.16) with A* = 5* = 0
and

= W*(c, z) , h(z) - TΓ*(2;, c)

and get:

C/*(z, ί) - h(z) + flf(ί) - JK[«, z; c, c]h(c)
(4.18)

where, since it was shown that W*(z, ζ) is an analytic function of z
for z in Ω and an analytic function of ζ for ζ in Ω, then /&(*;) is an
analytic function of z for z in Ω and #(ζ) is an analytic function
of ζ for ζ in fl. From (3.13) and (3.14) and (H.3) we see that
h(z) e Ck(Ω U tc) and g(z) e Ck(Ω U K).

With the aid of Lemma 3 we get

(4.19) Rt[z, z; t, c] = Σ*[G(c) - G(z)]af{{t - z)[G(c) - G

(4.20) R.[z, z; c, σ] - Σ G'(σ)(c - z)af{{c - z)[G(σ) - G

Let

(βi, h) = eiJi, + eiX + + eUi, .

Then the first component of (4.18) becomes
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(4.21) Ux*(z, z) = h?(z, z) + gϊ(z, z) - {R[z, z; c, φic)}^ c o m p o n e n t

where

(4.22) hϊ(z, 0 = K(z) - Gx(ζ) Σ (V'{(* - *)Gi(C)}(βί, h(t))dt
i=o Jc

with

Gi(C) = G(c) - G(ζ)

and

(4 23) ^ ( * ' °
x G'(σ)(eί,g(σ))dσ .

Note that hf(z, ζ) is analytic for (z, Q o n f i x β and G C^ί^ U^)x(fiU /c)]
and that gf(z,ζ) is analytic for (z,ζ)onΩxΩ and 6 Ck[(Ω[j/c)x(Ω\Jtc)].

With the aid of Lemma 1, the boundary conditions can be written:

(4.24)
+ terms of order I + m ^ fc - 1 in Ώι

zΌ?Όί .

Apply the boundary conditions to (4.21), evaluate on the boundary tc,
remembering that on fc, z = z, and substitute the new functions
KjiZy z) and gά{z, z), (0 <; j ^ 2n — 1) where

(4.25) Ks(z, ζ) - Dίhf(z, 0 , 9,i*> 0 = Djgf(z, ζ)

with D°f = f, D°g = g. Thus the boundary conditions become, since
k ^ n — 1, for 2 on £

= Σ PrAz)(
r+s=fc

+ terms of order I + m ^ k — 1 in Dlhm{z, z)

(4.26) + Σ p:ί(«)(i) J Σ + ΣV*U<?'(z)] w -^r w ^

+ terms of order Z + m ^ Λ — 1 in D\gm(z, z)

v = 1,2, . . . , t t

(2" indicates we sum when k^ri),

where fv(z) is known and analytic in Ω U fc U β. It should be remembered
that the first two terms (involving only hm and their derivatives) are
analytic functions of z for z in Ω and that the last two terms (involving
only gm and their derivatives) are analytic functions of z for z in Ω

Rearranging terms in (4.26) yields for z on tc:
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( 4 2 7 ) + Σ βt ,*-
0

where

Λζ—z

(4.28) + t e r m g o f o r d e r ^ + m ^ ^ __ i i n DJ/Ijz, ζ)Ί

with coefficients analytic in Ω U /c U 42

Jζ=z

+ terms of order I + m ^ k — l i n D\gm{z, ζ)

with coefficients analytic in flU«Ufl.

(4.29) #„(*) - Σ p;ί(β)(i) αί

with Ay(z) analytic in Ω, Au(z) analytic in i2, and βtm{z) and fv(z)
analytic in Ω (J *c U Ω.

Our next goal is to convert (4.27) into a system of Volterra
integral equations for the n functions Dz

k~mhm(z, z), 0 <̂  m <£ n — 1.
On £, the system is to be satisfied and we shall see that they also
have an analytic solution for z in Ω \J K. With this in mind we state
and prove two lemmas.

LEMMA 4. Let Jc^n

(4.30) ak_m(z) = t ? i { , ζ ) z m ( , o ]
J£=z Jζ=z t

and the hypotheses (HI), (H2), and (H3) of the theorem hold. Then

(4.31) ak_m(z) = Σ \'Kk-*Λt,z)ak_r(t)dt + Ck-m(z) , n^m^k
r=0 Jc

where Kk_m>r(t, z) are analytic for t and z in Ω U K U Ω and Cfc_m(^)
is analytic for z in Ω U £ U 42.

Proof. Since the α^σ) occuring in (4.22) are entire functions,
the following Taylor's expansion with remainder is valid:

af][(t - z)Gί] - pn_t(t -z) + Rίin-2(t, z)
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where pn_2{o) is a polynomial of degree n — 2 in σ and

Introducing this into (4.22) and interchanging the order of integration
for the remainder yields:

?(z, ζ) =

Next let

, h(t))dt

- G\(ζ) Σ < !

i0

β/, h(t))dt

. 1

o , t g 1 - 1 (C)Σa^
(n — 2)1 3=o

e{, h(t))dt

Γ(ζ) Σ [>'[(« - z)Gι(ζ)]
o J

^rrGΓ(ζ) Σ
(n — 2)! 3=o

- s)""2(βf, h(σ))dσ\ds .

"7 777" Z-k wj VWV î i

(r - 1)1 i=o

1 < r < i t - 1

Then, since by assumption

/ I 0

det

we can invert the system of equations and get

(4.31. A) W
n—1

r=0

where (6ir) is a constant matrix. Thus the expression for h* can be
written:
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hϊ(z, ζ) = BO(Z) - GάQ^BMdt
Jc

- Gl(θ\\t - z)B,{t)dt

(4.32) - G r [

+ . Gf(O Σ
(n — 2)1 3=o

• ((V - sy-'ΣKB
\Je r=0

Next we let

F0{z) = B0(z)

Fr(z) = - \\t - z)r~ιBr(t)dt
Jc

and thus

(4.32A) F?\z) = (-lY(r - 1)1 Br{z) .

Introducing these into (4.32) gives

f(O Σ ('<>[(« - z)Gi(ζ)]
o J

h*{z, ζ) = F0(z) + GάQFάz) + Gl(QFt(z)

+ (n - 2)1 " ( ζ )y?.S "

'(\\σ-s)~F.

Consider now for 0 < m ^ k

+ D?[G\(z)]nk-m){z) + + DΓ\Gr\z)Wι£im){z)

Σ Σ 6ir/ i
o

, Σ Σ 6ir/ i^
(n — 2)! i=or=o (r — 1)!

where δm0 is the Kronecker delta. Since

k-m + r-(n-2)-2^k-m + (n-l)-(n-2

— k — m — l<k — m,

k-m-r + (n — 2) + l^k-m-(n — l) + (n — 2

the last term involving the integrals is of the form:
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(4.34)
r

where the Kr(t, z) are analytic for t and z in Ω (J £ U Ω and Ck_m(z)
is analytic for z in Ω U fc U £?. This follows since r ^ n — 1 and 1.

- 8)—dσ
(n — 2)!

[& — m — r + 7i — 2 ] !

if k — m > 0 or, if k — m = 0 and r < τ& — 1, where Cr*(s) is a
polynomial in s. The only difference in the case k — m = 0,r = n — 1
is that the integral on the right side is replaced by F^s). And
since 2.

(\S - s)ιdσ)ds - Γif**(s, z)F{

τ

k~m)(σ)dσ

where K **(s, 2) is an analytic function of s and 2 (since K*(s, z) is)
for s and z in β U ̂  U fl. The last integral follows from integration
by parts I + 1 times.

Thus by the definition of ak_m{z), (4.30), (4.33), and (4.34) we get
f or 0 ^ m ^ k

+ DΓ[Gl(z)]Fik-»)(z)

(4.35) +

where for t, zeΩ\jκ[jΩ, LrΛ-m(t, z) and Ck-m(z) are analytic.
N e x t w e c o n s i d e r f o r O ^ m ^ n — 2 < k

(n — m — 2)

=

(4.36)

= 1 —\\z - tT-m-2ak_m(t)dt
(n — m — 2)1 Jo

+
Σ (
r=0 Jc

where we have integrated by par t s n — m — 1 t imes. Rk-m{z) and
Lk-m>r are functions analytic for z,t in Ω[J /c[jΩ. For consistency let
-A*-(n-i)(s) — αfc_(n-i)(^) and Rk_{n_γ) — C^^^iz), Lk^{^1)>r = Lr,k-ιn-1)m

Since by hypothesis we have for z in Ω \J K \J Ω
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[ Δt{z) I =

?!••• GΓι

0

0 , ^,m<Ln -1, 1 <L v ^ n - 1

the above system, coupled with «*_(„_!) (z) in (4.35) can be written as:

(4.37)

with:

Aΐ(z)

\ Aj;_lB_

/ 1 f*
{z

in - 2)! J.
(n - 2)!

1
(n - 3)!

L(t, z) — (Lk_m,r(t, z))

R(z) - (Rk(z), R^iz),

0 ^ r ^ n — 1 columns

A; — (% — ΐ) ^ k — m ^ k rows

We consider (4.37) as a system of Volterra integral equations and
obtain its solution in the form:

- R(z)]

, z)Δτ\t)\A*(t) - R(t)]dt
(4 38)

where Γ(t, z) is the resolvent matrix which is an analytic function
of t and z for t and z in Ω U £ U Ω.

Now we are in a position to express ak_m(z), n^m^k in terms
of αfc_»(s), 0 ^ m ^ % — 1. To this end we consider (4.35), which is
valid for 0 ^ m ^ k and combine with it the integrated expression
of (4.38):
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j?_m(ί, z)A*(t)dt + R*{z) , n^m^k

where /**_»(£, z) is analytic for ί and z in i? U /c U i2 and iϋ*(2) is
analytic for z in Ω U £ U i2. This combination gives:

(4.39) α*-m(s) - Σ (V*ϊ-W(ί f «)A?.r(ί)dί + ££*.(*) , rc ^ m ^ fc
r=0 Jc

where R£*m(z) is analytic for z in Ω{Jκ{jΩ and <Γ?,*_m(£, 2) is analytic
for t and z in βLJ^LJβ. But from the definition of A^r(z) in (4.36)
for 0 ^ r ^ n — 2 and A*_(Λ_u(s) = α fc-(w-1)(«), we get the result upon
integrating (4.39) by parts if necessary.

Thus Lemma 4 is proved.

With the notation and assumptions of Lemma 4, we next state
and prove:

LEMMA 5. For I + m <^ k — 1

(4.40) D!hm(z,

where KkLmtj(tt z) are analytic for t and z in Ω U £ U Ω and CjcLm(z)
are analytic for z in Ω U ιc U Ω.

Proof. In the notation of Lemma 4, since I + m <£ A: — 1

i=o

3k-l-m /L. _ 7 _

[ A
3=0 \ 3

Thus

— I — m — 1)!

+ polynomial in (ί — c)

= Σ Γ^* -«.i(β, t)ak^{s)dt + C^m{t)
3=0 Jc

with Ck-m(z) analytic for z in Ω U ̂  U Ω, K2Lm,s(t, z) is analytic for t
and « in fl U « U fl and where we have made use of Lemma 4 and
the fact that if r > 0 then
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\'dt(z - tyΫKia, t)ak_s(8)ds = —i—Γ(s - t)r+1K(t, t)ak_ό{t)dt

for the case when m + j ^n. Thus the Lemma is proved.
We are now in a position to continue the proof of the theorem.

Combining (4.28) with the results (4.31) of Lemma 4 yields:

(4.41)

= Σ \'κ>T(t, z)ak^(t)dt

+ terms of order I -{- m ^ k —• 1 in

D}hm(z, ζ)ζ=z with coefficients analytic in Ω U K U £ ,

where JGΓj *(ί, «) are analytic for t and « in Ω U Λ: U β. With the aid
of Lemma 5 applied to the second term on the right we get:

(4.42) - Σ (
m=0 Jc

where K^(tf z) are analytic in t and « for t and z in Ω U Λ; U β, and
Cv(z) is analytic for z in Ω [J /c [j Ω.

Finally, we combine (4.27) and (4.42) and get for z on κ\

(4.43) βo(z)Φ(z) = [K(t, z)Φ(t)dt + g*(z) ,

where g*(z) is an analytic vector function for z in Ω and in C(Ω U Λ:)

), α^ίz ) , , ak_n+1(z))τ ,

m designates the column, v the row.

0 ^ m ^ ^ — 1, 1 <̂  v ^ n .

But from (4.29) we see that

Σ
Σ

, Σ

I &%(*) I =

Σ WaVVni

where by definition of ar

μ

s

r+s

(a + b)r(a — b)s — Σ ocr

μ

sarJrS

and by definition

Σ (ΐVfyr8/nr8 V ίrW/Ύrs

V*'/ « i i^2i > > ^ j V*'/ α%-i.
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PΛz, ς,v)= Σ vilify*.
r+s=k

Thus if ζ = ξ + iη, ζ = ξ - iη then

PΛ(z, ξ, V) = 2~* Σ (ί)'PΓί(2)(ζ + O r(ζ - QY
r + a=k

and

Pvl(z, ξ, η) |,=1 = j\2r* Σ (iyoφplί(z) .
η=i r+s=k

PA«, ξ,V), (A - iDJPAz,ζ,V)> , (A - iDJ-ΨA*,f,V)

PA*,£. V)> (A - *A)-P«ι(*» ζ,V)> , ( A - iD^—ΨA*, ξ,V)

Pnι{z, ξ, η), (A - ίDη)Pnί{z, ξ,η), , ( A - ίA)""'-P.i(2. ξ, V) |=i

with C. = 1! 2! (n - 1)!
Since Pyi(2, f, 3?) are homogeneous polynomials in (£, ̂ ) of degree

fc, we see from Euler's formula that

Thus

+ ηDη)
n-ι-ι{ξDξ - ηDη)

ιPvl(z, f, 37) | f = 1 ̂  0
3 ? i

if and only if J2(s, f, 77) |e=i,,=i ^ 0. This follows immediately upon
writting the determinant as a sum of determinants. Thus we have

I βo(z) I = [G\z)Y-^-^ I β*μ(z) I Φ 03

for z in i? U ιc U fl by assumption (4.16). Thus

(4.44) 0(z) - βϊ\z)\lί(t, z)Φ(t) + βϊ\z)g*(z) .

We now consider (4.43) as a system of Volterra integral equations in
Φ(z) for z in Ω U £. As such, this system has a unique solution
vector Φe(z) which is analytic for z in Ω and continuous for z in Ω U /c
and moreover agrees with 0(2) for z on £. Thus 0e(#) furnishes the
analytic continuation of Φ(z) into fluff. Thus (?(^) is analytic for z
in Ω U £ U β. From the definition of 0(2) in (4.43.A) we see this yields
the analytic continuation of αk(z), αc^iz), , αk_n+1(z) into Ω I) tc U Ω.
But by (4.36), the definition of A*(z) and (4.38) we get the analytic
continuation of F{k~{n~ι)){z) into Ω U K U Ω. By integration, we get
the analytic continuation of F(z) into Ω I) tc Ό Ω. (We adjust the

3 Professor J. Leray pointed out to me the relation between βlμ and Δι(zt ξ,



566 JAMES M. SLOSS

constants of integration to agree with F{z) and its derivatives at
the point c of the boundary; this gives uniqueness.)

Upon differentiating Fd(z) and using (4.32A) and (4.31A) we get
the analytic continuation of (e}9 h(z)) into Ω U fc U Ω. However by
assumption (4.14)

1 0 . . . 0
el ' =J = n- .

Thus we get the analytic continuation of h^z), h2{z), , hn(z) into
ΩΌfcΌΩ.

In a completely analogous way, we can show how to analytically
extend gk(z), gk^(z)9 , gk-.(n-i)(z) into Ω U fc (J Ω, knowing initially
only that they are analytic in Ω and continuous on Ω U fc. In this
direction we first note that we have:

LEMMA 4-B. Let k ^ n

y^.όυn) ak_m{Z) — Uζ uz gι \z, ς; — Uς gm\z^ z) , u ^ m ^ tc

and the hypotheses of the theorem hold. Then

(4.31B) ak-m(z) = X \ Kk-m,r(t, z)a*_r(t)dt + Ck_m(z)
r=0 Jc

where Kk_m,r(t, z) are analytic for t and z in Ω (J £ U Ω and Ck_m(z)
is analytic for z in Ω U fc U Ω.

Proof. The proof of this lemma is the same as that of Lemma
4, with only obvious modifications. In place of the expression for the
Taylor's expansion for aά about t — z we start with the expression
for the Taylor's expansion for aό about G^σ) = G(ζ) and integrate viz:

3=0

- (c - s)2Σα^0)(*ΐG(σ) - G{Q\G'{σ){e{, g(σ))dσ
3=0 Jc

~ ( C : " ) 3 Σ ^ ( 0 ) ί W ) - G{ζ)YGf(σ){eU g{σ))dσ -
2! 3=0 Jc

1 n—1

— 2) ! i=o

\\G(σ) - G(s)r-2G'(σ)(e{, g(σ))dσ)ds .

In place of Br(z) we introduce:



REFLECTION LAWS OF SYSTEMS OF SECOND ORDER ELLIPTIC 567

Σ ay(0)(g>, β(ζ)) ,
O(r — 1)! J=O

and the expression (4.32) becomes replaced by

gT(z, ζ) = 50(ζ) - (c -

- (c -

- (c -

Also Fr(z) is replaced by

Fr(Q = - j W ) -

so

^«"(ζ) = (-lY(r - 1)! (G'(ζ)

Considering these as Volterra integral equations for Br(ζ), we can
solve, since G'(ζ) 9̂  0 in Ω (J ff U Ω, and get:

where Qr(σ, ζ) is the resolvent which is analytic for σ and ζ in
i2 U K U β. Thus

0 = ^o(ζ) + (C - «)#(ζ) + (β -
+ . . + (C - ί ) - 1 ^. .^ )

1 Λ-1 »-l / 1 \r

- G(ζ))(c -

(\[[G(σ)

and for 0 < m < n — 1
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at_m{z) = Dk

ζ-
mD?g*{z, ζ)Ί

Jz=ζz=ζ

= (-l)mm!.~

+ + ( i ) r Γ Ίt

(4.45) [w - 1 - m]!
(c -

Σ Σ f ( f . { ( ) i [ ( ( ) (ζ))( - z)]}
i=0 r=O J

(\[[G(σ) ~

Since

r - [{% - 2) - (A - m - 1)] ^ k - m ,

the last term can be written

(4.46) Σ [nk-m\σ)QkU,M, z)dσ
r=0 Jc

where Qk-mΛσi 0 a r e analytic functions of σ and ζ for σ and ζ in
Ω U £ U Ω. Introducing (4.46) into (4.45) gives an expression of the
same form as (4.35). We now proceed exactly as in Lemma 4 and
find that:

(4.47) ff<k~m)(z)

where

and JΓ*(£, «) is an analytic function of t and £ for t and £ in Ω U £ U ώ
and iί*(z) is an analytic function of z for 3 in Ω U £ U Ω. But for
W5£wϊgfc, O i g r f g w — l, we have r — [(n — 2) — (fc — m — 1)] <̂
k — m, thus (4.45) becomes replaced in this case by

r=0 Jc

where Q**m,r(σ, z) are analytic functions of σ and « for σ and £ in
Ω U £ U 42. Combining this with (4.47) gives the result.
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The condition ΔSz) Φ 0 is unnecessary in this lemma since the
corresponding condition is:

4 = (-i)ί (-«J/*2! 3! (n - 1)1 Φ 0 .

Next we note that we have

LEMMA 5-B. For I + m ^ k — 1

(4.38) Ό\gm(z, ζ)l = Σ ('&«./(*, t)aU(t)dt + &*(*)

where K£_nfj(z, t) are analytic for z and t in Ω U it U i5 ami C£-m(z)
is analytic for fl U ̂  U β.

Proof. Same as Lemma 5 using Lemma 4-B instead of Lemma 4.

As in the case of (ak(z), ctk~ι(z), , tf*-n+i(s))Γ, we get analytic
extension of (αί(«), α*_i(«), , #*-Λ+i(s))Γ into β U Λ: U Ω which are
analytic initially only in Ω, and continuous on Ώ \J it. The only
difference is that we use the fact that J2(z, ξ, η) |5=i,^=ί ^ 0 on
β U ^ U f l whereas in the extension of the a)s we used the fact that
Δlz, ξ, -η) \ξ=ltV=i Φ 0 on Ω U K U Ω.

In an analogous way we get the analytic extension of F{

r

k~n~1)(z)
into Ω U it U Ω, which in turn gives the analytic extension of Br(z)
into Ω U it U Ω, which finally gives the extension of (e(, g(z)). Since
by assumption Δγ Φ 0 this system yields the analytic continuation of
&(ζ), QlQ, , <7 (O into i2 U Λ: U Ω.

Upon introducing the extended vector functions h(z) and g(z) into
(4.18) we get the extension of U*(z, z) for z in i2U^Ui3, which was
given originally only for z in Ωl)κ. And thus, the solution of (4.13)
has been extended across the boundary conditions on tc into Ω U ιc U Ω.
This completes the proof of the theorem.

5* Applications* (A.I) Consider the situation where we are
given a solution to the differential equations

(1.1) uxx + uyy + Aux + Buy + Cu = 0

where (^, t62, , re,,)7', A, £ and C are pairwise commutative constant
n x n matrices in a simply connected open region Ω of the type
described in 2, part of whose boundary is the analytic arc ιc, and on
tc satisfies

- ,φn(z))

where φx{z), , φn{z) are functions analytic in Ω U it U β. Moreover
let % 6 C(£? U /^). Then by Theorem 1 we can uniquely extend the
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solution u into Ω U fc (J Ω so that it is a solution in this large region
and is the only one that satisfies the given conditions provided 0 Φ
I MOtO I where

J/nnl

In this case

oo _ 0 if i Φ j

1 if i — j '

Thus I MOfO | = 1 ^ 0 and reflection is possible.
(A.Π) Theorem 2 is suitable for systems of equations of the form:

where the

Laplacian,

for which

tnen

Pa are

e.g.,

if

polynomials

Δ2u,+

Δ*u2 + c

w2, w3, w4, wδ)

(° "
0

0

0

<o

with constant

aΔt

Δu2

T _

_ !

a

0

0

d

h +
+ o

0

b

0

0

0

bu2

\Δux

0

0

- 1

0

c

= 0

= 0

O v

0

0

- 1

o)

coefficients and Δ is the

Δuu Δ2u2)
τ

(A.III) When the arc K is a portion of the x axis, then condition
(H.I) of Theorem 2 is automatically satisfied since then G(z) = z and

- 1 - 2 ( e - z ) - 3 ( c - 2 ) 2

0 2! 3 2(c-«)

0 0 - 3 !

0 0 0

= ±1!2!3! . . . (n- 1)1 Φθ .

-(n-l)(c-z)n-2

(n - l)(n - 2)(c - z)n~3

(n - l)(n - 2)(n - 3)(c - z)n~4
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then

(A.IV) When we consider systems of the form:

Ali — fi 0/ I /f nι

Δu2 = CL2luι + anu2

- α n — α1:

^ 2 1 ^ 2 2

ai5 constants

and condition (H.I) of Theorem 2 becomes G'(z) Φ 0 for Ω U fc U Ω which
is automatically satisfied because of our initial restrictions on G(z).

(A.V) Given that uλ is a solution of the metaharmonic

equation

(5.1) Δnuι anuγ — 0

in Ω where au a2, , an are constants and u^x, y) is a single function,
Uί £ Q^-2+kψ y ^ n c*n(Ω), n-l^k^2n,n^2 and wx satisfies on κ\

(5.2) — Y A

r+s^k
fa = fa(z) a = 1, 2,

where the p;;(«) and fa(z) are analytic in β (J ̂  U β. Assume that tc
is such that (H.I) is satisfied. This equation can be written as a
system by letting u2 — Δuu uz — Δ2uu , un — Δn~xuγ and equation
(5.1) is equivalent to the system

/0
0

0

_ 1

0

0

0
- 1

0

0

0

0

... o

... o

. . . o
•• α 2

0\
0

Thus

^ 0 0 1 0 0 . . . 0 Vxn

0 0 0 1 0 . . 0

• —α.

and in this case (4.14) becomes.

Ί 0 0 0 ••

0 - 1 0 O

0 0 1 0 ••

[0

0 (-]

±an±an_ί . . . ±

o\
0

0 = 4-1
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which means Διφ0 is not a condition in the case of the metaharmonic
equation. Thus if Δ2 Φ 0 and Δz Φ 0 for z in Ω U £ U β, as given by
(4.16) and (4.17), and if the aά are such that (H.2) is satisfied then
we get that ut can be extended into Ω U £ U Ω.

To get some idea of how we check condition (H.2) consider the
example

Δ2u + 2>Δu + 2u = 0 .

To determine ao(s) and a^s) of Lemma 3 where

p.x(X, s) = αo(s) + αΛsϊλ ,

note that

I E - XI \ = λ2 - 3λ + 2λ = (λ - l)(λ - 2)

and thus

Thus

Thus

Pitt, 8)

Pi(2, s)

0,(8)

αo(s)

t,σ] =

= do(s) + tti(s) = Jo[v 8 ] >

= J0[\/2s] - Jo[VY] ,

= 2J0[VΊΓ] - J0[v/2i] .

<*o{(* - «)[G(σ) - G(ζ)]}f J ?
\0 1

and the representation of the solution (4.18) becomes:

£7i*(s, «) = feiίίδ?) + flr±(«) - αo{(c — z)[G(c) —

+ ^{(c — z)[G(c) — G(z)]}h2(c)

- [G(c) - G(s)]ί*[αί1}{(* ~ ^)[G(c) -

— #1 \(ί — Z/lyΓKC) — ijr\Z)\)rl2\t)\Cίt

- (t - z)[[a^{(c - z)[G(σ) - G(z)]M<r)

- <{(c - «)[G(<τ) - Gί^Blfl.Wίff)*'

In this case, the condition (H.2) becomes:

1 0

α 0 {V) α L {}
= <(0) = - \ Φ 0 ,
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and is thus satisfied. Note that in this example (H.I) is also satisfied,
since as a special case of (A.IV) it is simply G'(z) Φ 0 for z in Ω U fc U Ω.

Note that the polyharmonic equation is a special case of the
metaharmonic equation.

(A.VI) It is of interest to note that in the case of the polyhar-
monic equation viz. Δnu ~ 0, Έ is of the form

10-1 0 0 ... 0\

0 0 - 1 0 . . . 0

\

0 0 0 0 . . . - 1

0̂ 0 0 0 . . . 0/

Thus En — 0 and the Riemann function is only the finite sum:

R[z\ ζ°, z, ζ] - J0[2VE(z - z°)(G(Q - G(ζ0))] ,

where

22(%—1)Γ//M 1\Π2

Note that the αy(s) of Lemma 3 are given in this case by

α, (s) = (-I

Thus condition (H.2) is clearly satisfied automatically. Thus for the
representation (4.20) of the first component

(5.3)

where

Let

(5.4)

and

ω(z, z) = lφ) - Σ MG(c) - G(z)]j\\t - zy~%+1(t)dt
3=1 Jc

A

+ 90) ~ Σiδi(c - zY\G'(σ)[G{σ) - Giz)}^
J = l Jc

j = l,2,' ,n-l

= -jb^G'(σ)[G(σ) - G($)γ-%+1(σ)dσ , j = 1,2, .., n - 1

φo(z) = h^z) , Ψ{z) =
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then the representation (5.3) becomes:

(5.5) ωfa z) = Σ [G(c) - G(z)Yφό{z) + Σ ( c - zyψά(z)
3=0 3=0

which is an equally good representation since the h's and g's can be
obtained simply by differentiation of the φ's and Ψ's if we utilize
(H.I). This is a generalization of the representation formula of the
author [8] for the biharmonic equation.

(A.VII) Next we shall check that the results of [8] for the
biharmonic equation are a special case of Theorem 2. In this case
A2u = 0, 1 ^ k ^ 3, als = 1, α?* = -k, a1/-1 = -(k - 2), α ^ " 2 - -(fc-4),
a[s = (k — 2r) = r — s. Thus condition (4.16) and (4.17) become the
same; viz.:

Σ (ί) pίi (s) Σ (*)8(
+s=k r+s=k

Σ Wvll(z) Σ (ί)s(r — s)plΐ(ί
r+s=k r+s=k

which is precisely the condition of [8]. As seen in (A.IV), (H.I) is
satisfied and as seen in (A.VI), (H.2) is automatically satisfied and as
seen in (A.V) Δx Φ 0. And in this special case our theorem reduces to
the theorem of [8], but with the continuity requirements strengthened
by insisting that u e Ck+2(Ω (J tc) ΓΊ C\Ω) instead of only

u e Ck(Ω U fc) u C\Ω) n C\Ω U K)

as in [8].
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NONLINEAR ELLIPTIC CONVOLUTION EQUATIONS OF
WIENER-HOPF TYPE IN A BOUNDED REGION

Bui A N TON

The existence of a solution of a nonlinear perturbation
of an elliptic convolution equation of Wiener-Hopf type in
a hounded region G of Έtn is proved. More explicitly, let A
be an elliptic convolution operator on G of order a, a > 0; Aj
the principal part of A in a local coordinate system and Άj(xj, ξ)
be the symbol of Aj with a factorization with respect to ξn of
the form: Άj(xj, ξ) = Άf(xj, ξ)AJ(xj, ξ) foτxί = 0. At, AJ are
homogeneous of orders 0, a in ξ respectively; the first admitting
an analytic continuation in Im ξn > 0, the second in Im ζn ^ 0.
Let Tk, k = 0, , [a] — 1 be bounded linear operators from
J3+(G) into L\G) where J9Γ+(G), k ^ 0 are the Sobolev-Slobo
detskii spaces of generalized functions.

The purpose of the paper is to prove the solvability of:
Au+ + λau+ = f(x, Tou+, , T[α]_it6+) on G; u± in JBΓJ(G) for
large | λ \ and on a ray arg 1 = θ such that Aj + Λα =£ 0 for
I f I + U I =£ 0 and for all j . f(x, Co, , C*-i) has at most a
linear growth in (ζ0, , ζa-i) and is continuous in all the
variables.

Linear elliptic convolution equations in a bounded region for arbi-
trary a and with symbols having the above type of factorization (λ = 0)
have been considered recently by Visik-Eskin [3]. Those equations
are similar to integral equations since no boundary conditions are
required.

The notation and terminology are those of Visik-Eskin and are
given in § 1. The theorems are proved in §2.

1Φ Let s be an arbitrary real number and Hs{Rn) be the Sobolev-
Slobodetskii space of (generalized) functions / such that:

ζ\2γ\f(ξ)\2dζ< +oo

where f(ξ) is the Fourier transform of /.
We denote by HS(RX), the space consisting of functions defined on

R\ — {x: xn > 0} and which are the restrictions to R% of functions in
Hs{Rn). Let If be an extension of / to Rn, then:

The infimum is taken over all extensions If of /.

The Hi = {/+; f+(x) = f(x) if xn > 0, / e L\R«), f+(x) = 0 if xn ^ 0}

577
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o

and similarly for Hϊ*
o

We denote by Hi, the space of functions /+ with /+ in Hi and
/+ G H\R\) on R\.

o

Hi is the subspace of Hs(Rn) consisting of functions with supports

in cl (i?+). Hi, Hs, Ht denote respectively the spaces which are the
Fourier images of Ht, H8(Rn), Hi.

Let f(ξ) be a smooth decreasing (i.e., \f(ξ) \<ZM\ξn I"1"6 for large
I ζn I and for some ε > 0) function. The operator Π + is defined as:

Π+/(f) = ^-/(f) + ί(2τr)-1 v.p.
Δ

where £' = (£iΛ •••, £»_i).
For any /, then the above relation is understood as the result of

the closure of the operator Π + defined on the set of smooth and
decreasing functions.

^ o

Π + is a bounded mapping from Hs into Hi if 0 <£ s < 1/2 and is
a bounded mapping from Hs into Hi if a ^ 1/2.

Set: £_ = ξn — i \ ί'|; (ξ _ — i)s is analytic for any s if Im ξ n ^ 0 and:

where If is any extension of / to Rn (Cf. [3], p. 93 relation (8.1)).
Let G be a bounded open set of Rn with a smooth boundary. HS(G)

denotes the restriction to G of functions in H8(Rn) with the norm:

|| u \\s = inf || v ||H <*»); V = w on G .

By H+(G), we denote the space of functions / defined on all of
Rn, equal to 0 on Rn/c\(G) and coinciding in clG with functions in

DEFINITION 1. Ά(ζ) is in 0α if and only if:
( i ) Ά(ξ) is a homogeneous function of order a in ξ.
(ii) A is continuous for ξ Φ 0.

DEFINITION 2. Ά+(ξ) is in 0ί if and only if:
( i ) A+(ξ) is in 0α.
(ii) Ά+(ζ',ξn) has an analytic continuation with respect to ζn in

the half-plane Im ζ n > 0 for each £'.

Similar definition for 0~:

DEFINITION 3. A is in Ea if and only if:
( i ) A is in 0α.
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(ii) Ά(ξ) ΦO for ζ Φθ.
(iii) Ά(ξ) has, for ξ' Φ 0, continuous first order derivatives, bounded

if I ξ I - 1, ξ' Φ 0.

DEFINITION 4. Ά(x, £', ξn) is in D°a if and only if:
( i ) Ά(x, ξ) is infinitely differentiable with respect to x and ζ;

ξφO.
(ii) Ά(x, ξ) is in 0a for x in iί*.

(iii) aht(x) = - | — Ά(x, 0, -1) = ( - l)k exp ( - iaπ) J^- Ά(x, 0,1)

x in 22n; 0 ^ | k \ < oo; k = (&x, , feΛ).

DEFINITION 5. Let A be a bounded linear operator from iϊ+ into
Hs-a(Rn

+). Then any bounded linear operator T from ΐfί_i into Hs-a(Rl),
(or from i ί ί into Hs~a+1(RD) is called a right (left) smoothing operator
with respect to A.

T is a smoothing operator with respect to A if it is both a left
ane right smoothing operator.

Let Ά(ξ) be in 0a for a > 0. For w+ in iϊ+, s ^ 0, with support
in cl OR;), set: A^+ = î ~1(A(<f)̂ +(<f)) where i^7-1 is the inverse Fourier
transform. It is well defined in the sense of generalized functions.
A is a bounded linear operator from Ht into Hs~a(Rn).

Let Ά(x, ζ) be an element of Ea for each x in cl G and A(a?, ξ) be
infinitely differentiable with respect to x and f. Since G is a bounded
set of Rn, we may assume that G is contained in a cube of side 2p
centered at 0. We extend Ά(x, ζ) with respect to x to all of Rn by
setting Ά(x, ζ) = 0 if | cc | ^ p — ε for ε > 0. We get a finite func-
tion, homogeneous of order a with respect to ξ.

We take the expansion into Fourier series of Ά(x, ζ):

A(x, ζ) = Σ Ψo(x) exp [(i7rfca?)/p]Lfc(ί) fc = (kly

where:

( P (α?f ξ)dx

ψo(x) = 1 for I x I ̂  p - ε; ψo(α?) - 0 for | α? | ^ p; to(^) e CΓ(i2*). We
have: | Lk(ζ) \ ̂  C \ ζ \a (1 + | k \)~M for arbitrary positive M. Let u+ be
in J ϊ (G), we define:

(1.1) Au+ = Σ ψ\)
— oo

where Lk*u+ — Lku+ is defined as before since Lk(ξ) is independent of x.
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Denote by P + , the restriction operator of functions defined on Rn

to G. We consider an elliptic convolution equation of order a, on G
of the form:

(1.2) P+Au+ - Σ P+φJAψju+ + Tu+
j

T is a smoothing operator. The 9^ is a finite partition of unity cor-
responding to a covering Nd of cl G with diam (Nό) sufficiently small.
The ψj are in CΓ(Rn) with φάψβ = φs and supp (ψ^ ) c i\Γi#

Suppose A 6 2?5t then the operator ψjAψj taken in local coordinates
may be written as:

φύAfj = φjAjψj + Tj

where Aά is a convolution operator of the form (1.1) and Td is a
smoothing operator (Cf. [3] Appendix 2).

2* The main result of the paper is the following theorem:

THEOREM 1. Let A be an elliptic convolution operator on G, of
order a > 0, and of the form (1.2). Suppose that:

( i ) Άi(x',ξ)eEanD°.
(ii) A ^ ' , f) &αs for x{ — 0 α factorization of the form:

Άs(χt, ξ) = ΆUx', ξ)Άj(x% ξ)

where Af e 0 ;̂ Άj e 0~ for all xj e Nj Π G.
(iii) There exists a ray arg X = θ such that Άά{x\ ξ) + λα Φ 0

/ o r 1 £ 1 + I x I ̂  0, ^ e Nd Π G.
Leέ /(x, ζ0, , ζ[α]_1) δe a function measurable in x on G, continu-

ous in all the other variables. Suppose there exists a positive con-
stant M such that:

I fix, Co, , Cw-i) I ̂  Mil + C £ X I ζy l} .
I j=o J

Let Tk; k — 0, •••, [α] — 1 be bounded, linear operators from Hl(G)
into L2(G). Then for \ X \ ̂  λ0 > 0; arg λ = θ; there exists a solution
u in Hΐ(G) of:

(ζθ»

P+(A + X«)u+ = f{x, TQu+, , Tw^u+) on G .

The solution is unique if f satisfies a Lipschitz condition in

To prove the theorem, we shall do as in [2]. First, following
Visik-Agranovich [4], we establish an a priori estimate and show the
existence and the uniqueness of a solution of a linear elliptic convolution
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equation depending on a large parameter in a bounded region. Then
we use the Leray-Schauder fixed point theorem to prove Theorem 1.

We have:

THEOREM 2. Let A be an elliptic convolution operator, of order
a > 0, of the form (1.2). Suppose that all the hypotheses of Theorem 1
are satisfied. Let feL2(G); then there exists a unique solution u+
in H?(G) of:

P+(A + \a)u+ = / on G; | λ | ^ λ0 > 0 arg λ = θ .

Moreover:

\\u+\\a + | λ | α | | ^ + | | 0 ^ i k f | | / | | 0

where M is independent of λ, u+.

Proof of Theorem 1. Let v be an element of Hΐ(G) and 0 ^ t ^ 1.
Consider the linear elliptic convolution equation:

P+(Au+ + X«u+) = f(x, tTov, , tTίal^v) .

With the hypotheses of the theorem, f(x, tTov, * , tT^^v) is in
L2(G). It follows from Theorem 2 that there exists a unique solution
u+ in H+(G) of the problem.

Let Sϊf(t) be the nonlinear mapping from [0,1] x H+(G) into H+(G)
defined by jzf(t)v = u+ where u+ is the unique solution of the above
problem.

The theorem is proved if we can show that j ^ ( l ) has a fixed
point.

PROPOSITION 1. s*f(t) is a completely continuous mapping from
[0,1] x Hΐ(G) into H#G).

Proof. ( i ) J*f{t) is continuous. Suppose that tn —> t; tn, t in
[0,1] vn->v in Hΐ(G). Set: wΛ = J*f(tn)vn. Then from Theorem 2,
we get:

\\un -u\\a^ ikΓ||/( , tnTQvn, . . . , ^ T M _ Λ )

-f( ,tTov, . . . ^ Γ M ^ H O .

It follows from Lemmas 3.1 and 3.2 of [1] that un->u in #i(G).
(ii) j ^ ( £ ) is compact. Suppose that || vn \\a ̂  M. Then from the

weak compactness of the unit ball in a Hubert space and from the
generalized Sobolev imbedding theorem, we get:

Vnj -»v weakly in H£(G) and strongly in H^ε(G); 0 < ε , α - ε ^ O .
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Applying the argument of the first part, we get the compactness
of j*(t).

PROPOSITION 2. I — j^(0) is a homeomorphism of H£(G) into it-
self. If v = Ssf{t)v, for 0 < t ^ 1; then: || v \\a ̂  M where M is inde-
pendent of t.

Proof. The first assertion is trivial.
Suppose that v — Jϊf(t)v. It follows from Theorem 2 that:

| | v | | β + \X\«\\v\\Q<ίM\\f(*,tTov, , tT^v) | |0

<ς ikf{l + I M i ^ J .

It is well-known that:

Taking | λ | sufficiently large, we have: \\v\\a < M2. jzf(t) satisfies
the hypotheses of the Leray-Schauder fixed point theorem (the uniform
continutiy condition as in [2] is not necessary). So J^( l) has a fixed
point, i.e. j^(l)u+ = u+.

The uniqueness of the solution in the case f(x, ζ0, , ζ[α]-i) satis-
fies a Lipschitz condition in (ζ0, , ζ[α]-i) follows trivially from the
estimate of Theorem 2. We shall not reproduce it.

Proof of Theorem 2. As usual, we consider first the case of the
positive half-space Rn

+ with the convolution operator A having a con-
stant symbol.

LEMMA 1. Let Ά(ζ) be an element of Ea9 (a > 0). Suppose that:
Ά{ξ) = A+(f)A_(£) with Ά+(ζ) in 00

+, A_(ξ) in 0~. Let P+ be the restric-
tion operator of functions in Rn to R% and A be the convolution
operator with symbol Ά(ζ). Suppose there exists a ray argλ = θ
such that: Ά(ζ) + \a Φ 0 for \ ξ \ + | λ | Φ 0. If f is in H\R\), then
there exists a unique solution u in H+ of:

P+(A + Xa)u+ = / on Rl; \ λ | ^ λ0 > 0 .

Moreover:

where M is independent of λ, u+, /.

Proof. Set Ά(ξ, λ) = Ά(ξ) + λ\ It is homogeneous of order a in
(f, λ). Since A(ξ) is in Ea, we have the following factorization with
respect to ξnf which is unique up to a constant multiplier:
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(Cf. Theorem 1.2 of [3], p. 95). The same proof with ξ + = ζn + i \ ζ'\
replaced by ζλ

+ = ζn + i(| λ | + | f Ί ) a n ( i ?- replaced by:

gives:

A(ζ, λ) = A+(f, λ)Z_(ί, λ) .

Moreover:
If Ά+(ζ) is in OJ", then Ά+(ζ, λ) is also in O0 (is homogeneous of

order 0 in (ζ, λ)). Similarly for A_(f, λ).
Let i/(x) be an extension of / to Rn. Consider:

β+(f) - (Ά+(ζ, λ))-1 Π +

For ] λ I ̂ 0 , u+(ξ) has an analytic continuation in Im ζn > 0 and:

C is independent of τ > 0. So: #+(f) e Hi. (Cf. [3], p. 91).
We get:

^ || (ί_ - ί)α(A+(5, λ))-1 Π +

Since Ά+(ξ, λ) is homogeneous of order 0 in (ξ, λ), we have:

A+(f, λ) = Ά+(ζ/(\ 5 I + I λ I), λ/(| £ I + I λ I)) .

Let c = Min | Ά+(ξ, λ) | for | ξ \ + | λ | = 1, arg λ = θ. Then c > 0
and is independent of λ.

So:

II u+ ||ί g c-1 ii (ί_ - iγ π

^C|μ/(ί)α_(f,λ)

We may write:

Let C = Min | Ά_(ζ, λ) | for | f | + | λ | = 1, arg λ = θ. Then C> 0
and is independent of λ.

We obtain:

\u+\\i ^

A similar argument gives:
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So:

C is independent of λ,/, u+.
A direct verification shows that u+ is a solution of the equation.

It remains to show that the solution is unique. Let v+ be an element
of Ht. Suppose that v+ is also a solution of the equation. Then as
in [3], v+(ξ)9 its Fourier transform is given by an expression of the

same form as u+(ξ) with ΐf(ζ) replaced by kf(ξ). lxf being an extension
of / to R\

Set IJ = If - IJ. Then IJeHf, so IJeHς. Ίj(ζ)(Ά_(ξ, λ))-1

is analytic in Im ζn <̂  0 for | λ j Φ 0 and moreover:

\ I hf(ξ\ Sn + iτ) |21 £.(£', f + iτ) |~2 dξ'dξn £ C

where C is independent of τ ^ 0.

Hence Qfe)(A_(£, λ))-1 is in Hϊ (Cf. [3], p. 91), so:

Π + Qf(ξ)(AM, λ))-1)) = 0 .

Therefore: Ά+(ξ, X)(u+(ξ) - v+(ζ)) = 0.
But Ά+(ξ, λ) Φ 0 for i λ I ̂  0, we get β+ = v+. Q.E.D.
Set:

Σ 'fo(̂ o) exp
fc = — oo

where Lfc, ψ0 are as in § 1.

LEMMA 2. Le£ 4̂.x, ̂  be as above and ψ(x) be in C?(Rn) with
ψ(x) = 0 for \x — xo\ > δ;\<f{x) \ ̂  K where K is independent of δ.
Then:

for all u in Ha

+, s ^ 0.

Proo/. Cf. Lemma 4.7 of [3], p. 119.

Proof of Theorem 2 (continued). (1) First, we establish an α-
priori estimate of the solutions.
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Consider:

P+φiAiriU+ + X«P+(φjU+) = P+(φjf) - Tu+

where T is a smoothing operator with respect to φάAψό.
It has been shown in [3] (Appendix 2) that in a local coordinates

system, the operator ψjAψj becomes: φ5A^ά + Tό where Ad has for
symbol Άά(xj, ξ) and Tό is a smoothing operator.

So, we have:

P+φJAs(ψjU+) + \*P+(<PJU+) = P+(φdf) + T)U+

where T) is again a smoothing operator.

Let Aj0 be the convolution operator with symbol Άs(xi, ξ) evaluted
at the point x3

0. We write:

fάU+) + \*P+(φiU+) = P+(φjf)

Applying Lemma 4.D.1 of [3] (p. 145), we have:

1rju+) = P+Aj0(φju+) + 2 > +

where Γ) is a smoothing operator.

Therefore:

The symbols Άj0 satisfy the hypotheses of Lemma 1. Applying
Lemma 1; 2, we obtain:

| | ί + I λ |β \\φju+ ||0
+ ^ M{|| ^ / ||+ + || u+ ||0

where we have used the well-known inequality:

\\ u+W^ ^ e\\u+\\a + C(6)\\u+\\0 .

On the other hand: | | ^ w + | | ί ^ M\\u+\\a. Summing with respect to
i, we get:

| | + | | β | | | | + | | o ^ ϊ | | / | | o

+ δ\\u+\\a + K\\u+\\Q} .

Taking δ small and | λ | sufficiently large, we have:

| | | U + | λ | α | | | | ^ Λ f | | / | |

So, if there exists a solution, then the solution is unique.
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(2) It remains to show the existence of a solution. From Lemma 1,
we know that P+(Aj0 + λα) has an inverse Rj0. Let Rj0 be the operator
Rj0 expressed in the global system of coordinates of G. Consider:

Rf = Σ φ^dΨsf)
3

R is a bounded linear mapping from U(G) into H"(G).
We show that: j^Rf = P+{A + Xa)Rf = f+<g>f with | | ΐ f || ^ 1/2.
We have:

5

Applying Lemma 4.D.1, of [3], we may write:

where T is a smoothing operator.
We express φs{A + ^a)ψjRjo(ψjf) in local coordinates. We get:

jRjoifjf) + φi(A, - A^fjRj

Using Lemma 4.D.1 of [3] again, we obtain:

φj(Aj0 + \')Rd*jf

Ψif

The Tj are all smoothing operators.
Applying Lemma 1, we have:

lo+ ̂  C || Ri0(*jf) llί-i ^ e || /H, + C I λ |-« 11/11, .

From Lemmas 1 and 2, we get:

Taking ε, δ small, | λ | large enough, we have:

, + ^ - j i j r 11/11..

We obtain:
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where ^ is the operator <ĝ  expressed in the global coordinates system
of G. We obtain: || if/1|0 ^ 1/4 | | / | | 0 + 1/4 | | / | | 0 for large | λ |.

Hence | | ί f |l g 1/2; therefore ( J + <if)-1 exists. We define:

The writer wishes to thank the referee for his remarks.
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SOME COMPLEMENTED FUNCTION SPACES IN C(X)

DANIEL E. WULBERT

et X and Z be compact Hausdorff spaces, and let P be
a linear subspace of C(X) which is isometrically isomorphic
to C(Z). In this paper conditions, some necessary and some
sufficient, are presented which insure that P is complemented
in C(X). For example if Xis metrizable, P contains a strictly
positive function, and the decomposition induced on X by P
is lower semi-continuous then P is complemented in C(X).

D. Amir has shown that not all such spaces P are complemented
when X is metrizable ([1], see also R. Arens, [4]). However, R.
Arens [4] has constructed a class of subspaces of C{X) which are
complemented. In §2 we present classes of complemented subspaces
which extend the class exhibited by R. Arens [Theorem 4, Lemma 5,
Theorem 8]. A comparison of these results preceds Theorem 8.

Suppose that X is the Stone-Cech compactification of a locally
compact completely regular space F, Z is a compactification of F
which has first countable remainder, and P is the natural embedding
of C(Z) in C(X). In § 3 we show that if P is complemented in C(X),
then F is pseudo-compact. This theorem was proved by J. Conway
[6] for the case in which Z is the one point compactification of F.

By introducing the concept of weakly separating in § 2, we are
paralleling the concept of a Choquet boundary. Related results and
definitions are found in [22].

1* lί A and B are subsets of a topological space, cl A will denote
the closure of A, and A-B will denote the set of points which are in
A but not in B. If E is a normed linear space, S(E) and E* denote
the unit ball in E and the dual of E respectively. If if is a convex
subset of a topological vector space, extiΓ will represent the set of
extreme points of K. If g and h are functions such that the range of
g is contained in the domain of h, the composite of g and h will be
written hog. Finally, if X is a topological space and x is in X, the
point evaluation functional associated with x is the linear functional
x* defined on C(X) by x'(f) = f(x) for each / in C(X). In this paper
C(X) will denote the Banach space of all bounded real-valued continuous
functions on X normed with the supremum norm.

2* Let P be a subspace of a normed linear space E. We define
D(P) = {b in S(E*): b restricted to P is in extS(P*)}. We say that
P is weakly separating (with respect to E) if P separates the points

589
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of D(P) intersect ext S(E*), that is, if g and h are distinct points in
this intersection, then there is a p in P such that g(p) Φ h(p).
Although we have stated the definition for an arbitrary normed linear
space, we are mainly interested in the space E — C(X), where X is
a compact Hausdorff space. It follows readily from the definition that
a subspace P of C(X) is weakly separating if for any two distinct point
evaluation functional x' and y' whose restrictions to P have norm one,
there is a p in P such that | p(x) \ Φ \ p(y) |. In particular, a subspace
of C(X) which contains the constants and separates the points of X,
or a closed ideal in C(X) is weakly separating.

LEMMA 1. Let P be a subspace of E. The following are
equivalent:

( i ) P separates the members of D(P)
(ii) P separates the members of D(P) intersect ext S(E*)
(iii) ext S(E*) contains D(P).

Proof, (iii) implies ( i ) . If P does not separate the elements of
J9(P), then there must exist distinct elements g and h in D(P) such
that the restriction of g — h to P is the zero functional. It follows that
b — (l/2)(g + h) agrees with g and h on P. Hence b is in D(P) but
not in ext S(E*).

(ii) implies (iii). Now suppose that P separates the elements of
D(P) intersect ext £(#*). Let & be a point in D(P). We are to
prove that b is in ext £(£/*). Let K — {k in S{E*): k agrees with b
on P}. Clearly K is a convex set containing b. Also K is closed, and
hence compact, in the weak* topology on i?*. By the Krien-Milman
theorem, K has extreme points. We will show that ext K is contained
in ext S{E*). Suppose k = {lβ)(g + h) where k is in ext K and g and
h are in S(E*). Thus for each p in P, l/2h(p) + l/2g(p) = k(p) - b(p).
The restrictions of g and h to P both belong to S(P*), and the restric-
tion of b is in ext£(P*). Therefore g and h agree with b on P and
both must belong to K. Since k was assumed to be an extreme point
of K, we have g = h = k. We conclude that ext S(E*) contains ext K.
If b is the only point in K, then b must be in ext S(E*). Otherwise
K must contain two distinct extreme points. Clearly P can not sepa-
rate these two points of D(P) intersect ext S(E*). This proves that
(ii) implies (iii).

Since the fact that ( i) implies (ii) is obvious, the proof is complete.

LEMMA 2. // P is weakly separating in E, then the weak
topology on D(P) induced by P is equivalent to the weak topology
induced by E.
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Proof. Clearly, the weak topology induced by P is coarser than
the one induced by E. To prove the converse, suppose that g{ is a
net of functionals in D(P) which converge with respect to the weak
topology induced by P to a functional g which is also in D(P). If
Qi does not converge to g with respect to the weak topology induced
by E, there will exist a subnet which never intersects some neighbor-
hood (in topology induced by E) of g. Since by Alaoglu's theorem
S(E*) is compact, we may assume the existence of a further subset
gά which converges to a functional h distinct from g. Since g5 is a
subset of giy h must agree with g on P. Since the norm of h is less
than or equal to one, h is in D{P). Since P does not distinguish be-
tween g and h, the previous lemma contradicts the hypothesis that P
is weakly separating. The lemma is proved.

In the following let X be a compact Hausdorff space.

LEMMA 3. Let P be a weakly separating subspace of C(X). The
following are equivalent:

( i ) There is a projection of norm one of C(X) onto P,
(ii) P is isometrically isomorphic to C(Z) for some compact

Hausdorff space Z,
(iii) There exist a closed subset Y of X such that P is isometri-

cally isomorphic to C(Y) via the restriction mapping.
Furthermore, if P is weakly separating there can exist at most one
projection of norm one of C(X) onto P.

Proof. ( i ) implies (iii). Let L be a projection of norm one of
C(X) onto P. If x' is an evaluation functional in D(P), then xΌL
is a functional in S(C(X)*) which agrees with xf on P. Since P is
weakly separating in C(X), xf °L — x'. Hence for each / in C(X),
Lf agrees with / on {x in X: x' is in D(P)}, and therefore on the
closure Y of this set. With a simple application of the Tietze Ex-
tension Theorem, we see that the restriction map carries P onto C(Y).
Furthermore, this restriction mapping does not decrease the norm of
points in P. For by Lemma 1 every functional in D{P) can be ex-
pressed as either an evaluation functional of a point in Y or as the
negative of such a functional, and for p in P, \\p\\ — sup{&(p): h in
D{P)}. We have shown that the restriction mapping is an isometric
isomorphism of P onto C(Y).

(ii) implies ( i ) . Let Z be a compact Hausdorff space, and let L
be an isometric isomorphism of P onto C(Z). Let 1/ denote the
adjoint of L. Since L is an isometric isomorphism, U is an isometric
isomorphism of C(Z)* onto P*. Furthermore, U restricted to
ext S(C(Z)*) is a homeomorphism onto ext S(P*) with the weak topolo-
gies induced by C(Z) and P respectively. Now for x in ext S(P*), let
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H(x) be the unique element in ext S(C(X)*) which agrees with x on P.
For z in Z let E(z) denote the evaluation functional of z. Now for
/ in C(X) consider the function foHoLΌE(-) defined on Z. By
Lemma 2 this function is continuous. The map Q which carries / in
C(X) onto Lr\foHoLΌE( )) is a mapping of norm one of C(X) into
P. Furthermore, if p is in P, then poHoLΌE(z) = Lp(z), for all z
in Z. Thus poHoLΌE( ) = Lp, and Q is a projection of C(X) onto P.

It is evident that (iii) implies (ii).
To prove the second part of the lemma, suppose that H and L

are two projections from C(X) onto P, both of which have norm one.
Let Y be the subset of X constructed in the proof that ( i ) implies
(iii). For any / in C(X)9 we have shown that Lf, Hf and / all agree
on Y. It of course follows that (H — L)(f) vanishes on Y. However,
we have shown that the restriction mapping carries P isometrically
onto C(Y). Therefore, (H — L)(f) must be the zero function, and
Hf = Lf for all / in C(X). This completes the proof.

We will say that a subspace P of C(X) has a weakly separating
quotient if it has the property that for any two distinct points x and
y in X such that p(x) = —p(y) for every p in P, then the evaluation
functional of x (or equivalently the evaluational functional of y) restricted
to P is not an extreme point of S(P*).

REMARK. Each of the following properties on a subspace P of
C(X) imply that P has a weakly separating quotient:

( i ) P is weakly separating in C(X),
(ii) P contains a function which is strictly positive,
(iii) for each p in P, | p | is also in P.

A proof for the above remark is straightforward. In particular, any
closed ideal in C(X), or any subspace of C(X) which contains the
constants has a weakly separating quotient.

In order to state the next theorem we make a few more defini-
tions. Let X be a Hausdorff space and let I be a partition of X
into closed subsets. For x in X let M(x) denote the member of M
which contains x. Corresponding to the standard definitions we say
that M is lower semi-continuous if {x in X: M(x) intersect U is non-
empty} is an open set in X for every open set U in X.

If P is a linear space of bounded, continuous functions, then the
P-partition of X is the partition associated with the following equi-
valence relation R. A couple (a?, y) is in R if and only if p(x) = p(y)
for every p in P. Now let K(P) = U {K contained in X: K is a
member of the P-partition of X, and K contains more than one point
of X}. We will say that P has a lower semi-continuous quotient if
the restriction of the P-partition to cl K(P) is lower semicontinuous.

In the following let X denote a compact Hausdorff space, and let
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P be a linear subspace of (C(X) which has a weakly separating
quotient.

THEOREM 4. If there is a projection of norm one of C(X) onto
P, then P is isometrically isomorphic to C(Z) for some compact
Hausdorff space Z. Conversely, suppose that X is metrizable, and
that P has a lower semi-continuous quotient. If P is isometrically
isomorphic to C(Z), for some compact Hausdorff space Z, then there
is a projection of C(X) onto P which has norm less than or equal
three.

Proof. Let M denote the P-partition of X. Let X/M have the
quotient topology, and let M( ) denote the natural mapping of X onto
X/M. We observe that X/M is a compact Hausdorff space. Now let
Q denote the linear subspace of C(X) consisting of all functions that
are constant on each closed subset of X which is a member of M.
One can verify that P is contained in Q, and that the mapping which
carries q in Q onto the function q © M~ι( ) in C(X/M) is an isometric
isomorphism of Q onto C(X/M). The image Pf of P under this map-
ping is a weakly separating subspace of C(X/M) since P has a weakly
separating quotient. If there is a projection of norm one from C(X)
onto P, then there certainly is a projection of norm one from C(X/M)
onto P. By the preceding lemma, we conclude that P', and hence P,
is isometrically isomorphic to C(Z) for some compact Hausdorff space Z.

To prove the second part of the theorem, we assume that X is
metrizable, P has a lower semi-continuous quotient, and that there is
a compact Hausdorff space Z such that P is isometrically isomorphic
to C(Z). We maintain the same notation used directly above. Since
P' is weakly separating in C(X/M), and P is isometrically isomorphic
to C(Z), it follows from the preceding lemma that there is a projec-
tion of norm one from Q onto P. To complete the proof it will suf-
fice to show that there is a projection from C(X) onto Q which has
norm less than or equal to three. We will prove a stronger result.

Let Y be a metric space. Let if be a partition of Y such that
every member of if is a complete subset of Y. A member of K will
be called a plural set if it contains two distinct points of Y. Let the
restriction K' of K to the subset of Y,

B = cl U {A contained in 7 : A a plural set in K)

be lower semi-continuous. Assume also that B/K1 is paracompact.
Let Q denote the subspace of C(Y) consisting of the functions which
are constant on each member of K. We recall that by the notation
we adopted, C(Y) is the Banach space of all bounded continuous func-
tions on Y. The following lemma establishes the theorem.
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LEMMA 5. There is a projection of C(Y) onto Q which has norm
less than or equal to three.

Proof. In the usual manner we can embed B into the unit ball
of C(B)*. With the weak topology on C(B)* induced by C(B), C{B)*
is a locally convex space, B is embedded onto a homeomorphic image
of itself, say B', and the closed convex hull of compact subsets of B' are
again compact. Let s denote the composite of the quotient mapping
of B onto B/K' with the homeomorphism, h, between B and B\

We now show that s"1 is a lower semi-continuous function carry-
ing points in B/K' onto closed subsets of B'. Let U be an open set
in B'. Let

W = {y in B/K': s~ι(y) intersect U is not empty} .

To show that s"1 is lower semi-continuous we must show that W is
open in B/K'. We note that W = s(U). Now since K' is lower semi-
continuous and h*1 os-1 oso h(-) carries a point b in B onto the member
of K' which contains δ, the set

V — {b in B: h~ι o s~ι o s o /&(δ) intersect h~ι( U) is not empty}

is open in B. Hence h(V) = {δ' in I?: fc"1 os-1 os(δ') intersect hr\U) is
not empty} is open in B'. Since this last set is s~1os(U)i s~1os(i7) is
open. Since B/K' has the quotient topology induced by s, this implies
that s(U)—and hence PF—is open in B/K'. Therefore s"1 is lower semi-
continuous.

Now since B/K' is paracompact, and since there is a metric on B'
(which induces an equivalent topology for B') for which the set s~\y)
is complete for each y in B/K', we have satisfied the hypothesis for
a selection theorem proved by E. Michael [20]. This theorem proves
the existence of a continuous function t which carries B/K' into C(B)*9

and has property that t(y) is contained in the closed convex hull of
s~\y) for each y in B/K'.

We now define a projection from C(B) onto Q' the subspace of
functions in C(B) which are constant on members of K'. For / in
C(B), let Lf denote the function such that for each b in B,

(Lf)(b) = [t(8oh(b)](f).

Since t is continuous on B/K', Lf is a continuous function. Since
t(s©h(b)) is in the closed convex hull of r^soh(b), the norm of t(s°h(b))
does not exceed one. Thus the maximum of Lf over B does not ex-
ceed the maximum of / over B. Finally, one can verify that if q is
in Q', Lq = q, and that for each / in C(B), Lf is in Q'. We have
shown that L is a projection of norm one of C(B) onto Q'.
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Since Y is a metric space, there is an operator E of norm one from
C(B) into C(Y) such that RoEf = f for every / in C(B). Here R
denotes the operator which assigns to each function in C(Y) its restric-
tion to B (R. Arens [3], also Dugundji [8]). Following a construction
due to Arens [4], we define an operator J by Jf = f + E(LRf — Rf).
The proof of the lemma is completed by verifying that J is a projec-
tion of C(Y) onto Q which has norm no greater than three.

In the following corollaries let X denote a compact Hausdorff
space.

COROLLARY 6. Let P be a finite dimensional subspace of C(X)
which has a weakly separating quotient. There is a projection of
norm one from C(X) onto P if and only if P has a basis {Pi}t=ι such
that || Σ?-i c*Pi || = max|c<|.

COROLLARY 7. C(X) contains a weakly separating subspace of
co-dimension n which has a projection of norm one if and only if X
contains n isolated points.

Proof. To prove the necessity of the condition, let L be a projec-
tion of norm one of C(X) onto a weakly separating subspace P of co-
dimension n in C{X). Define Y = cl {x in X: xf o L = x'}. We will show
that X — Y contains precisely n points. Since X — Y is open, these
points will be isolated. We observe that the range, Q, of / — L has
dimension n, and that if q is in Q, then q vanishes on Y. Since the
functions in Q take all their nonzero values on X — Y, X — Y must
contain at least n points. If X — Y contained n + 1 points, there
would exist n + 1 open sets Ut in X — Y, and corresponding functions
fi of norm one which vanish off Ut. These functions span an n + 1
dimensional subspace of C(X); hence there is a nonzero function / in
this span that is also in P. But / vanishes on Y. By Lemma 3, the
restriction map is an isometry of P onto C(Y). Hence we arrive at
the contradiction that / is the zero function.

If X contains n isolated points, the space of all functions in C(X)
which vanish on these n points is a weakly separating subspace of
C(X) (sinces this space is an ideal) of co-dimension n in C(X). It is
also clear there is a projection of norm one from C(X) onto this sub-
space. The proof is completed.

REMARK. R. Arens [4] has constructed an example of two compact
metric spaces X and Z such that C(X) contains an isometric isomorphic-
copy of C(Z) which has a weakly separating quotient, but which is
not complemented in C(X). Hence the assumption that P has a loweϊ
semi-continuous quotient cannot be simply omitted from the theorem,
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(Also see Amir [1]).
The preceding theorem and lemma should be compared to Theorem

2.2 in (R. Arens [4]). Using the notation preceding the lemma,
Professor Arens proved that under the following conditions there will
exist a projection of norm less than or equal to three of C(Y) onto Q:

( i ) K is a partition of Y into closed subsets
(ii) Y and Y/K are metrizable
(iii) the quotient map of Y onto Y/K is upper semi-continuous1

(iv) if {Xi} is a sequence in Y such that each x{ belongs to a
distinct plural set in K, then a member of K which contains a limit
point of {Xi} is a singleton.

Apropos to property (ii), A. H. Stone has proved ([23]) that a
metrizable space is paracompact. Property (iv) above implies that K'
is lower semi-continuous. In the special case that Y is a complete
metric space, the preceding lemma contains the above theorem of Arens.
If Y is compact, the previous theorem includes both of these results.

In the following, let Y be a metrizable space, and K a partition
of Y satisfying properties ( i), (iii), and (iv) above. For each K{ in
K let Pi be a complemented subspace of C(Kι) which contains the
constants. Let Li denote a projection of C(Ki) onto P<. We assume
that m = sup {|| L< ||} < <*>. Finally, let Q denote the subspace of C(Y)
consisting of all functions q such that the restriction of q to Ki is a
function in P ί#

THEOREM 8. There is a projection of C(Y) onto Q which has
norm less than or equal to 2 + m.

Proof. For a set Z let B(Z) denote the space of bounded func-
tions on Z. Let D = U {Ki contained in Y: K{ is a plural set in K}.
Let R and R{ denote the restriction map of B( Y) onte ί?(cl D) and of
B(Y) onto B(K{) respectively (Ki in K). Let E denote a linear map-
ping of C(cl D) into C(Y) such that E has norm one, and RoE is the
identity mapping on C(clD). Let H be the linear mapping of C(Y)
into B(c\D) such that R^H = L{oR{ for all Kt in K. Let I denote
the identity on C(Y), and let L = 1 + EoR(H - I). The proof con-
sists of establishing that L is the desired projection. The variation of
a function / defined on a set Z is var (/) = max/(2) — min/(2).

z in Z z in Z

We proceed by proving four assertions, the last of which establishes
the theorem.

Assertion 1. Ii x^ is in Kίf K{ is in K, y is not in D and x4 con-
1 Professor Arens has communicated that the assumption that the quotient map-

ping be upper semi-continuous had been inadvertently omitted from the statement of
his theorem.
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verges to y, then vaτ(RJ) converges to zero for each / in C(Y).

Assertion 2. \\ L, oRJ - RJ\\ ^ 1/2(1 + m) var (RJ).

Assertion 3. If / is in C(Y), Hf is in C(cl D).

Assertion 4. The operator L is a projection from C(Y) onto Q
of norm at most 2 + m.

If Assertion 1 is false it will be possible be find points zt in Kt

and a function / in C(Y) such that for some r greater than zero,
/(#*) — f(zi) is greater than r. Since / is continuous, we may assume
that there is a neighborhood N of y such that ^ does not belong to
N. Put Z = fa}. Since the quotient map g of Γ onto Y/K is, by
hypothesis, closed g(cl Z) is closed in Y/K. But q(x{) = #(2;) is in
g(clZ), and #(&<) converges to q(y) by the continuity of q. Thus
g(2/) = {y} is in g(cl ϋΓ), and {y} = q(z) for some z in cl Z. But cl Z is
contained in Y — N so z Φ y. This contradicts the assumption that
2/ is not in D.

To prove the second assertion, let c = 1/2 var (Rif). Since 1 is in
Pi9 Lt oR.I = 1. Hence

I I I ^ o Λ , / - Λ , / | | = HL o i ^ / - c) - Λ < ( / - c ) | | ^ | |L€ - I\\

. || Λ*(/ - c) | | ^ (m + l)(l/2) var (RJ) .

To prove Assertion 3 let y be a point in clίλ We distinguish
two cases. Case 1, y is in D. Let 7/ be in the plural set Kt of the
partition K. From the assumption of property (iv) it follows that there
is an open set U containing i^ which meets no other plural set in K.
Now let / be in C(Y) and let N be a neighborhood of Hf(y). Let V
be a neighborhood of y such that (LiθRif)(V Π i Q is contained in N.
Put W ~ V ΠU and let a? be an arbitrary point in W intersect cl D.
Then x is in U, and x is in the closed set Ki9 This shows that
WnclD is contained in Iξ n V. Hence on TΓ n cl Dy Hf = Lio RJ.
Thus JEΓ/(TΓΠclD) is contained in L^RJ^nV) which in turn is
contained in N.

Case 2, 7/ is not in D. In this case {y} is in if, and Hf(y) = /(^/),
since each P< contains the constant functions. Let a?< converge to T/.
Then

I £^α?4) - Hf(y) \ £ \ Hf(x,) - f(Xi) \ + | f(x{) - f(y) \ .

It is clear that f(x{) converges to f(y). For the other term we use
Assertions 1 and 2 above to write, with xt in K{ (and K{ in K),
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Xi) - f(Xi) \£\L4o R

^ (l/2)(m + 1) var (RJ) .

Since this last term converges to zero, Hf is continuous at y.
To prove Assertion 4, we first observe that linearity and bound

for L are obvious. If / is in C(Y) we must show that Lf is in Q.
Indeed,

Hence

R^L = RioRoL = RioRoH = LioRi

for each plural set Ki in K. Thus Ri ° Lf is in Pi for each plural set
Ki in K. If Ki is a member of if which is not a plural set then,
R{ o L/ is in P { trivially since P< contains the constants.

Now we must show that if / is in Q then Lf — /. Since R{f is
in Pi for all K{ in K, RiθHf= L^RJ = RJ. Thus RoHf=Rf,
and Lf = f+ E(Rf - #/) = /. This completes the proof of the
theorem

REMARK. The assumption that Y is metrizable was used only to
guarantee the existence of the linear mapping E. If we drop the
hypothesis that Y is metrizable and assume outright the existence of
a bounded linear mapping E from C(clD) into C(Y) such that RoE
is the identity on C(clD), then the same proof establishes the existence
of a projection from C(Y) onto Q which has norm less than or equal
to 1 + (m + 1)| |JE7| |.

COROLLARY 9. Let Y, K, Ki9 P€, and Q be as in the theorem. If
each Pi has dimension less than n, then there is a projection of norm
at most n + 1 from C(Y) onto Q.

3. Let X be a locally compact, Hausdorff space. A compactifi-
cation of X is a compact Hausdorff space that contains X (a homeo-
morphic image of X) as a dense subspace. The Stone-Cech compactifi-
cation of X will be denoted by βX, and the one-point compactification
will be denoted by pX.

If K is an arbitrary compactification of X, the linear mapping
which carries a function in C(K) onto the unique function in C{βX)
which agrees with it on X, is an isometric isomorphism of C(K) into
C(βX). We will therefore assume that C(βX) contains C(K).

If Y is a closed subset of a compact Hausdorff space K, Iγ will
denote the ideal of functions in C(K) which vanish on Y. Let N
denote the non-negative integers with the discrete topology. If K is
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a compactification of X, the remainder of K (with respect to X) is the
topological space K — X equipped with the relative topology from K.
In accordance with the usual terminology let (m) — C(βN), (c) = C(pN),
and (c0) = IpN^N — IβN-N9 where the ideals are interpreted as subspaces
of C(pN) and C(/3N) respectively.

THEOREM 10. Let K be a compactification of X which has a first
countable remainder. If there is a bounded linear mapping of C(βX)
into C(K) which acts as the identity on IβX^x, then X is pseudocompact.

We first will prove the following lemma.

LEMMA 11. Let M be a compactification of N which has a first
countable remainder. There does not exist a bounded linear mapping
of (m) onto any subspace of C(M) which contains (c0).

Proof of lemma. Since N is both locally compact and the union
of a countable family of compact sets, M — N is a compact set which
is the intersection of a countable family U of open sets in M. Let
x be a point in M — N. Let V be a countable family of open sets in
M whose intersections with M — N form a basis for the neighborhood
system for x in M — N. Let W be the countable family of open
sets in M of the form u intersect v, where u is in U and v is in V. It
is easy to see that the intersection of the members of W is the singleton
containing x. A compactness argument shows that W is in fact a basis
for the neighborhood system for x in M. Since N is first countable
we have established that M is first countable. Hence M is sequen-
tially compact.

There is a sequence of points in N, say J, which converges to
some point k in M. Now suppose B is a subspace of C(M) which
contains (c0). The restriction of functions in B to J union {k} carries B
onto a Banach space which is either isometrically isomorphic to (c) or
to (c0). In the former case since (c0) is complemented in (c), there
is a bounded linear mapping of B onto (c0). In either case if there
is a bounded linear mapping of (m) onto B, there is a bounded linear
mapping, L, of (m) onto (c0). But no such mapping can exist. For
since (c0) is a separable Banach space and /3N is extremally discon-
nected, L must be weakly compact (Grothendieck [14], p. 168, Cor. 1).
Now an application of the open mapping theorem implies the false
assertion that (c0) is reflexive. This completes the proof of the lemma.

Proof of theorem. If X is not pseudocompact there is countable
family of disjoint open sets Vi in X such that cl U {FJ = UjclFi}.
For each ί let Ό{ be an open set such that clZ/̂  SV t , let u{ be in Uiy
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and let /4 be a continuous function which vanishes off Z74 and attains
its norm of one at ut. For a bounded sequence x = (xi9 x2 •) in (m),
let Aτ be the unique function in C(βX) which agrees with ΣΓ=i#;/;
on X. The mapping A is an isometric isomorphism of (m) onto the
range of A. Let L be the hypothesized mapping of the theorem, and
let J carry a function in C(βX) onto its restriction to cl {wj. Since
cl {%<} — {%<} is contained in K — X, cl {̂ J is homeomorphic to a com-
pactification M oί N which has first countable remainder. Let G be
the isometric isomorphism of C(cl {%}) onto C(M) induced by this home-
omorphism. The proof is completed by verifying that G°JoLoA is
a bounded linear mapping of (m) onto a subspace of C(M) which con-
tains (c0).

The case in which K is the one-point compactification of X was
first proved by J. Conway ([6]). Examples to show that pseudocom-
pactness of X is not sufficient to guarantee the existence of a projec-
tion from C(βX) onto IβX^x have been constructed by J. Conway ([6])
and by A. Peϊczynski and V. N. Sudakov ([21]).

COROLLARY 12. Let X be an extremally disconnected, compact,
Hausdorff space, and let P be a subspace of C(X) which contains the
constants and separates the points of X. If P is isometrically iso-
morphic to C(Z) for some compact Hausdorff space Z, then the Silov
boundary of P is an extremally disconnected subset of X which has
a pseudo-compact complement.

Proof. Under the hypothesis of the corollary, the Silov boundary
of P is the set Y of Lemma 3. To show that Y is extremally discon-
nected, we intend to apply a theorem due to Nachbin (Trans. AMS,
68 (1950), 28-46, 1950), Goodner ([13]), Kelley ([11]) and others. A
Banach space B is called injective if every Banach space which contains
an isometric isomorphic copy B' of B, admits a projection of norm one
onto B'. The theorem we wish to apply states that a Banach space is
injective if and only if it is isometrically isomorphic to C(Z), for a
compact, extremally disconnected, Hausdorff space Z. Now C(X) is
injective and from Lemma 3 there is a projection of norm one from
C(X) onto P. From this it can be shown that C(Y) is injective, and
hence Y is extremally disconnected.

From Lemma 3 it follows that Iγ is complemented in C(X). Let
G = X — Y. Since cl G is open in X, IclG_G is complemented in C(cl G).
Since cl G is extremally disconnected, it is the Stone-Cech compactifica-
tion of G ([10], p. 69, Prob. 6M2). By the theorem, G is pseudocom-
pact (in this case K is the one-point compactification of G), and the
corollary is proved.
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COROLLARY 13. If X is a locally compact space such that βX has
a first countable remainder, then X is pseudocompact.

REMARK. Relevant to the last corollary, we observe that if Z is
any compact Hausdorff space, there is a pseudocompact, locally compact
space X such that βX — X is homeomorphic to Z. For let y be a
nonisolated point in βN and let X = (βN — {y}) x Z. From results in
([11]) and ([10], 6M3) we have that X is pseudocompact, and βX —
βN x Z.

The author is grateful to Professor E. Ward Cheney for his in-
terest and suggestions concerning this paper.
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ON THE CHARACTERIZATION OF MEASURES
OF THE CONE DUAL TO A GENERALIZED

CONVEXITY CONE

ZVI ZlEGLER

We consider in this paper the cone C(uOt , un-i) of func-
tions which are convex with respect to an Extended Complete
Tchebycheffian system {uo(t), Uί(t), , un-i(t)}. The cone dual
to C(u0, , un-i) is examined and necessary conditions as well
as sufficient conditions for a measure to belong to this cone are
developed. The merit of these conditions lies in the fact that
they involve only the pattern of sign changes of the measure
and related functions, and thus are easily verifiable.

Several applications are given. These include new ine-
qualities for the Euler-Fourier coefficients of functions belong-
ing to given convexity cones. Some new inequalities for the
Fourier coefficients of the expansion of a function in a series
of orthogonal polynomials are also obtained.

We consider in this paper the cone dual to a generalized convexity
cone C(u0, , un^) with respect to an Extended Complete Tcheby-
cheffian system {uo(t), u^t), , w»_i(ί)}. The substantial role that
these cones play in various areas of mathematics, such as moment
theory, theory of approximation and interpolation and the theory of
differential inequalities is discussed in detail in [5], (see also [4], [11],
[6] and [7]). In a recent paper, Cargo [3] obtained independently
for the special case when n = 2 and u0 = 1, some of the results of
[4] and [11].

The dual cone was introduced by S. Karlin and A. Novikoff [4]
who found necessary and sufficient conditions for a measure to belong
to the dual cone. Applications of the results of [4] to the theory of
reliability were later explored by Barlow and Marshall [1], For the
case n = 2 and (uo(t) = 1, ux{t) = t) the conditions were stated earlier
by Levin and Steckin [8], and a multidimensional version for this
special case was recently obtained by Brunk [2].

The necessary and sufficient conditions involve some integral
inequalities and thus are not always easily verifiable. Some simple
sufficient conditions in terms of equalities and the pattern of sign
changes of the measure under examination were also evolved in [4].

In this paper we intend to elaborate on this type of criteria, i.e.,
necessary conditions as well as sufficient conditions involving only
equalities and the pattern of sign changes of the measure. As a by-
product, we obtain the interesting fact that the dual cones are essentially
mutually disjoint, e. g. no nontrivial measure can belong both to the dual
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cone of the cone of convex functions and to the cone dual to the cone
of monotone functions. Several applications are given in §4. These
include some inequalities for the Euler-Fourier coefficients with respect
to the trigonometric system and also for the Fourier coefficients of
the expansion of a function in a series of orthogonal polynomials.

We introduce now the generalized convexity cones and their duals.
We will not discuss in any detail properties of these cones which can
be found elsewhere. The reader is referred to [5] for a thorough
discussion of ECT-systems and for the properties of generalized con-
vexity cones which will be used without proof in the sequel.

Let {Ui}^-1 be an Extended Complete Tchebycheffian system (ECT-
system) on [a, b]. Assume that the functions w<(ί), i = 0,1, , n — 1,
admit of the representation

= wo(t)

( i ) :

S t Cti ff»-2

Wl(f l) I I Wn-l(f n-l)dζn-l
a Ja Ja

where wo(t)9 •• ,ww_1(£) are continuous strictly positive functions on
[α, b]. This additional assumption on the set {u^*1 entails no loss of
generality in the subsequent discussion.

DEFINITION 1. A function ψ(t) defined on (a, b) is said to be convex
with respect to the ECT-system {u^"1 provided

( 2 )

φ{Q φ{tn+ί)

^ 0 , f or all α < ίx < . < tn+1 < b .

The cone of functions satisfying (2) is referred to as a "generalized
convexity cone" and is denoted by C(u0, •• ,ww_1).

Throughout the paper, let dμ denote a signed measure of bounded
variation on (α, b) such that for each φ(t) e C(u0, , un_x) the integral

φdμ is well defined with infinite values permitted. The dual cone
α

of C(u09 , wΛ_i) is the set of all measures dμ which satisfy

(3 ) [bφ(t)dμ(t) ^ 0 for all φ(t) e C(u0, , un_,) .

This cone is designated by C*(w0, •• ,w«__i).

The integral operators I31 j = 0 , 1 , , n-1 are defined by
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\lodμ{t) = - ί
(4) !*

The following theorem was proved in [4]:

THEOREM A. A signed measure dμ belongs to the dual cone
C*(u0, , uΛ_i) if, and only if

( 5 ) [ui(t)dμ(t) = O, i = 0,1, • • • , » - 1 ,
Ja

and

( 6) In-iL-2 Iodμ(t) ^ 0 , for all a^tSb .

Furthermore, it was shown that the "moment conditions" (5) are
equivalent to

( 7 ) IJ^ Iodμ(b) = 0 , i = 0,1, , n - 1 .

The necessary and sufficient conditions stated in Theorem A are
in general hard to verify, the main difficulty being the inequalities
(6). Therefore, it seems advantageous to seek simpler conditions even
if they will not always be both necessary and sufficient. Very weak,
but easily verifiable necessary conditions are the "moment conditions"
(5). Some simple sufficient conditions which enable us to ascertain
that dμ e C*(u0, , un_λ) by checking its pattern of sign changes were
also found. In order to state them we need first introduce some
definitions. We adopt the following convention: a signed measure dμ
will be said to have the sign ε (ε can be ( + ) or ( —)) on a set s if
εM s) > 0 and there is no subset s' of s for which eμ(s') < 0. A func-
tion f(t) will be said to have the sign ε on an interval I if and only
if dμ — f(t)dt has the sign ε on I.

DEFINITION 2. A signed measure dμ defined on (α, b) is said to
possess a first sign there, if there exists an interval extending to the
end-point a on which dμ has a constant sign (this sign will be called
the first sign of dμ). Similarly, dμ is said to possess a last sign on
(α, δ), if there exists an interval extending to the end point b on which
dμ has a constant sign (this sign will be called the last sign of dμ).

DEFINITION 3. A signed measure dμ is said to have k sign changes
on (α, b) if there exists a subdivision of (α, b) into disjoint consecutive
sets To, Tl9 , Tk such that dμ is of alternating sign on To, Tu , Th.
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We replaced here the "consecutive intervals" of the corresponding
definition employed in [5] by "consecutive sets"—thus allowing a T{ to
consist of one point only. We note that if the support of the measure
consists of a finite number of points or if it is absolutely continuous,
the two definitions coincide.

The following theorem stated in [5] (and, in a slightly weaker
form, in [4]) is actually true only when one uses the concept of sign
changes in the way it is formulated here. The proof involves only
minor modifications of the proof presented in [5]. We will not go
into details.

THEOREM B. // a nontrivίal signed measure dμ satisfies the
"moment conditions'9 (5) then it has at least n sign changes. If dμ
has exactly n sign changes and its last sign is ( + ), then

There exists a wide gap between the necessary "moment conditions"
and the strong sufficient conditions stated in Theorem B. The main
purpose of this note is to narrow it by obtaining stronger necessary
conditions as well as weaker sufficient conditions.

2* Necessary conditions* The first results which we will prove
concern the simple cone C*(u0).

LEMMA 1. Let dμ be a signed measure possessing a first sign
and a last sign on (α, 6). A necessary condition for dμ to belong to
C*(uQ) is that its first sign be ( —) and its last sign be ( + ).

Proof. Let dμ be a measure belonging to C*(uQ). Then, by ap-
plying Theorem A, we have

( 8 ) \\(t)dμ(t) = 0.
Ja

We will first establish that the first sign of dμ is ( —). Indeed,
suppose there is an interval (α, ί j on which dμ is positive.

Consider the function φ(t) defined by

(βjUoit) a ^ t ^ t , ,
Φ(t) = _ . ^ . ^ . 0 < cx < c2 .

(c2u0(t) *! < ί < 6 ,

Clearly, φ(t) belongs to C(u0). Compute now
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S b Cti Cb

φ(t)dμ(t) = cx \ uQ(t)dμ(t) + c2 I uo(t)dμ(t)
a Jα J ί x

S b

uQ(t)dμ(t) .
a

Using (8), it follows that

hφ{t)dμ(t) < 0 ,

which is impossible since dμ e C*(uQ).
Similarly, we will now show that the last sign of dμ is ( + ).

Indeed, assume that there exists an interval [t2j b) on which dμ is
negative. Consider the function ψ(t) e C(u0) defined by

ί - c2u0(t) a < t < t 2 ,
ψ(t) — \ 0 < c1 < c2 .

( C U i t ) t ^ t < b

A computation similar to that performed for φ(t) yields

\bψ(t)dμ(t) < 0 ,
Jo

contrary to the assumption that dμ e C*(u0). This completes the proof
of the lemma.

Corollary 1. Let dμ be a signed measure possessing a finite
number of sign changes on (α, 6). If dμ belongs to C*(u0) then it has
an odd number of sign changes and its first sign is ( —).

Let now the signed measure dμ have 2k — 1 sign changes on
(α, b) and let {TJf"1 be the subdivision of (α, b) associated with the
sign changes of dμ. Set

&i — •* 2i-2 U J- 2ί_l ) Ί — 1 , 2 , , k

and let t h e points t0, , t2k be defined by

to = α , U - sup{ί: t e T^} , i = 1, 2, . . . ,2/c .

Define the numbers Ju , Jk by

( 9 ) J, = \ uQ(t)dμ(t) , i = l , 2 , - . . , f c .

The measure dμx with the k atomic masses J19 , Jk s ituated, re-

spectively, a t the points 1,2, •••,& will be referred to in this paper

as the measure induced by dμ.

LEMMA 2. Let dμ have 2k — 1 sign changes on (a, b) and let its
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first sign be ( —). Then dμ belongs to C*(u0) on (α, 6) if, and only
if the measure induced by it belongs to C*(l) on (0, k + 1).

Proof. Let φ(t) be an arbitrary function belonging to C(uΰ); then

S b 2k-l C

φ(t)dμ(t) = Σ Φ(t)dμ(t)
a i=0 jΓi

= Σ Γt Φ(t)du(t) + \ φ(t)dμ(t)\

The inequality follows from the fact that φ(t)/uo(t) is non decreasing
on (α, 6) while dμ(t) is negative in the first integral and positive in
the second.

Using definition (9) we thus obtain

(10)

Suppose now that the induced measure dμ belongs to C*(l). Then

k

X α Jΐ ^ 0, for each sequence {α<}f belonging to C(l)

Since {̂ (ί2i-i)/̂ o(ί2i-i)}<=i is a nondecreasing sequence it belongs to C(l).

Hence, the right hand side of (10) is nonnegative and \ φ{t)dμ{t) ̂ > 0.
Ja

Since φ(t) was an arbitrary function of C(u0), this implies that άμ
belongs to C*(u0).

Conversely, suppose that dμ e C*(u0) and let {αjf be an arbitrary
sequence of C(l). Define the function φ(t) by

aMt) , for ί e S ^ i = 1,2, •-.,&,

and note t h a t

(11) Σ α^< = Σ ^ ί uQ(t)dμ(t) = ί bφ(t)dμ(t) ^ 0 .
i=l *=1 J^ί Jα

The inequality is due to the fact that φ(t)/uo(t) is a nondecreasing
function, i.e., that φ(t) belongs to C(u0).

Since the sequence {αjf was an arbitrary sequence of C(l), this
completes the proof of the lemma.

Appealing to Corollary 1, we can deduce

COROLLARY 2. Let dμ be a measure of C*(uQ) possessing a finite



ON THE CHARACTERIZATION OF MEASURES 609

number of sign changes on (α, b). Then, either the induced measure
dμλ is the trivial measure or it has an odd number of sign changes
and its first sign is ( —).

Observe next that if the induced measure dμλ has an odd number
of sign changes, the discussion preceding Lemma 2 can be applied to
dμL and a measure dμ2, induced by dμ19 can be obtained. To this end,
we only have to substitute uo(t) = 1 in (9) and replace (α, b) by
(0, k + 1). By Corollary 2, dμ2 is either trivial or it has an odd number
of sign changes. Thus, if dμ2 is nontrivial, we can define a measure
dμ3 induced by dμ2. This process can be continued as long as the
induced measure is nontrivial.

LEMMA 3. Let dμ be a measure of C*(u0) possessing a finite
number of sign changes on (α, 6). Then the sequence of nontrivial
successively induced measures dμu dμ2, « , is finite.

Proof. Observe that the induced measures dμx, c£u2, , have
finite supports. Note next that the number of points in the support
of dμi+u i — 1, 2, , is at most half the number of points in the
support of dμif ί = 1, 2, . Hence, the assertion of the lemma follows.

THEOREM. 1. Let dμ possess a finite number of sign changes
on (α, b). Necessary and sufficient conditions for dμ to belong to
C*(uQ) are: (a) that it satisfy (8), and (b) that dμ and each measure
in the finite sequence of nontrivial successively induced measures
dμl9 dμ2, , exhibit the pattern of sign changes specified in Lemma 1.

Proof. Necessity. The necessity of (a) follows from Theorem A.
The necessity of (b) follows by a repeated application of Corollary 2.

Sufficiency. Let dμN be the last nontrivial measure in the se-
quence, so that dμN+1 is the trivial measure.

Since dμ has a finite number of sign changes, each nontrivial
measure dμui = 1, •••, JV, also has a finite number of sign changes.
Since, by assumption, the measures exhibit the pattern of sign changes
specified in Lemma 1, they satisfy the requirements of Lemma 2.

By Lemma 2, if dμi+1, i = 1, , N belongs to C*(l), then so does
dμ{. Furthermore, if dμγ belongs to C*(l) then dμ belongs to C*(u0).
Thus, the fact that dμN+1, the trivial measure, belongs to C*(l), im-
plies that dμ belongs to C*(u0) and the theorem is proved.

We next derive necessary conditions for a measure possessing a
first sign and a last sign on (α, b) to belong to C*(w0, •••, w»-i).



610 ZVI ZIEGLER

THEOREM 2. A necessary condition for a measure dμ possessing
a first sign and a last sign on (α, b) to belong to C*(u0, , wn-1) is
that its first sign be (— l)n and its last sign be ( + ).

Proof. The proof proceeds by induction on n. For n = 1, the
assertion is simply a restating of Lemma 1. Assuming that the as-
sertion is valid for n fg k — 1, we will now prove it for n — k.

We introduce the first order differential operators (see [5])

(12) Dsf(t) = — ——f(t) , j = 0,1, , n - 1 ,
dt L.Wj(t) J

where the w[s are the functions introduced in (1).
Let now dμ be a measure of C*(u0, , ^ - I ) possessing a first

sign and a last sign on (α, δ). Using integration by parts and the
definitions (4) and (12), we find

[φ(t)dμ(t)= \b

(13)
Ά u ( ) ' + \b[DQψ(t)][IQdμ(t)]dt .
W0(t)

The integrated part vanishes, since Iodμ(b) = 0 is a necessary
condition by Theorem A. It is very easy to see (cf. [11] or [5]) that
the set of functions {Dύφ(t) | φ(t) e C(u0, , uk_^\ comprises a generalized
convexity cone. This cone is called the first "reduced" cone, and is
denoted, in terms of its basic ECT-system, by C(Doul9 , A^*-i)
Thus, (13) implies that a necessary condition for dμ to belong to
C*(u09 •• ,^-i) is that Iodμ(t)dt belong to C*(Dou19 , -Dow*-i).

Since dμ has a first sign and a last sign, so does Iodμ(t)dt.
Utilizing now the fact that the condition on the pattern of signs
formulated in the theorem depends only on the order of the cone, i.e.
on the number of functions in its basic ECT-system, we can apply
the induction hypothesis. We thus deduce that the first sign of Iodμ(t)
is (— I)*"1 and its last sign in ( + ).

Note further that

(14) IQdμ(t) - - \uo(t)dμ{t) ,

and that, using relation (8), which is valid by Theorem A, we also
have

(15) IQdμ(t) =

Relations (14) and (15) imply that the first sign of dμ(t) is opposite
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to that of Iodμ(t) and that the last sign of dμ(t) is the same as that
of Iodμ(t). This completes the induction step and thereby the theorem
is proved.

The set of measures of a dual cone C*(u0, , un_^) which possess
a first sign on (α, 6) is a subcone. This subcone will be called the
restricted dual cone. Note that the trivial measure does not belong to
the restricted dual cone.

The condition on the pattern of signs proved in Theorem 2 readily
yield

COROLLARY 3. A restricted dual cone of odd order and a restricted
dual cone of even order are always mutually disjoint.

Note that in Corollary 3, the cones may be based on different
ECT-systems. For a fixed ECT-system, a more comprehensive result
in this direction is true, viz.

THEOREM 3. Let an ECT'-system be given. Two dual cones with
respect to this system which are of different orders have only the
trivial measure in common.

Proof. Consider C*(u0, , un_γ) and C*(u0, , u^) with n > k.
Let dμ be a measure belonging to C*(u0, , u^). Then the necessary
conditions of Theorem A imply that

(16) Ik-Jk-2 Iodμ(t) ^ 0 , for a ^ t £ b .

Suppose now that dμ belongs also to C*(uQ1 , un^). By repeated
integration by parts similar to that performed in (13), we find

\bbφ(t)dμ(t) = - D<
i=i Wj(t)wo(t)

Jk_2 . . I4μ(t)]dt .

Ij . Iodμ(t)
b

Tne integrated part vanishes by virtue of the conditions (7) which
are necessary conditions for dμ to belong to C*(u0, •••, wn-i). Hence,
as in the proof of Theorem 2, we deduce that a necessary condition
for dμ to belong to C*(u0, , un_^ is that Ik_Jk_2 Iodμ(t)dt belong
to the dual to the ft-th "reduced" cone

C*{Dk^ Douky D Λ - 1 Douk+1, , Dk_γ A^n-i)

This is a dual cone of order n-k, so that by Theorem B, a necessary
condition for this to happen, is that either / f c - 1 Iύdμ(t) have at
least n-k sign changes on (α, δ), or that Ik_λ Iodμ(t) = 0. Since



612 ZVI ZIEGLER

(16) has to be satisfied, we deduce that Ik__x Iodμ(t) = 0; this is
equivalent to dμ being the trivial measure, so that the proof is
complete.

We have seen that for a fixed ECT-system, the intersection of
two dual cones of different order contains only the trivial measure.
The question of the structure and properties of unions of such cones
will be explored by the author in a future publication.

3. Sufficient conditions* We have, in the last section, streng-
thened the necessary conditions given by Theorem A, by adding that
if a signed measure dμ belongs to C*(u0, •• ,w»-i) and possesses a
first sign and a last sign, then its first sign must be (— l)n and its
last sign must be ( + ).

We shall obtain in this section weaker sufficient conditions than
those specified in Theorem B.

Let the functions Ui(μ; t), i = 0,1, , n — 1, be defined by

(17) Ut(μ; t) = [u^dμit) , i = 0, 1, . . , n - 1 .

These functions are smoother than the measure dμ(t) and therefore
it is sometimes easier to check their respective patterns of signs than
to check the pattern of signs of dμ.

THEOREM 4. Let dμ satisfy the "moment conditions" (5) and let
its first sign be (— l)m and its last sign be ( + ). If there exists a j,
0 ^ j ^ n — 1, such that Uά(μ; t) has at most n — 1 sign changes on
(α, 6), then dμ e C*(^o, , w»_i).

Proof. The proof proceeds by induction. Let (u0, , wm__i), m ^ 1,
be an arbitrary ECT-system. (Note that this is a completely arbitrary
ECT-system. We have chosen to denote its functions by (u0, , um_λ)
in order to be able to avail ourselves of other theorems of the paper
without undue change of notation).

Assume that dμ(t) satisfies the "moment conditions" (5) (where n
is replaced by m), and that its first sign is (— l ) w and its last sign is ( + ).
Assume further that U0(μ; t) has at most m — 1 sign changes on (α, 6).
We will now show that these assumptions imply that

dμ e C*(^o, , tt«_i) .

We note that UQ(μ; ί) = — I<>dμ(t), and observe that (13) and (5)
imply that

(18) \[φ(t)dμ(t) = \\Doφ(t)] [Iodμ(t)]dt .
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Thus, it will suffice if we show that Iodμ(t)dt belongs to

C*(Dou19 -

Relations (18) and (5) imply that Iodμ(t)dt satisfies the m — 1
"moment conditions" with respect to (DQuu , DQum_^). Hence, by
Theorem B, it has at least m — 1 sign changes. However, by our as-
sumption, Iodμ(t) has at most m — 1 sign changes, so that it must have
exactly m — 1 sign changes. Furthermore, following the same reasoning
as in the proof of Theorem 2, we deduce that the first sign of IQdμ(t)
is (— I)™-1 and its last sign is ( + ). Therefore, by Theorem B,
IQdμ(t)dt b e l o n g s t o C*(Dou19 •••, D o u m ^ ) .

We have thus proved that if an ECT-system of order m, m Ξ> 1,
is given and dμ is a signed measure with first sign (— l) m and last
sign ( + ) satisfying the corresponding "moment conditions", then the
condition that UQ(μ; t) have at most m — 1 sign changes on (α, b) implies
that dμ belongs to the corresponding dual cone.

Assume now that we have established that, given any ECT-system
of order m and a signed measure dμ satisfying the corresponding
"moment conditions" and having the appropriate first and last signs, the
condition that Uτ^ι(μ; t)yl^r<m, have at most m — 1 sign changes
on (α, b) implies that dμ belongs to the corresponding dual cone.

We wish to show that the same conclusion is implied by the
condition that Ur(μ; t) have at most m — 1 sign changes. This will be
the induction step and thereby the validity of the theorem will be
established.

Let dμ(t) be a signed measure whose first sign is (— l) m and
whose last sign is ( + ) and let it satisfy (5). Furthermore, assume
that Ur(μ; t) has at most m — 1 sign changes. We wish to show that
these assumptions together with the induction hypothesis imply that
dμe C*(u0, •• ,um_1). It will suffice, as explained earlier, if we show
that Iodμ(t)dt e C*(Dou19 , Ώ,um_^.

Consider the ECT-system (Dou19 •• ,-D0%w_1) and define

(19) Uΐ(μ; t) = ['DQui+1(t)dμ(t) , i = 0, 1, • , m - 2 .
Ja

In the case where dμ(t) — f(t)dt, the left hand side of (19) will be
written as U?(f; t).

Integration by parts similar to that performed in (13) yields

(20) Uf^Iodμ; t) = *Al4μ(t) + U, (μ; t) , j = 1, 2, . . . , m - 1 .
wo(t)

Note that the functions U*(μ; t), j = 0,1, , m — 2 are defined
with respect to the ECT-system of order m — 1 (DQuly , JDot&w-1) in
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exactly the same way that Uj(μ; t),j = 0,1, , m — 1 were defined
in (17) with respect to (u0, •• ,wm_i). Note further that our assump-
tions on dμ imply that the first sign of IQdμ(t) is (— I)™"1 and its
last sign is ( + ) and that IQdμ(t) satisfies the "moment conditions"
with respect to (Dou19 , Doum_1). Thus, if we show that Uϊ-^Iodμ; t)
has at most m — 2 sign changes, the induction hypothesis, which is
applicable since r — 1 < m — 1, will imply that

IQdμ(t) e C*(Doulf , Doum^) .

We start with an analysis of the patterns of signs of Uΐ^JJ^dμ] t)
and Ur(μ; t). Since the first sign of IQdμ(t) is ( — l)™-1 the same is
true for Uί^(IQdμ'91). Similarly, since the first sign of dμ is (— l)m

the same is true for Ur(μ; t). On the other hand, the last signs of
both dμ and Iodμ(t) are ( + ) so that the last signs of both Ui^I^dμ; t)
and Ur(μ; t) are ( —).

Let v be the number of sign changes of Ur~i(Iodμ; t); the above
analysis of first and last signs implies that

(21) v = m (mod 2) .

Suppose now that Ur~i(Iodμ; t) has more than m — 2 sign changes.
Then, by (21), it must have at least m sign changes. We assert that
this is incompatible with the assumption that Ur(μ; t) has at most
m — 1 sign changes.

We divide the proof of this assertion in two parts.
(a) Let (To*, •••, T*) be the subdivision of (α, b) associated with

the sign changes of Ur~i(Iodμ; t) and let {ί?}ϊ, the points of sign change
of Uί^(Iodμ; t), be defined by tf = sup {t: t e TUh i = 1, 2, , v.
Then Ur(μ; t) changes sign at least once in (α, if).

Note first that Ur-i(Iodμ; t) is a continuous function, so that the
points tf, ί — 1, 2, , v, are among its zeros. By considering the
pattern of signs of Uί^x{I^dμ\t) we see that (— l)m~ιUr~ι(I^dμΊ t) is
positive on (α, t?] and changes its sign to negative at if. Hence,
there must exist a point x, a < x < t*, such that

< 0 .

Moreover, since D^u^t) is strictly positive on (α, 6), we have

0 .

This inequality, taken together with relation (20) and the fact that
Uj(t) and wo(t) are strictly positive on (α, 6), implies that

However, we know that the first sign of (— l)mUr(μ;t) is ( + ).
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Hence, a sign change must have occurred for some t, a < t < x < tf.
This completes the first part.

(b) In each interval [tf, tf+1), i = 1, 2, ., v (where t?+1 = b), the
function Ur(μ; t) has at least one point of sign change.

Indeed, with no loss of generality we may assume that Ur-ί(Iodμ; t)
is positive for t e[tf, ί*+J. Since there exists a point s, tf < s < tf+1

such that Uf-ίilodμ; s) > 0 and we also have U^ilodμ; tf+1) = 0, it
follows that there exists a point as2, £* < x2 < tf+1 for which

D0ur_1(x2)I0dμ(x2) < 0 .

Since Uf-άlodμ; x2) ^ 0, relation (20) implies that Ur(μ; x2) > 0.
On the other hand, t* is a point where Ur-i(Iodμ; t) changes sign

from negative to positive. Hence, for each y,y < tf, there exists a
point xl9 y < xx < if such that D^ur_ι{xι)lQdμ(x1) > 0 and

We deduce from (20) that Ur(μ; xj < 0. Hence, Z7r(/*; ί) must change
sign between x± and x2. Noting that y was an arbitrary point satisfy-
ing y < tf, we conclude that there exists a point x, t? <. x < x2 < t*+1,
which is a point of sign change for Ur(μ; t).

Combining parts (a) and (b) we see that Ur(μ; t) has at least as
many sign changes as U?-.1(Iodμ; t). Thus, if Ur~i(Iodμ; t) has at least
m sign changes, then so does Ur(μ; t), proving the assertion. This
completes the proof of Theorem 4.

Remark. The conditions specified in Theorem 4 are weaker than
those specified in Theorem B. Indeed, if dμ has exactly n sign changes
on (α, 6) and conditions (5) are satisfied, it follows easily that the
functions Ui(μ; t),i = 0,1, ' , n — 1 can have at most n — 1 sign
changes. The converse is not true. There exist, in fact, examples
such that dμ possesses in excess of n sign changes, while there exists
a i, 0 ^ j ^ % - 1, such that U3 (μ; t) has no more than n — 1 sign
changes.

4* Applications* In this section we discuss several applications
of the foregoing analysis to Fourier series [part a)] and to expansions
of functions in terms of orthogonal polynomials [part b)]. Some of
the results stated here might have been discussed elsewhere, but even
in that case, the power of our criteria is exemplified by the simplicity
of the derivation of the results. Thanks are due to Prof. B. Schwarz
who drew our attention to the fact that a special case of assertion
(B) below is discussed in [9, Vol. 2, p. 81]. This is the only case which,
to the best of our knowledge, has been discussed in the literature.
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The inequalities discussed in this section are necessary conditions
for functions to be included in given convexity cones. The following
converse problem is suggested:

Determine a set of conditions on the Fourier coefficients of a
function which will be sufficient to insure the inclusion of the func-
tion in a given convexity cone.

(a) Fourier series. Let f(t) denote throughout this subsection
a function of L2(— π, π) and let

(22) -ίϊsL + £ ak cos kt + bk sin kt
2 fc=i

be the corresponding Fourier series.
We shall present the inequalities for the Euler-Fourier coefficients

of functions belonging to convexity cones in the form of a series of
assertions.

(A) Let f(t) be monotone nondecreasing on (— π,π). Then

(23) ( - 1 ) ^ 6 ^ 0 , tt = l,2, . . . .

Proof. The assertion is equivalent to the relation

(- l)n+1 Γ f(t) sin ntdt^O, for each f(t) of C(l) .

Thus, we have to show that dμΛ(t) = (—I)71'1 sin nt dt belongs to C*(l).
We note first that the last sign of dμA is ( + ) and that dμA is odd.
Hence, it has the pattern of signs specified in Lemma 2. The zeros
of dμA inside (— π, π), which are simple zeros and therefore points of
sign change for dμA, are the points {— π + kπfn, k == 1, 2, , 2n — 1}.
Thus, we have

( - l)n+1 sin ntdt , i = 0,1, , n - 1 ,
—ff+(2iτr/Λ)

and this expression is zero for each i,0 <Zi <Z n — 1. Hence, the
measure induced by dμA belongs to C*(l), and by Lemma 2 so does dμA.

(B) Let f(t) be convex on (— π, π). Then

(24) (- l ) χ , ^ 0 , n = 1,2, . . . .

Proof. The assertion is equivalent to the relation

( - l)n [' f(t) cos ntdt^O for all f(t) of C(l, t) .
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Thus, we have to show that dμB(t) = (— l)n cos nt dt belongs to C*(l, ί).
Observe that

IodμB(t) = - ( ' ( - 1)- cos nx dx = (~ l)n+1sm nt

so that IodμB(π) = 0 and IodμB(t)dteC*(ϊ). By the remark following

equation (18), these are sufficient conditions for dμB(t) to belong to

C*(l, ί).

(C) Let f(t) be monotone nondecreasing on (— π, π). Then

(25)
n n = 1,2, . . . .

Proof. In view of (23), we have to show that

i.e., that ^ ( ί ) = [ ( - l)k+1smkt - ( - l)kn+1 (sinkntjn)]dt belongs to
C*(l). We note that

(26) Iodμc(π) = \ = 0 .

From the well known inequality (see e.g. [9])

j sin Nx I <: N | sin x

it follows that

sin knt

n
<; I sin kt I ,

N = l,2,

k = l,2,

so that the sign of dμc(t) is identical, for each ί, with the sign of
(— l) / ί + 1 sin &£. Thus, the first sign of dμc is ( —) and its last sign
is ( + ), so that dμc has the pattern of sign changes specified in Lemma
2. Noting that the points of sign change of dμc inside ( — π, π) are
{— π + (ίπ/k), i = 1, , 2k — 1}, we have

= S""!!Π (- sin kt — (— l)kn+1 dt ,
n J

ΐ = O , l , . - . , f c - l .

This expression is zero for each i, i = 0, 1, , k — 1. Thus, by
Lemma 2, d/^ belongs to C*(l).

(D) Lei /(ί) 6β convex on (— π, π). Then
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(27) l α . l S E l c U , * = ] ' * ' "' '
Λ = 1,2, ••• .

Proof. In view of (24), we have to show that

( - lfak ^ ( - l) *α.4 ,

i.e., that dμD{t) = [ ( - 1)* cos kt - (- l)nk cos »&i]di belongs to C*(l, ί).
We note that

IodμΛt) =-[ dμD(t) = 1 Γ ( - 1)* + 1 s in fct - ( - l ) t o + 1 s i n f e w * 1 .
J-π k L n A

Thus, IQdμD(π) = 0 and, by assertion C), IQdμD(t) belongs to C*(l).
These conditions imply that dμD{t) belongs to C*(l, t).

(E) Lβί f(t) be monotone nondecreasing on (— π9π). Then

(28) 4

Proof. We need only observe that

dμE{t) — X sin &ί + —sin (n + l)t \dt

is nonnegative for 0 ^ t ^ π (see [9]) and odd. The "moment condi-
tion" IodμE(π) = 0 is clearly satisfied, and the previous observation
implies that there exists precisely one sign change. The assertion
follows then by appealing to Theorem B. Note that if n is odd,
relations (28) and (23) imply

(29) Σ bk ^ 0 , for each odd n .

(F) Let f(t) be convex on (— π, π). Then

(30) Σ kak +
 ( n "j" 1 ) an+1 ^ 0 , n = 1, 2, . . .

Proo/. Set d ^ ( ί ) = - [Σ*=i f c c o s k t + {(n + i ) / 2 ! c o s (^
it is easily seen that IQdμF(π) = 0 and that IQdμF(t) — dμE(t) belongs
to C*(l). These conditions imply that dμF belongs to C*(l, ί) Note
also that relations (30) and (24) imply that

(31) Σ kak ^ 0 , for each odd w .
λ l
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(G) Let f(t) be monotone nondecreasing on (— TΓ, TΓ). Then

(32) Σ ^ + 1 — &)δfc ^ 0 > for each odd n .
fel

Proof. Set (ZμG(ί) = [ΣiU fc(w + 1 - fc) sin fcί]dί. Straight com-
putation yields

IodμG(t) = Σ(n + 1 - k) cos kt + C .
k = l

We recall the equation (see [9])

(33) ±(n + 1 - fc)coβ*t + - * ± i = l Γ B J n ( * + l)t/2T .
*=i 2 2 L sinί/2 J

The right hand side of (33) differs from IodμG(t) by a constant at
most. However, for an odd n the right hand side of (33) vanishes
for t = π and so does IodμG(t) as is clear from the definition of dμG.
Therefore we have

sin t/2

so that IodμG(t) is nonnegative on (— TΓ, TΓ) and vanishes for t = TΓ.
This implies, using Theorem A, that dμG belongs to C*(l).

(H) Let f{t) be convex on (— TΓ, TΓ).

(34) Σ k2(n + 1 - )̂̂ & ^ 0 , /or each odd n .
fcl

Proof. This assertion follows from assertion (G) in precisely the
same way as (F) followed from (E).

(I) Let f(t) be a function of C(l, ί, t2) on ( - TΓ, TΓ). Then

(35) ( - 1)&+1&, ^ ( - l)kn+1nbnk , & - 1, 2, . . ,

w = 1, 2, .

Proof Set d^z(ί) = [ ( - l)kn+1nsin knt - (- l)k+ί sin Λί]rfί. Simple
integration yields

Iodμj(t) = -f [ ( - 1)""+1 cos knt- (- l)k+ί cos Λί] ,

so that IQdμj(π) = 0. Furthermore, I^dμ^t) belongs to C*(l, t) by
assertion (D). These facts imply that dμz(t) belongs to C*(l, t, ί2).
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COROLLARY I. If f(t) e C(l) n C(l, t, f), then we have

(36) bnk

(J) Lei /(<) δe α function of C(l, t, f, f) on ( - π, π). Then

(37) ( - lfak £ ( - lJ' Λ'α,* , k = 1, 2, . ,
» = 1,2, . . . .

Proo/. Set d//j(ί) = [ (- l)*+1cos/cί - ( - l)kn+1ri> cos nkt]dt. The
familiar integration yields now

—
fC

sin Λί - ( -

so that IQdμj(π) = 0. Furthermore, IQdμj(t) belongs to C*(l, t, t2) by
assertion 1). These facts imply that dμj(t) belongs to C*(l, ί, t2, ί8).

COROLLARY J. / / /(ί) e C(l, ί) n C(l, ί, ί2, ί3),

(38) ϊ a i 5Ξ j α t

have

Corollaries (I) and (J) imply the following theorem relating any
two Euler-Fourier coefficients.

THEOREM 5. Let P(n, m) denote the least common multiple of the
natural numbers m and n. The following inequalities are satisfied:

(39)

and

(40)

P(m, n)
bn\ ^ I P(mf n)bm I ,

for all f(t) e C(l) n C(l, ί, ί2) ,

P2(m, w)
^ I α J ^ I P2(m, n)am \ ,

/or all f(t) e C(l, ί) Π C(l, ί, ί2, ί3) .

(K) Let f(t) be a convex function on (— π, π). Then

(41) Γ tf(t)dt £ ξ(6L - aj .

Proof. Consider the measure dμk(t) — (sin t — cos t — 3t/π2)dt. It
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is easily verified that both the first sign and the last sign of dμκ(t)

are ( + ). A direct computation demonstrates that the "moment con-

ditions" Γ dμκ{t) = 0 and \ tdμκ(t) = 0 are satisfied. Moreover, an

examination of the graph of sinί-cosί versus the graph of 3t/π2 shows
that dμκ(t) has precisely two sign changes. Hence, Theorem B implies
that dμκ(t) belongs to C*(l, t); this is equivalent to assertion (K).

(L) Let f(t) be a monotone nondecreasing function on (— πf π).
Then

(42) j *JV(t)dt ̂ ψ^-^-a^.

Proof. Let dμL(t) = (cos t + sin t + U2/2π2 - l/2)dt. It is easily
verified that dμL(t) = IQdμκ(t)dt. Since IQdμκ(π) = 0, we can conclude
from assertion (K) and the remark following equation (13) that dμL(t)
belongs to C*(l), i.e., that (42) is indeed valid for all /(ί)eC(l).

Since Theorems 1 and 2 specify necessary conditions for a measure
to belong to a dual cone, some results of a negative nature are also to
be expected. In fact, the following results can readily be deduced
from Theorem 2.

THEOREM 6. Let (u0, , u^-i), n ̂  1, be an ECT-system on [-π, π].
No finite linear inequality involving only 6Js can be valid for all
f(t)eC(u0, •• ,^ 2 w_ 1).

Proof. It suffices to observe that a measure which is a linear
combination of {sin kt} is an odd function on (— π, π) and thus has an
odd number of sign changes.

A similar reasoning yields also

THEOREM 7. Let (u0, , u2n), n^0,be an ECT-system on[— π, π].
No finite linear inequality involving only a^s can be valid for all
f(t)eC(u0, " ,Uu).

One might conjecture, on the basis of assertion (D), that {\an\}
is a monotone decreasing sequence whenever f(t) is a convex function.
A computation of the corresponding {/J and reliance on Theorem 1,
show, however, that neither | α21 ^ | α31 nor | α31 ^ | α61 are valid for
all convex functions.

We conclude with the following
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REMARK. An inequality for the Euler-Fourier coefficients which
holds for all functions of C(l, ί, β ,ίw) cannot hold, by Theorem 3,
for all functions of C(l, t, , £m), m Φ n.

(b) Expansion in series of orthogonal polynomials. Let {Pw(£)}~=o
be an orthonormal family of polynomials with respect to a weight
function w(t) on (α, 6), and let Pn(t) be so normalized that the coeffi-
cient of tn is positive. Let f{t) denote a function of L2(w(t); a, b)
throughout this subsection, and let cn, n = 0,1, , denote the Fourier
coefficients of f(t) with respect to the system {Pn(t)}, i.e.,

(43) c% = \b f(t)Pn(t)w(t)dt , Λ = 0,1, • .

Given that /(£) belongs to a convexity cone, certain inequalities
have to be satisfied by the coefficients cn, n = 0,1, . The deriva-
tion of such inequalities is the substance of this subsection.

THEOREM 8. Let f(t) be a function of C(l, t, , ί - 1 ) . Then the
following conditions are satisfied:

(44) cn ^ 0 ,

and

ί* n ( 1 \»+1/» f 1 \n+1f*

P.(δ) - Pn+1(b) Pn(a) - Pn+1(a)

Proof. Set dμ^t) = Pn(t)w(t)dt. Then relation (44) will follow if
we show that d ^ belongs to C*(l, ί, •••, ί*"1). The orthogonality
properties of the polynomials Pn(t) imply that dμγ satisfies the "moment
conditions" (5). We recall now that Pn(t) has n simple zeros, i.e. n
sign changes, inside (a, b) (see [10], Th. 3.3.1). Furthermore, since
these are all the zeros, the normalization implies that the last sign of
dμ1 on (α, b) is ( + ). Hence, relation (44) follows by appealing to
Theorem B.

Consider next the measure

dμ,{t) - Γ P ; + f f PΛt) - Pn+ί(t)]w(t)dt .

The "moment conditions" are clearly satisfied by dμ2 due to the or-
thogonality properties. Observe next that the polynomial

Pn+ίφ)Pn(t)/Pn(b) ~ Pn+ί(t)

has exactly n sign changes inside (α, 6) (see [10], Th. 3.3.4). Since
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the n + 1 — st zero is at 6, the normalization implies that the poly-
nomial must change its sign there from positive to negative. Hence,
the last sign of dμ2 on (α, b) is ( + ) and the first of relations (45) is
established by appealing to Theorem B.

Similarly, the measure

dμj(t) = [p.+1(ί) - Pβ+^] Pn(t)]w(t)dt
(a)

has n sign changes inside (α, b) and an n + 1-st sign change at a
(see [10], Th. 3.3.4). Its last sign on (α, 6) is ( + ) and the "moment
conditions" are satisfied. Thus, Theorem B implies that dμz belongs
to C*(l, ί, , ί*"1), i.e. that the inequality cn+1^ Pn+1(a)cJPn(a) is
valid for all f(t) e C(l, ί, , ί—*). Using the fact that

( Γ w + 1 ( α ) > 0 ,

we obtain the second relation of (45).

COROLLARY 8.1. // f(t) is absolutely monotone on (α, 6) then
cn ^ 0, n = 0,1, , and the sequence {cw/PΛ(δ)}~=0 ^s monotone decreas-
ing. It f(t) is completely monotone on (α, b) then

and the sequence {cw/P%(α)}^=0 is monotone decreasing.

For special classes of orthogonal polynomials, some further results
can be obtained. Let (α, b) be a finite interval. Then, with no loss
of generality we may assume that a = — 1, b = 1.

THEOREM 9. Let the weight function w(t) be an even function
and let f(t) be a function of C(t, t, •••, ί*-1). Then in addition to
(44) and (45), we have

(46) T̂ r- ^ -φ^r-

Proof. Consider the measure

The "moment conditions" (5) are satisfied by dμ by virtue of the
orthogonality properties. Thus, by Theorem B, the polynomial

Q(t) =
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has at least n zeros inside (— 1,1). On the other hand, it can have
at most n zeros inside (— 1,1) since Q(l) = 0 and the symmetry of w(t)
implies that Q(— 1) = 0. Hence, Q(t) has exactly n zeros inside
(— 1,1). Noting that t — 1 is the largest zero of Q(t), we deduce
from the normalization of the polynomials Pn(t), n = 0,1, , that
the last sign of dμ on (— 1,1) is ( + ). Relation (46) follows now by
appealing again to Theorem B.

Note that the ultraspherical polynomials have a symmetric weight
function, so that for them relations (44)—(46) are valid.

Consider now the expansion in terms of Tchebycheff polynomials.
As a result of the strong affinity of these polynomials to the trigono-
metric functions, a general inequality for the coefficients of the ex-
pansion can be derived from the sole assumption that f(x) is monotone
nondecreasing.

Let Tn(x), n = 0,1, , denote the n-ih order Tchebycheff poly-
nomial, and let the coefficients an, n = 0,1, , be defined by

(47) an = Γ j y fr) dx , n = 0,l, .

THEOREM 10. Let f(x) be a monotone nondecreasing function on
(-1,1). Then

(48) | α j ^ | α j , n = 2, 3, . . . .

Proof. Note first that since f(x) e C(l), Theorem 8 implies that
ax ^ 0. Hence, relation (48) is equivalent to αA ^ | an |.

We start by proving that αx ^ an. Consider the measure

We wish to prove that this measure belongs to C*(l) on (—1,1).
Making the monotone change of variable x ~ cosί, 0 < t < π, we see
that our problem reduces to showing that

dμ2(t) = (cos nt — cos t)dt

belongs to C*(l) on (0, π). The "moment condition I dμ2(t) = 0 is triv-
Jo

ially satisfied. Furthermore, dμ2(t) is negative on an interval extend-
ing to 0 and it is positive on an interval extending to π.

The elementary trigonometric identity

cos nt - cos t - - 2 sin SlL±M s j n <» ~ *>*
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shows that the zeros, i.e. the points of sign change, of [cos nt — cos t]
inside (0, π) are the points 2kπ/(n + 1), k = 1, 2, . , [n/2], and the
points 2kπ/(n - 1), k = 1, 2, . ., [(n - 2)/2]. Thus, for n = 2 or w = 3,
c£μ2 changes sign only once so that the desired conclusion follows from
Theorem B.

Assume now that n ^ 4. Since rj(n - 1) < (r + 2)/(w + 1) for all
r, l ^ r < w — 1, the ordered sequence of points of sign change of
dμ2 inside (0, π) is

2π 2π 4ττ # # # 2[(^ - 2)/2]ττ

The numbers Jit i = 0,1, [(n - 4)/2], defined in (9), are thus
given by

S (2i+2)JT/(»-l)
(cos nt — cos t)dt

= l Γ s i n ( 2 ΐ + 2 ) ^ _ ^ 2MMΓ.-1 _ ΓBin(2Λ + 2 ) f f _ s i n J i Z L Ί .
?2,L ^ — 1 n — 1J L w — 1 ^ — U

Since nπ/(n — 1) = π + ττ/(w - 1), the expression for J^ reduces to

(49) ^
n

The last J^ is given by

= \ (cos wί —
J2[Λ-2)/2]JC/(Λ-1)

cos

1 s i n 2 [ ( » - 2)/2]π Ί d n 2 [ ( ^ - 2)/2]π
n n — 1 ^ — 1

n > 0 .
^ — 1

From (49) we can deduce that J o < 0 and that the sequence

{J«, ΐ = 0,1, . . . , [ ( *

has precisely one sign change, which is a change from negative to
positive. Hence, by appealing to Lemma 2, we conclude that dμz(t)
belongs to C*(l) on (0, π). Thus dμx{x) belongs to C*(l) on (-1,1)
and the inequality αx ^ an is established for all f(x) e C(l).

For the proof of the inequality a^ — an we consider the measure
dμ3(x) = [T^x) + Tn(x)](l- x2yil2dx defined on (-1,1) . This measure
belongs to C*(l) on ( ~ 1 , 1) if, and only if dμ,(t) = - (cos nt + cost)dt
belongs to C*(l) on (0, π). The proof that dμ,(t) belongs to C*(l)
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proceeds in exactly the same way as the proof that dμ2(t) e C*(l).
We will not repeat the details. This completes the proof of the
theorem.

The author wishes to express his deep gratitude to Professor
Samuel Karlin for his guidance and inspiration. I also wish to thank
the referee for his useful comments.
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