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ON SYMMETRY IN CERTAIN GROUP ALGEBRAS

DUANE W. BAILEY

A complex Banach algebra A with involution z — z* is
symmetric if Sp (z*z) c [0, ) for each xcA. It is shown
that (i) if A is symmetric, the algebra of all » X n matrices
with elements from A is symmetric, and (ii) the group algebra
of any semi-direct product of a finite group with a locally
compact group having a symmetric group algebra is again
symmetric.

An involution z—2* in A is said to be hermitian if Sp
() C (— oo, o) for every self-adjoint € A. In [1] R. Bonic studied
the natural involution in the group algebra of certain discrete groups
and raised the question: Is the group algebra of a semi-direct product
of a finite group with a discrete Abelian group necessarily symmetric?
The present work is devoted to proving the more general result that
the group algebra of any semi-direct product of a finite group with
a locally compact group whose group algebra is symmetrie, is again
symmetric. The proof in part depends upon showing that the algebra
of n X n matrices with elements from a symmetric Banach algebra
has a naturally defined symmetric involution. (We restrict our atten-
tion to continuous involutions.)

I am indebted to the referee for pointing out that if G is discrete,
our Theorem 2 follows from a result of A. Hulanicki (Corollary 2,
page 286 of [4]). Also, while it is easy to show that every symmetric
involution is necessarily hermitian and that the notions are equivalent
for commutative algebras, the equivalence for noncommutative algebras
was an open question until quite recently. Mr. S. Shirali has announced
a positive solution to this question which will be contained in his
Doctoral Dissertation at Harvard University.

1. Algebras of matrices. Let A be a Banach algebra with a
continuous involution # — #*. A linear functional f on A is positive
if fla*x) =0 for all ze A. If A contains an identity e, such a func-
tional satisfies f(y*x) = f(z*y) for all z, ye A, and if A is symmetric,
then

a.1) Sp(x) C {f(x) | f a positive functional, f(e) = 1}

whenever v € A and x*x = xx*. (For a proof of these and other facts
about symmetric Banach algebras, see [5].) In the following, v(z)
denotes the spectral radius of =z.

413



414 DUANE W. BAILEY

LemMMA 1. Let A be a Banach algebra with identity and

continuous involution, and let f be a positive linear functional on
A. Then

(i) |fle*ha)| < fla*z)v(h) whenever x,he A and h* = h .

(ii) ]f(éy*x) 2

< f(; y;“y,)f(}f_‘i xFx, )whenever z,Y;€A.

(i) f ((g‘; y*m)* (gi yiw; >) =f (; w*%‘)»(é y:“yi)whenever
%, Y, €A .

Proof. For (i), see [5, Th. 4.5.2]. Part (i) is a generalized
Cauchy inequality and is easy to prove using the properties of f
mentioned above. If the left side of (iii) is 0, there is nothing to
prove., Otherwise, we use (i) and (ii) to write

(A ) (Z=)))
= (FGer (v 2 vm)))

éf(,%””) > (i m,)y?%(gy?%))

5=1

= 7(Gora) (o) (Z e MEGviw)-

We obtain (iii) by cancelling a common factor from both sides.

The set A, of all » x n matrices with elements from A can be
made into an algebra by defining the operations exactly as for matrices
of scalars., Furthermore, if Xe€ 4,, X = [#,;], the mapping X* = [y;;],
where y;; = x¥, is easily seen to be an involution in 4,. (We use
the same symbol for the involution in the two algebras since confusion
seems unlikely.) Finally,

1 X|| = max ZH%H, XeA,,

.....

is a Banach algebra norm for A,.

THEOREM 1. If A is symmetric then A, is symmetric for any
positive integer n.

We note that it is sufficient to prove the theorem for the case
in which 4 has an identity e. For otherwise, let A, denote the
algebra obtained by adjoining an identity to A. It is known [2 or 5]
that A, is symmetric if and only if A is symmetric. So, to show
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that A, is symmetric we simply observe that (A4,), is *-isomorphic to
a closed *-subalgebra of (4,),. The isomorphism here is

[#:;] + ME — [@;; + \dye] .
Any closed *-subalgebra of a symmetric Banach algebra is again

symmetrie, so it is enough to know that (4,), is symmetrie.

LEMMA 2. The theorem is true for n = 2,

Proof. Let Xec A, X =[z;;]. Then X*X = [y,;] where
yij = xltlxlj + x;xw ] and yij = y;kz ) irj = 172 .

To prove that A, is symmetric, it is enough to show that —1 ¢ Sp(X*X).
That is, if E is the identity matrix in 4,, F = [d;; ¢], then E + X*X
possesses an inverse. We will exhibit this inverse.

It is first necessary to establish the invertibility of two elements
of A. As in [5], if xc A satisfies Sp(z) C[0, ) we write z = 0.
The symmetry of A implies [5, Lemma 4.7.10]

_ *
Yu = THT, + THT, = 0.

Thus e + y,, has an inverse, say d,. Next we consider ¥, — ¥, d,¥..
If f is a positive linear functional on A4, f(¢) = 1, then

SWud ) £ [(Way)¥(d)
= f(Y)¥(y)¥(d)
= f(¥2)

from Lemma 1 (iii) and known properties of v. It then follows that
JWa — ¥udy) < 0 and, as a consequence of (1.1),

Yoo — Yudi¥is = 0.

We now know that e + v, — y,d,y,, has an inverse, say d,. It is
then an easy matter to verify that the matrix

d1 + d1y12d2y21d1 —d1y12d2
—d;ynd, d,

is an inverse for E + X*X. Hence A, is symmetric.

LeEMMA 3. The theorem holds for n = 2%, where k is any posi-
tive integer.

Proof. The proof is by induction, the case &k = 1 being covered
by Lemma 2. If we assume the result for k& = m, then it follows
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for k =m + 1 from the fact that A+ is *-isomorphic to (A4,s),
by partitioning. In fact, every matrix in A,m+:1 corresponds to a
2 X 2 matrix of matrices from A,», and this correspondence is easily
proved to be a *-isomorphism.

Proof of Theorem 1. If m is a positive integer, choose k& a posi-
tive integer so large that m = 2* > n. Then A, is symmetric, by
Lemma 3, and the closed *-subalgebra of A, consisting of all matrices
with 0 in the last (m — ») rows and columns is obviously *-isomorphic
to A4,. It follows that A, is itself symmetric, and the proof is
complete.

2. Group algebras and semi-direct products. If F' is a locally
compact group, let I, denote a left invariant Haar integral on F and
let 4, be the corresponding modular function. Thus Jy(x) = I.(x-1/45)
is a right invariant Haar integral on F. The group algebra of F is
the Banach space L!(F') of all complex-valued functions on F which
are absolutely integrable with respect to the corresponding left Haar
measure, fp. This algebra has an involution defined by z*(f) =
2(f4e(f), fe F. (Here again we use *, in different positions, to
denote both convolution and the involution.)

Let F and G be locally compact groups, and let f— ¢, be a
homomorphism of F into the group of automorphisms of G such that
(f, 9) — ¢,(9) is a continuous mapping of F' x G into G. In particular,
each ¢, is continuous (and hence a homeomorphism). Let S=F X G
and define a multiplication in S by

(1 9)(fey 92) = (fife, gx¢f1(gz))y (fiy90€8,1=12.

Then S becomes a locally compact group which we denote by F X, G.
We note in passing that the inverse of (f, g) is (/™ é,-(97").

We now observe that the automorphisms ¢, induce a group of
bounded linear transformations @, of L'(G) defined by

O (x) = xog,., for feF,xecll(G),

and the mapping f— @, is a homomorphism of F' onto this group.
To see that the range of @, is contained in L'(G), it is sufficient to
note that each ¢, maps the measurable subsets of G onto measurable
subsets, and that for some 6(f) > 0

(2.1) ts(9,(E)) = 0(f)pte(E)

is satisfied by every measurable set EC G. Because ¢, is a homeo-
morphism, it maps Borel sets of G onto Borel sets, and because it is
also an automorphism, the measure
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pLB) = pe(9+(B)) , B a Borel set ,

is left-invariant. This measure clearly satisfies conditions (iv)-(vii)
of [3, p. 194] and consequently, by the uniqueness of left Haar
measure, (2.1) is satisfied for some §(f) > 0 and all Borel sets. Fur-
thermore, the outer measure

Ut*(E) = inf {¢;(A) | A is open, EcC A}
induced by . also satisfies
X (¢ E)) = o(f)pe*(E)

for every subset EC G. It is then easy to verify (using [3, Th.
11.32] for example) that (2.1) holds for every measurable set E. In
particular, if G is compact, any topological automorphism of G is
measure preserving.

Clearly the mapping ¢ is a homomorphism of F into the multipli-
cative group of positive real numbers and

I(2,() = I(wog,) = 0(f)e(x), xeL{G).
In these terms, the modular function for S can be expressed as
4y 9) = o(F ) 4:(f)46(9) -

The principal concern of this paper is the case in which F' is finite.
In this case the functions 4, and 6 are obviously identically 1,

THEOREM 2. Let F be a finite group, and let G be a locally
compact group whose group algebra is symmetric. Then any semi-
direct product S = F x4 G has a symmetric group algedbra.

Proof. Let xeLXS), x = 2(f, 9). For each fe F the function
z2,9) = 2(f, g) is, by Fubini’s theorem, in L!'(G). Conversely, if
v,€ LY(G) for each feF and y is defined by u(f, g9) = y,(g9), then
ye LYS). In this manner L'(S) is identified with the space of all
L(G)-valued functions defined on F. Now,

a*(f, 9) = (7, ¢r-(07Nde(5-1(97") = D((%,-1)*}9g)
and
x*x(f, g) = Is(x*["': s]x[(r, 8)_1(fy g)])

= LI P ((@r-1)*)(8) 2, (%—11)5™" 9)))
= _/’%“F ¢r((xr—l)*)*¢r(x'r-—1f)(g) .
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To see that L'(S) is symmetric we must show that (—«*z) is both
right and left quasi-regular. For example, we must exhibit functions
yr € LY(G) such that y as defined above satisfies v + «*xy — 2*x = 0,
We compute x*xy.

e*oy(f, 9) = Is(@z[p, qlyl(p, 0)7(f, 9D
= L{L( 3, 0.((2,-)") 0,0, @0,U-1a70) )
- Z Z @ ((xr—l) )*@r(xr—lp)*@p(yp—lf)(g)

feEF p€

Let the group F be written F' = {f, = e, f;, -+, f.}. Then the equa-
tions which must be satisfied are

3 (@))%, w52,) 5 0 Wsits)

— j2=1 @ j((xr;1)*)*@75(x7;lf¢) = O . ?: = 1’ 2’ ct " .

These are equivalent to

yft + Z Z @rj((x'r‘;l)*) * @rj(x'rylf;q;;l) * @fiqzl(qu)

J=1 m=1

%

=30 (@0 ) = 0. =12

Transforming both sides by @,;* we obtain the equations

M=

Qr74ys) + 25 35 it (@) ) * Ds7% (2700070 * P (Y,,)

i=1 1

@fl ((x—l)*)*(pf@ (w f)—-O ’i:l’z,...’n.

H
|

%
iMs
L

Finally,
¢f{l(yfi) + Z @Sk((wﬁk 7 1) )* ¢sk(xsk qm) *¢qm(qu1)

k=1 1

2.2) :,:=
Z¢S((xakf1l)*)*$ (99 )—0 7::1,2,"-,'}’1,,

k=

-

It is evidently enough to determine the functions @,;%(y;,), for from
them the y,, can be obtained on transforming by @,. Consider the
matrix A = [a;;] of elements from LYG) defined by

Qi = @81.(%8;1)0]71) ’ iy .7 = 17 2, c00,m
Since LY(G) is symmetric we know, by Theorem 1, that — A*4 has a quasi-
inverse, say C=|¢;;] with ¢;; € L(G). It follows from C+A*AC—A*A=0
that
ci1+iia:iakicml'—ial’:iaklzo, i=1,2,---,'n,
k=1

k=1 m=1
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Thus @, (¢5") = €y m =1,2, -+, nisa solution of the equations (2.2).
A left quasi-inverse for (—z*xz) can be computed in a similar manner.
Hence L'(S) is symmetric.
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PRIME RINGS WITH A ONE-SIDED IDEAL SATISFYING
A POLYNOMIAL IDENTITY

L. P. BELLUuCE AND S. K. JAIN

It is known that the existence of a nonzero commutative
one-sided ideal in a prime ring implies that the whole ring
is commutative, Since rings satisfying a polynomial identity
are natural generalizations of commutative rings the question
arises as to what extent the above mentioned result can be
extended to include these generalizations, That is, if R is a
prime ring and I a nonzero one-sided ideal which satisfies a
polynomial identity does R satisfy a polynomial identity?

This paper initiates an investigation of this problem, A
counter example, given later, will show that the answer to
the above question may be negative, even when R is a simple
primitive ring with nonzero socle. The main theorem of this
paper is Theorem 3 which states:

Let B be a prime ring having a nonzero right ideal
which satisfies a polynomial identity. Then, a necessary
and sufficient condition that R satisfy a polynomial identity
is that R have zero right singular ideal and Ié, the right
quotient ring of R, have at most finitely many orthogonal
idempotents,

2. In the following given a ring R, R‘(“R) denotes the right (left)
singular ideal of R, Thus R!={x|xeR, 2" c LYR)} where L*R)
denotes the set of right ideals of R that meet, in a nonzero fashion,
all right ideals of R. Similarly for ‘R and “L(R).

If @ is a ring such that R is a subring of @ and ¢RNR = 0
for each gc Q then Q is called a right quotient ring for R. Moreover
if @ =1{ab'|a,beR,b regular} then @ is called a classical right
quotient ring. Following [2] we say that a ring R is right quotient
simple if and only if it has a classical right quotient ring @ with
Q@ = D,, D, a ring of n x n matrices over a division ring D.

From [4] we know that if R is a prime ring with R’ =0 then
R has a unique maximal right quotient ring R where R is a prime
regular ring. Moreover, letting L(R) denote the lattice of right
ideals of R, there is a mapping s: A-— A* of L(R) which is a closure
operation satisfying 0° =0, (AN B)* = A*N B* and (x ' A)* = z™* A°.
The set L*(R) of closed ideals of R can be made into a lattice in a
natural way and it is shown in [4] that L*(R) = L*(R) under the
mapping A— AN R, Ae L*(R). We shall have occasion to use the
following realization of R. Let E=U ezt Homgz(A, R). On F

421



422 L. P. BELLUCE AND §. K. JAIN

define the relation, @ = 8 if for some Ae L‘R), A< Doman Dom g
and a(x) = B(x) for each xe A, It is shown in [5] that = is an equiva-
lence relation and that E/= is a ring and in fact is R.

The above remarks apply similarly to a prime ring R for which
‘R = 0.

3. In this section occur the basic results of this paper. We
will have occasion to use the result of Posner [8] stating that if R
is a prime ring with polynomial identity then R is a classical two-
sided quotient ring having the same multilinear identities as B. That
part of Posners argument that shows if R has a polynomal identity
then so does R is a very complicated argument and we take this
opportunity to present a simple alternative argument.

LEMMA 1. Let R be a prime ring with polynomial tdentity.
Then R has a polynomial identity.

Proof. From Posner [8] we know that R has left and right
quotient conditions and hence R is right quotient simple, with R =D,.
By a theorem of Faith and Utumi [2] R contains an integral domain
K with right quotient ring K = D. Since K satisfies a polynomial
identity we have by Amitsur [1] that K also has a polynomial identity.
Thus D, and hence D,, is finite dimensional over its center; thus D,
S0 IAE, has a standard identity.

LEMMA 2. Let R be a prime ring with R* =0, let Ae L*(R)
and let & e Hom (R, R), R considered as a right R-module. If a(A) =0
then a = 0.

Proof. Let xe R; then we have that ' Ae LAR). If rea A
then zre A and thus a(zr) = 0. Since « is a right R-endomorphism,
a(xr) = a(x)-r: It follows that a(x)-x™ A = 0, hence 2 A< a(x)".
Thus a(x)"e L4R) and so a(x) € R‘. Hence a(x) = 0.

The following lemma is trivial in the case R contains a central
element. Without a central element the proof is more involved.

LEMMA 3. Let R be a prime ring with a polynomial identity.
Then Homg(R, R) has a polynomial identity, if R‘= 0

Proof. From Lemma 1 we know that R has a polynomial identity.
Consider R realized as U senn Homg(4, R)/=. For acHomg(R, R)
let @ denote the equivalence class in R determined by a. The mapping
a— @& is a homomorphism of Homg(R, R) into B. If @ = B then for
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some Ae LYR) a) = B(x), x€¢ A. Thus (@ — B)(4A) = 0. By Lemma
2 we see that « = 8. Thus a — @ is an injection onto a subring of
R and so Homy(R, R) has a polynomial identity.

The following theorem provides a sufficient condition on the right
ideal I having a polynomial identity to ensure the whole ring has a
polynomial identity.

THEOREM 1. Let R be a prime ring having a right ideal I = 0,
I satisfying a polynomial identity and I, = 0. Then R satisfies a
polynomial identity.

Proof. By assumption I;, the left annihilator of I, is 0. Hence
I is a prime ring itself. Considering I as a left I-module we have
by the obvious dual of Lemma 3 that Hom,(, I), (the left I-endo-
morphisms), has a polynomial identity. For x e R the mapping = — r,,
right multiplication by z, is an anti-isomorphism of R into Hom,(, I).
Thus R itself satisfies a polynomial identity.

THEOREM 2. Let R be a right quotient simple ring, I+ 0 a
right ideal of R satisfying a polynomial identity. Then R satisfies
a polynomial identity.

Proof. From Goldie [3] we have that I contains a uniform right
ideal, thus we may assume I is uniform. Since B‘ = 0 it follows that
{w|wel, 2" L/(R)} = 0, hence from [6] we have that K = Homy(I, I)
is an integral domain. Moreover it is known ([3]) that K= D, D a
division ring, where B = D,. To complete the proof it suffices to
show that D has a polynomial identity; the latter will hold provided
K has a polynomial identity. To this end consider the homomorphism
a — l,, left multiplication by a, of I into K. Let J denote the image
of this map. J = 0 implies I? = 0 which is impossible; hence J is a
nonzero subring of K satisfying a polynomial identity. Let a¢e K and
let l,eJ. Let xel. Then al,(z) = a(ax) = a(a)-x = l,o(x). Thus
al, =l €J. Hence J is a left ideal of K. Since K is an integral
domain we have by an obvious dual to Theorem 1 that K has a poly-
nomial identity.

We now obtain, easily, the following.

THEOREM 3. Let R be a prime ring having a monzero right
tdeal which satisfies a polynomial identity. Then, a necessary and
sufficient condition that R satisfy a polynomial identity 1s that
R'=0 and R have at most a finite number of orthogonal
idempotents.
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Proof. Necessity is clear. Conversely, then, since R is regular
with at most finitely many orthogonal idempotents it follows from
[7] that R has the descending chain condition (d.c.c.) on right ideals.
R is prime, thus R = D, for some division ring D. Since L*R) = L’(R)
we see that L*(R) has d.c.c. Thus from [4] we see that R is a
classical right quotient ring, hence Theorem 2 applies.

The following example (communicated orally to S. K. Jain by
A. S. Amitsur) shows that the extension of an identity from a right
ideal to the entire ring is not always possible. Let F be a field and
let F.. be the ring of all infinite matrices of finite rank. Let a = (4;;)
be a matrix such that a,, + 0 and a;; = 0 for 7,57 # 1. Let I = aF..
Then I satisfies the identity (xy — yx)* =0 but F. satisfies no
identity at all.

4. REMARKS. In the case that R is primitive with a right
ideal I = 0 having a polynomial identity then it is sufficient to assume
that B has at most a finite number of orthogonal idempotents to
ensure that R also have a polynomial identity.

There are other conditions one may impose upon R and I besides
those given here, e.g. if R has at most finitely many orthogonal
idempotents and I is a maximal right ideal or if B = 0 and Ie L4(R).
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A NOTE ON CERTAIN BIORTHOGONAL
POLYNOMIALS

L. CARLITZ

Konhauser has introduced two polynomial sets {Yi(x; k)},
{Zi(x; k)} that are biorthogonal with respect to the weight
function e *x° over the interval (0, ). An explicit expression
was obtained for Z:(x; k) but not for Y:(x; k). An explicit
polynomial expression for Y;(x; k) is given in the present paper.

1. Konhauser [2] has discussed two sets of polynomials Y:(x; k),
Zx; k),m=0,1,--+ k=1,28,---,¢> —1; Y¢(x; k) is a polynomial
in « while Z:(x; k) is a polynomial in x*. Moreover

T B g 0 O=1i<mn)
(1) Soe 2 Yi(x; k)x dx—{io (i = n)
and

S i 0 (01 < n)
(2) Soe xZn(x,k)xdx—{iO o

For k = 1, conditions (1) and (2) reduce to the orthogonality conditions
satisfied by the Laguerre polynomials LZ(x).
It follows from (1) and (2) that

0 G # 7)

(3) SO e~ Yi(w; k) Zi(w; k)dw = {io (t=17).

The polynomial sets {Yi(x; k)}, {Z:(x; k)} are accordingly said to be
biorthogonal with respect to the weight function e=*x° over the interval
(0, o).

Konhauser showed that

ctme 1y . Lkn Ac+1) & 1l kI
(4)  Zumh) = n! J.%( 1)(j> I'(kj +c+1)

As for Y¢(x; k), he showed that
k e—xt(t + 1)c+kn
Yiw; k) = —= |
(x; k) 2 Jo [(t + 1)F — 1]+

_li_ an {e—-zt(t + 1)c+kntn+1}
n! 0t™ \[(t + 1)*™ — 1]*+ =0

(5)

In the integral in (5), C may be taken as a small circle about the
origin in the t¢-plane,
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In the present note we give a generating function and an explicit
polynomial expression for the polynomial Y:(x; k). Moreover we show
that Y:(x; k) can be identified with a polynomial studied recently by
S. K. Chatterjea [1].

2. We apply the Lagrange expansion in the form [4, p. 125]

(t) _ o= wt fdr n
(6) T = S (£ rowen)
where
w=¢_(tt)-, B(t) = o + ajt + -+ (a, # 0) .
Take
et + 1)t _(t+ D
sy = SZEEDL g = LT
Then we have
v kt
L-wd® =i r=1
so that
f(t) —_ -2t c+1

Thus, by (5) and (6), we have

—2t c+1 & (4 . t "
(1) et + 1 = 3 Vil k)<—¢(t)> :
If we put
_t ____(t+1)"~1=1_ 1)-*
BT R T ¢

then
t=@1—w) V-1

and (7) becomes
(8)  (L—w) e exp{—af(l — w)™ — 1} = 3 Yia; bpw" .

In the next place, we have
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(1 — wy=C*exp {—2[(1 — w)™* — 1]}

= (1 — w)—iervrk i“ x: [1 — w)y* — 1]
=0 rl

(l _ w)—(s+c+1)/7c

& (s +c+ 1)k), , »
,%o n! b

- 5T S Son(T) )

I
Ms
8
-1 "%
Mq
—_

f
=

)
/\
N \__/

where
(a)n:a(a+1)"'(a+n_l)r (a)ozl-
It therefore follows from (8) that

ey — L &2 L o r\(s+e+1
(9)  Tmh =3 5 )(EEetD)
3. Chatterjea [1] has defined the polynomial
(10) T (i) — % &6 D(ex+ e~

with £ =1,2,3,.--. The case @« = 0 had been discussed by Palas
[3]. Chatterjea showed that (10) implies

(11) T@() = ET (=1 ( )(a + " + ks)

r=0 8=0

He also obtained operational formulas and a generating function for
T(x). The assumption that k& is a positive integer is not used in
deriving (11).

If we replace k& by k= and a by k'a, (10) becomes

T = 5 205 (—u(5)(F o).

_ 8=0
On the other hand, since

7@1‘!‘(S+Z+1)n:(k_1(3+c+n1)+n_1)’

(9) gives
Yo = 33 205 () (RO T,

, 8§=0
It follows at once that
(12) Yort-Yak; k) = T2 ,
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or, if we prefer,
(18) Yfaw—z(xk; k)= T 1)(90)
4. It may be of interest to point out that a formula equivalent

to (9) can be obtained without the use of the Lagrange expansion.
In the integral representation (5), put

t=(14+u)y*—1
Then (5) becomes

exp{—o[(1 — w)’* — 11 +u)¥ " c+1)+n—1 du

Yilws k) = 27t Sc urtt

where C denotes a small circle about the origin in the wu-plane. The
numerator of the integral is equal to

( 1) ( )(1 B
w32 S y(G)(Fe e )

Taking m = n, we therefore get

oo
Z
r=0

Il
|§|I§48 uM

(fg)(k“‘(c +s+1)+n— 1) ]

(14)  Yi(w; k) = -

i Ms

Since

’

(c—|—n—1>:(c_)n

" n!
it is evident that (14) is identical with (9).

5. Making use of the explicit formulas (4) and (9), we can give
a rather brief proof of (3). Indeed we have

J, . = re“”xc o(s ) Yo (3 k)de
0

_ I'(kn 4 c+1) i(—

n! <?> I'(ky + ¢+ 1)

)
= 5L S (-1 < )(—‘E——’:Z—_l_i)m . fe‘”x"”"”dx

ml 7=0 rr? 8=0

_ F(kn+c+1)z( 1),( )

n! m!

SR
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If f(x) is a polynomial of degree m, it is familiar that
fo) = 3 ()10,
where
. _ <y _q1y—s[ T
af0) = S (=17 ) fs) .

In particular, for

we have

(). = 5 () B (0)(5),
_ §(+m+r—1> Z( (Z)(ii%&i_l_)m
For x = —kj — ¢ — 1 this reduces to

(— j)m_§<kj+c+’r)z( 1)( )(ﬁ_lcc_i)m

Thus
g, — Ttn j;.c + 1) 2( 1),< ) (= J)m
= -y Lm e+ 1) iZﬂ(—l)j(?)(%.z) :
Since

S0 = () S v m) = (e - v

it is evident that

F(lcn+c+1)5

(15) Jom = por

in agreement with (3). In particular

J - Lln+c+1)
m n!

as proved in [2].
A little more generally, we have
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J = S”e—wxcz,z(x; k)Y (2; k)da
0

e s (1) 63,

n!m! k

where a = (¢ — ¢/)/k. It follows that

0 (n>m),
(16) Sum = wem (kM + ¢ + 1) a
(=1 l (m——n) (n < m).
Clearly (16) includes (15).
REFERENCES

1. S. K. Chatterjea, A generalization of Laguerre polynomials, Collectanea, Mathe-
matica 15 (1963), 285-292,

2. J. D. E. Konhauser, Biorthogonal polynomials suggested by the Laguerre polynomials,
Pacific J. Math. 21 (1967), 303-314.

3. F. J. Palas, A Rodrigues formula, Amer. Math. Monthly 66 (1959), 402-404.

4. G. Pdlya and G. Szegd, Aufgaben und Lehrsatze aus der Analysis, Vol. 1, Berlin,
1925,

Received May 6, 1966. Supported in part by NSF Grant GP-5174.



PACIFIC JOURNAL OF MATHEMATICS
Vol. 24, No. 3, 1968

POINTLIKE SUBSETS OF A MANIFOLD

C. O. CHRISTENSON AND R. P. OSBORNE

Morton Brown introduced the concept of a cellular subset
of S*. As a consequence of the generalized Schoenflies Theorem
it is easy to show that a subset of S* is pointlike if and only
if it is cellular. In this paper the obvious generalization of
the definitions of pointlike and cellular sets are made and
thier relationship in a manifold is considered. It is easy to
show that a cellular subset of a manifold is pointlike. While
it is not true that a pointlike subset of a manifold is cellular,
it is shown that a pointlike subset of a compact n-manifold
lies in a contractible n-manifold with (n — 1)-sphere boundary.
As a consequence of this it is shown that K is a pointlike
subset of a compact n-manifold (n + 4) if and only if K is
cellular. The case n = 4 is still unsolved.

DEFINITIONS. An n-manifold is a connected separable locally Eu-
clidean metric space. A connected separable metric space in which every
point has a neighborhood whose closure is an n-cell is an n-manifold
with boundary. Note that a manifold is a manifold with boundary
boundary but not conversely. A compact connected subset K of an
n-manifold M is pointlike if M ~ K is homeomorphic with M ~ {p}
where pe M. A subset K of an m-manifold M is cellular if there
is a sequence of n-cells C,, C,, --- such that C;,,,CInt C;and K = N C,.
An (n — 1)-sphere S*' that separates an n-manifold M into components
A and B is collared on the side containing A if there is an embedding
h: S*X[0,1]— A such that i(x, 0) = . An (n — 1)-sphere S”~'in an
n-manifold M is bicollared if there is an embedding 4: S X[0,1]— M
such that iz, 1/2) = . A pseudo-sphere is a compact manifold that is
a homotopy sphere. A compact contractible n-manifold with boundary
is called a pseudo-cell. The Poincare Conjecture—known to be true
for n # 3,4 [7]—says that a pseudo-sphere is a sphere.

PRELIMINARY THEOREMS. The following theorem follows from the
corresponding theorem for E" which is proved by the same methods

as used in [4].
THEOREM 1. A cellular subset of a manifold is pointlike.

One might think that a pointlike subset of a manifold is cellular.
That this is not the case is shown by the following example.

ExaMPLE 1. Let M be E*® minus the integers on the positive
x-axis, and minus l-spheres of radius 1/4 centered at the negative
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integers on the z-axis. The 1l-sphere of radius 1/4 and center at
0 is pointlike but not cellular. A similar construction using linked
1-spheres gives an example of a pointlike subset of a manifold con-
taining a loop that is homotopically nontrivial in the manifold. A
cellular subset of a manifold is not necessarily contractible, for
example the crumpled cube bounded by the Alexander Horned sphere
is not simply connected even though it is cellular.

LEMMA 2. Let K be a pointlike subset of a compact manifold
M with boundary. Let h': M ~ K— M ~ {p} be a homeomorphism.

Then h' can be extended to a continuous map h: M— M such that
= (p) = K.

Proof. Define h by

h'(x) for xeM~ K,

hz) =
@) for zeK.

Let U be an open neighborhood of p. Then ~ U is compact; hence,

h=(~U) is compact so M ~ h~'(~U) is open. Clearly this set contains
K. Thus h is continuous.

LemMA 3. If K is a pointlike subset of a compact n-manifold
M with boundary and K lies in an open n-cell, then K 1is cellular.

Proof. We shall show that if U is a neighborhood of K then
there is an n-cell C such that KcInt Cc U. Using this a simple
inductive argument completes the proof. Let h: M — M be the con-
tinuous map given by the previous lemma. Then i(U) is a neighbor-
hood of p. Let C’ be an n-cell with bicollared boundary in (U)
containing p in its interior. Then A~%(C’) = C is a cell by the Gener-
alized Schoenflies theorem.

By obvious modifications of the proof in [8], the Jordan-Brouwer
Theorem can be shown to hold in a pseudo-n-sphere. Let K be the
closure of one of the complementary domains of S~ If an n-cell
is sewn to K the result is another pseudo-sphere. Applications of
the Van Kampen Theorem, the Mayer-Vietoris Sequence and the
Hurewicz Isomorphism show that K is (n — 2)-connected. Theorem
6.6.5 and Theorem 6.2.20 of [8] show that K is contractible.

LEMMA 4 (Pseudo Schoenflies Lemma). A bicollared (n — 1)-
sphere S™' in a pseudo-sphere M" is the common boundary of two

psudo-cells.

MAIN RESULT.
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THEOREM 5. If K is a pointlike subset of a compact manifold
M and K is an (n — 1)-sphere collared on the side containing K,
then K s a pseudo-cell.

Proof. Assume n = 3. Denote by L the set (M" ~ K) U collar
of K). Then L and K are closed and their union is M" while their
intersection is simply connected. By the Van Kampen Theorem 7,(M™") =
w(L)*7,(K), where x denotes the free product. Borsuk [2] has shown
that every compact manifold is dominated by a polyhedron, that is
there is a finite polyhedron P and continuous maps f: P— M" and
g: M"— P such that fog is a homotopic to 1,,. It follows that
w,(M™) is a finitely presented group. Since K is pointlike, 7,(M"* ~ K) =
(L) = m(M" ~ {p}) = m(M"). We have =n(M")=rn(K)*m(L)=
T,(K)x7w (M"). By Grusko’s theorem [6], 7, (K) is trivial.

To show that 7(K) is trivial for ¢ < n we show that H/(K) is
trivial for ¢ < n — 2, then we use duality to get H,(K) =0 for
g <mn. Since K and L form an excisive couple we may apply the
Mayer-Vietoris Sequence to get

Hy(K 0 L) — H(K)@® H(L)— H(KU L) —» H, (KN L),
1Zgsn—2.
Since KN L is an n-annulus this sequence becomes
0—-H(K)PH(Ly—-H(KUL)—0,

which implies that H,(K) @ H,(L)~ H(K U L). Since K is pointlike,
H(K U L)~ H/(L). Since there is a dominating polyhedron for M®,
H/(M™) is a finitely generated group. It follows that H(K) is trivial.
By the Hurewicz Isomorphism Theorem, 7 (K) =0 for 1 < ¢ <n — 2.
Let S be the compact manifold obtained by sewing a cell to the
boundary of K. Then by duality, S is a homotopy sphere. By
Lemma 4, K is contractible.

If n =2 then K can be shown to shown to be a 2-cell by the
classification theorem for compact 2-manifolds with contours for boundary.

COROLLARY 6. Let K be a pointlike subset of a compact manifold
M, then K lies in a pseudo-cell with sphere boundary.

Proof: Let h: M — M be the continuous map given by Lemma 2.
Let C’ be a cell containing p and having a bicollared boundary. Then C’
is pointlike so h~*(C’) = C is a pointlike subset of M with bicollared
sphere boundary. The previous theorem shows that C is a pseudo-cell.

COROLLARY 7. In a compact manifold in which every pseudo-
cell with sphere boundary is a cell, a pointlike subset is cellular.
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LemMA 8. If K is a pointlike subset of a compact manifold M,
then there are infinitely many disjoint homeomorphic copies of K in M.

Proof. Let pe M~ K and let h: M ~ K— M ~ {p} be a home-
omorphism. Let 2 YK) = K,c M~ K. Let g, be a homeomorphism
of M onto itself such that ¢g.(p) = p.¢ KUK, and g, =1 on K. Let
h, = g,oh. Then h7Y(K,) = K, is homeomorphic with k£ and

RHK)N(KNK) =D .

Continuing in this fashion we get K, K,, K,, - --.

The complement of two disjoint pointlike subsets of a manifold
M need not be homeomorphic with the complement of two points in
M; for example two linked 1-spheres in the 3-manifold of Example 1.

THEOREM 9. A pointlike subset of a compact n-mantfold (n + 4)
1s cellular.

Proof. By Corollary 6, the pointlike set lies in a pseudo-cell P
with sphere boundary. Sew a cell to P along their boundaries to get
a homotopy sphere S*. Since the Poincare Conjecture has been proved
[7] for n =5, S™ must be a sphere. The generalized Schoenflies
Theorem [3] shows that P is a cell. An application of Lemma 3
completes the proof when n =5. If K is a pointlike subset of a
compact manifold M, then there are countably many disjoint home-
omorphic copies of K in M. Thus if K is a pointlike subset of M
that is not cellular, then M must contain countably many disjoint
pseudo-cells that are not cells, If » =3, M is triangulable so an
application of Bing’s Side Approximation Theorem [1] allows us to
assume that each pseudo-cell has a polyhedral sphere boundary. Kneser
[5] has shown that such a decomposition can contain only finitely many
such sets that are not cells.

We note that we have a generalization of the Generalized
Schoenflies theorem: If S"'isa bicollared (n — 1)-sphere that separates
a compact n-manifold M and one of the components of M — S is
pointlike, then that component is a pseudo-cell.

One should observe that the proof the Theorem 5 shows: If K
is a pointlike subset of an m-manifold M, =,(M) is finitely generated
for 1 <m < n, and K is an (n — 1)-sphere collared on the side con-
taining K, then K is a pseudo-cell.

Using arguments like those used in the proof of Theorem 5, one
can show that a compact wm-manifold (n = 4) can be written as the
connected sum of at most finitely many nontrivial summands.

The authors wish to thank K. W. Kwun for his helpful suggestions.
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Question. If we drill countably many disjoint cells out of S*and
sew in pseudo-cells, is the resulting space ever a manifold?
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PRODUCTS AND QUOTIENTS OF PROBABILISTIC
METRIC SPACES

RUSSELL J. EGBERT

In this paper some results concerning the products and
quotients of probabilistic metric spaces are presented.

Probabilistic metric spaces were first introduced by K. Menger in
1942 and reconsidered by him in the early 1950’s [3, 4, 5]. Since
1958, B. Schweizer and A. Sklar have been studying these spaces,
and have developed their theory in depth [9, 10, 11,12, 13|. These
spaces have also been considered by several other authors [e. g., 2, 14,
15,16]. An extensive, detailed up-to-date presentation may be found
in [7].

In the sequel, we shall adopt the usual terminology, notation and
conventions of the theory of probabilistic metric spaces, with but one
exception: In all previous work, the distribution functions which
determine the distances between points were required to have supremum
one. Our investigations have led us to drop this requirement and
the results which we present here show that doing so is natural.
It is easy but tedious to check that the restriction to distribution
functions with supremum one is not required in any of the previously
established results which will be needed in the sequel.

In concluding this introduction we remark that products of pro-
babilistic metric spaces have previously been considered by V. Istratescu
and I. Vaduva [2]. However, their definition of Cartesian product
employs associative functions which are stroenger than Min, the
strongest possible triangular norm. Because of this, and in view of
the discussion given in [10], their results appear somewhat restrictive.
Also, a number of the results concerning finite products, which are
presented in § 1 and which were announced in [1], have recently been
obtained independently by A. Xavier [17].

1. Product spaces.

DerFiNITION 1. Let (S, &) and (S, ¥.) be PM spaces and let T
be a left-continuous t-norm. The T-product (S, F.) X (S, F.) of (S, F.)
and (S,, F.) is the space (S, x S, T(#, %.)), where S, x S, is the
Cartesian product of the sets S, and S, and 7(F,, §.) is the mapping
from (S, x S;) x (S, x S,) into the set of distribution functions 4
given by

437



438 R. J. EGBERT

TS, B, @) = T(Fup:, 0)), Fe(D2 )

for any » = (p, p») and ¢ = (g,, ¢;) in S, X S..
We shall often denote S, x S, by S and T(%,, &) by r, and when
there can be no doubt, omit the reference to T and write F.(p, ) = F,.
As immediate consequences of Definition 1 we have:

THEOREM 1. The T-product (S, §r) of two PM spaces (S;, F.) and
(S,, §2) 8 @ PM space.

THEOREM 2. If (S, &, T) and (S, . T) are Menger spaces
under the same left-continuous t-norm T, then their T-product is a
Menger space under T.

COROLLARY 1. If (S, &, T.) and (S,, 5., T2) are Menger spaces
and if there exists a left-continuous t-norm T which s weaker than
T, and T, then their T-product is a Menger space under T.

We now determine conditions under which the product of equilateral,
simple, or a-simple PM spaces is again a PM space of the same type.
We begin with,

THEOREM 3. If (S, §.) and (S,, §.) are equilateral spaces generated
by the same distribution function G, then their Min product (S, X S, Fiin)
18 an equtlateral space generated by G.

Proof. Let p = (p, p,) and ¢ = (q,, ¢.) be distinet pointsin S, x S,
and consider

F,y(x) = Min (Fplql(x)y Fo (@) .

In all three cases, (1) p, # ¢, D2 # @5 (2) D, = qu, P # @25 () D # q,y
D = ¢, We have F (x) = G(x) from which the result follows.

It should be noted that the choice of Min in the above theorem
is necessary, since we must have

T(H(z), G(z)) = T(G(x), G(x)) = G(2) ,
where H is the distribution function defined by

0,20

H =
@) 1,2>0.

In general, this is true only for 7 = Min. Similarly, it is necessary
that (S, &.) and (S,, §.) be generated by the same distribution function.
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THEOREM 4. If (S, §) and (S, F.) are simple spaces generated
by the metric spaces (S, d) and (S,, d,), respectively, and the same
distribution function G, then their Min-product (S; X S, Fuwm) 75 @
simple space generated by the metric space (S, x S,, Max (d,, d,)) and G.

Proof. Let p = (p,p.) and ¢ = (¢, ¢.) belong to S, x S,. It
follows from Theorem 1 that F,, = H if and only if p =g¢. Thus
we have only to show that whenever p + q F,(x) = G(x/d(p, q)), where
d(p, @) = Max (dy(p,, ¢.), do(p., ¢.)). There are again three cases to
consider:

(1) If p, # q, and p, # ¢,, then

qu(w) = Min {G(x/dl(pu q.)), G(x/dz(pzy q:))}
= G(z/Max (d(py, ¢1), do(Ds, €2))) = G(x/d(p, q)) -

(2) If p, = q, and p, # q,, then d\(p, ¢)) = 0 and

Fo(x) = Min (H(x), G(x/dy(p;, q2)) = G(x/d(p,, q2))
= G(z/Max (0, dy(py, ¢2))) = G(z/d(p, 9)) .

(38) If p, #q, and p, = q,, we proceed as in (2) above.

DEFINITION 2. A distance distribution function G is strict if it
is continuous and strictly increasing on [0, ) and with Sup, G(z) = 1.

The restriction of G to [0, ) has an inverse which we will denote
by G* and refer to as the inverse of G.

THEOREM 5. Let (S, &) and (S,, §.) be a-simple spaces, a =1,
generated by the metric spaces (S,, d,) and (S,, d;), respectively, and
the same strict distribution function G. Let T be the strict t-norm
whose additive generator is (G*)™™/*, where m = 1[12]. Then the
T-product (S; X S,, §r) is an a-simple space generated by the metric
space (S, X S,, (d* + dM'™) and G.

Proof. Let d = (df + d7)'™ and let p = (p, p,) and q = (¢, ¢.)
be distinet points of S, X S,. We have to show that

Fop(w) = G(z/d*(p, 9)) -
We again split cases:
(1) If p, # q, and p, # q,, then

Fo (%) = T(G(z/d¥(p,, 0.), G(x/d5(D,, q2)))
= fHfG@/d{(p, ¢,)) + fG(x/d3(Dp,, 0.))} ,
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where f = (G*)~"/* and f* = G(j~*™) and j denotes the identity func-
tion. It follows that fG = j—™/*, whence

Fo (@) = fHa™(dMp, ¢.) + d7 (D, 02))}
= G{a(d(p,, ¢)) + A7 (D €)™} = G(x/d“(p, ) .

(2) If p, =q, and p, +# q,, then for x >0

Foo(x) = T(H(®), G&/d; (D, ¢.))) = G(w/d“(p, ) .

(38) If p, +# q, and p, = q,, we proceed as in (2).

As a result of Theorem 2 in [12] it follows that for a > 1 the
a-simple spaces above are all Menger spaces under the t¢-norm 7
whose additive generator is (G*)Y“~%, Moreover as B. Schweizer
has observed, if we want to have T = T’, then a and m must satisfy
the equation 1/(1 — a) = —m/a, from which it follows that

ljaa + 1/m =1,

We now turn to the question of topologies on the 7-product
spaces and state as our final result of this section.

THEOREM 6. Let (S, 5. T) and (S,, §. T') be Menger spaces under
the same left-continuous t-norm. Let B denote the ¢ — N neighborhood
system n (S; X S,, §r, T) and let B denote the meighborhood system
m (S; X Sy Br, T) consisting of the Cartesian products N, X N,,
where N, and N,, are e — N neighborhoods in the respective component
spaces (Sy, i, T) and (S, Foy T). Then B and B induce equivalent

topologies on (S, X S, Fr, T').

Proof. We first note that since T is assumed to be left-continuous,
the neighborhood systems B and B’ are in fact bases for their respec-
tive topologies [10]. Consequently, it suffices to show that for each
B in B there exists a B’ in B’ such that B’< B, and conversely. Let
A, x A, be an element of B. Then there exist neighborhoods N, (¢, \,)
and N, (¢, \,) contained in A, and A,, respectively. Let

& = Min (g, &), A = Min (A, Ay)

and p = (p, ). We will show that N, (¢, \) & 4, xA,. To this end,
let ¢ = (¢, ¢.) belong to N,(¢,\). Then we have
Foo (&) = T(F,y4(8), 1) = T(F, 4 (6), Fpyle:)
= T(F,(¢), Fpp(©)) = Fpp(e) >1 =X =1 -,

Similarly, F,,(¢:) >1 —X,. Thus g, € N, (&, \) and geN,,(s,, \s), from
which the result follows.
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Conversely, suppose that N,(¢,)) is an element of ¥’. Since T
is left-continuous, Sup,., T(x, ) = 1, so that there exists an » such
that

Tl -5 1—7)>1—x.
Let ¢ = (g, ¢.) belong to N, (¢, 7) x N,(¢, %). Then
Fo(e) = T(F,,(8), Flppp(0)) 2 TL — 7, L — ) >1 — X

so that g€ N,(¢,\) and N, (¢, ) X N, (¢, 1) & N,(e, n). This completes
the proof.

Note that the proof of the first half of Theorem 6, i.e., of the
fact that for any B in B there exists a B’ in ¥’ such that B’ B, is
independent of any hypothesis on the ¢t-norm 7T, while the proof of
the second half requires only that Sup,.,T(x, ) = 1.

We conclude this section by remarking that all the above results
may be extended in an obvious way to include products of any finite
number of PM spaces.

2. Diameter of and distance between sets, Throughout this
section (S, &, T') will denote a Menger space with a continuous ¢-norm.

DerINITION 3. Let 4 be a nonempty subset of S. The function
D,, defined by

D@ = Sup|Int (1)),

<z

will be called the probabilistic diameter of A.
We now establish the properties of the probabilistic diameter.
Proofs requiring only routine calculations will be omitted.

THEOREM 7. The function D, is a distribution function.

DEFINITION 4. A nonempty subset A of S is bounded if
Sup, D,(x) = 1, semi-bounded if 0 < Sup D (x) < 1, and unbounded if
DA = 0.

THEOREM 8. If A is a mnonempty subset of S, then D, = H if
and only if A comsists of a single point.

THEOREM 9. If A and B are nonempty subsets of S and AZS B,
then D, = Dg.

THEOREM 10. If A and B are two nonempty subsets of S such
that ANB = @, then
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(2.1) D, x(x + y) = T(Dy(%), Dy(y)) .

Proof. Let x and y be given. To establish (2.1) we first show
that

2.2) Inf F(o+y) = TGIEAFM(x),pInEfB qu(y)> :

P,qe AUB

There are two distinct cases to consider:

Case (1).
(2.3) Inf F(x+y)=InfF,(x+y).
peA

»,qe AUB
geB

Now for any triple of points p, ¢ and = in S, we have
Fo(z+y) =z T(F,(2), F,(y)).

Taking the infinum of both sides of this inequality as p ranges over
A, g ranges over B and r ranges over A N B, and using (2.3) we have,

p,ge4d

Inf F,( +9) 2 Inf T(F,.@), F.,0)) -
UB peAd
ridn
However, since T is continuous and nondecreasing we obtain

Inf F,(z+y)= T(Inf F,.(2), Inf F,q(y)> .
AUB p,red r,qe B

P,9€

Case (2).
Inf F,(z+ y) < Inf F e+ vy .

p,qe AUB
qeB

In this case one of the equalities,

Inf F,(x+ y) =Inf F,(x+ y)
UB p,ge4

p,9€4
or

Inf F,(x+ y)=Inf F,(x+y)
p,g€B

p,9€ AUB

must hold. If the first equality holds, we have

Inf F(0+9) 2 T(Inf F,u(a), Ho))

»,qe AUB

= T(Inf F,,(@), Inf F,,@)) -
p,q€ A P,4€B
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The same argument works for the second equality. This establishes
(2.2).
Finally, using the fact that the rectangle

{(5,t):0=s<2,0=t=<y}

is contained in the triangle {(s, t): s,t = 0, s + ¢t < x -+ y}, the inequality
(2.2) and the continuity of T we have

DAUB(x +y) = Sup [ Inf qu(s - t)]

s+t<z+ylp,qec 4UB

= Sup[ Inf F,(s+ t)]

s<wx p,qe AUB
i<y

T(Sup [ Inf pq(s)], Sup[ Inf pq(t):D

s<z Lp,qed t<y Lp,qeB

v

= T(D,(x), Ds(v)) .

THEOREM 11. If A is a nonempty subset of S, then D, = D3,
where A denotes the closure of A in the ¢ — ) topology on S [10].

Proof. Since A< A, it follows from Theorem 7 that D, = Ds.

Let 7 > 0 be given. In view of the uniform continuity of § with
respect to the Lévy metric L on 4 [8] there exists an ¢ > 0 and a
A > 0 such that for any four points p,, p., », and p, in S,

L(F,,,, Fyp) <7

whenever F, ,(¢) >1 — X and F,,(¢) > 1 — .

Next, with each point 7 in A associate a point p(P) in A such
that F,(;);(¢) > 1 — A, Then, in view of the above for any pair of
points » and ¢ in A,

L(F 5000 F53) <7 .
In particular, for all ¢ we have,
Foeua(t — 1) — 7 = Fa(h) .
Let A, = {p(p): pc A). Then since A4,Z< A4,
Inf F53(¢) = Inf 5,0 —7) — 7

P,q€A p.g€A

= Inf qu(t—ﬁ)—ﬁilnf qu(t_ﬁ)_ﬁ-
Ay p,q€4

Pyq€

Now, taking the supremum for ¢ < x of the above inequality yields
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Di(x) = Sup [ Inf F;;(t)] > Sup [ Inf Fu(t - 77)] —

<=z 'R qu t>a

= Sup| Inf Fou(t) | -7 = Du — 1) — 7.

t<z—7

Since the above inequality is valid for all » and since D, is left-
continuous it follows that

Di(x) =z D) .
Whence D4(x) = D,(x) and the proof is complete.

DEFINITION 5. Let A and B be nonempty subsets of S. The
probabilistic distance between A and B is the function F',; defined by

(2.4) Fp@) = Sup T (Inf [Sup F,,q(t)] Inf [Sup F,,q(t)])

t<z ped geB ped
In establishing the properties of F,, we again omit the routine
proofs.
THEOREM 12. F; is a distribution function.
THEOREM 13. If A and B are nonempty subsets of S, then
F 4B — F, BAs
THEOREM 14. If A is a monempty subset of S, then F,, = H.

THEOREM 15. If A and B are mnonempty subsets of S, then
F AB — F 4B

Proof. It is sufficient to show that F,; = F,5 since this result
together with Theorem 13 yields
FABZFAEZFEA:FEZ: 4B

With this in mind we first show that F,3; < F,,. Since BS B for
all ¢,

(2.5) Inf [Sup F,,q(t)] > Inf [Sup ,,E(t)] .

qeB q€B

Let » > 0 be given. The argument given in the proof of Theorem
11, establishes that for each point g B, there exists a point ¢(g) in
B such that for all ¢,

FpE(t - 77) /i = qu(E)(t) .
Let B, = {q(g): g< B}. Since B,< B we have,



PRODUCTS AND QUOTIENTS OF PROBABILISTIC 445

Su_p Fat—n—n= Sup Fa(t) = SuD Fo(t)

q€B qu

= Sup F,(¢) .

Consequently,

Inf [Sup F it — 77)] — 7 < Inf [Sup qu(t)] .
ped q€B ped qe B
Moreover, taking the supremum on ¢ <z of the above inequality,
yields for any #,

fla) £ Sup Inf [Sup pq(t)]> = Sup <Inf [Sup Fi(t — 77)]> —

<z peA t<w peAd 7¢B

= Sup <Inf [Sup Z,;(t)]) -7 A gae—n —7n.
t>x—7 ge 4 q¢ B

Now since both f and g are left-continuous and 7 is arbitrary, it

follows that f(x) = g(x). This together with (2.5), and the continuity

of T yields

I

T{Sup <Inf [Sup Fm(t)]>, Sup (Inf Sup F’ m(y):D}

i<z pEA qeB t<z geB peAd

{Sup (Inf [Sup Fq®) ), Sup (Inf [Sup F,,q(t)D}

t<ax peA € t<w e ped
q€ B q€B

— Sup T<Inf [Sup pg(t)] Inf [Sup Mt)]) = F@) .

t<z red LgeR 7€B ped

Fn(®)

Il\/

A similar argument shows that F,; = F,,. Combining these
inequalities yields the desired result.

THEOREM 16. If A and B are monempty subsets of S, then
F,, = H if and only if A = B,

Proof. Suppose F,, = H and let ¢ > 0 be given. Then

= o= 2l (e[ 0]y s s 0]

t<e ped qe B qe B

= Sup ( Inf [Sup qu(t)]> = Inf [Sup pq(s)] .
t<e geB peAd qeB
So that for any ¢ e B and every » > 0 there exists a point p in A
for which F,(¢) > 1 — A. Consequently, ¢ is an accumulation point
of A and we have B& A. A similar argument shows that A< B.
Conversely, suppose A = B. Then in view of Theorems 14 and
15, F,z = Fy3 = F'33 = H.

THEOREM 17. If A, B and C are nonempty subsets of S, then
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Jor any x and y

Fip(@ + ) 2 T(Fao(@), Fyo(y)) .

Proof. Let w and v be given. Then for any triple of points
»,q and 7 in S we have

Fo(t + ) Z T(F,.(w), Fpulv)) -

Making use of the continuity and monotonicity of T we have the
following inequality:

Sup F(u +v)= T (Sup F,.(u), Inf [Sup Fq,(v).l) .
qeB reC reC geB

Consequently,

Inf [Sup o v)] > 7 (It [Sup me)] Inf [Sqlgg Fq,(v)]) .

ped pPEA

Similarly,

Inf [Sup F(u+ v)] =T (Inf [Sup ,,,(u)], Iqul£ [STIGICI’J qu(v)D .

geB reC

Therefore, since T is associative, we have

( Inf [Sup F,(u + v)] Inf [Sup F,(u + v)])

ped qeB

2 7{r (1t [sup 0] 0t [ 0p 0],
(10t [Sup Pt ] 1t [Sup 0]}

Now arguing as in the last step of the proof of Theorem 10, we have

Fx(x + y) = Sup T(Inf Sup F,(u + v)]

atv<ety ped

Inf [Sup F(uw+ v)])

ge B

=>Sup T (Inf [Sup Fo(u + v)], Inf [Sup F(u+ v) ‘I)
zé: ped geB qeB ped _

=T {Sup T ( Inf [Sup Fp,(u)] Inf [Sup m(u)]) :

<z peA reC reC peA

Sup 7 (1ot [ Sup P ] 1nt [ Sup £ 0] )}

v<y qeB

= T(F o(x), Fae(y)).

Let (S,%, T) be a Menger space under a continuous ¢-norm, T,
and let & be a nonempty collection of nonempty subsets of S. Then
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the function g defined for any A and B in & by F(4, B) = Fs,
where F,, is given by (2.4), is a mapping from & x & into 4.
Furthermore, as a direct consequence of Theorems 12-17 we have,

THEOREM 18. If each set in & 1is closed, then (&, s, T) is a
Menger space.

3. Quotient spaces. Let (S,%) be a PM space. In [4] K.
Menger introduced three types of distinguishability for pairs of points
p, ¢ in S depending upon the behavior of the distance distribution
function F,, near zero. These notions may be summarized in the

following:

DEFINITION 5. Let (S, %) be a PM space, let p and ¢ be points
in S and let t,, = Inf {&: F,(®) > 0}. Then the distance between p
ond q is:

(A) certainly positive if t,, > 0;

(B) barely positive if t,, = 0 and F,(0%) = 0;

(C) perhaps zero if F,,(0%) > 0.

In Menger’s paper a somewhat different terminology was used.
Namely, he said that p and ¢ are: (A) certainly distinguishable if the
distance between them is certainly positive; (B) barely distinguishable
if the distance between them is barely positive; (C) perhaps indis-
tinguishable if the distance between them is perhaps zero. The
reasons for the slight change in the terminology introduced here will
become apparent latter (see Definition 6, ff.).

The above mentioned types of distinguishability were recently
reconsidered by B. Schweizer [6] who defined two relations C and D
on S as follows:

(¢c) pCq if and only if the distance between p and ¢ is perhaps
zero, i.e., if and only if (C) holds.

(d) pDq if and only if the distance between p and ¢ is not certainly
positive, i.e., if and only if either (B) or (C) holds.

Concerning these relations, he obtained the following results:

TaeoreM 19. If (S, %, T) is a Menger space and T a t-norm
such that T(a, b) > 0 whenever a >0 and b > 0, then the relation C
s an equivalence relation.

THEOREM 20. Under the hypotheses of Theorem 19, (S,t) 1is
always a pseudo metric space. Moreover, (S, t) is a metric space if
and only if the distance between every pair of distinet points of S
18 certainly positive.
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THEOREM 21. If the hypotheses of Theorem 19 are satisfied, then
the relation D on S is an equivalence relation.

THEOREM 22. If (S, %, T) is a Menger space such that
Sup T(a, a) =1

a<l
and T(a, b) > 0 whenever a > 0 and b > 0, then the equivalence classes
in S determined by the equivalence relation D are closed subsets of
S in the ¢ — ) topology.

In view of the fact that we no longer require that all the distance
distribution functions have supremum one, various types of behavior
at infinity are possible and can be distinguished. Indeed, the entire
preceding discussion concerning behavior at zero can be dualized.

DEFINITION 6. Let (S, %) be a PM space, let p and ¢ be points
in S, let s,, = Sup {z: F,,(x) < 1} and let F,,(c0) = lim, .. F,,(x). Then
the distance between p and q is:

(A") perhaps infinite if F, (o) < 1;

(B’) barely finite if s, = = and F, (o) = 1;

(C) certainly finite if s,, < co.

We define two relations C' and D’ on S which are dual to C and
D, respectively, as follows:

(¢)) pC’q if and only if the distance between p and q is certainly
finite, i.e., if and only if (C’) holds.

(d) pD'q if and only if the distance between » and ¢ is not
perhaps infinite, i.e., if and only if F, () =1, or equivalently if and
only if (B") or (C’) hold.

THEOREM 23. If (S, %, T) is a Menger space, then C' is an
equivalence relation on S.

Proof. The fact that C’ is reflexive and symmetric is an immediate
consequence of the definition of C’. To show that C’ is transitive
suppose pC’q and ¢C'r, so that s,, < o and s,, < . Then for any
e >0,

Fpr(qu + Sll'r + 6) g T(Fp‘l(qu + 8/2)7 FQr(SQr + 8/2))
=T(1,1) =1,

Consequently, s,, < 8,0 + 8, < oo and pC'r.
THEOREM 24. If (S, %, T) is a Menger space in which the distance

between every pair of points is certainly finite, then (S, s) is a metric
space.
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Proof. In view of the proof of the previous theorem, we need
only show that s,, = 0 implies p = ¢. To this end let s,, =0, then
Sup {x : F(x) < 1} = 0. Whence, F,,(0*) = 1 and consequently F,, = H
so that p = q.

THEOREM 25. If (S, %, T) is a Menger space under a continuous
t-norm T, then the relation D’ on S is an equivalence relation.

Proof. From F,, () = H(~) =1 and F,, = F,, it follows that
D' is reflexive and symmetric. To show that D’ is transitive suppose
pD'q and ¢D'r. Then for any z,

Fou() =2 T(F,yo(2/2), Fo(/2)) .
Since T is continuous the above inequality yields
Fp(00) = T(Fyo(0), Fo(0)) = T(1,1) = 1
and thus pD'r.
THEOREM 26. Let (S, $, T) be a Menger space under a continuous

t-norm T. Then the equivalence classes in S determined by the
equivalence relation D' are closed subsets of S in the € — N topology.

Proof. We first note that since T is continuous on the unit
square it is uniformly continuous, Now let p¢ S and let D'(p) be the
equivalence class determined by p. To show that D'(p) is closed we
show that S — D'(p), the complement of D’'(p), is open. Let r be any
point in S — D'(p). Then there is a N > 0 such that F,, (o) =1 — A\,
Since T is uniformly continuous and since T(a, 1) = a, there exists an
¢ > 0 such that T(a,1 — ¢) > a — \/2 for all ¢ in [0, 1]. Let q € N.,(, ¢).
Then for any « > ¢ we have

F,,(22) = T(F,(x), Fo (%)) = T(Fp(x), 1 — ¢€)
> Fo@) — 72 .

Taking the limit as x — o yields
1 =X = Fp(c0) Z Fp(0) = N2,
whence F,() <1 — \/2. Thus ¢¢ D'(p) and it follows that
N.(e,e) =S — D'(p) ,
hence S — D’(p) is open.

THEOREM 27. If (S,%, T) is a Menger space such that T 1is
continuous and T(a, b) > 0 whenever a > 0 and b > 0, then the equiva-
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lence classes in S determined by p and the equivalence relation C are
closed im the € — N topology.

Proof. Let pe S and let C(p) be the equivalence class determined
by p». We show that S — C(p) is open. Let reS — C(p). Then
F,(07) =0 so that F,, is continuous at 0. Hence for every ¢ > 0
there exists a 6 > 0 such that F,,(6) > ¢/2 and a » > 0 such that for
all e [0,1] T(a,1 — \) > a — ¢/2. Let ge N,(6/2, \), then

€/2 > F,,(0) 2 T(F,(6/2), For(9/2))
= T(F,(0/2), 1 — N) > Fpu(6/2) — ¢/2.

Hence for every ¢ > 0 there exists a 6 > 0 such that F,,(6/2) < e.
Consequently, F,,(07) = 0. Thus geS — C(p), whence N,(0/2,\) S
S — C(p) and S — C(p) is open.

THEOREM 28. Let (S, 5, T) be a Menger space under a continuous
t-norm T. Let peS and let C'(p) be the equivalence class im S
determined by p and the equivalence relation C'. Suppose further
that there exists a number M such that for any w and v in C'(p)
we have F,(x) =1 whenever © = M. Then C'(p) s closed in the
€ — ) topology.

Proof. Suppose ¢ belongs to C'(p), the closure of C’(p), but not
to C’'(p). Then F,,(x) <1 for all finite =, so that for any ¢ > 0 there
is an ¢ > 0 such that F,(t+ M) >1—¢; and since g<c C'(p), there
exists a we C'(p) such that F,(t) > 1 — ¢/2. Whence,

L—e> Fut + M) = T(F,u(M), Fo(t))
= T, Fou(t)) = Fo(t) > 1 —¢/2,

which is a contradition. Thus C'(p) = C'(p).
The next four theorems show that, under suitable conditions, each
of the equivalence relations, C, C’, D, D’, can be “divided out”.

THEOREM 29. Let (S, %, T) be a Menger space under a t-norm
T which is continuous and such that T(a, b) > 0 whenever a > 0 and
b>0. For each pe S, let D(p) be the equivalence class in S deter-
mined by p and the equivalence relation D and let S/D be the collec-
tion of all such equivalence classes. Then (S/D, Fsip, T') is a Menger
space in which the distance between distinet elememts is certainly
positive.

Proof. The fact that (S/D, Fsp, T) is a Menger space follows
directly from Theorems 18 and 22.
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Let D(p) and D(q) be distinct equivalence classes, and suppose
that

(3.2) topp@ = 0.

Since pe D(p) and g € D(qg), there is an x, > 0 such that F,(x,) = 0.
In view of (3.2), we thus have

0 < Fpippa ()
< T< Inf [Sup F,“,(xo)] Inf [Sup Fw(xo)]> .

ueD(p) LveD( veD(g) LueD(p)

Hence,

0 < Inf [Sup Fw(aco)]

weD(p) Lve D(q)
whence for each we D(p)
Sup Fu'v(xo) > O

ve D(q)

Consequently there exists a ¢,€ D(gq) such that F,. () > 0. Thus
since F,, is left-continuous, there is an ¢ 0 <e <, such that
F(x, —¢e) > 0. Hence

0= quo(/vo) = T( pqo(xo - 5)! quO(S)) > 0 ’

since both F,,(x, —¢) and F,(c) are positive. However, this is a
contradiction and hence t,.,,5 > 0.

THEOREM 30. Let (S, %, T) be a Menger space under a continuous
t-norm T. For each » €8 let D'(p) be the equivalence class in S
determined by p and the equivalence relation D', and let S/D’ be the
collection of all such equivalence classes. Then (S/D', Fsip, T) 15 a
Menger space in which the distance between distinct elements is
perhaps infinite.

Proof. In view of Theorems 18 and 26 (S/D’, Fsp, T) is a Menger
space.
Let D’(p) and D’(q) be distinct equivalence classes and suppose that
Fy o) = 1. Since pe D'(p) and ¢q € D'(g), there is an ¢ > 0 such
that F,(c) <1 —e¢. Since T is continuous

1= FD’(p)D’(Q)(OO)
= lim Sup T Inf [ Sup F,“,(t)] Inf [ Sup Fu,,(t)])

x—oo t<x ue D (p) veD’(q) we D’ (p)

= Sl;lp T( Inf ) [ Sup Fu,,(t)], Inf [ Sup Fw(t)])

weD’/(p ve D/ (q) veD’(q) L.LueD’(p)

— T{s?p( Inf [Sup F,w(t)]), Sup( Inf)[Sup Fw(t)]>} .

weD'(p) L.ve D’ ve D’ u €D’ (p)
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But T(a,b) = 1 if and only if @ = b = 1. Consequently,

Sup( Inf [ Sup Fu,(t)]> =1,

t weD'(p) LLve D'(q)

Thus, there exists an z, such that

Inf | Sup F,“,(xo)] >1—¢/2,.

ueD/{p) [veD’(q)

Hence,

Sup F,(x) >1—¢/2.

ve D' (q)
Since F',, is nondecreasing

Sup F,,() =z Sup F,,(x) >1—¢/2.

ve D/ {q) ve D’(q)
Consequently, there exists a q.c D’(q) such that

Fye(o0) < Bup Fyu(c0) — ¢/4>1 — 3e/4 .
veD’(q

and we have
1 — &> Fpo0) = T(Fyg(o0), Fog(0)) = Fpe(o0) > 1 — 3¢/4.

which is a contradiction. Hence F, (<) <1 and the distance
between distinct equivalence classes is perpaps infinite.

THEOREM 31. Let (S, %, T') be a Menger space under a t-norm
T which is continuous and such that T(a, by > 0 whenever a > 0 and
b>0. For each pe S, let C(p) be the equivalence class in S deter-
mined by p and the equivalence relation C, and let S/C be the collection
of all such equivalence classes. Then (S/C, Fsiey T') 18 a Menger
space. Moreover, if each C(p) in S/C s such that Inf, ., F,.,(07) > 0,
then the distance between distinct elements is not perhaps zero.

Proof. The first part of this theorem is a direct consequence of
Theorems 18 and 27.

To establish the second part, let C(p) and C(q) be distinct equiva-
lence classes, and suppose that Fly,)0(07) > 0. Since pe C(p) and
q € C(g), we note first that

(3.3) F0%) = 0.

Next we have
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0 < Fopye(0%)
=limSup T ( Inf [ Sup F' uv(t)], Inf | Sup F uu(t)])

h—0+t<h ueC(p) LveClq) veC(q) LueC(p)

< tim 7 (_Inf [ Sup Fu,,(h)], Int [Sup Fu,(h)])

h—0+ ueC(p) LveClg) veCl(g) LueC\p)

T (nm Inf | Sup Fu.(h)], lim Int [Sup Fw(h)]) :

=0t uec(p) Lveciq -0t veC(q) Lueci(p

whence

lim ( Inf [ Sup F,w(h)]> —A>0.

r—ot Nuec(p) L vec(q)

Thus, in particular,

lim (Sup Fw(h)> >A>N2>0.

h—0T veClq)
Since Sup,cq@F,. is increasing, for any h > 0 we have,

3.4) Sup F.(h) > M2 .

veC(g)

From (3.4) it follows that for each h > 0 there exists a ¢, € C(q) such
that

(3.5) Foo,(h) > )2,

Now let Inf, .0 F.(07) = 1. By hypothesis, 7 > 0, whence
T(n2,7m) > 0.

Moreover, since g, € C(q)

(3.6) Fo,(h) 27,

for all ~ > 0. Next, in view of (3.3), there exists an h, > 0 such
that

3.7) F,(2h) < T(M2,7) .
Combining the inequalities (3.5), (3.6) and (8.7) we have
T2, 7) > Fpul@he) = Ta, (o), Fugy (he) Z TM2, 7).,
which is a contradiction. Hence Fi,(0*) =0 and the proof is

complete.

THEOREM 32. Let (S, 3, T') be a Menger space under a continuous
t-norm T. For each peS let C'(p) be the equivalence class in S
determined by p and the equivalence relation C', and let S/C' be the
collection of all such equivalence classes. If each C'(p) in S/C' is
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such that for some M, s,, < M, for all w and v in C'(p), then
(S/C’, Fsiors T) 1s a Menger space im which the distance between
distinct elements is mot certainly finite.

Proof. In view of Theorems 18 and 28 (S/C’, Fsor, T') is a Menger
space.
Let C'(p) and C’(q) be distinct equivalence classes and suppose that

(3.8) Sorpora < 0 .

Since p e C'(p) and ¢ € C'(q) for each \ > 0 there is an ¢ > 0 such that
3.9) Fooscmom+ Mg +N)<1—¢,

where s,, < M, for all  and » in C'(g). In view of (3.8),

1= Foipmow(Sermera + M2)

~ Sup r( it [ swF.0)],

t<s0(p)C (q)+4/2 ueC/(p) Lvec’iq)
Inf | Sup Fw(t)]>
veC’(q) LueC’(p)

= 7(_Inf | Sup Fusomow + 2],

ueC’(p) L.veC’(q)

Inf [ Sup F,,(So: o + 7‘/2)]> .

veC’(q) LueC’(p)

Since T(a, b) = 1 if and only if ¢ = b = 1, it follows that

Inf [ Sup Fulsomow + 2| =1,

ueC’(p) LLveC’(q)
whence, in particular,

SU—D) F,(s¢rmer + N2) = 1.

vel’(q
Thus, there exists a q.<c C'(q) such that
(3.10) Foo (Scrmeray + N2) >1 —¢g/2.
Combining (3.9) and (3.10), we have

1 —¢> FoulSormera + Mg+ N)
= T(F o, (Sormer@ + NM2), Foo (Mg + N2))
= T(Fp(Scrimeray + M2), 1)
= qug(sc'(mc'(q) +N2) >1—¢/2.

This is a contradiction, whence ;. )¢« = oo and the proof is complete.
In conclusion we note that under the hypotheses of Theorem 31
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the equivalence classes in S/C are either bounded or semi-bounded
and under the hypotheses of Theorem 32 the equivalence classes in
S/C’ are bounded.
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BISECTION INTO SMALL ANNULI

MoseEs GLASNER, RICHARD KATZ, AND MITSURU NAKAI

In a Riemannian manifold the modulus of a relatively
compact set with border consisting of two sets of components
is introduced to measure its magnitude from the viewpoint of
harmonic functions, The existence of a subdivision into two
sets each having modulus arbitrarily close to one is established.

1. Let M be a Riemannian manifold, i.e. a connected orientable C=
n-manifold that carries a metric tensor g,;. Consider a bordered compact
region F M whose border is the union of two nonempty disjoint sets
a and B of components. We shall call the configuration (E, a, 8) an
annulus.

Let 7 be the harmonic function on F with continuous boundary
values 0 on a and log ¢£ > 0 on B such that

(1) Sa*dh=27r.

The number g > 1 is called the modulus of the annulus (E, a, 8) and
we set

¢ =mod(E, a, B) .

Let w be the harmonic measure of B with respect to E, i.e. the
harmonic funection on E with continuous boundary values 0 on « and
1 on B. By using Green’s formula we obtain

(2) log#=—,%,

where D, (w) denotes the Dirichlet integral | dw A *dw of w over E.

An illustration of these concepts is obtainefi by taking the annulus
E={x|r <|x| £ R} in n-dimensional (n = 3) Euclidean space. The
harmonic measure of | x| = R with respect to E is

|z —
w = R — g2

and the modulus of (F,|z| =, |2| = R) is given by
— 1—(n/2) — ﬂ_ 2—n 2—n
logp=r=x 2 n)F< 5 >(R ") .

Note that ¢ > 1, in a sense, measures the relative thickness of E and
that £#—1 as R — r—0.
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Our result gains interest if we generalize the notion of annulus
slightly. Let (E,,«;,8,) (7 =1, ..., m) be annuli such that E; N E; = ¢
for © 4. Set E=Ur. E;, a=Ur«a;, B8=U~RB;. Then we shall
also call the configuration (E,a, 8) an annulus. The modulus
¢ = mod (E, a, B) and the harmonic measure of E with respect to 8
are defined exactly as for a connected annulus. Moreover, formula
(2) is valid and consequently we have

(3) L _%

where p¢; = mod (E;, «;, 5;).

2. Let M be a noncompact Riemannian manifold throughout this
number., A function which is positive and harmonic on M except for
a fundamental singularity is called a Green’s function if it majorizes
no nonconstant positive harmonic functions on M. If a Green’s func-
tions exists, then M is called hyperbolic; otherwise it is called
parabolic.

An increasing sequence (2,) of bordered compact regions is called
an exhaustion of M if U Q,= M. Note that the configuration
(244, — 2,,092,,092,,,) is an annulus and denote its modulus by g,.

The parabolicity of a noncompact Riemannian manifold M is
characterized by the following

MoDULAR CRITERION. There exists an exhaustion (2,) of M with
I ¢, = = if and only if M is parabolic.

In the 2-dimensional case this criterion has been established by
Sario [5] and Noshiro [4] and their work can easily be generalized
to arbitrary Riemannian manifolds (ef. Smith [7], Glasner [2]).

One naturally asks whether a convergent modular product has any
bearing on the hyperbolicity of a manifold. The main result of this
paper is that any annulus can be separated into two annuli each
having modulus less than 1 + ¢. This clearly answers the question in
the negative and also settles Problem 3 in Sario [6].

3. Suppose the annulus (F, a, 8) has components (&;, «;, 8;)
(=1,---,m). Let v; be a hypersurface in E; such that E; — v; =
E!UE/, EiNE; =9, and (E}, a;,7;) and (E},~; B;) are annuli.
Set v = Ur.7;,. We shall call v a bisecting surface of (E, a, 8). Also
set E' = Ur,E; and E” = U, E]. We are now able to state the

THEOREM. Given an annulus (E, a, B) and ¢ > 0 there exists a
bisecting surface v of (E, «, B) such that
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(4) mod (E', a,7) <1+ ¢, mod (E"”,7,B8) <1+e.

This was established by Sario [5] for doubly connected plane regions
using Koebe’s distortion theorem. All proofs for the 2-dimensional
case known to the authors use either a distortion theorem, in essence,
or an estimate (cf. Akaza-Kuroda [1]) obtained by means of Mobius
transformations (Nakai-Sario [3]) which cannot be generalized to higher
dimensions. Therefore, one is led to estimate the Dirichlet integral
of the harmonic measure directly and the proof presented here seems
to even give a more elementary proof for the 2-dimensional case.

4. Denote by C(a, b) = C,(a, b) the Euclidean cylinder
n—1
(5) S —wl)<a wr<ar<ay+b,
=1

where a,b > 0 and x, = (3, ---, 27) is a fixed point. Let F(a, b) be
the class of C' functions f on C(a, b) with continuous boundary values
0 on C(a, b) N {x" = 22} and 1 on C(a, b) N {x" = a7 + b}). Also denote
by D¢ the Dirichlet integral with respect to the Euclidean metric.
We set s equal to the surface area of >72!'(x')* = 1, 2" = 0 and state
the

LEMMA. For every f € F(a,d),

Sa/'n-—l

(6) Déwn(f) =

and equality holds for fy(x) = b~'(x" — xf).

Clearly (6) is valid with equality for f,. To prove (6) for an
arbitrary f we may assume f eC' in a neighborhood of C(a,b). By
Green’s formula we have

Diwilf =fufd =\ (F=1)2has —o0,

0

(a

since f — f, = 0 on the upper and lower boundary of the cylinder and
0fy/on) = 0 on the side of the cylinder. Consequently Schwarz’s in-
equality yields

Déta,) (1) Dé i (f) Z (Déian(fy F)) = (Déan (f))*

which completes the proof.

5. We are ready to prove the main result. Take a point x,c«
and a point y,e/B. Let 2! ---, 2" be a local coordinate system at
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2, = (x}, -+, 27) valid in a neighborhood U of x, such that Unea is
given by x* = 27 and x" increases as x moves from « to E. Similarly,
let %', ---, y™ be a local coordinate system at y, = (%}, ---, ¥3) valid in
a neighborhood V of y, such that VN8 is given by y" = y? and y*
increases as y moves from B to E. Choose a constant ¢ > 0 so small
that

(7) VIIUUV >V
and also
(8) (@ U UVIES 2 VT 3 @

for every vector (&, ---,&,). Now choose a > 0 sufficiently small to
insure that 375! (2" — i) < o with 2" = «f and >'5' (¥ — i) < @
with y™ = y? are contained in U N« and V N B, respectively. Finally
choose b > 0 so that

a™'log (1 + €)

(9) 0<b< S8
2

Czo(ay b) — {xn = xg} CE, Cyo(a» b) — {yn = 'y:} cE

and

C.la,b) N C,(a,b) =2 .
Now take a bisecting surface v of (E, «, B) subject to the requirements
7N (Cafa, D) U Cyla, b)) = @
and
72 [Cuy(@, B) N {a" = 2} + B} U Cyfa, B) N {y* = i + b}] .

Let w’ (resp.w”) be the harmonic measure of v (resp.B) with
respect to E’ (resp. E”). Since E'DC,(a,b), by using (7) and (8) we
obtain

(10) Dy (w') > Dcxom,b)(w’) = CDL%,O(ayb)(w,) .
Hence by using (6) and (9) we have

2r
—— <log (1 +¢)
Dy (w')
and in view of (2) we conclude that
mod (B, &, v) < 1 + ¢

A similar consideration for E” establishes (4).
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A NOTE ON LEFT MULTIPLICATION OF
SEMIGROUP GENERATORS

KARL GUSTAFSON

It is shown in this note that if A is the infinitesimal
generator of a strongly continuous semigroup of contraction
operators in any Banach space X, then so is BA for a broad
class of bounded operators B; the only requirement on B is
that it transforms ‘“‘in the right direction”’.

In the recent paper [1] the following interesting result was
obtained.

THEOREM 1 (Dorrok). Let X be the Banach space of bounded
Sunctions on a set S under the supremum norm, let A be the infini-
tesimal generator of a contraction semigroup in X, and let B be the
operator given by multiplication by p, pX S X, where p is a positive
Sunction defined on S, bounded above, and bounded below above zero.
Then BA 1is also the infinitesimal generator of a contraction semi-
group tn X.

This leads naturally to the general question of preservation of
the generator property under left multiplication; the purpose of this
note is to present Theorem 2 below, which shows that for any Banach
space, a large class of operators B are acceptable. In the following,
the word “generator” will always mean generator of contraction
semigroup.

In this note we will consider only left multiplication by every-
where defined bounded operators B, It is easily seen (e.g., [2, Corollary 3])
that A generates a contraction semigroup if and only if ¢4 does, ¢ > 0.
Also by [4, Th. 2.1], if A is bounded, BA is a generator if and only if
BA is dissipative; in this case clearly right multiplication also yields
a generator. See [4, 5] for dissipativeness; we use dissipativeness in
the sense [4], and recall that if BA is a generator, then BA is dis-
sipative in all semi-inner products on X.

THEOREM 2. Let X be any Banach space, A the infinitesimal
generator of a contraction semigroup in X, and B a bounded operator
wn X such that ||eB — I|| <1 for some € >0. Then BA generates
a contraction semigroup in X if and only if BA is dissipative,
(i.e., Re[BAz, 2] £ 0, all ze D(A), [u, v] a semi-inner product (see

[4]).
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Proof. We note that R(B) = X when ||eB — I|| <1 for some
e > 0; to show that BA is a generator it suffices to show that ¢BA
is a generator for some positive e. From the relation ||eB — I|| <
1< || — eBA)™ || we have by [2, Lemma 1] that:

B — eBA) = B((I — eBA) + (6B — I)) = B(eB(I — A)) = B(B) =0,

where B(T) = dim X/Cl (R(T)) is the deficiency index of an operator
T. A closed implies ¢éBA closed (and therefore I — e¢BA closed), since
eBA =A+ (¢B—I)A and ||eB — I|| < 1; BA dissipative implies that
I — ¢BA possesses a continuous inverse, so that we therefore have
R(I — eBA) closed, and thus BA the generator of a contraction
semigroup. This result also follows quickly from [2, Theorem 2].

In the above we made use of basic index theory as may be found
in [3] and the well-known characterizations of generators as may be
found in [3, 4, 5], for example. The index theory notation here is
a convenience only; the arguement can be presented without it.

COROLLARY 3. Theorem 1 stated above.

Proof. As shown in [1], pA is dissipative with respect to the
semi-inner product used there, and clearly 0 < m < p(s) £ M implies
that |ep — 1| <1 — em for small enough e,

COROLLARY 4. Let B be of the form cl+ C,||C|| <e¢, CA dis-
sipative. Then BA is a generator 1f A is.

Proof. Clearly ¢'B satisfies the conditions of Theorem 2; note
lleB — Il| < 1 for some ¢ > 0 if and only if B is of the form ¢l + C,
1Cll <e.

Remarks. The condition BA dissipative in Theorem 2, necessary
for BA to be a generator, requires (in general) that B be in a
“positive” rather than a dissipative direction. For example, if A, B,
and BA are self-adjoint operators on a Hilbert space, then A is a
generator if and only if A is negative, and then BA is a generator
if B is positive.

The condition [|éB — I|| <1 in Theorem 2 is easily seen to be
equivalent to the condition: B strongly accretive, i.e., 3m = m(B)

such that Re[Bzx, 2] = m > 0 for ||xz|| = 1, where [u, v] is the semi-
inner product being used (see [4]). It is a sharp condition since
equality ||eB — I|| = 1 cannot be permitted in general, as seen from

the example B = 0, A unbounded, for then BA is not closed.
The effect of Theorem 2 is that, after the application of index
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theory therein, one sees that the essential question concerning when
BA is a generator is the question of when BA is dissipative. Three
situations which can then occur are: (i) as in [1], for special operators
B, one can find a semi-inner product for which BA is dissipative; (ii)
A commutes with B (see [3]), for which one can easily obtain results
such as A self-adjoint, dissipative, and B accretive imply BA dissi-
pative; (iii) general (noncommuting) A and B. For case (iii) one can
obtain the following interesting result (proof given in forthcoming
paper by the author, Math, Zeitschrift), Let — A and B be strongly
accretive operators on a Banach space. If

min [[eB — I|| = m(—A)-

Al

then BA is dissipative. In particular, let A and B be self-adjoint
operator: then (|| Bl| — m(B))-(|| B|| + m(B))™ < m(—A)-|| A||~" is sufli-
cient, Moreover these conditions can be sharpened by introducing the
concept of the cosine of an operator. For certain operators the
condition for BA to be dissipative can then be written as sin B < cos A.

The author appreciates useful expository suggestions from the
referee. Extensions of these results to unbounded right and left
multiplication will appear in a forthcoming paper by the author and
G. Lumer.
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A CHARACTERIZATION OF GROUPS IN TERMS
OF THE DEGREES OF THEIR CHARACTERS II

I. M. Isaacs AND D. S. PASSMAN

In this paper we continue our study of the relationship
between the structure of a finite group G and the set of degrees
of its irreducible complex characters. The following hypo-
theses on the degrees are considered: (A) G has r.x, e for some
prime p, i.e. all the degrees divide p°, (B) the degrees are
linearly ordered by divisibility and all except 1 are divisible
by exactly the same set of primes, (C) G has a.c. m, i.e., all
the degrees except 1 are equal to some fixed m, (D) all the
degrees except 1 are prime (not necessarily the same prime)
and (E) all the degrees except 1 are divisible by p° > p but
none is divisible by p°+!, In each of these situations, group
theoretic information is deduced from the character theoretic
hypothesis and in several cases complete characterizations are
obtained.

In situation (A), the greater complexity which can occur when
e = p is explored and a conjecture concerning p-groups with ¢ < p is
studied and certain cases of it are proved. Detailed statements are
made about groups G satisfying (B) for which the common set of
prime divisors of the degrees does not consist of a single prime for
which G has a nonabelian &, subgroup. These results are applied to
situation (C), groups with a.c. m, and such groups are completely
characterized when m is not a prime power corresponding to a non-
abelian Sylow subgroup. If m = p° and an &, of G is nonabelian
then it is shown that G must be nilpotent unless ¢ = 1 (in which case
G has r.x. 1 and has been completely characterized in [2]). This
reduces the study of groups with a.c. m to p-groups and it is shown
that a p-group G with a.c. p* must have an abelian normal subgroup
of index p° unless G has class 2 or 3. Further information is obtained
about these “special” class 2 and 3 groups. It is also shown that if
e > 1 then G must have class < p.

Groups satisfying hypothesis (D) are completely characterized and
it is shown that in this case there are at most two degrees different
from 1. Finally it is shown that if G satisfies hypothesis (E) and has
a nonabelian &, subgroup then G is nilpotent and has a.c. p°. In all
the situations considered in this paper, the group in question is shown
to be solvable.

We use here the notation and terminology of [2].

1. Groups with r.x. (p — 1). In[4] we classified all groups with
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r.x.2. As it turned out, in that study the prime p = 2 played a
special role. It now appears that in the general classification of groups
with r.x. e those primes p with p < ¢ will again play a special role.
In the other direction, this means that groups G with r.x. ¢ and p > e
are somehow better behaved than the others. In this section we will
attempt to justify this last statement.

Let G have r. x. ¢ but not r.x. (¢ — 1). Then we say that ¢ = ¢(&)
is the character exponent of G. If G has a normal subgroup N of
index p with ¢(N) = ¢(G) — 1, then in terms of the characterization
problem, G is trivial. We say that such groups are imprimitive. Other-
wise G is primitive. We note that since all groups with r.x. ¢ are
M-groups this terminology causes no confusion.

The following result handles the nonnilpotent case. It shows
moreover that the nonnilpotent exceptional group of [4](Theorem A (ii))
belongs in some sense to a series of such groups.

THEOREM 1.1. Let e(G)=e and let &, (G) be moncentral. If
p+*2 and p 1s not & Mersenne prime or if p > e, then G is imprimi-
tive. If p=e, then G is imprimitive unless G/3(G) = G, where
G, =(Vx,C)y~C,|C|=mp, V is elementary abelian and either p =
2,|V|i=8o0r p=2*—11s a Mersenne prime and | V| = 2%,

Conversely if e(G) = e and G/B(G) = G, given above, then p = e
and G is primitive,

The lemma below is well known.

LeMMA 1.2. Let @ be a set of primes and let arbitrary group G
have a normal abelian &, subgroup A. Then A = Z x B where Z
and B are characteristic in G and Z = 3(G@) N A.

Proof. Clearly A is characteristic in G and G/A acts on A. Let
6 be the endomorphism of A which is given by 6(a) = [l.eq. @°
Clearly K = ker# and I = image § are characteristic subgroups of G
and |K|-|I| =]A|. If Z=3(G)N A, then we see easily than Z 2T
and Z N K = <{1>, The latter uses the fact that 4 is an &, subgroup
of G. Hence Z=1Tand A=27 x K.

Proof of Theorem 1.1, Let H =6&,(G) and P = G/€(H). Let
H be the group of linear characters of H and let G, = H x, P where
P acts faithfully in the natural manner on H. If there exists v e H
with €,(\) = <1)> then choose N with N 2 €(H) and [G: N] = p. By
[5}(§ 8, in particular the proofs of Theorems 3.1 and 3.2), ¢(N) =
e(G) — 1. Now this occurs by Corollary 2.4 (i) of [5] if p =2 and p
is not a Mersenne prime or if p > e(G). It also occurs for p = ¢(@)
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unless G, has G, as a homomorphic image. This follows by Theorem
2.1 of [5] and a slight modification of Lemma 1.2 of [5] since we do
not have to look at subgroups here. We consider this last possibility.
Assume G is primitive.

Now P has as a homomorphic imape P, a Sylow p-subgroup of
G,. Since [P,: PJ] = p* we see that P, has a nonabelian group of order
p* as a homomorphic image. Thus there exists K A G with K 2 €(H)
and G/K nonabelian of order »*. By [2](p. 885, equation * with m = 1)
G has a normal subgroup N with K< N<G,[G:N]=9p* and
e(N) < e(G) —1. Since p=-¢>e¢N) we conclude by [5] that
[N:C(H)] = p*™. Hence [G:C(H)] < p*+p*™ < pr+'. Since | P,| = p**,
it follows that [G: €(H)] = p*™ and P = P,.

Let W be the kernel of the homomorphism G,— G,. By the above
W < H. We show that W is central in G,. Let we W and suppose
that €;(w) < G,.. It is easy to see in G, that there exists @, be HW
such that | €, (@) | = |€,,(b) | = p and P, = {&; (@), €,,(b)>. Thus since
G, acts on H/W and €; (w) < G, we cannot have both €;(w) 2 &, (@)
and € (b). Say €, (w)2C, (@). Since |C, (@) | = p we have €, (w) N
Cy (@) = H. Now p-group @Gl(c‘c)/lfl permutes the elements of the coset
aW =a& and |aW | is prime to p. Hence we can choose an element
acaW which is centralized by € (@). Consider v = awe H. If
e €4 (v) then xeC.(¥) = € (@). Thus z centralizes @ and hence
reCq(@) NECy(w) = H. Therefore g (v) = H and this is a contradic-
tion since G is primitive. Thus W is central in G, and since G,/W =
G,, W = 3(G,). By Lemma 1.2, H =W x R where R A G, and RP = G,.

Since H = W x R we have H = Q x Z. All linear characters of
Z are fixed by P and hence 7 is central in G. Also QP = G, and
from the nature of G, we see easily that QP = G, Moreover €, (H) =
Q X Z x S where S = &,(8(H)). We show now that S is central in G.

Choose \, ¢t € @ with | T,(\) | = | To(tt) | = p and P = {TH(N), TH(t0)>.
Let @ be an irreducible character of S. View ),z and @ as characters
of €(H). Let y be a constituent of (\@)* so that y | €(H) = a J:(\®);.
Clearly T(n@) = T(M) N T(®) so t = p” and p* = deg x = at deg ¢ = p*
deg . Thus degp =1 and ¢ = p?. This shows that S is abelian and
that T(p) 2 T(A). Similary T(p) 2 T(¢) and hence T(p) = G. There-
fore S is central in G and B(G) = Z x S. Hence G/3(G) = QP = G,
and the result follows.

We show conversely that all the exceptional groups discussed have
e(G) = p and are primitive. Let A = €(H). Since G/3(G) = G, we see
that A = H3(G) is abelian since H is abelian. Also [G: A] = p**..
Let yx be an irreducible character of G and y|A = aX!\;. Then
degy = at and a’t < [G: A] = p**' by Lemma 1.2 of [2]. Thusdegy <
pr*t and if degy = p*** then a =1 and ¢ = p**', The latter implies
that for » =\, we have T(\) = A. We ishow that this is not the
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case. Let M| 3(G) = p. Then ) is a constituent of & (induction to
A) and G/A permutes the linear constituents of Z since 3(G) is central.
Now G/A is a p-group and deg f is prime to p so there exists a con-
stituent » of g which is fixed by G/A. Since )| 3(G) = 7| B(G) it
follows that N = p¢ where £ is a character with £|3(G) =1. By
properties of G,, T(£) > A and since T() = G, it follows that T(n¢) > A.
Thus ¢(G) < p. Since ¢(G,) = p we have ¢(G) = ».

Suppose G is imprimitive. Let NA G with [G:N]=p and
e(N) =p — 1. Let y be a character of G of degree p*. Since e(N) =
p —1 we have y = ¢* for some irreducible character ¢ of N. This
shows that N 2 3(G). Clearly N 2 &, (G) = H and therefore N 2
HB3(G) = A. Since p > e¢(N) and €y(H) is abelian, it follows from § 3
of [5] that [N: A] = p*™. Hence [G: A] = p*™* = p*, a contradic-
tion. This completes the proof.

We now study p-groups with r.x. ¢ and p > e¢. Here our results
are not conclusive.

Let p-group G have ¢(G) = e. We set 2(G), the character kernel
of G equal to 2(G) = N ker @ where 6 runs over all irreducible charac-
ters of G of G of degree p°. If 2(G) =<1), we say G is character regular.
In [6](Corollary 2 with n = p*') we showed that |2(G)| < #(2p°™)!
We conjecture that if »p > ¢(G) than G is character regular. Reasons
for studying this property can be seen in the following result.

ProprosiTION 1.3. Let G be a p-group with ¢(G) = e.

(i) Let NA G with ¢(N) =e. If N is character regular then
B(N) & B(G).

(ii) Suppose G is primitive and every maximal subgroup is charac-
ter regular. If {eG — 3(G), then [G:C()] = p*. Thus if J is a
central subgroup of G of order p, then 3(G/J) = B(G)/J.

Proof. In (i) suppose B(N)<Z B8(G). Then we can choose
xe (G, 3(N)) with ¢ = 1. Since NAG,xeN. Now N is character
regular so there exists irreducible character ¢ of N with degp = p°
and x¢kerp. Let y be and irreducible constituent of o*. Since
deg y < p° we have clearly y| N = ¢. Thus 8(N) is central in the
representation associated with ¥ and (G,3(N)) S kery N N = kerop, a
contradiction.

We consider (ii). Since (¢ 3(G) we have [G:€)]=p. If
[G:C()] =p, let N=E€(&). Then N A G, N is character regular and
e(N) = e(G) since G is primitive. By (i), 8(N) < 8(G) and hence
€ € 8(G), a contradiction. Thus[G:€({)] = p*. Clearly 3(G/J) 2 B(G)/J.
Let { € G be the inverse image of an element of 3(G/J). Then (G,{) = J
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and |J| = p 80 [G:E()] < p. By the above e B(G) and the result
follows.

We say p-group G has property (*) if ¢(G) = ¢ and given any
p — e nonidentity elements of G there exists an irreducible character
y of G of degree p* which does not contain any of these elements in
its kernel. Note that if p > ¢(G) and G has property (*), than G is
character regular. In [5] we conjectured that every p-group satisfies
(*). If this is so the following shows that p — e is best possible.

ProrosiTioN 1.4. Given p and e. If p < e, there exists a p-group
G with ¢(G) = ¢ and 2(G) > {1)>. If p > ¢, then there exists a p-group
G with ¢(G) = ¢ having p — ¢ + 1 nonidentity elements with the pro-
perty that every irreducible character of G of degree p° contains at
least one of these elements in its kernel. Moreover in both cases we
can take G to have class 2.

Proof. Let G be generated by a,, -+, %, Yy, =+, Yo, %, v all of
order p, such that % and v are central, (x;, ;) = wv' for i =1, ..+ ¢,
and all other commutators are trivial. Set J = <{v>. Clearly G/J is
a faithful irreducible linear group of degree p°. Since [G : B(G)] £ p*
we see that e¢(G) = e.

Let p <e. We show that veQ2(G). Let y be an irreducible
character of G with v¢ kery. Then for some ¢ =1, ---, p we have
uv’ e ker y. Since p < ¢ we see that x;, y; exist and that Z, and 7, are
central in G/{uv®). Hence G/{uv’> has r.x.(e — 1) and degy < p*.
Thus v € 2(G).

Now let p > ¢. Consider the p — ¢ + 1 elements v, uv°*!, -« -, uv®.
Let y be an irreducible character of G containing none of these elements
in its kernel. Then for some 7 =1, ...,¢ we have wv'ekery. As
above for such ¢ < e, G/<uv’> has r.x.(e — 1) and hence the result
follows.

We show now that at least in certain cases (*) holds. For possible
later applications we use the following general setup.

Let .%” be a class of p-groups closed under taking subgrours and
quotient groups. Let G be a member of . of minimal order which
does not satisfy (*) if such exists. We consider properties of this
minimal counterexample.

Let ¢(G) = ¢ and let z,, ---, x, be » = p — ¢ nonidentity elements
of G such that each irreducible character of G of degree p° contains
at least one of the z, in its kernel. We of course have » > 0 and thus
p > e. Clearly ¢ > 0 by Proposition 4.6 of [2]. Hence » < p — 1.

We can assume that the x; are central and have order p as
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follows. If zis one of the x;’s, then we can find elements y,, .-, ¥,
such that % = (x, ¥, ---, ¥,) is a nonidentity central element. If
h¢kery for some character y then clearly x¢kery. Also we can
take a suitable power of % to have order p.

We show now that all the x; are contained in @(G), the Frattini
subgroup of G. If not say x,¢ N for some maximal subgroup N of
G. Since x, is central of order p we have G = N x (x> and clearly
e(N) =e(G) =e. Let { be an element of order p in B(N). Then
(L, x> is central of type (p, p) and has p + 1 subgroups of order p. Since
r<p-—1, we can find one such subgroup J with x, ---, %,, (¢ J.
Then G = N x J and %, ---, Z, are nonidentity elements of G/J = N,
a group with e(G/J) = e¢. Since G is a minimal counterexample, we
can find a character ¢ of G/J of degree p° with Z; ¢ ker . Viewing
@ as a character of G yields a contradiction.

Let N be a maximal subgroup of G. Clearly ¢(N)=e — 1. If
¢(N) = ¢, then since z,, ---, 2, € N there exists an irreducible character
@ of N of degree p* with «; ¢ ker ¢ for all 4. If X is a constituent of
@* then since degX < p° we have degX = »p° and X|N = @. Thus
x; ¢ ker X for all 4, a contradiction. Therefore ¢(N) = ¢ — 1.

If y is a character of G of degree p° then y = ¢* for some
irreducible character ¢ of N since ¢(N) = ¢ — 1, Thus T(p) = N and
hence 3(G) & N. Therefore 3(G) & 3(N). We show that 3(G) = 3(N).
If not, choose «,., € (G, 8(N)) with z,,, # 1. Since ¢(N) =¢ — 1 and
r+1=p—(e—1), we can choose an irreducible character § of N
of degree p* with z,¢ker d for all . Let y be a constituent of 6*.
If degy = p% then x,, ---, 2z, ¢ker X yields a contradiction. On the
other hand, if degy = p*, then x| N = 6 and so B(N) is central in
the representation associated with y. Hence (G, 3(N)) S kery NN =
ker 6 and this contradicts the fact that z,,, ¢ ker 4. Thus B(N) = 3(G).

We show now that 3(G) has two generators and is not cyclic.
Let G have as a homomorphic image G = G/K, a faithful irreducible
linear group of degree p°. Suppose 3(G) N K has a subgroup of type
(p,p). Then we can find a central subgroup J of order p with ;¢ J
for all 7 and J & K. Then ¢(G/J) = ¢ and we clearly have a contra-
diction. Thus 3(G) N K is cyclic. Since 3(G) is cyclic we see that
3(G) has two generators. Let (e B,(G) — 3(G) with {? € 3(G). Then
the map g — (g, {) is a homomorphism of G into the elements of order
pin 8(G). The kernel is €(¢) and by the above {G: €(¢)] = »*. Hence
[G:C)] = p* and (G, &) is abelian of type (p, »). Thus B(G) is not
eyclie.

THEOREM 1.5. If G has class at most 2, then G satisfies (*).

Proof. Let & be the family of all p-groups of class at most 2
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and let G be a minimal counterexample. Then all of the above applies.
Let J be a central subgroup of G with z;¢ J for all 7. Let X be an
irreducible character of G/J viewed as one of G and with x,J ¢ ker X.
Let K be the kernel of X. If U is the subgroup of 3(G) of type (v, p)
then clearly J = KN U and thus KN 3(G) is cyclic. Let G = G/K.
We show that 3(G/K) = 3(G)/K. Let B be the complete inverse image
of 8(G) in G. Clearly B = 8(G). If B > 3(G), choose {e B — 3(G)
with {?e 8(G). Since Ze3(G) we have (G, ) S KNU=J. Hence
[G: €()] = p, a contradiction. Since x; ¢ ker X, it follows that deg X <
p" and so [G : 3(G)] < p** by Lemma 2.3 of [2]. Hence [G: 3(G)] <
p*% and G has r.x. (¢ — 1), a contradiction. Thus the theorem is
proved.

We now return to our discussion of the general minimal counter-
example. Again let { € B,(G) — B(G) with £* € 8(G). Thus if K = €(),
then we have [G: K] = p* and in fact G/K = (G, {) is abelian of type
(p, p). Let N be any subgroup of G with G > N > K. Since 3(K)&
B(N) and K is character regular we see by Proposition 1.3 (i) that
e(K) < e(N). But ¢(K)=e(N)—1 s0 e(K)=¢(N)—1=¢—2. In
rarticular ¢ > 2.

We show now that [3(K): 3(G)] = p so that 3(€(Q)) = {3(®), .
Let 6 be an irreducible character of K of degree p°* (note that ¢(K) =
¢ — 2) with «,, --+, 2, not in its kernel and let J & ker ¢ where J is
central in G of order p. Clearly J = (T, ) for some subgroup 7 with
G>T>K. Consider G=G/J. Since Z,%1 in G we see that
e(G) <e—1. But eK)=e— 2, where of course K = K/J. Also
ZeB(T) — 3(G). Hence ¢(G) > e(T) = e(K). This yields ¢(G) = ¢ — 1
and ¢(T) = ¢(K) = ¢ — 2. By Proposition 1.3 (i) we have 3(K) &
B(E) = 8(T) and thus (T, 3(K)) = J. Now T =<K, a> and the map
b — (b, a) is a homomorphism of 3(K) onto J with kernel €(a) N B(K) =
3(T). Hence[3(K): B(T)] = p. But 3(T) = 3(G) so [B(K) : 8(G)] =p.

If ¢ = 2, then K is abelian and so 3(K) = K. Hence [G:3(G)] = 2°,
a contradiction and hence ¢ > 3. If we let .&” be the set of p-groups
with r.x.2, then the above yields:

ProrosiTioN 1.6. If G is a p-group with r. x. 2, then G has pro-
perty (*).

We now discuss an application of the above. Let .7~ denote a
family of character regular p-groups closed under taking subgroups
and quotient groups.

ProposiTioNn 1.7. Let Ge .7 with e(G) =e. Let X be an irre-
ducible character of G of degree p° and let Z, denote the set of
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elements of G central in the representation associated with X. Then
Z, is abelian.

Proof. 1f Z, is central the result is clear. So assume Z, £ 3(G)
and hence Z, > 8(G). Choose { € Z, — 3(G) with { € 8.(G) and {* € B(G).
Then (£, G) is central, elementary abelian and (¢, G) < ker X. Clearly
&, G) =<, If (£, G)] = p* choose J, and J, subgroups of ({, G) of order
p with J, NJ, = {1)>. Since J; S ker X, we have ¢(G/J;) = e and hence
by induction Z,/J; is abelian. Thus Z; & J, N J, = <1)> and Z, is abelian,

Thus we can assume that ({, G) = » and hence if H =€ ({), then
[G: H] = p. Since H is character regular and 3(H) £ 3(G), Proposi-
tion 1.3 (i) yields ¢(H) = e — 1. Thus X|H = >?®; and X vanishes
off H. This latter fact implies that Z, & H. Now if ¢ = ¢,, then
deg @ = p*~*and e¢(H) = ¢ — 1. Thus in H, Z, is abelian. Since clearly
Z, € Z,, the result follows.

COROLLARY 1.8. Let G have class 2. If p > e¢(G) = e, then G has
a normal abelian subgroup of index p*.

Proof. Let .7 be the family of p-groups of class < 2 with p > ¢(G).
By Theorem 1.5 all members of .7~ are character regular. Let X be
an irreducible character of G of degree p°. Then by the above Z, is
a normal abelian subgroup of G. Since G has class 2, [G: Z,] = p*
and the result follows.

2. 7-Character groups. In this section we study groups whose
irreducible characters have degrees which are powers of a fixed integer
m. In fact we consider the more general class of groups defined below.
Here 7(n) denotes the set of prime factors of integer n.

DEFINITION 2.1. Let 7 be a set of primes. We say group G is a
r-character group if the following hold.

(i) The distinct degrees of the irreducible characters of G are
do, dyy =+, d, with £ > 1.

(ii) For all 2 =1,d,,|d; and n(d;) = .

(iii) If @ = {p}, then &,(G) is abelian.

Condition (iii) above is included for convenience in order to avoid
overlap with our previous study of r.x. e groups. If H is a homo-
morphic image of G, then the degrees of the irreducible characters of
H forms subset of those of G. Hence if G is a m-character group,
then either H is a m-character group or H is abelian. The main result
here is as follows.
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THEOREM 2.2. Let G be a m-character group. Suppose the distinet
degrees of its irreducible characters are do, d;, «-+,d, with d;_,|d,.
Then G has the following structure.

(i) G has a normal abelian &, subgroup H = {1> with G/H =
&.(G) abelian.

(ii) A = GC(H) is a normal abelian subgroup of G of index d,.

(iii) There exists a subset {a, a, -+-,a} of {0,1, -.-- Kk} with
0=a,<a, < -+ <a, =k such that G/A is abelian of type (d,/d,,
Qoy/Qayy vy Ao /Ao ) and (d,,, /d,) | (de,/d,, ) for all 1.

Cy—1 @f 41

COROLLARY 2.3. Suppose the degrees of the trreducible characters
of G are all powers of a fixed integer m, with m® the largest such
degree. Let m = mw(m) and assume that x| > 1. Then G has a normal
abelian subgroup A with G/A abelian of order m* and type (m*, m?,
«oo, mS7) for suitable integers s;. Moreover S (G) is abelian.

The corollary is of course an immediate consequence of the theorem.
The proof of the latter will be in two parts. We first show that G
satisfies (i). Then we study groups with that property and show that
they satisfy the remaining conditions (ii) and (iii).

We start with a lemma. If A is a linear character of G, then the
order of A, written o(\), is its order as an element of the dual group
G//E’. If X is any irreducible character of G we set o(X) equal to o(\)
where ) = det X, the determinant of the representation associated
with .

LEMMA 2.4, Let p be a prime and let U = U ,(G) be the minimal
normal subgroup of G having a p-quotient group. Then

(Ul = Zprom X1)*  mod p.

Proof. By induction on |G|. Suppose first that G has no normal
subgroup of index p. Then G = U,(G) and G/G’ is a p’-group. Hence
for all XGC/}/?;' we have pfo(\). Therefore the above congruence
follows from the equation |G| = S x(1).

Now let G have a normal subgroup H of index p. Clearly U(G) =
N, (H) and thus by induction

l Ul = Zp,{’o(x) 0(1)2 mOd D

where the sum runs over the irreducible characters 6 of H. We show
now that

Do XAV = 3ppew 6(1) mod p .

In both sums we can of course discard those y and 6 with p|y(1) and
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pl61). Also if T(9) = H, then 6 has p conjugates 0,,0,, ---, 6,.
Clearly 6,(1) = 6(1) and o(f;) = o(6). Thus the contribution of these
conjugates to the right hand sum is a multiple of p. Hence we need
only consider those ¢ with T(¢) = G.

Let &7, = {X|X is an irreducible character of G, ptX(1), and
ptoX)} and &, ={0|60 is an irreducible character of H, p/} 6(1),
pYo(d), and T(6) = G}. As we have shown above it suffices to prove
that

S XAy = 3., 00 mod p .

We will in fact show that the map y — x| H is a one-to-one map
of &7, onto .57, and this will yield the result since X and X | H have
the same degree.

Let Xe.%”,. Since [G:H]=p we have that either X|H is
irreducible or X | H is the sum of p conjugates. Since p f x(1), the
latter cannot occur so X|H = 6 is irreducible. Clearly 6(1) = X(1),
o(0) | o(x) and T(#) = G and hence 6 € .&”,. Thus the restriction map
sends &, into .&7,.

Now let 0e.o”, and let p =detd. Since T(f) =G we have
T(¢) = G and thus K = ker p¢ is normal in G. If X is such that X |H =4,
then X is a constituent of #*. Thus to show that the restriction map
is one-to-one and onto we must find a unique constituent X of #* with
Xes”, and X |H = 6. Let v be a nonprincipal linear character of G/H
and let X be an irreducible constituent of 6*. Since [G: H] = p and
T(6) = G we see that X | H = 6 and that all the constituents of 6* are
of the form X, = zX for 7 =0,1, ---,p — 1. Let \ = detX so that
M H = p. We have clearly

det X; = det ¢?X = zix@), ,

Since (1) = 6(1) is prime to p we see that det X; = detX; for 7+ j and
hence we obtain p distinct linear characters of G which extend .

Since T(¢) = G we see that H/K is central in G/K and since G/H
is cyclic, G/K is abelian, Also H/K is a p’-group since p } o(x) and
hence G/K =~ (H/K) x (G/H). It follows easily from this that there
are precisely p distinct linear characters of G which extend ¢ and that
precisely one of these has order prime to p. Hence there is a unique
1, with o(y;) prime to p. Then p fo(X;) and p} X; (1) since X; (1) =
6(1). Thus X; €. %, and X, |H = 6. This completes the proof.

The first two parts of the following theorem are due to John
Thompson. They generalize our original result, proved under more
restrictive assumptions.

THEOREM 2.5. Let p be a prime and ©@ a set of primes.
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(i) Suppose for every mnonlinear trreducible character y of G
we have p|X(1). Then G has a normal p-complement.

(ii) If the degrees of the irreducible characters of G are linearly
ordered by divisibility, then G has a Sylow tower.

(iiil) Suppose for every nonlinear irreducible charactor X of G
we have m(X(1)) = n. Then G has a normal abelian &, subgroup H.
Moreover tf |w| > 1, then G/H is abelian.

Proof. (i) Let U be as in the preceeding lemma. Since p | (1)
if y(1) = 1 we see by Lemma 2.4 that

| UI = Zp*o(l) >\’(1)2 mOd p

where the sum runs over linear characters ». Clearly » } o(\) is equiv-
N
alent to M belonging to &,.(G/G"). Hence

Ul = S,(G/G)|  modp

and so pf|U|. Thus U is a normal p-complement of G.

(ii) By induction on |G|. If G is abelian the result is clear so
assume that G is nonabelian. Let d,=1,d, ---,d, be the distinct
degrees of the irreducible characters of G with d,|d;,,. Sincek =1,
choose prime p with p|d,. Then for all 1 = 1,p|d,. By (i), G has a
normal p-complement H. Let X be a character of G of degree d,
and say

VNH=aSt0,.

If 9 =6, then aof degf =degX =d,. As is well known at | [G: H] and
of course deg ¢ || H|. Hence clearly at = |d;|, and deg § = |d;|,.. Thus
the degrees of the irreducible characters of H are |d,|,,|d,|, |, ---,
|d.l,» and these are linearly ordered by divisibility. By induction H has
a Sylow tower and thus the result follows here.

(iiiy By (i), G has a normal p-complement for all pex. Hence
G has a normal &, subgroup H with G/H nilpotent. Let 6 be an
irreducible character of H and let X be a constituent of 6*. Then
degd|degX and deg ¢ || H| and so deg# = 1. Thus H is abelian. Now
let # = {p, s, ---,0,} and supposer > 1. LetG/H =P, x P,x «++ X P,
where P; = &,(G/H). If P; is nonabelian then G/H has a character
X with 7(X(1)) = {p;} # =, a contradiction. Hence for all 4, P; is abelian
and thus G/H is abelian. This completes the proof.

Part (iii) of the above result yields (i) of Theorem 2.2, We now
study groups satisfying this latter condition.

THEOREM 2.6. Let @ be a set of primes. Let G be a group with
a normal abelian & subgroup H and with G/H = &(G) abelian,
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Suppose the distinct degrees of the irreducible characters of G are
do, dyy <o+, d, with d;_,|d;. Then

(i) A= C(H) is a normal abelian subgroup of G.

(ii) There exists a subset {a,, a, +-+,a,} of {0,1, -+, k} with
0=a,<a < -+ <a, =k such that G/A is abelian of type (d,/d,,
Ao/, + o+, d, [d, ) s0[G:A]l=d, and (d,,, [d.,)]|(d,[d,,_) for all <.

@p—1 @i41

Let K be a normal subgroup of G, maximal subject to G/K being
nonabelian. If G/K = E is solvable, then in the terminology of §2
of [2], E is extra-special. By Proposition 2.2 of [2], E is either a
Case P or Case @ group. We will refer to these as Case P and Case
@ quotients of G.

Let G satisfy the hypotheses of the above theorem. Set ¢; =
d;/d;_,. These degree quotients will come into play in some later
results.

LemMA 2.7. Let G satisfy the hypothesis of Theorem 2.6. Let
KA G so that G/K is an extra-special group. Then G/K is a Case Q
quotient. Let Q/K be the normal Sylow q-subgroup of G/K with G/Q
cyclic of order d. Then |d|. =d and |q|.. = q. Also there exists a
subset {by, by, +++,b,} of {0,1, -+« , k} with b, < b, < --- < b, =k such
that the distinct degrees of the irreducible characters of Q are d,/d,
dbl/di %y dbs/d~

Suppose further that q,yd for all 1 >1. Then d = d, and the
distinct degrees of the irreducible characters of Q are d,/d,, d,/d,, «--,
d./d,. Moreover if 0 is an irreducible character of Q, then 6* is either
iwrreducible or it has all linear constituents.

Proof. Let G/K be an extra-special quotient of G. If G/K is
Case P, then G/K is a nonabelian p-group for some prime p. Since all
Sylow subgroups of G are abelian, this cannot occur. Thus G/K is
Case Q. By Ito’s theorem we have d,;|[G: H] for all + and hence
|d;|. = d;. Since d is the degree of an irreducible character of G we
have |d|. = d. Moreover since G/K is nonabelian and &.(G) is abelian,
we see that G/K is not a w-group. Hence |q|., = q.

Let @ be an irreducible character of @ and let ¢ be a nonprincipal
linear character of Q/K viewed as one of Q. Suppose § =0p. If L
is the kernel of ¢ then @ > L 2 K and ¢ vanishes off .. Say ¢|L =
a>i@,. Then [0|L,60]|L], =at. On the other hand since ¢ vanishes
off L,[0|L,60|L], =[Q:L]4, 0] =[Q:L]. Hence a’* is a proper power
of g. Since deg ¢ = at deg ¢, we have ¢ |degd. If X is a constituent
of 6*, thendeg ¢ |deg X and so ¢|deg X. This is a contradiction since
|degX|, =degX and g¢ . Hence 6 + 6.

Now let A, # be two distinct characters of Q/K. We show that
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TEN) N T(Op) = Q. If not we can find » e (T(6N) N T(0r)) — Q. Then
ON = (ON)” = 0°N\° O = (Gp)° = 6°”
and hence
67 = OANN" = Opp”

Now M\* # pft* since x acts fixed point free on Q/K and X == . Thus
@ = 6o where o = (¢#2*)(A\*) # 1 and this contradicts the above. Let
% be the number of minimal subgroups of G/Q. Then this says that
there are at most « characters » of Q/K with T(6\) > Q. Clearly
u < d — 1 since each minimal subgroup is cyclic and has a nonidentity
generator. On the other hand G/Q acts fixed point free on Q/K so
there are at least d + 1 > w linear characters of Q/K. Hence there
exists » with T(6\) = Q.

Since T(A\) = Q, it follows easily that (9\)* is irreducible. Hence
for some 7

d; = deg (N = ddeg (ON) = ddeg g .

This implies that there exists a subset {b, b, ---, b} of {0,1, --., k}
with b, < b, < +++ < b, < I such that the distinet degrees of the irre-
ducible characters of @ are d,/d, d,/d, --+, d, /d. We show now that
b, = k. Let X be a character of G of degree d, and let ¢ be an irre-
ducible constituent of X |Q. Then certainly deg § = d,/d. On the other
hand by the above degd = d,/d for some j. Hence d;/d = d,/d so
j =k and deg @ = d,/d. This completes the first half of the proof.

Now assume that ¢; } d for all ¢ > 1. Since ¢;|d; and d > 1, it
follows that d = d,. Let X be an irreducible character of G of degree
d; for ¢+ > 0 and let & = 6, be an irreducible constituent of X | Q. We
have X |Q = a >t 0, and thus if b = at then b < d and bdegé = deg X =
d;. On the other hand we know that deg ¢ = d;/d for some 5. Hence
d;/b = d;/d. Since d = b, it follows that d; > d;. If d; > d;, then
dis, | d; and we have

d = d, = b(d;/d;) = bg;,(d;/d;+,)

and ¢;.,|d, a contradiction for ¢+ > 0. Hence 7 = j and degd = d,/d.
Moreover b = at = d and since a’t < d, in general, we have a = 1,
t =d and X = 0*. Thus the distinct degrees of the irreducible characters
of Q are d,/d,, d,/d,, -+, d,/d,.

Finally let ¢ be a character of @ and suppose that 6* has a non-
linear irreducible constituent X. Since ¢ is a constituent of X|Q, the
above yields X = 6* is irreducible. This completes the proof of the
lemma.
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Proof of Theorem 2.6, First A = S.(A)H, S.(4) is abelian and
H is central in A, Hence A is abelian and (i) follows. Note that
G is solvable. If G is abelian, then (ii) is obvious. So assume G
is nonabelian.

Let K A G with G/K an extra-special group. By the preceeding
lemma, G/K is a Case @ quotient. Using the notation of that lemma
we have [G : Q] = d, for some 7. Moreover assume that K is so chosen
that ¢ is maximal with this occuring.

In G/K we have €;,x(Q/K)=Q/K. This shows that A = C,(H)S @
and hence Cy(H) = C(H) = A. Let xcG/A be such that it generates
the cyclic quotient G/Q. We show that |{&>| = d; = d;/d,. Clearly
d;||<x>]. If d; # |<x>|, then for some prime p € x we have |{z>|, >
ld;],. For this prime let J be the subgroup of <{x> of order p. Now
&,(A) centralizes H and some &_(G) and hence &,.(4) is central in G.
Thus by Lemma 1.2 we can write A = D x C where D = €,(J) and
D,C A G and J acts fixed point free on C. Clearly C == <1>. Let )
be a nonprincipal linear character of C viewed as one of A. Then
(T(M)/A) N J = 1> and hence [G: T(\)], = |<{x>|, > |d;|,. Since C =1
this implies that the distinct degrees of the irreducible characters of
G/D are 1,d;, --- with 7 > 7. Hence G/D has a Case @ quotient with
[G: Q] =d, >d;, a contradiction, Thus |[{z)>|=d;. Setting a, = 1,
we have by induction applied to @, that G/A is abelian of type (d,/d,,
Aoyl Qayy ++*y Ao, /o, ) With a, = k. Also (d,,;, /d,) [(d,,/d,;_) for j > 1
by induetion. To obtain (d,,/d. ) |(d, /d.,) we merely note that |{(z)| = d;
for all such choices of #. This implies that the period of Q/A divides
d; = d,/d,. This completes the proof.

The proof of Theorem 2.2 is now immediate. Part (i) follows from
Theorem 2.5 (iii) and from the assumption that if = = {p}, then &,(G)
is abelian. Then Theorem 2.6 yields parts (ii) and (iii).

In the remainder of this section we assume that G satisfies the
hypothesis of Theorem 2.6 and we will use the notation of the conclu-
sion of that theorem. We first note a few simple facts about the
characters of G.

LEMMA 2.8. Let X be an irreducible character of G. Then we
have

(i) X|H=3}tN,;, that is there is mo ramification.

(ii) There exists a subgroup L 2 A and a linear character \ of
L with X = \*

(ili) If X is faithful, then L = A and degX = d,.

Proof. Let X|H = a3, and set L = T(\,). Clearly L 2 €(H) =
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A. As is well known there exists a character ¢ of L with y = ¢* and
6| H = ax,. Let K be the kernel of 4. Then clearly H is central
modulo K. Since &_(L) is abelian this shows that L/K is abelian and
hence degd = 1. Thus ¢ = 1 and (i) and (ii) are proved.

If X is faithful then since L A G we have that L is abelian.
Hence L < G(H) = A. This yields deg X = |G : A] = d,, and (iii) follows.

It is interesting to consider which subgrours L can occur in (ii) of
the above lemma. Define a Galois connectivity between groups L with
G2 L 2 A and groups B with H 2 B as follows.

LY @,H  B-'s{4cGl(g, H) S B)
We say L is closed if L*™ = L

ProrosiTionN 2.9. Using the above notation, group L has a linear
character A with A* irreducible if and only if L is closed.

Proof. We note first that (L, H) = L’. This follows since L/(L, H)
has a central &, subgroup and an abelian &_ subgroup and hence is
abelian.

Now let L have a linear character )\ with \* = X irreducible.
Set M = L% so that M 2 L. Suppose that M > L. Clearly L = ker 4.
Since G/A is abelian, L. A\ G and hence L/ker X is abelian. Thus I/ =
(L, H) S kerX. Since degX =[G:L] and M > L it follows that
M = (M, H)<Z kerZ. Thus M¢= (M, H) # (L, H) = L?, a contradic-
tion. Hence M = L and L is closed.

Now assume L is closed. We consider G = G/(L, H) in which
L = Lj(L, H) is abelian. Since L is closed we see that G/L acts faith-
fully on D = &,.(L). Thus G/L acts faithfully on D, the dual group of
D. Since these groups are abelian and have relatively prime orders,
it follows by a trivial modification of Lemma 2.2 of |5] that there exists
reD with Czz(\) = (1>, View ) as a character of L and then as

one of L. We see that T(\) = L and hence that \* is irreducible,.
The result follows.

If G/A is cyclic we can obtain additional information,

THEOREM 2.10. Suppose G/A is cyclic. Let L, be the unique sub-
group of G with [G: L] =d; and L; 2 A. Then we can write A =
B, x B, X «++ X B, where each B, is characteristic in G, L, centralizes
B; and G/L; acts fized point free on B,. Here B; + <{1> for i + 0.
Conversely a group with this structure has characters of degrees
doy dyy + =+, d, only.

Proof. Note that A = €(H) and each L, is characteristic in G.
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Note also that &,(A4) is central in G. We have
<1> & @:A(Lo) & (S/A(Ll) - & @A(Lk) =A

and each of these groups is characteristic in G. By Lemma 1.2 we
can write for 1 =1,2, -.- k&

Cu(Ly) = Cu(Ls) X B;

where each B, is characteristic in G. Setting B, = € (L,) = 3(G) we
have

A=B,x B, X «++ X B,

where each B, is characteristic in G and is centralized by L;.

Let © =1 and let X\ be a nonprincipal linear character of B; viewed
as one of A. Since L; centralizes B; we have T(\) 2 L;. If T(\) > L,
then by Lemma 2.8 (i) we have T(\) 2 L,_,. This implies that L,_,
centralizes an element of B! which is not the case by definition of B,.
Hence T(\) = L; and G/L; acts fixed point free on B; and hence on B;.

We show now that B; == <{1)> for 7 = 0. Let X be an irreducible
character of G of degree d, and let » be an constituent of X|A.
Since there is no ramification, [G: T(\)] = d; and hence T(\) = L,.
Write X = A\, - -+ X, where \; is a character of B; viewed as one of
A. As we showed above, L; fixes no nonprincipal character of B; for
j>1. Hence A = A\, -+ \;. If \; = 1, then clearly T(\) 2 L;_, which
is not the case. Hence \; = 1 and B; = 1. The completes the forward
half of the proof.

Conversely let G have the structure described above. Since A is
abelian and G/A is cyclic we know that there is no ramification. Let
X be an irreducible character of G with A = A\, +++ A, a constituent
of X|A. Then degX = [G:T(\)]. If x =1, then degX =1=4d, If
N # 1 choose j maximal with A; = 1. Clearly 7(\) = L; and deg X = d;.
This completes the proof.

We now seek sufficient conditions to guarantee that G/A is cyclic.

THEOREM 2.11. Each of the following will guarantee that G/A
18 cyclic.

(1) diydis

(ii) For all 1< j,q;%q;.

(iii) For all 7, q;c; > q,.

(iv) There exists a prime p € T such that | q;., |, > |q;|, for all .

Proof. We consider (i) first. This is a simple corollary of Theorem
2.6. If G/A is not cyclic, then there exists b < a < k with (d,/d,) | (d./d;).
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Thus d, | d? and since d, | d,_, this yields d,|d}_,, a contradiction.

Now assume G satisfies condition (ii). We prove the result by
induction on |G|. If k =1, the result follows by (i) above so we
assume k > 1. Let X be a character of G of degree d,. By Lemma
2.8 (iii), G/ker X has characters of degrees 1 and d, only. Choose
KNG, K2kerX with G/K a Case @ quotient. Using the notation
of Lemma 2.7, it is clear that [G: Q] = d, = ¢,. Since q; td, for all
j>1, it follows by Lemma 2.7 that the distinct degrees of the
characters of Q are d,/d,, d,/d,, ---, d,/d,. Hence @ has degree quotients
Q2 Qs, **+, ¢, and we can apply induction to @. Thus Q/A is cyclic.

Theorem 2.10 applies to @ and thus A contains a characteristic
subgroup B on which Q/A acts fixed point free. Then B A G and also
B = {1>. Let ) be a nonprincipal linear character of B viewed as one
of A. Then X (induction to Q) is an irreducible nonlinear character
of @ since k¥ > 1. By Lemma 2.7, X* = \* is irreducible. This shows
that G/A acts fixed point free on B and hence G/A is cyclic.

Parts (iii) and (iv) follow immediately from (ii).

3. Groups with a.c.m. In this section we study nonabelian
groups G having the property that every nonlinear irreducible character
has degree m for some fixed integer m. We say these groups have
a.c. m (all characters m). As an immediate consequence of Theorems
2.2 and 2.10 we have the following.

THEOREM 3.1. Let G have a.c. m with © = w(m). Suppose that
either |mw| > 1 or © = {p} and an &, subgroup of G s abelian. Then
G has the following structure.

(i) @G has a normal abelion &, subgroup H += {1> with G/H =
SA(G) abelian.

(i) A =C(H) is a normal abelian subgroup of G with G/A
cyclic of order m.,

(ili) A= B(G) x B where BAG,B #<{1) and GJ/A acts fixed
point free on B.

Conversely any group G having this structure has a.c. m.

Therefore we need only consider the case in which m = p° for
some prime p with &,(G) nonabelian. Actually the ¢ = 1 case has
already been studied in [2]. However there is little additional work
involved in handling it so we will consider it again here. As we will
see, the structure of those groups with ¢ > 1 is much more restrictive
than the structure with ¢ = 1. We start with several lemmas.

Lemma 3.2. Let G have a.c. m with m = p° and S,(G) nonabelian.
Then we have the following.
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(i) G has a normal abelian &, subgroup H.

(ii) G has a Case P quotient E.

(iii) If E s any Case P quotient of G, then E is a p-group with
E/B(E) elementary abelian of order m*. Also any abelian subgroup
B of E satisfies [E: B] = m.

Proof. Since G has r.x. e, Proposition 3.4 of [2] yields (i). Now
G/H = &,(G) is nonabelian. Thus we can choose K A G, K 2 H and
maximal with G/K nonabelian. Clearly G/K is a Case P quotient and
(ii) follows. Now let E be any Case P quotient of G. Then E has
a.c. m and hence E is a p-group and E/3(F) is abelian of order m?
by Proposition 2.2 of [2]. Since E has an irreducible character of
degree m, it follows that E has no abelian subgroup of index less than m.
We need only show that E/3(E) is elementary abelian. Given z, y ¢ E.
Since E has class 2 and E' has period p we have (27,%) = (z,y)* = 1.
Thus x? € 8(F) and E/8(E) has period p.

LeMMA 3.3. Let G have a.c. m. Then we have the following.

(i) Let &7 be a permutation representation of G with deg 7 < m.
Then G' < ker &.

(i) If |G| = m, then G' S B(G).

(ili) Let L be a subgroup of G with [G: L] <m. Then G' S L
and hence L A\ G. Moreover if [G:K]=m and K< L <SG, then
K, LY=L =G.

Proof. Let 6 be the character corresponding to 2. Then deg 0 < m.
We have 6 = 3, a,X; where each X; is an irreducible character of G.
Now if X, = 1, then a, = 1 and hence for all 4, deg X; < m. Since G
has a.c. m, degX;, =1 and G’ < ker X; and hence G' < ker &?. This
yields (i).

Suppose |G'| < m. Let zeG. Clearly |Clz| < |G| £ m, where
Clz denotes the class of . Now G permutes the elements of Clxz
by conjugation and this representation has degree < m. Hence by (i)
G’ is in the kernel of the representation and thus G’ centralizes z.
Since 2 was arbitrary, G’ = 3(G) and (ii) follows.

Now let L & G with [G: L] < m. We see that G permutes the
right cosets of L by right multiplication and this representation has
degree < m. Thus by (i), G’ is in the kernel and hence G' & L. Now
let [G:K]=m and L > K. Since both K and L are normal in G so
is H= (K, L). If H< (G, then G/H is nonabelian and thus has a.c. m.
Since K’ & H, K/H is abelian and is centralized by a properly larger
subgroup. Thus G/H has an abelian subgroup of index < [G: K] = m.
This contradicts the existence of an irreducible character of G/H of
degree m. Hence H = G’. Since G' 2 L' 2 (K, L), the result follows.
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LEMMA 3.4, Let G have a.c.m where m = p° and &,(G) 1s non-
abelian. Let A2 H = &,(G) be a normal self-centralizing subgroup
of G. If G has a faithful irreducible character X then G/A s ele-
mentary abelian of order m.

Proof. Since A2 H,G/A is a p-group and hence there exists
subgroup L and linear character A of L with G2 L 2 A4 and X = »*.
Since deg X = m, [G: L] = m and hence by Lemma 3.3 (iii), L A G.
Thus X | L has only linear constituents. Since X is faithful L is abelian
and since A is self-centralizing L = A. Thus G/A has order m.

By Lemma 3.2(ii), G has a Case P quotient £ = G/K. Let Z/K =
B(&). Then (AZ)/K is an abelian subgroup of E so [G: AZ] = m by
Lemma 3.2 (iii). Since {G: A] = m, we have A 2 Z and hence G/A is
elementary abelian.

We now reduce the study of these groups to a study of p-groups.

THEOREM 3.5. Let G have a.c. p° with P = &,(G) nonabelian.
Let H be the mormal abelian &, subgroup.

(1) If e>1, then H is central and hence G = H x P,

(ii) If e =1, then either H is central or G has a normal abelian
subgroup of index p.

Proof. We start with the case ¢ > 1. Suppose first that G has
a faithful irreducible character. By the preceeding lemma, G has
a normal abelian subgroup A with G/A elementary abelian of order p°.
Then A = B x H where B = &,(4) A G. We consider G/B and show
it is abelian. If not, then G/B has a.c. p°. Now &,(G/B) = G/A is
abelian and thus Theorem 3.1 applies. Hence since A/B = &,.(G/B) we
see that (G/B)/€(A/B) is cyclic of order p°. This implies that €(A/B) =
A/B and therefore that G/A is cyclic of order p°. Since G/A is ele-
mentary abelian this is a contradiction for ¢ > 1. Thus G/B is abelian,
Since H A G this yields (G,H) S BNH = <1) and H is central.

Now let G be arbitrary with ¢ > 1. We show that H is central.
If not choose x€ P’, ye (G, H) with 2, ¥y # 1. By Proposition 4.6 of
[2] there exists an irreducible character X of G with z, ¥ ¢ ker X. Hence
G/ker X has a.c. p°, a nonabelian Sylow p-subgroup and a noncentral
&, subgroup. Since G/ker X has a faithful character this contradicts
the above and (i) is proved.

Now let ¢ = 1 and suppose that H is not central. Since p > 1 = ¢,
G is imprimitive by Theorem 1.1, Thus there exists A A G with [G: A] =
p such that ¢(4) = e(G) — 1 = 0. Hence A is abelian and (ii) follows.

It is easy to construct examples to show that H need not be central
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in G if e = 1. For example, let @ be an abelian ¢-group (¢ # ») which
has an automorphism of order p. Let G = @ x, P where P has order
p* and P acts on Q in such a way that P, a subgroup of index p
centralizes @ and P/P, corresponds to the automorphism of order p.
Since A = QP, is an abelian subgroup of G of index p, G has a.c. p.
Finally Q = &,.(G) is not central and P = &,(G) can be chosen to be
nonabelian.

In the remainder of this section and in the next two sections we
will consider only p-groups.

LEMMA 8.6, Let G have a.c. m. Then we have the following.

(i) O(G), the Frattint subgroup of G, is abelian.

(ii) If G has two distinct abelian subgroups A and B of index
m, then |G’ | < m and hence G has class 2. Moreover if |G'| = m, then
B(G) = AN B and [G: 3(@)] = m*.

(iii) If G’ is not central, then C(G') is abelian.

Proof. We consider (i) first. Choose x€ B — A with 2 ¢ A and
set L = (A, z)>. Then [G: L] = p*" where m = p°. Thus by Lemma
3.3 (iii), L' = G'. Clearly L' =(A,2) and |G'|=|L'| =[4:C,()].
Since €, (x)2 ANB and [A:ANB]<m, we have |G'| <m. By
Lemma 3.3(ii), G has class 2. If |G'| = m, then[A: ANB]=m and
so [AB:B]=m. Thus G = AB and since A and B are abelian
8(G) 2 AN B. On the other hand A and B must be maximal abelian
subgroups so 4, B 2 8(G). Thus 3(G) = AN B and (ii) follows.

If @(G) is not abelian, then there exists an irreducible character
X of G with @ & ker X. Hence @(G/ker X) is nonabelian. Now G = G/ker X
has a normal abelian subgroup A with G/A elementary abelian by
Lemma 3.4. Hence @(G) < A, a contradiction and (i) follows.

Now assume G’ is not central. If €(G’) is not abelian we can
choose x, y € €(G") with (z,y) = 1. Choose z € (G, G’) with 2= 1. Then
there exists an irreducible character X of G with (z, y), # ¢ ker X. There-
fore it suffices to assume that G has a faithful irreducible character.
Since G’ is abelian, we can extend normal abelian subgroups <{z, G">
and <y, G’> to normal self-centralizing subgroups 4 and B. By Lemma
3.4,[G:A]=[G:B] = m. Since xe A, y € B and (x, y) # 1, we see that
A # B. By (ii) above G has class 2, a contradiction. This completes
the proof of the lemma.

THEOREM 3.7. Let G be a p-group with a.c.m. Then either G
has a normal abelian subgroup A with G/A elementary abelian of order
m or G has class at most 3.

Proof. By induction on |G|. If 3(G) is cyclic, then G has a
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faithful irreducible character and the result follows by Lemma 3.4,
Hence we can assume that 3(G) is not cyclic and thus 3(G) has at least
three distinct subgroups .J,, J,, J, of order p. We can clearly assume
that G has class > 3. Since the subgroups J; are disjoint it follows
that at most one quotient G/J; has class < 3. Hence say G/J, and
G/J, have class > 3. By induction, for 7 =1, 2, G/J; has a normal
abelian subgroup A./J; with G/A; elementary abelian of order m. Set
U=JJ, so that US B(G). If A, + A,, then A,/U and A,/U are two
distinet abelian subgroups of G/U of index m. By Lemma 3.6 (ii), G/U
has class < 2 and thus G has class < 8, a contradiction. Therefore
A, = A, =A. Since 4,/J; is abelian, A’ = J, N J, = (1> and A is abelian.
This completes the proof.

Let ¥*G denote the ith term of the lower central series of G. Thus
TG =G, v"HG = (G, G) and the class of G is the minimal ¢ with
7°G = ).

LeMMA 3.8. (i) Let G be an arbitrary p-group having a normal
abelian subgroup A with G/A abelian of order m. Suppose for all
subgroups H with G 2 H > A and [H: A] = p we have H' = G’ + {1).
Then G has a.c.m.

(ii) Let G have a.c. m. and a normal abelian subgroup A with
G/A abelian of order m. If G’ is not central, then K = G X, (G/A)
has a.com. Moreover let x € G/A have order p. Then for all © >0,
,YiG — A(1~z)".

Proof. We consider (i). Let X be an irreducible character of G.
Since [G: A] = m we have deg X < m. We assume deg X < m. Since
A is normal and abelian, X is induced from a linear character of some
subgroup L 2 A. Clearly L > A and we can choose H with L. 2 H> A
and [H: A] = p. Since G/A is abelian, L A G. Thus kerX 2 L' 2 H’
and since H' = G', ker X 2 G’. ThusdegX = 1. Since |G'| # 1, G has
a.c.m.

Now let G have a.c.m and a normal abelian subgroup A of index
m. Set K =G X,(G/A). Then K has a normal abelian subgroup G’
with K/G’' = G/A abelian of order m. Let x have order p in G/A and
set H = {4, y> where y is an inverse image of « in G. Then HA G
and (2,G) = (H,G)AG. Now G =G/(x, @) is nonabelian since
(@, @) < G’ and thus G has a.c.om. Clearly &(G') 2 H/(z, G') so
[G:G(G")] < m. Now G cannot have an abelian subgroup of index < m
and hence by Lemma 3.6 (iii), G’ < 3(G). Therefore (z, G’) = (G, G') =
(G/A, G"). Thus we see that K satisfies the hypothesis of (i) above,
since (G, G') # <1> by assumption. Thus K has a.c.m.

Let K be as above. We know that for 7 > 1
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Y6 = (A1 G/Ay G/Ay ) G/A)
and YK = (G, G/A, G/A, ---,G/A)

where G/A occurs 4 times in each of the above. This follows using
Lemma 8.3 (iii) for ¢ = 1. Since G’ = (4, G/A) we have for 7 = 2,
7'G = 7K.

Let x€G/A have order p. We show that for 71 = 1, v'G = Av-
by induction on <. If 7 = 1, the result follows from Lemma 3.3 (iii).
Let ¢ = 2 so that v'G = ¥*'K. By induction, since ¢ — 1 = 1, we have
YK = ()=, Since G’ = A" the result follows.

ExaMpPLE 3.9. Let D be an additive elementary abelian group of
order m = p° and let 4, 4,, ---, A, be p distinet groups isomorphic to
D, Say a,:D— A, is an isomorphism,

Let F' be a field of endomorphisms of D with | F'| = m. In fact
F' corresponds to the regular representation of GF(p°) on its additive
group. For oe¢ F define o,: A; — A;., by o0,(a;) = ;007 (a;) for 7 =
1,2,-.-,p—1 and 0,: 4,—<0>. Let A=A4, + A4, 4 -+ 4, and
define 6 on A by 6 =0, + 0, + --- + 0,. Clearly ¢» = 0.

Let 0,7¢ F. We show that 67 =74, Leta;cA;,. Ifi=p—1or
p then 67(a;) = 0 = 7o(a;). Now let 1 < p — 1. Then

07T (a;) = 0,,7(a;) = Q00 ha, T (a;) = a;,0tai(a;) .

Since ot = 7o we have clearly 67 = 74.

Now for e F set 2, =1 + &. Since 6* = 0 and A is elementary
abelian we have x2 = 1. Algo for ¢, 7 ¢ F we have z,x. = ©.%,.

Let 0, 0, +++, 0, be a basis of F' over GF(p) and set z; = =,, for
convenience. Let B be the elementary abelian group of automorphisms
of A generated by the z;,. Clearly |B| < p*. Set S = {x,}. Since
2.2, =1+ + 7T +07 it follows that when restricted to

/Ii =4+ A+ 00 + Ap)/(Ai—(-Z + o +Ap)

S is a group of order p°. Here 1 =1, .--,p—1 and if i =p—1
then the denominator of the quotient is the group <0>. Clearly B and
S restricted to this quotient are isomorphic and hence |B| = p°.

Now let xe B with z = 1. Then there exists g€ F, ¢ = 0 such
that « and «, act the same way on A, above for all 7. Since ¢ is an
onto map we see that

[ — 2)(A; + A + -+ + AY(Aipe + -+ + 4,)
= (Aiss + -+ + Ap)

for 1=1,2,---,p — 1, This clearly yields
A—-2)A=(4,+ A4+ - + 4,).
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Thus by Lemma 3.8(i), G = A X, B has a.c.m. Moreover as is easily
seen, G has class p.

The following result exhibits another difference between the ¢ = 1
and e > 1 cases.

THEOREM 3.10. Let G have a.c.p® with ¢ > 1, Then G has class
at most p and G is elementary abelian.

Proof. By induction on [G|. If 3(G) is not cyclic choose J, oJ,
subgroups of 3(G) with J, N J, = {1>. By induction G/J; has class < p
so "G = J, N J, =<1). Also (G/J;) has period p so clearly G’ is ele-
mentary abelian.

Now assume J3(G) is cyelic. By Lemma 3.4, G has a normal
abelian subgroup A4 with G/A4 elementary abelian of order p°. Let
H = G/A so that I(H), the group ring of H over the rational integers
I, acts on A. If S is a subset of H we let S denote the sum of the
elements of S in I(H). Let K be a nonidentity subgroup of H.
Choose xe K with « = 1. By Lemma 3.8 (ii), G’ = A"~®. Hence

(Gr)?{ — A(1~x)§ — <1>

since (1 — #)K = 0 in I(H). Thus K annihilates G'.

Since ¢ = 2 we can choose K to be a subgroup of H of order p°.
Let K, K,, --+, K, be the subgroups of K of order p. Note that K is
elementary abelian. Now in I(H)

pZ(ZS’K)—IZ

and hence p annihilates G’. Thus G’ has period p.
Now let J be a subgroup of H of order p with J = <{x>. Then
as is well known

J=14+a+ oo +ar ' = 1 — 2)>"* mod pI(H) .
By Lemma 3.8 (ii),
'YpG — A(i—x)z’ — A(l-—x)(l——x)?"l — (Gr)u_.x)p—l .

Since G’ has period p we can take (1 — z)*~* modulo pI(H) in the above,

Therefore v*G = ()" = (1> and G has class < p. This completes the
proof.

ExamvpLE 8.11. If ¢ =1, the above result is false. For example,
let A =<a)> x{a,>x -+ x {a,> where each «; has order p°. Let
J = <&> be cyclic of order p and let J act on 4 by «f = a;., for
t=1,2, -, p—1and af =a,. If G=A4A x,J, then G has a.c.p.
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Now a,a;' € G’ and hence if a > 1 we see that G’ is not elementary
abelian. Moreover as we see below G has class a(p — 1) + 1. First
in I(J)

~

A—-zy*—-—Jd=0 mod pI(J)

and hence

0 mod p°I(J) .

]

[ — @yt — J°
Since (1 — z)J = J(1 — ) = 0 and (J)* = pJ, the above yields
(1 — x)*r= = (—p)*iJ mod p°I(J) .

Now A has period p* and hence (1 — 2)**—" and (—p)*~'J act the same
way on A, Since J(1 — 2) = 0 we see from the nature of the action

of x on A that
Ne-DG = AU-2PD . fpomld 1>
and e P=DHG = APV 1>

Hence G has class a(p — 1) +1 and this can be arbitrarily large.

4. Special class 3 groups. Let G be a p-group with a.c.p’.
We say that G is special if it does not have a normal abelian subgroup
of index p°. By Theorem 3.7 if G is special, then G has class 2 or 3.
As is expected the structure of the special class 3 groups is quite
restrictive., We study these latter groups in this section.

THEOREM 4.1. Let G be a spectal class 3 group with a.c.m. Then

we have the following.

(1) [¢ :7G] = m and ¥*G = G’ N 3(G).

(ii) [G:C(G")] = w* and C(GF) is a normal self-centralizing sub-
group.

(ili) [G: 3(@)] = m.

(iv) If H = G/3(G@), then H' = B(H) is elementary abelian of
order m and H has two normal abelian subgroups of index m whose
intersection ts equal to H'.

We start with a lemma.

LEMMA 4.2. Let G have a.c.m and class 3.

(1) If ¥G ts cyclic or if [G':7*G] > m, then G has an abelian
subgroup A of index m.

(i) [@:@NB@A]=m and [G: B(G)] = m’.

Proof. By induction on |G|. Suppose that G is cyclic. Then
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there exists an irreducible character X of G with ¥*G Nker X = (1.
By Lemma 3.4, G/ker X has an abelian subgroup A/ker X of index m
with A 2 G’. Then (4,G) <= Y¥GNkerX =<1)> so A< €(G’). Since
G has class larger than 2, €(G’) is abelian by Lemma 3.6 (iii) and hence
A is abelian.

Now suppose [G':7*G] > m. If ¥G is cyclic, then the result
follows by the above. Thus we can assume that v*G contains distinet

subgroups J, and J, of order p. Since ¥’G S B(G), J, and J, are
normal in G. By induction G/J; has an abelian subgroup A4;/J; of index
m. Set U=JJ,SvG. If A =+ A, then A/U and A,/U are two
distinct abelian subgroups of G/U of index m. Hence | (G/U)' | £ m by
Lemma 3.6 (ii). Since U Z %G this yields [G' : ¥*G] £ m, a contradiction.
Thus 4, = A, = A and hence A’ = J, N J, = <1). Therefore A is abelian
and (i) follows.

We consider (ii). The result is obvious if m = p and hence we
assume m = p° with ¢ > 1. By Theorem 3.10 G’ is elementary abelian.
If G’ N B(G) is not cyclic, there exists subgroup J of G’ N B(G) with
J 2 v*G. Hence G = G/J has class 3. By induction [G':G' N 3(G)] = m.
Now G’ = G'/J and G’ N 3(G) 2 (G’ N B(G))/J. Thus the result follows
in this case. Now let G' N 3(G) be cyclic. Since G’ is elementary
abelian |G’ N 8(G)| = p. Now G has class > 2 and thus by Lemma
3.3(ii), |G| = pm. Hence [G':G' N 3(G)] = m.

Let W/¥*G be the center of G/v*G. Since G/7*G has a.c.m we see
that [G: W] = m’. Clearly 3(G) S W and G’ = W. Hence

[W:3@]z=[WNG:3G)NGET=[G:3G)NGET=m.
Therefore [G : 3(G)] = [G: W][W : 8(G)] = m® and the lemma is proved.

Proof of Theorem 4.1. We assume throughout that G is a special
class 3 group with a.c.m. Since G S G’ N 3(G) we have [G': V'G] = m
by Lemma 4.2 (ii). Moreover since G is special [G’: 7*G] < m by Lemma
4.2 (i). Hence [G':¥*G] = m and (i) follows.

Let K, K,, -+, K, be all the proper subgroups of v*G with v*G/K;
cyclic. Clearly N K; = {1>. By the preceeding lemma, G/K; has a
normal abelian group B;/K; of index m. By Lemma 8.3 (iii) B; 2 G'. Since
G/K; has class 3, Lemma 3.6 (iii) yields B;/K; = €(G’/K;). Thus for all
i, B, 2 A =C(G"). Set B=[1B; so that B2 A. Since (B, ") S K;
we have (B,G) S N K; =<1>. Thus B = A.

Choose L A G with G/L a Case P quotient. Let Z/L be the center
of G/L so that [G:Z]= m* Clearly L 2+*G. Since B;,Z/L is an
abelian subgroup of G/L of index < m we must have B, 2 Z by Lemma
3.2 (iii). Thus B2 Z and [G: A] < m*. Now if B = B,, then clearly
B is an abelian subgroup of G of index m and this does not occur.
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Thus say B, # B,. Then G/¥*G has two distinct abelian subgroups
B,/v*G and B,/Y*G of index m. Since |G'/Y*G|=m we see that
[G: B, N B,] = m* by Lemma 3.6 (ii). Hence [G : A] = m?. This proves
(ii) and the part of (iv) concerning the existence of two abelian sub-
groups of H of index m.

We prove (iii) by induction on |G |. Say |¥*G| = p". By the pre-
ceeding lemma ’G is not cyclic and hence » = 2. Let J be a subgroup
of ¥*G of order p. Suppose that G/J has an abelian subgroup B/J of
index m. Then B is nonabelian so B’ = J and B has class 2. Clearly
B 2 €(G’") and €(G’) is a maximal normal abelian subgroup of B. Since
[B:€(G")] = m, it follows that B has a.c.m and [B:3(B)] = m* by
Lemma 2.3 of [2]. Let e B with 1. Then there exists an
irreducible character X of B with «, y ¢ ker X where J = {y>. Hence
X is nonlinear and deg X = m. This says that B is character regular.
Since ¢(B) = ¢(G) = ¢ where m = p°, it follows by Proposition 1.3 (i)
that B(B) & B(G). Since clearly 3(G) & €(G') & B we have 3(G) =
B(B) and thus [G : 3(G)] =[G : B][B: 3(G)] =m*’. Thus the result follows
in this case. Note that if » = 2 the +*G/J) is cyclic so the result
follows here.

We assume that » = 3 and that for all subgroups J of ¥*G of
order p the quotient G/J is a special class 3 group. Since ¥*G is not
cyclic, let J, and J, be two such subgroups of order p and set U = J,J,.
Thus |U| = p* < p" = |¥*G| and U < ¥*G. By induction G/J; has center
Z;/J; of index m® If Z, + Z, then we see that (Z,Z,)/U is central in
G/U and has index < m®. Since U < 7*G, G/U has class 3 and a.c.m
and this violates Lemma 4.2 (ii). Thus Z, = Z, = Z. Since (Z;, G) & J;
it follows that (Z, G) = J, N J, = {1) and hence Z = 3(G). This yields
(iii).

Finally we know that |H| = m®, [H: 83(H)] = m* 3(H) 2 H' and
|H'| = m. The latter follows since [G’':G' N 3(G)] = m. Hence we
must have equality throughout. Now H has a.c.m with m = p°. If
e >1, then H’ is elementary abelian by Theorem 3.10. If ¢ =1,
then |H'’| = p and the result is clear here. Thus the theorem is
proved.

We used simple facts about GF(p°) to obtain Example 3.9. In
order to construct special class 3 groups we will need the following
interesting fact about these fields. The authors would like to thank
Walter Feit for his help with the proof of this result,

ProPOSITION 4.3. Let E be a finite field of characteristic p > 2
and let F be a subfield. Then there exists a basis of £ over F' with
respect to which every matrix of the regular representation of E over
F' is symmetric.
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Proof. Let w = {w,, w,, --+, w,} be a basis of E over F' and let
R, be the matrix form of the regular representation with respect to
this basis. Let 6 € E be a primitive element so that & = F(§). Then
the characteristic polynomial of R,(6) is irreducible over F. Note that
all matrices below are over F.

By Theorem 1 of [8] there exists a matrix S with SR, (6)S =
R,(6)Y. Here '’ denotes the transpose operation. As is well known the
norm map from E to F is onto and hence there exists ac E with
det S = Nyz(a) =detR (o). If T =R, (x")S, then TR,(0)T =
R,(6) since R,(«) and R,(4) commute. Moreover det 7= 1. By Theorem
2 of [8], T is symmetric,

Now T is symmetric and det T =1, a square in F. Since F is a
finite field of characteristic p > 2, there exists a matrix U with T =
UU’'. Let A= U"R,(6)U. Then

A’ = UR,0)(U)" = UT R, (0)T(U")"
=U"R,(60OU=A.

Hence if we let U be a change of basis matrix, U: w— v, then A =
R,(#) is symmetric. Since E = F(0), the result follows.

THEOREM 4.4. Special class 3 groups with a.c.p® exist for all
p>2 and e. No such groups exist for p = 2.

Proof. Let p=2. If ¢ > 1, then by Theorem 3.10 groups G with
a.c.p® have class < p = 2. Hence no special class 3 groups exist. If
e =1 and G is a special class 3 group, then [G : B(G)] = 8 by Theorem
4.1. Therefore H = G/3(G) is nonabelian of order 8. Such groups all
have cyclic subgroups of order 4. Thus if A < G with A/3(G) cyclic
of order 4, then A is an abelian subgroup of G of index 2 and hence
G is not special, a contradiction.

Now let p > 2 and let ¢ be arbitrary. By the previous proposi-
tion there exists a basis w,, ---, w, of GF(p°) over GF(p) such that for
all B e GF(p%), R.(B) is symmetric. Let ¢, = [a¢{¥] be the matrix o, =
R,(w;). These ¢ matrices of size e X e over GF(p) have the following
properties.

(1) af =aj.

(2) af =a¥ and af = ag.

(3) If >\f.0; is singular for f;e GF(p), then we must have f, =
fe=-o=f,=0.

Condition (1) follows since R, (w;) is symmetric and (38) follows since
Wy, Wy, -+, W, are a basis of field GF(p°) over GF(p). Finally o,(w;) =
R, (w;)-w; = w,w; and hence o, (w;) = g;(w;). This yields «;} = al¥.
The remaining equality in (2) follows from this and symmetry.

Let
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A= gp<x1) Loy * %y Loy Y1y Yoy **°y Yoy u,v[

w=yi=u=0v"=1,
% and v are central
(%5, ;) = (¥, ¥;) = 1
(Yiy ;) = Uiy

where 6,; =0 for ¢+ j and 0;;, =1 for ¢ =j.

Clearly |A| = m*p*

where m = p° and A’ = {u). Let 7, act on A by

Ut =u V=
y5t = yvt
. al¥)
xi = xi(H v’ )’Wu
r
where

W = (u“v)ulm%)

Here division in the exponent is performed modulo p.
We show first that z; defines an automorphism of A. To do this

it suffices to show the following.

@5y = @5 = W) = (@5 = 1

#®i and v° are central in A
(w5, yi) =1

(W5, a%) = (u)s = ui

(x5, xi) = 1,

Now A has class 2 and p > 2 so A is regular.

Since it is generated

by elements of order p, it has period p. Hence the first equation
holds. Since 4 has class 2, the next three equations are obvious. We

consider the last one now. We have

) 2® .
x;’t = xj(]:['r yr”)’wu Tyt = xk(H'r

S0

(2)

ke
yr T>wik

(3)

() L@ () g,
(@5, o5 = (0, Y3 ) Y50F, @) = w7 =1

by (1). Thus 7; is an automorphism of A.

We show now that as an automorphism z; has order p. Clearly
7, # 1. Now 7; fixes w and v and y; = y,v"%, Thus ¢? fixes y,.

Finally
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(4 (2)
x;f _ xJ(H y:;})nvaﬁn(n—-l)lzw?j .
So for p > 2, z? fixes x; and hence 7; has order p.
We know that 7, ;€ Aut A. We show that z,7; = 7,7;,. Clearly
W = YT = YT p = pTT = 97t and YLt = 0%tk = ¢t Finally

()

wiis = [a,(11 '!/:kr YW ]7

(7 (4 (i)

=2, (II ?J:kr Ywi (1T y:kr)wikva“

and
o) o
wii = [ (1] ¥, " w5
2l Re e
= xk(H yrkT)wik(H yrkr)w.ik,v ke .

These two expressions are equal since alf = af) by (2).

Let B =gp<2, 2y -+, 2122 =(2,%2;) =1> and set G = A x_E,
the semidirect product of A by E, where 7: E-— Aut A is the map
induced by z; — 7;. We note some elementary properties of G. Clearly
|G| =mp®, G =Yy, Yoy * * 1Y o, %, vy and 7*G = {u, v) so that G has class 3.
We show that €(G") = G’ so that [G: €(G')] = m*. Since G’ is abelian
we have €(G') 2 G'. On the other hand if

h = oI 22)(I1 24) € 6(G)

with g€ G’, then for all j,1 = (y;, k) = u%v* and hence a; = b; = 0.
Thus €(G@') = @

Since [G: A] = m, we see easily by (3) and Lemma 3.8 (i) that
G/7v*G has a.c.m. Set B =<y, Yay ***y Yoy %1y %oy =%, %o, U, V). We see
that 3(4) = 8(B) = <{u, v, A’ = {uy and B’ = {v). Since [4: 8(4)] =
[B: 8(B)] = m* we conclude by Lemma 2.3 of [2] that both 4 and B
have a.c.m. Let X be an irreducible character of G with v*G & ker X.
Then either v ¢ ker X or v¢ ker X or both. If say u¢kerX, then X | A
is faithful on A’ and hence deg ¥ = m. Similarly if v¢ ker X. Thus
in either case deg X = m.

For each integer ¢ set K, = {z,a%, z,a}, -+, 2.2,y and J, = {vu®) so
that E, = E. We show that E; =S J,. Now

(z:at, 2,25) = @72 (2wl
(H
= 'z [z (I ¥ )w,o) TS
T a9, alDee—1)2 ¢
= o727 21l v, ) ™ w5

= w7 'wy iz akat{ }

where
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) t a(“t(t—x)lz ot
{ +=III yr’ (U

(H y,” )t (:)tz a(a)g(t—n/quvzt .

Hence
(2}, 2,05) = ay'(z7)aswi-{ }
a7, (11 ?/:w)wij]_txt'xt- 4}
= arw (I yoom) ™ it )
= wi(II L L L g1,

Since af = a{f’ by (2) and since all terms in the last line above
commute, it follows that the y, terms drop out. Thus

Il

(9 (z) () _,(5));2
a;y t(t—1)/2 @ a. )t
(zixf;, zjxj) = w;‘iwijtu w ) ( '“) .

Now a¥ = a/? and af? = i by (2) and so
) _g(4)
(it 2,0%) = [whawgues (o)

ald)
where ¢/2 is viewed as division in GF(p). Finally using w?, =(u"'v) *
we obtain

G)_ o)
(et 2g2f) = ()5 e

Thus E! < J,.

Set B, =<G', E;>. Then [G:B,]=m and B;=J,. The latter
follows since G’ is abelian, E; = J, and (y,, 2;2%) = (vu’)%i. We show
now that G is a special class 3 group with a.c.m. Let y be an irre-
ducible nonlinear character of G. If ker X 2 7*G, then X is a character
of G/¥G and hence has degree m. Assume kery 2 7*G. As we
showed above deg X = m. Let J = ker X N v*G so that G is a character
of G/J. If J=<u), then G/J has an abelian subgroup A/J of index
m and if J = <{vu’> = J, then G/J has an abelian subgroup B,/J of
index m. Thus degX < m and hence deg X = m. This shows that G
has a.c.m. Since G has class 3 and [G: €(G")] = m*, we see that G is
a special class 3 group. This completes the proof of the theorem.

5. Special class 2 groups. In this section we study special class
2 groups with a.c.m (m = p°). As is to be expected, the structure of
these groups is less restrictive than in the class 3 case. Let G have
a.c.p’. We say G is imprimitive if it has a normal subgroup H of index
p with a.c.p*~'. Otherwise G is primitive. We first note the following,
Let G have a.c.p’and let H A G with[G: H] = p. If H has a.c.p,
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then certainly e(H) = ¢(G) — 1. Suppose now that e(H) = ¢(G) — 1.
If @ is a nonlinear irreducible character of H and if X is a constituent
of *, then deg X = p° so deg » = p°~*. Hence H has a.c.p*!. Thus
the concepts of imprimitivity as an r.x.e group and as an a.c.p® group
are entirely equivalent. We now relate this idea to a certain chara-
cteristic subgroup of G.

ProposITION 5.1. Let G have a.c.m and class 2. Set
S=28G)=<geG|(9,G) <G).

Then we have the following.
(i) If [G:S(G! < m, then G is a special class 2 group.
(ii) G is primitive if and only if G = S(G).

Proof. (i) Suppose that G has a normal abelian subgroup A of
index m. If xeG — A, then by Lemma 3.3 (iii), (z, A) = G’ and hence
(x,G) = G'. Thus S(G) & 4 and [G: S(G)] = m, a contradiction,

(ii) We show that G > S(G) if and only if G is imprimitive.
Suppose first that G > S(G). Choose subgroup H with G > H 2 S(G)
and [G: H] = ». Let ¢ be a nonlinear irreducible character of H and
let X be constituent of ¢*. If xe G — H, then (z, G) = G’ £ ker X and
thus = is not in the center of the representation associated with X.
Since z € 8,(G), this yields X(x) = 0. Thus X vanishes off H and so
X = @*, This yields pdegp = deg * = deg X = p* and thus H has
a.c.p' and G is imprimitive,

Now let G be imprimitive so that G has a normal subgroup H of
index p with a.c.p*!. We show that S(G) & H. If not, there exists
xeG — H with W = (2, G) < G’. Note that = is central modulo W
and we have G/W = (H/W)B(G/W). Since W < G’ we see that G/W
has a.c.p® and that H/W is either abelian or has a.c.p*. Let X be a
nonlinear irreducible character of G/W. The above implies that X = ¢*
for some irreducible character ¢ of H/W. Thus

HIW = T(p) 2 (H/W)3(G/W) = G/W,
a contradiction. Therefore G > H 2 S(G).

We now consider an example,

ExampPLE 5.2, Let Z be an elementary abelian group of order
p*tt withs > 0. Set k = (p*** — 1)/(p — 1) and suppose that E, E,, ---,
E, are k nonabelian groups of order p°. Let Z; = <{z> be the center
of E;. We define a homomorphism

Ti=Jy X ZygX oo X Ly— 4
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by sending each z; onto a generator of the %k distinct subgroups of Z
of order p. Let N be the kernel of . Then N is central and hence
normal in E=E, X E, x --- x E,. Set G = E/N.

It is clear that Z = 3(G) = G’. Let X be a nonlinear irreducible
character of G so that X|Z = (deg X)» with N s 1. By way of the
homomorphism E -G, X can be viewed as a character of £ and as
such X = 6,0, --- 0, where 6, is a character of K, and hence has degree
1 or p. Moreover degd;, = p if and only if Z,N/N & ker n. Thus
there are precisely (p*** — p°)/(p — 1) = p* such 6, with degd; = p and
hence deg X = p*°. Thus G has a.c.p”.

Now since | Z| > p we have clearly E;N/N < S(G) for all 2. Thus
S(G) = G and by Proposition 5.1, G is primitive and therefore special.
Note finally that if e = p°, then G has a.c.p® and [G: B(G)] = p*
with k& > e.

The above example shows that special class 2 groups with arbi-
trarily large commutator subgroups and central quotients do in fact
exist. However the above construction required that we let m get
arbitrarily large. We will show in Theorem 5.5 that this is typical of
the general situation. We first obtain a generalization of Theorem B

of [2].

THEOREM 5.3. Let G be a p-group with ¢(G) = e. Then either G
has a normal abelian subgroup of index p° or G has a subgroup H
of index p with [H: 3(H)] = pbed.

Proof. By Theorom B of [2], there exists subgroups N and A of
G with [G:N] =9, A= 8(N) and [N:A4] < p*°+, If €(4) > N,
then we can choose subgroup H with €(4) 2 H > N and [H: N] = p.
With this H the result follows. So assume €(4) = N.

Suppose now that N is not normal in G. Let N* %= N, If B =
AN A®, then €B) 2 (N, N> > N. Since [N: B} < p*©+»+¢ the re-
sult follows also in this case.

Thus we can assume that N A G and hence that AAG. If N=
A, then G has a normal abelian subgroup of index p°. Hence we can
assume that N is nonabelian. Since N is a p-group and 4 = B(N)
we can choose subgroup J with JEN'NA and |J|=p. Set n=
min {{A: € (x)] |x¢ N}. We compute as in Lemma 4.4 of [2].

Clearly

r(A) = [N+ (G| - [N]/n.

Now let A be a character of A. If \ has p° conjugates, then since
T(\) 2 N we have T(\) = N. Thus if X is a constituent of A*, then
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there exists character » of N with X = »* and )\ a constituent of
7n| A. Since degX < p°, we see that degz7 = 1. Hence x =7|A and
kern2N'NA2J. Thus we see that

s(d) = [A:J]/p*+ (A] - [A:T]D/p.
By Lemma 4.3 of [2], 7(A) = [G: A]s(4). Thus
P+ L =p)nzp T+ (=2
Hence
P >plpt = D/p -1 =mn.

Choose xe G — N with [A:C,(x)] = » and set K = <N, x> > N.
Then 3(K) = €, (x) so

[N: BUO] = [N: AllA: G(w)] = peiop'™s < preoesss.

If H is chosen with K2 H> N and [H:N] = p, then the result
follows.

We now return to our study of class 2 p-groups with a.c.m.

LEMMA 5.4, Let G have a.c.om and class 2. Then G' and G/3(G)
are both elementary abelian.

Proof. We show that G’ is elementary abelian by induction on
|G|. Of course G’ is abelian since G’ = 3(G). If B(G) is not cyeclie,
let J, and J, be two distinct subgroups of 3(G) order p. By induction
G'J;/J; has period p and hence so does G'. Now let 3(G) be cyeclic.
By Lemma 3.4, G has a normal abelian subgroup 4 with G/A elementary
abelian of order m. If xe¢ G — A, then G' = (2, A) by Lemma 3.3 (iii).
Let ye A. Since x? ¢ A and G has class 2, we have (z, y)? = (2%, y) = 1
and thus G’ is elementary abelian.

We show now that G/3(G) is elementary abelian. The quotient is
of course abelian. Let x, y € G. Since G has class 2 and G’ has period
p, we have (2?7, y) = (x, ¥)” = 1. Thus 2” € 3(G) and G/3(G) has period
p. This completes the proof.

We will use the following notation throughout this section. Let
W be a subgroup of G'. Set
Ly = {geGl(g,G) -~ W}

so that Z,/W = B(G/W). We let T denote a hyperplane in G’ and J
denote a line (that is, [G': T] = p and | J| = p). We have [G: Z;] = m*
by Lemma 2.3 of [2] and S(G) = {Z, |all T).
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THEOREM 5.5. Let G have a.c.p® and class 2. Suppose that |G'| =
p* and [G: 3(G)] = p*. Then

(i) z=Ze(s+1) and s < 32(z — 1)

(ii) 2f G s special, then z < 186%e + 3) and s < 18¢*(e + 3)°.

Proof. (i) Let T, and T, be two hyperplanes in G'. We show
first that [Z, :Z; N Z;]<p°. Let X, be a nonlinear irreducible
character of G/T; for i =1,2. Since X; vanishes off Z,, we see that
XX, vanishes off N = Z, N Z;,. Also degX; = p* so that X.X, | N = p*\
where ) is a linear character of N. Now let 6 be an irreducible
constituent of XX, so that ¢ | N = (deg ). Then

1= [XX, 0] = /IG: ND[XZ, | N, 0| N]y = p*(deg 0)/[G: N] .

Since deg ¢ < p° we have [G: N] < p* and hence [Z; : Z; N Z;,] < p°.

Let T, T, ---, T, be hyperplanes. We show that [G:N}Z;,] =<
pe#+Y by induction on u. For w = 1,2 we have result by the above
so let w=3. Set U= "%, so that by induction [G:U] < p*™.
Hence since U & Z, we have

G:UNZ,)=[G:UNU:UNZ ) <[G:UlZ,: Zr N Zy ]
é peupe —_ pe(u+l)

and this follows.
Since |G’| = p°, we can find s hyperplanes T,, T,, ---, T, with
N T: = ). Clearly N} Z;, = 3(G). By the above

p* =1G: B(@)] = [G: N Z;,] < pre™

and hence z < e(s + 1). Now let z, x,, ---, 2,€ G generate the quo-
tient G/3(G). We see easily that the commutators (x;, z;) with ¢ < j
generate G'. Since G’ is abelian and has period p, this yields s < 1z(z — 1)
and (i) follows.

(ii) We apply Theorem 5.3. Since G is special we see that G has
a subgroup H of index p*! with [H: 3(H)] £ »*"“*®. By Lemma
3.8(il),H' =G'. If [H:3H)] =9 and |H'| =|G'| = p°, then as
above we have

s < 3t — 1) < 32 < 18ee + 3)°.
Finally by (i) we obtain
z2=Ze(s + 1) < 18é%e + 3)°

and the theorem is proved.

The above result is of course qualitative in nature. The bounds
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are no where near best possible. If G has an abelian subgroup of
index m, the following example shows that |G’| and [G : 8(G)] can be
arbitrarily large for fixed m.

ExaAmMPLE 5.6. Let group G have a.c.m and a normal abelian
subgroup A of index m. Given integer &, set B = A, + A, 4+ --- 4 A,,
the direct sum of % copies of A. Set H = B x,(G/A) where G/A acts
on B in the natural way. If xeG/A with » % 1, then (z, 4) = G'.
Hence clearly (x, B) = H’. By Lemma 3.8 (i) we see that H has a.c.m.
Moreover |H'| = |G’ |* and [B: 8(H)] = [4: B3(G)).

If we now take G to be an extra-special Case P group with
[G: B(G)] = m* then G has a.c.m and |G’| = p. Also G is nonspecial
so the above construction yields nonspecial groups H with |H’| and
[H: B(H)] arbitrarily large.

LeMMA 5.7. Let G and H have class 2 with |G'| = | H'|. Suppose
that G has a.com and H has a.c.n. Let K be the product of G and
H with G and H' identified. Then K has class 2 and a.c.mn. Also
with G and H naturally embedded in K we have B(K) = 3(G)3(H)
and S(K) =2 S(G)S(H).

Proof. By Lemma 5.4, G' = H'’ and so K clearly exists. Let X
be a nonlinear irreducible character of K. By way of the map E =
G x H— K we can view X as a character of E. As such X = 6 where
0 is a character of G and @ is one of H. In K, kerX 2 K’ and thus
inE, kerX2G and kery 2 H’. Hence both ¢ and @ are nonlinear.
Thus deg § = m, deg » = n and deg X = mn. Therefore K has a.c.mn.
The remaining results are obvious.

The following proposition considers minimal special groups.

PropPoOSITION 5.8. Let G be a primitive group with a.c.p’ and
class 2. Suppose that for all J S G’ with |J| = » the quotient G/J
has an abelian subgroup of index p°. Then either |G| = »* and p|e
or |G’} = p°. Moreover for all p, e (with p|e in the first case) such
groups exist.

Proof. We show first that |G’ | < p’. Suppose by way of contra-
diction that |G'| = p*. Let T, and T, be two not necessarily distinet
hyperplanes in G'. Since |G'| = p* we have |T, N T.| = p*. Let J,
and J, be two distinet subgroups of T, N T, of order p. By assump-
tion G/J; has an abelian subgroup A4;/J; of index m = p°. This implies
that S(G/J)) & Ai/J; and so Z;;, = Z;/J; and Zp,,;, = Zp,/J; are both
contained in A,/J;. This yields (Z;,Z;) S JiNJ.=<1). Now G is
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primitive so G = S(G) = {Z;). Since (Z;, Z;,) = <1y for all T, and T,
we see that G is abelian, a contradiction. Thus |G'| £ %

By Lemma 3.4, we must have |G’'| = p* or p°. We consider the
case |G'| =9p* now. Let T, T, ---, T, be the subgroups of G’ of
order p and set Z; = Z;,. Since G is primitive, G = S(G) = Z,Z, - -+ Z,.
Consider

W = Z’L ﬂ (ZQZ]_ L Zi——IZ'H-l s Zp) .

Note that for ¢ = 4,(Z;, Z;) S T; N T; = <{1) so Z; and Z; commute
elementwise. Since W S Z;, we see that (W) Z,Z, +++ Z; . Z;4y
Z, and since W& Z,Z, -+ Z;_Z;, -+ Z, we see that C(W) =2 Z,.
Thus €(W) = G. Since clearly W 2 3(G) we have W = 3(G). This
says that

G3(G) = 112 Z/3(G) .

Now [G:Z] = p* so that |Z;| = |Z;|. If [Z,: 3(G)] = p/ then the
above direct product yields

P =[G 3D =[G : Z][Z,: 3(G)] = p*p’

and hence 2¢ = pf. If p + 2, then clearly ple. If p =2, then f=
¢ =1. Clearly 3(Z) = 3(G) and Z] = T,. Hence by Lemma 2.3 of
[21,[Z,: B(Z))] = p* is a square. Thus 2|f,f=e and the result
follows.

We show now that all such groups exist. Consider first |G'| =
and ¢/p = f, Example 5.2 with s =1 yields a group H with a.c.p?,
S(H) = H and | H'| = p*. Let G be the product of f copies of H with
their commutator subgroups indentified. By Lemma 5.7 and induction,
G has a.c.p’™ = a.c.p’, S(G) =Gand |G| =p’. If JESG with |J|=p,
then G/J has a cyclic commutator subgroup and hence an abelian sub-
group of index p°. Thus G is the required example.

Now we consider |G'| = p°. Let F be the group of Example 3.7
of [2]. Then |F'|=9%|F| = p* and S(F)= F. Also it is easy to
see that if J is a subgroup of F’ of order p, then F/J has an abelian
subgroup of index p. Let G be the product of e copies of F' with
their commutator subgroups identified. Since F' has a.c.p, Lemma 5.7
and induction show that G has a.c.p’, |G'| = p* and S(G) = G. LetJ
be a subgroup of G’ of order . Then each factor in G/J has an
abelian subgroup of index p so G/J has an abelian subgroup of index
p°. This completes the proof.

We now apply the above results to improve the bounds in Theorem
5.5 in case p > e.
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THEOREM 5.9. Let G be a special class 2 group with a.c.p’. Sup-
pose that |G'| = p* and [G:B(G)] =p". If p>e, then z = 4¢* and
s < 4e — 1.

Proof. Let T be a hyperplane in G'. We show first that p > e
implies that Z, is abelian. This of course a consequence of Theorem
1.5 and Proposition 1.7. However we can give an alternate inductive
proof as follows. Suppose first that | T'| = p*. Then we can choose
distinct subgroups J; and J;, of T of order p. By induction Z,,, =
Z/J; is abelian and hence Z, < J,NJ, =<1>. Thus we need only
consider |T| =1,p. If |T| =1, then certainly Z, = 3(G) is abelian.
Now let |T| = p so that |G’'| = p*. Note that groups G with a.c.p’
and |G’ | = p* have the property that if J is any subgroup of G’ of
order p, then G/J is nonspecial. Hence since p > ¢, Proposition 5.8
and induction easily imply that G is nonspecial. Therefore Z, is
contained in an abelian subgroup of G of index p° and thus Z, is abelian,

We show now that s < 4e — 1. Suppose first that G is imprimi-
tive. Choose H A G with [G: H] = p and such that H has a.c.p*.
Since G is special, H is special and hence ¢ > 1. By Lemma 3.3 (iii),
|H'| = |G'|. By induction |H'| < p**~Y~* and so the result follows
here. Now let G be primitive so that G = S(G) = {Z,>. We assume
that |G’| = p* and derive a contradiction. Let T, and T, be two not
necessarily distinct hyperplanes and let x¢ Z, and ye Z,. We show
that # and y commute. Since each Z,, is abelian of index p* we see
that |(z,G)| < p* and |(y, @) | = p*. If (2, G)N(y,G) =<, then
certainly (x, y) = 1. Thus we can suppose that (x, G) N (y, G) > <.
This yields |(x, G)(¥, G)| £ p** < |G| and thus we can choose hyper-
plane T with T 2 (%, G)(y, G). Clearly z, yc Z, and so 2 and y com-
mute. Since G = {Z,), the above shows that G is abelian, a contradic-
tion. Hence |G'| < p*. Finally by Theorem 5.5 (1) z < ¢(s + 1) < 4¢*
and the result follows.

6. Additional results. We generalize our r.x.1 results in another
direction now.

THEOREM 6.1. Let G be a group with the property that every
nonlinear irreducible character has prime degree. Suppose further
that at least two distinct primes occur. Then there exists primes
p #* q such that G has one of the following two normal series.

(i) G>Q > 3(G)

= =
with G/3(G) and @ both monabelian.,
(ii) G>Q@>A=3G) xR
IO [y N—

» q
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with both G/A and @ nonabelian. Here R is elementary abelian of
order r™ for some prime r and Q/A acts irreducibly on it. Also
(r™ = D)f(r™* — 1) = q.

Conversely if group G has either of the above structures and if
X is an irreducible character of G, then degX =1,p or q and all
three degrees occur.

We start with two lemmas.

LEMMA 6.2. Let G be a group with the property that every
nonlinear irreducible character has prime degree. Then every normal
subgroup and quotient group of G has this property.

Proof. The result is clear for quotient groups. Let N A G and
let @ be a nonlinear irreducible character of N. If X is a constituent
of @*, then X| N = a>!p;, and hence deg X = at deg . Since deg X
is a prime, at = 1 and deg @ = deg X is a prime.

LeEMMA 6.3. Let G satisfy the hypothesis of Lemma 6.2. Then
G 1s solvable.

Proof. Since this property is inherited by normal subgroups and
quotient groups, it suffices to show that G cannot be a nonabelian
simple group. Thus suppose G is nonabelian and simple. Let X be a
nonlinear irreducible character of minimal degree p. Since G is simple,
X is faithful. If p = 2 and if # e G is a nonidentity involution, then
since det X = 1 we see that the eigenvalues of x in this representation
are both —1. Hence 3(G) # <{1), a contradiction. Thus p > 2.

Let 7 = {deg @ | » is irreducible and deg® > p}. Then 7 is a set
of primes and q € 7 implies that ¢ > p + 1. If 7 is empty, then G has
r.x.1 for prime p and is therefore solvable. Hence we have |7 | = 1.,
Since X is faithful, a result of Blichfeldt ([7] Satz 196) shows that G
has an abelian &, subgroup H =+ {1).

Let xe H%. Then |Clx| is prime to the degree of every irre-
ducible character @ of degree different from p. By Burnside’s Lemma
([7] Satz 168) since G is simple we have @(x) = 0. If p is the regular
character of G, then we have 0 = p(z) = 3 X;(1)X;(x) = 1 4+ pa where
« is an algebraic integer. This is impossible and the result follows.

We now proceed to prove the theorem.
Proof of Theorem 6.1. We know that G is solvable. Choose

A A G with G/A extra-special. We show first that A is abelian. If
not let @ be a nonlinear irreducible character of A and let X be a
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constituent of @*., Then X| A =a>!®; and degX = atdeg . Since
deg X is a prime we must have ¢ =t =1, Let 6 be a nonlinear irre-
ducible character of G/A viewed as one of G. Then X6 is irreducible
(see Lemma 5.5 of [2]) and deg X6 = (deg X)(deg ) is not a prime, a
contradiction.

If G/A is a Case P quotient for prime p, then by Ito’s Theorem
the degrees of the irreducible characters of G are powers of p» which
is not the case. Thus G/A is Case Q. Let Q/A be the normal Sylow
g-subgroup of G/A. Since G/A has an irreducible character of degree
[G: Q] we see that G/Q is cyclic of prime order p = q.

Note that Q@ is nonabelian. Otherwise G would have r.x.1 for
prime p. Now G/A has trivial center so 3(G) S A S Q. We show
that 3(Q) = 3(G). Clearly 3(G) & 3(Q). If xe 3(Q) — 3(G), then
there exists y € G with (x, y) # 1. Now @ is nonabelian and z = (x, y) = 1
so there exists a nonlinear irreducible character ¢ of @ with z¢ ker @.
As above, there exists an irreducible character X of G with X |G = o.
Since z is in the center of the representation associated with @ and
since X | Q = @ we see that (z, y) e ker X N Q = ker ¢, a contradiction.

Hence 3(G) = 3(Q).

Case 1. |Q/A| = q¢*. Let reA. Then clearly [G: T(\)]islora
prime. If |Q/A| = ¢° then the only subgroup of G/A having prime
index is Q/A. Hence T(\) 2 Q. This implies that €,(A) 2 Q and hence
@ is nilpotent of class 2. Let @ be a nonlinear irreducible character
of @ and let W = W(p) denote the subgroup of @ mapping into the
center of the representation. Since clearly deg ® = ¢ we have[Q: W] =
¢ by Lemma 2.3 of [2] and also W 2 A. Now T(®) = G so W/ AN G/A.
Hence W(p) = A and [Q:A] = ¢*. We saw above that A & 3(Q).
This clearly implies that A = 3(Q) = 3(G) and G satisfies (i).

We assume now that |Q/A| = ¢q. Since Q is nonabelian, €,(4) 2 Q
and hence €;(A) = A. Suppose A =M x N with MAG and NAG
and N, M == {1)>. We show that either M or N is central in G. Say
N & 8(G) = 3(Q). Choose ne N so that T\ NQ = A. If peM,
then T(vpe) = T(\) N T(p) and [G: T(\p)] is a prime. Hence T'(¢) 2 T(\)
and so C,(M) =2 T(\). Since €y (M) A G, this implies that €M) = G
and M < 3(G). In particular we see that precisely one Sylow sub-
group of A is noncentral. Hence A/3(G) in an r-group for some
prime r.

Case 2. q # r. Since Q/A is cyclic of prime order, we can write
A = 3(Q) X R where Q/A acts fixed point free on B by Lemma 1.2.
Also 3(Q) = B(G) and R A G since Q AG. Let A be a nonprincipal
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linear character of B. Then T\ NQ = A and [G: T(\)] is a prime.
Hence | T(M)/A| = p. Thus G/A acts half transitively but non fixed
point free on R. By Theorem I of [3], R is elementary abelian and
G/A acts irreducibly on it. Let G = G/4, @ = Q/A and let P = &,(G).
Let W be an nonidentity irreducible @-submodule of B. If ne Wt
then G = Q(T(\)/A) and thus W is a G-module. Hence @ acts irre-
ducibly on R.

We view R as a vector space over GF(r) of dimension m and we
find dim €3(P). This dimension is clearly invariant under field exten-
sion so we can extend to the algebraic closure F' of GF(r). If Q = {x),
then since R is an irreducible @Q-module, all eigenvalues of = are
distinet and not equal to 1. Let S be an irreducible G-submodule of
FR R. By Clifford’s theorem, this representation restricted to @
breaks up into either p distinct conjugates or all equivalent represen-
tations. If the latter occured then since all eigenvalues of x are dis-
tinet, dim S =1 and hence @ = G’ is in the kernel. This contradicts the
fact that & has no eigenvalue equal to 1. Thus the former case must
always occur. From this we see easily that p | m and dim €3(P) = m/p.

Now G contains ¢ conjugate subgroups P, --., P, of order p.
We have Cu(P) NCuP;) =<1> for i=+j and B = C3P). Since
|€4(P;)| = r™* we obtain from this disjoint union (»™ — 1) = g(r™? — 1).
Finally since R is elementary abelian and @ acts irreducibly, we see
that the same is true for R. Thus G satisfies (ii).

Case 8. q = r. Here @ is clearly nilpotent. Let R = &,(4). As
above we have

B =Ci@ U UCP).
Let W = €(G) and set
[R:W]=17"[CxQ): W] =7 and [Cx(P):W]=r".
Note since all the P, are conjugate this is well defined. Now
(B W) = ©x(Q) — W) UU Cx(P) — W)
is a disjoint union so
" —1=7r"—1+ q(r* — 1)

and since r = ¢, r™ — r* = ¢**' — ¢, Again since the union is disjoint,
we have ¢ + b < m and 2b < m. Finally m > a since €, (4) = 4 and
hence the above equation yields m = b + 1,4 = 1. Since 2b < m we
have m = 2 and b = 1.

Since m =2,a =1 we have [R:€4(Q)] =¢. Thus |(Q, R)|=g¢



THE DEGREES OF GROUP CHARACTERS II 507

and @ is cyclic of order ¢q. This shows that [Q : 3(Q)] = ¢* by Lemma
2.3 of [2]. Thus G satisfies (i). (Note, the difference between Cases
1 and 3 is that in the former G/Q acts irreducibly on Q/3(G) and in
the latter it does not.)

We show now that groups with structure (i) or (ii) have characters
of degree 1, p and g only. Let G satisfy (i) and let ¥ be an irreducible
character of G. By Ito’s Theorem deg X |pg®> and also (degX)* <
[G:B(GY] = pq*. Since G/3(G) is nonabelian we see easily that p < ¢ + 1,
This yields degX = 1, p or ¢. Since G/3(G) is nonabelian, it has a
character of degree p and since @ is nonabelian it has a character of
degree q. Thus G does not have a.c.p or a.c.g and hence G has
characters of degree 1, p and q.

Now let G satisfy (ii) and let X be an irreducible character of G.
By Ito’s theorem, deg X | pg and hence deg X =1, p, ¢ or pg. We show
that the latter cannot occur. If degX = pg and X | A = a 3!\, then
at = pg and also @’ < pq. Thus ¢ =1 and ¢ = pg. Let X = A, and
write A = ne where ne 8@\) and cc R. This implies that A = T(\) =
T(s). As in our Case 2 computation above, we see that |? Cx(P,) is
a disjoint union and |€4(P;) | = »™'*. Hence | ! Cx(P) | = q(r™?) +1 =
r™, Thus for every cc R we have T(¢) > A, a contradiction and
deg X = pg. Now G/A being nonabelian has a character of degree p
and @ has a character of degree ¢q. Thus G has characters of degree
1, »p and ¢q. This completes the proof of the theorem.

The following are essentially canonical examples of the above.

ExAMPLE 6.4. First let @ be a nonabelian group of order ¢®. If
qg = 2, let Q be the quaternion group and if ¢ > 2, let @ have period
qg. As is well known, the group of automorphisms of @, fixing (@),
is isomorphic to SP(2, ¢) = SL(2, ¢q) and hence has order g(q — 1)(g + 1).
If we choose prime p with p|(¢ — 1)(¢ + 1) then we can find an
appropriate automorphism group P of @ of order p. Clearly G = Q %, P
satisfies (i).

Now suppose we are given primes p,q,r with p#q¢ and
(r™ — 1)/(r™* — 1) = q. Let R be the additive group of GF(r™).
Since ¢ | (r™ — 1) we see that the multiplicative group of GF(r™) has
an element  of order q. Since p|m we see that GF(r™) has a field
automorphism ¢ of order p. Let G be the set of automorphisms of
R given by «— (-0i(x). We see easily that G is a group of order
pq with a normal subgroup of order ¢q. It is nonabelian since the
fixed field of ¢ has size »"/» and clearly ¢ > »™*, Thus G =R x,G
satisfies (ii).
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An interesting corollary to Theorem 6.1 is the following.

COROLLARY 6.5. Let G have r.b.3, that is every irreducible
character of G has degree at most 3. Then either G has a normal
abelian subgroup of index < 3 or G/B(G) is isomorphic to one of the
Jollowing groups.

(i) the elementary abelian group of order 8

(ii) the two groups of order 27 and period 3

(iii) the symmetric and alternating groups on 4 letters

(iv) the dihedral group of order 18 having an elementary
abelian Sylow 3-subgroup.

Proof. If G is abelian, the result is clear. If G has a.c.2 or a.c.3,
then by Theorem C of [2] either G has a normal abelian subgroup of
index £ 8 or G/B(G) has order 8 or 27, Since we can assume that
G/3(G) has no cyclic subgroup of index <3, we obtain (i) and (ii).

We assume now that G has characters of degree 2 and 3 and thus
Theorem 6.1 applies. If p = 3, ¢ = 2, then case (ii) of that theorem
cannot occur since G/A is nonabelian. Since @ is nonabelian in case
(i) we see that Q/3(G) is type (2, 2) and hence G/3(G) is isomorphic to
the alternating group A,.

Now let p = 2,9 =3. If G is case (i), then as above Q/3(G) is
type (3,3). Let x,yc@Q generate Q/8(G). Then (z, y)e 8(G) and
(x,y) = 1. Since the action of G/Q on G/B(G) is nontrivial and pre-
serves this commutator, we see easily that the action must be dihedral
and we obtain (iv). If G is case (ii), then (™ — 1)/(r™?* — 1) = 3 and
so r™?* = 2, Thus G/8(G) is the extension of a (2,2) group by the
nonabelian group of order 6 acting faithfully. Since this group has
no normal 3-complement, Burnside’s transfer theorem implies that the
normalizer of a Sylow 3-subgroup contains an element of order 2.
Hence the extension is split and G/3(G) = S,, the symmetric group on
4 letters.

We close with a result which generalizes Theorem 3.5(i).

THEOREM 6.6, Let p° be a fixed power of p with e > 1 and let
G be a group with a nonabelian Sylow p-subgroup. Suppose further
that if X is a monlinear irreducible character of G, then p*|deg X
and p*tydegX. Then G is the direct product of S, (G) with an
abelian p'-group.

Proof. By induction on |G|. By Theorem 2.5 (i), G has a normal
p-complement K. Let P be a Sylow p-subgroup of G. If PAG,
then G = P x K and clearly K must be abelian. Suppose G has a
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proper normal subgroup H with pt[G: H]. Let ¢ be a nonlinear
irreducible character of H and let X be a constituent of ¢*. Then
XY|H=aS!p, and degX = atdegp. Since at|[G:H] we have
|deg ¢ |, = |deg X |, = p°. By induction, P A H and since P is charac-
teristic in H, P A G and the result follows.

We assume now that K # (1> and that G has no proper normal
subgroups of p’ index and we obtain a contradiction. Let A be a non-
principal linear character of K which has a linear extension £ on G.
Then G/ker ¢ is abelian and not a p-group and thus some H as above
exists, Since this cannot happen, we see that if @ =1 is any irre-
ducible character of K, then @* has no linear constituents. We show
now that T(p) A G and that G/T(p) is elementary abelian of order p‘.

Note that G/K = P is nonabelian and has a.c.p’. Let X be a
constituent of @*. Then X|K =a i@, and so t|p°. This yields
[G/K: T(p)/K] = p° and T(p) A G by Lemma 3.3 (iii). Now let & be
an irreducible character of T(p) with £| K = b(£)-p. Clearly T(¢) =
T(») and hence &* is irreducible. Since £* is a constituent of ¢*, it
is nonlinear and thus tb(2) = p°. In particular, for all such choices of
&, b(¢) is the same. Now by Theorem 6 of [1], there exists & with
b(&) =1. Thus ¢ = p° and for all such & b(&) =1. Let B be an
irreducible character of T(p)/K viewed as one of T(¢). Then & = &8
is irreducible and £| K = B(1)-@. Therefore S(1) = 1 and T(p)/K is
abelian. As in the latter part of the proof of Lemma 3.4, we see
that G/T(p) is elementary abelian of order p°.

Now let xe K with x == 1 and suppose that [P: E(2)] =< p°. We
show that €.(z) A P and P/€,(x) is elementary abelian of order p-.
Let 7 be a nonprincipal linear character of {z>. Clearly €,(x) fixes r
and hence €.(x) fixes 7 (induction to K). Since the degree of 7 is
prime to p we see that €.(x) fixes some irreducible constituent ¢ of
7. Clearly ¢ = 1 s0 T(p) 2 K€,(x) and [G : T(p)] = p°. Hence T(p) =
K@ (x) and G/T(p) = P/€C(x) is elementary abelian of order p-.

Let K have k nonprincipal irreducible characters and hence %
nonidentity classes. We have shown that in the action of P on the
characters of K we have 1 + k/p° orbits. Hence by Brauer’s Lemma,
the same is true for the action of P on the classes of K. In particular
there must exist a class, say Cly, belonging to an orbit of size <p°*
with y = 1. Let S be the subgroup of P fixing this class so that
[P:S] < p°. Since |Cly]| is prime to p, there exists xze Cly with
S & €px(x). Thus [P:€.(x)] < p* and by the above P/€.(x) is elemen-
tary abelian of order p°. Clearly S = €,(x). Since S A P we see that
P/S acts on €x(S) = <{1>. As above, if 2e€,(S) with z==1, then
€x(z) = S. Hence P/S acts fixed point free on €.(S), a contradiction since
P/S is elementary abelian of order p¢ = p*. This completes the proof.
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POINT-LIKE 0-DIMENSIONAIL DECOMPOSITIONS OF S*

H.W. LaMBERT AND R. B. SHER

This paper is concerned with upper semicontinuous decom-
positions of the 3-sphere which have the property that the
closure of the sum of the nondegenerate elements projects
onto a set which is 0-dimensional in the decomposition space,
It is shown that such a decomposition is definable by cubes
with handles if it is point-like, This fact is then used to
obtain some properties of point-like decompositions of the 3-
sphere which imply that the decomposition space is a topological
3-sphere. It is also shown that decompositions of the 3-sphere
which are definable by cubes with one hole must be point-
like if the decomposition space is a 3-sphere,

In this paper we consider upper semicontinuous decompositions
of S% the Euclidean 3-sphere., In particular, we shall restrict ourselves
to those decompositions G of S® which have the property that the
union of the nondegenerate elements of G projects onto a set whose
closure is 0-dimensional in the decomposition space of G. We shall
refer to such decompositions as 0-dimensional decompositions of S°,
Numerous examples of such decompositions appear in the literature,
(One should note that some of the examples and results to which we
refer are in E?® Euclidean 3-space, but the corresponding examples and
results for S® will be obvious in each case.)

In §3, a technique of McMillan [10] is used to show that point-
like 0-dimensional decompositions of S* are definable by cubes with
handles. Armentrout [2] has shown this in the case where the
decomposition space is homeomorphic with S® The proof of this
theorem shows that compact proper subsets of S* with point-like
components are definable by cubes with handles.

In § 4 we give some properties of point-like 0-dimensional decom-
positions of S* which imply that the decomposition space is home-
omorphic with S°. These properties were suggested by Bing in § 7
of [6].

It is not known whether monotone O-dimensional decompositions
of S* which yield S$°® must have point-like elements. Partial results
in this direction have been obtained by Armentrout [2], Bean [5], and
Martin [9]. Bing, in §4 of [6], has presented an example of a
decomposition of S* which yields S° even though it is not a point-like
decomposition, but this example is not 0-dimensional. In §5 we show
that a 0-dimensional decomposition of S® that yields S® must have
point-like elements if it is definable by cubes with one hole.
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2. Definitions and notation. Let G be an upper semicontinuous
decomposition of S?, the 3-sphere. We denote the decomposition space
of G by S°/G, the union of the nondegenerate elements of G by H,,
and the projection map from S* onto S°/G by P.

The decomposition G is said to be monotone if each element of
G is a continuum. If ¢l P(H;) is 0-dimensional in S°/G, then G is a
0-dimensional decomposition of S:. If each element of G has a
complement in S* which is homeomorphic with E° Euclidean 3-space,
then G is a point-like decomposition of S°.

The sequence M,, M,, M,, --- is a defining sequence for G if and
only if M,, M,, M,, --- is a sequence of compact 3-manifolds with
boundary in S°® such that (1) for each positive integer ¢, M, , C
Int M;, and (2) g is a nondegenerate element of G if and only if ¢ is
a nondegenerate component of (), M;. Here, as in the remainder
of the paper, subsets of S* which are manifolds will be assumed to
be polyhedral subsets of S® It is well known that if G is a
0-dimensional decomposition of S?, a defining sequence exists for G.
If a defining sequence M,, M,, M,, --- exists for G such that for each
positive integer ¢, each component of M, is a cube with handles, G
is said to be definable by cubes with handles. If a defining sequence
M, M,, M,, --- exists for G such that for each positive integer 4,
each component of M; is a cube with one hole, G is said to be defina-
ble by cubes with one hole.

3. Some consequences of a result of McMillan. The following
lemma is a special case of Lemma 1 of [11]. Its proof follows from

the very useful technique used by MecMillan to prove Theorem 1 of
[10].

LEmMMA 1. (McMillan)., In S3, let M’ be a compact polyhedral
3-manifold with boundary such that BAM' is connected, and let M
be a compact polyhedral 3-manifold with boundary such that
Mc Int M', and each loop in M can be shrunk to a point in Int M’.
Then there is a cube with handles C such that M c IntC c C < Int M'.

LeMMA 2. If G is a point-like 0-dimensional decomposition of S,
then there is a defining sequence M,, M,, M,, + -+ for G such that for
each positive integer 1, each component of M, has a connected
boundary.

Proof. Let M!, M, M/, --+- be a defining sequence for G, let n be
a positive integer, and let K be a component of M’,. Let g be a
component of N, M/ which lies in K and let U be an open subset
of K containing g such that ¢l UN BdK = @. Since g is point-like,
there is a 3-cell C such that gcInt Cc C c U. There is an integer
j such that L, the component of M) containing g, lies in Int C. Since
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C separates no points of BdK in K, L separates no points of BdK in K.

Using compactness of [, M], one obtains a finite collection
L, -.-, L, of mutually exclusive defining elements whose interiors
cover (N, M) N K and so that no L, separates points of BdK in K.
It follows easily that {J%., L, separates no points of BdK in K. By
suitable relabeling, we suppose then, that if ¢ is a positive integer and
K is a component of M;, KN M],, does not separate points of BdK
in K. We construct disjoint arcs in K-M/ , connecting the boundary
components of K and “drill-out” these arcs to replace K by a compact
3-manifold with connected boundary. Doing this for each component
of each M], we obtain a defining sequence M,, M,, M,, --- as required
by the conclusion of the lemma.

THEOREM 1. If G is a point-like 0-dimensional decomposition of
S?, then G 1is definable by cubes with handles.

Proof. Using Lemma 2, there is a defining sequence M/, M], M,, ---
for G such that each component of each M/ has a connected boundary.
Let n be a positive integer and N a component of M,.. Since G is
point-like, there is no loss of generality in supposing that each loop
in M,,,N N can be shrunk to a point in Int N. From Lemma 1,
there is a cube with handles, C, such that (M, , N N)cIntCcCC
Int N. Hence, there is a sequence M, M, M, --- of compact 3-
manifolds with boundary such that (1) for each positive integer %,
M., cInt M;c M, cInt M/, and (2) each component of M, is a cube
with handles. The sequence M,, M,, M,, --- is a defining sequence
for G and so G is definable by cubes with handles.

The proof of the next theorem follows from the proof of Theorem 1.

THEOREM 2. If M is a closed subset of S® such that each com-
ponent of M 1s point-like, then there exists a sequence M,, M, M, <« -
of compact 3-manifolds with boundary such that (1) for each positive
wnteger v, M., CInt M;, (2) each component of M, is a cube with
handles, and (3) M = Nz M,.

The concept of equivalent decompositions of S* was introduced
in [4] and the following theorem follows immediately from Theorem
1 of this paper and Theorem 8 of [4].

THEOREM 3. If G s a point-like 0-dimensional decomposition of
S?, then G is equivalent to a point-like 0-dimensional decomposition
of S*® each of whose mondegenerate elements is a l-dimensional
CONLTRUUM.
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In the remaining two sections, we shall utilize some of the above
results to investigate certain properties of 0-dimensional decompositions
of S&.

4. Properties of point-like 0-dimensional decompositions of S°,
In this section we give two properties, each of which is both necessary
and sufficient to imply S*G is homeomorphic to S°®.

A space X will be said to have the Dehn’s Lemma property if
and only if the following condition holds: If D is a disk and f is a
mapping of D into X such that on some neighborhood of f(BdD), f—
is a function, and U is neighborhood of the set of singular points of
f(D), then there is a disk D’ in f(D) U U such that BdD’ = f(BdD).

A space X will be said to have the map separation property if
and only if the following condition holds: If Dis a disk and f}, ---, £,
are maps of D into X such that (1) for each 4, on some neighborhood
of fu(BdD),f;* is a function, (2) if 7 % 7, f;(BdD)N f{(D) = @, and
(3) U is a neighborhood of fy(D) U --- U f.(D), then there exist maps
fl, «++, f} of D into X such that (1) for each %, f/| BdD = f;| BdD, (2)
DU ---UfiD)yc U, and ) if ¢ = 7, fiD) N fi(D) = @.

It is a well known (and useful) fact that S*® has the Dehn’s
Lemma property and the map separation property.

THEOREM 4. If G is a point-like 0-dimensional decomposition of
S?, then S°®/G is homeomorphic with S*® if and only if S°/G has the
Dehn’s Lemma property.

Proof. The “if” portion of the theorem is the only part that
requires proof, Let U be an open set containing cl H, and ¢ > 0.
We shall construct a homeomorphism #,:S%®— S® such that if
2eS*— U, h(x)=2 and if ge @G, diam h.(g) <e. It will follow
from Theorem 3 of [2] that S°/G is homeomorphic with S°.

By Theorem 1, G is definable by cubes with handles. Hence,
there exist disjoint cubes with handles C,, ---, C, such that cl
HcUrIntC,cU~.C;cU. Let W, ---, W, be pairwise disjoint
neighborhoods of C,, ---, C, respectively such that {Jr., W, c U. Since
C, is a cube with (possibly 0) handles, there is a homeomorphism #,
of S® onto S*® such that A(x) = x for xeS° — W, and h(C,) can be
written as the union of a finite number of cubes such that (1) each
cube has diameter less than ¢/2, (2) no three cubes have a point in
common, and (3) the intersection of any two cubes is empty or a disk
on the boundary of each. The homeomorphism %, can be thought of
as pulling C, towards a l-dimensional spine of C,. Let D, D,, ---, D,
be the inverse images under &, of the disks obtained by intersecting
the various cubes making up A(C;). We note that if a continuum in
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C, intersects at most one D,, then its image under h, has diameter
less than ¢. For each 7 =1, ..., k,let D] be a subdisk of D, such
that D;cInt D, and D, Ncl H, = Int D/ Ncl H;. Let D be a disk in
S?such that Bd DN (U, C;) = @ and Ui, D; = DN (U C:)) = DN C..
Denote the punctured disk cl (D — UL, D!) by D’. Now P,=P|D
is a map of D into S%G and P is a homeomorphism on a neighbor-
hood of P(Bd D). The singular set of P/(D) is contained in P,(|J%.
Int D}). Let V be an open set in S?/G containing the singular set of
P/(D) and such that P~'(V) < (Int C,) — D’. By hypothesis there exists
a disk E in P(D)U V bounded by P,(Bd D). Let E, ---, E, be the
subdisks of E bounded by P,(Bd D)), ---, P(Bd D)) respectively, and
let U, ---, U, be open sets whose closures lie in P(Int C,) such that
for eachi =1,---, k, E,Cc U,andif t = j,clU;Nel U; = @. By the
proof of Theorem 2.1 of [12], each Bd D/ can be shrunk to a point
in P~%(U;). Each map can be “glued” to the annulus cl (D, — D)) to
obtain a map from D, into D, U P~%U;) with no singularities on
D, — P Yl U;,). We now apply Dehn’s Lemma in S* to these maps
to obtain disjoint disks F), ---, F}, such that (1) for each ¢, Bd D, =
Bd F;, 2) Int F;cIntC, and (8) if gec G, g intersects no more than
one of the disks F), ---, F,. Let A be a homeomorphism of S* onto
itself fixed on S*-Int C, such that for each 7, A/(F;) = D,. Let h, =hh!.
Note that if geG and ¢gc C,, diam h,(g) <e. Let hy ---, h, be
homeomorphisms such as h, for the sets C,, .-, C,. We define &, :
S — 8% by h.(x) = hhy -+ b, (2).

ReMark. If G is the upper semicontinuous decomposition of S*
whose only nondegenerate element is a polyhedral 2-sphere, then S°/G
has the Dehn’s Lemma property but S*/G is not homeomorphic with S*.

The essential ideas of the proof of the following theorem are so
like those of the proof of Theorem 4 that we shall not include the
proof here.

THEOREM 5. If G is a point-like 0-dimensional decomposition of
S?, then S3|G is homeomorphic with S® if and only if S*/G has the
map separation property.

5. Decompositions of S® which yield S°. Let S, T be poly-
hedral solid tori such that ScInt T and let J be a polygonal center
curve of S. Following a definition of Schubert [13] which was used
in [7], we let N(S, T') be the min,{N(J N D): where D is a polyhedral
meridional disk of T and N(J N D) is the number of points in J N D},

THEOREM 6. If G is definable by cubes with one hole and S*/G
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18 homeomorphic to S® then G is point-like.

Proof. Let M, M, ---, be the defining sequence for G and let
T, be a component of some M,. By hypothesis, T, is a cube with
one hole, Let g be a component of (=, M, contained in T,, We
first show that there is a defining stage M,,, such that each loop
in the component of M,,, containing g can be shrunk to a point in T,.

For 1=1,2,38, ---, let T; be the component of M,,; that contains
g. Then each T; is a cube with one hole, 7,., < Int T, and N, T; = 9.
Suppose that there is a positive integer s such that each T,,j7 = s,
is a solid torus. If the center curve of each T;,, cannot be shrunk
to a point in T;, then ¢ has nontrivial Cech cohomology, and it follows
from Corollary 2 of [8] that S?* G is not homeomorphic to S3 con-
tradicting our hypothesis. Hence there is an m such that the center
curve of T, can be shrunk to a point in T, and hence each loop in
T, can be shrunk to a point in T,.

Suppose then that infinitely many of the T; are not solid tori.
We may suppose for convenience that each 7T, is not a solid torus,
By [1], each T/ = S® — Int T’; is a solid torus, We now have three
cases.

Case 1. Suppose there is an m such that N(T._,, T.) = 0. This
implies that there is a meridional disk D of T, such that DN T, = &.
Then there is a cube K in 7T such that 7., _,cInt K. It then
follows that each loop in 7,.(=8°*— Int T7,) can be shrunk to a point
in T,

We now show that the remaining two cases cannot occur.

Case II. Suppose that there is a positive integer s such that
N(T%, Tj) =1 for j = s. Since P(Nq, M;) is 0-dimensional there is
a positive integer ¢ and a cube K such that P(T,,)cInt Kc Kc P
(Int T',). Let D.,, be a meridional disk of 7%,,. Using Dehn’s Lemma
we may adjust P(D..,) in P(Int T..,) so that it is polyhedral, and it
follows that P(T.,,) is a solid torus with the adjusted P(D/,,) as a
meridional disk., Let J be a longitudinal simple closed curve of 717,
such that J< Bd T.., and J intersects Bd D/,, at just one point. Let
A be an annulus with boundary components A, and A,. By [13],
N(T., T.,) = 1. Hence there is a mapping f of A into T.., such that
f1 4, is a homeomorphism, f(4,) =J, and f(4A)C T;. Now P(f(4,)
can be shrunk to a point missing K since it is contained in S*® — K;
hence P(f(A,)) can be shrunk to a point in P(T}.,). But this implies
that the longitudinal simple closed curve P(J) of P(7/,,) ecan be shrunk
to a point in P(T/,,). Hence Case II cannot ocecur.
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Case III. Now assume there is a positive integer s such that
N(Tj, T;y,) > 1 for j =s. Since each T is knotted in S°% we may
use an argument similar to that used in [7] to conclude that Case
IIT cannot occur.

These three cases now imply that there is a defining stage M,.,,
such that each loop in the component of M,,, containing ¢ can be
shrunk to a point in 7,. Since T, N (N, M;) is compact, there is a
defining stage M, (p = n+m) such that each loop in 7, N M, can be
shrunk to a point in 7,. By Lemma 1 there is a cube with handles
C such that T,n M, cInt Cc CcInt T,. It then follows that G is
definable by cubes with handles. By Bean’s result [5], G is a point-
like decomposition, and the proof of Theorem 6 is complete.

COROLLARY. Let f be a mapping of S® onto S® and let H = cl
{z:2eS® and f~'(z) is nondegenerate}). If H 1is a 0-dimensional
set which is definable by cubes with one hole, then for each x ¢ S3,
S® — f~(x) is homeomorphic to E°.

Proof. Let G ={fXx):2¢eS%. It is not hard to show that G
is an upper semicontinuous decomposition of S® and that S¥G is
homeomorphic to S3. Since H is definable by cubes with one hole, it
follows that G is definable by cubes with one hole. By Theorem 6,
G is a point-like decomposition of S?; hence if « ¢ S® then S® — f~(x)
is homeomorphic to K3,
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SUBDIRECT DECOMPOSITIONS OF LATTICES
OF WIDTH TWO

OscARr Tivis NELSON, JR.

The class of nontrivial distributive lattices is the class
of subdirect products of two-element chains. Lattices of width
one are distributive and hence are subdirect products of two
element chains, Below it is shown that lattices of width two
are subdirect products of two element chains and nonmodular
lattices of order five (N;). (width = greatest number of pair-
wise incomparable elements,)

The statement follows from several lemmas. Throughout we
shall assume that a, b are arbitrary noncomparable elements of a
lattice L of width two.

LEMMA 1. 2-(a+b) +y-(a+b) =@+ y)-(a+b and
@+a-b)-+a-d)y=x-y+a-bd
for any x,y e L.

Proof. In any lattice
@) r(a+d)+y-(@a+d=(x+y)-(a+b).

Trivially, if « and y are related, the identity holds. Thus, assume
that © and y are unrelated. There are three possibilities:
(i) Suppose £ < a and y < b. Then

z-(a+b)+y-(@a+rbd)=as+y=@+y)-(a+b).

(ii) Incasea<zand b=<y,a+b=av+y. If a+b=2xor y,
it is easy to verify that the identity holds. If a + b £ « or y, then
xor y<a-+b. Suppose x=a+b. Then

@+y-@+bd)=a+b=rv+y-(a+b=x-(@+db+y-(a+D).

This relation and (1) yield the equality.

(ili) Now suppose a <« and y < b. b < « implies that « and y
are comparable while # < b implies that ¢ and b are comparable.
Thus, « and b are unrelated. Since L is of width two, a + ¥ is
related to either x or b, a + y <2 and a + y < b imply that y <«
and a < b respectively. Thus, either st <a+y or b=<a+y. In
casse r<a+y,2<a+y=<a+band y<b=<a-+b Hence

z-(@a+d+y-(a+d)=2+y=@+ya+d).
519
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Incase ba+y,y=b=a+y=<a+b. Thus,

@+y-@+bdsat+b=a+y=sz-(a+bd+y
=a-(@a+ b +y-(a+b)

and the identity holds in all cases. A dual argument yields the other
identity.

By Lemma 1, if s and ¢ are unrelated elements of a lattice of
width two, the mappings x—x-(s +¢) and ® — 2 + s-¢ determine
congruence relations 4,., and +,.,.

LEMMA 2. 0,., N e = 0.

Proof. If € = y(0,5s N Yau), 2 (@ +b) =y-(a+bdandax +a-b =
¥y +a-b. x and y are each related to either ¢« or b, Thus x <a + b
or a-b< 2, Similarly, y<a+bora-b=y. If

r,ysa+bar=x-(a+d=y-(a+b=y.

Ifa-bZz,y;2=2+a-b=y+a-b=y. Finally,if x <a + b and
a-b=y,a-b<y-(a+d)=2x-(a +b) =2xie.,a-b <2z yagain. Thus
¢ =y in every case, and 6,,, N V., = O.

LemMMmA 3. If 0,.,=0,a+b=1; and if ¥,, = 0,a-b =0,

Proof. By definition z.(a + b) = %(6,,,). Thus 6,., = 0 implies
that
x-(a+b) =2

for all @, and consequently that @ + b = 1. Similarly, +,., = 0 implies
that a-b = 0.

LemmA 4. If L is subdirectly irreducible, 6,., = 0, and a - b += 0,
then there exists p € L such that p and a-b are moncomparable.

Proof. If 6,.,=0,a-b0, and there exists no p as above, than
it is easy to verify that 4,., N ¥,., = 0. (Note that x =y (4,.,) if and
only if =y or a-b < ®,y, and that x = y(vy.,) if and only if x = y
or 2,y < a-b). Since a-b # 0, neither 4,., nor +,, = 0. Thus L is
reducible. This contradiction implies that p must exist.

If L and p are as in Lemma 4, p must be related to a or b, but
a < p or b < p implies that p and a-b are comparable. Thus we can

assume that p is less than one of a, b; assume p < a.

LemMMA 5. If L and p are as in Lemma 4, p + a-b and b are
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noncomparable.

Proof. Clearly a-b<b-(p+ a-b). Since p<a,p+a-b=a,
and hence b-(p+a-bd)=<a-b. Thus db-(p+a-b) =a-b. Since a
and b are noncomparable,a-b == b; and since a-b, p are noncompar-
able, p +a-b#a-b. Thus b and p + a-b are noncomparable.

LEmMMA 6. If L and p are as in Lemma 4,

L={w|le<p+a-b}U{z|a-b=a}.

Proof. Trivially, if 2z is related to a-b,z is in one of the sets.
Thus suppose that z,a-b are unrelated. Since a-b, p are noncom-
parable and L is of width two, z must be related to p. If z < p,
2<p-+a-b. If zis also related to p + a-b, z is in one of the sets.
Thus, suppose that p < z and that z and p + a-b are unrelated. By
Lemma 5, p + a-b and b are unrelated. Thus, z must be related to
b. If b=z a-b<z andif 250, p=<2<b(p+ a-b<b). But both
conclusions are impossible. Thus L is the union of the two sets.

LEMMA 7. If L and p are as in Lemma 4, 0,.,., N ¥, = O.

Proof. If 2=ylpresNVer), 2P+ a-d)=y-(p+a-d) and
x+a-b=y+a-b. If
vyspt+a-br=z-(pta-d)=y-(p+a-b=y;
and if a0 2, y,c =2+ a-b=y+ a-b=1y. Thus suppose
r=<p+a-d

and a-b <y (By Lemma 6, we can assume that this is the only re-
maining possibility.) Then x =z-(p+ a-b) =y-(p + a-b) £ y, i.e.,
r=<y. Also, x+a-b=y+ a-b=1y. Since

r<p+a-by=c+a-b=<p+a-bd.
Thus, r<y=p-+a-b,and s =2-(p+a-b)=y-(p+a-b)=y.

LeEMMA 8. If L 4s a subdirectly irreducible lattice of width two
and a,b are noncomparable elements of L,a +b =1 and a-b =0,

Proof. By Lemma 2,6,,,N 4., =0. Since L is irreducible,
0.5 =0 or v,, = 0. Suppose 6,., =0. Then a + b =1 by Lemma
3. If a-b#0,,, %0 by Lemma 3. Also, by Lemma 4, there is
an element p of L which is noncomparable to a-b. For this p,
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0p+u-b m '\/"a-b = O

by Lemma 7. Hence 6,,,., = 0. But this is impossible since it implies
that 1=p+a-b<a or b. Hence a-b=0. If +,, =0, a dual
argument completes the proof.

(Note that Lemma 8 implies that a subdirectly irreducible lattice
of width two has a zero and a one.)

Let L be a subdirectly irreducible lattice of width two. If there
were an element z of L — {0, 1} which was comparable to each element
of L,6,N+, =0 with 6, + 0 and v, = 0. Thus, since L is irreducible,
it must be the union of the pairwise disjoint sets {0, 1}, C;, C; where
C,, C, are chains such that the sum of elements from different chains
is 1 and the product, 0. If each chain has at least two elements,
then one can define two congruence relations R,, R, as follows:

x=y(R;,) if and only if x =y or #,yeC;(t =1,2). Clearly,
R.NR,=0, but R, R, + 0 since each chain contains at least two
elements. Thus, one chain must contain exactly one element. If both
chains consist of a single element, L is a direct product of two-
element chains, and hence is reducible. Thus, L consists of {0, 1},
C,, C, where C, contains only one element and C, contains at least
two elements. Suppose C, contains at least three elements p < ¢ < 7.
Define relations S,, S, on L by

x=y(S)ifandonly if x =y or 0< 2,y < q,
x=y(S,)ifandonlyif c=yorg=sz,y<1.

It is easy to show that these are congruence relations. Clearly
S;NS,=0. Thus S;=0o0r S,=0. But p=¢(S, and q = 7(S,), a
contradiction. Thus C, consists of exactly two elements, and L = N,.
Hence

THEOREM. FEwvery lattice of width two is a subdirect product of
two-element chains and Nj.

COROLLARY. The only subdirectly irreducible lattice of width
two 18 Nj.

For each » = 3, one can exhibit a lattice to show that it is false
that all lattices of width » are subdirect products of lattices from
some class of finite lattices. For a fixed n, it would be of interest
to find a lattice property P such that if L were of width » and had
property P, that L would be a subdirect product of finite lattices.
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INTEGRALS WHICH ARE CONVEX FUNCTIONALS

R. T. ROCKAFELLAR

This paper examines numerical functionals defined on func-
tion spaces by means of integrals having certain convexity
properties. The functionals are themselves convex, so they
can be analysed in the light of the theory of conjugate convex
functions, which has recently undergone extensive develop-
ment, The results obtained are applicable to Orlicz space
theory and in the study of various extremum problems in
control theory and the calculus of variations.

In everything that follows, let T denote a measure space with a
o-finite measure d¢. Let L be a particular real vector space of measur-
able functions u from T to R" (for a fixed n). For instance, one could
take L to be the space LZ(T) consisting of all R"-valued measurable
functions # on T such that @,(u) < + -, where

?,(u) = ST%(u(t))dt and @,(z) = (I/p)[z]?, 1 =p <+

with | - | denoting the Euclidean norm on R". No matter which L is
chosen, one can regard @, as a functional from L to (— oo, +cc].
Then @, is convex, in consequence of the fact that the function ¢, is
convex on R". (A function F from a real vector space to (— oo, + o]
is said to be convex if

Fve + (1 —Ny) = AF(2) + (1 — N F(y)
always holds when 0 < A < 1.) Notice that, if @, is the convex fune-
tion defined by
0 if 2|1,

(@) = i _
P =MD = e it el > 1,

the corresponding integral @.(u) is finite if and only if w belongs to
the unit ball of the space L3(T) of essentially bounded measurable

functions.
Here we propose to study a much broader class functionals than
the @,, 1 < p £ . These functionals are of the form

I,(w) = ST f(t, w(t)dt for wel,

where f is a function from 7 x R to (—oo, + 0], such that f(t, «)
is a convex function of x e R" for each te 7. Such a function f we
call a convex integrand for convenience,

As a preliminary task, we must come up with conditions on f

525
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ensuring that various functions such as f(¢, u(t)) be measurable in ¢.
The well-known condition of Carathéodory is no help, because we do
not want to assume that f(¢, x) is continuous in . That would prevent
us from considering most of the cases were f can be infinity-valued.
We have already encountered one such case, namely f = ... Generally
speaking, the device of allowing f to have the value + o has the
effect of constraining %(¢) to lie in a certain convex subset of R",
depending perhaps on t. Indeed, a necessary condition for I, (u) to
be finite is that

u(t) € dom f, for almost all ¢,

where f, denotes the convex function f,(x) = f(¢, ). (For any convex
function F, the set of points where F' does not have the value -+
is a convex set, which we call the ¢ffective domain of F' and denote
by dom F.)

In order that I,(u) be an unambiguous number in (— o, + ], a
further condition besides measurability, is usually needed, since f(¢, x)
is not required to be nonnegative. The important thing, however, is
that I, turns out to be a convex function on L when it is well-defined.

The @, have already been cited as examples of convex functionals
of type I, which have received close attention from functional analysts.
If the integrands ¢, are generalized to those of the form f(¢, z) =
N(jx|) where N is a finite nonnegative convex function on the real
line such that N(\) > 0 for :» > 0,

lim N(Av)/» = 0 and liTm NN = oo,
210 110

one gets convex functionals I, defining generalized L” spaces, called
Orlicz spaces. These spaces are very useful in dealing with integral
equations. We refer the reader to [5] for an excellent account.

Possible applications along the lines suggested by the theory of
Orlicz spaces are one motivation for looking at the convex functionals
I, in the general case. Another motivation is that such functionals
arise naturally in the calculus of variations. For example, suppose that
T = [0, 1], with dt as the ordinary Lebesgue measure. Regarding R"
as R* P R*, write each vector x as a pair (y, 2), where y and 2z have &
components. Then I, may be interpreted as a functional defined for
pairs of measurable functions from [0, 1] to R*. Now let

J@ = Lia, ) = | £t, a®), at)a,

where ¢ is a differentiable function from [0,1] to R, (a curve) and
¢ = dq/dt. Inasmuch as differentiation is a linear operation, J will be
a convex function on the space of curves q. Problems which involve



INTEGRALS WHICH ARE CONVEX FUNCTIONALS 527

minimizing J can hopefully be tackled therefore by convexity methods,
such as the existence and duality theory in [11]. Note that infinite
values of f correspond to constraints on the values of ¢(¢) and ¢(¢)
for the curves ¢ such that J(q) < + . Nonclassical convex constrained
minimization problems of this sort abound in control theory. We plan
elsewhere to take up applications of our results to such areas.

The main question treated in this paper is whether the conjugate
of a convex functional I, is another such functional I,. The question
is significant, because the present theory of convex functions is so
extensively concerned with conjugates. The notion of conjugacy, due
to Fenchel [2], may be formulated in a general way as follows. Let
E and E* be real vector spaces, and let <{x, 2*> be a (real) bilinear
function of ze F and z* e E*. Let F be a proper convex function
on K (i.e. a convex function with values in (— o, + co] which is not
identically + ). The function F'* on E* defined by

F*(z*) = —inf {F(x) — <z, 2*>|x ¢ E}

is called the conjugate of F' (with respect to the given pairing of F
and E* by <{-,-»). It is a convex function on E* with values in
(— oo, +]. Furthermore, F'* is always lower semi-continuous with
respect to the weak topology induced on E* by E. (Lower semi-
continuity means that the set {z*|F*(¢*) < p}, which incidentally is
always convex, is closed for every real x.) The conjugate of F'* is
in turn the function F'* on E defined by

F**(x) = —inf {F*(@*) — <z, a*>|a* ¢ B*} .

In order that F'* be proper and F'** = F, it is necessary and sufficient
that F itself be lower semi-continuous with respect to the weak
topology induced on E by E*. General proofs of these result are
given in [1] and [6].

Two conjugacy contexts will mostly concern us here. In the first
case, £ = E* = R* with {x, *) as the ordinary inner product. The
weak topologies are then the ordinary topologies on R*. In the second
case we take £ = L and E* = L*, where L* is any space of R"-valued
measurable functions, such that the inner product <u(t), w*(t)) is sum-
mable as a function of ¢ for every we L and u* ¢ L*. The pairing is

given by
Gy = | Cult), wr(e)pdt

Any topologies compatible with the duality between E and E* could
be invoked in place of the weak topologies, for instance the norm
topologies if K = E* = L:(T).
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Suppose that f(¢, ©) is a convex integrand which is proper and
lower semi-continuous in « for each ¢. Define f*(¢, *) by taking con-
jugates in x, i.e. f* = (f,)* for each ¢t. Then, according to the results
described above, f* is another convex integrand, proper and lower
semi-continuous in its convex argument. We call it the integrand
conjugate to f. The conjugate of the conjugate is the original integrand
f. The principal fact brought out in this paper (Theorem 2) is that
conjugate integrands f and f* usually furnish conjugate functionals
of L and L*. This generalizes the fact that @, is conjugate to ¢,, and
@, on L%T) is conjugate to @, on LY(T) (with (1/p) + 1/g) =1). The
resulting class of “best inequalities” of the type

<uy w*y = Ip(u) + Ip(u™)

is likewise a generalization of certain classical inequalities.

2. Normal integrands and measurability. Before we can pro-
ceed, we must established that various technical constructions result
in functions which are measurable. To this end, some regularity con-
ditions must be imposed. We shall call a convex integrand f normal
if f(t, x) is proper and lower semi-continuous in « for each ¢, and if
further there exists a countable collection U of measurable functions
u from T to R" having the following properties:

(a) for each we U, f(t, u(t)) is measurable in ¢;
(b) for each ¢, U, N dom f, is dense in dom f,, where

U, = {u(t) |ue U}.

The latter conditions, which seem offhand to be rather complicated,
are automatically satisfied in some notable cases, as we shall now
indicate.

LemMMmA 1. Suppose f(t, x) = F(x) for all t, where F 1is a lower
semi-continuous proper convex function on R". Then f is a normal
convex integrand.

Proof. Let D be a countable dense subset of the effective domain
of F' (= dom f, for all ¢). (Such a D exists, of course, because dom F’
is a nonempty convex set in R".) Let U consist of the constant fune-
tions on T with values in D. Then conditions (a) and (b) are satisfied
in a trivial way.

LEMMA 2. Suppose f is a convex integrand such that f(t,x) is
measurable in t for each fized x, and such that, for each t, f(t, x)
18 lower semi-continuous in x and has tnterior points in its effective
domain {x|f(t, ®) < +}. Then f is a normal convexr integrand,.
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Proof. Let D be a countable dense subset of R", and let U be
the constant functions with values in D. The measurability condition
for normality is satisfied in virtue of the present measurability hypo-
thesis. The density condition is satisfied, because D has a dense inter-
section with the interior of dom f,, and dom f, is the closure of its
interior by convexity.

COROLLARY. Suppose f is a convex integrand having only finite
values, such that f(t,x) is measurable in t for each x. Then f i3 a
normal convex integrand.

Proof. Here dom f, = R" for every ¢t. The lower semi-continuity
of f, is then automatic, since a finite convex function on an open
convex set in R™ is always continuous.

An intermediate fact about the consequences of normality will
now be deduced.

LEMMA 3. Let f be a normal convex integrand with conjugate f*.
Then, for every measurable function w* from T to R", the function
F*(E, w*(t)) is measurable in t.

Proof. By definition,
—f*(t, w*(t)) = inf {f(¢, x) — <&, w* () |z e R"} .

We shall show that, for each ¢, the infimum can actually be taken
over x ¢ U, instead, where U, is the set in the definition of normality.
Since f(¢, ) = + o for x¢ dom f,, the question is whether any value
of f(t, ) = {w, w*(t)> with xecdom f, can be approximated by one with
xeU,Ndomf,., Now U,Ndomyf, is dense in dom f, by hypothesis.
Furthermore dom f,, being a nonempty convex set, is the closure of its
relative interior (its interior relative to the affine manifold it generates).
The intersection of U, with this relative interior must be dense in dom f,.
According to familiar results about lower semi-continuous convex funec-
tions (e.g. in [3], [13]), f, is continuous with respect to the relative
interior of dom f, and its values at relative boundary points can be
obtained as limits of the relative interior values. Therefore the values
of f(t,x) for xecdomf, are limits of those for U, Ndomf, as we
wanted to show. The upshot is that

—f*(t, w*(t)) = inf {f(t, u(?)) — <u(®), w*(¢)y|ue U}.

This formula expresses f* (¢, u*(¢)) as the pointwise infimum of a collec-
tion of functions on T. Each of the functions in the collection is
measurable, in view of the hypotheses, and the eollection is countable,
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The pointwise infimum is consequently another measurable function
on T.

Moreau’s proximation mappings, whose properties are elucidated
in [9], will be very useful to us. Here is how they are defined. Let
F be any lower semi-continuous closed proper convex function on R”".
It can be proved that, for each ze R", there exist unique vectors =
and x* such that

z=o+2* and F(z)+ F*(@*) = {w, 2*).
We write
2 =prox (z|F) and a* = prox(z|F*).

The mapping prox (- | ') from R" into itself is called the proximation
associated with F. It is continuous (a metric contraction as a matter
of fact), and its range is dense in dom F. If F'is the indicator func-
tion of a closed convex set K (in other words F(x) =0 when xe K
and F(x) = +c when 2 ¢ K), then prox (z|F') is the point of K near-
est to z. In general, prox (z|F') is the unique x for which

F(x) +i|x —z|
2
achieves its minimum,

LEMMA 4. Let f be a mormal convex integrand. Let z be a
measurable function from T to R*. Then the functions prox (2(¢) | f,)
and prox (2(t) | i) are measurable in t.

Proof. Set
g(t, ) = fit, ) + %iw — ).

It is easily verified that ¢ is another normal convex integrand. We
shall be concerned with the conjugate integrand g*(¢, «*). By Moreau’s
theory, g} is differentiable at 0 for each ¢, and Vg;(0) = prox (z(¢) | f2).
Now, for an arbitrary a e R,

Sa, Vgr(0) = Tm[g*(t, o) — g*(t, O/ .

The difference quotient is a measurable function of ¢ for each A by
Lemma 3 and the normality of g. The limit can be taken over a count-
able sequence in A, so <a, Vg#(0)> is measurable in ¢. It follows that
prox (z(t) | f,) is measurable in ¢, and likewise prox (z(¢) | f*) because

prox (2(t) | f*) = #(t) — prox (2(t) | f))
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for every t.
We can now prove that normality is preserved when one passes
to the conjugate.

LEMMA 5. If f is a mormal convex integrand, then f* is a
normal convex integrand, too.

Proof. We already know from the theory of conjugates that
f*(t, *) is a lower semi-continuous proper convex function of x* for
each t. The problem is to produce a collection U satisfying condition
(b) of normality (with f* in place of f). Condition (a) will then hold
by virtue of Lemma 3. Let D be any countable dense subset of R".
Let U consist of the functions of the form wu(t) = prox (z|f) with z
ranging over D. Each we U is measurable by Lemma 4. The set U,
is the image of D under prox (- |f*). Since the proximation is con-
tinuous and its range is dense in dom f*, U, is dense in dom f/*.

COROLLARY. If f is a mormal convex integrand, then f(t, u(t)) is
measurable in t for every measurable function w from T to R".

Proof. This is immediate from Lemma 3, since f, = f**.

Our final lemma guarantees the existence of enough measurable
functions for one to minimize a normal convex integrand pointwise in
a measurable fashion.

LEMMA 6. Let f be a mormal convexr imtegrand. Let « be a
measurable real-valued function on T such that

inf, f(t, ) < a(t) for every ¢ .
Then there exists a measurable function w from T to R™ such that

S, () < a(t) for every ¢ .

Proof. Set K, = {x]|f(t, ®) < a(t)} for each t. According to the
general theory of convex functions on R", each K, is a nonempty
closed convex subset of dom f, having the same dimension as dom f,,
inasmuch as fi(x) < a(t) for at least one x. Therefore U, N K, is
dense in K,, where U, is the set in the definition of the normality of
f. Let g(t,x) =0 when ¢ K, and ¢({, x) = + o when z¢ K,. Evi-
dently ¢ is another convex integrand satisfying the normality conditions
with the same collection U as invoked for f. Let u(t) be the point
of K, nearest to the origin, i.e.

u(t) = prox (0|g,) for each ¢.



532 R. T. ROCKAFELLAR

This % is a measurable function by Lemma 4 (applied to g), and
S, w(?)) < a(t) by definition of K,.

3. Conjugate convex integrals. The stage is now set for prov-
ing our chief results. We assume throughout that L* is a space of
measurable functions paired with L in the manner described in the in-
troduction. (When I is a Banach space, L* does not have to be its
dual.)

THEOREM 1. Let f be a normal convexr integrand. Suppose there
exists at least one w* e L* such that f*(t, w*(t)) 1s a summable func-
tion of t. Then

L = | st umnde, wel,
r
1s a well-defined convex function on L with values in (—oo, + oo,

Proof. The measurability prerequisite to considering I, is ensured
by the corollary to Lemma 5. Let u* be one of the functions in L*
whose existence is provided for in the hypothesis. Since f, and f/*
are conjugate to each other

ft, u®) = Lu(@®), w*(8)y — (1, w*(¢))

for every ¢t. The right side is a summable function of ¢ by the
hypothesis. Thus there can be no question of I,(u) being — «: either
f(t, w(t)) is summable or its integral is unambiguously + . As for
the convexity of I,, that is immediate from the inequality

S () + (L= No(t) = MR, u@) + 1 =N F(E @),

which holds for every ¢t when 0 < A < 1 by the convexity of f,.

We shall say that L is decomposable when it satisfies the follow-
ing conditions:

(a) L contains every bounded measurable function from T to R"
which vanishes outside a set of finite measure;

(b) if we L and E'is a set of finite measure in T, then L contains
Yz*%, where ¥ is the characteristic function of K.

These conditions guarantee that one can alter functions in L arbi-
trarily in a bounded manner on sets of finite measure. (Subtract y.-u
from %, and then add any bounded measurable function vanishing
outside E.) The first condition also implies that the functions in L*
are summable on sets of finite measure. The LZ(T) are examples of
of spaces decomposable in this sense.

THEOREM 2. Suppose L and L* are decomposable. Let f be a
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normal convex integrand such that f(t, u(t)) is summable in t for at
least one we L, and f*(t, u*(t)) s summable in t for at least one
u*e L*. Then I, on L and I, on L* are proper convex functions
conjugate to each other,

Proof. I, and I,. are well-defined and convex by Theorem 1 and
Lemma 5, and they are proper by the hypothesis. For any «z* in R"
we have

S, @) + Fr(t, 27) = <o, 27

by conjugacy. Hence, for any % € L and u* ¢ L*,
L) + L) = | fit, uienat + | £+, wr@nas
= | <utt), wr (et = <u, .
T

It follows that
I(uw*) = sup Ku, u*) — I(u)|uwe L}
= —inf {I,(w) — <, w*>|we L} = (I)*(w*) .

Verification of the opposite inequality will establish that I, is the
conjugate of I,. Fix any w*e L* and any B < I;«(u*). Select any
real summable function ¢ on T such that

(t) < £*(t, u*(t)) for all ¢, and S wodt > 8 .

Since by conjugacy
fr(¢, a%) = —inf {f(¢, ®) — {w,x*)>|we R"},
we have
— (1) > inf {f(t, x) — <&, u*(t)y | € R"}
for all t. We now apply Lemma 6 to a(t) = — p«(¢t) and g, where
9(t, @) = f(t, x) — <z, u (@) .

(The normality of f earries over to g.) The function w we obtain
from Lemma 6 satisfies

— () = [, w(t)) — <u(t), w*()) .

Since T is o-finite by our underlying assumption, we can choose an
increasing sequence of measurable sets E, of finite measure with
union T, such that the w(t) we have constructed is bounded in te¢ E,
for each k. Let @ be any particular function in L for which the in-
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tegrand in I, is summable. (Such a function exists by hypothesis.)
For each k let

w(t) if te E,,

lf) = {ﬁ(t) if te B,

where E| denotes the complement of E, in 7. These functions u,
belong to L by the decomposability hypothesis. For each k& we have

[, e = || [<utt), wr(e) = ft, wie)lds
=y uy = Lw) — | K@), o) — A, we)dt .

The boundedness assumption on K, is used here to ensure that
{u(t), w*(t)) be summable, so that

[, K, w0 = S8, ()]t = sy w> = L)

unambiguously. The integral over E| in the calculation above can
be made arbitrarily small by choosing k sufficiently large. On the
other hand

lim Lk p(t)dt = S pt)dt > 8

k=00
by our assumptions. Thus
gy w*y — I(uy) > B

when [ is large, implying that (I,)*(u*) > 8. Inasmuch as 8 was any
number less than I,., we may now conclude that I.(u*)= (I,)*(u*).
The fact that I; = (I)* follows dually.

COROLLARY. Suppose that L and L* are decomposable, and that
T is of finite measure. Let f be of the form f(t,x) = F(x), where
F is a lower semi-continuous proper convex function on R*. Then I;
on L and I, on L* are conjugate to each other.

Proof. Such an f is normal by Lemma 1. The existence of
summable function for I, and I,. is elementary in this case. Namely,
take any « for which F(x) is finite, and let w be the constant
function whose sole value is z. Since T is of finite measure, u is
summable. By decomposability (b), we L. Similary for I,.. The
hypothesis of Theorem 2 is therefore satisfied.

The next theorem furnishes a different way of establishing the
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conjugacy of I,. and I, in certain situations. It also yields a continuity
property.

THEOREM 3. Let T be of finite measure. Suppose that L* is
decomposable, and that L is actually L7(T). Let f be a normal convex
integrand satisfying the following condition: there exists some ac L
and € >0 such that, for each xecR" with |z]| e, the function
S, a(t) + =) is finite and bounded in t. Then I, on L and I on L*
are convex functions conjugate to each other. Moreover, I, is con-
tinuous at a in the norm topology of L = L3(T).

Proof. Replacing f by g if necessary, where
g(t, ®) = f(¢, a(t) + ) — (¢, a(?))

(evidently another normal convex integrand), we can reduce everything
to the case where a(t) = 0 and f(¢,0) = 0. Then [;(0) = 0. We must
show that I; is norm-continuous at 0, and that f*(¢, w*(¢)) is summable
in ¢t for some u* ¢ L*, The conjugacy of I, and I, will then follow
from the last theorem. Define

F(x) = sup {f(¢t, x)|te T}.

As a pointwise supremum of lower semi-continuous convex functions
on R", F is itself lower semi-continuous and convex. By hypothesis,
F(x) is finite on the open convex set {x| |x|<e}. Asis well-known
a finite convex function on a finite-dimensional open convex set is
automatically continuous. Hence F' is continuous when |z| < e. Fix
a positive é less than ¢, and let

E=max{F(x)||x]| =0} < + oo .

Now F(0) =0, so that we have F(x) < (k/d)|x]| when |z| <0 by
convexity. (Consider the values of F along the line segment from 0
to ax, where o = d/|x|.) Hence for every ¢

ft, 2y = (k/0)|«| when |x|Zd.

This inequality also implies that f(t, ) = — (k/d) | x| for every =x.
(To verify this, one expresses 0 as a convex combination of # and p,
where p¢ = —d/|z|, namely 0 =x2 + (1 —M)px with v = —p/(1 — p).
Then by the convexity of f

0 = f(t, 0) = NMfL, @) + (1 — N)f(t, pux)
= M, @) + (1 — A)(E/0) | po |
= — (/1 — ) f(E, @) + (k/0) |=]].

The first inequality has been applied here to px, which is permissible
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because | #x| = & by the choice of . One concludes that f(¢, ) +
(k/9) | x| is always non-negative.) In particular, therefore

[f(t,2)| < (k/6)|x| when |a|<4.

If we L satisfies ||w|| < 0, where || - || is the L3(T) norm, then
[ 17, w) at = (k/o) ||| meas T < + oo .

Thus I;(u) is well-defined when ||« || < d, and it approaches 0 = I(0)
as ||« || approaches 0. This establishes the continuity. We must still
construet a u* e L* for which f*(¢t, w*(¢t)) is summable. It suffices to
find such a «* in L3(T), for L* contains L3(T) in consequence of the
hypothesis that L* is decomposable and T is of finite measure. Let

w(t) = prox (0| 1) .

The measurability of # is asserted by Lemma 4. For each ¢, #(t) is
the point which minimizes f(¢, ) + 1/2|«|* on B”. Since the minimand
vanishes at z = 0,

02 f(t, a(V) + 5 |50 = — (/o) |5(t) | + | a(t) -

It follows that |#u(t)| < 2k/0 for all ¢,s0 we L3(T). It now follows
further that

0 = f(¢, u(t) = —(k/0) |u(t)| = —2(k/o)*,
so f(¢, u(t)) is bounded in ¢ (and hence summable). Now take
w*(t) = —u(t) = 0 — prox (0 f,) = prox (0 [f) .
Again u* e L(T). According to the basic property of proximations,
S, a@®)) + (@, w*(@) = <ut), w*(t)y

for every ¢t. The first and last terms in this equation yield summable
functions, so we can conclude that f*(¢, w*(t)) is summable, too.

THEOREM 4. Let T be of finite measure. Let f(t, x) be a finite
convex function of x for each t and a bounded measurable function
of t for each x. Then I; is a well-defined finite convex function on
L3(T) which is everywhere continuous with respect to the wuniform
norm. Moreover, the conjugate (I,)* of I, on L3(T)*, the space of
all limear function as on L3(T) continuous with respect to the uniform
norm, s given by I,, in the following sense: if ve Ly(T)* is of the
form
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o) = | Cutt), wrtpat, weLy(T),

one has (I;)*(v) = I, (u), whereas otherwise one has (I;)*(v) = + oo,

Proof. We note that f is a normal convex integrand by the
corollary to Lemma 2. The finiteness and continuity of I, are as-
serted by Theorem 3. Fix any ve L3(T)* such that (I,)*(v) < + o,
We shall show that v corresponds to some u*e L,(T) as above,
whence it will follow from Theorem 3 that

(Ip)*(v) = sup,{v(u) — I(u)} = I (u*) .

For each measurable £ T, let #(E) denote the unique vector in R
such that

o, (EY> = v(x-yz) for every xe R,

where « .y, is the function which has the value 2 on E but the
value 0 elsewhere on 7. Then p is a finitely additive set function.
We have

G BNy = L@+ 15) + (1))
= | st ot + | At 00t + 1) )
< F(x) meas F + a,

where

F(x) =sup {f(t,x) |te T} < + o=,
a = max {0, F(0)meas T'} + (I)*(v) < + oo .

The function F is convex, and hence continuous, so that the quantity
k(r) = sup{F(z) | {2 | = 7}

is finite for every r > 0. For every measurable £ C T and every
r > 0, we have

| (E)| = sup{< @, (&) > ||x] = r}
Z k(rymeas K + a < + oo ,

It follows that, given any ¢ > 0, there exists a > 0 such that meas
E <o implies |p(E)| <e. Thus p is absolutely continuous with
respect to df, and ¢ must be countably additive. By the Radon-
Nikodym Theorem, there exists some u* € Ly(T) such that

[ oy dt = < o, (B > = v(ax)

for every zc R" and every measurable E. The formula
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o(w) = | <ult), w(®)) dt

then holds for every w which is a linear combination of functions of

the form z -y, and since such linear combinations are dense in L (T')

the formula must actually hold for every u < L3 (T) by continuity.
COROLLARY 1. Under the hypothesis of Theorem 4, the convex set

{u* e L(T) | (Is)(w) + <@, w*y + @ = 0}

18 weakly compact (with respect to the pairing between LL(T) and
L3(T)) for any ac L(T) and any real number «.

Proof. Since I, norm-continuous, the set
fve Ly(T)* | (I)*(v) + v(e) + a = 0}

is weak* compact in L3(T)* for any a and «, according to a theorem
proved independently by Moreau [7] and the author [12, Theorem 7A].

COROLLARY 2. Let D be a subspace of L3(T) supplied with a
locally convex topology at least as strong os the wumiform mnorm
topology, and let D* be the space of continuous linear functionals
on D. Suppose that no nonzero linear functional on L7(T) of the

form
o’ §T<u(t), w>dt,  w*eLi(T),

vanishes throughout D, Then, under the hypothesis of Theorem 4,
I, is a continuous finite convex function on D, and the conjugate
(I,)* of I; on D* is given by I;,, in the sense that tf v e D* corresponds
to some u* € L.(T') as above one has (I;)*(v) = I;,(u*), whereas other-
wise (I;)*(v) = + oo,

Proof. Let J be the convex functional on D* such that J(v) =
I, (u*) if v corresponds to a u* € LL(T), whereas otherwise J(v) = + <,
This J is well-defined, in view of the hypothesis about linear func-
tionals which vanish on D, and the conjugate of J on D with respect
to the natural pairing of D and D*, is just the restriction of I, to
D. By Corollary 1, the convex sets

freD*|Jv) <}, preR,

are compact in the weak topology on D* induced by D, so that J is
lower semi-continuous in this topology. It follows that J = J** = (I,)*.

REMARK. Corollary 2 is applicable, of course, to various situations
where T has topological or differentiable structure, and D is a space
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of continuous or differentiable functions on T (with D* a correspond-
ing space of measures of distributions).
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REFLECTION LAWS OF SYSTEMS OF SECOND ORDER
ELLIPTIC DIFFERENTIAL EQUATIONS IN TWO
INDEPENDENT VARIABLES WITH
CONSTANT COEFFICIENTS

JameEs M. SLoss

In this paper we shall consider the reflection of solutions
of systems of equations

a-un Upe + Uyy + AUz + Buy + Cu =0,

where u = (41, U, -+, Us)", A, B,C are constant, pairwise com-
mutative 7 X n matrices, across an analytic arc » on which
the solutions satisfy n analytic linear differential boundary
conditions, If the boundary conditions have coefficients which
are analyiic in a specific preassigned geometrical region can-
taining », then we shall show that the solution of (1.1) satis-
fying such boundary conditions can be extended across r,
provided certain inequalities are satisfied. Moreover, the region
into which % can be extended will depend only on the analytic
arc «, the original region, and the coefficients of the boundary
conditions; i.e., we shall have reflection ‘““in the large’ and
the region will not be restricted by the equation.

There are two basically different situations considered, the results
of which are stated in Theorem 1, Theorem 2, and Theorem 3.

Theorem 1 treats the reflection of solutions of a system (1.1)
initially given on an open set £ for which the boundary conditions
on an arc £ adjacent to 2 are

ipaﬁ(D)uﬂ = f.(?), a=12 ..., 5 or g
B=1

where

(D) = 3, < pap(2)DiDy
r+ss<k<2n

with p3(2) and f,(z) analytic in QUEUS, where § is an open set
determined by £ adjacent to &£ and disjoint from 2. In the event
that two inequalities involving the pZi(2)(r + s = k) are satisfied, then
we can reflect the solution of the system across & into £U 2, so that
the original solution is extended into all of QU&U Q.

In Theorems 2 and 3 the reflection of solutions given in 2, of the
special system (1.1)

du + Eu =0, E = n x n constant matrix,

541
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is treated. In these cases boundary conditions of the form

>, piR)DiDyu, = f.(2), y=12---,m

r+ssk<2n
are assumed preseribed on &, in which p’2(z) and f.,(z) are analytic in
QUEUSR. For Theorem 2, k =n, and for Theorem 3, k =n — 1.
There are five conditions which must be satisfied in Theorem 2 to
insure reflection. Aside from two inequalities involving the p;{(z) that
must be satisfied as in Theorem 1, there is an additional determinental

inequality on the are (z = G(z))
(1.2)  |DIG) —G@Y| =0, l<v<mn—1, 1l=js=n-1,

which must be satisfied as well as two additional inequalities which
depend on the constants of the differential equations.*

In Theorem 3 it is unnecessary to assume (1) one of the dif-
ferential equation conditions, and (2) condition (1.2). Moreover, in
Theorem 3 the reflection is reduced in quadratures whereas in Theorem
2, for the general case, we have only an existential proof.

Finally, we shall give equations and boundary conditions to which
the theorems apply. Theorem 1 is applicable when the boundary con-
ditions are u = (@(2), Py(2), * + +, P.(?)).

Theorem 2 and Theorem 3 are suitable for systems of differential
equations of the form

S P(dyu; =0, i=1,2,,m
i=1

where the P;; are polynomials with constant coefficients and 4 is the
Laplacian. Two inequalities involving the coefficients of the P;; must
be satisfied. A special example is the metaharmonic equation

A" + a4 + - +a,u =0, a; = constant .

In this case it is only necessary to check one inequality for the
differential equation in the case of Theorem 2. A special example of
the metaharmonic equation is the polyharmonic equation

A" =0,

In this case there are no inequalities for the differential equation
that must be checked for Theorem 2 or 3. Also in this case there
is a particularly simple representation of the solution in terms of
analytic functions in 2 and analytic functions in @ which is a gener-
alization of the representation in [8].

In the special case of equations

* J. Leray kindly pointed out to me that (62) and one of the d.e. inequalities
are always satisfied and that the 3 holds for k<2n.
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du; = apu, + a5U, i=12, a;; = constants ,
a special case of which is the metaharmonic equation
Ly + adu + bu = 0, a, b constant ,

the condition on the arc & is automatically satisfied. Moreover, the
conditions of Theorem 2, for the biharmonic equation, reduce to the
conditions given in [8] with the exception that Theorem 2 requires
we CHHQUE) N CHQ) whereas [8] requires only that

ue CHRUE)NCHANCHRUE) .

Finally, it is noted that in the case when the analytic arc is a
portion of the 2 axis then the condition (1.2) is automatically satisfied.

Restricting ourselves to equations of the type (1.1) we get explicit
representations for the solutions in terms of the zero order matrix
Bessel function. For purposes of brevity we shall consider homogeneous
equations (1.1) since the treatment of nonhomogeneous equations in-
volves only obvious changes.

In his beautiful paper [6], Lewy thoroughly considered the question
of a single elliptic equation in two independent variables for which
the coefficients are analytic functions in a neighborhood of £. Brown
[1] considered the reflection laws for a general fourth order elliptic
equation, with constant coefficients, in two independent variables across
a straight line segment on which he assumes the solution satisfies two
boundary conditions of the form

+ZS DDz, 0) = f.(x) y=1,2,
where the line of reflection is y = 0 and p’* are constants, Assuming
the original domain is convex then he achieves reflection in the large,
i.e., the domain of reflection is determined initially by the differ-
ential equation. Filipenko [2] investigated reflection for the harmonic
equation in more than two independent variables across the plane x, =0
and has shown that reflection in the large for certain initial domains
is possible provided boundary conditions of the form

a_u'_’_P(xZ)xay"'yxn)u:O

0x,
are prescribed on the plane, where P is a polynomial. Lewy [7] has
given an example to show that the modification of P from a polynomial
to an analytic function is not possible. Garabedian [3], [4] has also
investigated certain reflection laws in the small for a nonlinear elliptic
equation and for quasilinear equations with special boundary conditions.
J. Leray [5] has, in a very interesting paper, used reflection for the
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explicit determination of the Greens function for an M-harmonic
equation in a band, when differential boundary conditions are given
on the boundary of the band.

2. Geometric reflection across an analytic arc. Let £ be an
open analytic arc defined by the real analytic function F(z,y) =0
with F?+ F2+0. As shown in [8], this defines a function { = G(z),
of the complex variable z = « + iy which is analytic in a neighborhood
of £ and for which & is described by z = G(z). 2 = G(z) is called the
reflection of z across . 2 =z on £. Let 2 be a semi-neighborhood
of &, with G(z) analytic and univalent on 2 and thus G'(z) = 0 on 2.
Let © = G(?) and assume N2 = . Then it can be shown that

for z in QUkU D, G(z) is univalent, 2 = z and G'(z) = 0. Moreover
G'(x) = [A]
and

G"(z) = —G"()G'(?)° .

3. Representation of the solutions. In this section we shall
derive a representation for the solutions of (1.1) which are in C'(QUk).
This will be done by a slight variant of the very elegant method
developed by Lewy [6]. The solutions are expressed by means of a
complex Riemann function, which can be found explicitly in our case.

First we consider the transformation

(3.1) w = gD (g )

where the exponential matrix is defined as usual by its McLaurin
expansion. Due to the pairwise commutativity of A, B and C we get
(1.1) becomes

(3.2) g~ a2y {wm + w,, + %[40 A Bz]w} —0,

which is equivalent to:

(3.3) Wop + Wyy + Dw =0
where
(3.3.1) D= %[40 _ A*— B,

Note that (3.3) can be written for z in Q2 as
3.4) 4G'(z)w,; + Dw =0

where
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a_1[a .a] 5 1[—7——]—1[5 .a]
3.5 — === —t—], —==|G 2 4420,
@9 S =2la el 5 T2l ®] L Ty
Let

(3.6)  w(z,y) = w2 £22 gi—] — w[ 2% 2G‘2>, z _2;;(2)] = Wiz 2)

[\

for z=2 +iyeQUk and 2 = G(r)e QUK.
With the idea of finding a representation of the solution of (3.3),
we seek the complex Riemann function; viz. the solution of

3.7) Liv] = v, + %DG'(C)Q) —0

which is a function R[z’, {° 2,{] of four complex arguments each
ranging independently over QUxU Q2 with

(3.8) L,R}=0

and

R[z°, 2% 20, CO] =7
(3.9) R[22, 01=0.
R;[z“, Co; z09 C] =0

We claim that such a matrix function is given by

(3.10) R[2’, (% 2, {] = J[V'D((z — @NGE) — G(L))]

where if @ is an # X » matrix, we define

Ol=1-9 Q@ _ &
v Ql=1 2! + 2421 283!y *

With any norm for @ we get
I JV Q1 = J[iv] Q1]

where J,, on the right, is the zero order Bessel function and thus
the matrix series converges for all Q. Thus RJ[?’, {’ 2, {], as defined,
is analytic in 2° (% z and { for 2°, (% z and { in QUrUD. Moreover
it is easy to see that (8.9) are satisfied and by direct computation,
we see that (3.8) is satisfied.

Our next aim is to find a representation of W(z, Z) as defined by
(3.6). This will be done by finding a function W*(z,{) which is
analytic for z in Q and analytic for { in @ and for which

W*z,2) =Wz, 2).
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We consider now the Cartesian product
SxS8={z0:2cQUk LclUK}.

Let 2, and 2, be arbitrary points of 2U«x and let » be a path joining
2, to z, which lies in 2Uk. Then let p be the reflection of p joining
Z, to z, in QUk. Let

S¥z, 2, ) = {(,0) e S x §:zep and e p}.
Note that
RL{W*] — LIR]W *
(3.11) — RW5 + %G’(C)RDW* — R W* — —i-G’(C)DRW*
= (RBW*) — (R.W?*) — (B W7),
since, as is clear from (38.10), RD = DR. We define
W*(z, 2) = W(z, &) = w(@, y), Wz, Q) sz = Wiz, 2),
Wiz, Q) ez = Wiz, 2)

i.e. the solution to equation (3.3), and let this be the “initial condition”
for the extension of W* as an analytic function in (2,{). Let W*
be assumed to be a solution of L[W*] =0 for (z,{) e Sz, 2, p). We
shall want to integrate (3.11), when W* is such a solution and R is
a Riemann function, over “triangles” 4, of Sz, z,, ) with vertices
(&, €, (2%, £° and (2°, 2°%), over “triangles” 4, with vertices (Z°, £, (°, 2°)
and (2%, 2°) and over “squares” with vertices (e, ¢), (3, ¢), (7, %), (c, 2),
¢ being a point of k. Over such “regions” as these, we have:

(3.12) 0= — §(RW*)tdt+ fR,W*dt~ fR,,W*do.

Consider R[z°, (% t, 0] and W *(¢, o) in the above, where the region is
the “triangle” Sz, 2, ») with vertices (&, &9, (2%, %), (2°, 2°). We
get, due to the nature of R[2°, (% t, g],

W@, ) = W*(©, ¢

| o CBL, C5, EYWLE, B — RaW "t

20,20
S( )R"[zo’ CO; &9 O]W*(&’ O')dO' o

(80,20

(3.13)

Next we consider R, 2% ¢, 0] and W*(t, 0) in (3.12) and integrate
over the triangle c Sz, 2, p) with vertices (2, £°), (2", 2°), (£°, 2°) and
get, making use of the special character of the Riemann function
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W@, 2 = W&, 2
(20,20 . N ) N
— | (R, 258, B (2, ), — R *)dt

- E(ZO'%)RUI@, 2,6, gWH@, 0)do .
(20 g0y

(3.14)

Finally we shall integrate (3.12) with RJ|z, Z; ¢, 0] over the rectangle
< 8%z, 2., p) with vertices (¢, ¢), (z, ¢), (z, 2), (¢, Z) where ¢ is assumed
to be a point of £, and thus, (¢ = ¢):

W*(z,2) = W*e, 2) + WH*(z, ¢) — R[Z, 2; ¢, C]W*(C, ¢)
(z,¢) R .
(3.15) - S Rz, Z; t, cJW *(t, c)dt

(ese)

Rz, 55, 1 (e, oo
(esc)

This gives the representation of the solution of (3.8) for which we

were looking. The integrals entering (3.18), (3.14) and (3.15) are

independent of the path » since in (3.13) and (3.14)

[(RW*), — (R,W*)], — [R,W*], = R,W* + RW — R, W* — R, W/}
= RL |W*] — L JR]W* =0
by (3.11).

Next we show that W*(z, {) as defined by (3.13) is an analytic
function of z and ¢ for z in 2 and {e Q. This is done by showing
OW*(z,0)/6Z2 =0 and oW=*(, {)/of = 0; i.e. the Cauchy Riemann
equations are satisfled. Since R is an analytic function of its
arguments, 2 = z, 2 = G(2), d3/dZ = G'(2),

G'R)W*(2, 2)Ry(2, (0, 0) |3=20-2 = 0
by the nature of R. Next we check analyticity in .

GOWeEC 0O — COLRE, G t, HW*(, ). — R (t, D)l-g e
= COWe €, 0 — Rz, G t, WA, 1) [img el =

by the nature of R = J,. Note that (3.14) can be got from (3.13)
simply by substitution. The representation of the solutions of (1.1),
which we shall use, is given with the aid of (3.1) and (3.15) by:

U*(z, 3) = exp {A*z n B*G(é)}{W*(z, ¢) + W*(e, 3)
— Rz, Z; ¢, c]W*(¢, ¢)
- Sch[z, 2it, ] WH(t, o)t

c

(3.16)

A

_ SzRg[z, 25 ¢, 6]W *(e, a)do}
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where
A* = —%(A _iB), B*= —%(A +iB).

4. Reflection of solutions of (1.1) across analytic boundary
conditions. Before proving the reflection theorems we shall need to

prove two lemmas,

LEMMA 1. Let pt= p, + t, p, and p, nonnegative integers,
4.1) D, = -é-(D, _iD), D :%G’(%)(Dw +iD,)
then for fumctions

M, y) = M| EEEE, 225 | = a2

that are analytic in x and y, the following operator relation holds:

3 N
DD = (iy+{3] (@ (@) Di~Df — o(2, e, )

=
(G @) HGE" ()DL

(4.2) + terms of order < p — 1 in D, and D; all
of which contain terms of order at least
one and mot greater than pt — 2 in Dy; i.e.

all of order < p0— 2 in D,} ,

where o2, o e, ... ai gre the coeffictents of a*, a*'b, +- -, b*
in (a + b)ﬂ-l(a — b)l‘-z (Notg a{"ll‘z —_ ]_’ aﬁl#z = (__1)#2) and

oy, ) =0if v >,
=1lifv=sp.
Proof. By induction on ©#. For g =0 clearly true. For # =1
we have from (4.1) for £, =1, . =0
D, =D, + (G'(2))"'D; which is (4.2) for g, =1, 4, =0
and for ¢, =0, ¢, =1
D, = iD, — i(G'(2))'D;  which is (4.2) for ¢, =0, ¢, =1,

Assume (4.2) true for g, we must show it is ture for g+ 1. i.e.,
assume (4.2) and then consider
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DDy = (iyf S, as{(@ () DI=iD} + (G'(2) 4+ DL~ Df]
i=0 :
— aﬁlpz(G'(g))—<ﬂ+2>G~(g)[# + (/l l_‘ 2)]1)2/:
(A) + terms of order <y in D, and D, all containing

terms of order at least one and not greater than
p—1in DQ}. i.e.,

DDy = (@) D + 33 (GH@) Div= Dffecis + agis]
i=1 £
+ (G (R)) DY

— aZlﬁz(G'(g))—m+2>G~('z*)(ﬁ ‘i_‘ i)D;" 4. } .
But
(a + b)(a + b)*1(a — b)*
= (a + b}{a* + af12a b + afi2a %D + .« + afir2dr)
= a*" + (af12 + Da*db + (afr2 + af)as—'h?
+ oo (a2 + ar)ab®
+ aiprapett
and thus we see

Dp+Dfa = ('i)ﬂﬁ{gl afte(G(2)) DD

~ app@ @)@t g+ o)

where a/1+'#2 gre the coefficients of a**,a*b, «-+,b**" in (a+b)1™(a —b)*2.
Now consider

_D;'l_D;‘zH = (1:)#2+1{Dz;1+1 + ﬁ‘ (G'(?))—jDz”H_jD;j[a;-‘l:? — aé{lﬂz]
=1
—_ aﬁl#z(G’('z‘))~(F+1)DA!‘+l
B) + aﬁ‘”2(G'(§))_(”+2)G"(E)[/,z + (/,t /i 2)]1)2# 4 }
= (i)#2+1{§1 a§f1uz+1(Gr(g))—jDz#H—ij
7=0 z

— aZﬁzH(G,(E))—(HZ)G”(é)(ﬁ i %) I }
where since
(a — b)(a - b)m(a, — b)#z = g**t + (a{‘l!‘z — l)aﬂb + (agum — af1#z)aﬂ—lbz
4 eee 4 (afrr2 — a“l"f)a,b“ — aﬁwzbwl
y—

the a2 are the coefficients of a#**, a*b, -+ b** in (a + b)*1(a — b)*2*!,
Thus the lemma is proved.
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LEMMA 2. Given the operators

Pu(D) + pi(D) + +++ + Dia(D) 1=1,2-,m
where
pu(D) = 3 Bi@DID;, pu(D) = 3 Pi@DID;, -
then for

D, = 2D, — iD,), D, = @)D, + iD,)

(P:(D) = M = M, ((2)D} + M_11(2)(G'(2))"'Df ' Dy+ M,_,(2) D™
+ M, (2)G'(2))*Df + M., (2)(G'(2))"* " D,D}
+ Mo,k—x(z)D;—l + T o(2)

where T, ,(2) s a matric of terms in D, and D, and of order
<k—21in D, and of order <k—2 in D,.

PR DY e DL
Mioz) = 35 ()] : = 3 (0w
SRS 4

Myon®) = 3 (0ar@i), Meon®d = 3 (005
M@ = 3 (—0'@05), Moa®d) = 35 () aita(pls
Mua®) = 3 (@i (@ @) @i — 52, k)

x 3 @Wrar(, "t e @ e @ws

r+s=k
where o&° are the same as in Lemma 1.
Proof. By Lemma 1
k . .
pa(D) = 5 {0 3 (@ @) DD}
=@ (), £ p)@@re@@nt- )
+ X @ypaDi + 3 ()Pt (G(2)) T D
r4s=hk—1 r+s=k—1
+ qu(D,, D,) where g¢;, is a polynomial in D, and D,

of degree <k — 1 with coefficients analytic in QUxsU£2 and which
contains terms of order <k — 2 in D, and of order <k — 2 in D,.
Similar results hold for p.s(D), 8 = 2, ---, n. Combining these results
with the fact that «a}* = (—1)*, we get the conclusion of the lemma.
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We are now in a position to prove

THEOREM 1. Let w = (4, Uy, ++ -, %,) € CYQ) and satisfy in 2
4.3) Uy + Uyy + AU, + Bu, + Cu =0

where A, B, C are pairwise commutative constant m X n matrices.
Moreover let ue C*QQUE)NC(2Uk) and satisfy on k the boundary
conditions:

B%paﬁ(z, D,, D)yus = fu2) , a=1,2 -1,

where

paﬁ(z’ E’ v) = ZI pzsﬁ(z)grvs )
r+ 2n

ssk<

with pa(z) and f(z) analytic in QUEUR. Moreover, tf P,(z,&,7)
is the principal part of p.:(z, &, 1), we assume in QUEUL

(4.4) 0 # | Myo(2) | = | Pag(z, 1, —0) [
and
0 # )Mo,k(Z)I = lPtxﬁ(zy 1! _?/) I1 .

Then we can reflect w across k£ into Q; i.e., there exists a unique
function w which is a solution of (1.1) in QU kU L2 and which
agrees with the given solutions u of (1.1) im Q2 U k.

Proof. We apply M of Lemma 2 to the representation (3.16)
and evaluate on k. For simplicity let

9(2) = W*(c,2), hz)=W*Qzc).
Then we get on £, remembering that z = Z there:
(4.5) e EFOOM, (R)RF(2) + My, (2)(G'(2)) 9™ (2) + Tioilg, b, 2]} = f(2),

where f(z) = (fi(?), + -+, f.(?))" and T,_J[g, h, 2] is an expression of the
form:

Tioil9, b, 2] = au i(RRFV(2) + @s(R)(2) + <o+ + a(2)h(2)
(4.6) + S:a—l(z9 D)L + bi(2)g“(2) + -+ - + by(2)9(2)

+ Szb_i(z, tg(H)dt + E(z)W*(c, ¢)

1 As Professor Jean Leray has kindly pointed out to me, these statements concern
the behavior of the boundary conditions in the characteristic directions.
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where E and the o’s and b's are matrices, analytic in 2UsU 2. Note
that for j = 1,

1
(-1

and similarly for g¢(z) where 2“(¢) and ¢'(c) are known via (3.13)
and (3.14). Moreover if K(z,t) is a matrix function known and
analytic in QU « U 2 then for k = 1

1 z t1
I d1 y U1 1 2,‘__1 ) 2 2 1
T SctK(zt)gc(t £V RO (E)dt, + Ki(2)

@n ke = [ = ot + 5 Lz — onoo

| 'K, Hhvyat =
where K,(z) is a known matrix function analytic in 2UxU £ and thus
(4.8) SK(z D)t = SK(z HRO(E)dE + Ki(2)
where

Kz, t) = —2 S Y CRATOR
1

(b — 1)! Juy=
Thus (4.5) becomes on &£ with the aid of (4.7) and (4.8) and the
significance of (4.6).

o= 00 My (@) + Moal2) G D)9 ()
(4.9) ) )
+ S K*(z, )h™®(t)dt + S K**(z, t)g™(t)dt + H(z)} = f(?)

where H(z) is a known vector function of z, analytic in QU x U 2,
and K* and K** are known matrix functions of 2z, ¢ analytic in
QUK UL, Thus, since | My q2)| = 0 and | M,,(2)] = 0 and G'(z) = 0
in QU kU 2, we can solve for A*(z) and g*(z) and get:

(4.10) b (z) = S’I?(z, HRS(t)dt + H(z) on &
and
(4.11) g"®(z) = Szl%(z, tyg* (t)dt + ﬁ(z) on kK

where K(z,t) and K(z,t) are known matrix functions analytic for z
and ¢t in QU kU 2 and H(z) is analytic in 2 and continuous in Q U«

H(z) is analytic in 2 and continuous in Q U .

Treating (4.10) as a system of Volterra integral equations in
Q Uk and treating (4.11) as a system of Volterra integral equations
in 2 Uk, we get the analytic extension of A*'(z) into QU k U 2 and
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g®(2) into QU k U 9. By integration, since % and g and their deriva-
tives of order <k are known and continuous on «£ and specifically at
¢ at the outset, we get the unique extension of A(z) and ¢g(z). By
means of (3.15) we get the unique analytic extension of W *(z, 2) into
QU kU2 and thus the extension of u(x,y) into QU £ U 2.

We shall next concern ourselves with a system which is particularly
useful when certain higher order equations are reduced to a system
of equations. With this in mind, we shall consider a more restricted
class of equations, since the inequality becomes very unwieldy.

Notation. Let

el e et
é; e; e;
E=| . |E*=]| . |, JEE =1,
e, e, ex

where e, = (¢i,, €, +--, €},) is the m™ row of EJ.
Before stating the theorem, we shall prove

LEMMA 3.
Rlz, &5 t, 0] = p,{E, (t — 2)[G(0) — GO}
= S ai((t - A6 ~ GODE’
where p,_.(x, s) 1s the polynomial of degree <m — 1 in x that interpo-
lates J[V'xs] at the eigenvalues of E (s held fized); a;(s) are entire

functions of s and E° = 1. In the event that some or all of the
etgenvalues N, Ay, +++, \; 0of E are multiple, t.e.,

|B = M= (0= M) = W)™ e ee (0= A=)
NeFE N Af tFE Rk, m A+ N+ oo + n; =n, then we use Hermite im-
terpolation to determine p,_(x) such that if J(\s) = J[V/\s]

an —1
Pas(Myy 8) = J(\.8), %pn_l(ku 8) = sJV(\8), ¢ 0, ﬁv Dus(M, 8)
= gt J (n,s)
a'n j—1
ﬁ,’—‘:;:y pn—-l()\'j! S)

= §"J "TH(N8) .

Das(Njy 8) = J(N;), ;%ZOH(M, 8) = sJV(N;8), -+,

Proof. The unique Hermite interpolation polynomial p,_,(\, s) is
of the form:
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Puihy 8) = 3 TOuN) + 2 8T OGN + -+
1=1 i=1
+ i 8" P (N8) s,y (V)
=1

where the 7;,(\) are polynomials in A of degree <n — 1.
Consider for Q(\) the characteristic polynomial of E:

— JO\’S) _ pn—l()"y S)
JF, 6) a0

J(ns) and p,_,(\, s) are entire functions of A and s, moreover the
polynomial Q(\) has the same zeros in )\ (multiplicity included) as
J8) — p,i(N, 8). Thus f(r,s) is an entire function of )\ and s.
Rearranging, we get

J(As) = QM) (N, 8) + Pass(X, 8)

But Q(\) is the characteristic polynomial of E. Thus by the Cayley-
Hamilton theorem Q(F) = 0 and

J(Es) = p.(E, s)

which gives the result since

JUE(t — 2)[G(o) — GO} = J{VE(t — 2)[G(o) — GOI} = R{z, ; t, 0} .

Now we are in a position to state the theorem.

THEOREM 2. (H1) Let £ be an analytic arc of the type described
in §2 for which the determinant of the (n — 1) X (n — 1) matriz
(4.12)  4,2) = || D}[G(c) — GR)F||#0, 1=v=n—-1,1<j<n-1
for z on QU kU 2 (arc condition).

10 ..+ 0

a;(0) 20

(H2) det
a=(0)
where a; are those of Lemma 3 (differential equation condition).

(H3) Let v = (Uy,Ugy +++,u,) €eCHRAUE)NCHD),(m =k <2n—1,m=2)
and satisfy in Q

(4.13) Ugy + Uy + BEu =0

where E is a constant n X n matrix for which
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1, 0, eee, 0
By (B, cory (B)in (differential
(4.14) 4, = | (EDyy, (EYyp oo, (B |[#0 equation
condition)
(E" iy (B gy = ooy (B

where (E*);; is the 1j component of the k™ power of E.

(H4) Let u satisfy on the analytic arc £ the boundary conditions
(4'15) pal(z’ Dz, Dy)ul = fa(z) ’ a = 1, 2,-e0ym,
where

pal(zy &, 77) = ot z}; o pﬁ(z)sr‘}?s ’

ssk<

with pL(z) and f.(2) analytic in 2U k£ U Q. Moreover if P.(z,é&, 7)
is the principal part of P.(2, &, 1) (as polynomial in & and 7)), we
assume for
-Denwlpu(zy Sy 77): -Den—Z-DvyPny R Dr;n_lpu
D%_lpm ,DnszPu"'yDn_lpl
dee =] .( ) o P M )
Den—l nl( )705 —ZDﬂPnly .._,Dnn-—lpm

that for ze QUEULR

(4-16) AZ = AZ(Z, Ey 77)6=1,v=i = 02
and
(4.17) ds = A2, &, Ne=r,p=—i #* 0° .

Then u = (U, Uy, =+ -, )" can be reflected across the boundary con-
dittons (4.15) imto 2 U k£ U 2.

Before proceeding to the proof of Theorem 2, we shall state
Theorem 3, which deals with the case £ = » — 1, since the proof of
Theorem 3 follows the same lines as the proof of Theorem 2. Only
in the proof of Theorem 3, Lemmas 4,5, 4A and 5A are unnecessary.

THEOREM 3. Let £ be an analytic arc of the type described in § 2.
(H1*) Let u = (uy, Uy, -+, u,)" € C* QU k)N CYHR) and satisfy in Q

2 These, as Professor Jean Leray has kindly pointed out to me, are conditions on
the behavior of the boundary conditions in the characteristic direction. He has also
proved that Conditions (H1) and (H2) are always satisfied, i.e. they are unnecessary
restrictions.
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Upe + Uyy + Et = 0
where E is a constant n X n matrix for which
(4.14%) 4,#0 (see Th. 2).
(H2*) Let u satisfy on the analytic arc k the boundary conditions

(4'15*) pV(D)u’l = Z p:is(z)D;Dysul = fv(z) ’ v = 1’ 27 A ()

r+ssn—1

where pii(z) and f(2) are analytic in QU kU Q. Also assume in
QUEUR

(4.16)* Az(z, E, 77)5:1,77:1: £ O (See Th. 2 With k =N — 1) .
(4.17)* 4y, &, N)emyyp=—i = 0 (see Th, 2 with A =n—1).

Then u = (Uy, Uy, +~+, u,)" can be reflected across the boundary con-
ditions (4.15%) imto QU k U . Moreover the reflection can be reduced
to quadratures.

Proof of Theorem 2. We first consider (3.16) with A* = B* =
and
9(2) = W*(c, 2) , h(z) = W*(z, ¢)
and get:
U*(z, 2) = h(z) + 9(2) — E[z, 2; ¢, c]h(c)

4.18 s P
( ) — S Rz, 2; t, c]h(t)dt — S R,[?, Z; ¢, 0l9(0)do

where, since it was shown that W*(z, {) is an analytic function of 2
for z in 2 and an analytic function of ¢ for ¢ in £, then k(z) is an
analytic function of z for z in 2 and ¢({) is an analytic function
of ¢ for ¢ in £. From (3.13) and (3.14) and (H.3) we see that
h(z) e CHR U k) and g(2) e CH2 U k).

With the aid of Lemma 3 we get

(4.19) Rz %t c] = EIG(C) — G(®)]a{(t — 2)[G(e) — GERE?

(4.20) Rz %5¢,0]= ”2_1 G'(0)(c — 2)a{(c — 2)[G(o) — GR)}E" .
Let
(ei;u h) = ez;zlhl + efnzhz F oo + ei;mhq. .

Then the first component of (4.18) becomes
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(4.21) Uiz, 2) = hi(z, 2) + 9i(2, 2) — {R[2, %; ¢, ]n(C)}1s: component
where

@22) B0 =@ - GO 5 | @it — DGOHe], he)at

with
GI(C) - G(C) - G(C)
and
* _ _ _ 7=l (¢ (i _
(4.23) 97(2,8) = 9:(§) — (¢ — ?) gf) Sca(] {(c — 2)[G(6) — GOI

X G'(0)(ef,9(0))do .

Note that A (z,{) is analytic for (z,{) on 2 ><AQ and ¢ C"[(A.QU K) X (AQU £)]
and that g (z, ) is analytic for (z,8) on £ x 2 and € C*[(QU k) x (LU K)].
With the aid of Lemma 1, the boundary conditions can be written:

420y TP =2, m(z)(i)”{%aﬁ[@(2)]“’”D,"—’"D;“}- U@z, 2)

+ terms of order I + m <k — 1 in D!DjrU* .

Apply the boundary conditions to (4.21), evaluate on the boundary «,
remembering that on k£, z = 2, and substitute the new funections
hiz,2) and §,(z,2), (0 < j < 2n — 1) where

(4.25) hiz, &) = Déhi(z,2), 92 C) = Dig¥ Q)

with D°f = f, D°9 = ¢g. Thus the boundary conditions become, since
k=n—1, for z on &

7& = 3 or@r{S + Sylarle @Dz 0],
+ terms of order I + m < k — 1 in D}h,(z, 2)
(4.26) + 3 @S + 3G @I DE g O]

+ terms of order | + m <k — 1 in D§,(2, 2)
v=12 .-,

S=2

(2’ indicates we sum when &k = n),

where f,(z) is known and analyticin 2Ux U 2. It should be remembered

that the first two terms (involving only %, and their derivatives) are

analytic functions of z for z in 2 and that the last two terms (involving

only §, and their derivatives) are analytic functions of z for z in £
Rearranging terms in (4.26) yields for z on «:
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S, @G T DE (s, 0]

=2
(4.27) + 2: B -n(G @) DE Gz, C)]g:,
= A(2) + A(2) + Fi(2)
where
A(R) = "]:iﬂ’tm(z)[G'(z)]‘”Dz" a2, C)Lz
(4.28) + terms of order I + m <k — 1 in Dih,(z, C)L

with coefficients analytic in QU kU 2 .

A@) = =3 Bu @G @I DEGu(z, 0],

+ terms of order | + m < k — 1 in D/§.(z, C)L_
with coefficients analytic in QU kU £ .

(4.29) @) = E; PRy e

with A,(z) analytic in 2, A,(2) analytic in £, and B%.(2) and F.(2)

analytic in QU x U 2.

Our next goal is to convert (4.27) into a system of Volterra
integral equations for the n functions D} "h,(2,2),0 <m <n — 1.
On k, the system is to be satisfied and we shall see that they also
have an analytic solution for z in 2 U k. With this in mind we state
and prove two lemmas.

LEMMA 4. Let k=n

(430) @ (@) = Di"Dphi(z, )], = DI 0] 0smsk

and the hypotheses (H1), (H2), and (H3) of the theorem hold. Then

n—1

(4'31) ak—-m(z) = Z S:Kk—-m»r(tr z)ak—r(t)dt + Ck—m(z) ’ n é m é k

r=0
where K,_,..\t, 2) are analytic for t and z in QU &k U 2 and Ci_n(?)
18 analytic for z in QU Kk U Q.
Proof. Since the a;(¢) occuring in (4.22) are entire functions,

the following Taylor’s expansion with remainder is valid:

aP[(t — 2)G.] = Pooslt — 2) + Rjualt, 2)
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where p, (o) is a polynomial of degree n — 2 in ¢ and

. Gl'n—l ¢ . n—2 n —_
R, st z)_mgz(t o) —aP[(o — 2)G.ldo .

Introducing this into (4.22) and interchanging the order of integration
for the remainder yields:

B 0 = @) — GO S, a0 e, he)at
- @0 ' - 2, hepat
- 5760 Z PO ¢ — 2(et, hitndt — ---

1 n—1 = (n—1 i _ n—2( 7
_(7%——55!—(;1 (C)%ai )(O)Sc(t 2)"%(ed, h(t))dt

1 " n—1 (z . B
O L | arle - 26,01

. (S:(a — sy (e, h(a))do)ds )
Next let

B,2) = —=— S air(0)ed, h(2)) l<r<n—1
(r — 1) i=o

By(2) = hy(2) .
Then, since by assumption
1 Qoeveees 0

e
a’.() #0, 0<j<n-1

det
a1(0)
we can invert the system of equations and get

(4.31.4) (ef, W) = 5 0,.B,(2),

where (b;,) is a constant matrix. Thus the expression for A can be
written:
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hi(e 0 = B — G(O| Butyat

— G| ¢ - 2Bwat - -

(4.32) — Gln_l(C)S:(t _ z)n_z «n_l(t)dt
1 e
t oGO 8 [ ele - 2601

(g(a — s)"“2j§=]_:b,~TBr(0)da>ds )
Next we let
Fy(2) = By(2)
Fuo) = —{'¢ — 2 B.wat
and thus
(4.324) Fi"z) = (—=1"(r — D! B,(z) .
Introducing these into (4.32) gives
1, ©) = Fi@) + GOF(R) + GUOFR) + -+ GO F,_.(2)

1 n n—1n—1 . (—1) (* . B
* GO B B b )4 — 260

. <S:(o' — s)”—ZF,")(a)da>ds .

Consider now for 0 < m < k

Di="D¢hi (=, C)Lz = OB {*"™(2) + DI[G(R)]F*~™(2)

+ DIGIRIF ™ (2) + -+ + DG () 1F5™(2)

L% S, (=W Df“"‘S:Dé"{G{”(C)

(n—2) == " (r — 1)
al(s = DGO | Fir(0)( — sy=do)as),

(4.33)

where 6, is the Kronecker delta. Since

Ek—m+r—m—-2)—2k—-m+mn—-—1)—m—2)—2
=k-m—-1<k—m,
Ek—-m—-—r+n-2)+1Zk—-m—-—-(n—-1D)+@n—-2)+1=k—m,

the last term involving the integrals is of the form:
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n—1

(4.34) 5 S:Kr(t, QFEm0)dt + Con(2)

r=0

where the K,(¢,7) are analytic for ¢t and z in QU £ U 2 and C,_,.(2)
is analytic for z in 2 U £ U £. This follows since »r <% — 1 and 1.

Tq—%—-_l—z—)'S:Fr‘”(G)(a — )" *do

— (—1)r—k+m SSF,”‘""‘)(O')(O' . S)k—m—r+n—2d0. + C,.*(S)
[k—m—7r+n— 2]

if k—m>0 or, if tk—m =0 and »r<n — 1, where C}(s) is a

polynomial in s. The only difference in the case k —m =0, r=n —1

is that the integral on the right side is replaced by F,_.(s). And
since 2.

S:K*(s, z)(S:FT"‘“’”)(G)(a — s)‘da)ds = S:K**(s, ) F =" (o)do

where K**(s,2) is an analytic function of s and z (since K*(s, z) is)
for s and z in QU kU Q. The last integral follows from integration
by parts I + 1 times.

Thus by the definition of «,_,(2), (4.30), (4.33), and (4.34) we get
for0<m=<k

Un(?) = 0o ¥ (2) + DGRV (2)
+ Dzm[Gf(z)]thk—m)(z) e Dzm[G1n_1(z)]F7E[iIm)(z)
+ 3 Loatt, OF (00
+ Cin(?)

(4.35)

where for ¢,2e QUEUD, L, ,_.(t, 2) and C,_.(z) are analytic.
Next we consider for 0 < m<n —2<k

¥ = __._.]_'___.___ : _ n—m—2
= 5m0F0(k—(n—x>)(z) + Dzm[Gl(Z)]Fl(k_(”_”)(z)
(4.36) + DGR FE=(z) 4+

+ DG (2)IF 5 ™(2)
+ 5 Ssz_m,xt, AF = =0(t)dt + Ri_n(2)
r=0 Jec

where we have integrated by parts n — m — 1 times. R,_,.(2) and

L,_., are functions analytic for z,¢ in 2UxU£. For consistency let

Al (@) = @ y(?) and R,_(,_) = Ci_(ny(?), Lk—(lt—l),r = Ly p—tn—n-
Since by hypothesis we have for z in QU kU 2
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1 G- Gt
42| =|° # 0 l=sm<n-1,1<v=<n-—1
4z:- b :m.:n_’:::n——'

: DG (2)

0

the above system, coupled with «,_._,(2) in (4.85) can be written as:

Fl=a-0(z) = 4742)A*(2) — A;‘(z)SzL(t, 2)F=0)(t)dg

4.37)
— 47Y(2)R(z)
with:
( Fo(k—(n—l))(z) \
Frie-=)(z) = Fli==0)(z) ’
\ Pt
* !__1_ ? — n—2
( 4:(2) e~ Ot
* 1 2
A*z) = | Af® | = mgc(z — O, (t)dt
\A;c;—m—l)(z) / \ ak—(n—-l)(z) )
0<Lr<n—1 columns
L(ty Z) = (Lk——m,'r(t’ Z)) {
E—n—-—1=k—mZk rows

E(z) = (Bu(2), Bi1(2), +++, Biu0s(2))" .

We consider (4.37) as a system of Volterra integral equations and
obtain its solution in the form:

F=e-0)(gy = A7 (2)[A*() — R(z)]
(4.38) _ A;l(z)gz['(t, AT (OIA* () — R@)1dt

where I'(t,z) is the resolvent matrix which is an analytic funetion
of t and z for ¢t and z in QU U 2.

Now we are in a position to express «,_,(z), » < m < k in terms
of a, .(2),0<m <n—1. To this end we consider (4.35), which is
valid for 0 <m <k and combine with it the integrated expression
of (4.38):
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Fo-@) = (Tiut, 940t + B*@) nSmsl

where I'} .(t,2) is analytic for ¢ and 2z in QUkUH and R*(2) is
analytic for z in 2 U £ U £. This combination gives:

439) .0 =3 S'F:,;t_m@, DALt + Bi%(), n=m<k

r=

where R} *,.(2) is analytic for z in QUEUQ and I'}%_.(t, 2) is analytic
for t and z in 2UkUQ. But from the definition of A} .(2) in (4.36)
for 0<r=<n—2and A} () = ®_,_,(?), we get the result upon
integrating (4.39) by parts if necessary.

Thus Lemma 4 is proved.

With the notation and assumptions of Lemma 4, we next state
and prove:

LEMMA 5. For l4+m<k—1

(4.40) DU, c)]g - ?;0 S:I?,,tm,,.(t, D ;(O)dt + CF.(2)

=2z

where I?,,*_,,,,j(t, z) are analyticA for t and z tn QU kKU 2 and CEn(2)
are analytic for z in QU kU 2.

Proof. In the notation of Lemma 4, since l + m <k —1
~ k—l—m . _ . ~
DD, s = 3, (° 7 5T ")DEDI D, 0|
0
k—l—m k — . o~
= (LT M D6, 0

- m)ak_m_j(t) :

2=6=1

z=8=t

Thus

t

k-1 —lm — 1! Sc
+ polynomial in (¢ — ¢)

= 5 [ Bt nsts, Do)t + Catt

=0 Je

Dlln(#, 0)img=s = (t — sttt

with Ci.,.(2) analytic for z in QU kU 2, K¥...;(¢, 2) is analytic for ¢
and zin QU kU 2 and where we have made use of Lemma 4 and
the fact that if » = 0 then
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1
r+1

Szdt(z - t)fS’K(s, B, (s)ds = S’(z — K, . ()dt
for the case when m + j = n. Thus the Lemma is proved.

We are now in a position to continue the proof of the theorem.
Combining (4.28) with the results (4.81) of Lemma 4 yields:

n—1

46 = 8 [ K¢, 9 tyat

J=0
(4.41) + terms of order Il + m <k — 1 in

Dihn(z, {)e—, With coefficients analytic in QUrU2 ,

where K%*(t, z) are analytic for ¢ and z in QU U 2. With the aid
of Lemma 5 applied to the second term on the right we get:

(4.42) A = 2;: S:Km(t, 2, (t)dt + C.(2)

\Ehere K,;(t, z) are analytic in ¢ and 2z for ¢ and z in QU £ U 9, and
C,(?) is analytic for z in QU £k U Q.
Finally, we combine (4.27) and (4.42) and get for z on «:

(4.43) B(20E) = | K, po@®dt + (),

where g*(z) is an analytic vector function for z in £ and in C(Q U k)

K(t,2) = (K.a(t, 2) ,
D(2) = ((2), Ap_4(2), =+ +, Wp_yia(2))",
Boz) = (Bi G R]™) ,
m designates the column, v the row.
0<mssn—-1,1<v<n.

But from (4.29) we see that

2 (Wragtpii(z), 3 ()altpl, eee, 3 (0 il
r+s=k r+s=k r+s==k
S Gyarpi@), S @arpi, e, 3 0Ly

]ny(z)| — |r+s= r+s=k r+s=

> @rarpii(z) , X @) alpi, o-e, X (D) anipn
r+s=k r+s=k r+s=k
where by definition of af
r+s
(@ + by(@ — by = 3, ayar+=br
£=0

and by definition
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Puz, &) = X p(R)ET

Thus if ¢ = & + 7, £ = & — 57 then
Pafe, &) = 27 3, () pi@E + O — O

and

Dngl(zy Ey 77) | 1 = jlz—j’rz (i)sa;:!p:f(z) h

=
=1 +s=k
Pll(z’ E: 7])) (DE - ?:Dv)Pn(z’ 57 7])’ ct Ty (DE - ?:D”)n—lpu(z’ Ey 77)
_ C le(z’ 5’ 77): (DE - ?:Dﬂ)Pm(z’ S’ v)v *t Ty (DE - ?:Dﬂ)”—lpm(zy E} 77)
Pnl(z: E) 77)9 (Dé - iDv)Pm(zy E: 7]): M) (Df - iD??)n_lpnl(z’ E: 77) 5§i

with C, =112l ... (n — 1)!
Since P,,(z, £, ) are homogeneous polynomials in (&, 7) of degree
k, we see from Euler’s formula that

(€D + nD,)'P,(2, &, M) = k'P,(2,&,7) .
Thus
| BE.(2) | = ()==C, | (6D, + 7D,)" "D, — 7D,)'Pou(z, £, 7) |§:i # 0

if and only if 4,2, &, %) le=1,7=: # 0. This follows immediately upon
writting the determinant as a sum of determinants. Thus we have

|84(2) | = [G'()] "0V | BEu(2) | = O°
for z in 2 U £ U 2 by assumption (4.16). Thus

(4.4 06) = £7@| Kt 900) + 67@)e"(3) -

We now consider (4.43) as a system of Volterra integral equations in
&(z) for z in @ Uk, As such, this system has a unique solution
vector @,(z) which is analytic for z in 2 and continuous for z in 2 U &
and moreover agrees with @(z) for z on k. Thus @,(z) furnishes the
analytic continuation of @(z) into Q U . Thus &(2) is analytic for z
in 2U kU Q. From the definition of @(2) in (4.43.A) we see this yields
the analytic continuation of a,(2), a,_,(2), «++, @y_n+:(2) into QU £ U 2.
But by (4.36), the definition of A*(z) and (4.38) we get the analytic
continuation of F*~-(z) into QU &k U 2. By integration, we get
the analytic continuation of F(z) into QU U 2. (We adjust the

3 Professor J. Leray pointed out to me the relation between ﬁf,, and 4(z, & 9)5Z5.
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constants of integration to agree with F(z2) and its derivatives at
the point ¢ of the boundary; this gives uniqueness.)

Upon differentiating F;(z) and using (4.32A) and (4.31A) we get
the analytic continuation of (ef, h(z)) into QU kU 2. However by
assumption (4.14)

4, =

1 0.-- )
l # 0, 1<j<<n-1.

ef

!

Thus we get the analytic continuation of h.(z), hy(2), - -+, h,(2) into
QueUfL.

In a completely analogous way, we can show how to analytically
extend ¢.(2), 9;_.(?), - ,gk_(n_l)(z) into QUEU S, knowmg initially
only that they are analytic in 2 and continuous on £ U x. In this
direction we first note that we have:

LEMMA 4-B. Let k=n
(4.30B) ai_,(2) = DE"Drgi(z, ) = DE"Fa(2, 2) , 0=m=k

and the hypotheses of the theorem hold. Then

(4.31B) @) =S S R (t, Dt ()t + Con(2)

r=0

where I?,,_,,‘,T(t, z) are analytic for t and z in QU k U 9 and é'k_m(z)
1s analytic for z in QU £ U 2.

Proof. The proof of this lemma is the same as that of Lemma
4, with only obvious modifications. In place of the expression for the
Taylor’s expansion for a; about ¢ = z we start with the expression
for the Taylor’s expansion for a; about G,(¢) = G({) and integrate viz:

6@ 0 = 0.0 — ¢ — 9 5,000 G o)et, a(o)do
— (¢ - 95 O\160) - GUIE©), 90N
- Mz 2?0 16(0) ~ GOTE @), g(o))do — -
g @ " 5 [aIGe — 6 —
({166 - o6 ©\et, a@)do)ds .

In place of B,(z) we introduce:
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B0 = o= S0«

EO(C) = 9.(0)

and the expression (4.32) becomes replaced by:

6, 0) = B(Q) — (¢ - A Bi0)G(0)do

~ (¢ = | BolG(o) — 6016 (0)do

~ (¢ - | B@G(0) - GOFE (0o - -
Also F.(z) is replaced by
7 = -[160) - 6016 B (o)

50
F@© = (=17t = DHEQ B
- 'Dr16(o) - GOI6(@)B 0)do .

Considering these as Volterra integral equations for B,({), we can
solve, since G'(¢) + 0 in QU kU £, and get:

B.(©) = (=1 [T F(©)

(r —1)'
+(=1y

GO [, OF @

where Q;r(a, {) is the resolvent which is analytic for ¢ and ¢ in
QUkUL. Thus

wma=ﬁm+w—aﬁm+w—@%@
R () L J (4

_ . nn—ln—l ( 1)1-
(n_z)v( ?) 2_:'0 TZI‘O(’)" 1)! bir

(4.33%) . Sfa;’”[(G(s) — G(Q))(¢ — 2)]

(|16 - G116 @1
. {F’;”(a) + S:QT(T, 0)F'§”(7:)dz‘}d0>ds

and for0<m=n-1
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atu() = DE"Dror(z, 0]
= (=1pml Fg=(Q) + (-~ E e - aFam ()
R e R e el (@
(4.45) [n—1—m]!
+ 3 5 ppr{lasDrice — 9me 166 — GONe — A

F=0 r=0

- (160 - 6@r-60)
. {F’,‘”(a‘) + S:Q”(T’ G)F’,‘”(z')df}do]g:z) .

Since
r—[fn-2)—k-m-D]=k—-m,

the last term can be written
n—1

(4.46) S [Pz 0.0, o

r=0

where Qp.,..(c,) are analytic functions of ¢ and ¢ for ¢ and ¢ in
QU kU 2. Introducing (4.46) into (4.45) gives an expression of the
same form as (4.35). We now proceed exactly as in Lemma 4 and
find that:

447y Feewg) = S’f;;_m(t, DA ()t + R*@) , nsm<k,

where
F-m) = (B, FF (), -, Fm(@)
2@ = ({@ — trazvat, [ — oraodt, -, ato (@)
and (¢, 2) is an analytic function of ¢ and z for t and zin QU kU £
and R*(z) is an analytic function of z for z in QU kU 2. But for

nEmZk,0<r<n—1, we have r—[n—-2)—(k—m—1)]
k — m, thus (4.45) becomes replaced in this case by

at-ul?) = DE"DPgH3 0|

= ﬂz——l Sgﬁ;k—M)(a)Q:fm,r(o‘: Z)da ! " § n é k ’
r=0 Je

where @;j“m,r(a, z) are analytic functions of ¢ and z for ¢ and 2 in
QU kUL, Combining this with (4.47) gives the result.
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The condition 4,(2) = 0 is unnecessary in this lemma since the
corresponding condition is:

4, = (=1)re=01221 81 vos (m — 1)1 £ 0,

Next we note that we have

LEMMA 5-B. For l+m<k -1

n—1 "z =~
@38 D@0 = | Kt ai0dt + Cta@)
=2 J=0Je

where I%:‘_m,j(z, t) are analytic for z and t in QU Kk U 02 and 5,i‘_m(z)
1s analytic for QU kU L.

Proof. Same as Lemma 5 using Lemma 4-B instead of Lemma 4.

As in the case of (@.(2), a;_,(?), -+, a;_,4.(2))7, we get analytic
extension of (a}(2), af_,(2), -+ -, af ... (2))" into 2 Uk UL which are
analytic initially only in £, and continuous on 2 U&%. The only
difference is that we use the fact that 44z, &, %) ;== 0 on
2U £ U 2 whereas in the extension of the s we used the fact that
AZ(Z, 57 7]) |€=1,77=i + 0 on ‘Q Uk U Q- -

In an analogous way we get the analytic extension of F*—"1(z)
into 2 U £ U 2, which in turn gives the analytic extension of B,(2)
into 2 U x U 2, which finally gives the extension of (e, 9(2)). Since
by assumption 4, = 0 this system yields the analytic continuation of
gl(C)! gz(C)’ Tty gn(C) into QU £ U 2.

Upon introducing the extended vector functions 4(z) and g¢(z) into
(4.18) we get the extension of U*(z, 2) for z in 2UxU2, which was
given originally only for z in 2U«k. And thus, the solution of (4.13)
has been extended across the boundary conditions on £ into QU U 2.
This completes the proof of the theorem.

5. Applications. (A.l) Consider the situation where we are
given a solution to the differential equations

(1.1) Uoy + Uy, + AU, + Bu, + Cu =0

where (u,, Uy, -++,u,)", A, B and C are pairwise commutative constant
n X m matrices in a simply connected open region 2 of the type
described in 2, part of whose boundary is the analytic arc x, and on
£ satisfies

U }Ii = (@1(2), @2(2), ) Qn(z))

where @,(2), - -+, P,(2) are functions analytic in QU £ U 2. Moreover
let we C'(2U k). Then by Theorem 1 we can uniquely extend the
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solution % into 2 U £ U £ so that it is a solution in this large region
and is the only one that satisfies the given conditions provided 0 s
| M,,,| where

00 00 00
Dy Pizc*° Din

Mo,o -
pg‘ol ...... pgo
In this case
" 0if ¢ %3
Yo1ifi=3

Thus | M,,| = 1 # 0 and reflection is possible.
(A.II) Theorem 2 is suitable for systems of equations of the form:

iPz‘j(d)ui:O 1=1,2+--,m

where the P;; are polynomials with constant coefficients and 4 is the
Laplacian, e.g.,

Au, + adu, + bu, = 0
Lu, + cdu, + ddu, = 0

for which if

(wly w2y w3y wu wb)T = (uly Auly u’z: Auz, Azu’z)T

then
0-1 0 0 O
0 b 0 0
E=}]0 0 0-1 0
0 00 0-1
0 d 0 ¢ O

(A.III) When the arc £ is a portion of the x axis, then condition
(H.1) of Theorem 2 is automatically satisfied since then G(z) = 2z and

-1 —-2(c—2 —3(c—2)F¢--- —(n — 1)(c~— 2)"*

0 21 3.2(c—2) --- (n — 1)(n — 2)(c — 2)**

4()=| 0 0 -3! cor (0 — D(n — 2)(n — 3)(c — )~
0 0 0 .. +(n — 1)l

=128l ... (m - 1! = 0.
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(A.IV) When we consider systems of the form:

Au’l = ApUy + Gl
du, = anu;, + a,u,

—Qy O
B- ( )
—Qy Oy
and condition (H.1) of Theorem 2 becomes G'(z) = 0 for 2 U £ U £ which

is automatically satisfied because of our initial restrictions on G(z).
(A.V) Given that u, is a solution of the metaharmonic

a;; constants

then

equation
(5.1) A" u, + o 4"y + oo + @, du, + au, =0

in 2 where a,, a,, - - -, a, are constants and u,(z, ¥) is a single function,
e C" QR UEYNC™(),n -1k < 2n,n =2 and u, satisfies on k:

(5'2) pzx(D)ul = Tgskpﬁ(z)D:D;ul = fa(z) o= 1; 2: e, M

where the p7:(z) and f.(2) are analytic in QU « U 9. Assume that &
is suech that (H.l) is satisfied. This equation can be written as a
system by letting wu, = du,, u; = Au,, »-+, %, = 4"'u, and equation
(5.1) is equivalent to the system

B 0-1 0 0.--0 O Uy
0o 0-10.--0 O Uy

4+ =0
0 0 0 0...0 -1
8 Uy Qpy coeoee a, a, u,
Thus
0 010 0 0 \"*» 0 <0 (=1
0 01 0 0 *a,ta,, +a,
E: = : yeee, B = .
—Qy Oy s —O

and in this case (4.14) becomes.
1 0 0 O0---
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which means 4, # 0 is not a condition in the case of the metaharmonic
equation. Thus if 4, #0 and 4, 0 for zin QUK U 9, as given by
(4.16) and (4.17), and if the a; are such that (H.2) is satisfied then
we get that u, can be extended into 2 Uk U 2.

To get some idea of how we check condition (H.2) consider the
example

Au+ 34u + 20 =0 .
To determine a,(s) and a,(s) of Lemma 3 where

(N, 8) = ay(s) + a(s)n,

note that
[E—-A|=MN-3+2x=0n—1)A—-2)
and thus
(1, 8) = ay(s) + a(s) = J(,[]/_S-] ’
D2, 8) = ays) + 2a,(s) = J[1/2s] .
Thus
a,(s) = Jo[l/%] - JO[V—S—] ’
as(s) = 2J [V s | — J[V2s].
Thus

10
Biz, Git,0) = ait - 216(0) ~ 60N |}

0 -1
+ af(e - 26) - GO, N

and the representation of the solution (4.18) becomes:

Uz, 2) = h(2) + 6:3) — a{(c — 2)[G(c) — G(B)]}hu(c)
+ a{(c — 2)[G(e) — G(2)]}hs(c)

— 16() — G@N[ [a{(t - 2IG(0) — GEh(D)
— ai’{(t — 2G(e) — G(E)(t)]dt
— (t - | [aPc ~ 2U6(0) ~ G@ao)
— ai"{(c — 2)[G(0) — G(2)}Hg.(0)G'(0)do .
In this case, the condition (H.2) becomes:

1

0 ' — a(l)(O) = ___1_ B3 0
a0 e ’

4
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and is thus satisfied. Note that in this example (H.1) is also satisfied,
since as a special case of (A.IV) it is simply G’(z) = 0 for 2 in QU £ U £,
Note that the polyharmonic equation is a special case of the

metaharmonic equation.
(A.VI) It is of interest to note that in the case of the polyhar-

monic equation viz. 4"u = 0, E is of the form
0-1 0 0--- 0
0O 0-10--- 0

Nk
0O 0 0 0..--1
0o 0 0 0--- 0

Thus E” = 0 and the Riemann function is only the finite sum:

R[Z, (', 2, (] = J[2V E(z — 2°)(G(C) — G())],

where

Q1=I1-91+ @& _ . L (-1 LA
J(,[]/Q] =TI 92 + 24(21) +(=1 220-B[(n — DI )

Note that the a,(s) of Lemma 3 are given in this case by
a;(s) = (—1)27%(51)7%7, 0=s=j=n-1.

Thus condition (H.2) is clearly satisfied automatically, Thus for the
representation (4.20) of the first component

@(z 2) = @) — 5, 160 — GAF| (¢ - 9 hy(B)dt

(5.3) . .
+ 0(®) = 3 bile — 2| GONGO) ~ GEg.(0)do
where
bj = ——}f—- .
25 (g1

Let

P,(2) = —jb,-gz(t — ()t i=1,2,-,m—1
(5.4) ’

Ti() = —i%] F0I60) - CEV-gsulo)o, G=1,2m 1

and

Puz) = hf(z) ,  ¥(Z) = 9i2),
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then the representation (5.3) becomes:
(5.5) w\(z, 8) = :g)[G(c) — GB)Pi2) + :2,)(0 — T LB)

which is an equally good representation since the h’s and ¢’s can be
obtained simply by differentiation of the @'s and ¥’s if we utilize
(H.1). This is a generalization of the representation formula of the
author [8] for the biharmonic equation.

(A.VII) Next we shall check that the results of [8] for the
biharmonic equation are a special case of Theorem 2. In this case
Su=0,1<k<38,a=1a*=—k a*'=—(k—2), > = —(k—4),
ar* = (k—2r) = r —s. Thus condition (4.16) and (4.17) become the
same; viz.:

Zk(i)"p{f(z) >, (@) (r — s)pii(z)

r+s= r+s=k

0+£4,=4,= . ‘
r+;:k (%)sp;s(z) T—ék (@)S(Ir — S)Z);ls(Z)

which is precisely the condition of [8]. As seen in (A.IV), (H.1) is
satisfied and as seen in (A.VI), (H.2) is automatically satisfied and as
seen in (A.V) 4, 0. And in this special case our theorem reduces to
the theorem of [8], but with the continuity requirements strengthened
by insisting that u e C**(Q U x) N CYQ) instead of only

ueCHRUK) U CH2) N CHR U k)

as in [8].
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NONLINEAR ELLIPTIC CONVOLUTION EQUATIONS OF
WIENER-HOPF TYPE IN A BOUNDED REGION

But AN Ton

The existence of a solution of a nonlinear perturbation
of an elliptic convolution equation of Wiener-Hopf type in
a bounded region G of R is proved. More explicitly, let A
be an elliptic convolution operator on G of order «,« > 0; A;
the principal part of A in a local coordinate system and A (x4, &)
be the symbol of A; with a factorization with respect to &, of
the form: Az, &) = Af(x9, £)A7(xi, &) forzl =0, Af, A7 are
homogeneous of orders 0, « in ¢ respectively; the first admitting
an analytic continuation in Im &, > 0, the second in Im &, < 0,
Let T:, k=0, ---,{a] —1 be bounded linear operators from
HY(G) into LXG) where Hf(G), k= 0 are the Sobolev-Slobo
detskii spaces of generalized functions,

The purpose of the paper is to prove the solvability of:
Aus + 22U = flx, Toths, + -+, Trag—1%+) on G Ut in H*(&) for
large | 2| and on a ray argz = 6 sach that A; + 22 =0 for
|1+ 12} # 0 and for all 7, fz,&, - -,%-1) has at most a
linear growth in (&, -+, {.—;) and is continuous in all the
variables,

Linear elliptic convolution equations in a bounded region for arbi-
trary « and with symbols having the above type of factorization (» = 0)
have been considered recently by Visik-Eskin [3]. Those equations
are similar to integral equations since no boundary conditions are
required.

The notation and terminology are those of Visik-Eskin and are
given in § 1, The theorems are proved in §2.

1. Let s be an arbitrary real number and H*(R") be the Sobolev-
Slobodetskii space of (generalized) functions f such that:

Il = @+ 1ep 1@ < 4o

where f(¢) is the Fourier transform of f.

We denote by H®(R"), the space consisting of functions defined on
R: = {x: 2z, > 0} and which are the restrictions to R} of functions in
H*(R"). Let If be an extension of f to R", then:

| AF1F = ”f”li“’(R'f‘,_) = inf |

The infimum is taken over all extensions If of f.
The Hf = {f.; fi(®) = f(2) if x, >0, f € L¥(R"), f1(x) =0 if x, < 0}
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and similarly for IQI“.

We denote by H, the space of functions f, with f, in I:T;f and
fr€e H(R%) on R~.

ISI;* is the subsp%ce of H*(R") consisting of functions with supports

in cl (R*). Hi, H,  H denote respectively the spaces which are the
Fourier i1~nages of Hi, H*(R"), H}. 5

Let f(&) be a smooth decreasing (i.e., |f(&)| < M|é&, |~ for large
|€,| and for some & > 0) function. The operator [+ is defined as:

I+ 76) = 27@) + iemvp. | Fe, 706 — n)-dn,

where & = (&, ++-, &.0)-

For any f, then the above relation is understood as the result of
the closure of the operator [[* defined on the set of smooth and
decreasing functions.

II*+ is a bounded mapping from H, into HY if 0<s < 1/2 and is
a bounded mapping from H, into H: if s = 1/2.
Set: &_ =&, — 1| & |; (6_ — 1)* is analytic for any s if Im &, < 0 and:

FIE = 1T (6= — 9)°TLFE) |lo

where If is any extension of f to R" (Cf. [3], p. 93 relation (8.1)).
Let G be a bounded open set of R" with a smooth boundary. H*G)
denotes the restriction to G of functions in H*(R") with the norm:

[ [ls = inf || v || zszm; v=uonG.

By H:(G), we denote the space of functions f defined on all of
R*, equal to 0 on R"/cl(G) and coinciding in ¢l G with functions in
H(G).

DEFINITION 1. A(£) is in 0, if and only if:
(i) A(¢) is a homogeneous function of order « in &.
(ii) A is continuous for & == 0.

DEFINITION 2. A.(£) is in 0} if and only if:

(i) A.() is in O,.

(ii) A.(&,¢&,) has an analytic continuation with respect to &, in
the half-plane Im ¢, > 0 for each &',

Similar definition for 0;:

DEFINITION 3. A is in E, if and only if:
(i) A4 is in 0,.
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(ii) A@) =0 for & # 0.
(iii) A(&) has, for & = 0, continuous first order derivatives, bounded
if |&]=1, &+0.

DEFINITION 4. A(x, £, &,) is in D? if and only if:

(i) Az, &) is infinitely differentiable with respect to « and &
§+0.

(ii) Az, &) is in 0, for x in R

¢ 5 . % . ot

(iil) a(x) = Za?)-k—A(x, 0, —1) = (—1)*exp( MM)W Az, 0,1)
xin R0 k| < o5k =(ky o, k).

DEFINITION 5. Let A be a bounded linear operator from H; into
H**(R"). Then any bounded linear operator T from H}_, into H*~*(R%),
(or from HY into H*—**'(R")) is called a right (left) smoothing operator
with respect to A.

T is a smoothing operator with respect to A if it is both a left
ane right smoothing operator.

Let A(¢) be in 0, for &« > 0. For u, in Hf, s >0, with support
in ¢l (R"), set: Au, = F(A(&)i,(€)) where F~' is the inverse Fourier
transform. It is well defined in the sense of generalized functions.
A is a bounded linear operator from H} into H*—%(R").

Let A(z, &) be an element of E, for each # in ¢l G and A(z, &) be
infinitely differentiable with respect to 2 and &. Since G is a bounded
set of R", we may assume that G is contained in a cube of side 2p
centered at 0. We extend A(z, &) with respect to = to all of R" by
setting A(x, &) =0 if |x|=p —¢ for ¢ > 0. We get a finite funec-
tion, homogeneous of order a with respect to &.

We take the expansion into Fourier series of A(z, £):

Aw, ) = 3 ) exp [(inka)/pl L) ; k= (ko k)
where:

Lo = o ||

exp [(—iwkx)/plA(e, &)dx
Yo@) =1 for [2| = p — & o(®) =0 for [x| = p; yo(x) e C(R"). We
have: | L. (&) < C|&|*(L + | k])~* for arbitrary positive M. Let u, be
in H:(G), we define:
(L.1) Au. = 3 y(@)lexp (skam)/p)| L,

where L,u, = L,u, is defined as before since I,(¢) is independent of x.
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Denote by P+, the restriction operator of functions defined on R*
to G. We consider an elliptic convolution equation of order «, on G
of the form:

(1.2) P+Au+ = Z P+@JA1#]’LL+ + T’M+

T is a smoothing operator. The ¢; is a finite partition of unity cor-
responding to a covering N; of ¢l G with diam (V;) sufficiently small.
The +; are in C7(R™) with ¢;4; = ¢; and supp (v;) & N;.

Suppose A e D¢, then the operator ¢,Aq+; taken in local coordinates
may be written as:

PAY; = ;A + T;

where A; is a convolution operator of the form (1.1) and T; is a
smoothing operator (Cf. [3] Appendix 2).

2. The main result of the paper is the following theorem:

THEOREM 1. Let A be an elliptic convolution operator on G, of
order a >0, and of the form (1.2). Suppose that:

(i) 4@, &eE,nD.

(ii) A, &) has for i = 0 a factorization of the form:

Ajad, &) = Af(ai, &) A7, £)

where A €0;f; A7 €0; for all #'e N; N G.

(iii) There exists a ray argh = 0 such that A @, &) + 1A= #0
Jor [&]+ N 0,27eN;NG.

Let f(x, Loy +++, L) be a function measurable in x on G, continu-
ous tn all the other variables. Suppose there exists a positive con-
stant M such that:

{a]—1
£, G -y G | S ML+ 5161

Let T; k=0, .-+, [a] — 1 be bounded, linear operators from HEG)
into LXG). Then for |N| =N, > 0;arg \ = @; there exists a solution
w in HXG) of:

PHA + Nyuy = f(@, Tothey =+, Tragathy) on G.

The solution is unique tf f satisfies a Lipschitz condition in

(CO) ct ety C[a]—-l)'

To prove the theorem, we shall do as in [2]. First, following
Visik-Agranovich [4], we establish an a priort estimate and show the
existence and the uniqueness of a solution of a linear elliptic convolution
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equation depending on a large parameter in a bounded region. Then
we use the Leray-Schauder fixed point theorem to prove Theorem 1.
We have:

THEOREM 2. Let A be an elliptic convolution operator, of order
a > 0, of the form (1.2). Suppose that all the hypotheses of Theorem 1
are satisfied. Let fc L¥G); then there exists a wunique solution wu,
in HXG) of:

PHA + 2 Yuy=fon Gy [N =2 >0 argax =0 .
Moreover:
Hws fla + IN*Nwsrllo = M| Fllo

where M is tndependent of \, u,.

Proof of Theorem 1. Let v be an element of H#(G)and 0 < ¢ £ 1.
Consider the linear elliptic convolution equation:

P+(Au+ =+ )“au+) = f(xy tT(ﬂ), ] tT[a]—llU) .

With the hypotheses of the theorem, f(x, tTw, «--, tT(,y_v) is in
L¥G). It follows from Theorem 2 that there exists a unique solution
. in HXG) of the problem,

Let .27 (t) be the nonlinear mapping from [0, 1] x HXG) into HX(G)
defined by .97 (¢)v = u, where %, is the unique solution of the above
problem,

The theorem is proved if we can show that .o~ (1) has a fixed
point.

ProposITION 1. .o7(¢) is a completely continuous mapping from
[0, 1] x HXG) into HXG).

Proof. (i) .&7(t) is continuous. Suppose that ¢,— ¢ ¢, ¢t in
[0,1] v,— v in HY(G). Set: w, = . (t,)v,. Then from Theorem 2,
we get:

H Uy — u’”a = M||f(', tnTovm ) tnT[a]~lvn)
- f('y tTOv, i ')tT[a]—lv) ”0 .
It follows from Lemmas 3.1 and 3.2 of [1] that u, — % in HXG).
(ii) o7 (¢) is compact. Suppose that ||v,||l. < M. Then from the

weak compactness of the unit ball in a Hilbert space and from the
generalized Sobolev imbedding theorem, we get:

v,; — v weakly in H{(G) and strongly in H{*(G); 0 <¢,a —e=0.
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Applying the argument of the first part, we get the compactness
of &7 (t).

ProrosiTION 2. I — .97 (0) is a homeomorphism of HZXG) into it-
self. If v = o7 (t)v, for 0 < ¢ < 1; then: ||v]|l. < M where M is inde-
pendent of ¢.

Proof. The first assertion is trivial.
Suppose that v = 7 (t)v. It follows from Theorem 2 that:

HvHa + [)‘la ”,U”() = M”f('y tTo'U, ct ey tTfa]—lv) HO

= M{1 + || [|tar—1} -
It is well-known that:

vl = 12M || v ]la + Cllv]lo .

Taking |\ | sufficiently large, we have: ||v||. < M,. 57 (t) satisfies
the hypotheses of the Leray-Schauder fixed point theorem (the uniform
continutiy condition as in [2] is not necessary). So .97 (1) has a fixed
point, i.e. .7 (Du, = u,.

The uniqueness of the solution in the case f(x, o, « -, {(-1) Satis-
fies a Lipschitz condition in ({y, ++-, {m-.) follows trivially from the

estimate of Theorem 2. We shall not reproduce it.

Proof of Theorem 2. As usual, we consider first the case of the
positive half-space R" with the convolution operator A having a con-
stant symbol.

LEMMA 1. Let A(%) be an element of E,, (@ > 0). Suppose that:
A@E) = A (5)A_(8) with A.(€) in 0F, A_(£) in 0;. Let P+ be the restric-
tion operator of fumctions im R™ to R and A be the convolution
operator with symbol A(§). Suppose there exists a ray argk =0
such that: A@E) + A # 0 for |&] + |N| % 0. If f is in HYRZ), then
there exists a unmique solution w im HF of:

PHA +NYu, =fon R%; [N =X >0,
Moreover:
w2 + N llus T = MALFIS
where M is independent of \, ., f.
Proof. Set A(, \) = A(£) + 1. It is homogeneous of order @ in

(§, \). Since A(£) is in E,, we have the following factorization with
respect to &,, which is unique up to a constant multiplier:
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AE) = A.(HA_©)

(Cf. Theorem 1.2 of [3], p. 95). The same proof with &, =&, + 7|¢&|
replaced by & =&, + ¢(|M] + [€]) and & replaced by:

gL =&, — (N + €D
gives:
AEN) = A(ENAE N .

Moreover:

If A.(¢) is in 0f, then A.(£, \) is also in O, (is homogeneous of
order 0 in (£,\)). Similarly for A_(&, \).

Let If(x) be an extension of f to R". Consider:

Wo(8) = (A& ) T FEAE W) .
For | 1] = 0, #. (&) has an analytic continuation in Imé&, > 0 and:
J13.@, 6 +imrazas =,
C is independent of > 0. So: #.(5)e Hr. (Cf. [3], p. 91).
We get:
fwo|[F = 1TI* (62 — i)“~ﬁ+(5) o o
= G- = 9ALE M) I LAEAE M), -
Since A (&, \) is homogeneous of order 0 in (5, M), we have:
AEN) = AGUE+ D MAET+ M)

Let ¢ = Min | A (5, \)]| for |&]| + |n]| =1,argn = 0. Then ¢ >0
and is independent of \.
So:
e lld = e 12 = ) T LFEHALE M)l
= CHIFEAZE M) e
We may write:

AEN) = (L&l + INDTAG/UET+ IND, MAEL+ IND) .

Let C = Min [A_(§, V)] for [&|+ x| =1,arghn=06. Then C >0
and is independent of .
We obtain:

lus llE < CHFE 1l = CIFIIT

A similar argument gives:
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Nullf = CINTILINT .
So:
up|F + N urlls = CIFIT -

C is independent of X, f, u,.

A direct verification shows that u, is a solution of the equation.
It remains to show that the solution is unique. Let v, be an element
of H. Suppose that v, is also a solution of the equation. Then as
in [3], ¥.(&), its Fourier transform is given by an expression of the

same form as #%.(¢) with i;”(&) replaced by Z/J”/(E). l.f being an extension
of f to R".

Set I,f =If — I.f. Then Lfe Hy, so LfeHy. LASA_(&\)
is analytic in Im &, < 0 for | x| # 0 and moreover:

S \LRE, &, + in) [P | A, &, + i7) [ de'ds, < C

where C is independent of 7 < 0. N
Hence L, 7(6)(A_(¢, M) is in H: (Cf. [3], p. 91), so:

T+ LAOAE_EA)™) =0,

Therefore: A, (£, N)(#.(€) — 7,(8)) = 0.
But A.(& \) = 0 for |[\| =0, we get %, = ¥.. Q.E.D.
Set:

Ay = kgw VJro(x) exp [(thme)/p] L+
A= 3\ @) exp [(ih)/p]Luru
where L., 4, are as in §1,
LeMMA 2. Let A, A, be as above and +(x) be in CP(R") with

(@) =0 for |z — x| > 0;|4(x)| £ K where K is tndependent of o.
Then:

[ (Ar — Adu ||i. = Cofully + CO) {|u iz

Jor all w im H}, s = 0.
Proof. Cf. Lemma 4.7 of [3], p. 119,

Proof of Theorem 2 (continued). (1) First, we establish an a-
priort estimate of the solutions.
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Consider:
Pro;Ayjuy + MNPHpuy) = PHp;f) — Tuy

where T is a smoothing operator with respect to ¢;Av;.

It has been shown in [3] (Appendix 2) that in a local coordinates
system, the operator ¢;Av; becomes: @;A;y; + T; where A; has for
symbol A;(x’, &) and T, is a smoothing operator.

So, we have:

Prp;Aj(yus) + MPHpuy) = PHp;f) + Tiu.

where T} is again a smoothing operator.

Let A;, be the convolution operator with symbol A;(x{, &) evaluted
at the point xj. We write:

Pro;A;(vjuy) + NPHpuy) = PH(p;f)
+ Tiuy + Pro;(Aj — A)yu* .

Applying Lemma 4.D.1 of [3] (p. 145), we have:
Pro;Aj(yjuy) = PTApuy) + Thu,

where T? is a smoothing operator.
Therefore:

(Ajo + Mpjuy = @;f + Tiuyr + @i(Aj0 — A)(Vrjuy) .

The symbols A;, satisfy the hypotheses of Lemma 1. Applying
Lemma 1; 2, we obtain:

lpius I3 + I llosus (I = M{llpsf 11T + [l s o
+ 12M [ [l + [[9r04 |l7 + [[@u |5}

where we have used the well-known inequality:
% llas = €l uslle + CE) [lusllo .

On the other hand: |[yu, || < M||usl|l,. Summing with respect to
Jj, we get:

s lla + I s o = ML o + 1/2M || s [
+ 0 |l uslla + K lws I}

Taking ¢ small and |\ | sufficiently large, we have:
s e + N Nwsllo = M| o -

So, if there exists a solution, then the solution is unique.
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(2) It remains to show the existence of a solution. From Lemma 1,
we know that P*(4;, + \*) has an inverse B;,. Let R;, be the operator
R;, expressed in the global system of coordinates of G. Consider:

Rf =3, PR f) .

R is a bounded linear mapping from L*G) into H{(G).
We show that: . Rf = P*(A + \)Rf = f + & f with || & || £ 1/2.
We have:

S Rf = 5 PHA + M9 Biaf) -
Applying Lemma 4.D.1. of [3], we may write:
Rf = 3, P A + N Rylwi f) + TRf

where T is a smoothing operator.
We express ¢;(A + )»“)aﬁ,—]?jo(w,- f) in local coordinates. We get:

Pi(Ajo + N Rio(; f) + 9i(A; — Aj)ri Ry f) + TiRo(v;f) -
Using Lemma 4.D.1 of [3] again, we obtain:

Pi(Ajo + N)VBjo(¥if) + pi(A; — Aj)¥iBil(¥if) + TiR(v;f)
= TiR;(¥v;f) + @;f + 9i(A; — A viRi(vif) = oif + & ;(vif) .

The T; are all smoothing operators.
Applying Lemma 1, we have:

TR ;005 ) 15 = Cll Bisolyif) lie = € [ Fllo + CINM T f Lo -

From Lemmas 1 and 2, we get:

lpi(A; — AV iR, ST = 0 || ¥iRio(v ) 1Ia
+ C©) | Vs Rio(ri ) i
< 8 11fllo + CO) I Bjolsf) llams
< 01l + 6C@) || Rio(di 1) la
+ COME) || Rio(¥0) lo
< {6 + CON 1 F1lo
+ N M CE) [ f Ll -

Taking ¢, 6 small, | x| large enough, we have:
1
| & i NIT = N 1A

We obtain:
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Rf=f+ TRf+§.é’5(n1rjf) =f+&F

where %%,. is the operator &’; expressed in the global coordinates system

of G. We obtain: |&fll. =14 fll, + 1/41|fll, for large |A
Hence || Z || < 1/2; therefore (I + &)~ exists. We define:

=R+ &)

The writer wishes to thank the referee for his remarks.
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SOME COMPLEMENTED FUNCTION SPACES IN C(X)

DaNiEL E. WULBERT

et X and Z be compact Hausdorff spaces, and let P be
a linear subspace of C(X) which is isometrically isomorphic
to C(Z). In this paper conditions, some necessary and some
sufficient, are presented which insure that P is complemented
in C(X). For example if X is metrizable, P contains a strictly
positive function, and the decomposition induced on X by P
is lower semi-continuous then P is complemented in C(X).

D. Amir has shown that not all such spaces P are complemented
when X is metrizable ([1], see also R. Arens, [4]). However, R.
Arens [4] has constructed a class of subspaces of C(X) which are
complemented. In § 2 we present classes of complemented subspaces
which extend the class exhibited by R. Arens [Theorem 4, Lemma 5,
Theorem 8]. A comparison of these results preceds Theorem 8.

Suppose that X is the Stone-Cech compactification of a locally
compact completely regular space Y, Z is a compactification of Y
which has first countable remainder, and P is the natural embedding
of C(Z) in C(X). In §3 we show that if P is complemented in C(X),
then Y is pseudo-compact. This theorem was proved by J. Conway
[6] for the case in which Z is the one point compactification of Y.

By introducing the concept of weakly separating in §2, we are
paralleling the concept of a Choquet boundary. Related results and
definitions are found in [22].

1. If A and B are subsets of a topological space, cl A will denote
the closure of 4, and A-B will denote the set of points which are in
A but not in B. If E is a normed linear space, S(E) and E* denote
the unit ball in £ and the dual of E respectively. If K is a convex
subset of a topological vector space, ext K will represent the set of
extreme points of K. If g and f are functions such that the range of
g is contained in the domain of %, the composite of ¢ and 2 will be
written iog. Finally, if X is a topological space and z is in X, the
point evaluation functional associated with « is the linear functional
2’ defined on C(X) by «'(f) = f(x) for each f in C(X). In this paper
C(X) will denote the Banach space of all bounded real-valued continuous
functions on X normed with the supremum norm.

2. Let P be a subspace of a normed linear space £. We define
D(P) = {b in S(E*): b restricted to P is in ext S(P*)}. We say that
P is weakly separating (with respect to E) if P separates the points
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of D(P) intersect ext S(E*), that is, if g and % are distinct points in
this intersection, then there is a p in P such that g(p) # h(p).
Although we have stated the definition for an arbitrary normed linear
space, we are mainly interested in the space E = C(X), where X is
a compact Hausdorff space. It follows readily from the definition that
a subspace P of C(X) is weakly separating if for any two distinct point
evaluation functionals «’ and ¥’ whose restrictions to P have norm one,
there is a » in P such that |p(x)| = | p(y)|. In particular, a subspace
of C(X) which contains the constants and separates the points of X,
or a closed ideal in C(X) is weakly separating.

LEMMA 1. Let P be a subspace of E. The following are
equivalent:

(i) P separates the members of D(P)

(ii) P separates the members of D(P) intersect ext S(E*)

(iii) ext S(E*) contains D(P).

Proof. (iii) implies (i). If P does not separate the elements of
D(P), then there must exist distinct elements g and 2 in D(P) such
that the restriction of g — h to P is the zero functional. It follows that
b = (1/2)(g + h) agrees with g and # on P. Hence b is in D(P) but
not in ext S(&*).

(ii) tmplies (iii), Now suppose that P separates the elements of
D(P) intersect ext S(E*). Let b be a point in D(P). We are to
prove that b is in ext S(E*). Let K ={k in S(E*): k agrees with b
on P}. Clearly K is a convex set containing b. Also K is closed, and
hence compact, in the weak* topology on E*. By the Krien-Milman
theorem, K has extreme points. We will show that ext K is contained
in ext S(E*). Suppose k = (1/2)(g + h) where kis in ext K and g and
h are in S(E*). Thus for each p in P, 1/2k(p) + 1/29(p) = k(p) = b(p).
The restrictions of g and & to P both belong to S(P*), and the restric-
tion of b is in ext S(P*). Therefore g and % agree with b on P and
both must belong to K. Since & was assumed to be an extreme point
of K, we have g = h = k. We conclude that ext S(E*) contains ext K.
If b is the only point in K, then b must be in ext S(£*). Otherwise
K must contain two distinct extreme points. Clearly P can not sepa-
rate these two points of D(P) intersect ext S(£*). This proves that
(ii) implies (iii).

Since the fact that (i) implies (ii) is obvious, the proof is complete.

LeEmMA 2. If P is weakly separating in K, then the weak

topology on D(P) induced by P is equivalent to the weak topology
wnduced by K.
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Proof. Clearly, the weak topology induced by P is coarser than
the one induced by E. To prove the converse, suppose that g¢g; is a
net of functionals in D(P) which converge with respect to the weak
topology induced by P to a functional g which is also in D(P). If
g; does not converge to g with respect to the weak topology induced
by E, there will exist a subnet which never intersects some neighbor-
hood (in topology induced by E) of g. Since by Alaoglu’s theorem
S(E£*) is compact, we may assume the existence of a further subset
g; which converges to a functional % distinct from g. Since g; is a
subset of g;, & must agree with g on P. Since the norm of 7% is less
than or equal to one, % is in D(P). Since P does not distinguish be-
tween ¢ and %, the previous lemma contradicts the hypothesis that P
is weakly separating. The lemma is proved.

In the following let X be a compact Hausdorff space.

LEMMA 3. Let P be a weakly separating subspace of C(X). The
Jollowing are equivalent:

(i) There is a projection of nmorm one of C(X) onto P,

(ii) P 1s tsometrically isomorphic to C(Z) for some compact
Hausdorff space Z,

(iii) There exist a closed subset Y of X such that P is isometri-
cally tsomorphic to C(Y) via the restriction mapping.
Furthermore, if P is weakly separating there can exist at most one
projection of norm one of C(X) onto P.

Proof. (i) implies (iii). Let L be a projection of norm one of
C(X) onto P. If 2’ is an evaluation functional in D(P), then a’'oL
is a functional in S(C(X)*) which agrees with 2’ on P. Since P is
weakly separating in C(X), 2’oL = a’. Hence for each f in C(X),
Lf agrees with f on {x in X:2’ is in D(P)}, and therefore on the
closure Y of this set. With a simple application of the Tietze Ex-
tension Theorem, we see that the restriction map carries P onto C(Y).
Furthermore, this restriction mapping does not decrease the norm of
points in P. For by Lemma 1 every functional in D(P) can be ex-
pressed as either an evaluation functional of a point in Y or as the
negative of such a functional, and for p in P, |[p|| = sup {A(p): 2 in
D(P)}. We have shown that the restriction mapping is an isometric
isomorphism of P onto C(Y).

(ii) 2mplies (i). Let Z be a compact Hausdorff space, and let L
be an isometric isomorphism of P onto C(Z). Let L’ denote the
adjoint of L. Since L is an isometric isomorphism, L’ is an isometric
isomorphism of C(Z)* onto P*. Furthermore, L' restricted to
ext S(C(Z)*) is a homeomorphism onto ext S(P*) with the weak topolo-
gies induced by C(Z) and P respectively. Now for z in ext S(P*), let
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H(z) be the unique element in ext S(C(X)*) which agrees with  on P,
For z in Z let E(z) denote the evaluation functional of z. Now for
f in C(X) consider the function foHoL'oE(-) defined on Z. By
Lemma 2 this function is continuous. The map @ which carries f in
C(X) onto L~Y(f o Ho L' E(-)) is a mapping of norm one of C(X) into
P. Furthermore, if p is in P, then po H o L’ o E(2) = Lp(z), for all z
in Z. Thus poHoL' o E(-) = Lp, and Q is a projection of C(X) onto P.

It is evident that (iii) implies (ii).

To prove the second part of the lemma, suppose that H and L
are two projections from C(X) onto P, both of which have norm one.
Let Y be the subset of X constructed in the proof that (i) implies
(iii). For any f in C(X), we have shown that Lf, Hf and f all agree
on Y. It of course follows that (H — L)(f) vanishes on Y. However,
we have shown that the restriction mapping carries P isometrically
onto C(Y). Therefore, (H — L)(f) must be the zero function, and
Hf = Lf for all f in C(X). This completes the proof.

We will say that a subspace P of C(X) has a weakly separating
quotient if it has the property that for any two distinct points x and
y in X such that p(x) = —p(y) for every p in P, then the evaluation
functional of « (or equivalently the evaluational functional of ) restricted
to P is not an extreme point of S(P*).

REMARK. Each of the following properties on a subspace P of
C(X) imply that P has a weakly separating quotient:

(i) P is weakly separating in C(X),

(ii) P contains a function which is strictly positive,

(iii) for each p in P, |p| is also in P.

A proof for the above remark is straightforward. In particular, any
closed ideal in C(X), or any subspace of C(X) which contains the
constants has a weakly separating quotient.

In order to state the next theorem we make a few more defini-
tions. Let X be a Hausdorff space and let M be a partition of X
into closed subsets. For x in X let M(x) denote the member of M
which contains 2. Corresponding to the standard definitions we say
that M is lower semi-continuous if {x in X: M(x) intersect U is non-
empty} is an open set in X for every open set U in X.

If P is a linear space of bounded, continuous functions, then the
P-partition of X is the partition associated with the following equi-
valence relation R. A couple (z, %) is in R if and only if p(x) = p(y)
for every p in P. Now let K(P) = U {K contained in X: K is a
member of the P-partition of X, and K contains more than one point
of X}. We will say that P has a lower semi-continuous quotient if
the restriction of the P-partition to cl K(P) is lower semicontinuous.

In the following let X denote a compact Hausdorff space, and let
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P Dbe a linear subspace of (C(X) which has a weakly separating
quotient.

THEOREM 4. If there is a projection of norm one of C(X) onto
P, then P is isometrically isomorphic to C(Z) for some compact
Hausdorff space Z. Conversely, suppose that X 1is metrizable, and
that P has a lower semi-continuous quotient. If P is isometrically
isomorphic to C(Z), for some compact Hausdorff space Z, then there
18 a projection of C(X) onto P which has morm less than or equal
three.

Proof. Let M denote the P-partition of X. Let X/M have the
quotient topology, and let M(-) denote the natural mapping of X onto
X/M. We observe that X/M is a compact Hausdorff space. Now let
Q@ denote the linear subspace of C(X) consisting of all functions that
are constant on each closed subset of X which is a member of M.
One can verify that P is contained in @, and that the mapping which
carries ¢ in @ onto the function go M~*( ) in C(X/M) is an isometric
isomorphism of @ onto C(X/M). The image P’ of P under this map-
ping is a weakly separating subspace of C(X/M) since P has a weakly
separating quotient. If there is a projection of norm one from C(X)
onto P, then there certainly is a projection of norm one from C(X/M)
onto P. By the preceding lemma, we conclude that P’, and hence P,
is isometrically isomorphic to C(Z) for some compact Hausdorff space Z.

To prove the second part of the theorem, we assume that X is
metrizable, P has a lower semi-continuous quotient, and that there is
a compact Hausdorff space Z such that P is isometrically isomorphic
to C(Z). We maintain the same notation used directly above. Since
P’ is weakly separating in C(X/M), and P is isometrically isomorphic
to C(Z), it follows from the preceding lemma that there is a projec-
tion of norm one from @ onto P. To complete the proof it will suf-
fice to show that there is a projection from C(X) onto @ which has
norm less than or equal to three. We will prove a stronger result.

Let Y be a metric space. Let K be a partition of ¥ such that
every member of K is a complete subset of Y. A member of K will
be called a plural set if it contains two distinet points of Y. Let the
restriction K’ of K to the subset of Y,

B = cl U {A contained in Y: A a plural set in K}

be lower semi-continuous. Assume also that B/K’ is paracompact.
Let Q denote the subspace of C(Y) consisting of the functions which
are constant on each member of K. We recall that by the notation
we adopted, C(Y) is the Banach space of all bounded continuous funec-
tions on Y. The following lemma establishes the theorem.
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LEMMA 5. There is a projection of C(Y) onto Q which has norm
less than or equal to three.

Proof. In the usual manner we can embed B into the unit ball
of C(B)*. With the weak topology on C(B)* induced by C(B), C(B)*
is a locally convex space, B is embedded onto a homeomorphic image
of itself, say B’, and the closed convex hull of compact subsets of B’ are
again compact. Let s denote the composite of the quotient mapping
of B onto B/K’ with the homeomorphism, %, between B and B’.

We now show that s' is a lower semi-continuous function carry-
ing points in B/K’ onto closed subsets of B’. Let U be an open set
in B’. Let

W ={y in B/K’": s7(y) intersect U is not empty} .

To show that s is lower semi-continuous we must show that W is
open in B/K’. We note that W = s(U). Now since K’ is lower semi-
continuous and A 'os™'osoh(-) carries a point b in B onto the member
of K’ which contains b, the set

V ={b in B: h*os'osoh(b) intersect h~(U) is not empty}

is open in B. Hence A(V) = {b’ in B: h™*os™ o s(b’) intersect 2~(U) is
not empty} is open in B’. Since this last set is s™'os(U), s tos(U) is
open. Since B/K’ has the quotient topology induced by s, this implies
that s(U)—and hence W—is open in B/K’. Therefore s~ is lower semi-
continuous.

Now since B/K’ is paracompact, and since there is a metric on B’
(which induces an equivalent topology for B’) for which the set s~'(y)
is complete for each y in B/K’, we have satisfied the hypothesis for
a selection theorem proved by E. Michael [20]. This theorem proves
the existence of a continuous function ¢ which carries B/K’ into C(B)*,
and has property that ¢(y) is contained in the closed convex hull of
sY(y) for each y in B/K'.

We now define a projection from C(B) onto @’ the subspace of
functions in C(B) which are constant on members of K. For f in
C(B), let Lf denote the function such that for each b in B,

(Lf)(b) = [t(s o hD(S) .

Since ¢ is continuous on B/K’, Lf is a continuous function. Since
t(s< k(b)) is in the closed convex hull of s~'oso h(b), the norm of ¢(so (b))
does not exceed one. Thus the maximum of Lf over B does not ex-
ceed the maximum of f over B. Finally, one can verify that if ¢ is
in @, Lg =gq, and that for each f in C(B), Lf is in Q. We have
shown that L is a projection of norm one of C(B) onto Q'.
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Since Y is a metric space, there is an operator E of norm one from
C(B) into C(Y) such that RoEf = f for every f in C(B). Here R
denotes the operator which assigns to each function in C(Y) its restric-
tion to B (R. Arens [3], also Dugundji [8]). Following a construction
due to Arens [4], we define an operator J by Jf = f + E(LRf — Rf).
The proof of the lemma is completed by verifying that J is a projec-
tion of C(Y) onto @ which has norm no greater than three.

In the following corollaries let X denote a compact Hausdorff
space.

COROLLARY 6. Let P be a finite dimensional subspace of C(X)
which has a weakly separating quotient. There is a projection of
norm one from C(X) onto P if and only if P has a basis {p;}7-, such
that || Xi-icqp; || = max |¢;|.

COROLLARY 7. C(X) contains a weakly separating subspace of
co-dimension n which has a projection of norm one if and only if X
contains n isolated points.

Proof. To prove the necessity of the condition, let L be a projec-
tion of norm one of C(X) onto a weakly separating subspace P of co-
dimension 7 in C(X). Define Y =cl{zin X: «’o L = '}, We will show
that X — Y contains precisely n points. Since X — Y is open, these
points will be isolated. We observe that the range, @, of I — L has
dimension 7, and that if ¢ is in @, then ¢ vanishes on Y. Since the
functions in @ take all their nonzero values on X — Y, X — Y must
contain at least n points. If X — Y contained % + 1 points, there
would exist % + 1 open sets U, in X — Y, and corresponding functions
f; of norm one which vanish off U;,. These functions span an n + 1
dimensional subspace of C(X); hence there is a nonzero function f in
this span that is also in P. But f vanishes on Y. By Lemma 3, the
restriction map is an isometry of P onto C(Y). Hence we arrive at
the contradiction that f is the zero function.

If X contains » isolated points, the space of all functions in C(X)
which vanish on these n points is a weakly separating subspace of
C(X) (sinces this space is an ideal) of co-dimension % in C(X). It is
also clear there is a projection of norm one from C(X) onto this sub-
space. The proof is completed.

REMARK. R. Arens [4] has constructed an example of two compact
metric spaces X and Z such that C(X) contains an isometric isomorphiec-
copy of C(Z) which has a weakly separating quotient, but which is
not complemented in C(X). Hence the assumption that P has a lower
semi-continuous quotient cannot be simply omitted from the theorem,
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(Also see Amir [1]).

The preceding theorem and lemma should be compared to Theorem
2.2 in (R. Arens [4]). Using the notation preceding the lemma,
Professor Arens proved that under the following conditions there will
exist a projection of norm less than or equal to three of C(Y) onto Q:

(i) K is a partition of Y into closed subsets

(ii) Y and Y/K are metrizable

(iii) the quotient map of Y onto Y/K is upper semi-continuous'

(iv) if {#;} is a sequence in Y such that each z; belongs to a
distinct plural set in K, then a member of K which contains a limit
point of {x;} is a singleton.

Apropos to property (ii), A. H. Stone has proved ([23]) that a
metrizable space is paracompact. Property (iv) above implies that K’
is lower semi-continuous. In the special case that Y is a complete
metric space, the preceding lemma contains the above theorem of Arens.
If Y is compact, the previous theorem includes both of these results.

In the following, let Y be a metrizable space, and K a partition
of Y satisfying properties (i), (iii), and (iv) above. For each K; in
K let P; be a complemented subspace of C(K;) which contains the
constants. Let L, denote a projection of C(K;) onto P,, We assume
that m = sup{|| L; ||} < . Finally, let @ denote the subspace of C(Y)
consisting of all functions ¢ such that the restriction of ¢ to K; is a
function in P,.

THEOREM 8. There is a projection of C(Y) onto Q which has
norm less than or equal to 2 + m.

Proof. For a set Z let B(Z) denote the space of bounded func-
tions on Z. Let D = U {K, contained in Y: K; is a plural set in K}.
Let R and R; denote the restriction map of B(Y) onte B(cl D) and of
B(Y) onto B(K;) respectively (K; in K). Let E denote a linear map-
ping of C(cl D) into C(Y) such that E has norm one, and Ro E is the
identity mapping on C(cl D). Let H be the linear mapping of C(Y)
into B(cl D) such that R;c H = L;oR; for all K; in K. Let I denote
the identity on C(Y), and let L = I + E-R(H — I). The proof con-
sists of establishing that L is the desired projection. The variation of
a function f defined on a set Z is var (f) = max f(z) — mirzl f(z).

We proceed by proving four assertions, the llggt of which establishes
the theorem.

Assertion 1, If z; is in K;, K; is in K, y is not in D and «; con-

1 Professor Arens has communicated that the assumption that the quotient map-
ping be upper semi-continuous had been inadvertently omitted from the statement of

his theorem.
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verges to y, then var (R;f) converges to zero for each f in C(Y).
Assertion 2. ||L;oR;f — R;f|| < 1/2(1 4+ m) var (R, f).
Assertion 3. If fis in C(Y), Hf is in C(cl D).

Assertion 4. The operator L is a projection from C(Y) onto @
of norm at most 2 + m.

If Assertion 1 is false it will be possible be find points z; in K;
and a function f in C(Y) such that for some r greater than zero,
f(x;) — f(z;) is greater than ». Since f is continuous, we may assume
that there is a neighborhood N of y such that z; does not belong to
N. Put Z = {z;}. Since the quotient map q of Y onto Y/K is, by
hypothesis, closed ¢(cl Z) is closed in Y/K. But q(x;) = q(z;) is in
g(cl Z), and q(x;) converges to q(y) by the continuity of q. Thus
q(y) = {y} is in q(cl Z), and {y} = q(2) for some z in cl Z. But cl Z is
contained in Y — N so z # y. This contradicts the assumption that
y is not in D.

To prove the second assertion, let ¢ = 1/2 var (R, f). Since 1lisin
P, L;-R1 =1, Hence

| Lie Bif — Rif|| = || Lie R(f — ¢) — Bi(f — o) | = [| L — 1|
AIR(f — ol = (m + 1)(1/2) var (R.f) .

To prove Assertion 3 let ¥ be a point in e¢l D. We distinguish
two cases. Case 1, ¥ is in D. Let y be in the plural set K; of the
partition K. From the assumption of property (iv) it follows that there
is an open set U containing K; which meets no other plural set in K.
Now let f be in C(Y) and let N be a neighborhood of Hf(y). Let V
be a neighborhood of ¥ such that (L;°R,f)(V N K,) is contained in N.
Put W=V NU and let « be an arbitrary point in W intersect cl D.
Then « is in U, and « is in the closed set K,. This shows that
W NnelD is contained in K; N V. Hence on WnelD, Hf = L;°R;f.
Thus Hf(W Nel D) is contained in L;o R, f(K; N V) which in turn is
contained in N.

Case 2, y is not in D, In this case {y} is in K, and Hf(y) = f(y),
since each P; contains the constant functions. Let x; converge to .
Then ,

| Hf(x:) — Hf(y) | = | Hf(w:) — f@:) | + [ f (@) — f@) | .

It is clear that f(x;) converges to f(y). For the other term we use
Assertions 1 and 2 above to write, with «; in K; (and K; in K),
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| Hf(w:) — f(@:) | < | Lio Bif(w;) — Bif(x) |
= (1/2)(m + 1) var (B.f) .

Since this last term converges to zero, Hf is continuous at y.

To prove Assertion 4, we first observe that linearity and bound
for L are obvious. If f is in C(Y) we must show that Lf is in Q.
Indeed,

RoL =R+ R-H—-—R=R-H.
Hence
R,oL =R,coRoL = R,cR-H =1L,°R,

for each plural set K; in K. Thus R;o Lf is in P; for each plural set
K; in K. If K; is a member of K which is not a plural set then,
R,o Lf is in P; trivially since P, contains the constants.

Now we must show that if fis in @ then Lf = f. Since R;f is
in P; for all K; in K, R,cHf = L,oR,f = R;f. Thus Ro Hf = RY,
and Lf=f+ ERf— Rf) =f. This completes the proof of the
theorem

REMARK. The assumption that Y is metrizable was used only to
guarantee the existence of the linear mapping E. If we drop the
hypothesis that Y is metrizable and assume outright the existence of
a bounded linear mapping E from C(cl D) into C(Y) such that Ro E
is the identity on C(cl D), then the same proof establishes the existence
of a projection from C(Y) onto @ which has norm less than or equal
tol+ (m+1)|| EJ.

COROLLARY 9. Let Y, K, K;, P;, and @ be as in the theorem. If
each P; has dimension less than n, then there is a projection of norm
at most n + 1 from C(Y) onto Q.

3. Let X be a locally compact, Hausdorff space. A compactifi-
cation of X is a compact Hausdorff space that contains X (a homeo-
morphic image of X) as a dense subspace. The Stone-Cech compactifi-
cation of X will be denoted by AX, and the one-point compactification
will be denoted by pX.

If K is an arbitrary compactification of X, the linear mapping
which carries a function in C(K) onto the unique function in C(8X)
which agrees with it on X, is an isometric isomorphism of C(K) into
C(8X). We will therefore assume that C(8X) contains C(K).

If Y is a closed subset of a compact Hausdorff space K, I, will
denote the ideal of functions in C(K) which vanish on Y. Let N
denote the non-negative integers with the discrete topology. If K is
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a compactification of X, the remainder of K (with respect to X) is the
topological space K — X equipped with the relative topology from K.
In accordance with the usual terminology let (m) = C(BN), (¢) = C(pN),
and (¢) = Ly_y = Isy_y, Where the ideals are interpreted as subspaces
of C(pN) and C(BN) respectively.

THEOREM 10. Let K be a compactification of X which has a first
countable remainder. If there is a bounded linear mapping of C(B8X)
into C(K) which acts as the identity on Iz;_5, then X is pseudocompact.

We first will prove the following lemma.

LEmMMA 11. Let M be a compactification of N which has a first
countable remainder. There does not exist a bounded linear mapping
of (m) onto any subspace of C(M) which contains (c,).

Proof of lemma. Since N is both locally compact and the union
of a countable family of compact sets, M — N is a compact set which
is the intersection of a countable family U of open sets in M. Let
x be a point in M — N. Let V be a countable family of open sets in
M whose intersections with M — N form a basis for the neighborhood
gsystem for © in M — N. Let W be the countable family of open
sets in M of the form w intersect v, where w isin Uand v is in V. It
is easy to see that the intersection of the members of W is the singleton
containing x. A compactness argument shows that W is in fact a basis
for the neighborhood system for # in M. Since N is first countable
we have established that M is first countable. Hence M is sequen-
tially compact.

There is a sequence of points in N, say J, which converges to
some point £ in M. Now suppose B is a subspace of C(M) which
contains (c,). The restriction of functions in B to J union {k} carries B
onto a Banach space which is either isometrically isomorphic to (¢) or
to (¢). In the former case since (¢,) is complemented in (c), there
is a bounded linear mapping of B onto (¢,). In either case if there
is a bounded linear mapping of (m) onto B, there is a bounded linear
mapping, L, of (m) onto (¢,). But no such mapping can exist. For
since (¢,) is a separable Banach space and BN is extremally discon-
nected, L must be weakly compact (Grothendieck [14], p. 168, Cor. 1).
Now an application of the open mapping theorem implies the false
assertion that (c¢,) is reflexive., This completes the proof of the lemma.

Proof of theorem. If X is not pseudocompact there is countable
family of disjoint open sets V,; in X such that clU{V;} = U{clV}.
For each ¢ let U; be an open set such that clU, &V, let u; be in U;,
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and let f; be a continuous function which vanishes off U, and attains
its norm of one at u;. For a bounded sequence x = (x;, «, ---) in (m),
let Az be the unique function in C(6X) which agrees with 3.2, x;f;
on X. The mapping A is an isometric isomorphism of (m) onto the
range of A. Let L be the hypothesized mapping of the theorem, and
let J carry a function in C(BX) onto its restriction to cl{u,}. Since
cl{u;} — {u;} is contained in K — X, cl{u,;} is homeomorphic to a com-
pactification M of N which has first countable remainder. Let G be
the isometric isomorphism of C(cl {u;}) onto C(M) induced by this home-
omorphism. The proof is completed by verifying that GoJoLoA is
a bounded linear mapping of (m) onto a subspace of C(M) which con-
tains (c,).

The case in which K is the one-point compactification of X was
first proved by J. Conway ([6]). Examples to show that pseudocom-
pactness of X is not sufficient to guarantee the existence of a projec-
tion from C(BX) onto Is;_, have been constructed by J. Conway ([6])
and by A. Pelezynski and V. N. Sudakov ([21]).

COROLLARY 12. Let X be an extremally disconnected, compact,
Hausdorff space, and let P be a subspace of C(X) which contains the
constants and separates the points of X. If P is isometrically iso-
morphic to C(Z) for some compact Hausdorff space Z, then the Silov
boundary of P is an extremally disconnected subset of X which has
a pseudo-compact complement.

Proof. Under the hypothesis of the corollary, the Silov boundary
of P is the set Y of Lemma 3. To show that Y is extremally discon-
nected, we intend to apply a theorem due to Nachbin (Trans. AMS,
68 (1950), 28-46, 1950), Goodner ([13]), Kelley ([11]) and others. A
Banach space B is called injective if every Banach space which contains
an isometric isomorphic copy B’ of B, admits a projection of norm one
onto B’. The theorem we wish to apply states that a Banach space is
injective if and only if it is isometrically isomorphic to C(Z), for a
compact, extremally disconnected, Hausdorff space Z. Now C(X) is
injective and from Lemma 3 there is a projection of norm one from
C(X) onto P. From this it can be shown that C(Y') is injective, and
hence Y is extremally disconnected.

From Lemma 3 it follows that I, is complemented in C(X). Let
G =X-Y. Since clG is open in X, I,,_, is complemented in C(cl G).
Since cl G is extremally disconnected, it is the Stone-Cech compactifica-
tion of G ([10], p. 69, Prob. 6M2). By the theorem, G is pseudocom-
pact (in this case K is the one-point compactification of ), and the
corollary is proved.
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COROLLARY 13. If X s a locally compact space such that SX has
a first countable remainder, then X is pseudocompact.

REMARK. Relevant to the last corollary, we observe that if Z is
any compact Hausdorff space, there is a pseudocompact, locally compact
space X such that SX — X is homeomorphic to Z. For let y be a
nonisolated point in BN and let X = (BN — {y}) X Z. From results in
([11]) and ([10], 6M3) we have that X is pseudocompact, and BX =
BN x Z.

The author is grateful to Professor E. Ward Cheney for his in-
terest and suggestions concerning this paper.
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ON THE CHARACTERIZATION OF MEASURES
OF THE CONE DUAL TO A GENERALIZED
CONVEXITY CONE

ZVv1 ZIEGLER

We consider in this paper the cone C(u,, - -, #,—,;) of func-
tions which are convex with respect to an Extended Complete
Tchebycheffian system {u.(t), u:(t), -« -, Un—s(f)}. The cone dual
to C(uy, +++, Us—1) is examined and necessary conditions as well
as sufficient conditions for a measure to belong to this cone are
developed. The merit of these conditions lies in the fact that
they involve only the pattern of sign changes of the measure
and related functions, and thus are easily verifiable,

Several applications are given. These include new ine-
qualities for the Euler-Fourier coefficients of functions belong-
ing to given convexity cones. Some new inequalities for the
Fourier coefficients of the expansion of a function in a series
of orthogonal polynomials are also obtained.

We consider in this paper the cone dual to a generalized convexity
cone C(u,, -+, %,_,) with respect to an Extended Complete Tcheby-
cheffian system {u,(t), w,(t), +++, u,_(t)}. The substantial role that
these cones play in various areas of mathematics, such as moment
theory, theory of approximation and interpolation and the theory of
differential inequalities is discussed in detail in [5], (see also [4], [11],
[6] and [7]). In a recent paper, Cargo [3] obtained independently
for the special case when n = 2 and u, = 1, some of the results of
[4] and [11].

The dual cone was introduced by S. Karlin and A. Novikoff [4]
who found necessary and sufficient conditions for a measure to belong
to the dual cone. Applications of the results of [4] to the theory of
reliability were later explored by Barlow and Marshall [1]. For the
case » = 2 and (u(t) = 1, u,(t) = t) the conditions were stated earlier
by Levin and Steckin [8], and a multidimensional version for this
special case was recently obtained by Brunk [2].

The necessary and sufficient conditions involve some integral
inequalities and thus are not always easily verifiable. Some simple
sufficient conditions in terms of equalities and the pattern of sign
changes of the measure under examination were also evolved in [4].

In this paper we intend to elaborate on this type of criteria, i.e.,
necessary conditions as well as sufficient conditions involving only
equalities and the pattern of sign changes of the measure. Asa by-
product, we obtain the interesting fact that the dual cones are essentially
mutually disjoint, e. g. no nontrivial measure can belong both to the dual
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cone of the cone of convex functions and to the cone dual to the cone
of monotone functions. Several applications are given in §4. These
include some inequalities for the Euler-Fourier coefficients with respect
to the trigonometric system and also for the Fourier coefficients of
the expansion of a function in a series of orthogonal polynomials.

We introduce now the generalized convexity cones and their duals.
We will not discuss in any detail properties of these cones which can
be found elsewhere. The reader is referred to [5] for a thorough
discussion of ECT-systems and for the properties of generalized con-
vexity cones which will be used without proof in the sequel.

Let {u,}7~* be an Extended Complete Tchebycheffian system (ECT-
system) on [a, b]. Assume that the functions u(¢),¢ = 0,1, -+, n — 1,
admit of the representation

uo(t) = wi(t)

1y 4 :
toa®) = w® [ wie) [T [T edde - d

where w(t), +--, w,_(t) are continuous strictly positive functions on
[a¢,b]. This additional assumption on the set {u;};~* entails no loss of
generality in the subsequent discussion.

DeFINITION 1. A function ¢(¢) defined on (a, b) is said to be convex
with respect to the ECT-system {u;}*~* provided

Uo(t,) = » Uo(tns1)

(2) =0, forall a <t, < vvr < ey < b

un—-l(tl) et un—l(t%-!-l)
$(t1) + =+ ¢(tnsr)

The cone of functions satisfying (2) is referred to as a “generalized

convexity cone” and is denoted by C(ug, « -+, U%,_,). \

Throughout the paper, let d¢ denote a signed measure of bounded
variation on (a, b) such that for each ¢(¢) € C(uy, - -+, u,_,) the integral

Sb¢d;z is well defined with infinite values permitted. The dual cone

of C(u,, +--, u,_,) is the set of all measures dp which satisfy
(3) [ #0102 0 for all 4(t) e Clue, -+, u,) .

This cone is designated by C*(ug, *++, %,_y).
The integral operators I;,7 = 0,1, ---, n-1 are defined by
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Lape) = — | w(bdu)
(4) ;e
L) = — | 'wiswdt, =12, n-1.

The following theorem was proved in [4]:

THEOREM A. A signed measure dp belongs to the dual cone
C*(toy +++,y Uny) if, and only if

(5) |wtdpt) =0, i=0,1,-,n—1,
and
(6) LI, ;---Idpit) =0, forall a £t <0H.

Furthermore, it was shown that the “moment conditions” (5) are
equivalent to

(7) Ll y--- Ldp®) =0, §=01,--+,n2—-1.

The necessary and sufficient conditions stated in Theorem A are
in general hard to verify, the main difficulty being the inequalities
(6). Therefore, it seems advantageous to seek simpler conditions even
if they will not always be both necessary and sufficient. Very weak,
but easily verifiable necessary conditions are the “moment conditions”
(5). Some simple sufficient conditions which enable us to ascertain
that dpe C*(uy, + -+, u,_,) by checking its pattern of sign changes were
also found. In order to state them we need first introduce some
definitions. We adopt the following convention: a signed measure dg
will be said to have the sign ¢ (¢ can be (+) or (—)) on a set s if
ey(s) > 0 and there is no subset s’ of s for which eu(s’) < 0. A fune-
tion f(¢t) will be said to have the sign ¢ on an interval I if and only
if dpe = f(t)d¢ has the sign € on I.

DEFINITION 2. A signed measure dy defined on (e, b) is said to
possess a first sign there, if there exists an interval extending to the
end-point ¢ on which dp has a constant sign (this sign will be called
the first sign of dy). Similarly, dy is said to possess a last sign on
(a, b), if there exists an interval extending to the end point b on which
dp has a constant sign (this sign will be called the last sign of dp).

DEFINITION 3. A signed measure dy is said to have k sign changes
on (a, b) if there exists a subdivision of (a, b) into disjoint consecutive
sets T,, T, - -+, T}, such that du is of alternating sign on T, T\, «+-, T\.
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We replaced here the “consecutive intervals” of the corresponding
definition employed in [5] by “consecutive sets”—thus allowing a T to
consist of one point only. We note that if the support of the measure
consists of a finite number of points or if it is absolutely continuous,
the two definitions coincide.

The following theorem stated in [5] (and, in a slightly weaker
form, in [4]) is actually true only when one uses the concept of sign
changes in the way it is formulated here., The proof involves only
minor modifications of the proof presented in [5]. We will not go
into details.

THEOREM B. If a mnontrivial signed measure dp satisfies the
“moment conditions” (5) then it has at least n sign changes. If dp
has exactly m sign changes and its last sign is (+), then

d# € C*(um Y un—l) .

There exists a wide gap between the necessary “moment conditions”
and the strong sufficient conditions stated in Theorem B. The main
purpose of this note is to narrow it by obtaining stronger necessary
conditions as well as weaker sufficient conditions.

2. Necessary conditions. The first results which we will prove
concern the simple cone C*(u,).

LEMMA 1. Let dp be a signed measure possessing a first sign
and a last sign on (a,b). A mecessary condition for dp to belong to
C*(u,) ts that its first sign be (—) and its last sign be (+).

Proof. Let dp be a measure belonging to C*(u,). Then, by ap-
plying Theorem A, we have

(8) [Lustyapacty = 0.

We will first establish that the first sign of dg¢ is (—). Indeed,
suppose there is an interval (a, £,] on which dy is positive.
Consider the function ¢(t) defined by

Cu(t atst,,
(t):{lo() = = Y1 0<Cl<02.

C;U(t) L<t<b,

Clearly, ¢(t) belongs to C(u,). Compute now
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[ st = .| utdett) + e | wt)dpc)
< e utdp(t) .
Using (8), it follows that

[[sam® <o,

which is impossible since dp e C*(u,).

Similarly, we will now show that the last sign of dg is (+).
Indeed, assume that there exists an interval [¢,d) on which dy is
negative. Consider the function +(¢) € C(u,) defined by

_czuo<t) (l<t<t2,
t) = 0<e <e, .
(o) {— cu(t) t, <t<b, ?

A computation similar to that performed for #(¢t) yields

RICZOR R

contrary to the assumption that dpe C*(u,). This completes the proof
of the lemma.

Corollary 1. Let dp be a signed measure possessing a finite
number of sign changes on (a,b). If du belongs to C*(u,) then it has
an odd number of sign changes and its first sign is (—).

Let now the signed measure dp have 2k — 1 sign changes on
(a, b) and let {T;}?*~! be the subdivision of (a,b) associated with the
sign changes of dy. Set

Si:Tzi—ZU Tzi—-l, ?::192!"'9]5
and let the points ¢, .-, t;, be defined by
ty=0a, t; =sup{t:te T, )}, =12 ..-,2k .
Define the numbers J,, -.-, J, by
(9) Jo={ wdue,  i=1,2 k.
S
The measure dy, with the k atomic masses J,, ---, J, situated, re-
spectively, at the points 1,2, -.-, k will be referred to in this paper

as the measure induced by dy.

LeMMA 2. Let dp have 2k — 1 sign changes on (a, b) and let its
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first sign be (—). Then dyu belongs to C*(w,) on (a,bd) if, and only
1f the measure induced by it belongs to C*(1) on (0, k + 1).

Proof. Let ¢(t) be an arbitrary function belonging to C(u,); then

[Lotdpt) =5, | o)

=3[l smauo + 1§ swrpn]
2 [ B | ot + 2| wdauo).

The inequality follows from the fact that ¢(t)/u.(t) is non decreasing
on (a,b) while dp(t) is negative in the first integral and positive in
the second.

Using definition (9) we thus obtain

(10) S @(t)d#(t) > Z ¢(t21—1) J, .
(tZ'L—-—l)
Suppose now that the induced measure dy belongs to C*(1). Then

i J; = 0, for each sequence {a;}¥ belonging to C(1).

Since {¢(ty_1)/uo(tzi_1)}i-, is a nondecreasing sequence it belongs to C(1).
b
Hence, the right hand side of (10) is nonnegative and S s(t)ydpm(t) = 0.

Since ¢(¢t) was an arbitrary function of C(u,), this implies that dgu
belongs to C*(u,).

Conversely, suppose that du¢ e C*(u,) and let {a;}f be an arbitrary
sequence of C(1). Define the function &(¢) by

B(t) = aut), forteS,i=1,2 -k,
and note that
k k b_
(11) S = Sa, Ss.uo(t)dy(t) _ Sa‘b(t)d”“) ~0.

The inequality is due to the fact that @(¢)/u,(t) is a nondecreasing
function, i.e., that @(¢) belongs to C(u,).

Since the sequence {a;}* was an arbitrary sequence of C(1), this
completes the proof of the lemma.

Appealing to Corollary 1, we can deduce

COROLLARY 2. Let dyt be a measure of C*(u,) possessing a finite



ON THE CHARACTERIZATION OF MEASURES 609

number of sign changes on (a,b). Then, either the induced measure
dy, is the trivial measure or it has an odd number of sign changes
and its first sign is (—).

Observe next that if the induced measure dy, has an odd number
of sign changes, the discussion preceding Lemma 2 can be applied to
dp, and a measure dy,, induced by dy,, can be obtained. To this end,
we only have to substitute wu,t) =1 in (9) and replace (a,b) by
(0, k + 1). By Corollary 2, dy, is either trivial or it has an odd number
of sign changes. Thus, if dy, is nontrivial, we can define a measure
dps induced by dx.. This process can be continued as long as the
induced measure is nontrivial.

LevMmA 3. Let dy be a measure of C*(u,) possessing a finite
number of sign changes on (a,b). Then the sequence of nontrivial
successtvely induced measures dp,, dp,, -+ -, 18 finite.

Proof. Observe that the induced measures dp,, du,, ---, have
finite supports. Note next that the number of points in the support
of dy;y,, i1 =1,2,-.-, is at most half the number of points in the
support of dy;, v = 1,2, --.. Hence, the assertion of the lemma follows.

THEOREM. 1. Let dp possess a finite number of sign changes
on (a,b). Necessary and sufficient conditions for dp to belong to
C*(u,) are: (a) that it satisfy (8), and (b) that dp and each measure
in the finite sequence of montrivial successively induced measures
dp,, A, -+ -, exhibit the pattern of sign changes specified in Lemma 1,

Proof. Necessity. The necessity of (a) follows from Theorem A.
The necessity of (b) follows by a repeated application of Corollary 2.

Sufflciency. Let dyy be the last nontrivial measure in the se-
quence, so that dgy,, is the trivial measure.

Since dy has a finite number of sign changes, each nontrivial
measure dy;, ¢ =1, .-+, N, also has a finite number of sign changes.
Since, by assumption, the measures exhibit the pattern of sign changes
specified in Lemma 1, they satisfy the requirements of Lemma 2.

By Lemma 2, if dy;.,,% =1, ---, N belongs to C*(1), then so does
dp;. Furthermore, if dy, belongs to C*(1) then dy belongs to C*(u,).
Thus, the fact that duy,,, the trivial measure, belongs to C*(1), im-
plies that dyg belongs to C*(u,) and the theorem is proved.

We next derive necessary conditions for a measure possessing a
first sign and a last sign on (a, b) to belong to C*(u,, + -, U,_).



610 ZVI ZIEGLER

THEOREM 2. A mnecessary condition for a measure dit possessing
a first sign and o last sign on (a,b) to belong to C*(uy, <+, U,_,) 18
that its first sign be (— 1)" and its last sign be (+).

Proof. The proof proceeds by induction on n. For n =1, the
assertion is simply a restating of Lemma 1, Assuming that the as-
sertion is valid for n < &k — 1, we will now prove it for n = k.

We introduce the first order differential operators (see [5])

1
w (1)

a2) Dift) = L[ pw], =01 m-1,

where the w!s are the functions introduced in (1).

Let now dyp be a measure of C*(uy, + -, %;_,) possessing a first
sign and a last sign on (a,b). Using integration by parts and the
definitions (4) and (12), we find

[ = | 29 w oz

=~ 9O paun |+ Y[Dma)][lody(t)]dt :
wo(t) e i

(13)

The integrated part vanishes, since I du(b) =0 is a necessary
condition by Theorem A. It is very easy to see (cf. [11] or [5]) that
the set of functions {D,¢(¢) | 4(¢) € C(uy, « -+, u,_;)} comprises a generalized
convexity cone. This cone is called the first “reduced” cone, and is
denoted, in terms of its basic ECT-system, by C(Dyu,, -+, D).
Thus, (13) implies that a necessary condition for du to belong to
C*(the, =+, Up_y) 1s that L dp(t)dt belong to C*(Dyuy, -« -, Dytty_).

Since dp has a first sign and a last sign, so does Idu(t)dt.
Utilizing now the fact that the condition on the pattern of signs
formulated in the theorem depends only on the order of the cone, i.e.
on the number of functions in its basic ECT-system, we can apply
the induction hypothesis. We thus deduce that the first sign of I,dpu(t)
is (— 1)** and its last sign in (+).

Note further that

(14) Lap(t) = — | witdpu(t)

and that, using relation (8), which is valid by Theorem A, we also
have

(15) Lapt) = | uiap) .

Relations (14) and (15) imply that the first sign of du(¢) is opposite
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to that of I, du(t) and that the last sign of dp(t) is the same as that
of Idp(t). This completes the induction step and thereby the theorem
is proved.

The set of measures of a dual cone C*(uy, -+, %,_,) which possess
a first sign on (a, b) is a subcone. This subcone will be called the
restricted dual cone. Note that the trivial measure does not belong to
the restricted dual cone.

The condition on the pattern of signs proved in Theorem 2 readily
yield

COROLLARY 3. A restricted dual cone of odd order and a restricted
dual cone of even order are always mutually disjoint.

Note that in Corollary 3, the cones may be based on different
ECT-systems. For a fixed ECT-system, a more comprehensive result
in this direction is true, viz.

THEOREM 3. Let an ECT-system be given. Two dual cones with
respect to this system which are of different orders have only the
trivial measure in common.

Proof. Consider C*(u,, -+, U,_;) and C*(u,, -+, U;_;) With n > k.
Let dy be a measure belonging to C*(u,, + -+, u;_;). Then the necessary
conditions of Theorem A imply that

(16) Ioody - Ldp(t) =0, fora<t=<b.

Suppose now that dy belongs also to C*(u, +++, #,_,). By repeated
integration by parts similar to that performed in (18), we find

,, _ () C G DL DO b
|Ls0dpe) = — 2O L) || — 5 P 90O, o Ldps) |

b
+ (DD DOV -+ - Ldp(O)dt

Tne integrated part vanishes by virtue of the conditions (7) which
are necessary conditions for dy to belong to C*(uy, ---, u,_,). Hence,
as in the proof of Theorem 2, we deduce that a necessary condition
for dyp to belong to C*(u,, « -+, %,_,) is that I,_I, ,--- Idpu(t)dt belong
to the dual to the k-th “reduced” cone

C*(Dyy =+ » Dothyy Dy« =+ Dthysyy +++y Dy =+« Dy, ;)

This is a dual cone of order n-k, so that by Theorem B, a necessary
condition for this to happen, is that either I,_, --- I dp(t) have at
least n-k sign changes on (a,b), or that I, --- Idu(t) = 0. Since
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(16) has to be satisfied, we deduce that I, ..+ I du(t) = 0; this is
equivalent to dy being the trivial measure, so that the proof is
complete.

We have seen that for a fixed ECT-system, the intersection of
two dual cones of different order contains only the trivial measure.
The question of the structure and properties of unions of such cones
will be explored by the author in a future publication.

3. Sufficient conditions. We have, in the last section, streng-
thened the necessary conditions given by Theorem A, by adding that
if a signed measure dy belongs to C*(u,, ---,%,_,) and possesses a
first sign and a last sign, then its first sign must be (— 1)* and its
last sign must be (+).

We shall obtain in this section weaker sufficient conditions than
those specified in Theorem B.

Let the functions U,(z;t),%2 = 0,1, ---, n — 1, be defined by

amn U &) = [ wdpy,  i=0,1,m—1.

These functions are smoother than the measure du(t) and therefore
it is sometimes easier to check their respective patterns of signs than
to check the pattern of signs of dpu.

THEOREM 4. Let dy satisfy the “moment conditions” (5) and let
its first sign be (— 1)™ and its last sign be (+). If there exists a j,
0=j=n—1, such that Ui(u; t) has at most n — 1 sign changes on
(a, b), then dpe C*(uyy + v+, Up_y)-

Proof. The proof proceeds by induction. Let (g, ««+, %,_,), m = 1,
be an arbitrary ECT-system. (Note that this is a completely arbitrary
ECT-system. We have chosen to denote its functions by (w4, <+, Upn_)
in order to be able to avail ourselves of other theorems of the paper
without undue change of notation).

Assume that dp(t) satisfies the “moment conditions” (5) (where n
is replaced by m), and that its first sign is (— 1)™ and its last sign is (+).
Assume further that Uy(y; t) has at most m — 1 sign changes on (a, b).
We will now show that these assumptions imply that

deee C*(thoy ++ ) Umy)
We note that Uy(y;t) = — Idp(t), and observe that (13) and (5)
imply that

(18) [ #(du) = | DO [Ldpat .
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Thus, it will suffice if we show that I, du(t)dt belongs to
C*(Douu ] Doum—-l) .

Relations (18) and (5) imply that Idp(t)dt satisfies the m — 1
“moment conditions” with respect to (D, +--, D,_,). Hence, by
Theorem B, it has at least m — 1 sign changes. However, by our as-
sumption, I dz(t) has at most m — 1 sign changes, so that it must have
exactly m — 1 sign changes. Furthermore, following the same reasoning
as in the proof of Theorem 2, we deduce that the first sign of I du(t)
is (— 1) and its last sign is (+). Therefore, by Theorem B,
Ldp(t)dt belongs to C*(Dguy, +++, Dytly_,) .

We have thus proved that if an ECT-system of order m,m =1,
is given and dp is a signed measure with first sign (— 1)™ and last
sign (+) satisfying the corresponding “moment conditions”, then the
condition that U,(y; t) have at most m — 1 sign changes on (a, b) implies
that dg¢ belongs to the corresponding dual cone.

Assume now that we have established that, given any ECT-system
of order m and a signed measure du satisfying the corresponding
“moment conditions” and having the appropriate first and last signs, the
condition that U,_,(g¢;t),1 < » < m, have at most m — 1 sign changes
on (a, b) implies that dyp belongs to the corresponding dual cone.

We wish to show that the same conclusion is implied by the
condition that U,.(y; t) have at most m — 1 sign changes. This will be
the induction step and thereby the wvalidity of the theorem will be
established.

Let dp(t) be a signed measure whose first sign is (— 1)™ and
whose last sign is (+) and let it satisfy (5). Furthermore, assume
that U,(x¢;t) has at most m — 1 sign changes. We wish to show that
these assumptions together with the induction hypothesis imply that

dpee C*(ugy +++, Up_y). It will suffice, as explained earlier, if we show
that Idu(t)dt e C*(Dguy, « -+, Do, _;).

Consider the ECT-system (Dyu,, - -+, Dyu,_,) and define
(19) Uiy t) = StDoqu(t)dy(t) ) t=0,1,.-e,m—2,

In the case where du(t) = f(t)dt, the left hand side of (19) will be
written as U}(f;t).
Integration by parts similar to that performed in (13) yields

20) Us_(Ldw;t) = %{%Ad#(t) FU(mt), §=1,2 e m—1.

Note that the functions Uj}(yx; ¢),7 = 0,1, -+, m — 2 are defined
with respect to the ECT-system of order m — 1 (D, -+, Dt,_,) in
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exactly the same way that U;(y;t),5 = 0,1, ---,m — 1 were defined
in (17) with respect to (ug, +--, w,_,). Note further that our assump-
tions on dp imply that the first sign of Idu(t) is (— 1)™' and its
last sign is (+) and that Idp(t) satisfies the “moment conditions”
with respect to (Dyu,, +++, Dit,_,). Thus, if we show that U} (Idy; t)
has at most m — 2 sign changes, the induction hypothesis, which is
applicable since » — 1 < m — 1, will imply that

Iod/’!(t) € C*(Douu R Doum——l) .

We start with an analysis of the patterns of signs of U} ([, dy;t)
and U.(y;t). Since the first sign of Idu(t) is (— 1) the same is
true for U} ,(Idy;t). Similarly, since the first sign of dy¢ is (— 1)
the same is true for U,(g;t). On the other hand, the last signs of
both dy and I,dp(t) are (+) so that the last signs of both U} (I dy;t)
and U,(y;t) are (—).

Let v be the number of sign changes of U}_ ([ dx;t); the above
analysis of first and last signs implies that

(21) y = m (mod 2) .

Suppose now that U (I, dy;t) has more than m — 2 sign changes.
Then, by (21), it must have at least m sign changes. We assert that
this is incompatible with the assumption that U,(¢;t) has at most
m — 1 sign changes.

We divide the proof of this assertion in two parts.

(a) Let (TF, ---, T¥) be the subdivision of (a, b) associated with
the sign changes of U} (I dy; t) and let {¢}}, the points of sign change
of UjF.,(Idp;t), be defined by tf =sup{t:teTi},t1=1,2 --+,0,
Then U,(y; t) changes sign at least once in (a, t).

Note first that U} ([, dy;t) is a continuous function, so that the
points t¥, ¢ =1,2, -..,v, are among its zeros. By considering the
pattern of signs of U} (I dy;t) we see that (— 1)U/ (I, dy; t) is
positive on (a, t;] and changes its sign to negative at ¢¥. Hence,
there must exist a point z, a < 2 < tf, such that

(_ 1)m—1 our~1(x)-[od/"(x) <0.
Moreover, since D,u,_,(t) is strictly positive on (a, b), we have
(— D)™ 'Idp(z) < 0.

This inequality, taken together with relation (20) and the fact that
u;(t) and wy(t) are strictly positive on (a, b), implies that

(= )"0 (5 2) > 0.
However, we know that the first sign of (— 1)"U,(x;t) is (+).
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Hence, a sign change must have occurred for some 7,a < t < x < t¥.
This completes the first part.

(b) In each interval [t}, t}.), 7 =1,2, .-, v (where ¢}, = b), the
function U,(z;t) has at least one point of sign change.

Indeed, with no loss of generality we may assume that U} (I dy; t)
is positive for te[t}, tf,,]. Since there exists a point s, tf <s < t¥,
such that U} (Idy; s) >0 and we also have U/ (Idy;tl,) =0, it
follows that there exists a point «,, tf < x, < t¥,; for which

Dy, () Id () < 0.

Since U (I, dy; x,) = 0, relation (20) implies that U,(y; x.) > 0.

On the other hand, ¢} is a point where U} ([, dy;t) changes sign
from negative to positive. Hence, for each y, y < t}, there exists a
point x,, y < &, < t§ such that D, ,(x)]du(z,) > 0 and

Ur.(Ldp;x) =0,

We deduce from (20) that U.(y; x,) < 0. Hence, U,(x«;t) must change
sign between x, and x,. Noting that y was an arbitrary point satisfy-
ing y < t¥, we conclude that there exists a point , tf < 2 < @, < ¢},
which is a point of sign change for U,.(y; t).

Combining parts (a) and (b) we see that U,(y;¢) has at least as
many sign changes as U} (I, dy; t). Thus, if U} (I dy; t) has at least
m sign changes, then so does U,(y;t), proving the assertion. This
completes the proof of Theorem 4.

Remark. The conditions specified in Theorem 4 are weaker than
those specified in Theorem B. Indeed, if d¢ has exactly # sign changes
on (a,b) and conditions (5) are satisfied, it follows easily that the
functions U;(¢;t),t=0,1,-.-,n — 1 can have at most n — 1 sign
changes. The converse is not true. There exist, in fact, examples
such that dp possesses in excess of n sign changes, while there exists
aj,0=j=mn-—1, such that U;(¢#;t) has no more than n — 1 sign
changes.

4. Applications. In this section we discuss several applications
of the foregoing analysis to Fourier series [part a)] and to expansions
of functions in terms of orthogonal polynomials [part b)]. Some of
the results stated here might have been discussed elsewhere, but even
in that case, the power of our criteria is exemplified by the simplicity
of the derivation of the results. Thanks are due to Prof. B. Schwarz
who drew our attention to the fact that a special case of assertion
(B) below is discussed in [9, Vol. 2, p. 81]. This is the only case which,
to the best of our knowledge, has been discussed in the literature.
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The inequalities discussed in this section are necessary conditions
for functions to be included in given convexity cones. The following
converse problem is suggested:

Determine a set of conditions on the Fourier coefficients of a
function which will be sufficient to insure the inclusion of the func-
tion in a given convexity cone,

(a) Fourier series. Let f(t) denote throughout this subsection
a function of L,(— 7, 7) and let

(22) —%"— + S a, cos kt + b, sin kt
k=1

be the corresponding Fourier series.

We shall present the inequalities for the Euler-Fourier coefficients
of functions belonging to convexity cones in the form of a series of
assertions,

(A) Let f(t) be monotone nondecreasing on (— @, ). Then

(23) (— D+, =0, n=12 .
Proof. The assertion is equivalent to the relation
(— 1y S ftysinntdt =0,  for each f(t) of C(1).

Thus, we have to show that dg,(t) = (—1)"'sin nt dt belongs to C*(1).
We note first that the last sign of dy, is (+) and that dg, is odd.
Hence, it has the pattern of signs specified in Lemma 2, The zeros
of dy, inside (— 7, 7), which are simple zeros and therefore points of
sign change for dp,, are the points {— 7@ + kx/n, k =1,2, .-+, 20 — 1},
Thus, we have

—z+{(2i+2)[n}x . .
Jizs (— *+*sinntdt, t=0,1,.-+,n—1,

—n+(2iT/n)

and this expression is zero for each 7,0 < ¢ <n — 1. Hence, the
measure induced by dy, belongs to C*(1), and by Lemma 2 so does dz,.

(B) Let f(t) be convex on (— m, 7). Then
(24) (-a, =0, n=12 .-,

Proof. The assertion is equivalent to the relation

(- 1) S_ fitycosmtdt =0  for all f(t) of C(L,?¢).
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Thus, we have to show that dgs(t) = (— 1)" cos nt dt belongs to C*(1, £).
Observe that

b2

Lap®) = = | (~ 1 cos @y = (= “2sin
. .

so that Idus(m) = 0 and Idps(t)dte C*(1). By the remark following
equation (18), these are sufficient conditions for dg;(t) to belong to
C*(1,t).

(C) Let f(t) be monotone nondecreasing on (— w, 7). Then

E=1,2, ...,
n:l,z,... .

Ben

(25)

= 1.1,

Proof. In view of (23), we have to show that
(= b, = (= 1" opfn
i.e., that dp (f) = [(— 1) sin kt — (— 1) (stn knt/n)]dt belongs to
C*(1). We note that
(26) Lape() = | dpe(m) = 0.

From the well known inequality (see e.g. [9])
|sin No| < Nisinz|, N=1,2,..-,
it follows that

1smfm$§|sinkt|, E=1,2,.-+,

so that the sign of dy(t) is identical, for each ¢, with the sign of
(— D***sinkt. Thus, the first sign of dy, is (—) and its last sign
is (+), so that dy, has the pattern of sign changes specified in Lemma
2. Noting that the points of sign change of dy, inside (—m,7) are
{— 7+ (iw/k),i =1, -+, 2k — 1}, we have

) .
J, = g e k[(_ 1+ sin ot — (— Lyse+r SIERE ’m]dt ,
n

—r (2w k)

i=0,1,--+ k1,

This expression is zero for each ¢,72=20,1,.--,k — 1. Thus, by
Lemma 2, dp, belongs to C*(1).

(D) Let f(t) be convex on (— x, ). Then
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(27) law| = o,

Proof. In view of (24), we have to show that
(= Ve = (— D™ay ,

i.e., that dp,(t) = [(— 1)* cos kt — (— 1)"* cos nkt]dt belongs to C*(1, t).
We note that

Iod‘uI)(t) = — St_,,d‘uD(t) = % [(__ 1)k+1 sin kt — (__ 1)kn+1 Slnq/];nt] )

Thus, Idy,(w) = 0 and, by assertion C), Idp,(t) belongs to C*(1).
These conditions imply that dg,(f) belongs to C*(1,t).

(E) Let f(t) be monotone nondecreasing on (— w,w), Then

2

28) b + —% B

k=1

v

0’ n:l,z’...

Proof. We need only observe that

dpes(t) :[glsin Kt + -%—sin (n + l)t]dt

is nonnegative for 0 < ¢t < = (see [9]) and odd. The “moment condi-
tion” Idp(w) = 0 is clearly satisfied, and the previous observation
implies that there exists precisely one sign change. The assertion
follows then by appealing to Theorem B. Note that if = is odd,
relations (28) and (23) imply

(29) f} b, =0, for each odd = .

k=1

(F) Let f(t) be convex on (— 7w, ). Then
(30) ikak+m%]')an+1§0’ n:lyz,_...
k=1

Proof. Set dpy(t) = — [Sip_.kcoskt + {(n + 1)/2} cos (n + 1)t]dt;
it is easily seen that Idp () = 0 and that Idp,(t) = dpx(t) belongs
to C*(1). These conditions imply that dy, belongs to C*(1,¢). Note
also that relations (30) and (24) imply that

(31) S ka, <0, for each odd = .
k=1
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(G) Let f(t) be monotone nondecreasing on (— @, ). Then
(32) S kin+1— kb, =0, for each odd n .
k=1

Proof. Set dpg(t) = [>i k(n + 1 — k) sin kt]d¢t. Straight com-
putation yields

Ldpe(t) :kizl(n+1—k)coskt+ C.

We recall the equation (see [9])

(%) B+ l-Reoske+ 2IL L[ EDIZ T
k=1

2 sin t/2

The right hand side of (33) differs from I dg.(t) by a constant at
most. However, for an odd % the right hand side of (33) vanishes
for ¢t = m and so does I dy(t) as is clear from the definition of dg,.
Therefore we have

_ 1 [ sin(n+ 1t2 T
Lpo(t) = 2 [ sin ¢/2 ]

so that Idp.(t) is nonnegative on (— m,7) and vanishes for ¢t = =«
This implies, using Theorem A, that dp; belongs to C*(1).

(H) Let f(t) be convex on (— w, ). Then

(34) i Fn+1—Fka, <0, Jor each odd n .

=1 -

Proof. This assertion follows from assertion (G) in precisely the
same way as (F) followed from (E).

(I) Let f(t) be a function of C(,t,t) on (— w, ). Then

(35) (= D < (= D*"'nby,  k=1,2,---,
n = 1’ 2’ cee

Proof. Set dy,(t) = [(— 1)**+'n sin knt — (— 1)**'sin kt]dt. Simple
integration yields

Idp,(t) = —%— [(— 1)+t cos knt — (— 1)**! cos ki] ,

so that Idg(r) =0. Furthermore, Idy,(t) belongs to C*(1,t) by
assertion (D). These facts imply that dg,(t) belongs to C*(1, t, t?).
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COoROLLARY I. If f(t)e C(1)n CQ,t,t%), then we have

k=12 ...,

(36)
n=1,2-.-.

bnk
n

S bl = [ nbai ],

(J) Let f(t) be a function of CQ,¢,t% t*) on (— w,w). Then
(37) (_ 1)kak é (_ l)kﬂnza’nk ’ k= 1) 2: Tty

Proof. Set dp,(t) = [(— 1)¥* cos kt — (— 1)**'n® cos nkt]dt. The
familiar integration yields now

Ldp,(t) = % [(— 1)+ sin kt — (— 1)*'sin kt] ,

so that Idp,(m) = 0. Furthermore, I,dy;(t) belongs to C*(1,t¢, t*) by
assertion 1). These facts imply that du,(t) belongs to C*(1,t, ¢*, t°).

CoroLLARY J. If f(t)eC(@,t) N CQ, ¢, t* t°), then we have

k=12 -

(38)
'n:1’2, e

= o] = [ wan] .

W,
2

Corollaries (I) and (J) imply the following theorem relating any
two Euler-Fourier coefficients.

THEOREM 5. Let P(n, m) denote the least common multiple of the
natural numbers m and n. The following inequalities are satisfied:

(39) | By | S 101 1 Pom, b
Jor all f(t)e C(1)N C(Q, ¢, ),
and
A 2
(40) | = 0] < | Poom, |

for all f(t)e C(1,t) N CQ, ¢, ).
(K) Let f(t) be a convex function on (— w, ). Then
(41) [t =T - o).

Proof. Consider the measure dp,(t) = (sint — cost — 3t/z%)dt. It
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is easily verified that both the first sign and the last sign of dp.(?)
are (+). A direct computation demonstrates that the “moment con-

ditions” S” dpx(t) =0 and S" tdpg(t) = 0 are satisfied. Moreover, an

examination of the graph of sint-cost versus the graph of 3¢/z* shows
that dp(t) has precisely two sign changes. Hence, Theorem B implies
that dpg(t) belongs to C*(1,t); this is equivalent to assertion (K).

(L) Let f(t) be a monotone nondecreasing function on (— x, 7).
Then

(42) g;t"f(t)dt > 2% (‘% — b, — al) i

Proof. Let dp,(t) = (cost + sint + 3t*/2n* — 1/2)dt. It is easily
verified that dp,(t) = Idux(t)dt. Since Idp,(r) = 0, we can conclude
from assertion (K) and the remark following equation (13) that dp,(t)
belongs to C*(1), i.e., that (42) is indeed valid for all f(t)e C(1).

Since Theorems 1 and 2 specify necessary conditions for a measure
to belong to a dual cone, some results of a negative nature are also to
be expected. In fact, the following results can readily be deduced
from Theorem 2.

THEOREM 6. Let (%, *++, Usn_y), » =1, be an ECT-system on [-7, ].
No finite linear imequality involving only bis can be valid for all
f(t) € C(uo; °t %y uzn-1)-

Proof. It suffices to observe that a measure which is a linear
combination of {sin k¢} is an odd function on (— z, z) and thus has an
odd number of sign changes.

A similar reasoning yields also

THEOREM 7. Let (uy, *++, Us,), n = 0, be an ECT-system on[— =, r].
No finite linear inequality involving only ais can be valid for all
f(t) € C(“O’ cy uZn)°

One might conjecture, on the basis of assertion (D), that {|a, |}
is a monotone decreasing sequence whenever f(t) is a convex function.
A computation of the corresponding {J;} and reliance on Theorem 1,
show, however, that neither |a,| = |a;| nor |a;| = |as| are valid for
all convex functions.

We conclude with the following
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REMARK. An inequality for the Euler-Fourier coefficients which
holds for all functions of C(1,¢t, .-, t") cannot hold, by Theorem 3,
for all functions of C(1, ¢, «++, t™), m # n.

(b) Expansion in series of orthogonal polynomials. Let {P,(¢)}n-0
be an orthonormal family of polynomials with respect to a weight
function w(t) on (a, b), and let P,(¢) be so normalized that the coeffi-
cient of t" is positive. Let f(f) denote a function of L,(w(t);a, b)
throughout this subsection, and let ¢,, n = 0, 1, -- -, denote the Fourier
coefficients of f(f) with respect to the system {P,(t)}, i.e.,

b
(43) e = | AOP(OWEBAL,  n=0,1,.-.
Given that f(t) belongs to a convexity cone, certain inequalities
have to be satisfied by the coefficients ¢,,n = 0,1, ... . The deriva-

tion of such inequalities is the substance of this subsection.

THEOREM 8. Let f(t) be a function of CQ,t, ---,t*")., Then the
following conditions are satisfied:

(44) =0,

and

(45) Cn > Cot1 (— 1)n+lcn < ('— 1)n+lcn+1
P,(b) ~ P,.,(b)’ P a) —  Puula)

Proof. Set dp(t) = P,(H)w(t)dt. Then relation (44) will follow if
we show that dyp, belongs to C*(1,¢,---,t""). The orthogonality
properties of the polynomials P,(t) imply that dp, satisfies the “moment
conditions” (5). We recall now that P,(t) has n simple zeros, i.e. »
sign changes, inside (a,b) (see [10], Th. 3.3.1). Furthermore, since
these are all the zeros, the normalization implies that the last sign of
dy, on (a,b) is (+). Hence, relation (44) follows by appealing to
Theorem B.

Consider next the measure

dpnlt) = [%—*—E%lﬂ(t) ~ Po(®) |wit)dt .

The “moment conditions” are clearly satisfied by dp, due to the or-
thogonality properties. Observe next that the polynomial

P, (0)P,(t)/Py(b) — Pp.i(t)
has exactly » sign changes inside (a, b) (see [10], Th. 3.3.4). Since
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the » + 1 — st zero is at b, the normalization implies that the poly-
nomial must change its sign there from positive to negative. Hence,
the last sign of dy, on (e, b) is (+) and the first of relations (45) is
established by appealing to Theorem B.

Similarly, the measure

_ P, \(a) ]
dpet —[P,,lt — Lonl® p iy Lwtyar
(%) +1(2) P.(a) (¢) Jw(?)
has » sign changes inside (a,b) and an % + 1-st sign change at «a
(see [10], Th. 3.3.4). Its last sign on (a, b) is (+) and the “moment
conditions” are satisfied. Thus, Theorem B implies that dy; belongs
to C*(1, ¢, ---,t*™"), i.e. that the inequality e¢,,, = P,..(a)c,/P,(a) is

valid for all f(t)e C(,¢, -+, t" ). Using the fact that
("— 1)n+1-P'n+1(a) > 0 ’

we obtain the second relation of (45).

CorROLLARY 8.1. If f(t) is absolutely monotone on (a,b) then
¢, =20,n=0,1, --. , and the sequence {c,/P,(b)};_, ts monotone decreas-
ing. It f(t) is completely monotone on (a,b) then

(— 1)”(3%20,’)7/:0,1, M)

and the sequence {c,/P.(a)};-, is monotone decreasing.

For special classes of orthogonal polynomials, some further results
can be obtained. Let (a, b) be a finite interval. Then, with no loss
of generality we may assume that ¢ = — 1,5 = 1.

THEOREM 9. Let the weight function w(t) be an even function
and let f(t) be a function of C(t, ¢, -+, t" ). Then in addition to
(44) and (45), we have

(46) Cn > Cotz .
P,(1) = P,.(1)

Proof. Consider the measure

_[PD) _ Pould)
WO = FD ~ Pl Jocoac

The “moment conditions” (5) are satisfied by dp by virtue of the
orthogonality properties. Thus, by Theorem B, the polynomial

Q(t) = Pu(t)/Pa(l) — Pois(t)/Paia(1)
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has at least » zeros inside (— 1,1). On the other hand, it can have
at most 7 zeros inside (— 1, 1) since @(1) = 0 and the symmetry of w(f)
implies that Q(— 1) = 0. Hence, Q(¢) has exactly n zeros inside
(— 1,1). Noting that £ = 1 is the largest zero of Q(¢), we deduce
from the normalization of the polynomials P,(¢),n =0,1, .-+, that
the last sign of dy¢ on (— 1,1) is (+). Relation (46) follows now by
appealing again to Theorem B.

Note that the ultraspherical polynomials have a symmetric weight
function, so that for them relations (44)—(46) are valid.

Consider now the expansion in terms of Tchebycheff polynomials.
As a result of the strong affinity of these polynomials to the trigono-
metrie functions, a general inequality for the coefficients of the ex-
pansion can be derived from the sole assumption that f(x) is monotone
nondecreasing.

Let T,(x),n =0,1, ---, denote the n-th order Tchebycheff poly-
nomial, and let the coefficients a,, 7 = 0,1, .-+, be defined by

(47) anzgil%dx, n=0,1,--.

THEOREM 10. Let f(x) be a monotone nondecreasing function on
(—1,1). Then
(48) Ia’llzlauly ’ﬂ=2,3,- *

Proof. Note first that since f(z) e C(1), Theorem 8 implies that
a, = 0. Hence, relation (48) is equivalent to ¢, = | a,|.
We start by proving that a, = a,. Consider the measure

dp(x) = Téx)l__a’;(w) dx .

We wish to prove that this measure belongs to C*(1) on (—1,1).
Making the monotone change of variable x = cost, 0 <t < 7w, we see
that our problem reduces to showing that

dp(t) = (cos nt — cos t)dt

belongs to C*(1) on (0, 7). The “moment condition S"d;zz(t) = 0 is triv-
i}

ially satisfied. Furthermore, dy.(t) is negative on an interval extend-
ing to 0 and it is positive on an interval extending to .
The elementary trigonometric identity

(n — 1)t
2

cosnt — cost = —2sin (n ;_ 1)t sin.
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shows that the zeros, i.e. the points of sign change, of [cos nt — cos ]
inside (0, ) are the points 2kw/(n + 1),k =1,2,--+,[n/2], and the
points 2km/(n — 1),k = 1,2, ---,[(n — 2)/2]. Thus, for n = 2 0r n = 3,
dyt, changes sign only once so that the desired conclusion follows from
Theorem B.

Assume now that n > 4. Since r/(n — 1) < (r + 2)/(n + 1) for all
r,1 < r < n—1, the ordered sequence of points of sign change of
dy, inside (0, 7) is

o ox  4x 2 —2)2lx 22l
n+1"n—1 n+1’ ’ n—1 " n+1"

The numbers J;, ¢ = 0,1, -+ [(n — 4)/2], defined in (9), are thus
given by

(22+2)7/(n—1)

J; = S (cos nt — cos t)dt
2ix](n—1)

- L[sinw_ sin %_nffﬂ _ [sin (2 + 2 _ . 2 ] .

sin
n n—1 n — n — n—1

Sinece nw/(n — 1) = © + w/(n — 1), the expression for J; reduces to

_ (1 (2 4+ 2w . Nw
) 7= (G = (e SR - sin ),
t= 0: 1: "'y[(n - 4)/2] .

The last J; is given by

Jiinenjey = S” (cos nt — cos t)dt
2[n—2)/2]x/(n—1)
_ _1_sin 2[(n — 2)/2]x 4 sin 2l(n — 2)/2]x
n n—1 n—1
= (1— L)sinw>0_
n n—1

From (49) we can deduce that J, < 0 and that the sequence
{J1=0,1, .-+, [(n — 2)/2]}

has precisely one sign change, which is a change from negative to
positive. Hence, by appealing to Lemma 2, we conclude that dp(t)
belongs to C*(1) on (0, 7). Thus dg(x) belongs to C*(1) on (—1,1)
and the inequality @, = @, is established for all f(x)e C(1).

For the proof of the inequality a, = — a, we consider the measure
dpy(x) = [Ty(x) + T,(x)}(1— «*)~Y*dx defined on (—1,1). This measure
belongs to C*(1) on (—1,1) if, and only if dg,(t) = — (cos nt + cost)dt
belongs to C*(1) on (0, 7). The proof that dp(t) belongs to C*(1)
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proceeds in exactly the same way as the proof that dp(f)e C*(1).
We will not repeat the details. This completes the proof of the
theorem.

The author wishes to express his deep gratitude to Professor
Samuel Karlin for his guidance and inspiration. I also wish to thank
the referee for his useful comments.
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