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Abstract— This letter proposes particle swarm optimization
(PSO)-based band selection (BS) approach for hyperspectral
target detection. Due to lack of training samples in a detection
problem, it is more difficult than classification-purposed BS. The
objective function, called maximum-submaximum-ratio (MSR)
gauging target-background separation, is proposed for target
detection during PSO searching. Typical target detectors such
as target-constrained interference-minimized filter and adaptive
coherence estimator are studied. Experimental results demon-
strate that the proposed MSR-based objective function in con-
junction with PSO-based searching can select a small band set
while yielding similar or even better detection performance than
using all the original bands, sequential forward search-based BS,
or BS relying on detection map similarity assessment.

Index Terms— Band selection (BS), hyperspectral imagery,
particle swarm optimization (PSO), target detection.

I. INTRODUCTION

TARGET detection is one of major tasks of hyperspectral
imaging. A hyperspectral image cube contains hundreds

of spectral bands, leading to a high computation burden on
target detection. Thus, it is necessary to do dimensional reduc-
tion on the original data for efficient analysis. Typically, there
are two kinds of methods for dimensional reduction. The first
one is transform-based methods (such as principal component
analysis [1]), and such methods may not be preferred since
they alter the physical meaning of the data. The second one
is band selection (BS), which is to select a subset of bands
while still generating satisfactory results using the selected
bands [2]–[4].

BS algorithms have been applied to hyperspectral data
analysis, and they can be implemented in either unsupervised
or supervised. Unsupervised BS is to select the subset of
bands without any prior information. For instance, a simple
yet efficient similarity measure method was developed in [5]
for BS. Supervised BS algorithms intend to select the bands
producing maximum class separability with prior knowledge
of training samples. Many methods (see [5], [6]) have been
developed to measure the class separability for BS. However,
most BS algorithms are focused on classification problems,
and few have been proposed for target detection. It is more
difficult to separate targets and nontargets with selected bands
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due to lack of training samples for target and background
modeling.

The search strategy is also an important issue. To avoid
exhaustive search, which is computationally prohibitive to
hyperspectral BS, sequential forward search (SFS) and sequen-
tial floating forward (SFFS) methods can be used [7]. Their
basic idea is to select the best band for maximizing an
objective function, then one additional band combining with
the existing selected band or bands is selected to maxi-
mize the objective function. The process continues until the
desired number of bands is reached. Recently, particle swarm
optimization (PSO), invented by Eberhard and Kennedy [10],
has been applied to hyperspectral BS with the objective of
maintaining classification accuracy [8], [9]. The PSO imitates
the social behavior of flocks. Each particle is a solution, and
the positions of particles are randomly initialized. Then the
particles fly over the problem space until certain criteria are
reached. Compared with SFS and SFFS, PSO offers two major
advantages: it can provide better high-dimensional solution
due to global search, and it can be easily implemented in
parallel. Although several other evolutionary algorithms are
developed recently, such as ant colony optimization [11] and
firefly algorithm [12], which have been applied to hyperspec-
tral BS, we limit our discussion with PSO in this letter.

Here, we focus on the task of target detection where targets
with known spectral signatures are to be detected from an
unknown background. Targets, as small man-made objects, are
often sparsely populated [13]. No training or labeled samples
are available for both target and background [14]. The key
of PSO-based selection is to design an effective objective
function during searching. More often, labeled samples are
available when evaluating an objective function. However,
it is impossible for target detection. Thus, a detection-specific
objective function is required. Intuitively, we can compare the
detection outputs for band searching with a certain criterion,
such as Euclidean distance or correlation coefficient (CC).
However, a large similarity does not necessarily mean satisfac-
tory performance, because the number of target pixels is much
smaller than background pixels and similarity assessment is
dominated by background. Thus, we prefer the metric that
can well gauge target and background separation. Specifi-
cally, we propose the maximum-submaximum-ratio (MSR)
to quantify such separation. The typical target detectors, i.e.,
target-constrained interference-minimized filter (TCIMF) and
adaptive coherence estimator (ACE), are studied. Experimental
results using the proposed MSR-based objective function in
conjunction with PSO-based searching can select a small band
set while yielding similar or even better detection performance
than using all the original bands. The parameter setting of
MSR is discussed based on the performance of detectors.
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Fig. 1. Cropped HyMap data.

II. PROPOSED BAND-SELECTION METHOD

A. Target Detectors

Assume N hyperspectral pixels X = [r1, r2, . . . , rN ] are
obtained, where ri is an L×1 vector. Let D = [d1, d2, . . . , dp]
and U = [u1, u2, . . . , uq ] denote the desired and undesired
target signature matrices, respectively. TCIMF [15] is designed
to keep the output of the desired target at a desirable level
while suppressing the energy of the output of undesired targets.
It can be considered as the following linearly constrained
optimization problem:

minw {wTRw} s.t. [DU]T w =
[

1px1
0qx1

]
(1)

with the optimal coefficient vector wTCIMF

wTCIMF = R−1[DU]{[DU]T R−1[DU]}−1
[

1p×1
0q×1

]
(2)

where R = 1/N
∑N

i=1 ri rT
i is the L × L data correlation

matrix, 1p×1 is a p × 1 constraint column vector with all
components equal to 1, and 0q×1 is a q ×1 constraint column
vector with all components equal to 0. The output of TCIMF
is presented as

yTCIMF = wT
TCIMFr. (3)

For the pixel r, its ACE output, derived from a binary
hypothesis testing problem, can be written as [16]

yACE = rT�−1d(dT�−1d)−1dT�−1r

rT�−1r
(4)

where � is the background covariance matrix. The ACE is
considered as one of the most powerful detectors. Note that it
cannot be simplified as a finite impulse response (FIR) filter w
as in TCIMF or constrained energy minimization.

B. Criterion Functions

1) Maximum-Submaximum-Ratio Criterion: Let the output
of the TCIMF or ACE be represented as a grayscale image.
Suppose the maximum value in the output is located at (i, j).
After bands are selected, TCIMF or ACE is reconducted.
Using the HyMap data in Fig. 1 to be introduced in Section III
for illustration, Figs. 2 and 3 show a part of the detection
outputs of TCIMF and ACE, respectively, before and after BS.
Here, we generate the detection maps for F2 and the number of
selected band is 30. For TCIMF, the maximum value before
BS corresponds to a desired target; however, after BS, the

Fig. 2. TCIMF detection maps for F2. (a) All bands. (b) 30 bands.

Fig. 3. ACE detection maps for F2. (a) All bands. (b) 30 bands.

location of the maximum output is shifted to another location.
Moreover, before BS, the maximum value is significantly
larger; after BS, there are several quite similar large values
from background pixels as false alarms, which are critical
to gauge the separation between target and background. For
ACE, the maximum value after BS still corresponds to a
desired target and is not shifted to another location, and the
major change is that the overall outputs from the background
becomes large.

Intuitively, desirable detection performance can be achieved
when target and background are well separated. However, the
majority of pixels are background and their average is always
very small. Based on Figs. 2 and 3, the key to success is
to obtain a large separation from those false alarm pixels
with submaximum (SM) values. For TCIMF, a relatively weak
detector, the average SM value is based on several background
pixels yielding potential false alarms; for ACE that is relatively
strong in background suppression, the average SM value may
be estimated using more background pixels.

Let the average value at the maximal location (i, j) and its
four nearest pixels be computed and denoted as M. Without
considering these five pixels in the generated detection map
after BS, the average value of the first K largest values is
calculated and denoted as average SM. In the experiment, we
chose K = 10, 20, or 300 (top 1% of the largest values). The
objective function can be described as

arg max
�S

M

SM(�S)
(5)

where �S is the selected band subset, and the SM value
is its function. This criterion is called MSR. If this ratio is
high, then the resulting selected bands can better separate the
target and the false alarm background pixels, and most likely,
maintain the detection performance.

2) Correlation Coefficient : Let an m-by-n output image
from using all the original bands be denoted as O1, and the
one from the selected bands is O2. The CC of the two output
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images O1 and O2 is calculated as

CC =
∑

m
∑

n (O1mn − O1)(O2mn − O2)√
(
∑

m
∑

n (O1mn − O1)2)(
∑

m
∑

n (O2mn − O2)2)

(6)

where O1 and O2 are the averages of the output images
O1 and O2, respectively. The band subset that can maximize
the CC will be selected, i.e., the objective function to select
the best bands is

arg max
�S

CC(�S). (7)

It will be shown such an image similarity measure may not
work well because the majority of pixels belong to back-
ground, dominating the similarity measurement.

C. PSO Search Strategy

Let a particle xid denote a possible solution. Let vid denote
the velocity to update the current location xid. In each iteration,
the historically local best solution is described as pid, and the
historically global best solution among all the particles is
denoted as pgd. The update of vid can be described in

vid = w × vid+c1×r1×(pid−xid)+c2×r2 × (pgd − xid) (8)

which calculates the new velocity for each particle based on
its previous velocity. The location update of the particles is
updated as

xid = xid + vid. (9)

In (9), c1 and c2 control the contribution of the local best
and the global best solution, respectively, and r1 and r2 are
two random variables within [0, 1]. The inertia weight w is
applied as a scalar of the previous velocity vid, and it can
result in better convergence in many applications [10].

In the BS problem, xid becomes a vector containing the
selected band indices. Similarly, pid and pgd are also vectors
denoting the local and global best band indices, respectively.

D. Algorithm

The proposed BS algorithm is summarized as follows.

1) Randomly initialize P particles xid. Each particle
denotes the indices of the bands to be selected.

2) Conduct target detection with TCIMF or ACE to gener-
ate the detection map and normalize the detection map.

3) Evaluate the P particles using the designed objective
functions MSR or CC.

4) Update the velocities and the positions of the particles
until a certain stopping criterion is reached.

5) The particle that generates the global best value contains
the indices of the bands to be selected.

In the experiments, we empirically chose the number of
particles P = 20, and the acceleration coefficients c1 =
c2 = 2.1. The range of the inertia weight w was from
0.4 to 0.9. The algorithm was considered to converge if the
global best pgd does not change after 400 iterations. The
number of selected bands is changed from 30 to 50.

Fig. 4. ROC curve of MSR using PSO with different values of K (TCIMF).

E. Performance Comparison

In [17], a sparseness constrained BS method is proposed
for target detection. Specifically, for a detector that can be
modeled as an FIR filter w, a Lasso-based BS (LBS) algorithm
is applicable to find a set of bands that yields the minimum
Euclidean distance between the original filter output and the
output with selected bands. The following objective function
is to be minimized:

f (
�w) = ‖y − �y‖2

2 = ‖y − �w
T �

X‖2
2 s.t. ‖ �

W‖1 ≤ t (10)

where
�w is the detector applied to the selected bands, X̂

denotes all the pixel vectors in selected bands only, and t is
the desired sparsity. In the experiment, the LBS is compared
with the MSR when the TCIMF is the detector, as the LBS is
infeasible to ACE which cannot be simplified as a filter w.

III. EXPERIMENT

A. Experimental Data

The HyMap data, obtained from Rochester Institute of
Technology [18], are used in this experiment. This data have
126 spectral bands with the spatial size of 200 × 800 and
covers an area of Cooke City, MT, USA. The experiment is
conducted based on a subimage of size 100 × 300 shown in
Fig. 1. The spatial resolution of the data is approximately 3 m.
In the HyMap data, there are three types of vehicle (V1-V3)
and four types of real fabric panels (F1-F4). There are a total of
65 target pixels. In the experiment, we use receiver operating
characteristic (ROC) curve to evaluate the experiment results,
which shows the tradeoff between false alarm rate (fa) and
probability of detection (pd). The performance of the ROC
can be measured by the area under the curve, and the larger
area under a curve, the better the performance [19].

B. Experiment on TCIMF

We first discuss the effect of the MSR parameter K . It can
be concluded from Fig. 4 that averaging the first 10 submax-
imal values provides results comparable to averaging the first
20 submaximal values, and both cases present better results
than that with K = 300. The explanation of this phenomenon
may be found in Fig. 2. We can see from Fig. 2(b) that
there are only a few large SM values at nontarget locations.
Therefore, the objective is to select the bands suppressing these
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Fig. 5. ROC curve of MSR (K = 300) using PSO and SFS (TCIMF).

Fig. 6. ROC curve of MSR (K = 300) and CC using PSO (TCIMF).

nontarget SM values while remaining the maximum value
at the target location. When K is too large, we may also
include those background pixels that can be easily suppressed.
We can also see from Fig. 4 that the ROC curve is degraded
when the number of selected bands decreases. This is expected
since more bands provide more spectral information and thus
can better separate target and background. Moreover, when
the number of bands is close to 40 or 50, the detection
performance is comparable to that with all the bands, since
additional bands may not contain more useful information.
We reach the goal to reduce the data dimensionality while
keeping the detection performance.

Fig. 5 compares PSO and SFS for MSR with K = 300. Note
that when K = 300, the performance of MSR is not the best.
PSO can outperform SFS. Fig. 6 compares MSR (K = 300)
and CC when PSO is used for searching. MSR still provides
better results than CC for different numbers of selected bands,
indicating that CC may not be a good criterion. Since most
of the values belong to the background, simply comparing
similarity between the two image outputs cannot guarantee
reliable detection performance.

Fig. 7 shows the performance comparison with the LBS
when TCIMF is the detector, where the MSR can outperform
even when the parameter K is not the optimum. This is mainly
due to the fact that output similarity is not an appropriate
metric for target detection.

Fig. 7. Comparison with LBS when TCIMF is the detector.

Fig. 8. ROC curve of MSR using PSO with different values of K (ACE).

Fig. 9. ROC curve of MSR using PSO, SFS with K = 20 (ACE).

C. Experiment on ACE

The ACE performance is shown in Figs. 8–10. Several
conclusions can be drawn from Fig. 8. First, K = 300 and
K = 10 are the best and worst MSR parameters, respectively.
The detection map after BS is shown in Fig. 3(b), where no
significant false alarm pixels are present. If only the first ten
largest values are suppressed, there are still some other similar
large values at nontarget locations. Thus, it is better to suppress
more SM values. Second, the ROC curve performance after



558 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 14, NO. 4, APRIL 2017

Fig. 10. ROC curve of MSR with K = 20 and CC using PSO (ACE).

Fig. 11. Convergence curve. (a) CC. (b) TCIMF with MSR.

BS is comparable to that with all the bands. In Fig. 3(b), even
after selecting 30 bands, the maximum value is still at the
target location. Hence, it may not need many bands to separate
target and background. Fig. 9 shows that PSO outperforms
SFS. In Fig. 10, the MSR criterion is better than CC even
when K is not the optimum.

D. Convergence

The convergence curve is shown in Fig. 11. In Fig. 11(a),
when using CC as the objective function, the PSO for both
TCIMF and ACE can converge after about 100 iterations.

In Fig. 11(b), the PSO with MSR searching can be terminated
within 400 iterations.

IV. CONCLUSION

In this letter, a PSO-based BS method is proposed to select a
small number of bands while maintaining the target detection
performance. Typical detectors, i.e., TCIMF and ACE, are
investigated. Detection output comparison with MSR or CC
can serve as a simple objective function, and the MSR measur-
ing target and false-alarm-background separation outperforms
CC or other similarity-based criteria. The experiment results
also demonstrated that the PSO can find better subset bands
for detection compared to the traditional SFS.
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