
Chapter 7

Spatial Structure: Patch Models

P. van den Driessche

Abstract Discrete spatial heterogenity is introduced into disease transmis-
sion models, resulting in large systems of ordinary differential equations.
Such metapopulation models describe disease spread on a number of spa-
tial patches. In the first model considered, there is no explicit movement of
individuals; rather infectives can pass the disease to susceptibles in other
patches. The second type of model explicitly includes rates of travel between
patches and also takes account of the resident patch as well as the current
patch of individuals. A formula for and useful bounds on the basic reproduc-
tion number of the system are determined. Brief descriptions of application
of this type of metapopulation model are given to investigate the spread of
bovine tuberculosis and the effect of quarantine on the spread of influenza.

7.1 Introduction

Basic deterministic models assume no spatial variation. However, since both
the environment and any population are spatially heterogeneous, it is obvi-
ously desirable to include spatial structure into an epidemic model. Demo-
graphic and disease parameters may vary spatially, and a human population
may live in cities or be scattered in rural areas. Populations travel, animals
and people by foot, birds and mosquitoes (reservoir and vector for West Nile
virus) by wing. In addition, people travel by air between cities, so diseases
can be spread quickly between very distant places (as was the case with the
SARS outbreak in 2003).
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Spatial structure can be included in either a continuous or discrete way. If
time is assumed continuous, then continuous space yields reaction-diffusion
equations, which are discussed in the chapter by Wu [15], whereas discrete
space yields coupled patch models. These models, which are the focus of this
chapter, are called metapopulation models . They usually consist of a system
(often a large system) of ordinary differential equations with the dynamics of
each patch coupled to that of other patches by travel. A patch can be a city,
community, or some other geographical region. If time is assumed discrete,
then continuous space yields integrodifference equation models, whereas dis-
crete space yields coupled lattice or cellular automata models [8, page 268].

Four different types of metapopulation models from the literature are con-
sidered in this chapter. The first two models are fairly general and are formu-
lated and discussed in detail, whereas the last two, which deal with influenza
and with tuberculosis in possums, are described in less detail. But since these
metapopulation models can be complicated, readers are asked to consult the
references for more background and details.

7.2 Spatial Heterogeneity

Consider a basic susceptible, exposed, infective, recovered (SEIR) compart-
mental model such as is frequently used for childhood diseases; see, for ex-
ample, [1], [13, Sect. 2.2 with p = q = 0]. To incorporate spatial effects,
Lloyd and May [9] divide the population into connected subpopulations. Let
Si, Ei, Ii, Ri denote respectively the number of susceptible, exposed, infective
and recovered individuals in patch i for i = 1, ..., n. The total population of
patch i is Ni = Si + Ei + Ii + Ri. The birth and natural death rate constant
d is assumed to be the same in each patch, so that the total population of
each patch remains constant. The average latent period 1/ε and the average
infectious period 1/γ are assumed to be the same in each patch. This spatial
model can be written for i = 1, ..., n as

S′
i = dNi − dSi − λiSi

E′
i = λiSi − (d + ε)Ei (7.1)

I ′i = εEi − (d + γ)Ii

R′
i = γIi − dRi;

with the force of infection in patch i given by a mass action type of incidence

λi =
n∑

j=1

βijIj .
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Thus infective individuals in one patch can infect susceptible individuals in
another patch, but there is no explicit movement of individuals in this model.
If the exposed period tends to zero, corresponding to ε → ∞, then this reduces
to an SIR model; which is now analyzed. Please consult [9] for analysis of the
SEIR model.

For the SIR model, the equations are

S′
i = dNi − dSi − λiSi

I ′i =
n∑

j=1

βijIjSi − (d + γ)Ii (7.2)

and the disease-free equilibrium is Si = Ni, Ii = Ri = 0. Using the next
generation matrix method [14], the basic reproduction number R0 can be
calculated from (7.2) as R0 = ρ(FV −1) where the i, j entry of FV −1 is
βijNi/(d + γ).

For the case that each patch has the same population (i.e., Ni = N) and βij

are such that the endemic equilibrium values of Si, Ii, and λi are independent
of i, then the endemic equilibrium is given explicitly for R0 > 1 by

Si∞ = S∞ =
N

R0
, Ii∞ = I∞ =

dN

d + γ
(1 − 1

R0
), Ri∞ = R∞ =

γI∞
d

,

(7.3)
with λi∞ = λ∞ = d(R0 − 1).

As an example of a symmetric situation that satisfies the above require-
ments, assume that βij = β if i = j and βij = pβ with p < 1 if i $= j. Thus the
contact rate is the same within each patch and has a smaller value between
each pair of different patches. Then matrix B = [βij ] = β(pJn×n+(1−p)In×n)
where Jn×n is the matrix of all ones and In×n is the identity matrix. The
eigenvalues of B are β[pn + (1 − p)], which is simple, and β(1 − p) with
multiplicity n − 1. Thus

R0 =
βN [pn + (1 − p)]

(d + γ)
,

which depends on the number of patches n and the coupling strength p.
Linearizing about the endemic equilibrium and assuming solutions are

proportional to exp(zt) yields a characteristic equation that can be written
in the form det(B − ΓIn×n) = 0 with

Γ = (z + d + λ∞)
(z + d + γ)
(z + d)S∞

.

Thus Γ takes values that are the eigenvalues of B. The simple eigenvalue of
B gives rise to the quadratic
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z2 + dR0z + d(d + γ)(R0 − 1) = 0.

Following [1], the authors [9] set dR0 = 1/A where A is the average age of
first infection, and 1/τ = d + γ ≈ γ where τ is the average infective period.
As A >> τ , the quadratic can be approximated by

z2 + z/A + 1/(Aτ) = 0,

which gives z ≈ −1/(2A)± i/
√

Aτ. This represents a weakly damped oscilla-
tion about and towards the endemic equilibrium, with the period of oscillation
shorter than the damping time. The number of individuals in each compart-
ment in all patches oscillate in phase. The repeated eigenvalue (of multiplicity
n− 1) of B gives rise to internal modes that are strongly damped. Thus, for
all but the smallest values of p, the oscillations quickly become phase locked.
This result is based on a linear stability analysis, but the authors [9] believe
that the endemic equilibrium is globally attracting for R0 > 1.

Simulation results for a two patch model (n = 2) for the above example
are presented [9, Sect. 4]. Parameters are chosen to model measles epidemics
in a population of N1 = N2 = 106, with d = 0.02 year−1. The average
infective period is taken as five days (τ = 5) giving γ = 73.0 year−1, with
β = 0.0010107 year−1 infective−1. When p = 0, these parameters give R0 ≈
13.8, with A ≈ 3.6 years. Rapid phase locking occurs for p larger than about
0.002. For p = 0.01, numerical simulations show I1 and I2 synchronized by
about five years as they approach I∞ given by (7.3) with damped oscillations.
A stochastic formulation of this SIR model is also shown numerically to give
synchronization, although a slightly larger value of p is required. Assuming
that the within-patch contact rate is seasonally forced, in-phase and out of
phase biennial oscillations are seen with chaotic solutions possible for some
parameter values (illustrated in [9, Fig. 3] with p = 10−3). As found in other
metapopulation models, with larger p values (i.e., stronger between patch
coupling) the system effectively behaves more like that of a single patch.

7.3 Geographic Spread

Sattenspiel and Dietz [11] introduced a metapopulation epidemic model in
which individuals are labeled with their city of residence as well as the city in
which they are present at a given time. This model explicitly includes rates
of travel between n patches, which can be cities or geographical regions.
A susceptible-infective-recovered (SIR) model incorporating this spatial het-
erogeneity is formulated [11, Sect. 2], and the same spatial heterogeneity is
incorporated in a susceptible- infective-susceptible (SIS) model formulated
by Arino and van den Driessche [2]. The notation of [2] is used here.
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To formulate the demographic model with travel, let Nij(t) be the number
of residents of patch i who are present in patch j at a time t. Residents of
patch i leave this patch at a per capita rate gi ≥ 0 per unit time, with a
fraction mji ≥ 0 going to patch j, thus gimji is the travel rate from patch i
to patch j. Here mii = 0 and

∑n
j=1 mij = 1. Residents of patch i who are in

patch j return home to patch i with a per capita rate of rij ≥ 0 with rii = 0.
It is natural to assume that gimji > 0 if and only if rij > 0. These travel
rates determine a directed graph with patches as vertices and arcs between
vertices if the travel rates between them are positive. It is assumed that the
travel rates are such that this directed graph is strongly connected.

Assume that birth occurs in the home patch at a per capita rate d > 0, and
death occurs in any patch with this same rate. Then the population numbers
satisfy the equations

N ′
ii =

n∑

k=1

rikNik − giNii + d
( n∑

k=1

Nik − Nii

)
(7.4)

N ′
ij = gimjiNii − rijNij − dNij for i $= j. (7.5)

These equations describe the evolution of the number of residents in patch
i who are currently in patch i (7.4) and those who are currently in patch
j $= i (7.5). The number of residents of patch i, namely Nr

i =
∑n

j=1 Nij

is constant, as is the total population of the n patch system. With initial
conditions Nij(0) > 0, the system (7.4)–(7.5) has an asymptotically stable
equilibrium N̂ij .

An epidemic model is now formulated in each of the n patches, with Sij(t)
and Iij(t) denoting the number of susceptible and infective individuals res-
ident in patch i who are present in patch j at time t. Taking an SIS model
with standard incidence [2], equations for the evolution of the number of
susceptibles and infectives resident in patch i (with i = 1, ..., n) are

S′
ii =

n∑

k=1

rikSik − giSii −
n∑

k=1

κiβiki
SiiIki

Np
i

+ d
( n∑

k=1

Nik − Sii

)
+ γIii (7.6)

I ′ii =
n∑

k=1

rikIik − giIii +
n∑

k=1

κiβiki
SiiIki

Np
i

− (γ + d)Iii (7.7)

and for j $= i

S′
ij = gimjiSii − rijSij −

n∑

k=1

κjβikj
SijIkj

Np
j

− dSij + γIij (7.8)

I ′ij = gimjiIii − rijIij +
n∑

k=1

κjβikj
SijIkj

Np
j

− (γ + d)Iij (7.9)
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with Np
i =

∑n
j=1 Nji, the number present in patch i. Here βikj > 0 is the

proportion of adequate contacts in patch j between a susceptible from patch
i and an infective from patch k that results in disease transmission, κj > 0
is the average number of such contacts in patch j per unit time, and γ > 0
is the recovery rate of infectives (assumed the same in each patch). Note
that the disease is assumed to be sufficiently mild so that it does not cause
death and does not inhibit travel, and individuals do not change disease
status during travel. Equations (7.6)–(7.9) together with nonnegative initial
conditions constitute the SIS metapopulation model. It can be shown that the
nonnegative orthant R2n2

+ is positively invariant under the flow and solutions
are bounded.

The disease-free equilibrium is given by Sij = N̂ij , Iij = 0 for all i, j =
1, ..., n. If the system is at an equilibrium and one patch is at the disease-free
equilibrium, then all patches are at the disease-free equilibrium; whereas if
one patch is at an endemic disease level, then all patches are at an endemic
level. These results hold based on the assumption that the directed graph
determined by the travel rates is strongly connected. If this is not the case,
then the results apply to patches within a strongly connected component.

For the n-patch connected model, the next generation matrix [6,14] can be
determined from (7.7) and (7.9), leading to a formula for the basic reproduc-
tion number R0. To keep the notation simple, the formula for n = 2 patches
is explicitly given here, thus m12 = m21 = 1, and g1, g2, r12, r21 are assumed
positive. For the general n case see [2, page 185]. Ordering the infective
variables as I11, I12, I21, I22, the matrix of new infections at the disease-free
equilibrium F is a block matrix with 4 blocks, in which each block Fij is the
2 × 2 diagonal matrix

Fij = diag
(
κ1βij1

N̂i1

N̂p
1

, κ2βij2
N̂i2

N̂p
2

)
.

Matrix V , accounting for transfer between infective compartments, can be
written as V = V1 ⊕ V2, where ⊕ denotes the direct sum, and

V1 =
[

g1 + γ + d −r12

−g1 r12 + γ + d

]
, V2 =

[
r21 + γ + d −g2

−r21 g2 + γ + d

]
.

Matrices V1 and V2 are irreducible nonsingular M-matrices (for definition
and properties of M-matrices see [4]) thus their inverses are positive, and
V −1 = V −1

1 ⊕ V −1
2 . Using these blocks, R0 can easily be computed for a

given set of parameter values as R0 = ρ(FV −1), where ρ denotes the spectral
radius. For n patches, a similar formula is obtained, with FV −1 being an
n2×n2 positive matrix. It is apparent that R0 depends on the travel rates as
well as the epidemic parameters. If R0 < 1, then the disease-free equilibrium
is locally asymptotically stable; whereas if R0 > 1, then it is unstable.
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Assume that the disease transmission coefficients are equal for all popula-
tions present in a patch, i.e., βijk = βk for i, j = 1, ..., n. With this assump-
tion, the following bounds can be found for R0 for n patches:

min
i=1,...,n

R(i)
0 ≤ R0 ≤ max

i=1,...,n
R(i)

0 (7.10)

where R(i)
0 = κiβi/(d + γ) is the basic reproduction number of patch i in

isolation. Thus if R(i)
0 < 1 for all i, the disease dies out; whereas if R(i)

0 > 1
for all i, then the disease-free equilibrium is unstable.

Numerical simulations presented in [2] with n = 3 patches show that
(for parameter values relevant for gonorrhea) when R0 > 1, the number of
infectives in each subpopulation goes to an endemic value. Further numerical
investigations for n = 2 patches focus on a case in which in isolation the
disease would be absent in patch 1 but endemic in patch 2 (i.e., R(1)

0 < 1,

R(2)
0 > 1). The bounds in (7.10) give R0 ∈ [R(1)

0 ,R(2)
0 ]. Parameter values are

chosen to be relevant for a disease like gonorrhea: γ = 1/25, d = 1/(75×365)
with the time unit of one day. Suppose that Nr

1 = Nr
2 = 1500, κ1 = κ2 = 1,

r12 = r21 = 0.05, β1 = 0.016 giving R(1)
0 = 0.4, and β2 = 0.048 giving

R(2)
0 = 1.2. A change in travel rates g1, g2 can induce a bifurcation from

R0 < 1 to R0 > 1 or vice versa, see [2, Fig. 3a]. Another view of this case
is presented in Fig. 7.1 in which g1 = g2 and R0 is plotted as a function of
g1 = g2, with R0 = 1 shown as a broken horizontal line. Thus travel can
stabilize (small travel rates) or destabilize (larger travel rates) the disease-
free equilibrium. These numerical results support the claim that for R0 > 1,
the endemic equilibrium is unique and that R0 acts as a sharp threshold
between extinction and invasion of the disease.

Similar conclusions are drawn for the more general SEIRS model [3], for
which an explicit formula for R0 is derived. Sattenspiel and Dietz [11] sug-
gested an application of their metapopulation SIR model to the spread of
measles in the 1984 epidemic in Dominica. Travel rates of infants, school-
age children and adults are assumed to be different, thus making the model
system highly complex and requiring knowledge of more data for simulation.
Sattenspiel and coworkers; see [10] and references therein, have since used
this modeling approach for studying other infectious diseases in the histori-
cal archives; one such example is discussed further in the next section.

7.4 Effect of Quarantine on Spread of 1918–1919
Influenza in Central Canada

Work by Sattenspiel and Herring focuses on the spread of the 1918–1919
influenza epidemic in three communities in central Manitoba, Canada. The
effect of quarantine on the spread of this epidemic is discussed by Sattenspiel
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Fig. 7.1 The basic reproduction number as a function of travel rates for the two patch
model. For parameter values, see text. Figure by Mahin Salmani

and Herring [12], which is a good source of references to their work. The
three communities, all of which are former Hudson’s Bay Company fur trade
posts, are Norway House (population 746), Oxford House (population 322)
and God’s Lake (population 299). Many of the inhabitants were fur trappers
and Norway House was on a main trading route. Oxford House was in direct
contact with Norway House, and God’s Lake was connected to the other posts
by less travelled routes.

The influenza epidemic occurred in this region during the late fall of 1918
and the following winter. There were 107 deaths among residents of Norway
House in a period of a year beginning in July 1918, with most of these proba-
bly from influenza. The time taken in winter to travel between Norway House
and Oxford House was six days, a factor that slowed the spread of the dis-
ease, especially since influenza has a period of communicability of 3–5 days
from clinical onset in adults [5, page 272]. Sattenspiel and Herring [12] used
a fascinating mix of mathematical modeling and estimation of model pa-
rameters, both epidemiological parameters for influenza and anthropologi-
cal parameters relating to population numbers and travel, to investigate the
impact of attempts to limit travel during this influenza epidemic. Norway
House was quarantined during December 1918 and January 1919, and this
control measure is investigated. Quarantining here means the limit of travel
of any individual regardless of disease status. The SIR model formulated
for n patches [12, Sect. 3] is similar to the SIS model described in Sect. 7.3
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above, except that birth and death are ignored (i.e., d = 0). Using the nota-
tion of Sect. 7.3, and letting Rij(t) denote the number of recovered individuals
resident in patch i who are present in patch j at time t, the system of equa-
tions for individuals residing in patch i (with i = 1, ...n) is

S′
ii =

n∑

k=1

rikSik − giSii −
n∑

k=1

κiβiki
SiiIki

Np
i

I ′ii =
n∑

k=1

rikIik − giIii +
n∑

k=1

κiβiki
SiiIki

Np
i

− γIii

R′
ii =

n∑

k=1

rikRik − giRii + γIii

and for j $= i

S′
ij = gimjiSii − rijSij −

n∑

k=1

κjβikj
SijIkj

Np
j

I ′ij = gimjiIii − rijIij +
n∑

k=1

κjβikj
SijIkj

Np
j

− γIij

R′
ij = gimjiRii − rijRij + γIij .

The basic reproduction number R0 is calculated as in Sect. 5.3 with d = 0.
Quarantine is incorporated by adjusting the rates of travel between

patches, thus gi and rij are multiplied by a factor qi when patch i is quar-
antined. The parameter qi lies in the range 0 < qi < 1, where 1 would
correspond to no quarantine and 0 would correspond to perfect quarantine.
The quarantine (control) reproduction number is calculated as for R0, but
including the factor qi.

Sattenspiel and Herring [12, Sect. 4] estimated model parameters needed
for the above system with n = 3, for Norway House (NH), Oxford House
(OH) and God’s Lake (GL). They set γ = 0.2 (average influenza infective
period 5 days), βikj = β = 0.5 (50% of all contacts result in infection) for all
communities, and κNH = 1, κOH = κGL = 0.5 (twice as many contacts at
NH). Estimates of gi,mji and rij were made from records kept by the Hud-
son Bay Company of arrivals at and departures from each community, and
population numbers were determined from census data. Quarantine at NH
was incorporated by multiplying gNH , rNH,OH and rNH,GL by a factor qNH .

Simulation results of the above system [12, Sect. 5] show that quarantine
causes a slight delay in the arrival of the epidemic peak, with an increase
in the peak number of infectives at NH and a decrease in those at OH and
GL. Quarantine is found to be most effective if started well before an epi-
demic peaks, but not right at the start of an epidemic. However, starting
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quarantining after an epidemic peaks, has little effect. The authors [12] con-
clude that when travel rates are low (as between these communities), quar-
antine must be highly effective before it significantly alters disease patterns.

7.5 Tuberculosis in Possums

An SEI metapopulation model for the spread of bovine tuberculosis (My-
cobacterium bovis) in the common brushtail possum (Trichosurus vulpecula)
in New Zealand is formulated and analyzed by Fulford et al. [7]. This is now
described very briefly to demonstrate the use of a complex metapopulation
model; please consult the original paper for full details.

Tuberculosis has a significant latent period and is a fatal disease in pos-
sums, thus an SEI model is appropriate. A two-age class model is formulated
with juveniles and adults, with susceptible and exposed (but not infective)
juveniles migrating as they mature (1 to 2 years old). In addition pseudo-
vertical transmission is included, accounting for disease transmission between
mothers to young in their pouch. For n patches, a system of 6n equations de-
scribes the dynamics. For a two patch model (n = 2), the authors determine
the disease-free equilibrium numerically, provide a methodology for comput-
ing R0 by using the next generation matrix [6], and show how this can be
generalized to n patches.

Parameters appropriate for tuberculosis in possums are taken for simula-
tions and for a two patch model prevalence shows damped oscillations towards
an endemic state with R0 ∈ [1.55, 1.67]. Possums are thought to spread tu-
berculosis to farmland, thus the model is applied to evaluate control (culling)
strategies to reduce the control reproduction number below one [7, Sect. 6].
Several spatial configurations are considered and critical culling rates (giving
the control reproduction number equal to one) are calculated.

7.6 Concluding Remarks

The metapopulation models discussed in the previous sections demonstrate
that such spatial models are usually high dimensional and contain many
parameters. However, extended models can be formulated, including biolog-
ical realism such as age structure and control measures such as restriction
of travel. Using the next generation matrix, the basic reproduction number
R0 can be computed for estimated parameters. Simulations can easily be
performed with parameters relevant for a particular disease with given de-
mography and spatial structure. These models assume that the population
of each patch is sufficiently large so that a deterministic model is appropri-
ate and there is homogeneous mixing within each patch. As noted in [12],
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stochastic effects may be significant when patch populations are small, such
as in the three communities modeled by [12] and discussed in Sect. 7.4 above.
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