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	 A hybrid brain–computer interface (hBCI) has recently been proposed to address the 
limitations of existing single-modal brain computer interfaces (BCIs) in terms of accuracy and 
information transfer rate (ITR) by combining more than one modality.  The hBCI system also 
showed promising prospects for patients because the design of a human-centered smart robot 
control system may allow the performance of multiple tasks with high efficiency.  In this paper, 
we present a hybrid multicontrol system that simultaneously uses electroencephalography (EEG) 
and electrooculography (EOG) signals.  After the preprocessing phase, we used a common 
spatial pattern (CSP) algorithm to extract EEG and EOG features from motor imagery and eye 
movements.  Moreover, a support vector machine (SVM) was used to solve a multiclass problem 
and complete flight operations through the asynchronous hBCI control of a four-axis quadcopter 
(e.g., takeoff, forward, backward, rightward, leftward, and landing).  Online decoding of 
experimental results showed that 97.14, 95.23, 98.09, and 96.66% average accuracies, and 45.80, 
43.99, 46.78, and 45.34 bits/min average ITRs were achieved in the control of a quadcopter.  
These online experimental results showed that the proposed hybrid system might be better in 
terms of completing multidirection control tasks to increase the multitasking and dimensionality 
of a BCI.
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1.	 Introduction

	 Brain–computer interface (BCI) technology is a direct human–environment interaction 
system mostly based on translating brain activity into relevant commands.  This technology 
allows direct communication between the brain and any external device that does not depend 
on the peripheral nervous system and muscles.(1)  BCIs can improve the quality of life of 
patients with cerebral palsy, amyotrophic lateral sclerosis, and stroke.  The brain activity of such 
patients can be measured invasively or noninvasively by either electrocorticography (ECoG) or 
electroencephalography (EEG), respectively.(2–8)  The basic operation of the BCI system consists 
of the signal acquisition, preprocessing, feature extraction, classification, control, and feedback 
phases.  At present, the bottleneck problems of existing single-modal BCIs are the number of 
tasks that cannot meet the requirements of multi-degree of freedom (DOF) control and the low 
rate of correct recognition task, which limits the practical application of a daily-life BCI system.  
	 To improve the performance of these BCIs, a new BCI, called a hybrid BCI (hBCI), for 
boosting the performance of existing single-modal BCIs in terms of accuracy and information 
transfer rate (ITR), has recently been proposed by many researchers(9–11) who have been 
trying to combine at least two BCI modalities such as P300-BCI, steady state visual evoked 
potential (SSVEP)-BCI, and motor-imagery-based BCI.(12–16)  Other researchers tried to 
combine brain activity with nonbrain activity, such as eye movement activity measured using 
electrooculography (EOG),(17–19) muscle activity measured using electromyography (EMG),(20) 
the electrical activity of the heart measured by electrocardiography (ECG),(21) blood flow 
changes measured using functional magnetic resonance imaging (fMRI) or functional near-
infrared spectroscopy (fNIRS),(22–25) and other physiological nonbrain signals to achieve a 
hybrid multidimensional control.  hBCIs have many advantages compared with existing BCIs 
such as those with multitask, high-accuracy, and high-dimensionality features, plus a flexible 
hybrid control that reduces the BCI user’s fatigue.  The hBCI system can also be employed 
to design a human-centered smart home control system that performs multiple tasks with 
efficiency.(26)

	 The hBCI system with different characteristics has become a research hotspot in recent 
years.  Pfurtscheller et al.(27) put forward the concept of mixed brain–machine interface, in 
which the motion imagination event-related desynchronization (ERD) and SSVEP can be 
recognized as control command.  In addition, both the parallel control mode and serial control 
mode can be used.  In parallel control mode, ERD and SSVEP were recognized and used as 
control command simultaneously.  In the serial control mode, ERD is used as the system brain 
switch and SSVEP is used for the detection of targets as the working and resting states, thereby 
improving system operability.  Li et al. combined the movement of imagination and two P300 
control methods, and using the design of a cursor in two-dimensional space to move the BCI 
system, one can complete web browsing, e-mail tasks and other tasks.(28)  Leeb et al. studied 
the mixed BCI of EEG and EMG fusion and achieved some control tasks.(29)  Punsawad et 
al. designed ERD and EOG models that were mixed and applied to the actual movements for 
machine control, i.e., the EOG control machine for measurements in the left and right directions, 
and to the ERD control machine for forward and stop movements with high control accuracy.(30)  
The mixed BCI system with multiple features has a high target recognition accuracy and more 
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control instructions, which can meet the requirements of controlling complex systems and 
improving the performance and practicality of the BCI system.  
	 A major challenge for BCIs is how to build a BCI-based control system with a high DOFs 
and greater asynchronous control, especially by using noninvasive measurements.  Compared 
with a wheelchair, a quadcopter is a very suitable platform for verifying the high-dimensional 
control performance of a BCI.  Researchers have achieved three-dimensional quadcopter robot 
control in a virtual reality environment(31) or in a real laboratory.(32)  Khan et al. proposed a 
hybrid EEG-NIRS-based BCI for quadcopter control.(33)  In this study, a novel hBCI system 
was designed to control a drone in an asynchronous manner, which combines motor imagery 
using EEG signals and eye movement using EOG signals.  At the same time, the hBCI 
system processes independent features of EEG and EOG signals, improving its information 
transmission rate.  The microcontrol of miniature four-rotor aircraft requires many DOFs to 
have multiple control instructions to realize rapid detection and recognition by this aircraft 
through online decoding.
	 EEG and EOG signals can be recorded by several devices.  Table 1 shows the most 
commonly used EEG and EOG recording devices.  NeuroScan and Eyelink are highly 
suitable for laboratory use; however, these EOG and EEG devices are not affordable for most 
handicapped people.  Emotiv EPOC can be improved to simultaneously record EEG and EOG 
signals.  Thus, Emotiv EPOC was selected to record signals in this study.
	 In this study, an hBCI system is designed to realize the microcontrol of the four-rotor aircraft 
for take-off, forward, leftward, rightward, backward, and landing operations.  The experimental 
results show that the designed hBCI system has good maneuverability and robustness, and that 
the subjects are able to complete the flight control task of all four rotor operations.

2.	 Materials and Methods

2.1	 Experimental paradigm and data acquisition 

	 At the time of EOG data acquisition, the subject sits at about 1 m in front of the observation 
target so that the center position of the subject’s eyes is at the same level as the observation 
target O point, as shown in Fig. 1(a), in the horizontal and vertical directions of the U, D, L, 
and R points, which are 1.5 m from the O point.  The single EOG experiment paradigm for a 
duration of 8 s is shown in Fig. 1(b).  When the “beep” sound is given as a cue, the subject starts 

Table 1
Commonly used recording equipment for EEG and EOG.
Equipment Signal recording Cost
NeuroScan EEG Expensive
Brain product EEG Expensive
G.tec EEG Relatively expensive
Eyelink EOG Expensive
SMI EOG Expensive
Arrington EOG Expensive
Emotiv EPOC EEG and EOG (After revision) Low cost, wearable, and portable

https://ieeexplore.ieee.org/author/37085392591
http://www.researchgate.net/publication/280625152_Hybrid_EEG-NIRS_based_BCI_for_quadcopter_control
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scanning.  After 2 s, the screen displays an arrow (up, down, left, or right).  In accordance with 
the direction of the arrow corresponding to the direction of scanning for 3 s, the subjects line 
of sight returns back to the O point 3 s after the arrow disappears, and the subject relaxes for 3 
s before the start of the next experiment.  In motor imagery, the same test paradigm was used.  
Two seconds after the experiment starts, the left and right arrows are displayed randomly, and 
then the corresponding left- and right-hand motor imagery is selected.  The imagery lasts 3 s.  
A total of four experiments were performed, each of which had 10 goals.
	 In this study, an improved Emotiv EPOC EEG acquisition instrument was used to fabricate 
the EOG signal electrode on the basis of the original Emotiv EPOC.  The electrode was 
connected to AF3, F7, AF4, and F8 channels.  This improved Emotiv EPOC can collect not 
only EEG signals, but also EOG signals, which meets the actual requirements of hybrid system 
structures.  The AF3 and F7 channels were used to collect the left and right eye movement EOG 
signals, and the F3, FC5, FC6, and F4 channels to collect motor imagery EEG signals.  At the 
Emotiv EPOC sampling frequency of 128 Hz the collected signals were sent to the computer for 
processing.  By observing and analyzing the EOG signals collected by the electrode, we found 
the electrode to be in good contact and to reflect the direction of eye movement well.
	 Four healthy subjects took part in the study, and they had not undergone in EEG before our 
proposed experiment.  Signed written informed consent was obtained from all the subjects 
before the start of experiments, who were informed in detail about the purpose and possible 
consequences of the experiment.  In all the tests, they were required to wear an electrode cap 
and relax in a comfortable seat with armrests.  Then, they were instructed how to control the 
drone using their brain activity during the experiment.
	 During the experiment based on the above paradigm, the subjects were asked to follow the 
instructions (cues) on the screen to record their brain activity (EEG signals) and eye movement 
(EOG signals).  The experiment and model training were performed both offline and online.  
In the offline experiment and model training phases, the recognized control commands were 
confirmed by the operator’s eye blink.  No commands were sent during offline recording or 
training to avoid the synchronous control of the drone.  In the offline training phase, EEG and 

Fig. 1.	 (Color online) Experimental paradigm. (a) Relative position of the subject with respect to the observation 
target; (b) diagram of timing of activities in experiment.

(a) (b)
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EOG data were recorded, and classification models were also built.  After developing the online 
decoding algorithm, the commands were sent to achieve the asynchronous control of the drone 
without requiring the subjects to look at the screen to generate brain activity (e.g., P300 BCI or 
SSVEP BCI needs synchronous control).

2.2	 Online decoding hBCI system

	 In this study, the online control of an hBCI using motor imagery EEG and eye movement 
systems was investigated.  The processes involved included data acquisition, preprocessing, 
feature extraction, and pattern recognition methods for EEG and EOG signals.  Finally, the 
control flight experiment by the online decoding of the four-axis aircraft was carried out as 
shown in Figs. 2 and 3.  
	 By extending the EOG signal acquisition electrodes on the Emotiv EPOC EEG acquisition 
instrument and F3, FC5, FC6, and F4 electrodes for EEG signal acquisition, the collected data 
was sent back to the computer in real time through Bluetooth communication.  For the EEG 
signals, a 3–24 Hz band pass filter was used to extract the frequency band of rhythm.  Then, the 
features of the EEG signals were extracted on the basis of their common spatial patterns (CSPs), 
and the feature vectors were classified using a support vector machine (SVM).  The details of 
the method can also be found in our previous work.(34)  The classification results of left- and 
right-hand motor imagery were used to control the takeoff and landing of the four-axis aircraft.  
	 On the other hand, the AF3, F7, AF4, and F8 electrodes were extended for EOG signal 
acquisition.  We first used a hierarchical classification method to identify the vertical and 
horizontal EOG signals.  Then, the vertical EOG signals were classified into the left and right 
eye movements as the control command, and the horizontal EOG signals were classified 
into three and four eye blinks as the forward and backward control commands, respectively.  

(a) (b) (c)

Fig. 2.	 (Color online) (a) Emotiv EPOC electrode configuration and EOG extension electrode. (b) Anatomy of 
human eye and positive (+) and negative (−) potential distributions of the eyeball. (c) EOG electrodes can be placed 
around the eye to measure changes in the electrical potential of the positive anterior aspect of the cornea relative to 
the negative posterior aspect of the retina.
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Note that only two eye blinks were used in the offline decoding and model training without 
commands.  The hierarchical classification method will be described in detail in Sect. 2.5.  
	 ITR(35) was utilized to evaluate the performance of the hBCI system as follows:

	 2 2 2
60 1[log log (1 ) log ( )

1
PR N P P P

T N
−

= + + −
−

,	 (1)

where T is the time window length, N represents the number of commands, and P is the correct 
rate of the CCA algorithm.

2.3	 CSP algorithm and feature extraction for EEG signal processing

	 The CSP algorithm(36) has been proved to be an effective method of feature extraction for 
motor imagery.  Assume XA and XB are multichannel EEG signals in two different modes of 

Fig. 3.	 (Color online) hBCI-based control system.
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motor imagery, with dimensions N × T, where N is the number of channels for recording the 
EEG signals, T is the length of each channel data, and T > N.
	 The normalized covariance matrices RA and RB are

	
T

T( )trace
= A A

A
A A

X XR
X X

,

	
T

T( )trace
= B B

B
B B

X XR
X X

,	
(2)

where XA
T is the transpose of XA and trace(XAXA

T) is the sum of the elements on the diagonal  
matrix XAXA

T.
	 The mean covariance matrices AR  and BR  are obtained by calculating the mean covariance 
matrices of multiple experimental data.  Then, the mixed covariance matrix R is

	 = +A BR R R .	  (3)

The eigenvalue decomposition of the mixed covariance matrix R is obtained as

	 R = UΣUT,	  (4)

where U is the eigenvector of the mixed covariance matrix R and Σ is the diagonal matrix of the 
eigenvalues corresponding to the eigenvectors of R.
	 The whitening matrix P is constructed as

	 P = Σ−1/2UT.	  (5)

	 Then, AR  and BR  are respectively whitened to

	 T=A AS P R P ,

	 T=B BS P R P .	
 (6)

	 The eigenvalue decomposition of SA and SB is obtained.

	 SA = UAΣAUA
T

	 SB = UBΣBUB
T	

 (7)

	 It is easy to see that matrices SA and SB have the same eigenvector, and the sum of the 
eigenvalues of the diagonal groups is the unit matrix.

	 UA = UB = U
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	  ΣA + ΣB = I	  (8)

	 It can be seen that the maximum eigenvalue of SA corresponds to the smallest eigenvalue of 
SB.  In contrast, the maximum eigenvalue of SB corresponds to the smallest eigenvalue of SA.  If 
the eigenvalues of SA are arranged in descending order, the corresponding eigenvalues of SB are 
arranged in ascending order.  Therefore, two data are classified on the basis of the difference 
between the first and last m values in the order of ΣA and ΣB.  The spatial filter matrix is 
designed as

	 SF = UTP.	 (9)

	 If we select the first m rows and rear m lines of the eigenvectors U arranged in the order of 
the eigenvalues to form a new eigenvector U′, we can obtain the spatial filtering matrix as

	 SF′ = U′TP.	  (10)

	 For the EEG signal Xk, the projected EEG signal Zk is obtained as Zk = SF′Xk.  According to 
the m value from the projected EEG signal Zk taking the row Zp as the variance, the following 
equation is used to obtain the eigenvalues.

	 2

1

var( )
lg

var( )
p m

i

f

=

 
 
 =  
  
 
∑

p

i

Z

Z
,	 (11)

where var(∙) is the variance, and p = 1, 2, ... , 2m.  After processing using the CSP algorithm, 
we can obtain a 2m dimension eigenvector for classification.
	
2.4	 SVM method

	 SVM(37,38) was used twice in the present work, as shown in Fig. 4.  SVM was employed first 
to classify EEG data into the left and right motor imagery, and then to classify EOG data into 
vertical EOG (VEOG) and horizontal EOG (HEOG).  SVM is based on  Vapnik–Chervonenkis 
theory and a structural risk minimization principle based on a statistical learning theory.  It 
has good generalization ability, which is useful for solving problems with small samples, and 
nonlinear and high-dimensional pattern recognition ability.
	 In this study, the classification of motor imagery EEG signals was based on the structure 
of the SVM classifier.  The basic principle of the SVM method is to map the input x in a high-
dimensional feature space [ ( )φ=z x ] and look for the optimal decision hyperplane.  The decision 
hyperplane is defined as
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	 0b⋅ − =w z ,	 (12)

where w is the normal vector and b is the bias of the separation hyperplane.  The decision 
hyperplane can be found by solving the following optimizing problem:

	 2

1

1min
2

l

i
i

C ζ
=

+ ∑w ,	 (13)

where iζ  is the slack variable that allows an example to be in the margin (0 1iζ≤ ≤ ，also called 
a margin error) or to be misclassified ( 1iζ > ), and C is a penalty factor that can be set by users; 
a larger C means that the user assigned a higher penalty to errors.
	 In addition, the Gaussian kernel function was used in the training of SVM classifiers 1 and 2.

Fig. 4.	 Flowchart of EEG and EOG signal processing.
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where K(∙) represents the kernel function.  

2.5	 EOG signal processing

	 The hierarchical classification method was employed to process EOG signals using a 
0.5–10 Hz band-pass filter.  Then, the filtered EOG signals were decomposed by dual-tree 
complex wavelet transform (DTCWT).(39)  The details of DTCWT can be found in our previous 
work.(40) 

	 ( ) ( ) ( )c h gt t j tψ ψ ψ= + ,	 (15)

where ( )h tψ  is real and even and ( )gj tψ  is imaginary and odd.  Moreover, if ( )h tψ  and ( )g tψ  
form a Hilbert transform pair (90◦ out of phase with each other), then ( )c tψ  is an analytic signal 
that is supported on only half of the frequency axis.
	 After DTCWT processing, four features, namely, the maximum wavelet coefficient, the 
area under the curve, the amplitude, and the velocity, were selected to build the feature vector.  
The details of the feature calculation method can also be found in our previous paper.(17)

  Then, 
SVM classifier 2 (Fig. 5) was trained using the data recorded in the offline experiment (the 
SVM method is described in Sect. 2.4).  In the online decoding experiment, an EOG signal 
was recorded and its features were extracted, and then the feature vector was classified using 
the SVM classifier well trained in the offline experiment.  In this manner, the EOG signal was 
classified into the VEOG or HEOG signal.  In classifying movement patterns, the left-to-right 

Fig. 5.	 (Color online) (a) Vertical channel EOG of scrolling up and (b) vertical channel EOG of scrolling down.

(a) (b)
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eye scan was considered a pattern of the first category that corresponded to the VEOG signal, 
and the up and down eyeball movement and eye blinks were considered patterns of the second 
category that corresponded to the HEOG signal.  
	 When classifying different eye movement patterns into the first category, the VEOG data 
were analyzed to determine the positions of the maximum and minimum amplitudes on the 
vertical axis.  The characteristics of the left and right eye movements are shown in Fig. 3, 
obtained when HEOG waveform time domain characteristics were used.  For the classification 
rules, we calculated the distance (A, B) and compared it with the threshold T.  If the distance (A, B) 
is greater than T, then the user blinks once only.  If the distance (A, B) is greater than T and A is 
less than B, the eyes of the user move up.  If the distance (A, B) is greater than T and A is also 
greater than B, the eyes move down.
	 Successive blinks (two to four blinks) were classified into third category using the 
differential counting algorithm to identify the number of consecutive blinks and convert the 
recognized number of blinks into the corresponding control command.  Then the four-rotor 
aircraft can be microcontrolled to fly.  The differential counting algorithm is the process of 
identifying continuous blinking signals by the difference method.  The subject’s EOG data are 
used to preset the corresponding threshold.  The threshold T > 0 cannot exceed the maximum 
value of the signal, compared with the point amplitude Y and threshold T of each sample.  If Y > T, 
set Y to 1, otherwise set Y to 0.  After the above steps, the EOG data will become a number of 
positive rectangular waves, then each rectangular wave will be a point-by-point difference, each 
forward rectangular wave will become a number of positive and negative pulses, and finally 
the negative pulse is removed.  The statistics of the number of positive pulses, according to the 
statistics of the number of positive pulses, can identify different continuous blinks.

3.	 Experimental Results

	 In the experiment, the subjects were trained according to a predesigned experimental 
task.  When the motor imagery or eye movement mode task is started, the acquired signals 
are processed by the algorithm method in real time.  The result of each recognition task is 
displayed in the task recognition window.  If the indicator is lit, then the takeoff indicator 
light turns on.  To confirm to the command controller that the recognition result is correct, 
the subject blinks twice, and the transmitted recognition result command is displayed in the 
aircraft control command window, so that the small four-axis aircraft can be controlled.  If the 
recognition result displayed in the task recognition window is incorrect, the subject does not 
blink and the error command is not sent to the instruction controller, and then the next control 
task is performed.  The GUI control interface designed in this study has good error correction 
mechanism, which ensures a high correct rate for the control of the aircraft.
	 Before the experiment, each subject was trained many times to master the use of the GUI.  
In the experiment, each subject was required to master the control of the four-axis aircraft to 
takeoff, to move forward, leftward, rightward, and backward, and to land in this sequence.  
After a number of online experiments, the correct rate of flight control was significantly 
improved.  Each action was completed 30 times in the experiment.  The results of each subject’s 
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completion of all tasks are shown in Table 2.  There are many parameters that can affect EEG 
signal quality.  In addition, the EEG changes over time and from subject to subject.  Therefore, 
each subject performed the tests on 5 different days that were separated by 20 h to ensure the 
stability of our hBCI performance (See Fig. 6).  On each day, the experiments were performed 
in one session with each action performed 30 times to avoid fatigue.  We observed that the hBCI 
performance improved day by day owing to these practices of the subjects.

4.	 Conclusion

	 An hBCI is composed of two BCI modalities, or at least one BCI and another system based 
on additional input.  The hBCI system can provide classes that are more independent, have 
more functionalities and higher DOFs.  In this paper, we present an asynchronous quadcopter 
control system using modified portable EEG equipment.  To achieve natural and asynchronous 
control, we combined motor imagery and eye movements to control the drone through online 

Table 2
Classification results for each control action of online EEG-EOG-based drone control experiments.

EEG and EOG Left hand Three
blinks

Four
blinks

Right
hand

Leftward
eye 

movement

Rightward
eye 

movement

ITR
bits/min

Recognition result 1 3 4 5 6 7

Control action Takeoff Forward Backward Landing Left 
direction

Right 
 direction

Subject 1 28/30 30/30 29/30 28/30 29/30 30/30 45.80
Subject 2 27/30 29/30 28/30 26/30 30/30 30/30 43.99
Subject 3 29/30 30/30 30/30 28/30 30/30 29/30 46.78
Subject 4 27/30 30/30 30/30 27/30 29/30 30/30 45.34

Fig. 6.	 (Color online) Classification accuracy graphs per day of the proposed hBCI for each subject.
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decoding.  The proposed algorithm was designed to classify six classes to control the directions 
of a quadcopter.  Results of the study indicated that successful multiclass control is possible 
using the hBCI instead of the existing single-modal BCIs.  In addition, the performance 
characteristics, especially the classification accuracies of the proposed hBCI, improved day by 
day.
	 We controlled the direction of the drone and realized online decoding by analyzing brain 
activity and eye movements.  When the user imagines or moves his/her eyes, the drone will 
receive directly the commands with small delay due to the processing time of the hBCI 
algorithm.  There are some limitations of this study.  Presently, this system just used forward 
control.  We did not add a feedback correction to our system yet.  The users were able to see the 
feedback but were not able to correct any command.  In the future, we are planning to control 
many parameters of the drone (position tracking or velocity control performance) to achieve an 
accurate and precise control.
	 We would also like to develop in the future a new wireless assistive technology based on a 
portable, noninvasive, and asynchronous hBCI, which allows patients to control a drone using 
their brain activity and receive a visual feedback.  This type of hBCI for building human-
centered assistant systems can help patients control smart homes by themselves.	
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