TU Darmstadt / ULB / TUprints

Availability by Design: Practical Denial-of-Service-Resilient Distributed Wireless Networks

Stute, Milan (2020)
Availability by Design: Practical Denial-of-Service-Resilient Distributed Wireless Networks.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011457
Ph.D. Thesis, Primary publication, Publisher's Version

[img]
Preview
Text
dissertation_milan-stute_2020.pdf
Copyright Information: CC BY-SA 4.0 International - Creative Commons, Attribution ShareAlike.

Download (23MB) | Preview
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Availability by Design: Practical Denial-of-Service-Resilient Distributed Wireless Networks
Language: English
Referees: Hollick, Prof. Dr. Matthias ; Noubir, Prof. Guevara
Date: 28 February 2020
Place of Publication: Darmstadt
Date of oral examination: 14 February 2020
DOI: 10.25534/tuprints-00011457
Abstract:

Distributed wireless networks (DWNs) where devices communicate directly without relying on Internet infrastructure are on the rise, driving new applications and paradigms such as multimedia, authentication, payment, Internet of things (IoT), vehicular communication, and emergency response. However, the increased societal reliance on technology and the resulting “always-on” expectations of the users increase the risk of denial-of-service (DoS) attacks as they can leverage disruption in new ways beyond extortions (ransomware) that are common in today’s Internet ecosystem. These new risks extend to our physical world, directly impacting our daily lives, e.g., by being locked out of a smart home or by disrupting vehicular collision avoidance systems. As a research community, we need to protect those new applications that—as we find—can be mapped to a total of three distinct networking scopes: neighbor, island, and archipelago. In this thesis, we advance the field in each of these scopes. First, we analyze two proprietary neighbor communication protocols, Apple Wireless Direct Link (AWDL) and Apple AirDrop, that are deployed on more than 1.4 billion devices worldwide. During the process, we uncover several security and privacy vulnerabilities ranging from design flaws to implementation bugs leading to a machine-in-the-middle (MitM) attack on AirDrop, a DoS attack on AWDL preventing communication, and DoS attacks enabling crashing of neighboring devices. In addition, we found privacy leaks that enable user identification and long-term tracking. All attacks can be mounted using low-cost off-the-shelf hardware. In total, we disclose eight distinct vulnerabilities that we mitigate in collaboration with Apple. Second, we design and implement a new island communication protocol tailored to IoT scenarios, which provides provable protections against previously neglected risks such as wormhole- and replay-supported greyhole attacks. We support our analytical findings with testbed experiments. Third, we propose an archipelago-scope communication framework for emergencies that achieves resiliency against flooding and Sybil attacks. We evaluate our design using an original expert knowledge-based simulation that models human mobility during the aftermath of the 2013 Typhoon Haiyan in the Philippines. Finally, and to nourish future research, we provide a guide for analyzing Apple’s wireless ecosystem and publish several software artifacts, including an AWDL Wireshark dissector, open AWDL and AirDrop implementations, a prototype of our IoT communication protocol, and our natural disaster mobility model.

Alternative Abstract:
Alternative AbstractLanguage

Verteilte drahtlose Netzwerke, in denen Geräte direkt und ohne Verbindung zum Internet kommunizieren, ermöglichen neue Anwendungen und Paradigmen, wie z.B. Multimedia, Internet der Dinge (IoT), Verkehrsvernetzung und Notfallkommunikation. Die zunehmende Abhängigkeit der Gesellschaft von Technologie und die daraus resultierende Erwartung an deren Verfügbarkeit erhöhen jedoch das Risiko von Denial-of-Service-Angriffen (DoS). Diese können Störungen auf neue Weise nutzen, die über Erpressungsmethoden hinausgehen. So können sich DoS-Angriffe direkt auf die physische Welt und das tägliche Leben auswirken, z.B. durch Aussperren aus einem Smart Home oder Stören der Kollisionsvermeidungssysteme in Fahrzeugen. Daher werden Schutzmechanismen für diese neuen Anwendungen benötigt, die auf insgesamt drei Netzwerkbereiche abgebildet werden können: Nachbarschaft, Insel und Archipel. Diese Arbeit enthält Beiträge zu jedem dieser Bereiche. Zunächst werden zwei proprietäre Nachbarschaftsprotokolle, Apple Wireless Direct Link (AWDL) und Apple AirDrop, analysiert, die weltweit auf mehr als 1,4 Milliarden Geräten eingesetzt werden. Dabei werden mehrere Sicherheits- und Privatheitsprobleme aufdeckt, die von Design- bis hin zu Implementierungsfehlern reichen und so die Manipulation von über AirDrop ausgetauschten Daten, die Verhinderung von AWDL-Kommunikation und das Abstürzen benachbarter Geräte ermöglichen. Darüber hinaus erlauben verschiedene Privatheitsprobleme die Identifizierung von Benutzern und Verfolgung von Geräten. Alle Angriffe können mit kostengünstiger Hardware durchgeführt werden. Die insgesamt acht offengelegten Sicherheitslücken wurden in Zusammenarbeit mit Apple geschlossen. Zweitens wird ein neues, auf IoT-Szenarien zugeschnittenes Protokoll in Inseln entworfen und implementiert, das beweisbaren Schutz vor bisher vernachlässigten Risiken wie Wurmloch- und „Replay“-gestützten DoS-Angriffen bietet. Die analytischen Ergebnisse werden durch Testbed-Experimente untermauert. Drittens wird ein Framework für Notfallkommunikation in Archipelen vorgestellt, das resilient gegen Fluten- und Sybil-Angriffe ist. Das Design wird anhand eines neu entwickelten und auf Expertenwissen basierenden Mobilitätsmodell evaluiert, das die Ereignisse nach dem Taifun Haiyan 2013 auf den Philippinen abbildet. Abschließend – und um zukünftige Forschung zu fördern – werden ein Leitfaden zur Analyse des drahtlosen Ökosystems von Apple und mehrere Software-Artefakte veröffentlicht, darunter ein AWDL-Protokolldissektor für Wireshark, quelloffene AWDL- und AirDrop-Implementierungen, ein Prototyp des IoT-Protokolls und das Mobilitätsmodell für Naturkatastrophen.

German
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-114573
Classification DDC: 000 Generalities, computers, information > 004 Computer science
Divisions: 20 Department of Computer Science
20 Department of Computer Science > Sichere Mobile Netze
Profile Areas > Cybersecurity (CYSEC)
LOEWE > LOEWE-Schwerpunkte > NiCER – Networked infrastructureless Cooperation for Emergency Response
Date Deposited: 28 Feb 2020 12:33
Last Modified: 10 Nov 2023 10:44
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/11457
PPN: 462130975
Export:
Actions (login required)
View Item View Item