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2013

Many interesting geometric objects in (algebraic or differential) geometry or mathematical/theoretical
physics are not manifolds or do not carry the “correct” manifold structure. Typical such examples are spaces
obtained as quotient of other spaces under some natural gauge equivalences/group actions.

Differentiable1 stacks are a natural generalization of smooth manifolds encompassing, in addition, the
following examples (with non-empty intersections) :

• Quotient spaces: let G be a compact Lie group acting (by diffeomorphisms) on a manifold M . When
G acts freely, there is a natural smooth structure on the quotient space M/G such that the quotient
map M → M/G is a G-principal bundle. In general, for non-free actions, however, M/G is either
singular or may have a very boring smooth structure. For instance the quotient pt/G is just a point
independently of the group. We’ll see that there is a stacky quotient M → [M/G] which behaves much
like a principal G-bundle. The quotient stack point of view also allows to treat equivariant problems
as non-equivariant ones especially when there are several group actions involved.

• Orbifolds: Let G be a finite cyclic subgroup of SO(n), acting on Rn. The action is free on Rn \{0} but
not on 0. The quotient Rn/G looks like a cone. This is a typical example of an orbifold, that is of a
space which locally is a quotient of a manifold by a finite group. A similar example adding a point at
∞ yields the “tear drop” orbifold. More generally, examples of (analytic) orbifolds include Riemann
Surfaces with a finite set of orbifold points; that is Riemann Surfaces in which one has removed a finite
set of holomorphic disks and replaced them by quotients of a holomorphic disk in C by a finite group
of SU(1) as above.

• Moduli spaces: moduli problems are concerned with classifying algebro-geometric objects in families.
For instance, one can study moduli spaces of lines through the origin in Rn+1 which is parametrized
by RPn. Heavily studied examples are given by moduli spaces of elliptic curves or genus g Riemann
surfaces with marked points. Unlike in the aforementioned case of lines, many of these problems are
not classify by a space (that is they do not form a fine moduli space), but by a stack. We will see
elementary examples below.

All the objects above give naturally rise to differentiable stacks. One important feature is that they are non-
singular, when viewed as stacks (even though their associated coarse spaces, that is their naive quotients,
are typically singular). For this reason, one can still do differential geometry with them and further, algebraic
topology of stacks behaves much like for manifolds.

Underlying philosphy: stacks arise whenever one deals with or want to study “spaces” in which points
have been identified (by some equivalence relations), in a non-unique way.

∗UPMC Sorbonne Universités, Institut de Mathématiques de Jussieu - Paris Rive Gauche, Équipe Analyse Algébrique ,
Case 247, 4 place Jussieu, 75252 Paris, France
†the notes are the notes I prepared for the lecture but contains more material than was actually covered; they do not claim

to be original
1which are really C∞ objects and not just differentiable
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1 Stacks over Diff

We start with some abstract non-sense: the notion of (pre-)stacks, before defining the actual notion of
differentiable stacks in § 2.

Let Diff be the category of smooth manifolds whose objects are smooth manifolds and morphisms
smooth maps between smooth manifolds. We write pt for the manifold given by a single point.

1.1 PreStacks over Diff

Definition 1.1 A category fibered in groupoids over Diff2 is a category X together with a functor π : X →
Diff satisfying:

i) For every arrow f : V → U in Diff, and for every object U in X such that π(U) = U , there is an arrow
F : V → U in X such that π(F ) = f . In other words, in the above partial lift, the object V and the
dotted arrow exist:

V
f // U

V
π(F ) //______ U.

2the category Diff can be replaced by analytic spaces, or schemes, or topological spaces
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ii) Given a commutative triangle in Diff, and a partial lift for it to X as in the diagram:

V
f

$$JJJJ

h

��

V

H

���
�
� F

$$JJJJ

U
�πoo U

W
g

::ttt

W
G

::ttt

,

there is a unique morphism H : V →W such that the right triangle commutes and π(H) = h.

We will sometimes call a category fibered in groupoids a prestack since stacks will be a special sub-class of
such.

Terminology: for M ∈ Diff, call X(M) := π−1(M) the M -points of X. It is a subcategory of X; its

morphisms are given by π−1(M
id→M), that is all morphisms F in X such that π(F ) = id : M →M .

Lemma 1.2 X(M) is a groupoid, that is, a category in which every morphism is invertible.

The proof of the Lemma can be seen as follow: for any F : X → Y ∈ X(M), we have a partial lift:

M
id

&&LLL

id

��

Y

G

���
�
� id

%%KKK

M
�πoo Y

M
id

88rrr
X

F

99sss

which defines the (unique) right inverse G : Y → X of F . To check that G : Y → X is also a left inverse, we
consider the diagram

X

G◦F
��

F

))TTTTTTTTT

Y

X
F

55jjjjjjjjj

which commutes since F ◦G = idY . By uniqueness of the lift in ii), we have G ◦ F = idX .

Remark 1.3 (Restrictions) A similar proof shows that any two choices of lifts F : V → U , F ′ : V
′ → U

in i) are canonically isomorphic: that is there is a unique isomorphism ψ : V
∼=−→ V

′
such that F ′ ◦ φ = F .

In particular, let f : M → N be a map in Diff. By i), for any object in X ∈ X(N), we can choose an
object f∗(X) ∈ X(M) together with a map ρX : f∗(X)→ X in π−1(f). By ii), this map extends canonically
into a functor f∗ : X(N) → X(M) which, to F : Y → X ∈ X(N), associates the unique lift f∗(F ) as given
below:

M
f

%%JJJ

id

��

f∗(X)

f∗(F )

���
�
� ρX

''OOO

N
�πoo X.

M
g

99ttt
f∗(Y )

F◦ρY

77ppp

Again by ii), different choices of f∗(X) yields canonically equivalent functors. This allows to define a
contravariant (lax-)functor Diff → X, M 7→ X(M) (which depends on some choices but is well defined up to
unique natural equivalence).
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Notation: let f : U → M ∈ Diff and φ : A → B ∈ X(M). We will simply denote A|U , B|U the pullbacks
f∗(A), f∗(B) ∈ X(U) and φ|U := f∗(φ) : A|U → B|U when there is no ambiguity about f .

Example 1 (Manifolds as stacks) Let M be a manifold. We define the category [M ] with objects all
smooth maps f : U → M (where U is arbitrary in Diff) and with morphisms (say from f : U → M to

g : V →M) the commutative diagrams U
f //

ψ

��

M

V

g

>>}}}}}}}}

(in other words all maps ψ : U → V ∈ Diff such that

g ◦ ψ = f). We have an obvious functor ψ : [M ] → Diff mapping f : U → M to U and a commutative
diagram as above to ψ. Note that all lifts here are uniquely defined so that the conditions of Definition 1.1
are trivial to check.

Example 2 (Classifying stack of a Lie group) Let G be a Lie group. We define a category [pt/G] with
objects all principal G-bundles P → U (in Diff). Morphisms (from P → U to Q → V ) are all cartesian

diagrams P

��

// Q

��
U

ψ // V

such that the top arrow is G-equivariant. The functor [pt/G] → Diff given by

(P → U) 7→ U makes [pt/G] a category fibered in groupoids over Diff. It is called the classifying stack of G.

Example 3 (=1+2) Let G be a Lie group acting by diffeomorphisms on a smooth manifold M . Let [M/G]

be the category of pairs (P → U,P
f→ M) where P → U is a principal G-bundle and f : P → M is G

equivariant. A morphism from (P → U,P
f→ M) to (Q → V,Q

g→ M) is a cartesian diagram P

��

β // Q

��
U

ψ // V
such that the top arrow β is G-equivariant and further g ◦ β = f . Again, the functor [M/G] → Diff is
just given by forgetting all the data but U (and φ : U → V for morphisms). The properties of lifts in
Definition 1.1 follows from the ones of pullback of principal G-bundles.

1.2 Descent data

Definition 1.4 (Stacks over Diff) A category X fibered in groupoids over Diff3 is a stack, if, for any
M ∈ Diff and any open cover (Ui)i∈I of M , the following two conditions are satisfied:

1. Gluing morphisms: Given two objects A,B ∈ X(M) and any family (φi : A|Ui
→ B|Ui

)i∈I of maps
such that φi|Ui∩Uj

= φj |Ui∩Uj
, there exist a unique morphism φ : A→ B ∈ X(M) such that φ|Ui

= φi
(for all i’s). (In other words the presheaf of sets U 7→ HomX(U)(A|U , B|U ) is a sheaf.)

2. Gluing objects: Assume we are given objects Ai ∈ X(Ui), together with isomorphisms ϕij Aj |Ui∩Uj
→

Ai|Ui∩Uj
in X(Ui ∩ Uj) which satisfy the cocycle condition

ϕij ◦ ϕjk = ϕik

on Ui ∩ Uj ∩ Uk (for every triple of indices i, j and k). Then, there is an object A ∈ X(M) , together
with isomorphisms ϕi A|Ui

→ Ai such that ϕij ◦ ϕi = ϕj .

3again, one can work in context different than smooth manifolds; for instance over analytic spaces, schemes, or topological
spaces. In that cases one has to use a correct notion of covers which can be more tricky
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The data given in (2) is usually called a gluing data or a descent data. It follows from (1) that the object A
in (2) is unique up to a unique isomorphism.

Definition 1.4 is sometimes summarized into the catch phrase

“ A stack (over Diff) is a sheaf M 7→ X(M) of groupoids”.

It is indeed a categorical extension of the notion of sheaves of sets.

Proposition 1.5 Examples 1, 2 and 3 are stacks over Diff.

The above proposition is a consequence of the fact that a map f : M → N is determined by its value on a
cover of M and that fiber bundles are obtained by gluing local data (i.e. trivializations) satisfying a cocycle
condition.

Example 4 (Moduli stack of Riemann surfaces) Define Mg to be the following category: objects are
fiber bundles X → U endowed with a smoothly varying fiberwise complex structure, such that all fibers are
Riemann surfaces of genus g. Morphisms are commutative diagrams

X //

��

Y

��
U // V

such that X → Y ×V U is a conformal isomorphism. The functor Mg → Diff is again (X → U) 7→ U . This
is a stack over Diff called the moduli stack of Riemann surfaces of genus g. An object X → U of Mg is a
family of Riemann surfaces parametrized by S.

1.3 The (2-)category of stacks

Categories fibered in groupoids over Diff (and thus stacks over Diff as well) are naturally organized into a
2-category. The latter means that in addition of the structure of a category, we also have morphisms (often
called transformations or 2-morphisms) between morphisms (with same source and target). More precisely,
this 2-category is given by:

A morphism f between two fibered categories (or stacks) X
πX→ Diff and Y

πY→ Diff is a functor f : X→ Y
between the underlying categories such that πY ◦ f = πX. Given two such morphisms f, g : X → Y, a 2-
morphism ϕ : f ⇒ g between them is a natural transformation of functors ϕ from f to g such that the
composition πY ◦ ϕ is the identity transformation from πX to itself4.

Since all maps in X(M) are invertible, one has

Lemma 1.6 With morphisms and 2-morphisms as above, categories fibered in groupoids over Diff form a
2-category pst5. The 2-morphisms in pst are automatically invertible.

In particular, the morphisms Hompst(Y,X) between two stacks form a groupoid.

The classical Yoneda lemma from category theory has an analogue for stacks.

Lemma 1.7 (Yoneda lemma) Let M be manifold and X a category fibered in groupoids over Diff. The
natural functor Hompst([M ],X)→ X(M) is an equivalence of groupoids.

4in other words, it is given by morphisms ηA : f(A) → g(A) ∈ Y(M) for every M ∈ Diff and object A ∈ X(M) such that
πY(ηA) = id : M →M and for any H : A→ B ∈ X, one has g(H) ◦ ηA = ηB ◦ f(H) ∈ Y

5the notation is chosen to remind of category fibered in groupoids as a pre-stack
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The natural functor maps f : [M ]→ X to f(M
id→ M) using the canonical object id : M → M in the stack

[M ] (Example 1). Note that by Remark 1.3, given an object φ : U → M in [M ] and an object A ∈ X(M),
we can construct an object A|U ∈ X(U); this is how one construct a morphism [M ] → X ∈ pst out of the
groupoid X(M).

Remark 1.8 The Yoneda lemma implies that the functor Diff → pst is fully faithful. That is, we can think
of the category of smooth manifolds as a full subcategory of stacks over Diff. In particular:

Hompst([M ], [N ]) ∼= C∞(M,N).

Stacks are thus a generalization of smooth manifolds.

Example 5 (Principal G-bundles) Let G be a Lie group and recall example 2. By the Yoneda lemma we
have a bijection between the groupoid of stack maps [M ] → [pt/G] and the groupoid [pt/G](M) of principal
G-bundles over M :

Hompst([M ], [pt/G]) ∼= [pt/G](M).

In particular, isomorphisms classes of principal G-bundles are in one-to-one correspondance with (natural
equivalence classes of) maps of stacks [M ]→ [pt/G]. If P →M is a principalG-bundle overM , the associated

functor [M ] → [pt/G] sends an object U
φ→ M ∈ [M ](U) to the pullback principal bundle φ∗(P ) → U . We

will see later that [pt] → [pt/G] is a principal G-bundle and that the latter construction is nothing more
than the pullback of this principal bundle under the stack morphism [M ]→ [pt/G].

The above construction is a “geometric” version of the following result in topology: isomorphism classes
of principal G-bundles over a CW-complex X are in bijection with homotopy classes of maps from X to BG.
Here BG is the classifying space of G (which is in general an infinite dimensional CW-complex). There is
a (contractible) G-bundle EG over BG. The isomorphism is obtained by pulling back this bundle along a
map X → BG. The stack point of view in some sense avoids dealing with homotopy classes of continuous
maps and infinite dimensional spaces.

We now define the correct notion of pullback for stacks which is really a kind of “homotopy pullback”.
Recall that the groupoid X(U) models a quotient in which we identify two objects of X(U) whenever there
is a (necessarily invertible) morphism between them. Thus, when defining the fiber product of two stacks
X,Y over a third one Z, objects of Z shall be thought as being the same when they are isomorphic (and not
just equal). The precise definition is:

Definition 1.9 (Fiber product of stacks) Let F : X→ Z and G : Y→ Z be two (pre-)stacks morphisms.
We define X×Z Y to be the category fibered in groupoids with objects all triples{(

x, y, F (x)
α→ G(y)

)
|U ∈ Diff, x, y are objects in X(U),Y(U) and α an arrow in Z(U)

}
and with morphisms

MorX×ZY

(
(x, y, α), (x′, y′, α′)

)
=


(u, v) | u : x→ x′, v : y → y′ s.t.:

F (x)
F (u)//

α �� 	

F (x′)

α′��
G(y)

G(u)
// G(y′)

 .

The functor X×Z Y→ Diff is the obvious one.
We do have a 2-commutative diagram:

X×Z Y //

��

Y

G

��w� wwwwwwwww

wwwwwwwww

X
F // Z

6



and X×Z Y satisfy a (2-categorical) universal property similar to usual fibered product.

Note that the fiber product of stacks over Diff is always a stack.

2 Differentiable stacks and Lie groupoids

2.1 Differentiable stacks via atlases

Stacks over Diff are, in general, not geometric enough in order to do differential geometry, see Example 7
below. This is why we need the following definition.

Definition 2.1 A stack X over Diff is called a differentiable stack if there exists a representable epimor-
phism p : [X] → X, where X is a manifold. That p is a representable epimorphism is equivalent to the the
condition that, for all maps [U ] → X, where U ∈ Diff, the fibered product [X] ×X [U ] is isomorphic to a
manifold (seen as a stack and denoted X×XU) and the induced map X×XU → U is a surjective submersion
(in Diff).

In that case, [X]→ X is called an atlas for X.

One can define similarly other classes of geometric or topological stacks.

One shall be careful that the fibered product of differentiable stacks is not necessarily a differentiable
stack (though it is a stack over Diff).

Remark 2.2 (about representability) Let f : X → Y be a map of stacks. That f is representable
precisely means that, for every morphism U → Y from a manifold U , the fiber product U ×XY is equivalent
to a manifold.

Representable maps are very useful for the following reason: any property P of smooth maps between
manifolds which is invariant under base change can be defined for an arbitrary representable morphism of
stacks. More precisely, we say that a representable morphism f : X → Y is P, if for every map [U ] → Y
(with U a manifold), the base extension fU : U ×Y X→ U is P as a map in Diff6.

For instance, one can define embedding, open maps, etale maps and so on. In particular, this allows to
mimick most construction of differential geometry for differentiable stacks.

Remark 2.3 (about epimorphisms) The condition (for f) of being an epimorphism is a 2-categorical
analogue of the usual notion in category theory. It is equivalent to requiring that the image im(f), that is
the smallest substack of Y through which f factorizes, is equal to Y.

Equivalently, it means, that for every manifold U , there exists an open cover V , such that every object
Y ∈ Y(V ) can be lifted, up to isomorphism, to some X ∈ X(V ).

For example, in the case where X = [X] and Y = [Y ] are honest manifolds, it is equivalent to requiring
that the induced map X → Y admits local sections.

The second condition is often the easiest to check in practice. In particular, it implies it is sufficient to
check the condition of being a representable epimorphism on an open cover.

Example 6 Examples 1, 2, 3 and 4 above are differentiable stacks.

An atlas for the stack [M ] is given by the identity map M →M or by any surjective submersion U →M .

Let see with a bit more detail the case of Example 2. We claim that there is a canonical map ε : [pt]→
[pt/G] which is an atlas. An object of [pt] is simply a manifold U . We define ε(U) := U ×G→ U , the trivial

principal G-bundle over U , and similarly ε(U
φ→ V ) is the obvious map between trivial bundles.

6here we use the Yoneda lemma to identify smooth maps and maps between the associated stacks
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Let M be a manifold and [M ]→ [pt/G] a stack morphism. By example 5, we identify it with a principal
G-bundle q : P →M . Then, the fibered product [pt]×[pt/G] [M ] is the category with objects




φ : U →M, U ×G ' //

ε(U)

��

φ∗(P )

φ∗(q)

��
U

id // U


|φ is smooth and the diagram is cartesian and the top map is G-equivariant


.

In particular, φ∗(P ) → U is trivialisable (which puts some restriction on φ). Assume first q : P → M is
trivial, then the above fibered product has objects the set of maps φ : U →M×G and thus [pt]×[pt/G] [M ] ∼=
[M ×G]. In general, we can cover M by open subsets Ui, such that q|ui

: P|Ui
→ Ui can be trivialised and

thus [pt] ×[pt/G] [Ui] ∼= [Ui × G]. Using the descent condition for stacks, we get that [pt] ×[pt/G] [M ] ∼= [P ]
(which is indeed a manifold).

In particular the canonical map [pt] → [pt/G] exhibits pt as a “trivial principal G-bundle over the stack
[pt/G]” and the above analysis shows that a principal bundle P →M viewed as a map of stacks f : [M ]→
[pt/G] is the pullback of pt→ [pt/G] along f .

Example 7 Let T be a topological space. Then we can define a category fibered in groupoids [T ] over
Diff as in Example 1. Objects of [T ] are all continuous maps f : U → T and morphisms are commutative

diagrams U
f //

ψ

��

T

V

g

??~~~~~~~

in which φ is smooth. The functor π : [T ] → Diff is as in Example 1 and one can

check that [T ] is a stack over Diff. If T is not (diffeomorphic to) a manifold, then [T ] is not a differentiable
stack7.

For instance, assume P,Q are submanifolds of M whose intersection is not a manifold. Then the fibered
product [P ]×[M ] [Q] is isomorphic to [P ∩Q] ∈ pst and is thus not a differentiable stack.

2.2 Differentiable stacks via Lie groupoids

Let p : X → X be an atlas for a differentiable stacks. Then we can make the fiber product

[X]×X [X] //

��

X

p

��
X

p // X

(2.1)

and we know that [X] ×X [X] is isomorphic to a manifold X ×X X and, further, that the left down arrow
and top arrow are surjective submersions. We respectively denote them s, t : X ×X X → X. In particular
the induced maps p ◦ s, p ◦ t : X ×XX → X → X are also representable epimorphisms and the fiber product
[X ×X X]×s,X,t [X ×X X] is also a manifold. By universal property of fibered products, we get two smooth

7it is however a topological stack
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maps 1X and mX given by the diagrams:

[X]
1X

//___

id

$$

id **

[X]×X [X] //

��

X

p

��
X

p // X,

[X ×X X]×s,X,t [X ×X X]
mX

//___ ''

,,

[X]×X [X] //

��

X

p

��
X

p // X.

Finally we also have the flip map I : X ×X X → X ×X X exchanging the two factors of X ×X X.

Proposition 2.4 The structure maps above make X ×X X
t
⇒
s
X a Lie groupoid as in Definition 2.5 below.

Definition 2.5 (Lie groupoids) A Lie groupoid X1

t
⇒
s
X0 is a groupoid in which the objects and mor-

phisms have a structure of smooth manifolds such that s, t are surjective submersions (hence X2 := X1×s,X0,t

X1 inherits a smooth structure) and all structure maps (the multiplication m : X2 → X1, the unit
1 : X0 → X1 and inverse map I : X1 → X1) of the groupoid structure are smooth maps.

We now explain a converse of the Proposition 2.4 which is given by the stack of torsors of a groupoid:

Example 8 (the quotient stack of a Lie groupoid) Let X1

t

⇒
s
X0 be a Lie groupoid. We can consider

a category fibered in groupoids [X0/X1] whose objects are all principal X1-bundles, that is the following
data:

• a surjective submersion q : P → U ∈ Diff,

• a smooth map ψ : P → X0 together with an action ρ : P ×φ,X0,s X1 → P such that

ψ(φ(p, γ)) = t(γ), q(φ(p, γ)) = q(p) for all (p, γ) ∈ P ×φ,X0,s X1 and such that, for all pairs (p, p′) with
q(p) = q(p′), there exists an unique γ ∈ X1 such that p′ = ρ(p, γ). The morphism in this category are given

by commutative diagram of smooth maps P
F //

��

Q

��
U

f // V

such that F is X1-equivariant.

The functor [X0/X1]→ Diff maps P → U to U and a commutative diagram to f .

Note that any smooth map ϕ : U → X0 defines a principal X1-bundle given by ϕ∗(X1)
ϕ∗(t)−→ U . Further,

every principal X1-bundle is locally of this form. It follows that [X0/X1] is a stack over Diff.
One should note that this construction is just a generalisation of Example 3, which is the special case

given by the transformation groupoid M × G ⇒ M with source map the projection to M and target map
the G-action.

The rule
(
ϕ : U → X0

)
7→ ϕ∗(X1)

ϕ∗(t)−→ U defines a stack morphism [X0]→ [X0/X1].

Theorem 2.6 Let X1

t
⇒
s
X0 be a Lie groupoid and X be a differentiable stack.

• The map [X0]→ [X0/X1] is a representable epimorphism and the fibered product [X0]×[X0/X1] [X0] is
isomorphic to [X1].

• If p : X → X is an atlas, then X is isomorphic to the stack of torsors [X/X ×X X] of the Lie groupoid
given by the atlas in Proposition 2.4.
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In other words, differentiable stacks are those stacks which are isomorphic to quotient stacks of
Lie groupoids.

For instance, if G acts on a group M , then the canonical map [M ]→ [M/G] is an atlas.
The dimension of a differentiable stack X is 2 dim(X0)−dim(X1) where X1 ⇒ X0 is any Lie groupoid

such that X ∼= [X0/X1] (this number is indeed indepent of the choice of a particular Lie groupoid and is
constant on any connected component of the stack).

In particular, if G acts on M , dim([M/G]) = dim(M)− dim(G) which can be negative.

There is no uniqueness of the Lie groupoid in the Theorem. Indeed, a differentiable stack is isomorphic
to the quotient stack of infinitely many differents Lie groupoids !

Example 9 (Čech groupoid) Let M be a manifold and (Ui)i∈I an open cover of M . We define the Čech
groupoid

(∐
i,j Ui ∩ Uj

)
⇒
∐
k Uk as follows. Denoting xi,j an element x ∈M which lies in both Ui and Uj

and xk a point x ∈M which lies in Uk, we set

s(xij = xi), t(xi,j) = xj , m(xi,j , xj,k) = xi,k, 1(xk) = xk,k.

Denote u :
∐
k∈I Uk →M the canonical submersion. Then the functor

(
V

φ→
∐
k∈I Uk

)
7→
(
V

u◦φ→ M
)

is an
equivalence [

∐
Uk/

∐
Ui ∩ Uj ] ∼= [M ] of stacks.

Example 10 (Orbifolds) In terms of differentiable stacks, orbifolds can be defined as differentiable stacks,
which, locally are isomorphic to differentiable stacks of the form [M/G] where G is a finite group. The latter
definition is equivalent to the following one in terms of Lie groupoids:

Definition 2.7 A differentiable stack X is an orbifold if it isomorphic to a quotient stack [X0/X1] of a Lie

groupoid such that the source and target maps s, t : X1 → X0 are étale and further the map X1
(s,t)−→ X0×X0

is proper.

We recall that a common definition of orbifolds8 is the following: an orbifold is a topological space X
endowed with an (equivalence class of) orbifold atlas. That is, X has an open covering (Ui)i∈I together
with homeomorphisms Ui ∼= Yi/Gi, where Yi are open connected subspaces of Rn, Gi are finite subgroups
of the group of diffeomorphisms of Yi, satisfying the following condition: for any x ∈ Ui ∩ Uj , there exists
diffeomorphic neighborhoods Wij , Wji of Yi, Yj (containing the pre-image of x) such that the following
diagram commutes:

Yi ⊃Wij
∼= //

%%LLLLLLLLLL
Wji ⊂ Yj

yyrrrrrrrrrr

Ui ∩ Uj

Out of an atlas, one construct a groupoid Y ⇒
∐
Yi. The space Y is, roughly speaking, the space of

all triples (x, yφij) where x ∈ Yi, y ∈ Yj and φij : Wij → Wji is a germ of an homeomorphism as above,
mapping x to y. The source and target maps are the obvious projections to Yi, Yj and the multiplication is
given by m

(
(x, y, φij), (y, z, φjk)

)
. One can check that the associated Lie groupoids satisfies the condition of

Definition 2.7.

A morphism F :
(
X1 ⇒ X0

)
→
(
Y1 ⇒ Y0

)
of Lie groupoids (i.e. a morphism of groupoids such

that the underlying maps Fi : Xi → Yi on the manifolds of objects and morphisms are smooth) induces a
morphism of stacks F : [X0/X1]→ [Y0/Y1] in a canonical way.

Reciprocally, let X ∼= [X0/X1] and Y ∼= [Y0/Y1] be differentiable stacks. It is not true that every stack
morphism X→ Y comes from a Lie groupoid morphism from

(
X1 ⇒ X0

)
→
(
Y1 ⇒ Y0

)
; the reason is that,

8à la Satake
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because of the descent property, a morphism of stacks can be defined on a cover of X and thus on a cover of
X0 as well. We thus have to add the possibility of refining a Lie groupoid (by passing to an open cover of
X0) before using a Lie groupoid morphism to recover all stacks morphisms. This motivates:

Definition 2.8 A morphism F :
(
X1 ⇒ X0

)
→
(
Y1 ⇒ Y0

)
of Lie groupoids is a Morita morphism if

• the induced map F0 : X0 → Y0 is a surjective submersion and

• the diagram X1
F1 //

(s,t)

��

Y1

(s,t)

��
X0 ×X0

(F0,F0)// Y0 × Y0

is cartesian.

A Morita morphism is thus an equivalence of groupoids which is induced by a smooth functor9. From this,
one can get

Lemma 2.9 • A Morita morphism F :
(
X1 ⇒ X0

)
→
(
Y1 ⇒ Y0

)
of Lie groupoids induces an

isomorphism of quotient stacks [X0/X1]
'→ [Y0/Y1].

• Two Lie groupoids morphisms F,G :
(
X1 ⇒ X0

)
→
(
Y1 ⇒ Y0

)
which are naturally equivalent induces

equivalent stacks morphisms [X0/X1]
F --

G

11⇓ [Y0/Y1] .

Example 11 The equivalence of stacks of Example 9 is induced by a Morita morphism of Lie groupoids.

Example 12 Let M be a manifold. The Lie groupoid of pairs is M ×M ⇒M with source and target map
given by the canonical projections, unit given by the diagonal and multiplication given by m((x, y), (y, z)) =
(x, z). There is a unique Lie groupoid morphism

(
M ×M ⇒ M

)
→ pt ⇒ pt which is a Morita map. In

particular, [M/M ×M ] ∼= [pt].

Example 13 Let P → M be a principal G-bundle where G is a Lie group and let (Ui)i∈I be a trivializing
cover. Then the stack morphism [M ] → [pt/G] (given by the bundle according to Example 5) is given by
the zigzag (

M ⇒M
)
←
(
G×

∐
Ui ∩ Uj ⇒

∐
Ui
)
→
(
G⇒ pt

)
where the left arrow is the canonical map of Lie groupoids10 given by the trivialization of P , which is a
Morita morphism. The right arrow is simply given by the projection onto G.

Now we state more precisely the relationship between functors between Lie goupoids and maps of stacks.

Proposition 2.10 Let X ∼= [X0/X1] and Y ∼= [Y0/Y1] be differentiable stacks. Any stack morphism X→ Y
is naturally equivalent to a zigzag(

X1 ⇒ X0

) '←−
(
Z1 ⇒ Z0

) F−→
(
Y1 ⇒ Y0

)
where the left arrow is a Morita morphism and the right arrow a Lie groupoid morphism.

3 Elementary examples of moduli problem and moduli stack

By a moduli space/problem of some algebro-geometric structure (call it G), one usually means a topological
space (or parametrization) of this structure which one would be allowed to study in families. A family of
G-objects over a manifold11 S is then a fiber bundle P → S whose fibers are given the structure of an object

9it is not necessarily an equivalence of smooth groupoids since there are only local sections of F0 in general
10the multiplication in the middle groupoid uses the 2-cocycle Uij → G defined by the principal bundle P →M
11or analytic space or topological space or so, depending on the precise geometric context one is interested in

11



Figure 1: The fiber (in Uord) at a point

(x, y, z) of T ord x

y
z

of G, which is assumed to vary smoothly. More precisely, a fine moduli space is then a space/manifold BG

(whose points are isomorphism classes of objects of G) together with a universal family U → BG, that is
a fiber bundle such that each fiber over m carries naturally the algebro-geometric structure defined by m.
This data shall be organized so that, for any family P → S of G-objects, there exists an unique smooth map
f : S → BG such that the diagram P //

��

U

��
S

f // BG

is cartesian. In other words, P is the pullback along f of

the universal family U .

In many cases12, a fine moduli space do not exists, but we can find rather a differentiable stack (i.e. a
moduli stack) representing the moduli problem.

The moduli problem is encoded in a category whose objects are families of G-objects P → S and mor-
phisms are cartesian diagrams P //

��

P ′

��
S

f // S′

.

Example 14 We have already seen an example: the stack [pt/G] is the stack of G-torsors, that is, the
moduli stack encoding families of objects which are free G-sets of rank one. Indeed, such a family over M ,
that is a G-torsor over M , is uniquely determined by a stack morphisms [M ]→ [pt/G].

More generally, principal G-bundles over a stack X are in bijection with the maps of stacks X→ [pt/G];
out of a map, one obtains a principal G-bundle as the pullback X×[pt/G] [pt]→ X.

Example 15 (Moduli of triangles) We wish to consider the problem of classifying (plane) triangles up
to isometries. We are going to compare two such problem:

• the one in which we consider ordered triangles, that is in which we have specified the name of each
edge of the triangle,

• and the one of unordered triangle, which really correspond to our initial problem.

To do this, first, we need to put a topology on isomorphism classes of triangles so that we consider

T ord := {(x, y, z) ∈ (0,+∞)3 |x+ y > z, y + z > x, z + x > y}

which correspond to a triangle whose first edge is of length x, the second y and the third one z. It is an
open submanifold of R3, whose points are indeed in one to one correspondence with isometry classes of
ordered triangles. The symmetric group Σ3 on 3 letters acts on T ord and we define T := T ord/Σ3, which is
a topological space whose points are in one to one correspondence with isometry classes of triangles.

Now define Uord to be the subspace of T ord × R2 consisting of tuples of a point (x, y, z) ∈ T ord and
a standard triangle of respective lengths x, y, z in C such that x is on the real axis, starting at 0 and the
triangle lies in the upper-half plane (see Figure 1). We also define U := Uord/Σ3 and we get canonical
families Uord → T ord and U → T whose fibers are respectively ordered triangles and triangles.

12precisely when the objects we are studying have too many isomorphisms
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Figure 2: A non-trivial family of equilateral tri-
angles over S1, which are rotating by an angle of
2π/3

The family Uord → T ord is a fine moduli space. Indeed, let P ord → Sord be a smooth family of ordered
triangle, that is a fiber bundle together with a smoothly varying metric on the fibers such that each fiber is
isometric to an ordered triangle. There is an unique smooth map j : Sord → T ord identifying P ord with the
pullback j∗(Uord); this map j is given by j(s) = Uords the fiber of s. This construction works, because we
have no choices to make when defining the ordered triangle of lengths (x, y, z).

However, the construction does not work for (unordered) triangles. Indeed, consider the family q : E → S1

(depicted in figure 2) which is a family of equilateral triangles over the circle S1, such that the triangles
makes a rotation of angle 2π/3 when making one full revolution around S1.

The family q : E → S1 is not a constant family nor isomorphic to a constant one. However, the canonical
map (induced by j as above) S1 → T given by t 7→ Et the fiber at t is constant (and equal to the unique
equilateral triangle of length 1 on each edge). Thus the pullback of U along this map is the constant family
S1 ×∆ where ∆ is the equilateral triangle of legnth 1. This shows that U → T is not a fine moduli space
and in fact no such fine moduli space could exists for this problem (it would have to be given by a similar
construction).

Nevertheless, we can construct the differentiable stack T := [T ord/Σ3] (that is the stacky quotient of T ord

by the action of Σ3 instead of the naive quotient) as defined by Example 2. By the Yoneda lemma, for any
manifold M , Hompst([M ],T) is the groupoid of principal Σ3-bundles (i.e. covering space) Q → M over M ,
together with a Σ3 equivariant map Q → T ord. In fact, this stack is indeed the stack encoding the moduli
problem of triangles as we now explain.

First, note that we could also encode triangles (up to isometry) in a slightly different way. Define

Bord := {(A,B,C) ∈ (R2)3, | (A,B,C) is an affine base of R2}

which is an open submanifold of R6. Let Iso be the group of affine isometry of R2 (that is the group generated
by translations, rotations and symmetries), which acts diagonally on Bord. Then an isomorphism class of
ordered triangles is a point in the quotient Bord/Iso. This action is compatible with the natural Σ3 action,
so that an isomorphism class of triangle is also given by a point in the quotient Bord/Iso× Σ3.

Finally, let us consider the moduli problem of triangles, that is the category MT whos objects are smooth
families P → S of triangles over the manifold S and with morphisms given by cartesian squares P //

��

P ′

��
S

f // S′

where f is smooth. This is a stack over Diff, with the obvious functor MT → Diff given by (P → S) 7→ S.
We define similarly the stack Mord

T over Diff of moduli problems of ordered triangles.

The following proposition relates all the above (differentiable) stacks.

Proposition 3.1 There are isomorphisms of stacks over Diff

13



• Mord
T
∼= [T ord] ∼= [Bord/Iso];

• MT
∼= [T ord/Σ3] ∼= [Bord/Iso× Σ3]

The first isomorphisms were explain above.
To see that MT

∼= [T ord/Σ3], we recall that objects of [T ord/Σ3](M) are principal Σ3-bundles Q → M
over M , together with a Σ3 equivariant map φ : Q→ T ord. We thus get a principal bundle φ∗(Uord)→ Q.
Since φ is equivariant, we can mod out by the Σ3 action to get the bundle

(
φ∗(Uord)/Σ3

)
→ M , which is

precisely an object of MT (M). This extends trivially into a functor which is seen to be an equivalence of
groupoids. Indeed, given a family of triangle P → S, one construct the covering space Q→ S whose fiber Qs
consists of all possibles orderings of the triangles in the fiber Ps of P → S; this yields the reverse equivalence
of groupoids.

Finally we have a canonical surjective submersion Bord → T ord (which to an affine base associates the
lengths of the edges between the vectors). This map induces a Morita map

(
Bord × (Iso×Σ3) ⇒ Bord

)
−→(

T ord × Σ3 ⇒ T ord
)

hence an equivalence of differentiable stacks.

Example 16 (The moduli stack of elliptic curves) An elliptic curve (over C) is a Riemann surface of
genus 1 together with a choice of 0. Every elliptic curves is isomorphic to the quotient C/Z ⊕ τZ of the
group C by a lattice. In the above formula, one can assume τ is in the upper half plane H. Two quotients
C/Z ⊕ τZ, C/Z ⊕ τ ′Z are isomorphic if and only if there exists g ∈ SL2(Z) such that τ ′ = g(τ). Here g
acts on the upper-half plane H by g(τ) = aτ+b

cτ+d (a, b, c, d ∈ Z and ad − bc = 1). This suggests to define the
moduli stack of elliptic curves as Mell := [H/SL2(Z)]. Note that one uses the action of SL2(Z) and
not of PSL2(Z) because every elliptic curve has an automorphism of order 2 induced by z 7→ −z and so we
wish to take it into account in the stack structure.

One can also define a moduli stack of elliptic curves as in example 4: let M̃1 be the stack over Diff with
objects fiber bundles X → U endowed with a smoothly varying fiberwise complex structure, whose fibers are
Riemann surfaces of genus 1, and equipped with a smooth section (prescribing the 0 of the elliptic curves)

σU : U → X. Morphisms are cartesian squares X
f //

��

Y

��
U

f // V

which also commutes with sections, that is:

f ◦ σU = σV ◦ f .

Similarly, but more complicated, than the case of triangles, we have:

Proposition 3.2 There is a stack isomorphism Mell
∼= M̃1.

A moduli stack has an underlying space of isomorphisms classes of objects:

Definition 3.3 (Coarse moduli space of a stack) Let X be a differentiable stack and assume X ∼= [X0/X1].
The naive quotient space Xcoarse := X0/X1 is called the coarse space of X. It is independent (up to homeo-
morphisms) of the choice of a groupoid presenting the stack X.

The coarse moduli space of a differentiable stack [X0/X1] is precisely a topological space whose points are
all isomorphisms classes of objects of the groupoid X1 ⇒ X0.

Proposition 3.4 There is a canonical map (of topological stacks) p : X ∼= [X0/X1] → X0/X1 = Xcoarse
which has the universal property that, for any map f : X→ Y , there is an unique map fcoarse : Xcoarse → Y
such that fcoarse ◦ p = f .

For instance Mellcoarse
∼= H/SL2(Z) ∼= C and the map H→Mell

p→ C is the j-invariant of an elliptic curve.

Remark 3.5 One can always see/think of a differentiable stack X as a moduli stack/space; precisely as the
moduli stack classifying the objects of X(pt).
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4 Algebraic Topology of stacks

One can do algebraic topology for stacks in a way similar to algebraic topology for manifolds.

4.1 Classifying spaces of differentiable stacks

A manifold has an underlying topology; the same is true for differentiable stacks. Indeed, replacing Diff by
the category of (nice enough) topological spaces, one obtains the notion of topological stacks. We do not
really need to detail this notion here. The category of topological spaces embed in topological stacks and we
have seen in example 7 how to interpret them as stacks over Diff. Similarly to the way one defines atlas for
differentiable stacks, one can define classifying space/homotopy type for them:

Proposition 4.1 Every differentiable stack X has a classifying space, that is a representable13 epimor-
phism [B]→ X from a CW-complex B which is an universal weak equivalence: that is for any map [T ]→ X
from a topological space T , the fiber product [T ]×X [B] is isomorphic to a topological space and the induced
continuous map [T ]×X [B]→ T is a weak homotopy equivalence.

A classifying space is unique up to homotopy equivalence (and isomorphisms of stacks). We can thus call
it the homotopy type of X.

General construction: One can define homotopy groups, various (co)homology theories and so on for
differentiable stacks by simply defining it to be the same as the one of its classifying space. For instance,
one defines the singular homology groups Hi(X,Z) := Hi(B,Z). In fact, one can prove:

Proposition 4.2 there is a bivariant theory for differentiable stacks; that is a theory encompassing homology,
cohomology with their algebraic structure, intersection theory and Poincaré duality for stacks, and which
generalizes the usual structures and constructions available for manifolds.

Example 17 The classifying space of the stack [pt/G] is (homotopy) equivalent to the usual classifying
space BG of the group which is defined as the quotient of a contractible free G-space by the G-action. In
particular

H∗([pt/G]) ∼= H∗(BG) ∼= H∗G(pt).

More generally, for any G-manifold M , one has a ring isomorphism H∗([M/G]) ∼= H∗G(M) the equivariant
cohomology of M .

4.2 The de Rham complex for differentiable stacks

One can also define de Rham forms for differentiable stacks. These can be defined in purely intrinsic terms14

of a differentiable stacks but there is also a nice explicit construction associated to each atlas, that is Lie
groupoid presenting a differentiable stack. For a manifold M , we let ΩidR(M) be the degree i differential
forms on M and we write d : Ω∗dR(M)→ Ω∗+1

dR (M) for de Rham differential.

Let X be differentiable stack and take a Lie groupoid X1 ⇒ X0 such that X ∼= [X0/X1]. We set
Xn = {(x1, . . . , xn)|t(xi) = s(xi+1) i = 1, . . . , n − 1}, the space of composables n-many arrows. Since s, t
are submersions, Xn is naturally a smooth manifold and for any i = 0, . . . , n, we get smooth maps (called
the face operators)

Xn−1 Xn

d0=t×idn−1
X1oo

... di=id
i−1
X1
×m×idn−i−1

X1

��

dn=id
n−1
X1
×s

//
d1=m×idn−2

X1

vvllllllllllllllll Xn−1

Xn−1 · · · Xn−1 · · · .

13in the sense of topological stacks
14namely by defining a complex of sheaves of forms over the stack X, which to x ∈ X(U) associates Ω∗dR(U)
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This way, we get a simplicial manifold, called the nerve15:

· · · ////
//// X2

////// X1 //// X0

The space of de Rham k-forms of X1 ⇒ X0 is

ΩkdR(X•) :=
⊕
p+q=k

Ωp(Xq).

For each i, the face operator di induces a linear map d∗i : Ωp(Xq) → Ωp(Xq+1) ⊂ Ωp+q+1
dR (X•), which

commutes with de Rham differential of each Xn. Define b :=
∑

(−1)i+pd∗i : ΩpdR(X•)→ ΩpdR(X•+1) and let

∂ : ⊕Ωp(X∗)
d→ Ωp+1(X∗) be the differential induced by the de Rham differential on each Xn.

Lemma 4.3 Let X be differentiable stack and X1 ⇒ X0 a Lie groupoid such that X ∼= [X0/X1].

• b+∂ is a differential on ΩndR(X•); that is (b+d)2 = 0. We call (Ω∗dR(X•), b+∂) the de Rham complex
of X• and H∗dR(X•) := H∗(Ω∗dR(X•), b+ ∂) is called the de Rham cohomology of X•

• If X ∼= [Y0/Y1], then ΩndR(Y•) is canonically quasi-isomorphic to ΩndR(X•).

In particular one can set (Ω∗dR(X), b + ∂) = (Ω∗dR(X•), b + ∂) in the derived category and the de Rham
cohomology of X is canonically isomorphic to H∗dR(X•).

Remark 4.4 One can also do similar construction with singular (co)chain complexes with any coefficient
in place of de Rham complex.

Example 18 Let G be a discrete group. Then ΩpdR([pt/G]) ∼= R[Gp] and the de Rham complex is precisely
the standard complex computing (R-valued) the cohomology of the group. One recovers group cohomology
with coefficient in Z by replacing de Rham complex by the singular cochain complex.

Example 19 Let (Ui) be a good16 cover of a manifold M . We have the Čech groupoid
∐
Ui ∩ Uj ⇒

∐
Uk

(example 9) whose quotient stack is [M ], the manifold itself. Then the de Rham complex of the groupoid∐
Ui ∩ Uj ⇒

∐
Uk is the Čech complex associated to the cover (Ui) and the sheaf given by the de Rham

forms, which, by Poincaré Lemma is quasi-isomorphic to the usual Čech complex of the cover (Ui). We
just recovered one of the standard proof that Čech cohomology of a manifold is isomorphic to (de Rham)
cohomology. For general cover, the same observation gives a proof of the generalized Mayer-Vietoris principle.

4.3 Short digression on inertia stack

The fact that torsion is killed in characteristic zero has the following consequence for orbifolds:

Proposition 4.5 Let X be an orbifold presented by a proper étale groupoid [X0/X1]. Then the de Rham

complex Ω∗dR(X•)
∼←↩ Ω∗dR(X0)X1 is quasi-isomorphic to its sub-complex given by the X1-invariant forms.

Example 20 If G is a finite group acting on a manifold M , then, H∗dR([M/G]) ∼= H∗dR(M/G) ∼= H∗dR(M)G.

The above proposition reduces the cohomology of an orbifold to the cohomology of its coarse space which
loose a lot of information. This is why the following philosophy is useful:

Philosophy: the correct characteristic zero (co)homology invariant (or representation theory) of an
orbifold X are those of its inertia orbifold ΛX (possibly up to some regrading):

15a geometric realization this simplicial manifold provides a classifying space for the differentiable stack
16i.e. all finite intersections of opens are contractible
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Definition 4.6 (Inertia stack) If X is a differentiable stack, its inertia stack ΛX is the stack with objects
φx : x → x ∈ X(U) for any manifold U , that is all automorphisms of objects of X(U). Its arrows are given
by arrows f : x→ y ∈ X(U) (which maps the automorphism φx to f ◦ φx ◦ f−1 : y → y).

Thus the inertia stack of X is just the stack of all automorphisms in X.
Note that the inertia stack ΛX is isomorphic to the fiber product ΛX ∼= X ×X×X X where the maps

X → X × X are the diagonal; in other words, the inertia stack of X is the self intersection of X inside the
diagonal (which is non-trivial in the differentiable stack world unless the stack is a manifold).

Example 21 Λ[M/G] =
∐

[g][M
g/C(g)] where the disjoint union is over all conjugacy classes in G and C(g)

is the centralizer of g. In particular,

H∗dR(Λ[M/G]) =
⊕
[g]

H∗(Mg)C(G)

which contains H∗dR([M/G]) as the summand associated to [g] = [e] the conjugacy class of the unit.

As an example of the above philosophy let us mention that the Chen-Ruan orbifold cohomology of an
(almost complex) orbifold X is the cohomology of ΛX endowed with the ghost shift regrading and a twisted
cup-product.

Also, for any compact Lie group, the cohomology H∗(Λ[pt/G]) has an natural structure of Frobenius
algebra (or more precisely a graded version involving a degree shifting by the dimension of G).

Example 22 The simplest non-trivial example of Chen-Ruan orbifold cup product is given by X = [pt/G]
for a finite group G. In that case, H∗dR([pt/G]) ∼= Z(k[G]) the center of the group algebra of G and the
Frobenius structure is the one associated to Dijkgraaf-Witten Frobenius algebra.

5 Vector Bundles and Tangent Stacks

To define vector bundles on differentiable stacks, one can proceed as follow:

Definition 5.1 (vector bundles over stacks) Let X be a differentiable stack. A vector bundle on X is a
representable morphism of stacks E → X such that, for every f : [U ] → X with U a manifold, the pullback
[U ×X E]→ U is endowed with the structure of a vector bundle. We also require, for every a : V → U , that
the natural isomorphism ϕa : (f ◦ a)∗E → a∗(f∗E) is a bundle map. A complex vector bundle is defined
analogously.

One can show that this definition is equivalent to the data of a representable morphism of stacks E → X
which makes E a vector space object relative to X. That is, we have an addition morphism E×X E→ E and
an R-action R× E→ E, both relative to X, which satisfy the usual axioms.

Also if X ∼= [X0/X1], then, a vector bundle on X is an X1-equivariant vector bundle. That is, a vector
bundle E over X0, and an isomorphism ψs∗E → t∗E of vector bundles over X1 such that the three restrictions
of ψ to X1 ×X0

X1 satisfy the natural cocycle condition.

The standard operations/structure on vector bundles on spaces (e.g., direct sum, tensor product, exterior
powers, metric, orientation and so on) can be carried out on vector bundles on stacks mutatis mutandis.

Let X ∼= [X0/X1] be a differentiable stack. Taking tangent bundles gives rise to the Lie groupoid
TX1 ⇒ TX0. We call [TX0/TX1] the tangent stack TX17 of X. The base map induces a Lie groupoid
morphism

(
TX1 ⇒ TX0

)
→
(
X1 ⇒ X0

)
and thus a morphism of stacks TX→ X.

Lemma 5.2 If X is an orbifold, then TX→ X is a vector bundle over X.

17which is independent up to isomorphism of the choice of X1 ⇒ X0
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However, TX→ X is not a vector bundle over X in general.

Example 23 Let G be a Lie group and [∗/G] be its classifying stack. Let g be the Lie algebra of G, viewed
as a group via its vector space addition. We thus get the quotient stack [∗/g]. Then, T[∗/G] = [pt/g oG],
where G is acting on g by the adjoint action. The fiber of the base map T[∗/G] → [∗/G] (over the unique
point pt→ [pt/G]) is [∗/g] which is a stack, but certainly not a manifold; in particular, not a linear space !
In fact T[∗/G]→ [∗/G] is an example of a what is called a g-gerbe !

In general, the tangent stack is a 2-categorical analogue of a vector bundle. In fact, if X = [X0/X1], we
have a tangent complex : LX• → TX0 a length 2-complex of vector bundles over X0. Here LX• is the Lie
algebroid of the groupoid X1 ⇒ X0 defined as the normal bundle of the unit map 1 : X0 → X1. It is
naturally identified with the relative tangent bundle Tt of the target map t : X1 → X0 and the anchor map
ρ is the composition ρ : LX• ∼= 1∗(Tt) ↪→ 1∗(Tt)⊕ TX0

∼= 1∗(TX1) ∼= 1∗(Ts)⊕ TX0 → TX0 where Ts is the
relative tangent bundle of the source map s : X1 → X0.

In Example 23, the tangent stack T[pt/G] can be represented by the complex of vector spaces g → 0
where g is in cohomological grading −1.

6 Gerbes as stacks

We just have seen an example of a gerbe, namely the tangent stack of [pt/G]. Another important class of
examples of (central) gerbes in mathematical physics arise from Chern-Simons. We wish now to explain a
differentiable (2-)stack point of view on gerbes. This will present gerbes in a way very similar to the usual
notion of principal bundles.

6.1 Gerbes, non-abelian cocycles and groupoids extensions

Recall that a principal G-bundle is a fiber bundle P →M whose fibers are diffeomorphic to G and endowed
with a G-action. We have a similar interpretation for gerbes: “roughly, a G-gerbe is a stack epimorphism
P→ X whose fibers are diffeomorphic to the stack [pt/G]”. However, one issue, here, is that in general the
stack [pt/G] is not a group.

Nevertheless, when G is abelian, then the multiplication G×G→ G is a group morphism, hence yields a
map of stacks [pt/G]× [pt/G]→ [pt/G] which makes [pt/G] a group-stack18. In that case, one can define a
notion of principal [pt/G]-bundles over a stack which is completely analogous to principal bundles over Lie
groups. This special kind of gerbes are called central gerbes as we will see below.

Let us start with the general definition of gerbes on stacks.

Definition 6.1 A gerbe on a stack X is stack epimorphism G→ X such that the canonical map G→ G×XG
is also an epimorphism.

Let G be a Lie group. A G-gerbe over a stack X is a gerbe G → X which locally is isomorphic to
[pt/G]× X.

For differentiable stacks, a gerbe can be thought of as implying that G has the same (up to isomorphisms)
objects as X but more morphisms.

Let us focus on general G-gerbes P → [M ] over say a manifold M . We first note that isomorphisms
between different local trivializations (over an open subset U) U × [pt/G] ∼= P|U are given by a map U →
Isopst([pt/G]). The stack of diffeomorphisms Isopst([pt/G]) is isomorphic to the space of group automorphisms
Aut(G). Hence, the choice of trivializations (Ui) yields a Čech 2-cocycle Uij → Aut(G). This data, of course,
is not enough to determine a G-gerbe. We shall also take into account the differentiable stack structure,
namely the fact that U × [pt/G] ∼= P|U is isomorphic to the quotient stack of a Lie groupoid U1 ⇒ U0. The

18that is a group object in the category of stacks, which is to stacks what a Lie group is to manifolds
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Groupoid structure will give an additional 3-cocycle condition with value in G and this is how one recovers
the usual non-abelian cocycle conditions. In fact we have the following table relating non-abelian cocycles
with geometric objects and their topological invariants:

Non abelian cohomology
(Grothendieck,Giraud)

H1(M,G) “H2(M,G)”

Geometric objects
principal G-bundles (up

to iso)
G-gerbes

Topological invariants
computed from
geometric data

Char classes from
Chern-Weil

For central gerbes only:
Dixmier-Douday classes.

Let us (re)call that, for a smooth manifold M and G be a Lie group, a non abelian 2-cocycle19 on M
with values in G is an open covering (Ui)i∈I of M and a collection of smooth maps

λij : Ui ∩ Uj → Aut(G) and gijk : Ui ∩ Uj ∩ Uk → G

satisfying the following relations:

λij ◦ λjk = Adgijk ◦λik
gijlgjkl = giklλ

−1
kl (gijk).

Over a manifold20 M , isomorphisms classes of G-gerbes over [M ] are in bijection with non-abelian
cohomology H2(M,G), that is non-abelian 2-cocycle up non-abelian coboundaries.

We now relate this with a Lie groupoid presentation of G-gerbes.

Proposition 6.2 Let X be any differentiable stack. Isomorphisms classes of G-gerbes over X are in one to
one correspondence with G-extensions of Lie groupoids of X up to Morita equivalences.

By a Groupoid G-extension of X we mean : a Lie groupoid X1 ⇒ X0 such that X ∼= [X0/X1] and a short
exact sequence of Lie groupoids

X0 ×G

p1

��
p1

��
X0

bundle of groups

↪→ Y1

����
X0

extended groupoid

� X1

t

��
s

��
X0

original groupoid

where Y1 ⇒ Y0 is a Lie groupoid, the horizontal arrows are maps of Lie groupoids (which is the identity on
the objects) and the left part is a bundle of group viewed as the trivial groupoid associated to the product
of stacks [X0]× [pt/G].

Example 24 From a non-abelian 2-cocycle over M associated to an open covering (Ui), we get the following
G-extension: ∐

Ui ×G
1×id //

p1

��
p1

��

∐
Ui ∩ Uj ×G

φ //

����

∐
Ui ∩ Uj

����∐
Ui

id
// ∐Ui

id
// ∐Ui

.

The Lie groupoid structure on the right is the one of the Čech groupoid Example 9, while the one on the
middle is given by as follows. Let xij denotes a point x ∈ M seen as a point of the open subset Ui ∩ Uj ,

19in the sense of Giraud, Grothendieck, Dedecker...
20the definition and following result of non-abelian cohomology can actually be extended to all stacks
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xi denotes the point x ∈ M seen as a point of the open subset Ui, and g, h arbitrary elements of G. The
groupoid multiplication is given by

(xij , g) · (xjk, h) = (xik, gijkλ
−1
jk (g)h).

Let (Ui) be an open covering of X by trivializations of a G-gerbe G → X. Then we get non-abelian
2-cocycles as above. In particular the composition

λ̃ij : Ui ∩ Uj
λij−→ Aut(G) −→ Out(G) = Aut(G)/G

is an ordinary Čech 2-cocyle whose cohomology class is denoted [(λ̃ij)] ∈ H1(X,Out(G)) and is called the
band of the G-gerbe.

Definition 6.3 (central G-gerbes) A G-gerbe is said to be central if its band is trivial.

In terms of G-extensions of Lie groupoids, central gerbes are precisely the central G-extensions, meaning
that the image of X0 ×G in Y1 is central.

6.2 G-gerbes as principal bundles over a group-stack

We now wish to explain a bit more the previous comment that a central G-gerbe, with G abelian, is really
like a principal bundle over the group stack [pt/G]. This is better understood by allowing ourselves to think
in terms of 2-stacks. Indeed, as seen before, principal H-bundles over a manifold M are the same as stack
morphisms [M ] → [pt/H]. The same will be true for a principal [pt/G]-bundle, except that we have to
replace the quotient stack [pt/H] by the “quotient 2-stack

[
pt/
(
[pt/G]

)]
”. This 2-stack shall really be think

as the stack version of the naive quotient of the trivial group with one element {1} by the image of the group
G. This kind of quotient can be made in a more general situation that we now describe.

Definition 6.4 (Lie 2-groups and group stacks) A Lie 2-group is a group object in the category of Lie
groupoids meaning it is a Lie groupoid G1 ⇒ G0 where, both, G1 and G0 are Lie groups and all structure
maps are Lie group morphisms. The quotient stack [G0/G1] of a Lie 2-group is a differentiable
group stack (that is a stack with a multiplication, unit and inverse map satisfying the usual axioms in the
category of differentiable stacks).

Most of the group stacks arising in the literature are quotient stacks of Lie 2-groups. We have already seen
the example of [pt/G] with G abelian.

Lie 2-group can be equivalently described in terms of the following data : a crossed module of Lie

groups is a homomorphism G
ρ−→ H of Lie groups together with an action of H on G by automorphisms:

g 7→ gh satisfying

ρ(gh) = h−1 · ρ(g) · h

g
ρ(g2)
1 = g−12 · g1 · g2.

In fact, Lie 2-groups are in bijection with crossed module of Lie groups; a crossed module G
ρ−→ H

giving rise to the Lie 2-group GoH ⇒ H. The underlying groupoid structure is the transformation groupoid
given by the action g · h = ρ(g)h. In particular the associated quotient group stack is [H/G].

Note that the image ρ(G) ⊂ H is a normal subgroup of H and that the kernel of ρ is central in G. In
fact:

a crossed module of Lie group shall be thought as the “stacky quotient” of the Lie group H/ρ(G) where
we remember the non-trivial automorphism given by the elements of ker(ρ).

Example 25 A Lie group G gives rise to three different Lie 2-groups, i.e. crossed modules of Lie groups:
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1. 1→ G, whose quotient group stack is just [G], that is the Lie group G itself;

2. G
Ad−−→ Aut(G) given by the adjoint action of G on itself;

3. Z(G)→ 1 where Z(G) is the center of G. Its quotient group stack is [pt/Z(G)] with its obvious group
structure.

We have an evident map between the last two crossed modules, and thus a canonical group stack homomor-
phism [1/Z(G)]→ [Aut(G)/G].

Now, we can define21 principal bundles over a group stack of the form [H/G] (where G
ρ−→ H is a crossed

module of Lie groups) in a way completely parallel to usual principal bundles over a manifold.

Definition 6.5 A principal [H/G]-bundle over a differentiable stack X is a differentiable stack epimorphism
P → X where P is a differentiable stack endowed with a fiberwise action of the group stack [H/G] and
satisfying that the canonical map P× [H/G]→ P×X P is an isomorphism.

The condition P→ X being an epimorphism ensures that, locally, there are 2-commutative diagram

U× [H/G] .

projection // U ⊂ X.

P|U

77ooooooooooooo
'

OO V^666
666

When G = 1 and X ∼= [M ], we simply recover the standard definition of a principal bundle over a manifold
(or a stack as in Example 14).

Recall from Example 25 the two crossed modules of Lie groups G
Ad−−→ Aut(G) and Z(G)→ 1 associated

to a Lie group G and their associated group stacks [Aut(G)/G] and [1/Z(G)]. We now express gerbes and
central gerbes as principal bundles over these group stacks.

Theorem 6.6 Let X be a differentiable stack.

• G-gerbes over X
bijection←→ Principal [Aut(G)/G]-bundles over X.

• central G-gerbes over
X

bijection←→ Principal [Aut(G)/G]-bundles over X whose structure 2-
group can be reduced to [1/Z(G)]

“
bijection←→ Principal [1/Z(G)]-bundles over X.

In particular, we recover that the tangent stack T[pt/G]→ [pt/G] is a central g-gerbe.

Remark 6.7 (2-stack point of view) The analogue, for a group stack [H/G] of the stack [pt/G] associ-
ated to a Lie group is a differentiable 2-stack denoted [pt/[H/G]]. We do not wish to define all the theory
of 2-stacks. We just mention that these objects can be defined similarly to differentiable stacks, replacing
groupoids by 2-groupoids22, that is 2-category in which all 1-morphisms and 2-morphisms are invertible.
Differentiable 2-stacks are thus represented by Lie 2-groupoids and 2-stacks morphisms between two Lie
2-groupoids X•, Y• are represented by zigzags:

X•
Morita equivalence←−

∼
Z• −→ Y•

21one would have to be careful however, in the below definition, that stacks forms a 2-category and thus the relevant diagrams
are commutative up to (coherent) 2-isomorphisms

22In the case we are interested in, one only needs to consider strict 2-categories
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where the left arrrow is a Morita equivalence and a right arrow a morphism of Lie 2-groupoids.
Similarly to the fact that principal G-bundles are the same as maps of stacks to [pt/G], we have the

following proposition for group stacks.

Proposition 6.8 Let G
ρ−→ H be a crossed module of Lie groups. Principal [H/G]-bundles over X are in

one to one correspondence with 2-stacks morphisms X→ [pt/[H/G]].
In particular, G-gerbes over X are in one to one correspondence with 2-stacks morphisms X→ [pt/[Aut(G)/G]]

and central G-gerbes are in one to one correspondence with 2-stacks morphisms X→ [pt/[pt/Z(G)]].

6.3 Characteristic classes of gerbes and group stack bundles

Proposition6.8 allows to define characteristic classes for (central) gerbes and more generally 2-groups in an
natural way. Recall that the characteristic classes of a principal G-bundle P over a manifold M are given
as follows. The bundle determines the stack morphism23 f : [M ] → [pt/G]. The (de Rham) cohomology
H∗G(pt) ∼= H∗([pt/G]) is given by g-invariant polynomial functions S(g∗[−2]).

The characteristic classes of P are given by the map S(g∗[−2])g ∼= H∗([pt/G])
f∗−→ H∗(M) evaluated on

the generators of the cohomology of H∗([pt/G]).

This generalizes to group stack: let P→ X be a principal [H/G]-bundle, and ϕ : X→ [pt/[H/G]] be the
associated 2-stack morphism.

The characteristic map of P→ X is the composition

H∗([pt/[H/G]],R)
ϕ∗ //

characteristic map

66
H∗(X,R)

∼= // H∗dR(X)

The same construction can be defined over arbitrary coefficient of course. This allows to define characteristic
classes associated to generators of the cohomology of the classifying 2-stack [pt/[H/G]] of the Lie 2-group

G
ρ−→ H.
We can in particular apply this to gerbes. Unfortunately, the cohomology of [pt/[Aut(G)/G]] is not

known in general and further a lot of the interesting information seems to be concentrated in its torsion
part:

Example 26 LetG be a compact Lie group and denote Z(g) the center of its Lie algebra g. If dim(Z(g)) ≤ 3,
then

Hp([G→ Aut(G)],R) ∼=
{

R if p = 0
0 if p > 0.

However, if we are only interested in central gerbes, the situation is much easier.

Proposition 6.9 H•([pt/[pt/Z(G)]],R) ∼= Λ∗Z(g) where Z(g) is in degree 3.

Now apply that to a G-gerbe with trivial band over X. By the above theorem, we have a principal [pt/Z(G)]-

bundle P → X and thus the characteristic map H∗([pt/[pt/Z(G)]],R)
characteristic map−−−−−−−−−−−→ H∗dR(X). Dualizing

the characteristic map in degree 3, we get a characteristic class CC(P) ∈ H3
dR(X)⊗ Z(g).

Classicaly, the real valued cohomology classes of a principal bundles can be computed out of geometric
data —connections and curvatures— by the Chern-Weil construction. There is a similar construction for
central gerbes !

Let G→ X be a central G-gerbe where G is a connected reductive Lie group so that we have a splitting
g = Z(g)⊕m.

23or more classicaly a continuous map f : M → BG
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LetM×G→ Y1
φ−→ X1 be an associated centralG-extension of Lie groupoids (as given by Proposition 6.2).

In particular X ∼= [X0/X1]. Note that Y1
φ−→ X1 is a principal G-G-bibundle.

Theorem 6.10 1. Given a connection 1-form α ∈ Ω1(X•, g) for the right principal G-bundle Y1
φ−→ X1,

then there exists Ωα ∈ Z3
dR(X, Z(g)) such that p(∂α+ bα) = φ∗(Ωα).

2. Given two connections α1 and α2, then Ωα1
− Ωα2

∈ B3
dR(X•, Z(g)) hence [Ωα] does not depends on

the choice of connection.
The class DD := [Ωα] ∈ H3

DR(X•)⊗ Z(g) is called the Dixmier-Douady class of the gerbe.

This class yields the following Chern-Weil type theorem for gerbes:

Proposition 6.11 The Dixmier-Douady class DD is equal to the universal class CC(P).

As immediate corollaries, one sees that the Dixmier-Douady class only depends on the gerbe (and not the
choice of extension) and also that the Dixmier-Douady class is integral.

Example 27 If G = U(1)n is a torus, then Proposition 6.9 follows from the following stronger result: The
2-stack [pt/[pt/G]] is homotopy equivalent to the Eilenberg-Mac Lane space K(Zn, 3). In that case, it follows
in particular, that the characteristic/Dixmier-Douady class completely determines the central U(1)n-gerbe
(up to equivalences).

Example 28 (The string 2-group) Let G be a simply connected compact simple Lie group (for instance
G = Spin(n)). There is an interesting (topological) 2-group, called the String 2-group associated to G. We
have a left invariant closed 3-form ν on G which generates

H3(G,Z) ∼= Zν ∼= H4([pt/G]).

It determines the basic central extension

1→ S1 → Ω̃G
p̃−→ ΩG→ 1

of the based (at identity) loop group ΩG of G. We have the associated Lie algebra extension

0→ R→ Ω̂g→ Ωg→ 0

which is quasi-isomorphic to the Lie 2-algebra R[1] ⊕ g. The String 2-group “integrates” this Lie 2-algebra
and, denoting PG = {f : [0, 1] → G/f(0) = 1} the path space of G, is given by the crossed module (of
Fréchet) groups

Ω̃G
p−→ PG

where p is the composition Ω̃G
p̃−→ ΩG ↪→ PG and PG acts on Ω̃G by the lift of its conjugacy action on its

normal subgroup ΩG.

We denote String(G) := [PG/Ω̃G] the induced (topological) group stack.

Proposition 6.12 The cohomology of the classifying 2-stack of String(G) is given by

H•([pt/[PG/Ω̃G]]) ∼= H•([pt/G])/([ν]).

It is thus a polynomial algebra on generators y2, . . . , yr (of degrees 2ei + 2 where e1, . . . , er are the exponents
of G).
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The map
(
PG 3 f

)
7→ f(1) ∈ G defines a map of group stack String(G) → [G]. And thus any String(G)-

principal bundle P→ X gives rise to an associated principal G-bundle G×String(G) P→ X.

The proposition thus says that the characteristic classes of a principal String(G)-bundle are those of the
associated principal G-bundles modulo the first Pontrjagin class. In particular, this class is an obstruction
to lifting a principal G-bundle to a principal String(G)-bundle.

Some references related to the content of these notes or the applications of stacks and gerbes to mathe-
matical physics are listed below. We mainly used [5, 6, 15, 26, 27].
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[6] K. Behrend, P. Xu, Differentiable stacks and gerbes, preprint DG/0605674.

[7] R. Bott, On the Chern-Weil homomorphism and continuous cohomology of Lie groups, Advances in
Math. 11 (1973), 289–303.
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